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Abstract
How can we trust the correctness of a learned
model on a particular input of interest? Model
accuracy is typically measured on average over a
distribution of inputs, giving no guarantee for any
fixed input. This paper proposes a theoretically-
founded solution to this problem: to train Self-
Proving models that prove the correctness of their
output to a verification algorithm V via an In-
teractive Proof. We devise a generic method for
learning Self-Proving models, and we prove con-
vergence bounds under certain assumptions. As
an empirical exploration, our learning method
is used to train a Self-Proving transformer that
computes the Greatest Common Divisor (GCD)
and proves the correctness of its answer. Our
code is available here.

1. Introduction
Bob is studying for his algebra exam and stumbles upon a
question Q that he cannot solve. He queries a Large Lan-
guage Model (LLM) for the answer, and it responds with a
number: 42. Bob is aware of recent research showing that
the LLM attains a 90% score on algebra benchmarks (cf.
Frieder et al. 2023), but should he trust that the answer to
his particular question Q is indeed 42?

Bob could ask the LLM to explain its answer in natural lan-
guage. Though he must proceed with caution, as the LLM
might try to convince him of an incorrect answer (Turpin
et al., 2023). Moreover, even if 42 is the correct answer, the
LLM may fail to produce a convincing proof (Wang et al.,
2023). If only the LLM could formally prove its answer,
Bob would verify the proof and be convinced.

This paper initiates the study of Self-Proving models (Fig-
ure 1) that prove the correctness of their answers via an
Interactive Proof system (Goldwasser et al., 1985). Self-
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Proving models successfully convince a verification algo-
rithm V with worst-case soundness guarantees: for any
question, V rejects all incorrect answers with high prob-
ability over the interaction. This guarantee holds even
against provers that have access to V ’s specification, and
unbounded computational power.

Figure 1. Self-Proving models. For input x, Self-Proving model
Pθ generates an output y and sends it to a Verification Algorithm
V . Then, over i ∈ [R] rounds, V sends query qi, and receives an
answer ai from Pθ . Finally, V decides (“accept/reject”) whether
it is convinced that y is a correct output for x.

Table 1. Formal guarantees. Completeness and soundness are
fundamental guarantees of a verification algorithm V . Verifiabil-
ity (novel in this work) is a feature of a model Pθ with respect to
a verifier V and input distribution µ. Importantly, V ’s soundness
holds for any input x and output y.

GUARANTEE TYPE DEF.

V
COMPLETENESS
& SOUNDNESS

WORST-CASE
∀x, y 3.2

Pθ VERIFIABILITY
AVERAGE-CASE
x ∼ µ, y ∼ Pθ(x)

3.4

Contributions and organization. In Section 3 we define
Self-Proving models. In Section 4 we propose two meth-
ods for learning Self-Proving models. The first, Transcript
Learning (TL), relies on access to transcripts of accepting
interactions and is the focus of this paper; we prove con-
vergence bounds for TL under convexity and Lipschitzness
assumptions. The second method, Reinforcement Learning
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Table 2. Self-Proving transformers computing the GCD. We
train a 6.7M parameter GPT to compute the GCD of two integers
sampled log-uniformly from [104]. Vanilla GPT correctly gener-
ates the GCD for almost all inputs, but does not prove correctness
to a simple verification algorithm. GPT trained with Transcript
Learning (GPT+TL) proves its answer 60.3% of the time; training
with Annotated Transcript Learning (GPT+ATL) increases this to
96.7%. See Section 5 for more details.

LEARNING METHOD CORRECTNESS VERIFIABILITY

GPT (BASELINE) 99.8% -
GPT+TL 98.8% 60.3%
GPT+ATL 98.6% 96.7%

from Verifier Feedback (RLVF), trains a model by emulat-
ing interaction with the verifier. We also present variants of
these algorithms that use Annotations to improve learning
in practice.

Lastly, we empirically study TL and Annotated-TL (ATL)
for training Self-Proving transformers that compute the
Greatest Common Divisor (GCD) of two integers. Ta-
ble 2 demonstrates the efficacy of our methods, with ad-
ditional experiments in Section 5. Our results may be
of independent interest for research on the arithmetic ca-
pabilities of transformers (e.g. Charton 2024; Lee et al.
2024). Code, data and models are available at https:
//github.com/orrp/self-proving-models.

Scope. This paper contains a theory of learned models
that prove their own correctness via an Interactive Proof
system. The fascinating and well-studied question of which
settings are verifiable in an Interactive Proof system is be-
yond our scope. Our theory is general in that it pertains
to any such setting, e.g., any decision problem solvable in
polynomial space (Shamir, 1992). See Goldreich (2008)
for a primer on Proof systems more broadly.

2. Related Work
This paper is situated at the intersection of machine learn-
ing (ML) theory and Interactive Proof systems (IPs). We
briefly discuss recent relevant work from these literatures.

ML and IPs. IPs have found numerous applications in
ML towards a diverse set of goals. Anil et al. (2021) intro-
duce Prover–Verifier Games, a game-theoretic framework
for learned provers and verifiers. Wäldchen et al. (2024)
cast the problem of model interpretability as a Prover–
Verifier interaction between a learned feature selector and
a learned feature classifier. Debate systems (Condon et al.,
1995), a multiprover variant of IPs, were considered for
aligning models with human values (Irving et al., 2018;
Brown-Cohen et al., 2023). In such Debate systems, two

competing models are each given an alleged answer y ̸= y′,
and attempt to prove the correctness of their answer to a
(human or learned) judge. Lastly, Murty et al. (2023) de-
fine Pseudointelligence: a model learner LM and an eval-
uator learner LE are each given samples from a ground-
truth; LM learns a model of the ground-truth, while LE

learns an evaluator of such models; the learned evaluator
then attempts to distinguish between the learned model and
the ground-truth in a Turing Test-like interaction.

All of these works consider learned verifiers, whereas
our work focuses on training models that interact with
a manually-defined verifier. More related in this regard
is IP-PAC (Goldwasser et al., 2021), in which a learner
proves that she learned a model that is Probably Approx-
imately Correct (Valiant, 1984). We, however, consider
models that prove their own correctness on a per-input ba-
sis, rather than learners that prove average-case correct-
ness of a model.

Models that generate formal proofs. Self-Proving mod-
els are verified by an algorithm with formal completeness
and soundness guarantees (see Definition 3.2). In this
sense, Self-Proving models generate a formal proof of the
correctness of their output. Several works propose special-
ized models that generate formal proofs.

AlphaGeometry (Trinh et al., 2024) is capable of for-
mally proving olympiad-level geometry problems; Grans-
den et al. (2015); Polu & Sutskever (2020); Yang et al.
(2023) and others train models to produce proofs in Coq,
Metamath and Lean (de Moura et al., 2015); FunSearch
(Romera-Paredes et al., 2024) evolves LLM-generated pro-
grams by systematically evaluating their correctness. In-
deed, all of these can be cast as Self-Proving models de-
veloped for specific proof systems. Meanwhile, this work
defines and studies the class of such models in general.
Several works (e.g. Welleck et al. 2022) consider mod-
els that generate natural language proofs or explanations,
which are fundamentally different from formal proofs (or
provers) verified by an algorithm.

Training on intermediate steps. Chain-of-Though
(CoT, Wei et al. 2022) refers to additional supervision
on a model in the form of intermediate reasoning steps.
CoT is known to improve model performance whether
included in-context (Wei et al., 2022) or in the training
phase itself (Yang et al., 2022). Transcript Learning (TL,
Section 4.1) can be viewed as training the model on a
Chain-of-Thought induced by the interaction of a verifier
and an honest prover (Definition 3.2).

To complete the analogy, let us adopt the terminology of
Uesato et al. (2022), who consider outcome supervision
and process supervision. In our case, the outcome is the
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decision of the verifier, and the process is the interaction
between the verifier and the model. Thus, Reinforcement
Learning from Verifier Feedback (RLVF, Section 4.2) is
outcome-supervised while TL is process-supervised. In
a recent work, Lightman et al. (2024) find that process-
supervised transformers outperform outcome-supervised
ones on the MATH dataset (Hendrycks et al., 2021).

Transformers for arithmetic. In Section 5 we train and
evaluate Self-Proving transformers to generate the Great-
est Common Divisor (GCD) of two integers and prove its
correctness to a verifier. These experiments leverage a long
line of work on neural models of arithmetic tasks originat-
ing with Siu & Roychowdhury (1992). Number theoretic
operations such factorization (Saxton et al., 2019), modular
arithmetic (Palamas, 2017), and the GCD (Charton, 2024)
are known to be challenging for transformers. Of partic-
ular relevance is a recent extensive study on the difficulty
of learning the GCD in various settings (Charton, 2024).
We benefit from conclusions suggested in their work and
start from a setting in which learning the GCD is possi-
ble. Our main challenge is obtaining a Self-Proving model
that outputs a proof of correctness alongside the GCD. It
is overcome by introducing Annotated Transcript Learning
(ATL).

We conduct ablation experiments to find two deciding fac-
tors in ATL. First, we study the effect of the amount of an-
notation given in the form of intermediate steps (Lee et al.,
2024), which is related to autoregressive length complexity
(Malach, 2023). Second, we characterize ATL efficacy in
terms of an algebraic property of the tokenization scheme
(cf. Nogueira et al. 2021; Charton 2022; 2024).

3. Self-Proving models
We introduce and formally define our learning framework
in which models prove the correctness of their output. We
start with preliminaries from the learning theory and proof
systems literatures in Section 3.1. We then introduce our
main definition in Section 3.2.

3.1. Preliminaries

Let Σ be a finite set of tokens and Σ∗ denote the set of
finite sequences of such tokens. We consider sequence-to-
sequence models Fθ : Σ

∗ → Σ∗, which are total functions
that produce an output for each possible sequence. A model
is parameterized by a real-valued, finite dimensional vector
θ. We consider models as randomized functions, meaning
that Fθ(x) is a random variable over Σ∗, of which samples
are denoted by y ∼ Fθ(x).

Before we can define models that prove their own correct-
ness, we must first define correctness. Correctness is de-

fined with respect to an input distribution µ over Σ∗, and
a ground-truth F ∗ that defines correct answers. For sim-
plicity of presentation, we focus on the case that each input
x ∈ Σ∗ has exactly one correct output F ∗(x) ∈ Σ∗, and
a zero-one loss function on outputs (the general case is left
for future work). The fundamental goal of machine learn-
ing can be thought of as learning a model of the ground-
truth F ∗. Formally,
Definition 3.1 (Correctness). Let µ be a distribution of in-
put sequences in Σ∗ and let F ∗ : Σ∗ → Σ∗ be a fixed (de-
terministic) ground-truth function. For any α ∈ [0, 1], we
say that model Fθ is α-correct (with respect to µ) if

Pr
x∼µ

y∼Fθ(x)

[y = F ∗(x)] ≥ α.

An interactive proof system (Goldwasser et al., 1985) is
a protocol carried out between an efficient verifier and a
computationally unbounded prover. The prover attempts to
convince the verifier of the correctness of some assertion,
while the verifier accepts only correct claims. The prover
is powerful yet untrusted; in spite of this, the verifier must
reject false claims with high probability.

In the context of this work, it is important to note that the
verifier is manually-defined (as opposed to learned). For-
mally, the verifier is a probabilistic polynomial-time algo-
rithm tailored to a particular ground-truth capability F ∗.
Informally, the verifier is the anchor of trust: think of the
verifier as an efficient and simple algorithm, hosted in a
trustworthy environment.

Given an input x ∈ Σ∗, the model Fθ “claims” that y ∼
Fθ(x) is correct. We now define what it means to prove
this claim. We will use Pθ to denote Self-Proving models,
noting that they are formally the same object1 as non-Self-
Proving (“vanilla”) models Fθ. This notational change is
to emphasize that Pθ first outputs y ∼ Pθ(x) and is then
prompted by the verifier, unlike Fθ who only generates an
output y ∼ Fθ(x).

A Self-Proving model proves that y ∼ Pθ(x) is correct
to a verifier V over the course of R rounds of interaction
(Figure 1). In each round i ∈ [R], verifier V queries Pθ on
a sequence qi ∈ Σ∗ to obtain an answer ai ∈ Σ∗; once the
interaction is over, V accepts or rejects. For fixed x, y ∈
Σ∗, the decision of V after interacting with Pθ is a random
variable over V ’s decision (accept/reject), determined by
the randomness of V and Pθ. The decision random variable
is denoted by ⟨V, Pθ⟩ (x, y).

We present a definition of Interactive Proofs restricted to
our setting.
Definition 3.2. Fix a soundness error s ∈ (0, 1), a finite
set of tokens Σ and a ground-truth F ∗ : Σ∗ → Σ∗. A

1Both are randomized mappings from Σ∗ to Σ∗.
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verifier V (in an Interactive Proof) for F ∗ is a probabilis-
tic polynomial-time algorithm that is given explicit inputs
x, y ∈ Σ∗ and black-box (oracle) query access to a prover
P .2 It interacts with P over R rounds (see Figure 1) and
outputs a decision ⟨V, P ⟩ (x, y) ∈ {0, 1}. Verifier V satis-
fies the following two guarantees:

• Completeness: There exists an honest prover P ∗ such
that, for all x ∈ Σ∗,

Pr[⟨V, P ∗⟩(x, F ∗(x)) accepts] = 1,

where the probability is over the randomness of V .3

• Soundness: For all P and for all x, y ∈ Σ∗, if y ̸=
F ∗(x) then

Pr[⟨V, P ⟩ (x, y) accepts] ≤ s,

where the probability is over the randomness of V and
P , and s is the soundness error.

The efficiency of an interactive proof is usually measured
with respect to four parameters: the round complexity R,
the communication complexity (the overall number of bits
transferred during the interaction), P ’s efficiency and V ’s
efficiency. These complexity measures scale with the com-
putational complexity of computing the ground-truth F ∗,
e.g., an interactive proof for a complex F ∗ may require
multiple rounds of interaction.
Remark 3.3 (Verifier efficiency). Definition 3.2 requires
that V is a polynomial-time algorithm whereas provers are
unbounded. This captures a requirement for efficient ver-
ification. We chose polynomial time as a measure of effi-
ciency because it is common Proof systems literature. That
said, one could adapt Definition 3.2 to fit alternative ef-
ficiency measures, such as space complexity (Condon &
Lipton, 1989) or circuit depth (Goldwasser et al., 2007).
Regardless of which measure is taken, to avoid a trivial def-
inition it is crucial that V should be more efficient than the
honest prover P ∗; else, V can simply execute P ∗ to per-
form the computation itself.

By definition, the soundness error s of a verifier V bounds
the probability that it is mistakenly convinced of an incor-
rect output; in that sense, the smaller s, the “better” the
verifier V . In our setting, we think of a manually-defined
verifier V who is formally proven (by a human) to have a
small soundness error by analysis of V ’s specification.

2We intentionally write P rather than Pθ: Interactive Proofs
are defined with respect to all possible provers, not just parame-
terized ones.

3WLOG, the honest prover is deterministic by fixing the opti-
mal randomness of a randomized prover.

As depicted in Figure 1, each of the model’s answers de-
pends on all previous queries and answers in the interac-
tion. This captures the setting of stateful models, e.g. a
session with a chatbot.

Towards defining Self-Proving models (Section 3.2), let us
observe the following. Completeness and soundness are
worst-case guarantees, meaning that they hold for all pos-
sible inputs x ∈ Σ∗. In particular, completeness implies
that for all x ∈ Σ∗, the honest prover P ∗ convinces V of
the correctness of F ∗(x); in classical proof systems there is
no guarantee that an “almost honest” prover can convince
the verifier (cf. Paradise 2021). Yet, if we are to learn a
prover Pθ, we cannot expect it to agree with P ∗ perfectly,
nor can we expect it to always output F ∗(x). Indeed, Self-
Proving models will have a distributional guarantee with
respect to inputs x ∼ µ.

3.2. Self-Proving models

We define the Verifiability of a model Pθ with respect to an
input distribution µ and a verifier V . Intuitively, Verifiabil-
ity captures the ability of the model to prove the correctness
of its answer y ∼ Pθ(x), when the input x is sampled from
µ. We call models capable of proving their own correctness
as Self-Proving models. Notice that, as in Definition 3.2,
the verifier is fixed and agnostic to the choice of the Self-
Proving model.

Definition 3.4 (Self-Proving model). Fix a verifier V for
a ground-truth F ∗ : Σ∗ → Σ∗ as in Definition 3.2, and a
distribution µ over inputs Σ∗. The Verifiability of a model
Pθ : Σ

∗ → Σ∗ is defined as

verV,µ(θ) := Pr
x∼µ

y∼Pθ(x)

[⟨V, Pθ⟩ (x, y) accepts] . (1)

We say that model Pθ is β-Self-Proving with respect to V
and µ if verV,µ(θ) ≥ β.

Remark 3.5 (Verifiability =⇒ correctness). Notice that
the ground-truth F ∗ does not appear in Definition 3.4 ex-
cept for the first sentence. Indeed, once it is established
that V is a verifier for F ∗ (as per Definition 3.2), then Veri-
fiability w.r.t V implies correctness w.r.t F ∗: Consider any
input distribution µ, ground-truth F ∗, and a verifier V for
F ∗ with soundness error s. By a union bound, if model Pθ

is β-Verifiable, then it is (β−s)-correct. That is to say, Ver-
ifiability is formally a stronger guarantee than correctness
when V has small soundness error s.

As depicted in Figure 1, a Self-Proving model Pθ plays a
dual role: first, it generates an output y ∼ Pθ(x), and then
it proves the correctness of this output to V . Note also that
Self-Provability is a feature of a model, unlike complete-
ness and soundness which are features of a verifier (see
Table 1).
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The benefit of Verifiability over correctness is captured by
the following scenario. Alice wishes to use a model Pθ to
compute some functionality F ∗ on an input x0 in a high
risk setting. Alice generates y0 ∼ Pθ(x0). Should Alice
trust that y0 is correct? If Alice has a held-out set of labeled
samples, she can estimate Pθ’s average correctness on µ.
Unfortunately, (average) correctness provides no guarantee
regarding the correctness of the particular (x0, y0) that Al-
ice has in hand. If, however, Alice has access to a verifier V
for which Pθ is Self-Proving, then she can trust the model
on an input-by-input (rather than average-case) basis: Al-
ice can execute V on (x0, y0) and black-box access to Pθ.
Soundness of V guarantees that if y0 is incorrect, then V
rejects with high probability, in which case Alice should
either generate Pθ(x0) again—or find a better model.

4. Learning Self-Proving Autoregressive
Models

With a sound verifier V at hand, obtaining Self-Proving
models with respect to V holds great promise: a user that
prompts the model with input x does not need to take it
on good faith that Pθ(x) is correct; she may simply verify
this herself by executing the verification protocol. How,
then, can we learn models that are not just approximately-
correct, but Self-Proving as well?

The challenge is to align the model with a verifier. We as-
sume that the learner has access to input samples x ∼ µ and
correct outputs F ∗(x), as well as the verifier specification
(code). Additionally, the learner can emulate the verifier,
as the latter is computationally efficient (Remark 3.3).

Our focus is on autoregressive sequence-to-sequence (Self-
Proving) models Pθ. Such models generate their output by
recursively prompting a randomized sampling from a base
distribution pθ over tokens Σ. For an input z ∈ Σ∗, the
output w ∼ Pθ(z) is generated as follows:

• Sample w1 ∼ pθ(z).

• Let j = 1. While wj is not the end-of-sequence token
EOS ∈ Σ∗:

– Sample wj+1 ∼ pθ(zw1 · · ·wj).
– Update j := j + 1.

• Output w = w1w2 · · ·wj .

For any z ∈ Σ∗, it is useful to consider the vector of log-
proabilities over Σ, denoted by log pθ(z) ∈ R|Σ|. We as-
sume that each coordinate in this vector is differentiable
with respect to θ.

Our general approach is inspired by Reinforcement Learn-
ing from Human Feedback (Christiano et al., 2017), a

method for aligning models with human preferences, which
has recently been used to align sequence-to-sequence mod-
els (Ouyang et al., 2022). However, there are two important
differences between humans and algorithmic verifiers: (1)
Verifiers are efficient algorithms which may be emulated
by the learner. This is unlike humans, whose preferences
are costly to obtain. On the other hand, (2) verifiers make
a single-bit decision at the end of an interaction, but can-
not guide the prover (model) in intermediate rounds. In RL
terms, this is known as the exploration problem for sparse
reward signals (e.g. Ladosz et al. 2022).

Section 4.1 introduces Transcript Learning (TL), a learn-
ing algorithm that overcomes the exploration problem men-
tioned in the second point under the assumption that the
learner has access to transcripts of interactions in which
the verifier accepts. We prove convergence bounds for TL
(Appendix A.1) and analyze it experimentally (Section 5).

Access to accepting transcripts is a reasonable assumption,
for example, when there is an efficient honest prover that
can generate such transcripts (Goldwasser et al., 2015).
When there is no access to accepting transcripts, we pro-
pose Reinforcement Learning from Verifier Feedback (Sec-
tion 4.2).

4.1. Transcript Learning

We present an algorithm for learning Self-Proving models
which uses access to a distribution of accepting transcripts.
This is a reasonable assumption to make when the honest
prover P ∗ (see Definition 3.2) is efficient, as in the case of
Doubly-Efficient Interactive Proof systems as defined by
Goldwasser et al. (2015) and developed in other theoreti-
cal (e.g. Goldreich & Rothblum 2018) and applied (e.g.
Zhang et al. 2021) works. In this case, an honest prover P ∗

can be run by the learner during training to collect accept-
ing transcripts without incurring heavy computational cost.
Alternatively, the learner may collect a dataset of accepting
transcripts prior to learning.

The intuition behind Transcript Learning is that the interac-
tion of the verifier and prover can be viewed as a sequence
itself, which is called the transcript π ∈ Σ∗. The idea is to
learn a model not just of x 7→ y∗ for a correct output y∗,
but of x 7→ y∗π∗, where π∗ is a transcript of an interaction
in which the verifier accepted.

In more detail, Transcript Learning requires access to an
(honest) transcript generator T ∗. Given an input x, the
generator T ∗(x) samples a sequence P ∗(x)π∗ ∈ Σ∗ such
that π∗ is an accepted transcript. The generator is autore-
gressive, meaning that for any prefix of an accepted tran-
script π∗

≤t ∈ Σt, the learner has access to the distribution
over next tokens T ∗(π≤t) ∈ Σ.4

4Formally, if the generator is prompted with any string that
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Transcript Learning (TL) trains a Self-Provable model by
autoregressively optimizing towards generating accepting
transcripts. It is described in Algorithm 1. At a very high
level, it works by repeatedly sampling x ∼ µ and transcript
y∗π∗ ∼ T ∗(x), and updating the logits log pθ towards
agreeing with y∗π∗ via Gradient Ascent. We prove that,
under certain conditions, it is expected to output a Self-
Provable model.

Theorem 4.1 (Theorem A.5, informal). Fix an input dis-
tribution µ, a verifier V , a transcript generator T ∗, an au-
toregressive model family {Pθ}θ parameterized by θ ∈ Rd

for some d ∈ N, and a norm || · || on Rd. Assume that the
agreement function A : Rd → [0, 1] defined by

A(θ) := Pr
x∼µ

π∗∼T ∗(x)

[Transcript(⟨V, Pθ⟩ (x)) = π∗]

is concave and differentiable in θ. For any ε > 0, let
BNorm, BLip and C be upper-bounds such that the follow-
ing conditions hold.

• There exists θ∗ ∈ Rd with ||θ∗|| < BNorm such that
A(θ∗) ≥ 1− ε/2.

• For all θ, the logits of Pθ are BLip-Lipschitz in θ.

• The total number of tokens sent by the prover to the
verifier V in any interaction is at most C.

Denote by θ̄ the output of TL running for number of itera-
tions N where

N ≥ 4 · C2 ·
B2

Norm ·B2
Lip

ϵ2
(2)

and learning rate λ = BNorm/CBLip

√
N . Then the ex-

pected Verifiability of θ̄ is at least 1− ε.

The proof (Appendix A) goes by reduction to Stochastic
Gradient Descent (SGD). We show that the learner can use
only its available tools—sampling honest transcripts, em-
ulating the verifier, and differentiating the logits—to esti-
mate the agreement gradient ∇A(θ). Since the agreement
A(θ) lower bounds the Verifiability of Pθ, the former can
be used as a surrogate objective for the latter.

The conditions for Theorem 4.1 can be split into two. First,
the standard conditions used to prove SGD convergence:
convexity,5 BNorm-boundedness, and BLip-Lipschitzness.
Second, there is a bound C on the communication com-
plexity of the prover in the Interactive Proof system.

cannot be completed to an accepted transcript, it outputs a dummy
symbol ⊥ ∈ Σ.

5Theorem 4.1 requires concavity because it guarantees maxi-
mization, rather than minimization. We leave it for future work to
relax the differentiability assumption.

Quantitatively, the efficiency of TL is captured by the num-
ber of iterations N . It is desirable to minimize N , which
is also the number of samples needed from the distribu-
tion µ and the transcript generator T ∗. Like the condi-
tions on the theorem, the bound on N can too be decom-
posed into two factors: The right factor is the complex-
ity of SGD (B2

NormB
2
Lip/ε

2), and the left factor O(C2) is
the communication complexity of the proof system. Min-
imizing communication complexity has been an overarch-
ing goal in the study of proof systems (e.g. Goldreich &
Håstad 1998; Goldreich et al. 2002; Reingold et al. 2021).
Theorem 4.1 formally shows the benefit of communication-
efficient proof systems in the context of Self-Proving mod-
els.

4.2. Reinforcement Learning from Verifier Feedback
(RLVF)

As mentioned in Section 4.1, Transcript Learning uses ac-
cess to an honest transcript generator to estimate gradients
of (a lower bound on) the Verifiability of a model Pθ.

Reinforcement Learning from Verifier Feedback (RLVF, Al-
gorithm 2) estimates this gradient without access to a tran-
script generator. RLVF can be viewed as a modification of
TL in which the learner emulates the interaction of the ver-
ifier with its own model Pθ. Rather than directly sampling
from the generator as in TL, it collects accepting transcripts
by rejection sampling on emulated transcripts.

This rejection sampling means that RLVF requires its initial
model Pθ0 to have Verifiability bounded away from 0, so
that accepting transcripts are sampled with sufficient prob-
ability. Fortunately, such a Self-Proving base model can be
learned using TL. This gives a learning paradigm in which
a somewhat-Self-Proving base model is first learned with
TL (with Verifiability δ > 0), and then “amplified” to a
fully Self-Proving model using RLVF (cf. Nair et al. 2018).

We prove that RLVF learner can estimate the Verifiability
gradient of Pθ using emulation alone in Lemma A.6. From
a broader perspective, RLVF can be derived by viewing
Self-Proving as a reinforcement learning problem in which
the agent (prover) is rewarded when the verifier accepts.
Indeed, RLVF is the Policy Gradient method (Sutton et al.,
1999) for a verifier-induced reward. Convergence bounds
for Policy Gradient methods are a challenging and active
area of research (e.g. Agarwal et al. 2021), and so we leave
the full analysis to future work.

4.3. Learning from annotated transcripts

To minimize the length of messages exchanged in an In-
teractive Proof system, the honest prover is designed to
send the shortest possible message to the verifier, contain-
ing only essential information.

6



Models That Prove Their Own Correctness

However, when training Self-Proving model, it may be use-
ful for it to first generate an “annotated” answer ã which
is then trimmed down to the actual answer a to be sent
to the verifier. We adapt Sections 3 and 4 to this setting
in Appendix C, where we present Annotated Transcripts.
This can be viewed as adding Chain-of-Thought (Wei et al.,
2022) to the model. The Transcript Learning algorithm nat-
urally extends to annotated transcripts as well.

5. Experimental Results
We describe our experimental setup, and present ablation
studies that shed additional light on the effect of annotation
and representation on Verifiability.

5.1. Setup: Training transformers to predict the GCD
of two integers

Charton (2024) empirically studies the power and limita-
tions of learning GCDs with transformers. We follow their
setup and two conclusions on settings that make for faster
learning: Training from the log-uniform distribution, and
choosing a base of representation with many prime factors.

We fix a base of representation B = 210 and use x to de-
note an integer x encoded as a B-ary string.6 For sequences
of integers, we write (x1x2) to denote the concatenation of
x1 with x2, delimited by a special token. The vocabulary
size needed for this representation is |Σ| ≈ 210.

We choose the input distribution µ to be the log-uniform
distribution on [104], and train the transformer on se-
quences of the form (x1x2y), where x1, x2 ∼ µ and
y = GCD(x1, x2). This is a scaling-down of Charton
(2024), to allow single GPU training of Self-Proving trans-
formers. In all of our experiments, we use a GPT model
(Vaswani et al., 2017) with 6.3M parameters trained on a
dataset of 1024K samples in batches of 1024. Full details
are deferred to Appendix E.

Proving correctness of GCD. Following Charton (2024)
as a baseline, we find that transformers can correctly com-
pute the GCD with over 99% probability over (x1, x2) ∼
µ. To what extent can they prove their answer? To answer
this question, we first devise a natural proof system based
on Bézout’s theorem. Its specification and formal guaran-
tees are deferred to Appendix D. We denote its verification
algorithm by V , and highlight some important features of
the experimental setup:

• The proof system consists of one round (R = 1). The
verifier makes no query, and simply receives a proof
π from the prover.

6B = 210 is chosen following Charton (2024) to be an integer
with many prime factors.

• Completeness: For any x1, x2, y ∈ [104] such that
y = GCD(x1, x2), there exists a proof π such that
V (x1x2yπ) accepts. As detailed in Appendix D, the
proof π consists of a pair of integers who are Bézout
coefficients for x1, x2.

• Soundness: If y ̸= GCD(x1, x2), then V (x1x2yπ)
rejects7 for any alleged proof π ∈ Σ∗.

To measure Verifiability, we train a Self-Proving trans-
former using Transcript Learning on sequences (x1x2yπ)
and estimate for how many inputs x1, x2 ∼ µ does the
model generate both the correct GCD y and a valid proof
π. We test on 1000 pairs of integers x′

1, x
′
2 ∼ µ held-out of

the training set, prompting the model with (x′
1x

′
2) to obtain

(y′π′), and testing whether V (x′
1x

′
2y

′π′) accepts.

Table 2 on the second page of this paper shows that Tran-
script Learning for 100K iterations (≈100M samples) re-
sults in a Self-Proving transformer that correctly proves
60.3% of its answers; there is an additional 38.5% an-
swers which are correct, but the transformer fails to gen-
erate an accepted proof. Annotated Transcript Learning all
but closes this gap, proving 96.7% of its answers. We fur-
ther investigate the effect of annotations next.

5.2. Models generalize beyond annotations

The proof π is annotated by including intermediate steps
in its computation. Details are deferred to Appendix D;
roughly speaking, we observe that the proof π for in-
put (a,b) is obtained as the last element in a sequence
a,b, π1, π2, . . . computed by the Euclidean algorithm. We
annotate the proof π by prepending to it the sequence of
Euclidean steps (π1, . . . , πT) up to some fixed cutoff T .

Figure 2 shows how T affects the Verifiability of the
learned model. As suggested by Lee et al. (2024), training
the model on more intermediate steps results in better per-
formance; in our case, increasing the number of intermedi-
ate steps T yields better Self-Proving models. One might
suspect that models only learn to execute the Euclidean al-
gorithm in-context. To rule out this hypothesis, we derive
an upper bound on the possible efficacy of such limited
models. This bound is based on the Euclidean depth of
integers (x1, x2), which we define as the number of inter-
mediate steps that the Euclidean algorithm makes before
terminating on input (x1, x2). Indeed, a model that only
learns to compute (in-context) the simple arithmetic of the
Euclidean algorithm would only be able to prove the cor-
rectness of inputs (x1, x2) whose depth does not exceed the
annotation cutoff T .

Figure 2 tells a different story: For each cutoff T , we es-
timate the probability that integers x1, x2 ∼ µ have Eu-

7With probability 1, i.e., s = 0 in Definition 3.2.
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Figure 2. Verifiability with increasing amounts of annotation. T is the number of steps added in Annotated Transcript Learning.
Dashed lines indicate Euclidean depth, that bound the Verifiability of models that prove only for integers up to a certain number of steps.
Each T was run with three seeds, with mean ± standard error depicted. The upper graph provides a zoomed-in view of the 82% to 98%
range from the lower graph, which spans a broader scale from 20% to 100%.

clidean depth at most T on 105 sampled pairs. Larger an-
notation cutoff T increases Verifiability, but all models ex-
ceed their corresponding Euclidean depth bound.

5.3. Base of representation

43.0% 44.0% 45.0% 46.0% 47.0% 48.0%
Verifiability

ω(B) = 1 ω(B) = 2 ω(B) = 3 ω(B) = 4

Figure 3. The number of prime divisors of a base ω(B) de-
termines Verifiability. For each o ∈ [4], we sampled 17 bases
B ∈ {2, . . . , 1386} such that ω(B) = o. A Self-Proving trans-
former was trained via Transcript Learning for twenty epochs on
an identical dataset of 1024K samples encoded in base B. For
each ω(B) we depict the mean ± standard error.

As mentioned previously, Charton (2024) concludes that,
for a given base of representation B, transformers cor-
rectly compute the GCD of integers x1, x2 that are prod-
ucts of primes dividing B. Simply put, choosing a base
B with many different prime factors yields models with
better correctness (accuracy), which suggests why base
B = 210 = 2 · 3 · 5 · 7 yielded the best results.

To test whether the factorization of B has a similar effect
on Verifiability as well, we train transformers on 68 bases
varying the number of prime divisors ω(B) from ω(B) = 1
(i.e., B is a prime power) to ω(B) = 4. Figure 3 shows that
ω(B) correlates not just with correctness (Charton, 2024),
but also with Verifiability. Although the finding is statisti-
cally significant (no overlapping error margins), the overall
difference is by a few percentage points; we attribute this
to the smaller (10%) number of samples on which models
were trained, relative to our other experiments.

6. Limitations
Our experiments are focused on a single ground-truth ca-
pability, namely, computing the GCD. Yet, the theoretical
portion of our work holds for any ground-truth F ∗ that
admits an Interactive Proof system. Training large Self-
Proving models for more complex ground-truths will likely
pose additional practical learning challenges. With that
said, we stress that generating accepting transcripts for use
in Transcript Learning is distinct from these learning chal-
lenges. Collecting accepting transcripts is a purely com-
putational task, and can even be done “offline” prior to the
model’s training.

Additionally, in our current learning methods, each indi-
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vidual ground-truth capability requires training a separate
Self-Proving model. It would be interesting to adapt our
definition and methods to deal with a single generalist Self-
Proving model that proves its correctness to multiple veri-
fiers of different ground-truths.

7. Conclusions
Trust between a learned model and its user is fundamen-
tal. In recent decades, Interactive Proofs (Goldwasser et al.,
1985) have emerged as a general theory of trust established
via verification algorithms. This work demonstrates that
models can learn to formally prove their answers in an In-
teractive Proof system. We call models that possess this
capability Self-Proving.

The definition of Self-Proving models forms a bridge be-
tween the rich theory of Interactive Proofs and the con-
temporary topic of Trustworthy ML. Interactive Proofs of-
fer formal worst-case soundness guarantees; thus, users
of Self-Proving models can be confident when their mod-
els generate correct answers—and detect incorrect answers
with high probability.

We demonstrate the theoretical viability of our definition
with two generic learning algorithms: Transcript Learning
(TL) and Reinforcement Learning from Verifier Feedback
(RLVF). The analyses of these algorithms is informed by
techniques from theories of learning, RL, and computa-
tional complexity. This work can be extended in several
directions: finding conditions for the convergence of RLVF,
improving sample complexity bounds for TL, or designing
altogether different learning algorithms (for example, by
taking advantage of properties of the verifier).

To better understand the training dynamics of (Annotated)
TL, we train Self-Proving transformers for the Greatest
Common Divisor (GCD) problem. We train a small (6.3M
parameter) transformer that learns to generate correct an-
swers and proofs with high accuracy. Facing forward, we
note that Interactive Proofs exist for capabilities far more
complex than the GCD (Shamir, 1992); scaling up our ex-
periments is the next step towards bringing Self-Proving
models from theory to practice.

Acknowledgments
We are grateful to Micah Carroll, Avishay Tal and
anonymous reviewers their helpful comments. This re-
search was supported by DARPA-TA1 under grant no.
HR001119S0076, and by the Simons Collaboration on the
Theory of Algorithmic Fairness.

References
Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.

On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. J. Mach. Learn.
Res., 22:98:1–98:76, 2021. URL http://jmlr.org/
papers/v22/19-736.html.

Anil, C., Zhang, G., Wu, Y., and Grosse, R. B. Learn-
ing to give checkable answers with prover-verifier
games. CoRR, abs/2108.12099, 2021. URL https:
//arxiv.org/abs/2108.12099.

Bezout, E. Theorie Generale Des Equations Algebriques.
Kessinger Publishing, 1779. ISBN 9781162056128.
URL https://books.google.co.il/
books?id=wQZvSwAACAAJ.

Brown-Cohen, J., Irving, G., and Piliouras, G.
Scalable AI safety via doubly-efficient de-
bate. CoRR, abs/2311.14125, 2023. doi:
10.48550/ARXIV.2311.14125. URL https:
//doi.org/10.48550/arXiv.2311.14125.

Charton, F. Linear algebra with transformers. Trans.
Mach. Learn. Res., 2022, 2022. URL https://
openreview.net/forum?id=Hp4g7FAXXG.

Charton, F. Can transformers learn the greatest common
divisor? In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 6-11, 2024. OpenReview.net, 2024.

Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Guyon, I., von Luxburg, U., Ben-
gio, S., Wallach, H. M., Fergus, R., Vishwanathan, S.
V. N., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pp. 4299–4307, 2017.
URL https://proceedings.neurips.cc/
paper/2017/hash/
d5e2c0adad503c91f91df240d0cd4e49-
Abstract.html.

Condon, A. and Lipton, R. J. On the complex-
ity of space bounded interactive proofs (extended ab-
stract). In 30th Annual Symposium on Founda-
tions of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November
1989, pp. 462–467. IEEE Computer Society, 1989.
doi: 10.1109/SFCS.1989.63519. URL https://
doi.org/10.1109/SFCS.1989.63519.

Condon, A., Feigenbaum, J., Lund, C., and Shor,
P. W. Probabilistically checkable debate systems

9

http://jmlr.org/papers/v22/19-736.html
http://jmlr.org/papers/v22/19-736.html
https://arxiv.org/abs/2108.12099
https://arxiv.org/abs/2108.12099
https://books.google.co.il/books?id=wQZvSwAACAAJ
https://books.google.co.il/books?id=wQZvSwAACAAJ
https://doi.org/10.48550/arXiv.2311.14125
https://doi.org/10.48550/arXiv.2311.14125
https://openreview.net/forum?id=Hp4g7FAXXG
https://openreview.net/forum?id=Hp4g7FAXXG
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.1109/SFCS.1989.63519
https://doi.org/10.1109/SFCS.1989.63519


Models That Prove Their Own Correctness

and nonapproximability of pspace-hard functions.
Chic. J. Theor. Comput. Sci., 1995, 1995. URL
http://cjtcs.cs.uchicago.edu/articles/
1995/4/contents.html.

de Moura, L. M., Kong, S., Avigad, J., van Doorn, F.,
and von Raumer, J. The lean theorem prover (sys-
tem description). In Felty, A. P. and Middeldorp, A.
(eds.), Automated Deduction - CADE-25 - 25th Inter-
national Conference on Automated Deduction, Berlin,
Germany, August 1-7, 2015, Proceedings, volume 9195
of Lecture Notes in Computer Science, pp. 378–388.
Springer, 2015. doi: 10.1007/978-3-319-21401-6\ 26.
URL https://doi.org/10.1007/978-3-319-
21401-6 26.

Frieder, S., Pinchetti, L., Chevalier, A., Griffiths, R.,
Salvatori, T., Lukasiewicz, T., Petersen, P., and Berner,
J. Mathematical capabilities of chatgpt. In Oh, A.,
Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/
paper files/paper/2023/hash/
58168e8a92994655d6da3939e7cc0918-
Abstract-Datasets and Benchmarks.html.

Goldreich, O. Probabilistic proof systems: A primer.
Found. Trends Theor. Comput. Sci., 3(1):1–91, 2008.
doi: 10.1561/0400000023. URL https://doi.org/
10.1561/0400000023.
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Social Impacts Statement
This work proposes a theoretically-grounded approach to enhancing trust in learned models. By ensuring that models not
only generate outputs but also prove their correctness to a verification algorithm, we tackle fundamental issues of trust and
accountability in machine learning.

Self-Proving models build trust between models and users by offering formal worst-case soundness guarantees. This is
particularly beneficial in high-stakes applications, such as healthcare and finance, where incorrect outputs can have severe
consequences. The ability to verify correctness on a per-instance basis helps prevent potentially harmful decisions. It
allows any user to decide for herself whether she trusts a particular output generated by the model, rather than relying on
average-case guarantees (e.g., high scores on benchmarks as reported by the model’s developer).

Furthermore, Self-Proving models promote accountability by allowing stakeholders to independently verify the correctness
of a model’s outputs. In particular, lawmakers and regulators could require models used in sensitive settings to be Self-
Proving.

With that said, Self-Proving models also introduce challenges which must be addressed. First, we expect Self-Proving
models to be harder to learn (in practice), which may limit their applicability in more complex tasks. Second, as with any
learned model, Self-Proving models could be used in harmful ways; developers of a model (and verification algorithm)
must consider the impact of their systems in the specific context in which they are deployed (Suresh et al., 2023). In other
words, the fact that a Self-Proving model’s outputs are provably correct does not mean that these outputs were ought to be
generated in the first place.

A. Theoretical analyses for Section 4
In this section we provide a formal description and analysis of Transcript Learning (TL, Section 4.1) and Reinforcement
Learning from Verifier Feedback (RLVF, Section 4.2). In Appendix A.1 we prove a convergence theorem for TL under
convexity and Lipschitzness assumptions. Obtaining an analogous result for RLVF is more challenging; in lieu of a full
analysis, we provide a lemma showing that the gradients estimated in the algorithm approximate the Verifiability of the
model in Appendix A.2.

We must first fully specify the theoretical framework in which our results reside. Continuing from Section 3, we define a
learner as an algorithm Λ with access to a family of autoregressive models {Pθ}θ and samples from the input distribution
x ∼ µ. In our setting of Self-Proving models (and in consistence with the Interactive Proofs literature), we give the learner
the full specification of the verifier V . More formally,

Definition A.1 (Self-Proving model learner). A (Self-Proving model) learner is a probabilistic oracle Turing Machine Λ
with the following access:

• A family of autoregressive models {Pθ}θ∈Rd where d ∈ N is the number of parameters in the family. Recall (Sec-
tion 4) that for each θ and z ∈ Σ∗, the random variable Pθ(z) is determined by the logits log pθ(z) ∈ R|Σ|. For any
z ∈ Σ∗ and σ ∈ Σ, the learner Λ can compute the gradient of the σth logit, that is, ∇θ log Prσ′∼pθ(z)[σ = σ′].

• Sample access to a the input distribution µ. That is, Λ can sample x ∼ µ.

• The full specification of the verifier V , i.e., the ability to emulate the verification algorithm V . In particular, Λ is able
to compute V ’s decision after any given interaction; that is, given input x, output y, and a sequence of queries and
answers (qi, ai)Ri=1, the learner Λ can compute the decision of V after this interaction.

We remark that analysis of Transcript Learning will require a slight strengthening of the final item above. This is discussed
in Appendix A.1.

Throughout this section, we will refer to the transcript of an interaction between a verifier and a prover (see Figure 1).
We will this transcript by π = (y, q1, a1, . . . , qR, aR), and for any index s ∈ |π| we will write π<s ∈ Σs−1 to denote the
s-long prefix of π.
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A.1. Transcript Learning

Recall that Transcript Learning requires access to an honest transcript generator. Before we can formally define this object,
it will be useful to define a query generator for a verifier V .

Definition A.2 (Query generator). Fix a verifier V in a proof system with R ∈ N rounds, where the verifier issues queries
of length Lq = |qi| and the prover (model) responses with answers of length La = |ai|.8 The query generator Vq

corresponding to V takes as input a partial interaction and samples from the distribution over next queries by V . Formally,
for any r ≤ R, given input x, output y, and partial interaction (qi, ai)

r
i=1, Vq(x, y, q1, a1, . . . , qr, ar) is a random variable

over ΣLq .9

We assume that access to the verifier specification (Definition A.1) includes access to the query generator. After all, the
verifier—who is assumed to be efficient—samples from Vq during the interaction. Moreover, we will assume that for any
partial interaction and any sequence q′, the learner is able to compute the probability that q′ was the next query. In other
words, we assume the learner can compute the probability density function of Vq .

A transcript generator is a random variable over transcripts that faithfully represents the interaction of the verifier with
some prover for a given input. An honest transcript generator is one who is fully supported on transcripts accepted by the
verifier.

Definition A.3 (Honest transcript generator). Fix a verifier V in a proof system of R ∈ N rounds. A transcript generator
TV for V is a randomized mapping from inputs x ∈ Σ∗ to transcripts π = (y, q1, a1, . . . , qR, aR) ∈ Σ∗. For any input x,
TV (x) satisfies that for each r ≤ R, the marginal of TV (x) on the rth query qr agrees with the corresponding marginal of
the query generator (Vq)r.

A transcript generator T ∗
V := TV is honest if it is fully supported on transcripts π∗ for which the verifier accepts.

Notice that for any verifier V , there is a one-to-one correspondence between transcript generators and (possibly random-
ized) provers. We intentionally chose not to specify a prover in Definition A.3 to emphasize that transcripts can be “col-
lected” independently of the honest prover (see completeness in Definition 3.2). As long as the generator is fully supported
on honest transcripts, it can be used for Transcript Learning (Algorithm 1 described below).

8We can assume that queries (resp. answers) all have the same length by padding shorter ones.
9For completeness’ sake, we can say that when prompted with any sequence z that does not encode an interaction, Vq(z) is fully

supported on a dummy sequence ⊥ · · ·⊥ ∈ ΣLq .
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Algorithm 1 Transcript Learning (TL)
1: Hyperparameters: Learning rate λ ∈ (0, 1) and number of samples N ∈ N.
2: Input: An autoregressive model family {Pθ}θ∈Rd , verifier specification (code) V , and sample access to an input

distribution µ and an accepting transcript generator T ∗
V (·).

3: Output: A vector of parameters θ̄ ∈ Rd.
4: Initialize θ0 := 0⃗.
5: for i = 0, . . . , N − 1 do
6: Sample x ∼ µ and π∗ = (y, q1, a1, . . . , qR, aR) ∼ T ∗

V (x). Denote a0 := y.
7: for each round of interaction r = 0, . . . , R do
8: Let S(r) denote the indices of the rth answer ar in π∗.
9: for s ∈ S(r) do

10: Compute # Forwards and backwards pass

αs(θi) := Pr
σ∼pθi

(xπ<s)
[σ = πs]

d⃗s(θi) := ∇θαs(θi) = ∇θ log Pr
σ∼pθi

(xπ<s)
[σ = πs].

11: end for
12: if r ≥ 1 then
13: Let qr denote the rth query qr in π∗, and let t denote its first index. That is, π∗

<t = (y, q1, a1, . . . , qt−1, at−1).
Compute # Emulate the verifier

βr(θi) := Pr
q′∼Vq(xπ∗

<t)
[q′ = q].

14: end if
15: end for
16: Update

θi+1 := θi + λ · α0(θi) ·

 ∏
r∈[R]
s∈S(r)

βr(θi)αs(θi)

 ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θi).

17: end for
18: Output θ̄ := 1

N

∑
i∈[N ] θi.

Convergence of TL is proven by a reduction to Stochastic Gradient Descent (SGD). Essentially, we are tasked with proving
that TL estimates a surrogate of the Verifiability-gradient of its model Pθ. More precisely, TL estimates the gradient of a
function that bounds the Verifiability from below. Maximizing this function therefore maximizes the Verifiability.

The lower-bounding function is the agreement of the transcript generator induced by Pθ with the provided honest transcript
generator T ∗

V . More formally, we let T θ
V denote the transcript generator induced by the model Pθ: for each x, T θ

V (x) is
simply the distribution over transcripts of interactions between V and Pθ on input x. We first prove TL correctly estimates
the gradient of A(θ) in its update step.
Lemma A.4 (TL gradient estimation). Fix an input distribution µ over Σ∗ and a verifier V with round complexity R and
answer length La. Fix an honest transcript generator T ∗

V . Let θ be the parameters of a model Pθ such that

A(θ) := Pr
x∼µ

π∗∼T ∗
V (x)

π∼T θ
V (x)

[π = π∗]

is differentiable in θ. Then

∇A(θ) = E
x∼µ

π∗∼T ∗
V

α0(θ) ·

 ∏
r∈[R]
s∈S(r)

βr(θ) · αs(θ)

 ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θ)
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where S(r), βr(θ), αs(θ) and d⃗s(θ) are as defined in Algorithm 1.

Note that Lemma A.4 is true for any model Pθ. Moreover, the random vector over which the expectation is taken (in the
right hand side) is precisely the direction of the update performed in Algorithm 1. We now prove Lemma A.4, from which
we derive Theorem 4.1.

Proof. Throughout this proof, expectations and probabilities will be over the same distributions as in the lemma statement.
First, by the law of total probability, and linearity of the gradient,

∇A(θ) := ∇θ

(
Pr

x,π∗,π
[π = π∗]

)
= ∇θ

(
E

x,π∗

[
Pr
π
[π = π∗]

])
= E

x,π∗

[
∇θ

(
Pr
π
[π = π∗]

)]
.

Next, we use the law of total probability together with the autoregressive property of Pθ (Section 4) to switch from
probabilities on transcripts, to products of next-token probabilities. Formally, consider any fixed input x, honest transcript
π∗ = (y∗, q∗1 , a

∗
1, . . . , q

∗
R, a

∗
R), and denote a random transcript sampled from T θ

V (x) by π = (y, q1, a1, . . . , qR, aR). For
any r ∈ [R] denote the random variables V <r

q := Vq(y, q1, a1, . . . , qr−1, ar−1) and T θ,<r
V := T θ

V (yq1a1 · · · ar−1qr).
Then,

Pr
π
[π = π∗] := Pr

π
[(y∗, q∗1 , a

∗
1, . . . , q

∗
R, a

∗
R) = (y, q1, a1, . . . , qR, aR)] (3)

= Pr
y∼Pθ(x)

[y = y∗] ·
∏

r∈[R]

Pr
q∼V <r

q

[q = q∗r ] · Pr
a∼T θ,<r

V

[a = a∗r ]

= Pr
y∼Pθ(x)

[y = y∗] ·
∏

r∈[R]
s∈S(r)

Pr
q∼V <r

q

[q = q∗r ] · Pr
σ∼pθ(π∗

<s)
[σ = π∗

s ] (4)

= α0(θ) ·

 ∏
r∈[R]
s∈S(r)

βr(θ) · αs(θ)

 , (5)

where Equation (3) uses independence of the verifier and model’s randomness, Equation (4) uses the autoregressive prop-
erty of Pθ (Definition A.1), and Equation (5) is by definition of αs and βr.

Next, a basic calculus identity gives

∇θ

(
Pr
π
[π = π∗]

)
= Pr

π
[π = π∗] · ∇θ log

(
Pr
π
[π = π∗]

)
. (6)

Let us focus on the rightmost factor. By Equation (5),

∇θ log
(
Pr
π
[π = π∗]

)
= ∇θ logα0(θ) ·

 ∏
r∈[R]
s∈S(r)

βr(θ) · αs(θ)


= ∇ logθ α0(θ) +

∑
r∈[R]
s∈S(r)

∇θ log βr(θ) +∇θ logθ αs(θ)

= ∇ logθ α0(θ) +
∑
r∈[R]
s∈S(r)

∇θ logθ αs(θ) (7)

=
∑

r∈[R]∪{0}
s∈S(r)

∇θ logθ αs(θ) =
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θ) (8)

where Equation (7) is because log βr(θ) := log Prq′∼Vq(xπ∗
<t)

[q′ = q] is a constant and therefore has a gradient of zeros,

and Equation (8) is by definition of d⃗s(θ). Combining Equations (5), (6) and (8) concludes the proof.
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We are now ready to prove Theorem 4.1. We restate it below in full formality.

Theorem A.5 (Theorem 4.1, formal). Fix a verifier V , an input distribution µ, and an autoregressive model family
{Pθ}θ∈Rd , and a norm || · || on Rd. Fix an honest transcript generator T ∗

V , and assume that the agreement function

agree(θ) := Pr
x∼µ

π∗∼T ∗
V (x)

π∼T θ
V (x)

[π = π∗]

is concave and differentiable in θ. For any ε > 0, let BNorm, BLip and C be upper-bounds such that the following
conditions hold.

• There exists θ∗ ∈ Rd with ||θ∗|| < BNorm such that A(θ∗) ≥ 1− ε/2.

• For all θ, the logits of Pθ are BLip-Lipschitz in θ. That is,

sup
θ∈Rd

z∈Σ∗

||∇θ log pθ(z)|| ≤ BLip.

• In the proof system defined by V , the total number of tokens (over all rounds) is at most C.

Denote by θ̄ the output of TL running for number of iterations N where

N ≥ 4 · C2 ·
B2

Norm ·B2
Lip

ϵ2

and learning rate λ = BNorm/CBLip

√
N . Then the expected Verifiability (over the randomness of the samples collected

by TL) of θ̄ is at least 1− ε. That is,
Ē
θ
[verV,µ(θ̄)] ≥ 1− ε.

Proof. Our strategy is to cast TL as Stochastic Gradient Ascent and apply Fact B.2. Let ε, BNorm, BLip and C as in the
theorem statement be given. Let θ∗ be such that A(θ∗) ≥ 1− ε/2 and ||θ∗|| ≤ BNorm.

First, notice that
Ē
θ

[
verV,µ(θ̄)

]
≥ Ē

θ
[A(θ̄)],

This is because, for any x and model Pθ, whenever the transcript generated by T θ(x) agrees with π∗, then the verifier
accepts (because π∗ is honest). Therefore, to prove the theorem it suffices to show that

Ē
θ
[A(θ̄)] ≥ 1− ε.

Following the notation in Algorithm 1, in every iteration i ∈ [N ] the norm of the update step is∥∥∥∥∥∥∥∥α0(θi) ·

 ∏
r∈[R]
s∈S(r)

βr(θi)αs(θi)

 ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θi)

∥∥∥∥∥∥∥∥
=

∣∣∣∣∣∣∣∣α0(θi) ·
∏

r∈[R]
s∈S(r)

βr(θi)αs(θi)

∣∣∣∣∣∣∣∣ ·
∥∥∥∥∥∥∥∥

∑
r∈[R]∪{0}
s∈S(r)

d⃗s(θi)

∥∥∥∥∥∥∥∥
≤ 1 ·

∑
r∈[R]∪{0}
s∈S(r)

∥∥∥d⃗s(θi)∥∥∥ ,
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where the inequality is because αs(θi) and βr(θi) are probabilities, so ≤ 1. Continuing, we have∑
r∈[R]∪{0}
s∈S(r)

∥∥∥d⃗s(θi)∥∥∥ ≤
∑

r∈[R]∪{0}
s∈S(r)

BLip ≤ C ·BLip.

The first inequality is by definition of BLip as an upper-bound on the gradient of Pθ’s logits. The second is because, by
definition, C is an upper bound on the number of tokens sent by the prover in the proof system, which is exactly the number
of terms in the sum: r indexes rounds, and s indexes tokens sent in each round.

To conclude, Lemma A.4 shows that TL samples from a gradient estimator for A(θ), while the above equation shows that
the gradient is upper-bounded by C ·BLip. We can therefore apply Fact B.2 to obtain

Ē
θ

[
agree

(
θ̄
)]

≥ agree(θ∗)− ε/2 ≥ (1− ε/2)− ε/2 = 1− ε,

where the inequality is by definition of θ∗.

A.2. Reinforcement Learning from Verifier Feedback

Our second learning method, Reinforcement Learning from Verifier Feedback (RLVF, Algorithm 2), does not require access
to an honest transcript generator. Instead, the learner learns Pθ generates transcripts herself by emulating the interaction
of the verifier with the current Self-Proving model Pθ. When an accepting transcript is generated, the learner updates the
parameters θ towards generating such transcript.

Before we continue with formal analysis of Algorithm 2, let us make a few observations.

Firstly, the parameters are updated (line 11) only when an accepting transcript was generated. This means that the learner
can first fully generate the transcript (lines 6-7), and then take backwards passes (line 9) only if the transcript was accepted
by V . This is useful in practice (e.g. when using neural models) as backwards passes are more computationally expensive
than forwards passes.

On the other hand, this means that RLVF requires the parameter initialization θ0 to have Verifiability bounded away from
0, so that accepting transcripts are sampled with sufficient probability. Fortunately, such a Self-Proving base model can be
learned using TL. This gives a learning paradigm in which a somewhat-Self-Proving base model is learned with TL (with
Verifiability δ > 0), and then “amplified” to a fully Self-Proving model using RLVF. This can be seen as an adaptation of
the method of Nair et al. (2018) to the setting of Self-Proving models.

Secondly, in comparing Algorithms 1 and 2, we see that the latter (RLVF) does not keep track of the probabilities αs and
βr. This is because, in RL terms, RLVF is an on-policy algorithm; it generates transcripts using the current learned model,
unlike TL which samples them from a distribution whose parameterization is unknown to the learner. Hence, the update
step in RLVF is simpler than TL. Furthermore, the RLVF learner does not require access to the density function of the
query generator Vq (Definition A.2) unlike its TL counterpart.

We now prove that the update step in RLVF maximizes the Verifiability of Pθ; this is analogous to Lemma A.4 for TL.
We leave it for future work to use Lemma A.6 to obtain convergence bounds on RLVF (analogous to Theorem A.5). As
mentioned in Section 4.2, the gap between the lemma and a full convergence theorem (informally) reduces to the problem
of obtaining convergence bounds for Policy Gradient methods, a challenging and active research direction (e.g. Agarwal
et al. 2021).

Lemma A.6 (RLVF gradient estimation). Fix an input distribution µ over Σ∗ and a verifier V with round complexity R
and answer length La. For any transcript (x, y, q1, . . . , aR) we let AccV (x, y, q1, . . . , aR) denote the indicator random
variable which equals 1 if and only if V accepts the transcript. For any model Pθ, denote by ver(θ) the verifiability of Pθ

with respect to V and µ (Definition 3.4). For any θ, if ver(θ) is differentiable in θ, then

∇ver(θ) = E
x∼µ

y∼Pθ(x)

(qr,ar)
R
r=1

AccV (x, y, q1, . . . , aR) ·
∑

r∈[R]∪{0}
s∈[La]

d⃗s(θ)
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Algorithm 2 Reinforcement Learning from Verifier Feedback (RLVF)
1: Hyperparameters: Learning rate λ ∈ (0, 1) and number of samples N ∈ N.
2: Input: An autoregressive model family {Pθ}θ∈Rd , initial parameters θ0 ∈ Rd, verifier specification (code) V , and

sample access to an input distribution µ.
3: Output: A vector of parameters θ̄ ∈ Rd.
4: for i = 0, . . . , N − 1 do
5: Sample x ∼ µ.
6: Initialize a0 := y ∼ Pθ(x).
7: for each round of interaction r = 1, . . . R do
8: Sample the rth query # Emulate the verifier

qr ∼ Vq(x, a0, q1, a1, . . . , qr, ar).

9: Sample the rth answer # Forwards pass

ar ∼ Pθ(x, a0, q1, a1, . . . , qr, ar, qar+1).

10: Let τr := (a0, q1, . . . , ar−1, qr).
11: for s ∈ [La] do
12: Let ar,s denote the sth token in ar. Compute # Backwards pass

d⃗s(θi) := ∇θ log Pr
σ∼pθi

(xτr)
[σ = ar,s].

13: end for
14: end for
15: if V (x, y, q1, a1, . . . , qR, aR) accepts then
16: Update

θi+1 := θi + λ ·
∑

r∈[R]∪{0}
s∈[La]

d⃗s(θi).

17: end if
18: end for
19: Output θ̄ := 1

N

∑N−1
i=0 θi.

where (qr, ar)
R
r=1 are as sampled in lines 8-9 of Algorithm 2, and d⃗s(θ) is as defined in line 12 therein.

Proof. Recall the transcript generator of P θ, denoted by T θ
V (see Lemma A.4). By the definitions of Verifiability in

Definition 3.4 and V (x, y, q1, . . . , aR) in the lemma statement,

ver(θ) := Pr
x∼µ

y∼Pθ(x)

[⟨V, Pθ⟩ (x, y) accepts]

= E
x∼µ

y∼Pθ(x)

(qr,ar)
R
r=1

[AccV (x, y, q1, . . . , aR)]

= E
x∼µ

[
Pr

π∼T θ
V

[AccV (x, π) ]

]
(9)

Now, for every input x, let Π∗(x) ⊂ Σ∗ denote the set of accepting transcripts:

Π∗(x) := {π∗ ∈ Σ∗ : AccV x, π
∗ accepts} .

Noting that Π∗(x) has finite or countably infinite cardinality, for any fixed input x we can write

Pr
π∼T θ

V

[AccV (x, π)] =
∑

π∗∈Π∗(x)

Pr
π∼T θ

V (x)
[π = π∗]. (10)
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We will use Equations (3) through (8) in the proof of Lemma A.4. Up to a change in index notation, these show that, for
any π∗,

∇θ Pr
π∼T θ(x)

[π = π∗] = Pr
π∼T θ(x)

[π = π∗] ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ).

Combining Equations (9) and (10), by linearity of expectation we have that

∇θver(θ) =
∑

π∗∈Π∗(x)

∇θ Pr
π∼T θ(x)

[π = π∗]

= E
x∼µ

 ∑
π∗∈Π∗(x)

Pr
π∼T θ(x)

[π = π∗] ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ)



= E
x∼µ

 E
π∼T θ(x)

AccV (x, π) ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ)




= E
x∼µ

π∼T θ(x)

AccV (x, π) · ∑
r∈R∪{0}
s∈[La]

∇θd⃗s(θ)



= E
x∼µ

y∼Pθ(x)

(qr,ar)
R
r=1

AccV (x, y, q1, . . . , aR) ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ)

 ,

where in the last equality, the probability is over (qr, ar) sampled as in Algorithm 2, and it follows from the definition of
the transcript generator T θ(x).

B. Preliminaries on Stochastic Gradient Ascent
For convenience of the reader, we provide a description of Stochastic Gradient Ascent and quote a theorem on its conver-
gence. We adapt the presentation in (Shalev-Shwartz & Ben-David, 2014), noting that they present Stochastic Gradient
Descent in its more general form for non-differentiable unbounded functions.

Stochastic Gradient Ascent (SGA) is a fundamental technique in concave optimization. Given a concave function f : Rd →
[0, 1], SGA starts at w0 = 0⃗ ∈ Rd and tries to maximize f(w) by taking a series of “steps.” Than directly differentiating
f , SGA instead relies on an estimation ∇f(w): in each iteration, SGA takes a step in a direction that estimates ∇f(w).

Definition B.1 (Gradient estimator). Fix a differentiable function f : Rd → R for some d. A gradient estimator for f is a
randomized mapping Df : Rd → Rd whose expectation is the gradient of f . That is, for all w ∈ Rd,

E
v∼Df (w)

[v] = ∇f(w).

Note that this is an equality between d-dimensional vectors.

Theorem 14.8 in (Shalev-Shwartz & Ben-David, 2014) implies the following fact.
Fact B.2. Fix a concave f : Rd → [0, 1], a norm || · || on Rd, and upper-bounds BNorm, BLip > 0. Let

w∗ ∈ argmax
w:||w||<BNorm

f(w),

and let w̄ denote the output of Algorithm 3 run for N iterations with learning rate

λ =
BNorm

BLip

√
N

.
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Algorithm 3 Stochastic Gradient Ascent
1: Hyperparameters: Learning rate λ > 0 and number of iterations N ∈ N.
2: Input: A function f : Rd → R to maximize and a gradient estimator Df for f .
3: Output: A vector w̄ ∈ Rd.
4: Initialize w0 := 0⃗ ∈ Rd.
5:
6: for i = 0, . . . , N − 1 do
7: Sample vi ∼ Df (wi−1).
8: Update wi := wi−1 + λ · vi.
9: end for

10: Output w̄ := 1
N

∑
i∈[N ] wi.

If at every iteration it holds that ||vi|| < BLip, then

Ē
w
[f(w̄)] ≥ f(w∗)− BNorm ·BLip√

N
.

C. Annotations
We formally capture the modification described in Section 4.3 by introducing a transcript annotator and an answer extrac-
tor incorporated into the training and inference stages, respectively.

Fix a verifier V in an R-round proof system with question length Lq and answer length La. An annotation system with
annotation length L̃a consists of a transcript annotator A, and an answer extractor E.

In terms of efficiency, think of the annotator as an algorithm of the same computational resources as an honest prover in the
system (see Definition 3.2, and the answer extractor as an extremely simple algorithm (e.g., trim a fixed amount of tokens
from the annotation).

To use an annotation system the following changes need to be made:

• At training time, an input x and transcript π is annotated to obtain π̃ := A(x, π), e.g. before the forwards backwards
pass in TL (line 3 in Algorithm 1).

• At inference time (i.e., during interaction between V and Pθ), the prover keeps track of the annotated transcript, but
in each round passes the model-generated (annotated) answer through the extractor E before it is sent to the verifier.
That is, in each round r ∈ [R], the prover samples

ãr ∼ Pθ(x, y, q1, ã1, . . . , ãr−1, qr).

The prover then extracts an answer ar := E(ãr) which is sent to the verifier.

D. A simple proof system for the GCD
The Euclidean algorithm for computing the Greatest Common Divisor (GCD) of two integers is possibly the oldest algo-
rithm still in use today (Knuth, 1969). Its extended variant gives a simple proof system.

Before we dive in, let us clarify what we mean by a proof system for the GCD. Paul has two integers 212 and 159; he
claims that GCD(212, 159) = 53. An inefficient way for Veronica to check Paul’s answer is by executing the Euclidean
algorithm on (212, 159) and confirm that the output is 53. In an efficient proof system, Veronica asks Paul for a short string
π∗ (describing two integers) with which she can easily compute the answer—without having to repeat Paul’s work all over.
On the other hand, if Paul were to claim that “GCD(212, 159) = 51” (it does not), then for any alleged proof π, Veronica
would detect an error and reject Paul’s claim.

The verifier in the proof system relies on the following fact.
Claim D.1 (Bézout’s identity (Bezout, 1779)). Let x0, x1 ∈ N and z0, z1 ∈ Z. If z0 · x0 + z1 · x1 divides both x0 and x1,
then z0 · x0 + z1 · x1 = GCD(x0, x1).
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Any coefficients z0, z1 satisfying the assumption of Claim D.1 are known as Bézout coefficients for (x0, x1). Claim D.1
immediately gives our simple proof system: For input x = (x0, x1) and alleged GCD y, the honest prover sends (alleged)
Bézout coefficients (z0, z1). The Verifier accepts if and only if y = z0 · x0 + z1 · x1 and y divides both x0 and x1.

In this proof system the Verifier does not need to make any query; to fit within Definition 3.2, we can have the verifier
issue a dummy query. Furthermore, by Claim D.1 it is complete and has soundness error s = 0. Lastly, we note that the
Verifier only needs to perform two multiplications, an addition, and two modulus operations; in that sense, verification is
more efficient than computing the GCD in the Euclidean algorithm as required by Remark 3.3.

Annotations. To describe how a proof z = (z0, z1) is annotated, let us first note how it can be computed. The Bézout
coefficients can be found by an extension of the Euclidean algorithm. It is described in Algorithm 4.10

Algorithm 4 Extended Euclidean algorithm
1: Input: Nonzero integers x0, x1 ∈ N.
2: Output: Integers (y, z0, z1), such that y = GCD(x0, x1) and (z0, z1) are Bézout coefficients for (x0, x1).
3: Initialize r0 = x0, r1 = x1, s0 = 1, s1 = 0, and q = 0.
4:
5: while r1 ̸= 0 do
6: Update q := ⌊r0/r1⌋.
7: Update (r0, r1) := (r1, r0 − q × r1).
8: Update (s0, s1) := (s1, s0 − q × s1).
9: end while

10: Output GCD y = r0 and Bézout coefficients z0 := s0 and z1 := (r0 − s0 · x0)/x1.

Referring to Algorithm 4, the annotation of a proof z = (z0, z1) will consist of intermediate steps in its computation.
Suppose that in each iteration of the While-loop, the algorithm stores each of r0, s0 and q in an arrays r⃗0, s⃗0 and q⃗. The
annotation z̃ of z is obtained by concatenating each of these arrays. In practice, to avoid the transformer block (context)
size from growing too large, we fix a cutoff T and first trim each array to its first T elements.

We formalize this in the terminology of Appendix C by defining a Transcript Annotator and Answer Extractor. Note that,
since our proof system consists only of one “answer” z send from the prover to the verifier, the entire transcript π is simply
z = (z0, z1). Since the verification is deterministic, this means that the proof system is of an NP type (however, note that
the search problem of finding the “NP-witness” z = (z0, z1) is in fact in P).

• Transcript Annotator A: For a fixed cutoff T and given input x = (x0, x1) and transcript z = (z0, z1), A executes
Algorithm 4 on input x = (x0, x1). During the execution, A stores the first T intermediate values of r0, s0 and q in
arrays r⃗0, s⃗0 and q⃗. It outputs A(x, z) := (r⃗0, s⃗0, q⃗, z).

• Answer Extractor E: Given an annotated transcript z̃ = (r⃗0, s⃗0, q⃗, z), outputs E(z̃) := z.

We note that the computational complexity of A is roughly that of the honest prover, i.e., Algorithm 4 (up to additional
space due to storing intermediate values). As for E, it can be implemented in logarithmic space and linear running time in
|z̃|, i.e., the length of the description.11

E. Experiment details
We provide details of how we implemented the experiments in Section 5 and additional figures for each experiment. Code,
data and models are available at https://github.com/orrp/self-proving-models.

Model architecture. We use Karpathy’s nanoGPT12 implementation of GPT. Note that we train the model “from scratch”
only on sequences related to the GCD problem, rather than starting from a pretrained checkpoint. We use a 6.3M parameter

10Our description is the same as https://en.wikipedia.org/wiki/Extended Euclidean algorithm.
11That is, if integers are represented by n-bits, then E has space complexity O(logn+ log T ) and running time O(n · T ).
12https://github.com/karpathy/nanoGPT.
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architecture of 8 layers, 8 attention heads, and 256 embedding dimensions. We optimized hyperparameters via a random
hyperparameter search, arriving at learning rate 0.0007, AdamW β1 = 0.733 and β2 = 0.95, 10% learning rate decay
factor, no dropout, gradient clipping at 2.0, no warmup iterations, and 10% weight decay.

Data. We sample integers from the log10-uniform distribution over {1, . . . , 104}. Models in Table 2 and Figure 2 are
trained for 100K iterations on a dataset of ≈10M samples. For Figure 3 (base ablation) we train for 20K iterations on a
dataset of ≈1M samples; this is because this setting required 68 many runs in total, whereas the annotation-cutoff ablation
required 18 longer runs.

Compute. All experiments were run on a machine with an NVIDIA A10G GPU, 64GB of RAM, and 32 CPU cores.
Longer runs (annotation-cutoff ablation) took about 75 minutes each. Shorter runs (base ablation) took about 15 minutes.
The total running time of our experiments was approximately 40 hours, excluding time dedicated to a random hyperparam-
eter search. The overall disk space needed for our models and data is 4GB.

Representing integers. We fully describe how integer sequences are encoded. As a running example, we will use base
210. To encode a sequence of integers, each integer is encoded in base 210, a sign is prepended and a delimiter is appended,
with a unique delimiter identifying each component of the sequence. For example, consider the input integers x0 = 212
(which is 12 in base 210) and x1 = 159. Their GCD is y = 53, with Bézout coefficients z0 = 1 and z1 = −1. Therefore,
the sequence (212, 159, 53, 1,−1) is encoded as

+,1,2,x0,+,159,x1,+,53,y,+,1,z0,-,1,z1

where commas are added to distinguish between different tokens. Null tokens are appended to pad all sequences in a
dataset to the same length. Both the input and the padding components are ignored when computing the loss and updating
parameters.

Annotations Annotations are encoded as above, with each component in an intermediate step πt delimited by a unique
token. Since different integer pairs may require a different number of intermediate steps to compute the Bézout coefficients,
we chose to pad all annotations to the same length T by the last step πT in the sequence (which consists of the final Bézout
coefficients). This ensures that the final component output by the model in each sequence should be the Bézout coefficient,
and allows us to batch model testing (generation and evaluation) resulting in a 1000x speed-up over sequential testing.

As an example, consider the inputs x0 = 46 and x1 = 39. Tracing through the execution of Algorithm 4, we have

x0 x1 y s⃗0 r⃗0 q⃗ z0 z1
46 39 1 46 1

0 39 5
1 7 1
−5 4 1
6 3 3

1 −11 13

To encode this as an annotated transcript for the transformer, we must specify a base of representation and an annotation
cutoff. Suppose that we wish to encode this instance in base B = 10 and cutoff T = 3. Then the input with the annotated
transcript is encoded as

+,4,6,x0,+,3,9,x1,+,1,y,
+,1,z0’,+,4,6,z1’,+,1,q’,

+,0,z0’’,+,3,9,z1’’,+,5,q’’
+,1,z0’’’,+,7,z1’’’,+,1,q’’’,

-,1,1,z0,+,1,3,z1

where commas are used to separate between tokens, and linebreaks are added only for clarity. Notice the three types
of tokens: signs, digits, and delimiters. Notice also that the output y is added immediately after the input, followed by
the annotated transcript (whose six tokens comprise the proof itself). Since the Self-Proving model we train has causal
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attention masking, placing the output y before the proof means that the model “commits” to an output and only then proves
it.
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Figure 4. Verifiability as a function of the number of samples N . Each iteration (X axis) is a batch of 1024 samples from a dataset
of ≈10M sequences. Every 10k iterations, Verifiability was evaluated on a held-out dataset of 1k inputs (as described in Section 5). T
is the number of steps in Annotated Transcript Learning (Figure 2), and T = 0 is non-annotated Transcript Learning. Each T was run
with three seeds, with mean depicted by the curve and standard error by the shaded area.
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