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Abstract

Adversarial robustness and privacy of deep learning (DL) models are two widely
studied topics in AI security. Adversarial training (AT) is an effective approach to
improve the robustness of DL models against adversarial attacks. However, while
models with AT demonstrate enhanced robustness, they become more suscepti-
ble to membership inference attacks (MIAs), thus increasing the risk of privacy
leakage. This indicates a negative trade-off between adversarial robustness and
privacy in general deep learning models. Visual prompting is a novel model repro-
gramming (MR) technique used for fine-tuning pre-trained models, achieving good
performance in vision tasks, especially when combined with the label mapping
technique. However, the performance of label-mapping-based visual prompting
(LM-VP) under adversarial attacks and MIAs lacks evaluation. In this work, we
regard the MR of LM-VP as a unified entity, referred to as the LM-VP model,
and take a step toward jointly evaluating the adversarial robustness and privacy of
LM-VP models. Experimental results show that the choice of pre-trained models
significantly affects the white-box adversarial robustness of LM-VP, and standard
AT even substantially degrades its performance. In contrast, transfer AT-trained
LM-VP achieves a good trade-off between transferred adversarial robustness and
privacy, a finding that has been consistently validated across various pre-trained
models. Code is available at https://github.com/TrustAI/TARP-VP.

1 Introduction

Deep learning models have gained great success, yet concerns regarding their security continue
to grow, as they are susceptible to various attacks [30, 13, 23, 29, 35]. In addition to the deep
learning models, training samples are also the key to this success. Consequently, attacks targeting
the relationship between training samples and models have emerged, such as adversarial attacks
[23, 14, 43, 37] and membership inference attacks (MIAs) [25, 28, 30, 32]. Adversarial attacks are
gradient-based methods that introduce imperceptible perturbations on inputs, generating adversarial
examples (AEs) that cause the target models to give incorrect predictions. Adversarial training (AT)
[23], proposed by Szegedy et al. has been recognized as one of the most effective defenses against
such attacks. The basic idea of AT is to incorporate AEs into the training process, resulting in
significantly improved performance under adversarial attacks compared to standard training (ST).

MIAs, on the other hand, aim to determine whether a specific sample was part of the model’s training
data. Various ideas exist for performing MIAs, e.g., shadow model-based attacks [30] and prediction
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confidence-based attacks [39, 28, 32]. The success of these attacks largely depends on the model’s
generalization error during training and testing [31]. Therefore, models with lower generalization
errors are inherently more resistant to such attacks.

AT-trained models exhibit more severe privacy risks compared to ST: (1) larger generalization error,
manifested in both natural and adversarial examples [32]; (2) higher sensitivity on training data
compared with ST [32]; (3) robust overfitting [27], where the model’s adversarial robustness declines
despite the natural accuracy continuing to increase at a certain training stage. These issues result
in a negative trade-off between adversarial robustness and privacy. As illustrated in Fig.1, while
AT significantly enhances adversarial robustness, it is more susceptible to MIAs, especially after
robust overfitting, i.e., between 100-150 epochs in Fig.1d, where the MIA success rate increases
significantly. Notably, the above conclusions are only for general deep-learning models.
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(a) Test Accuracy of Standard Training

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Test Accuracy over Epochs

Standard Test Accuracy
Adversarial Test Accuracy

(b) Test Accuracy of Adversarial Training
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(c) MIA on Standard Training
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(d) MIA on Adversarial Training

Figure 1: Trade-off between test accuracy and membership inference attacks of standard training and
adversarial training along with training on CIFAR-10 with ℓ∞ threat model using ResNet18.

Visual prompting (VP) [3] is a model reprogramming (MR) [10, 7] technique for pre-trained models,
used for downstream image classification tasks. Initially, VP involves adding a single, input-agnostic
prompt to input images to enhance a pre-trained model’s generalization ability. Label mapping
(LP) further improves VP’s performance by mapping source labels to target labels, denoted as
LM-VP, which exhibits strong performance in downstream tasks [3]. In this paper, we regard a
general pre-trained model after LM-VP as a new model, and its security remains under-explored,
including its susceptibility against AEs and MIAs, and compatibility with AT. We consider two
forms of AT: the standard AT for white-box adversarial robustness and transfer AT for black-box
transferred adversarial robustness, i.e., generating adversarial examples through another threat model.
We empirically demonstrate that the intuitions and relationships between adversarial robustness and
privacy observed in general models do not always hold for the LM-VP model.

In summary, our contributions lie in:

• From a novel perspective of considering LM-VP as a distinct model, we conduct the first
evaluation of its security, i.e., (transferred) adversarial robustness and privacy;

• Based on the concept of transfer attacks, we implement transferred adversarial training for
the LM-VP model to enhance its transferred adversarial robustness;

• We empirically demonstrate that intuitions regarding privacy in general models do not
necessarily apply to LM-VP models. Furthermore, we show that standard AT is invalid
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for LM-VP, while transfer AT on LM-VP exhibits a superior trade-off between transferred
adversarial robustness and privacy across various pre-trained models.

2 Related Work and Background

2.1 Visual Prompting.

The prompt technique [18, 20, 15] was originally employed in NLP tasks. In essence, it modifies
the original input text to enhance specific task performance without altering the parameters of the
pre-trained model. For instance, prompts indicating sentiment can be added for text classification [24],
while prompts indicating the target language can be used for translation tasks [42]. Bahang et al.[3]
first transfers this idea to computer vision tasks, i.e., VP. Compared to traditional transfer learning
methods like fine-tuning [33] and linear probes [1], VP does not modify the parameters of the
pre-trained model. Instead, it alters the original image by adding prompts, i.e., introducing additional
pixels, enabling task-specific and input-agnostic adjustments. During VP training, only the prompts
and output transformation are updated. VP exhibits strong performance across various datasets and
significantly reduces the training parameters compared to traditional transfer learning methods. Output
transformation, or label mapping (LM), is another key technique contributing to VP’s performance.
Chen et al.[6] proposes the iterative label mapping (ILM) method to replace the random mapping in
vanilla VP. Arif et al.[2] and Li et al.[19] apply a trainable fully-connected layer for label mapping,
achieving promising results and improved efficiency. Li et al.[19] also explore the VP in training
differential private models using the PATE framework [26], while Chen et al.[5] investigate VP in
test-time adversarial robustness by implementing adversarial prompts during testing.

2.2 Adversarial Robustness Evaluation

Adversarial robustness is an important metric for evaluating model robustness, referring to a model’s
performance under adversarial attacks. Adversarial attacks target image gradients, iteratively introduc-
ing imperceptible perturbations to images to generate AEs. These AEs often cause standard-trained
deep learning models to misclassify them with high confidence. Commonly used adversarial attacks
include PGD [23], FGSM [14], and CW [4] attacks. AT is an approach to improve the adversarial
robustness of deep learning models. It can be formulated as a min-max problem, where the inner max-
imization searches for perturbations that maximize the loss, while the outer minimization optimizes
the model, i.e.,

min
θ

E(Z,y)∼D

[
max
∥δ∥≤ϵ

L (fθ(X + δ), y)

]
. (1)

Various strategies exist to solve the inner maximization in AT, including PGD-AT [23], TRADES [43],
and MART [37], etc. LOAT[40] boosts AT via a Fisher-Rao norm-based regularization, SEAT[36]
extends AT to medical segmentation and FAAL[44] ensure both robustness and fairness during AT,
Chen et al.[8] proposes NRAT to enhance adversarial robustness under noisy labels. While robustness
evaluation mainly focuses on discriminative models, Zhang et al.[45] introduces a robustness notion
of text-to-image (T2I) generative models and proposes the ProTIP framework for evaluation.

2.3 Membership Inference Attacks

MIAs refer to determining whether a given data point was part of the training data for a trained model,
raising significant data privacy concerns. Shokri et al.[30] introduce the first MIA on classification
models, i.e., shadow training attack, which involves creating several shadow models that simulate the
target model, with these shadow models trained on data records similar to those used for training the
target model. An attack model is then trained to recognize the relationship between the members
of the shadow models’ training data and the shadow models’ outputs, which turns out to be a
binary classification. This attack model can subsequently infer the membership of the target model’s
training dataset. There are two findings in this work [30]: (1) the higher the degree of the model’s
overfitting, the higher the attack’s success rate, and (2) the more complex the training dataset, the
higher the MIA success rate. Intuitively, increasing the number of shadow models improves attack
performance by providing more samples for training the attack model, but this also requires more
computational resources. Yeom et al.[39] propose threshold-based MIAs, which compare the target
model’s prediction confidence for the true label against a certain threshold. This method achieves
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performance similar to the shadow model training method with significantly reduced computational
resource consumption. Song et al.[31] further proposes the class-dependent thresholds for a more
powerful attack and implements the MIA based on prediction entropy.

3 Robustness and Privacy Evaluation of Visual Prompting Models

In this section, we first provide an overall design of LM-VP models, including the prompt designs,
label mapping techniques, LM-VP model training, as well as the tricks we adopt. Then, we analyze the
white-box adversarial robustness of LM-VP, demonstrating that pre-trained models largely influence
its white-box adversarial robustness. We further propose transfer AT to enhance black-box transferred
adversarial robustness. Finally, we analyze the intuition between LM-VP models and privacy.

3.1 Label Mapping Visual Prompting

LM-VP model aims to keep the parameters of the pre-trained models fixed while performing input
transformation and output transformations, i.e., label mapping. Therefore, we divide the LM-VP
model into three parts: (1) prompt generation; (2) label mapping; and (3) model training.

3.1.1 Prompt Generation

For the prompt generation, we first rescale the images from the target domain under a certain rescale
ratio to a size smaller than that of the source domain. Then, trainable noise w1, i.e., prompt is added
around the image to ensure the final image size matches that of the source domain. Therefore, the
length (height and width) of each pixel patch p is

p = 1/2[(H1 −H2) + (W1 −W2)], (2)

where H1 and W1 represent the height and width of the source domain, H2 and W2 represent the
height and width of the rescaled target domain, then the final shape of prompts P is

P = C × [H1/p+W1/p− 4]× p2, (3)

where C is the image channels, [H1/p+W1/p− 4] represents the amount of pixel patches in each
channel. In vanilla VP [3], they rescale the target images to the size of the source domain and replace
the edges with random noise, i.e., prompts. In comparison, although the final prompts P are the same,
we preserve the edge information of the target domain images, which is more intuitively reasonable
as we retain all the information of target images. Preserving the edge information might help increase
the correlation between prompts and images during training. Fig. 2 shows the difference between
these two ways of prompt generation.

3.1.2 Label Mapping

For output transformation, vanilla VP uses random mapping, randomly selecting some labels from
the source domain to match those of the target domains and discarding the remaining unused labels.
However, this random mapping often leads to a performance drop in VP as it may ignore some
important information in the unused labels [19]. Therefore, we consider label mapping as a trainable
component: using a fully connected layer to train the mapping from source labels to target labels,
which is similar to [19] and [2]. Consequently, in LM-VP, we introduce two trainable parameters: the
prompt noise parameters w1 and the parameters w2 in the label mapping layer fℓ(w2; θ2).

3.1.3 LM-VP Model Training

For LM-VP model training, our objective is to modify the prompts by updating the noise parameters
w1, and the parameters w2 of FC layers of the label mapping. During the testing phase, the same
optimized prompts are applied to all test data, fed into the frozen pre-trained model, and finally output
the label mapping results. LM-VP relies on the pre-trained model and label mapping, indicating
that it does not require a large target dataset. Therefore, we can train LM-VP models using a subset
of the target dataset without a significant performance drop compared with training on the entire
target dataset, which significantly improves training efficiency. In contrast, general models tend to
underfitting when trained on small subsets, leading to poor generalization performance. Although the
LM-VP model does not heavily rely on training data, insufficient data can still affect its generalization.
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Figure 2: Two ways to add prompts: (1) Top: rescale a target image to the source domain size and
replace the edge of the image with prompts; (2) Bottom: rescale a target image to a size smaller than
the source domain and add prompts to make it the same size as source domain.
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Figure 3: LM-VP model (pre-trained on Swin Transformer[21]) performance on the whole test set
using standard training with different numbers of training subsets (random 100, 1000, 10000 subsets
and whole training set) on CIFAR-10, transferred adversarial robustness is evaluated on ℓ∞ threat
model using ResNet18.

Therefore, we use the SAM [12] version of SGD optimizer to update the weights of w1 to improve
the LM-VP model’s generalization, i.e.,

wt+1 = wt − η (∇L (wt + ϵt) + λw) , (4)

where η is the learning rate, ϵ is the parameter to maximize the loss function L, and λ is the weight
decay. Given the prediction on source domain ŷS , the final prediction label on target domain ŷT is
obtained by

ŷT = softmax (fℓ (ω2; ŷS)) . (5)
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Figure 4: Training and testing performance
of LM-VP (pre-trained on Swin Transformer)
using standard training on CIFAR-10, trans-
ferred adversarial robustness is evaluated on
ℓ∞ threat model using ResNet18.

Fig. 3 illustrates the impact of data volume on VP
performance during training, demonstrating that in-
sufficient training data may not always hurt the per-
formance of the LM-VP model, e.g., the LM-VP
model trained with a subset of 1000 samples (sec-
ond figure) achieves the best transferred adversarial
robustness; the LM-VP model trained with a subset
of 10000 samples (third figure) achieves a similar
standard test accuracy compared with the LM-VP
model trained with the whole training set. Addition-
ally, subset training significantly reduces the running
time to 0.12x, 0.25x, and 0.45x on subsets of 100,
1,000, and 10,000 samples respectively.

The LM-VP model also exhibits the property of rapid convergence, i.e., it can quickly achieve
a near-optimal performance and then remain steady with continued training, for both the natural
samples and adversarial samples, as shown in Fig. 4, it takes about 10 epochs to convergence for both
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training and testing. Therefore we can set a small number of epochs to improve training efficiency on
LM-VP models.

3.2 White-box Adversarial Robustness of LM-VP Models

Table 1: Best performance(%) on CIFAR-10 with different pre-trained
models in Standard-Trained LM-VP models and Standard AT-Trained
LM-VP models under white-box adversarial attacks.

Pre-trained models Standard Training Adversarial Training
Naturalte PGD-20 Naturalte PGD-20

ResNet50 80.52 8.33 23.10 0.8
ResNet152 84.76 57.09 14.24 0
Wideresnet 80.91 40.29 12.15 0

VIT 91.50 19.28 27.78 0
Swin 92.00 0 34.65 0

ConvNext 97.97 43.22 40.69 0

A crucial distinction be-
tween the LM-VP model
and a general model lies
in the presence of a pre-
trained model that does not
participate in training[3].
Using white-box adversar-
ial robustness metrics to
evaluate LM-VP models
can be heavily influenced
by the choice of pre-trained
models, as shown in Ta-
ble. 1 (Standard Training),
there is no clear pattern in
their best adversarial robust-
ness across different pre-
trained models, thus VP may play a limited role in defending against the white-box adversarial
attack. From Fig. 5, for standard-trained LM-VP models, the best (highest) adversarial robustness
was only observed in the early stages of training, as training progresses, for all pre-trained models,
the adversarial robustness continues to decline until it reaches a stabilized status, thus the best
adversarial robustness may largely reflect the pre-trained models’ inherent adversarial robustness
when transferred to the target dataset.
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Figure 5: Epoch-wise white-box ad-
versarial robustness of LM-VP using
standard training on CIFAR-10.

We also notice that the standard AT is invalid in LM-VP,
with really poor results in both natural and adversarial per-
formance, see Table. 1 (Adversarial Training). Since the
LM-VP model is trained on the target dataset, but the gener-
ation of adversarial examples depends on a fixed pre-trained
model from the source dataset domain, the domain shift may
lead to unsatisfactory results of AT on the target dataset.

Regarding how pre-trained models affect downstream adver-
sarial robustness, [38]and [34] provide more insights, e.g.,
Yamada et al.[38] conclude that network architecture is a
strong source of robustness in transfer learning. In this sense,
different pre-trained models may lead to different boundary
relationships between adversarial robustness and privacy,
evaluating LM-VP using white-box adversarial attacks may
make it difficult to reach consistent conclusions.

3.3 LM-VP models with Transferred Adversarial Training

For the evaluation of the transferred adversarial robustness of the LM-VP model, we use another
general model as the threat model to produce adversarial examples and train the LM-VP model to
defend against them. In this scenario, the intensity of the transfer attack remains constant once the
threat model is selected. This consistency holds true regardless of the chosen pre-trained model. This
inherent consistency is thus helpful for exploring and establishing a sensible relationship between
transferred adversarial robustness and privacy within LM-VP models. Compared to white-box
adversarial robustness which is heavily influenced by the pre-trained models, utilizing transferred
adversarial robustness serves as a more reliable and insightful evaluation method for LM-VP models.

Within the framework of transfer AT, the LM-VP model which comprises VP, a pre-trained model,
and LM, is treated as a unified black-box system, A fixed-parameter threat model, excluded from the
training process, is employed to generate AEs x′, and then train LM-VP models using adversarial
loss, this transfer AT consistently optimizes in the same direction since the attack remains constant.
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3.4 Relationship between LM-VP models and Training Dataset Privacy

In our work, we use the resistance of a model against MIAs to reflect its privacy. According to [32] and
[31], AT-trained general models exhibit larger generalization errors and higher sensitivity to training
data, wherein generalization errors and sensitivity are two key factors that influence the success of
MIAs on general models, thus indicating a contradiction between adversarial robustness and privacy
for general models. However, in the LM-VP model, the architecture of pre-trained models appears to
be the more significant factor affecting its (white-box) standard adversarial robustness (Table. 1). As
a result, we are not able to establish a reliable boundary relationship between its standard adversarial
robustness and privacy, which has prompted us to focus primarily on the relationship between its
transferred adversarial robustness and privacy.

In the training of LM-VP models, the parameters (weights and biases) of the pre-trained models
are fixed, and the trainable parameters are noise parameters and label mapping parameters. This
significantly reduces the influence of the input (both natural and adversarial samples) on the LM-VP
model compared to general models, which also enables effective training of LM-VP models with a
small subset of data, indicating lower sensitivity of LM-VP models to training data, the results in
Fig. 3 also support this statement. Additionally, the generalization ability of LM-VP models mainly
relies on the pre-trained models, which have been trained on large-scale datasets and learned rich
universal features. With fixed model parameters, the risk of overfitting is reduced.

As shown in Fig. 4, during LM-VP standard training and transfer AT, both training accuracy and
test accuracy on natural examples and adversarial examples are very close. Based on this empirical
evidence, LM-VP models exhibit minimal generalization error and low sensitivity to training data,
which should intuitively enhance their resistance to MIAs and better protect the privacy of training data.
However, apart from generalization errors and sensitivity, there might be other factors influencing the
LM-VP model’s resistance to MIAs, such as the prior knowledge embedded in different pre-trained
models. In our experiments, we empirically demonstrate that MIA analyses applied to general models
do not always hold for LM-VP models, and transferred adversarial robustness and privacy can be
improved simultaneously using transfer AT.

4 Experiments

In this section, we conduct comprehensive experiments to evaluate the performance of LM-VP models
under transferred adversarial attacks and a threshold-based MIA. Regarding the trade-off among
standard accuracy, transferred adversarial robustness, and MIA success rate, we comprehensively
compare different pre-trained models in LM-VP models. We conduct main experiments on CIFAR-
10 and additional experiments on Tiny-ImageNet to show the good generalization performance of
transfer AT. We implement all experiments on a server with an RTX3090 GPU.

4.1 Experimental Setup

For adversarial attacks, all experiments follow the standard settings: ℓ∞ threat models for all methods,
the perturbation limit ϵ = 8/255, and step size 2/255, we mainly choose ResNet18 as the threat
model. For LM-VP models, we use the source models pre-trained on 224x224 ImageNet. For training,
we follow the settings in [19], i.e., SGD with SAM technique and a momentum of 0.9 to optimize the
LM-VP defense models, the total training epoch is 20. We choose ResNet50 [17], ResNet152 [17],
WideResNet-50-2 [41], VIT [9], Swin Transformer [21], ConvNext [22], and EVA [11] models to
show the effect of different pre-trained source models in LM-VP model training.

For evaluation, (1) adversarial attacks: we choose PGD-20 and CW-20; (2) MIA: we implement the
threshold-based attack on both the natural examples and adversarial examples.

4.2 Classification Evaluation of Standard Trained LM-VP Models

To evaluate the performance of LM-VP models using standard training, i.e., its training loss is given
by

ℓST (xi, yi,θ) = CE (fθ (xi + P ) , yi) . (6)
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Table 2: Best performance(%) on CIFAR-10 with different pre-trained models in Standard-Trained
LM-VP models under Threat models ResNet18 or WRN-34-10.

Best Performance on natural examples and adversarial examples
Pre-trained models Threat models Naturaltr Naturalte PGD-10tr PGD-20 CW-20 T/E

ResNet50

ResNet18

87.73 86.30 31.14 35.61 34.30 251s
ResNet152 90.39 89.51 36.76 35.99 35.67 440s
WRN-50-2 87.77 86.78 37.73 39.76 38.90 381s

VIT 94.91 92.67 51.25 51.95 50.70 589s
Swin 94.78 92.71 56.46 57.80 57.34 1025s

ConvNext 99.33 98.28 88.70 89.11 89.37 2116s
EVA 99.66 98.54 86.95 87.40 87.56 2674s

Best Performance on natural examples and adversarial examples
Pre-trained models Threat models Naturaltr Naturalte PGD-10tr PGD-20 CW-20 T/E

ResNet50

WRN-34-10

87.18 85.87 30.33 32.32 30.98 -
ResNet152 89.95 89.42 37.24 37.26 37.08 -
WRN-50-2 87.97 87.01 38.25 41.36 39.90 -

VIT 94.78 92.77 51.41 52.23 52.12 -
Swin 95.08 92.8 55.23 59.20 57.54 -

ConvNext 99.19 98.03 88.20 88.51 88.23 -
EVA 99.64 98.45 86.21 86.98 87.24 -

P is the prompt. We report its natural accuracy and transferred adversarial robustness in Table. 2,
where the “best performance” refers to the performance under the epoch of the best (standard or
transferred) adversarial robustness.

Based on the parameter capacity of the pre-trained models, we regard them as small, medium, and
large models. Specifically, ResNet50, ResNet152, and WRN-50-2 are small models, ViT and Swin
Transformer are medium models, and ConvNext and EVA are large models. We report only the natural
accuracy during training, while different attacks are employed during testing. The results in Table. 2
show that: (1) There is a clear hierarchy in natural accuracy and transferred adversarial robustness
based on the size of the pre-trained models, i.e., small models have a natural accuracy below 90%,
medium models around 92%, and large models around 98%; for transferred adversarial robustness,
small models are below 45%, medium models range from 50% to 60%, and large models range from
85% to 90%; (2) In LM-VP models, the transferred adversarial robustness is not significantly affected
by the size of the threat model, i.e., a larger threat model (WRN-34-10) may not be more challenge
compared with ResNet18. For instance, small and medium models sometimes have higher transferred
adversarial robustness achieved under WRN-34-10; (3) In LM-VP models, even when more attack
steps are used, the transferred adversarial robustness of the test data often remains higher than that
of the training data set, although more attack steps being considered more powerful (comparing
PGD-10tr and PGD-20).

4.3 Classification Evaluation of Transfered AT-based LM-VP Models

We implement the transfer AT of LM-VP models proposed in Section 3.3 and report the performance
in Table. 3. Specifically, during training, we use PGD attack with 10 steps to generate AEs:

x0 = x+ σ, where σ ∼ N (0, 1), (7)

xt+1 = Πx+S(x
t + αsign(∇xL(θ, xt, y)), (8)

x0 is obtained by perturbing x with random noise σ sampled from the normal distribution N (0, 1), t
denotes the current attack step, α is the step size, Π denotes the projection function, S ⊆ Rd denotes
the perturbation set of AEs, we train LM-VP models with the following training loss:

ℓAT (xi, yi,θ) = CE (fθ (x
′
i + P ) , yi) , (9)

where x′
i denotes the AE after PGD. To ensure consistency with the ST in Table. 2, we report the

results under the same metrics. Consistent with our findings in Section 4.2, AEs generated by different

8



Table 3: Best performance(%) on CIFAR-10 with different pre-trained models in Transfered AT-
Trained LM-VP models under Threat model ResNet18.

Best Performance on natural examples and adversarial examples
Pre-trained models Threat models Naturaltr Naturalte PGD-10tr PGD-20 CW-20 T/E

ResNet50

ResNet18

68.84 70.37 64.10 63.01 61.78 671s
ResNet152 68.83 77.08 63.39 63.95 62.92 950s
WRN-50-2 69.68 70.42 62.07 62.86 60.89 875s

VIT 86.23 86.64 77.49 75.34 74.87 1380s
Swin 89.32 89.74 80.72 79.14 77.89 2205s

ConvNext 97.79 98.02 92.61 91.63 91.02 3446s
EVA 98.64 98.32 93.19 92.43 91.50 4136s

Table 4: MIA success rate(%) on CIFAR-10 with different pre-trained models in Standard and
Transferred AT Trained LM-VP models under Threat model ResNet18.

Generation Gap and MIA Success Rate on Trained LM-VP Models

Pre-trained models Standard Training Transfered AT

MIA Nat MIA Adv MIA Nat MIA Adv

ResNet50 68.92 57.88 55.27 51.19
ResNet152 75.34 56.46 62.15 50.77
WRN-50-2 62.58 50.66 50.46 50.94

VIT 51.66 50.37 50.53 51.78
Swin 51.75 50.53 50.23 51.63

ConvNext 80.14 77.33 50.32 50.70
EVA 77.46 73.35 50.32 50.67

threat models have minimal impact on both training and testing. Therefore, we exclude the results for
WRN-34-10 as a threat model.

The results in Table. 3 indicate that: (1) Transferred AT significantly enhances the transferred
adversarial robustness at the cost of reduced natural accuracy. Specifically, the transferred adversarial
robustness improvement is around 20%-35% for small models, 20%-25% for medium models, and
3%-6% for large models; (2) Compared to the standard-trained LM-VP models, the transferred
adversarial robustness of the training set (PGD-10tr) is usually higher than that of the test set
(PGD-20) in transferred AT-trained LM-VP models.

4.4 Privacy Evaluation of LM-VP Models

In this section, we evaluate the privacy performance of LM-VP models under the threshold-based
MIA. Our attack implementation is based on [16], the MIA success rate with a threshold η is given
by:

MIA(η) =
1

2
×

(∑
(x,y)∈Dtrain

1 [fθ(x)y ≥ η]

|Dtrain |
+

∑
(x,y)∈Dtest

1 [fθ(x)y < η]

|Dtest |

)
, (10)

where the ηoptim is obtained by computing all possible η that maximizes the MIA success rate, i.e.,

ηoptim = argmax
η

MIA(η). (11)

This attack is mainly based on the model generalization error, i.e., models with higher generalization
error are more susceptible to the attack. Conversely, the success rate should approach 50% for a
model with little generalization error. However, this principle does not always consistently apply
to LM-VP models. From Table. 4, for standard-trained LM-VP models, only the VIT and Swin
Transformer can effectively resist the attack with an MIA success rate near 50%. Another observation
is the MIA success rate on AEs is lower for the standard-trained LM-VP models.

For transferred-AT trained LM-VP models, the MIA success rate for most cases is around 50%,
markedly reducing the risk of training data privacy leakage. This indicates that transferred adversarial
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Table 5: Best performance(%) on Tiny-ImageNet with different pre-trained models in Standard-
Trained LM-VP models and Transfered AT-Trained LM-VP models under threat model ResNet18.

Pre-trained models Standard Training Transfer Adversarial Training
Naturalte PGD-20 MIA Nat Naturalte PGD-20 MIA Nat

ResNet50 62.74 10.26 57.46 50.42 34.60 50.90
ResNet152 65.00 20.53 62.14 57.36 38.81 50.85
WRN-50-2 70.12 16.59 53.50 50.50 30.59 50.89

VIT 80.97 37.77 54.00 72.02 50.22 51.45
Swin 79.93 41.81 56.95 75.08 55.81 51.35

ConvNext 89.01 73.47 58.47 87.60 76.61 52.04

robustness and privacy can be simultaneously achieved in LM-VP models. One plausible explanation
is that during transfer AT, the original training examples are perturbed before feeding into the model,
thus these data are not exposed to the trained model, this may help mitigate the MIA issue since
LM-VP models also do not suffer from large generalization error (Table. 2 and Table. 3) and increased
training data sensitivity (Fig. 3) and transfer AT do not train the original training examples.

4.5 Results on Tiny-ImageNet

To demonstrate the efficiency of transferred AT on LM-VP models, we provide the results on Tiny-
ImageNet which has a resolution of 64x64 and contains 200 classes, results shown in Table. 5, LM-VP
models with transfer AT improve transfer adversarial robustness by 3%-24% and mitigate the MIA
success rate by 3%-12% compared to LM-VP models with standard training.

5 Conclusion

In this paper, we regard the models trained using the LM-VP technique as a novel model type and
analyze its adversarial robustness and privacy. We find the choice of pre-trained models signifi-
cantly influences the white-box adversarial robustness of LM-VP, making it hard to draw consistent
conclusions. Therefore we focus more on its transferred adversarial robustness and its interaction
with MIA-based privacy. To address both concerns, we propose the transfer AT method for LM-VP
models to enhance performance on both fronts. Experiments across various pre-trained models
demonstrate that: (1) Both standard-trained and transfer AT-trained LM-VP models show a positive
correlation between transferred adversarial robustness and pre-trained model size, and (2) Transfer
AT significantly boosts the transferred adversarial robustness of LM-VP models while also enhancing
its training data privacy. These findings indicate the advantage of LM-VP models trained with transfer
AT in AI security. However, the analysis of the LM-VP model currently lacks theoretical support and
interpretability. In our future work, we intend to integrate relevant theories from related domains to
delve deeper into LM-VP models’ security implications.
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A Appendix / supplemental material

A.1 Ablation Studies on Rescale Factor

In [19], they conclude the impact of the rescale ratio on the training of LM-VP models, i.e., a larger
rescale ratio yields better performance. However, an excessively large rescale ratio can also lead to
overfitting to the target domain. In this section, we compare two rescale ratios, corresponding to the
two cases shown in Fig. 2. In terms of performance, there is only a minimal gap between the two
ways.
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Figure 6: Comparison on different rescale ratios. The pre-trained model is Swin Transformer.

A.2 Ablation Studies on Perturbation Limit

We set ϵ = 4/255 and evaluate the LM-VP model based on the ResNet50 and ConvNext pre-trained
models. The result is consistent with our main experiment where ϵ = 8/255, i.e., transfer AT achieves
better transferred adversarial robustness and privacy trade-offs at the cost of natural accuracy.

Table 6: Best performance(%) on CIFAR-10 with two pre-trained models in Standard-Trained LM-VP
models and Transfered AT-Trained LM-VP models under ϵ = 4/255 of threat model ResNet18.

Pre-trained models Standard Training Transfer Adversarial Training
Naturalte PGD-20 MIA Nat Naturalte PGD-20 MIA Nat

ResNet50 84.90 33.19 73.99 67.96 65.10 51.91
ConvNext 97.72 86.86 79.84 97.68 89.77 51.20
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] ,
Justification: The abstract and introduction show the main findings of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations and potential future work in the conclusion.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
Justification: Some findings and claims in this paper are based on empirical findings, which
may not be consistent with previous common intuition.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the setup and will make the code public. The empirical results can
support our claims in the abstract, introduction, and conclusion.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our experiments are based on public datasets, we have not yet released our
code but we will create a GitHub repo for the code soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have a setup section to show the above information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments can support the main claims in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computer resources in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There is no ethics issues in this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to our conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: There is no such issues in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper of the original code we follow.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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