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ABSTRACT

Dequantisation is a general technique used for transforming data described by a
discrete random variable x into a continuous (latent) random variable z, for the pur-
pose of it being modeled by likelihood-based density models. Dequantisation was
first introduced in the context of ordinal data, such as image pixel values. However,
when the data is categorical, the dequantisation scheme is not obvious. We learn
such a dequantisation scheme q(z|x), using variational inference with TRUncated
FLows (TRUFL) — a novel flow-based model that allows the dequantiser to have
a learnable truncated support. Unlike previous work, the TRUFL dequantiser is
(i) capable of embedding the data losslessly in certain cases, since the truncation
allows the conditional distributions q(z|x) to have non-overlapping bounded sup-
ports, while being (ii) trainable with back-propagation. Addtionally, since the
support of the marginal q(z) is bounded and the support of prior p(z) is not, we
propose to renormalise the prior distribution over the support of q(z). We derive
a lower bound for training, and propose a rejection sampling scheme to account
for the invalid samples. Experimentally, we benchmark TRUFL on constrained
generation tasks, and find that it outperforms prior approaches. In addition, we find
that rejection sampling results in higher validity for the constrained problems.

1 INTRODUCTION

Deep generative models aim to model a distribution of high-dimensional natural data. Many of these
methods assume that the data is continuous, despite it being digitally stored in bits and therefore
intrinsically discrete. This discrepancy has led to recent interest in dequantising discrete data types
to avoid some of the degeneracies of fitting continuous models to discrete data (Theis et al., 2015).
When data is ordinal (such as pixel intensities) a naive dequantisation scheme can be obtained by
adding uniform noise to the discrete values (Theis et al., 2015). More recently, a generalisation of
this approach where dequantisation is seen as inference in a latent variable model has also been
proposed (Ho et al., 2019; Hoogeboom et al., 2020; Nielsen et al., 2020). However, these methods
may not be directly applied in cases where the data is categorical (Hoogeboom et al., 2021), because
the data is not naturally represented in a vector space.

Attempts at devising dequantisation schemes for categorical data by building upon the variational
dequantisation scheme have been recently proposed in Hoogeboom et al. (2021) and Lippe &
Gavves (2020). These approaches dequantise a categorical input into a latent continuous space.
Ideally, a dequantisation scheme for categorical data should be: (i) easily learnable by standard
optimization techniques and (ii) possibly lossless, in the sense that quantisation should recover the
input category. Argmax Flow (Hoogeboom et al., 2021) offer lossless dequantisation but the support
of the stochastic embedding is chosen arbitrarily and not optimised, and the dimensionality of the
continuous (dequantised) variable is required to be at least logarithmic in the number of categories
of the input data. Moreover, the method makes minimal assumptions about the topology of the
categorical data, disregarding the possible relationships between categories, which can occur for
example between word indices in natural language (Bengio et al., 2003) or the atomic representations
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Figure 1: Decoder for CNFs (left) is the posterior of the encoder and the posteriors have unbounded
support resulting in probability mass in all categories in p(xt|zt). Argmax flow (center) have bounded
supports that partitions the full latent space into regions where the posterior for each category is
deterministic, but (1) the naive thresholding (thresh.) requires the dimensionality of the space to be
equal to the number of categories, and (2) the binary encoding partitions data into separate octants,
sometimes leaving octants unsupported. TRUFL (right) allows bounded support for each category,
and for latent dimensions to be different from the category size.

of a molecule’s constituents. On the other hand, Categorical Normalizing Flows (CatNF; Lippe &
Gavves 2020) can learn a more compact representation of the input category but the dequantisation
might be lossy given that the posteriors over the continuous variables have overlapping support.

Is there a trade-off between these two schemes? In this paper, we propose TRUFL, which builds
upon the aforementioned variational dequantisation techniques. We achieve that by using truncated
posterior distributions over the continuous variables with potentially bounded and disjoint support. In
addition, we present a parametrisation of truncated distributions that can be optimised with standard
stochastic reparametrisation techniques. Overall, our method inherits strengths of both CatNF and
Argmax flow. Our experimental results highlight the effectiveness of our approach.

2 BACKGROUND: VARIATIONAL DEQUANTISATION

Dequantisation refers to the process of embedding discrete-valued data into a continuous space, which
allows us to employ density-based models to capture the distribution of the continuous representation.
Concretely, let z = {z1, . . . , zT } denote this continuous representation, and x = {x1, . . . , xT }
describe the observed data, where each xt represent, e.g. a node in a graph or a token in a sentence.
Each xt is assumed to be categorical, i.e. xt ∈ {0, · · · ,K − 1} for some integer K > 1. z can be
interpreted as a latent variable, which follows a prior distribution p(z). We refer to q(zt|xt) as the
dequantiser and p(xt|zt) as the quantiser. Training can be achieved by maximizing a variational
lower bound on the marginal likelihood of the data, i.e.:

log p(x) ≥ Eq(z|x)

[
log

p(x|z) p(z)
q(z|x)

]
=: L(x) (1)

We are interested in the case where the representation zt can be inferred from xt alone, so we choose
the factorisation p(x|z) =

∏
t p(xt|zt) and q(z|x) =

∏
t q(zt|xt), following Lippe & Gavves

(2020). In this case, the “optimal” quantiser p(xt|zt) can be conveniently computed as:

argmax
p(xt|zt)

Eq(x)[L(x)] =
q(zt|xt) p̃(xt)∑K−1

x′
t=0 q(zt|x′t) p̃(x′t)

= q(xt|zt) =: p(xt|zt) (2)

where q(x) denotes the (empirical) data distribution, and p̃(xt) denotes the estimate of the marginal
distribution of each category (which can be obtained by counting and, in the case of textual data, this
corresponds to the unigram distribution over words). This equation shows that the optimal quantiser
can be obtained implicitly by applying Bayes’ rule with the parametric dequantiser q(zt|xt). The
factorisation we chose for p(x|z) and q(z|x) is crucial for the argmax above to be represented in this
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simple form. Without this assumption, the solution will involve a combinatorial sum or an integral,
which results in the choice of a parametric quantiser in Ziegler & Rush (2019) for computational
tractability. Plugging the optimal decoder into Eq. 1 yields:

L(x) = Eq(z|x)

[∑
t

log p̃(xt) + log
p(z)∑K−1

x′
t=0 q(zt|x′t)p̃(x′t)

]
(3)

We note that the first term is a constant. Therefore, the expression above implies that accurately
modelling the dependencies in x boils down to learning an expressive prior p(z) and regularising the
dequantiser q(zt|xt). q(xt|zt) is deterministic when q(zt|xt) does not overlap with other q(zt|x′t),
in which case q(zt|xt) is encouraged to be expanded to maximize the entropy. If there is certain
amount of overlapping, the denominator in the second term will push down the density of other
q(zt|x′t), therefore resulting in a spikier aggregate posterior distribution (see more discussion on this
in Section 5.3). With this general framework that also accounts for lossy quantisation, we briefly
present some of the previously proposed strategies for dequantisation.

Ordinal dequantisation In the case where the data is ordinal, such as the case of image pixel
values (e.g. for an 8-bit representation, K = 256), a dequantisation scheme can be obtained by
setting q(zt|xt) = Uniform(xt, xt + 1). The resulting quantisation process is simply bztc, and is
deterministic. More generally, q(zt|xt) can be any distribution on [xt, xt+1]. See Nielsen & Winther
(2020); Hoogeboom et al. (2019) for extensions of the uniform dequantisation scheme.

Argmax Flow For categorical data, uniform dequantisation is not applicable, as there is no intrinsic
ordering between the categories. Argmax Flow (Hoogeboom et al., 2021) dequantise categorical
data by letting zt ∈ RK be distributed by q(zt|xt) with support {zt : argmaxk(zt)k = xt}. When
the support over the latent space is disjoint, p(xt|zt) = q(xt|zt) = 1[xt = argmaxk(zt)k]

1; we
depict this in Figure 1, Argmax flow (thresh.). Argmax Flow makes minimal assumptions on the
topology of the data: the support of the dequantiser partitions the continuous space evenly and the
representations are equally far from each other. As an example, synonyms in text may still have
very distinct dequantised representations despite having similar functions and meaning in a language
modelling setting. In the naive formulation, Argmax Flow requires the dimensionality to the latent
space to be the same as the number of the input categories K. To accomodate for larger categorical
spaces, the authors suggest a binary factorisation, reducing the required latent space dimension to
dlog2Ke; See Figure 1, Argmax flow (binary).

Categorical Normalising Flows (CatNF) In the previous cases, the quantisation is deterministic,
and there is no loss of information. This is because in a cleanly partitioned latent space like in the
ordinal setting or argmax flow, the dequantising distributions q(zt|xt = k) for all 0 ≤ k ≤ K − 1
have non-overlapping support. CatNF learns a dequantiser that can “softly” partition the space. Lippe
& Gavves (2020) propose using a conditional logistic distribution as q(zt|xt). In this case, the optimal
quantiser q(xt|zt) is nearly-deterministic if the locations of the dequantisers are far away from each
other and they have sufficiently small scale. For this reason, and unlike the first two approaches,
CatNF is not capable of losslessly dequantising the data (we provide a formal discussion on this in
Appendix A.2, which is based on an data-processing inequality argument, using the dequantiser as a
transitional kernel). It can approximate the lossless limit by pushing the bulk of the mass of q(zt|xt)
away from each other, but that could potentially lead to a highly complex and multi-modal empirical
distribution over the representation space for p(z) to approximate.

Next, we consider the case where q(zt|xt) is a truncated distribution, and as such has the ability to
encode the data losslessly while learning a meaningful latent topology of the different categories.

3 TRUNCATED DEQUANTISER AND PRIOR

The general approach to optimising the variational lower bound proposed in Kingma & Welling
(2014) involves sampling from the proposal distribution q(zt|xt) to estimate the expectation (Eq. 1).
In our case, we want to parameterise this using a TRUncated FLow, which we will refer to as TRUFL.

1We use 1[·] to denote an indicator function.
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For simplicity, we will drop the dependency on t and xt, but all of the variational distribution is
conditioned on the categorical value xt.

If we want to bound a scalar distribution between (a, b), and we have a density function f where its
cumulative distribution function F (CDF) and the inverse of its CDF F−1 are tractable, we can easily
sample from f by sampling u from Uniform(F (a), F (b)), and then evaluating F−1(u). Note that
this method is differentiable, and we use it to sample from our dequantiser.

However, multi-variate distributions may not simply be truncated at the tails, but rather have a
support which is a strict subset of its base distribution. One general approach to sampling from
such a distribution is via rejection sampling (Murphy, 2012). This approach has been used in prior
work for sampling from bounded-support distributions (Polykovskiy & Vetrov, 2020; Xu & Durrett,
2018; Davidson et al., 2018). Computing gradients for this method is possible via implicit gradients
(Figurnov et al., 2018), but we do not need gradients in our case, as we use rejection sampling for
generating samples from the generative model (See Section 3.2).

3.1 TRUNCATED LOGISTIC DISTRIBUTION

We choose the truncated logistic distribution to parameterise the dequantiser, because the density, the
CDF and the inverse CDF of the logistic distribution can all be easily computed:

f(z) = σ(z) · σ(1− z), F (z) = σ(z), F−1(u) = log
u

1− u
, (4)

for z ∈ R and u ∈ (0, 1), where σ is the logistic sigmoid function. Additionally, we can parameterise
the width of Uniform(F (a), F (b)) directly by s, where 0 < s ≤ 1, and the mean of this distribution
as m, such that m+ s

2 < 1 and m− s
2 > 0. Given a set of statistical parameters ŝ ∈ R and m̂ ∈ R

for each category, we can impose these constraints by the following reparameterisation:

m = σ(m̂), s = 2 ·min(m, 1−m) · σ(ŝ). (5)

Then, to sample from Uniform(F (a), F (b)),

u = m+

(
u0 −

1

2

)
· s, u0 ∼ Uniform(0, 1). (6)

This allows for a simple implementation for a truncated logistic distribution that is differentiable (see
Appendix A.1 for the derivation of the gradient). We can write the pdf as

f̃(z;m, s) =

{
1
sσ(z) · σ(1− z), if 0 < F (z)−m

s + 1
2 ≤ 1

0, otherwise.
(7)

Like in Lippe & Gavves (2020), the resulting approximate posterior q(zt|xt) requires category
specific parameters for the truncation (m(xt) and s(xt)) and any flow applied on top of the truncated
logistic (we denote this flow as g). During training, conditioned on a given category xt, we can
sample zt with the method described above, and compute the probability q(zt|xt). Since decoding
requires computing g−1(zt, x̂t) for all K categories, it limits the choice of flows applicable. In CatNF
implementations, a linear flow is used (Kingma & Dhariwal, 2018), while empirically the authors find
that a category conditional scale and shift suffices. Algorithm 1 details the steps taken for computing
zt, log q(zt|xt), and log p(xt|zt).
With this parameterisation of the decoder and the truncated approximate posterior, some q(zt|x̂t)
where xt 6= x̂t may not have support over the sample zt. In the extreme case, when q(zt|xt)
for all possible assignments of xt had mutually exclusive support, then decoding will always be
deterministic, similar to Argmax flow. This is when TRUFL has the flexibility to embed discrete
data losslessly in a continuous space. Empirically we find that q(xt|zt) is sparse, but not always
deterministic.

Recovering Argmax Flow and CatNF Specific choices of m and s in Eq. 6 can recover CatNF
and Argmax Flow support for each category. By settingm = 0.5 and s = 1, we perform no truncation
on the posterior distribution, where we recover CatNF. For Argmax Flow, we can achieve orthant
support by setting m to 0.25 or 0.75 for each dimension according to the orthant it was assigned
based on the binary encoding, and s = 0.25. This will ensure that the support covers only half of the
real line in that dimension, thus matching Argmax Flow support for that category.
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Algorithm 1 Truncated Categorical Encoding for a timestep t

Input: Categorical data xt, Flow g(·, ·)
Output: zt, log q(zt|xt), log p(xt|zt)
u0 ∼ Uniform(0, 1) . Begin encoding
u← m(xt) +

(
u0 − 1

2

)
· s(xt)

z′t ← F−1(u)
zt ← g(z′t, xt) . End Encoding
for x̂t = 0 to K − 1 do . Compute probability of zt given all possible x̂t

ẑ′t ← g−1(zt, x̂t)

log q(zt|x̂t)← log f̃(ẑ′t;m(x̂t), s(x̂t)) + log
∣∣∣dz′tdẑt

∣∣∣
end for
log p(xt|zt)← log q(zt|xt) p̃(xt)− log

∑
x̂t

q(zt|x̂t) p̃(x̂t) . log computation of the q posterior

Algorithm 2 Rejection sampling

Output: x
z ∼ p(z)
while ∀x̂ : f̃(z;m(x̂), s(x̂)) = 0 do

z ∼ p(z)
end while
x ∼ p(x|z)

p(z) ptrunc(z)

Figure 2: Left: Pseudo-code for rejection sampling. Centre: The untruncated prior p(z). Right: The
prior truncated according to the unioned support of q. We denote this as ptrunc(z).

3.2 REJECTION SAMPLING

When sampling from the model, the standard process is ancestral sampling: z ∼ p(z), and then
x ∼ p(x|z). However, in our model, the sample zt may not have support under any of the q(zt|xt),
resulting in an undefined optimal p(xt|zt). As mentioned, we reject the samples that have no support
for any of the mixture components. This is equivalent to redefining a new prior ptrunc(z) proportional
to p(z) such that its support matches the unioned support of q(z|x) and renormalising. The existing
ELBO is still a valid lower-bound of such a distribution:

L = Eq(z|x)

[
log

p(x|z) p(z)
q(z|x)

]
≤ Eq(z|x)

[
log

p(x|z) p(z)
Z

q(z|x)

]
≤
∫
p(x|z) ptrunc(z) dz, (8)

where Z :=

∫
p(z) · 1

[
∃x̂ : f̃(z;m(x̂), s(x̂)) > 0

]
dz ≤ 1. (9)

Eq. 9 in principle can be estimated by counting the frequency of accepted samples. For one of our
experiments, the overall rejection rate at the end of training is about 0.14, suggesting that rejection
sampling from a trained prior is not inefficient (see Section 5.1). Using the decoder as an accepting
heuristic, we find empirically that this results in more valid samples in constrained tasks that require
sampling from the model.

4 RELATED WORK

Flows on Discrete Data Discrete flows (Tran et al., 2019; Hoogeboom et al., 2019) deal with flows
in the discrete space, but because of this they resort to the straight-through method (Bengio et al.,
2013) for estimating gradient. Using conditional permutations, Lindt & Hoogeboom (2021) develop
a way to use discrete flows that do not have the same gradient bias that Discrete flows introduce due
to its gradient estimator. Our approach maps the discrete data into a continuous space, allowing the
prior to take on most of the modelling complexity.
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Table 1: Results on the graph coloring problem (Lippe & Gavves, 2020). SMALL are graphs of
size 10 ≤ |V | ≤ 20, and LARGE 25 ≤ |V | ≤ 50. All results are attained using the CatNF
codebase, and averaged across 3 random seeds. Results in the rounded box are using a different set of
hyperparameters than the ones used in CatNF.

SMALL LARGE

Method Validity bpd Validity bpd

RNN+Largest first 93.41% ±0.42% 0.68 ±0.01 71.32% ±0.77% 0.43 ±0.01

CatNF 94.56% ±0.55% 0.67 ±0.00 66.80% ±1.14% 0.45 ±0.01
68.06% ±0.04% 0.45 ±0.00

Argmax (thresh.) 94.81% ±0.37% 0.66±0.00 63.65% ±0.24% 0.46 ±0.00

No rejection sampling 95.40% ±0.35% 0.65 ±0.01 68.10% ±0.00%
Rejection sampling 95.90% ±0.29% 74.20% ±0.01% 0.45 ±0.00

Learning the Prior Since most of the modelling happens in the prior after dequantisation, the prior
has to have the expressibility to model the resulting continuous data. Learnable priors are not new in
the VAE literature (Tomczak & Welling, 2018; Huang et al., 2017). One common way for learning
sequential data is to use an autoregressive prior (Ziegler & Rush, 2019). Liu et al. (2019) introduces
a graph-structured flows which can be used for modelling such data, and there have been flow-based
models developed for molecule generation (Madhawa et al., 2019; Shi et al., 2020). Ziegler & Rush
(2019) and Huang et al. (2018) also introduce normalising flows that can learn multi-modal target
distributions, which Ziegler & Rush (2019) show is important in modelling text data.

Optimal decoder In the case of categorical data with a sufficiently small K, computing the
posterior of the encoder is tractable during training. The optimal decoder in Eq. 3 was used in
practice in Lippe & Gavves (2020). Argmax flow (Hoogeboom et al., 2021) are a special case in
which the encoding of the categorical variable results in a latent variable that has a deterministic
decoding, which Nielsen et al. (2020) generalises and calls surjectivity which can be parameterised
in either inference or generation. The optimal decoder also has the added effect of alleviating the
posterior collapse problem commonly faced when modelling discrete data such as text (Yang et al.,
2017; Bowman et al., 2015; Ziegler & Rush, 2019; Chen et al., 2016).

Bounded-support distributions in latent variable models While normalising flows (Papamakar-
ios et al., 2019) allow for learning a more flexible posterior distribution, Jaini et al. (2020) and Verine
et al. (2021) discuss the current limitations of flows due to their bi-lipschitz property which result
in nearly no transformation at the tails of distributions. Truncated distributions are an extreme case
of a light-tailed distribution, achieved by performing a shift and scaling of the base uniform distri-
bution. There have also been efforts on spherical latent variables, modelled by a von Mises-Fisher
(vMF) distribution (Xu & Durrett, 2018; Davidson et al., 2018). Polykovskiy & Vetrov (2020) uses
bounded-support kernels as the basis of their posterior distributions, and modify the decoder so that
the results are deterministic, but introduce gradient estimations in order to train the model. In the
latter two cases, rejection sampling was used in order to attain samples for inference.

5 EXPERIMENTS

In this section, we present experiments on TRUFL. See Appendix C for implementation details.

5.1 GRAPH COLORING

We first consider the graph colouring problem (Bondy et al., 1976) introduced in Lippe & Gavves
(2020). The task is to colour the nodes in a graph with 3 different colours such that any two nodes
connected by an edge do not have the same colour, which provides a meaningful benchmark for
evaluating how well a model learns unknown constraints from the data. We evaluate the Validity of
the generated samples conditioned a given graph.
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Table 2: Performance on molecule generation trained on Zinc250k (Irwin et al., 2012), calculated on
10k samples and averaged over 4 random seeds.

Method Validity Uniqueness Novelty

Constrained generation

JT-VAE (Jin et al., 2018) 100% 100% 100%

GraphAF (Shi et al., 2020) 68% 99.10% 100%
R-VAE (Ma et al., 2018) 34.90% 100% —
GraphNVP (Madhawa et al., 2019) 42.60% 94.80% 100%
Argmax flow (thresh.) 78.36% ±4.93% 100% 99.99%
CNF (Lippe & Gavves, 2020) 83.41% ±2.34% 99.99% 100%
↪→ Sub-graphs 96.35% ±2.58% 99.98% 99.98%

No rejection sampling 84.46%±4.24% 100% 100%
↪→ Sub-graphs 97.51%±2.37% 99.98% 99.99%
↪→ Rejection sampling 85.01%±1.05% 100% 100%

↪→ Sub-graphs 97.87%±0.06% 100% 100%

For baselines, we present results from CatNF (Lippe & Gavves, 2020), and implemented the thresh-
olding version of Argmax flow. We implement the truncated flows using the CatNF codebase, and
compare results with and without rejection sampling for TRUFL. Additionally, we find a better
set of hyperparameters work better for the LARGE setting, and report the results base on those
hyperparameters for the baseline as well. All graph-structured flows used in this task are the same as
the ones detailed in CatNF, we simply replace the categorical embedding module. For results without
rejection sampling, we also compute the probability over the categories using Eq. 9, but disregard the
truncation of the densities. We find we perform marginally better than the baselines in the small graph
regime. However, with rejection sampling and better hyperparameters, we significantly outperform
the flow-based benchmarks, and perform better than the RNN baseline used in Lippe & Gavves
(2020).

Figure 3: Rejection rate vs training iterations. The re-
jection rate when sampling for evaluation for the graph
colouring task reduces during iteration, indicating (1)
the rejection rate is not intractably high, and (2) the
prior tries to match the support of TRUFL over time.

Rejection Rate of TRUFL Since the
prior will be optimised to fit the aggregate
posterior during training, we expect the re-
jection rate of sampling from the truncated
prior to drop as training progresses. We
measure the rejection rate when sampling
from the model and report its average rate
of rejection as training progresses. While
the model is conditioned on graphs of dif-
ferent sizes during sampling, we look at
the average rate of rejection go obtain a
measure of the efficiency of our rejection
sampling scheme. Figure 3 suggests that
the prior learns to fit the support of the ag-
gregate posterior better during training, as
the rejection rate reduces from about 0.45
to about 0.14 at the end of training. This
corresponds to roughly losing logZ ≈ 0.15 nats (or 0.22 bits) per molecule. Note that we did not
account for this gap while computing the bpd in Table 1 since we would have to estimate logZ
conditioned on each graph size, and this would give us slightly lower value in theory.

5.2 MOLECULE GENERATION

Molecule generation is another task commonly used as a generative modelling benchmark (Jin et al.,
2018; Shi et al., 2020; Ma et al., 2018; Madhawa et al., 2019). The atoms constituting the molecules
are naturally represented by tokens that are usually interpreted categorically, but the intrinsic structure
of the atoms, such as the electron configurations, is often neglected. For this reason, we believe
TRUFL and CatNF will learn a more useful representation than Argmax Flow. Moreover, given the
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Table 3: Results on character-level and word-level language modelling, an average across 3 different
random seeds. Results reported with † indicates results attained with the Argmax flow codebase. ∗
indicates results attained with the CatNF codebase. All other results are from the CatNF paper.

CHARACTER WORD

Model PTB (char.) Text8 Wikitext103

LSTM 1.28 ±0.01 1.44 ±0.01 4.81 ±0.05
Latent NF (Ziegler & Rush, 2019) 1.30 ±0.01 1.61 ±0.02 6.39 ±0.19
Categorical NF (Lippe & Gavves, 2020) 1.27 ±0.01 1.45 ±0.01 5.43 ±0.09
Argmax Flow (Hoogeboom et al., 2021) ∗1.26 ±0.01 †1.39 ±0.00 ∗5.42 ±0.01

Ours ∗1.26 ±0.02 †1.40 ±0.01 ∗5.35 ±0.01

Table 4: Results on word-level language modelling, each sentence is modelled as a separate data
point. CatNF, Argmax Flow, and TRUFL results are averaged across 4 random seeds. Setting and
baseline LSTM provided by Kim et al. (2019).

Model Dim. PPL NLL Recon. KL

LSTM — 86.2 4.46 — —
CatNF 12 139.7 ± 3.0 4.93 ± 0.02 1.01 4.18
Argmax Flow (binary) 14 242.7 ± 2.7 5.49 ± 0.01 0.00 5.75

Ours 12 143.6 ± 4.9 4.97 ± 0.03 1.47 3.71

results in graph colouring, we believe that rejection sampling can aid in creating more valid samples
than prior unconstrained generation methods. Molecule generation also requires the generation of
edge categories in addition to the node categories.

Our benchmarks were implemented with the Lippe & Gavves (2020) codebase, and the Argmax flow
benchmark uses the same thresholding scheme. Rejection sampling in this case requires rejecting
invalid edges and vertices both, and so resulted in longer sampling times. The results are in Table
2 Again, we find that TRUFL consistently improves upon CatNF in terms of the validity of the
generated samples, which can be further increased by truncating the prior via rejection sampling, and
taking the largest sub-graph in cases where multiple disconnected graphs are generated (as in done in
Lippe & Gavves (2020)).

5.3 LANGUAGE MODELLING

One can view these variational dequantisation methods when applied to language modelling as a
method of using stochastic embeddings: each token is represented by a distribution over the embed-
ding space, and language models then operate over samples from these distributions. Probabilistic
embeddings have been suggested in prior work (Li et al., 2018; Dasgupta et al., 2020; Chen et al.,
2021), but here, distribution parameters are trained with a language modelling objective. We per-
form experiments on character-level and word-level language modelling. For word-level language
modelling, many tasks require a large number of categories (∼10k). The naive thresholding method
will result in a large latent space, no different from using a one-hot representation, so we use the
previously mentioned binary encoding of each category in our implementation of the Argmax flow.

For the character level experiments on the Penn Treebank (PTB; Marcus et al. 1993), we use the setup
in CatNF, replacing the categorical encoding with TRUFL. For text8 (Mikolov et al., 2014), we use
the Argmax flow codebase, modifying the Argmax flow module and replacing it with TRUFL. For
word level experiments on Wikitext103 (Merity et al., 2016), we use the setting provided by CatNF
as well, which evaluates chunks of 256 words, and initialises the word embeddings using GloVe
(Pennington et al., 2014). While this is not the standard setting for language modelling, we include
these results for comparison with Argmax Flow and CatNF. We report the negative log-likelihood in
Table 3. For word level experiments on PTB, we use the setting specified by Kim et al. (2019), which
also provides an LSTM baseline. Unlike standard PTB results, this benchmark treats each sentence

8
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Figure 4: Scatter plot of t-SNE embeddings of samples from Armgax Flows (left) and TRUFL (right).
Since t-SNE reveals the relative proximities of the embeddings, we should note that the visualisation
here reveals what clusters of embeddings are close to others relative to the other words in the plot.

as i.i.d., instead of treating the entire dataset as a continuous string of text. We provide further details
of the architecture in Appendix C.3.

The reconstruction loss for TRUFL is higher than that of CatNF, suggesting that CatNF may have
optimised the variance of each dequantising distribution to be fairly small in order to approach
deterministic decoding. To verify this, we compute the Within-Group Standard Deviation (WGSD)
across all q(zt|xt). Sampling 200 samples from each category, we first normalise the mean and
standard deviation across all 10, 000× 200 categories and samples. We then compute the standard
deviation for each category across the 200 samples, and average across all 12 dimensions. CatNF
has an WGSD of 0.52, while TRUFL has an WGSD of 0.66. A smaller WGSD would indicate
peakier disributions in the latent space, given that each quantising distribution has a lower dispersion
on average. Since the prior is modelling the correlations between the categories in the sequence, a
peakier distribution will require more capacity to model. In this scenario, we find that both models
are comparable, with CatNF performing slightly better. However, recall that even with importance
sampling, we are not accounting for the unsupported regions of the prior. This means this is an
estimate of the upper bound in Eq. 8, and that estimating Z will result in a lower perplexity score. In
general, there has been a gap between autoregressive models (e.g. RNNs, Transformers) that model
the discrete distribution directly, and latent variable models, and we believe this gap will close as
dequantising techniques improve.

We perform a qualitative analysis on the learned stochastic embeddings, comparing the t-SNE plots
of samples of 10 chosen words. We took 200 samples from q(zt|xt) for each word, and performed
t-SNE over all 200× 10 vectors. As expected, Argmax flow partitions the latent space into separate
orthants, resulting in word embeddings that are arbitrarily chosen. N and three are an exception,
but this is perhaps due to a chance occurrence of their orthants being dissimilar in only one dimension.
On the other hand, TRUFL learning the topology of these embeddings results in clusters that retain
some properties of the words they represent. Interestingly, while flew:fly and walked:walk
are different tenses of the same word, the learned distribution for each word appears to group them
by tense instead. Since this would inform predictions of the tense of future words, this is perhaps a
functional representation of these words.

6 CONCLUSION

In this paper, we propose TRUFL, a flow based dequantiser with truncated support for stochastically
embedding categorical data in a continuous space. This allows us to employ density-based models
like normalising flows to fit the continuous representation of the data. To deal with the unsupported
regions in the decoder, we further propose truncating the prior distribution to account for the unioned
support of the dequantiser, which proves to be more effective at generating samples with constraints,
such as for graph coloring and molecule generation. In language modelling, we find that learned
stochastic embeddings has better performance than a strict orthant partitioning of the space, and
qualitative analysis reveals that the proximity between similar words under such a partitioning is poor.
We believe that further work on variational dequantisation will close the gap between auto-regressive
models that directly model the categorical space and latent variable models.

9
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A APPENDIX

A.1 GRADIENT ESTIMATES OF a AND b

p(z; a, b) =

{
1

b−a , if a < z < b,

0, otherwise
(10)

Let

z = a+ (b− a) · u (11)
u ∼ Uniform(0, 1) (12)

u =
z − a
b− a

(13)

∇aEz[f(z)] = Eu∼Uniform(0,1) [∇af(a+ (b− a) · u)] (14)

= Eu∼Uniform(0,1) [(1− u)(∇zf(z))] (15)

∇bEz[f(z)] = Eu∼Uniform(0,1) [u(∇zf(z))] (16)

A.2 SOFT DEQUANTIZATION

Let x denote the data (e.g. a sentence) and L denote the dimensionality of the data; i.e. x ∈ CL and
L ∈ Z+. x can be dequantized by sampling zj ∼ q(zj |xj) for j ∈ 1, ..., L. When {q(zj |xj = c) :
c ∈ C} has the same support, we call it soft dequantization. We write p(xj |zj) and p(z) to denote the
quantizer and the prior over the dequantized data. We consider the following ELBO

L(x, L) = E∏
q(zj |xj)

 L∑
j=1

log
p(xj |zj)
q(zj |xj)

+ log p(z)

 (17)

Theorem 1 (Maximizer of ELBO, dequantization). Assume q(x, L) > 0 for all x ∈ CL and L ∈ Z+,
and that x1, ..., xL are not conditionally independent given L. Then

Eq(x,L)[log q(x|L)] > Eq(x,L)[L] (18)

as long as the densities q(zj |xj = c) for different categories c ∈ C have the same support. That is,
soft dequantization with shared support is suboptimal.

Proof. The optimal quantizer is

q(xj |zj) ∝ q(xj)q(zj |xj) where q(xj) ∝
∞∑

L=1

L∑
j′=1

q(x′j = xj , L) (19)

Plugging it into the ELBO gives

L(x, L) = E∏
q(zj |xj)

 L∑
j=1

log
q(xj |zj)
q(zj |xj)

+ log p(z)

 = E∏
q(zj |xj)

 L∑
j=1

log q(xj) + log
p(z)∏
j q(zj)


(20)

where q(zj) =
∑

x′
j
q(x′j)q(zj |x′j).

On the other hand, we can rewrite the negentropy of the data as

Eq(x,L)[log q(x|L)] = Eq(x,L)

 L∑
j=1

log q(xj) + log
q(x|L)∏L
j=1 q(xj)

 (21)

13
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Now to compare the second term with that of the ELBO we let q(z|L) =
∑
q(x|L)

∏L
j=1 q(zj |xj).

For simplicity, we denote by T (z|x) =
∏L

j=1 q(zj |xj) the transition kernel applied to either q(x|L)
or
∏L

j=1 q(xj). Then

Eq(x,L)

[
log

q(x|L)∏L
j=1 q(xj)

]
= Eq(x,L)T (z|x)

log q(x|L)T (z|x)(∏L
j=1 q(xj)

)
T (z|x)

 (22)

= Eq(z,L)q(x|z,L)

− log

(∏L
j=1 q(xj)

)
T (z|x)

q(x|L)T (z|x)

 (23)

∗
> Eq(z,L)

− log

Eq(x|z,L)


(∏

j q(xj)
)
T (z|x)

q(x|L)T (z|x)

 (24)

= Eq(z,L)

[
− log

∏
j q(zj)

q(z|L)

]
= Eq(z,L)

[
log

q(z|L)∏
j q(zj)

]
(25)

which is greater or equal to the second term of the ELBO by Gibb’s inequality. The inequality marked
by ∗ is due to Jensen and the convexity of − log, and is strict since the dependency of x1,...,L implies
there exist some x1 and x2 s.t.

∏
j q(x

i
j) 6= q(xi|L) for i ∈ {1, 2}. Now, since T (z|x) > 0 over the

shared support by assumption, for almost all z and L, q(xi|z, L) > 0 for i ∈ {1, 2}. That is, with
non-zero probability the argument to the convex function − log has a different value from its mean.
This implies the inequality is strict and concludes the proof.

B FURTHER RELATED WORK

Consequences of a binary encoding The binary encoding scheme of Argmax flow bears some
resemblance to prior work on hierachical softmax schemes to reduce the computational footprint
of the large softmax layer (Goodman, 2001; Morin & Bengio, 2005; Mnih & Hinton, 2008; Shen
et al., 2017). Specifically, Mnih & Hinton (2008) proposed an analogous scheme for scaling up the
softmax layer by representing words as leaves in a tree, and binary encodings as a traversal of such a
tree. However, the partitioning of the dlog2Ke-dimensional space into K equal categories will only
be exact if K is a power of 2. Otherwise, K − 2dlog2 Ke orthants of the embedding space will not
be utilised by the dequantiser. TRUFL has unsupported regions in the decoder as well, but we take
the approach of modifying the prior during generation to account for these regions. Furthermore,
because the binary vectors are arbitrary, the similarity between words/categories is not reflected in
the embedding space as it is in a learned distributed representation.

C EXPERIMENTS & IMPLEMENTATION DETAILS

We incorporated the codebases from the following sources:

1. Lippe & Gavves (2020): https://github.com/phlippe/CategoricalNF

2. Hoogeboom et al. (2021): https://github.com/didriknielsen/argmax_flows

3. Kim et al. (2019): https://github.com/harvardnlp/compound-pcfg

C.1 TOY EXAMPLE: TWO CATEGORY JOINT DISTRIBUTION

In this simple synthetic example, we demonstrate a case in which TRUFL provides an advantage over
CatNF and Argmax flow. Our goal is to model a joint probability over 2 categorical random variables,
each with 4 categories. This joint distribution is described in Table 5.
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(a) CatNF (b) TRUFL (c) Argmax Flow

Figure 5: Embeddings (q(zi|xi)) of toy example for each method.

Table 5: Left: The joint distribution for x1 and x2 for the toy example. Right: Log probability over
the data of the model, and the breakdown of the ELBO.

x2

Cat. 0 1 2 3

x1

0 1
8

0 1
8

0
1 0 1

8
0 1

8

2 1
8

0 1
8

0
3 0 0 0 1

4

Method log p(x) E [log p(x|z)] E
[
log q(z|x)

p(z)

]
CatNF -2.000 -1.064 0.967
Argmax -1.915 -0.687 1.263
TRUFL -1.983 0.000 2.098

Notice that under this distribution, p(x1|x2 = 0) = p(x1|x2 = 2) and p(x2|x1 = 0) = p(x2|x1 = 2).
For the purposes of this subsection we will say categories 0 and 2 have equal functionality, while
categories 1 and 3 are similar in functionality, but not equal.

To model this distribution, we perform variational dequantisation over the discrete variables x1, x2
using the above methods, and learn a prior over the latent variables. Conditioned on xi, the dequanti-
sation method produces a distribution over a 2 dimensional space — q(zi|xi). It is this distribution
we plot in Figure 5.

In both CatNF and TRUFL, the distribution q(zi|xi = 0) and q(zi|xi = 2) are similar. Intuitively,
this aligns with the motivation behind the construction of the joint distribution: that the categories are
functionally equivalent. However, the dequantisation distribution may not always have this property,
as evidenced by the Argmax Flow, due to the way supports are constrained by the orthants. This
bimodality in the distributions of these two categories will have to be modelled by the prior, which
evidently resulted in a higher log probability in this particular case. In our implementation of Argmax
flow for this task, the training eventually resulted in numerical instability. Here we report the best log
probability attained before numerical errors occured.

As mentioned in Lippe & Gavves (2020), CatNF can approach deterministic decoding if all other
classes are sufficiently far from the target class. However, if several tokens have similar ‘function’ in
the dataset, the corresponding components can be forced to be close together in latent space. When
this happens, the closeness in the components again result in decoding becoming non-deterministic.
TRUFL allows such components to have minimal and sparse overlapping support but yet have the
modes of these components be relatively close. If we consider Figure 5b, we can see that the support
and distribution for xi = 0 and xi = 2 overlap the most, while the overlap with xi = 1 and xi = 3 is
not as great. Since TRUFL minimises the support for the classes that do not overlap in functionality
the TRUFL reconstruction loss is lower in comparison to CatNF.

C.2 HYPERPARAMETERS FOR LARGE GRAPH COLOURING TASK

C.3 ARCHITECTURE FOR THE PRIOR IN LANGUAGE MODELLING TASK

We develop our own architecture for this benchmark, replacing only the categorical encoding scheme
for each of the benchmarks. The prior is autoregressive both ‘in time’ and ‘in hidden’, to use
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Param. Value

batch size 128
encoding dim 2
coupling num flows 10
optimizer 4
learning rate 3e-4

Table 6: New arguments for the LARGE graph colouring task we use in our experiments.

nomenclature from Ziegler & Rush (2019). Autoregression in time is governed by an LSTM, and
autoregression in hidden is governed by a MADE model (Germain et al., 2015), conditioned on
said LSTM. We use a mixture of 4 logistics per-dimension (Ho et al., 2019) in order to model the
multi-modality of the distribution over z, which Ziegler & Rush (2019) suggests is prevalent in text
data for characters.
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