

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FLOWNIB: AN INFORMATION BOTTLENECK ANALYSIS OF BIDIRECTIONAL VS. UNIDIRECTIONAL LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Bidirectional language models (LMs) consistently show stronger context understanding than unidirectional models, yet the theoretical reason remains unclear. We present a simple information bottleneck (IB) perspective: bidirectional representations preserve more mutual information (MI) about both the input and the target, yielding richer features for downstream tasks. We adopt a layer-wise view and hypothesize that, at comparable capacity, bidirectional layers retain more useful signal than unidirectional ones. To test this claim empirically, we present **Flow** Neural Information Bottleneck (FlowNIB), a lightweight, post-hoc framework capable of estimating comparable mutual information values for individual layers in LMs, quantifying how much mutual information each layer carries for a dataset. FlowNIB takes three inputs—(i) the original LM’s inputs/dataset, (ii) ground-truth labels, and (iii) layer activations—simultaneously estimates the mutual information for both the input–layer and layer–label pairs. Empirically, bidirectional LM layers exhibit higher mutual information than similar—and even larger—unidirectional LMs. As a result, bidirectional LMs outperform unidirectional LMs across extensive experiments on NLU benchmarks (e.g., GLUE), commonsense reasoning, and regression tasks, demonstrating superior context understanding.

1 INTRODUCTION

Large language models have brought significant advancements in natural language understanding (NLU) tasks. Among them, bidirectional models such as BERT have demonstrated superior performance in natural language understanding, while unidirectional models like GPT dominate generation tasks. As shown in Table 1 of Devlin et al. (2019), the BERT-base model outperforms GPT (Radford, 2018) across all GLUE benchmarks (Wang et al., 2018) despite having a comparable model size – for example, achieving 66.4% accuracy on the RTE task versus GPT’s 56.0%. Moreover, the empirical evidence (Li et al., 2022; Liu et al., 2019; Raffel et al., 2020; Clark et al., 2020) consistently demonstrate that bidirectional LMs outperform unidirectional LMs on a wide range of NLU tasks.

While the empirical advantage of bidirectional models is well documented, a clear theoretical account is limited. We adopt an information-theoretic view based on the Information Bottleneck (IB) principle (Tishby et al., 2000). Let Z be a layer representation and write $I(X; Z)$ for the mutual information between the input X and Z , and $I(Z; Y)$ for the mutual information between Z and the label Y . In IB, desirable representations *compress* the input (small $I(X; Z)$) while *preserving* task-relevant content (large $I(Z; Y)$).

Our claim is that, at comparable capacity, a bidirectional layer retains more information about the input and transmits more information relevant to predicting the target than a unidirectional layer; formally, for corresponding layers ℓ : $I(X; Z_\ell^{\leftrightarrow}) \geq I(X; Z_\ell^{\rightarrow})$, $I(Z_\ell^{\leftrightarrow}; Y) \geq I(Z_\ell^{\rightarrow}; Y)$ with strict inequalities under mild conditions (e.g., when future context reduces input uncertainty or contributes predictive signal). Intuitively, the bidirectional representation Z_ℓ^{\leftrightarrow} conditions on both past and future tokens, whereas the unidirectional representation Z_ℓ^{\rightarrow} conditions only on the past. Since conditioning reduces entropy (Madiman & Tetali, 2010), $H(X | Z_\ell^{\leftrightarrow}) \leq H(X | Z_\ell^{\rightarrow})$, and therefore $I(X; Z_\ell^{\leftrightarrow}) \geq I(X; Z_\ell^{\rightarrow})$. To make the IB analysis applicable to LMs, we formalize the following:

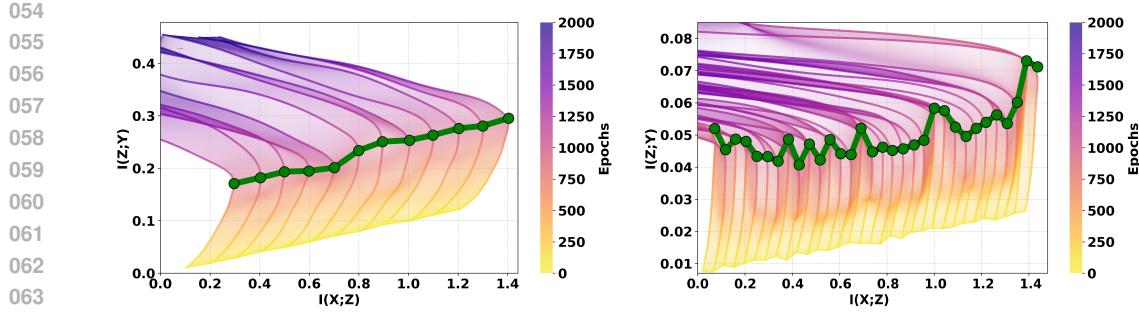


Figure 1: Information-plane trajectories under FlowNIB training for (left) DeBERTaV3-Base (bidirectional) and (right) MobileLLM-350M (unidirectional) on MRPC. Each curve shows mutual information $I(Z_\ell; Y)$ versus $I(X; Z_\ell)$ over training epochs, colored by epoch index. A small cumulative horizontal offset is added to $I(X; Z_\ell)$ for successive layers (+0.1 per layer on the left, +0.05 on the right) to visually separate layer-wise trajectories; this shift is for visualization only and does not affect the underlying MI values. The green line connects the Optimal Information Coordinate (OIC) for each layer, from lower to upper layers.

Definition 1.1 (A valid information plane (post hoc)). Let a language model (LM) have L hidden layers with layer- ℓ output Z_ℓ for $\ell = 1, \dots, L$, input X , and target Y under data distribution $p(x, y)$. Let $\{I^{(t)}\}_{t \geq 0}$ denote a mutual information estimator family (e.g., MINE, InfoNCE) obtained by training the estimator for t internal steps on (X, Z_ℓ) and (Z_ℓ, Y) while the LM is frozen. Define the epoch- t information plane as $\mathcal{I}^{[t]} := \{(I^{(t)}(X; Z_\ell), I^{(t)}(Z_\ell; Y)) : \ell = 1, \dots, L\} \subset \mathbb{R}^2$. We say $\mathcal{I}^{[t]}$ is *well-defined* if, for all ℓ : (i) **Finite-valuedness**: $I^{(t)}(X; Z_\ell)$ and $I^{(t)}(Z_\ell; Y)$ are finite.¹ (ii) **Layerwise indexability**: Each point is associated with its layer index ℓ (ties in coordinates are allowed). (iii) **Temporal consistency**: Across t , the same estimator architecture/hyperparameters and the same $p(x, y)$ are used, so $\{\mathcal{I}^{[t]}\}_{t \geq 0}$ is a well-defined sequence. (iv) **Differentiability**: The maps driving $I^{(t)}$ are a.e. differentiable in their inputs so that gradients exist when backpropagating through Z_ℓ .

Remark 1.2 (Dynamics). Empirical “fitting” (both $I(X; Z_\ell)$ and $I(Z_\ell; Y)$ rise) and “compression” ($I(X; Z_\ell)$ decreases while $I(Z_\ell; Y)$ continues to rise) patterns are diagnostic and not required for well-definedness.

Recent work has used the IB to improve training (Alemi et al., 2016; Nguyen & Choi, 2017; Achille & Soatto, 2018) and to visualize training dynamics (Shwartz-Ziv & Tishby, 2017; Cheng et al., 2019). Applying IB to language models remains challenging: layer representations are high-dimensional, MI estimation is expensive. Very recent work applies IB to LMs but is largely descriptive such as explaining the model behavior (Wang et al., 2025; Wu et al., 2025), attribution-focused studies (Jiang et al., 2020), in-context learning (Yang et al., 2025), and pruning-oriented work (Fan et al., 2021) which limits to estimate empirical MI of a layer between input-layer and layer-output pairs. However, to test our claim empirically, we require a *joint* empirical assessment that captures a layer’s information-carrying capacity—how much information it preserves from the input and how much it conveys to the target at a time which helps to show bidirectional layers exhibit higher joint information capacity than unidirectional layers.

We estimate mutual information using MINE (Belghazi et al., 2018), which optimizes a *lower-bound* objective on the true MI.² For a layer Z_ℓ , MINE can independently estimate either $I(X; Z_\ell)$ or $I(Z_\ell; Y)$. However, our goal is to understand how much information a representation Z_ℓ carries *about both the input and the target simultaneously*. Independent MINE critics yield values that are

¹For deterministic real-valued networks, avoid infinite MI by injecting small noise into Z_ℓ or applying a fixed quantizer.

²The Donsker–Varadhan objective underlying MINE is a lower bound in theory; however, with finite data, finite critic capacity, and imperfect optimization, the resulting estimates are not calibrated and depend on the critic’s expressiveness. Thus MINE should be interpreted as providing *relative*, rather than absolute, MI values.

108 incomparable across layers due to different optimization dynamics and critic capacities, making joint
 109 interpretation difficult.

110 To address this, we introduce **FlowNIB**, a simple extension of MINE that jointly approximates
 111 $I(X; Z_\ell)$ and $I(Z_\ell; Y)$ within a unified optimization process. FlowNIB trains two critics using a
 112 curriculum parameter $\alpha(t)$ that initially emphasizes $I(X; Z_\ell)$ and gradually shifts toward $I(Z_\ell; Y)$
 113 over T iterations. This produces a continuous *information-flow trajectory*

$$115 \{ (I^{(t)}(X; Z_\ell), I^{(t)}(Z_\ell; Y)) : t = 1, \dots, T \} \subset \mathbb{R}^2,$$

116 which places both MI quantities on the same geometric path and makes them directly comparable
 117 across layers. From this trajectory, we select the point where the representation jointly maximizes
 118 information about X and Y ; we refer to this coordinate as the *Optimal Information Coordinate (OIC)*.

119 **Definition 1.3** (Optimal Information Coordinate (OIC)). Let each epoch $t \in \{0, \dots, T\}$ yield
 120 $x_t = I^{(t)}(X; Z_\ell)$ and $y_t = I^{(t)}(Z_\ell; Y)$. For a trade-off weight $\gamma \in [0, 1]$, we define OIC for layer
 121 $\ell \in L$

$$123 t^*(\gamma) \in \arg \max_t \gamma x_t + (1 - \gamma) y_t, \quad \text{OIC}_\gamma := (x_{t^*(\gamma)}, y_{t^*(\gamma)}).$$

124 A scale-balanced choice is $\gamma^* = \frac{R_y}{R_x + R_y}$, where $R_x = \max_t x_t - \min_t x_t$ and $R_y = \max_t y_t -$
 125 $\min_t y_t$.

126 We then compare OICs after fine-tuning on the same dataset between bidirectional and unidirectional
 127 LMs to see which carries more information for both input and output. In Figure 1, we see the
 128 bidirectional LM has a higher OIC than the unidirectional LM. Beyond the theoretical explanation,
 129 we empirically compare OICs using *FlowNIB* across diverse datasets and show clear benefits for
 130 downstream tasks. In particular, on standard benchmarks such as GLUE, commonsense reasoning,
 131 and regression tasks, a small bidirectional model outperforms a larger unidirectional model.

132 **Contributions.** (i) We provide a theoretical explanation for why bidirectional language models
 133 achieve better context understanding, showing that they can carry higher mutual information than
 134 unidirectional models. (ii) To estimate mutual information in high-dimensional LLM representations,
 135 we propose *FlowNIB*, a simple and testable framework that jointly estimates $I(X; Z_\ell)$ and $I(Z_\ell; Y)$,
 136 quantifying the information capacity of Z_ℓ . (iii) **Empirically, we show that downstream task per-**
 137 **formance is strongly correlated with mutual information: models (and layers) with higher mutual**
 138 **information about both the input X and the target Y consistently achieve higher accuracy.**

140 2 METHODOLOGY

141 Unidirectional language models, such as GPT, construct each hidden representation using only left-
 142 to-right context (Allal et al., 2024). In contrast, bidirectional models like BERT encode each token
 143 using both past and future context (He et al., 2020; Liu et al., 2019). This architectural asymmetry
 144 raises a natural question: can bidirectional representations carry more information?

145 Let $X = (x_1, \dots, x_n)$ denote the input sequence. For layer ℓ , let $Z_\ell^\rightarrow = (z_1^\rightarrow, \dots, z_n^\rightarrow)$ be the
 146 forward (causal) representations, where z_t^\rightarrow depends only on $x_{\leq t}$. Let $Z_\ell^\leftarrow = (z_1^\leftarrow, \dots, z_n^\leftarrow)$ be the
 147 backward (anti-causal) representations, where z_t^\leftarrow depends only on $x_{\geq t}$. A unidirectional model
 148 uses Z_ℓ^\rightarrow , whereas a bidirectional model augments this with Z_ℓ^\leftarrow and forms the full bidirectional
 149 representation $Z_\ell^{\leftrightarrow} = (Z_\ell^\rightarrow, Z_\ell^\leftarrow)$ (e.g., by concatenation or another fusion). We measure repre-
 150 sentational quality via mutual information: $I(X; Z) = H(X) - H(X | Z)$, where $H(X | Z)$ is
 151 the conditional entropy of the input given Z . Because Z_ℓ^{\leftrightarrow} includes strictly more context than Z_ℓ^\rightarrow , it
 152 can, in principle, reduce uncertainty about X more effectively. This follows from the monotonicity of
 153 conditional entropy: conditioning on more information reduces entropy (Theorem A.2). **In this sense,**
 154 **Z_ℓ^{\leftrightarrow} defines an *information-theoretic upper bound* on how much information any representation**
 155 **obtained by deterministically merging the forward and backward directions can retain about the input,**
 156 **and this upper bound is at least as large as that of the purely forward representation Z_ℓ^\rightarrow .** Therefore,
 157 bidirectional models can, in principle, produce latent representations that retain at least as much
 158 (often strictly more) information about the input sequence as purely unidirectional models.

159 **Theorem 2.1** (Full version in Appendix A.3). *Bidirectional representations preserve more mutual in-*
 160 *formation about the input and the output: $I(X; Z_\ell^{\leftrightarrow}) \geq I(X; Z_\ell^\rightarrow)$ and $I(Z_\ell^{\leftrightarrow}; Y) \geq I(Z_\ell^\rightarrow; Y)$.*

162 While mutual information quantifies how much information a representation Z_ℓ preserves about the
 163 input or the target, it does not describe the internal structure or complexity of that representation.
 164 To complement MI, we analyze the spectral properties of Z_ℓ via *effective dimensionality*, which
 165 captures how many orthogonal directions in representation space carry significant variance. This
 166 helps characterize how richly each layer encodes information.

167 **Definition 2.2** (Generalized Effective Dimensionality). Let $\Sigma_{Z_\ell} = \text{Cov}(Z_\ell)$ and let $\lambda_1, \dots, \lambda_n$ be
 168 its nonzero eigenvalues, where $n = \text{rank}(\Sigma_{Z_\ell})$. Define the normalized spectrum $p_i := \lambda_i / \sum_{j=1}^n \lambda_j$.
 169 The generalized effective dimensionality of Z_ℓ under a spectral functional \mathcal{M} is

$$170 \quad d_{\text{eff}}(Z_\ell; \mathcal{M}) := \exp(\mathcal{M}(p)),$$

172 where $\mathcal{M}(p)$ is a real-valued function of the spectrum that satisfies: (i) **nonnegativity**: $\mathcal{M}(p) \geq 0$;
 173 (ii) **maximality**: $\mathcal{M}(p) \leq \log n$, with equality iff $p_i = 1/n$ for all i ; (iii) **Schur-concavity**: if $p' \succ p$
 174 then $\mathcal{M}(p') \leq \mathcal{M}(p)$.

176 *Examples.* (1) **Shannon entropy**: $\mathcal{M}(p) = -\sum_{i=1}^n p_i \log p_i$ yields $d_{\text{eff}}(Z_\ell) = \exp(H(p))$
 177 (Roy & Vetterli, 2007). (2) **ℓ_2 participation ratio**: $\mathcal{M}(p) = \log(1 / \sum_{i=1}^n p_i^2)$ gives $d_{\text{eff}}(Z_\ell) =$
 178 $(\sum_{i=1}^n \lambda_i)^2 / \sum_{i=1}^n \lambda_i^2$. Intuitively, the ℓ_2 participation ratio measures how many eigen-directions are
 179 *effectively active*: if the spectrum is spread out over many eigenvalues, d_{eff} is large, whereas if most
 180 variance concentrates on a few eigenvalues, d_{eff} becomes small. Unless otherwise stated, we adopt
 181 the ℓ_2 version as the default. The effect of alternative measures is explored in Appendix C.5.

182 **Lemma 2.3** (Bidirectional Representations Exhibit Higher Spectral Complexity). Let $Z_\ell^\rightarrow \in \mathbb{R}^D$ de-
 183 note the unidirectional representation and $Z_\ell^\leftrightarrow := (Z_\ell^\rightarrow, Z_\ell^\leftarrow) \in \mathbb{R}^{2D}$ the concatenated bidirectional
 184 representation of an input X . If $\text{Cov}(Z_\ell^\leftarrow, Z_\ell^\rightarrow)$ is nonsingular, then $d_{\text{eff}}(Z_\ell^\leftrightarrow; \mathcal{M}) \geq d_{\text{eff}}(Z_\ell^\rightarrow; \mathcal{M})$,
 185 with equality iff Z_ℓ^\leftarrow is conditionally redundant given Z_ℓ^\rightarrow , i.e., $\text{Cov}(Z_\ell^\leftarrow | Z_\ell^\rightarrow) = 0$.

186 See Appendix A.5 for the proof and Appendix C.2 for an ablation.

188 Key Finding

190 Bidirectional representations retain at least as much (and typically strictly more) mutual infor-
 191 mation about the input than unidirectional representations. They also exhibit higher effective
 192 dimensionality throughout depth, reflecting richer and more expressive latent spaces.

194 **FlowNIB.** For empirical validation of Theorem 2.1, we need a quantitative way to measure mutual
 195 information and check whether a bidirectional model yields higher MI than a unidirectional model at
 196 each layer. We therefore use **FlowNIB**, which is based on MINE. Because we work with finite data
 197 and a neural network critic, the resulting MI values are only approximate and should be viewed as
 198 *relative scores*, not exact or perfectly calibrated quantities. We use these scores to compare different
 199 layers and model types (e.g., bidirectional vs. unidirectional) and to study how they correlate with
 200 downstream accuracy, rather than to claim new exact information-theoretic bounds. After fine-tuning
 201 the LM on a dataset, FlowNIB approximates the mutual information of each layer, quantifying how
 202 much information a layer carries about both the input and the target. **FlowNIB is simple: it trains two**
 203 **independent MINE critics by minimizing a single objective with a time-varying weight:**

$$204 \quad \mathcal{L}_\ell(t) = -\left(\alpha(t) I(X; Z_\ell) + (1 - \alpha(t)) I(Z_\ell; Y)\right). \quad (1)$$

206 Here $\alpha(t) : \{0, \dots, T\} \rightarrow [0, 1]$ is a discrete, monotonically non-increasing schedule. **A key**
 207 **motivation for the schedule is that training two separate MINE critics for $I(X; Z_\ell)$ and $I(Z_\ell; Y)$**
 208 **produces MI values that are not comparable**: neural MI estimators depend strongly on critic capacity,
 209 optimization dynamics, and early stopping. FlowNIB resolves this by coupling both critics into
 210 a *single* optimization trajectory. Early in training ($\alpha \approx 1$), the objective focuses on maximizing
 211 $I(X; Z_\ell)$, so the critic learns how much information the representation Z_ℓ can retain about the input
 212 X . As $\alpha(t)$ decreases, the emphasis gradually shifts toward $I(Z_\ell; Y)$, and the critic instead learns
 213 how much of that representation is predictive of the target Y . This curriculum allows the critic to
 214 explore, along one continuous training path, the extent to which Z_ℓ is informative about X *and* about
 215 Y . Because both MI estimates are produced by the same critic network under shared optimization
 dynamics, each point $(I^{(t)}(X; Z_\ell), I^{(t)}(Z_\ell; Y))$ along the trajectory can be interpreted as a joint

216 estimate of “how much Z_ℓ knows about X and how much it tells us about Y ,” and these pairs are
 217 geometrically aligned and directly comparable across time and across layers.
 218

219 At some iteration t^* , the critic has simultaneously optimized both quantities under comparable
 220 conditions, making the pair $(I^{(t^*)}(X; Z_\ell), I^{(t^*)}(Z_\ell; Y))$ a faithful measure of how much information
 221 the representation Z_ℓ retains about the input and how much of that information it transforms into
 222 target-relevant structure. We call this point the *Optimal Information Coordinate (OIC)*. Because the
 223 critic is a trainable neural network, independent optimization may cause it to memorize patterns of
 224 X or Y rather than estimate MI consistently. FlowNIB avoids this by aligning both critics within
 225 a unified optimization procedure, preventing such memorization from distorting the comparison
 226 between layers or between model types.
 227

228 Formally, $\alpha(t) : \{0, \dots, T\} \rightarrow [0, 1]$ is a discrete, monotonically non-increasing schedule. We use
 229 $\alpha(0) = 1$ and $\alpha(t+1) = \max\{0, \alpha(t) - \delta\}$, where $\delta > 0$ is a small step (e.g., $\delta = 0.001$); if T is
 230 small, a larger δ ensures the schedule covers $[1, 0]$ within T steps (see Appendix C.1 for an ablation
 231 on δ). At each step t , we record the information-plane coordinate $(I^{(t)}(X; Z_\ell), I^{(t)}(Z_\ell; Y))$.
 232

233 During training, we optionally normalize $I(X; Z_\ell)$ by the per-layer effective dimension $d_{\text{eff}}(Z_\ell)$ and
 234 $I(Z_\ell; Y)$ by $d_{\text{eff}}(Y)$ to reduce scale effects. This normalization is used only for optimization and
 235 does not affect the MI values we report. Figure 7(a) shows that the *effective dimension* depends
 236 strongly on the size of the output space. When the label space of Y is small, $d_{\text{eff}}(Z_\ell)$ starts at a
 237 moderate value and typically *drops* as we go deeper, because the task does not require the network to
 238 maintain a large amount of information. When Y is high-dimensional, $d_{\text{eff}}(Z_\ell)$ instead *increases*
 239 with depth as the network needs richer representations to solve the task.
 240

241 A similar pattern appears in Figure 8 for mutual information, consistent with our *Key Finding 2*. For
 242 low-dimensional Y , $I(X; Z)$ usually *decreases* with depth, while $I(Z; Y)$ increases only *slightly*.
 243 For high-dimensional Y , $I(Z; Y)$ rises much more sharply and tends to saturate later. These trends
 244 explain the apparent scale imbalance in Figure 3: on GLUE (where labels take only 2–3 values),
 245 $I(X; Z)$ often appears much larger than $I(Z; Y)$ simply because the label space is small. Since
 246 effective dimension correlates with the amount of mutual information a layer can realistically encode,
 247 normalizing by $d_{\text{eff}}(\cdot)$ provides a simple, task-aware scaling that keeps the FlowNIB objective
 248 in equation 1 balanced (see Proposition B.3 and Ablations C.2, C.3, and C.4 for details).
 249

250 Overall epochs $t = 0, \dots, T$, we then select the OIC for each layer, which summarizes the layer’s
 251 capacity to jointly capture information about the input and the target, as detailed in Figure 3.
 252

253 In Practice. (i) Fine-tune the LM on a dataset with inputs X and targets Y . (ii) Run the model once to
 254 cache (X, Y, Z_ℓ) for all layers ℓ . (iii) For each ℓ , fit two critics on this fixed cache—one for $I(X; Z_\ell)$
 255 and one for $I(Z_\ell; Y)$ —using the same neural MI setup (iv) Train the critics by minimizing equation 1
 256 with the schedule $\alpha(t)$. (v) Compute the OICs. We report these as *relative* measurements (e.g., for
 257 OIC selection) rather than absolute MI values.³ Full details are in Appendix B.
 258

259 3 EXPERIMENTS

260 This section presents empirical evidence for our theoretical findings. We conduct two complementary
 261 evaluations. First, after fine-tuning each model on a dataset, we apply *sequence-level* FlowNIB to
 262 every layer ℓ , obtaining per-epoch coordinates $(I^{(t)}(X; Z_\ell), I^{(t)}(Z_\ell; Y))$. In practice, we take X to
 263 be the embedded input sequence (token embeddings plus positional embeddings from the model’s
 264 embedding layer), and $Z_\ell(x)$ to be a sequence-level representation at layer ℓ . For each layer we
 265 then select the OIC to summarize its joint ability to retain input information and align with the
 266 target; comparing OICs across layers, we want to show that bidirectional LMs consistently achieve
 267 higher information than unidirectional LMs. Second, because large bidirectional LMs are limited,
 268 we perform downstream fine-tuning under a matched parameter budget (≤ 600 M parameters) on
 269 both classification and regression benchmarks, and compare task performance to test whether the
 270 information advantage translates into end-task gains. To ensure a fair comparison, all models use
 271 identical data splits, training budgets, and a common PEFT recipe, RoCoFT (Kowsher et al., 2024),
 272 which updates a small subset of existing weight rows without introducing new adapter parameters
 273

³All MI numbers are neural lower-bound estimates with fixed hyperparameters across layers and models; no
 274 additional noise or quantization is added.
 275

(we update three rows per linear layer). This setup is closer to full fine-tuning in parameterization while preserving pretrained information and keeping the fine-tuning footprint comparable across architectures. In contrast, adapter-based PEFT methods add new parameters that can confound comparisons. Additional results with LoRA appear in Appendix Table 7. For FlowNIB, we report relative MI quantities (for OIC selection and comparison) using the same estimator architecture, batch size, negative sampling scheme, optimizer, and training steps across layers and models; absolute MI numbers are not the focus.



Figure 2: Illustration of representation extraction methods: (a) prediction from CLS-token (bidirectional), (b) prediction from pooled embedding (unidirectional), (c) prediction from masked token (bidirectional), and (d) prediction from next-token generation (unidirectional).

Model framework. While standard approaches apply a pooling operation by averaging over the final hidden states followed by a classifier, we adopt an alternative strategy inspired by the PredGen framework (Kowsher et al., 2025). Instead of averaging, PredGen follows the native behavior of LMs—e.g., masked prediction or next-token generation—for prediction tasks. PredGen demonstrates that leveraging the model’s generative or masking capability, rather than relying solely on pooled representations, retains higher mutual information with the input and improves prediction quality. However, a key limitation of PredGen is the increased computational cost of multi-token generation, especially for regression-type tasks.

To address this, we modify this framework to use a *single-token generation or masked prediction* setup for both the downstream task and mutual information estimation, as illustrated in Figure 2 (right). Specifically, the model predicts a single masked token at a designated position, from which we extract the corresponding final hidden state. This representation is then passed through a lightweight MLP classifier. In Table 38, we compare single-token prediction with PredGen across diverse datasets; see Appendix L for details.

In short, we focus on answering the following three research questions: (i) Do bidirectional models preserve more useful information than unidirectional models? (ii) Does higher mutual information lead to better context modeling? (iii) Does predicting a single token (e.g., masked token or next token) lead to better performance than traditional methods?

Key Finding

We illustrate a simplified variant of the PredGen framework that replaces multi-token generation with single-token generation or masked prediction. This approach achieves comparable performance to PredGen while substantially reducing inference cost and training complexity. See Appendix Table 38 for the comparison between single token-based prediction and PredGen.

Datasets: We evaluate our models across 16 diverse NLP datasets spanning classification and regression tasks to ensure a comprehensive analysis of representational learning under the information bottleneck framework. For classification, we include **SST-2**, **MRPC**, **QNLI**, **RTE**, **MNLI**, and **CoLA** from the GLUE benchmark (Wang et al., 2018), as well as **BoolQ** (Clark et al., 2019), **HellaSwag** (Zellers et al., 2019), and **SocialIQA** (Sap et al., 2019), covering a range of linguistic challenges such as sentiment analysis, natural language inference, grammatical acceptability, question answering, and commonsense reasoning. The regression tasks comprise **STS-B** (Cer et al., 2017), **SICK** (Marelli et al., 2014a), **WASSA** (Vinayakumar et al., 2017), **LCP** (Shardlow et al., 2020), **CRP** (Shardlow et al., 2020), and **Humicroedit** (Hossain et al., 2019), addressing semantic textual

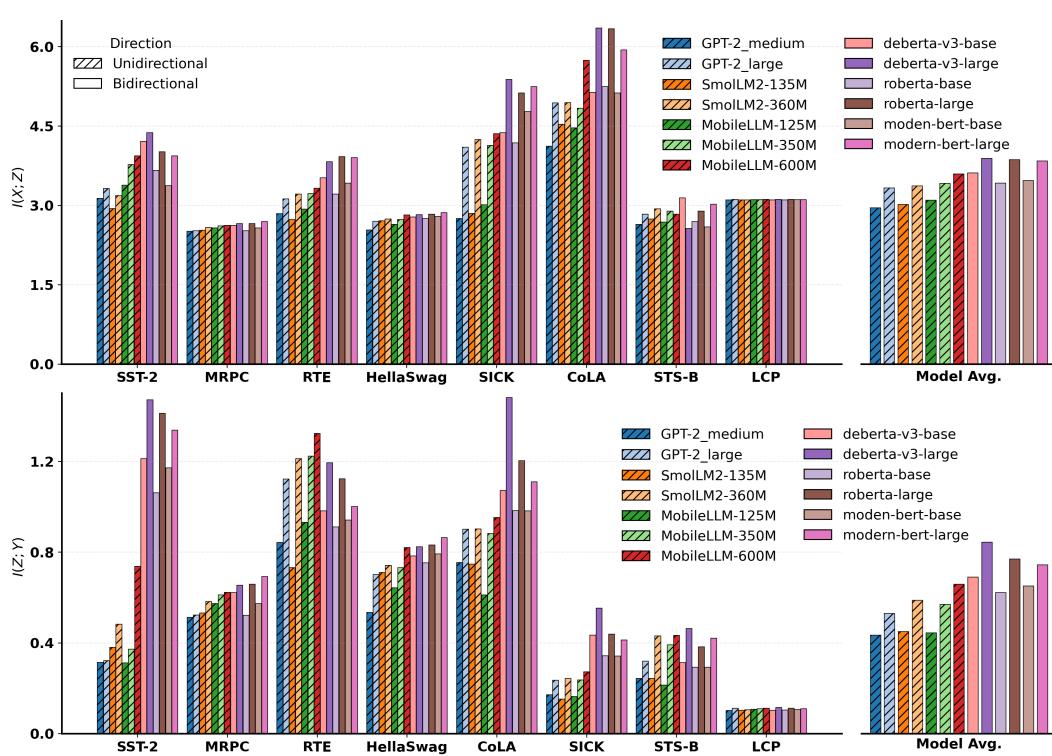


Figure 3: Average OIC $I(X;Z)$ (top) and $I(Z;Y)$ (bottom) across all layers for unidirectional and bidirectional LMs over multiple datasets. Bars show dataset-wise and average values, comparing information flow differences between architectures.

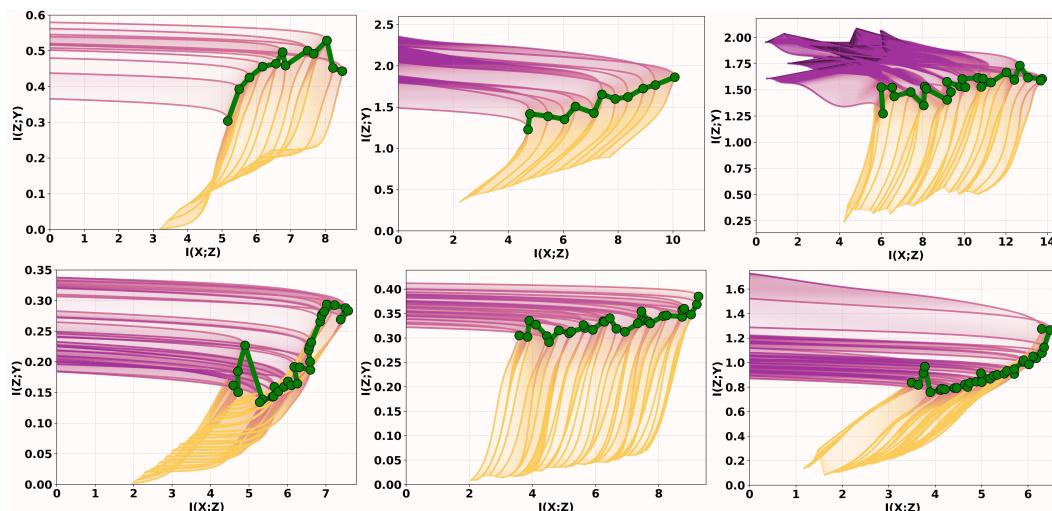


Figure 4: Mutual information flow comparison between bidirectional (top) and unidirectional (bottom) models across three datasets. The first column shows results on the SICK dataset using DeBERTa-base and MobileLLM-350M. The second column shows SST-2 results using RoBERTa-base and MobileLLM-350M. The third column presents results on the CoLA dataset using DeBERTa-v3-Large and MobileLLM-600M.

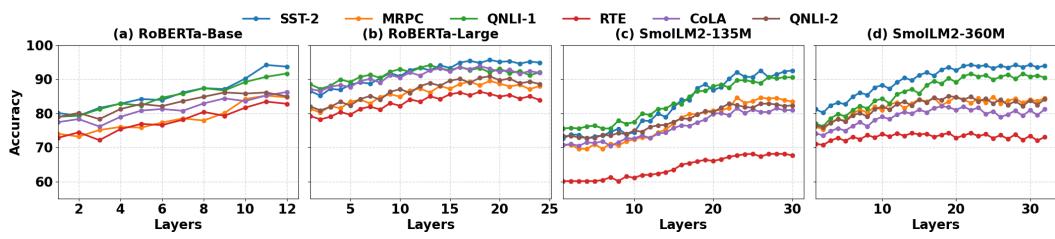


Figure 5: Layer-wise linear probe accuracy. For each layer ℓ , a logistic regression classifier is trained on frozen representations $Z_\ell(x)$ to predict dataset labels. Accuracy increases with depth across all architectures and tasks, indicating that deeper layers encode stronger task-aligned information.

similarity, lexical complexity prediction, and humor detection. Dataset sizes range from approximately 2,500 to 400,000 examples, with either binary or multi-class classification labels, or continuous-valued targets for regression. We exclude generation-based tasks because bidirectional language models are not designed for auto-regressive generation; instead, we focus on tasks requiring strong contextual representations to assess representational sufficiency under the information bottleneck. Additional dataset statistics are provided in Table 10 in the Appendix. In addition, the details of used models architecture, hyperparameters, evaluation metrics, and environment setup are provided in Appendix I, Appendix J, Appendix H, and Appendix G, respectively.

MI results. To measure layerwise information, we first fine-tune each model on the target dataset, then run a single pass to cache triplets (X, Y, Z_ℓ) for every layer $\ell \in L$, where Z_ℓ denotes the layer’s activations on X . Given this fixed cache, we instantiate two identical two-fully connected layer (nn.Linear() in pytorch) estimator networks (same widths, nonlinearity, and initialization): one estimates $I(X; Z_\ell)$ and the other estimates $I(Z_\ell; Y)$. Both estimators are trained jointly under the common FlowNIB objective in Eq. 1 with a discrete schedule $\alpha(t)$ that linearly decays from 1 to 0: $\alpha(0) = 1$, $\alpha(t+1) = \max\{0, \alpha(t) - \delta\}$, $\delta = 0.001$. Unless noted otherwise, we use a batch size of 128, $T = 2000$ training epochs, run each experiment with 10 random seeds, and the same optimizer and negative-sampling scheme across all layers and models. At each step t we record the information-plane coordinate $(I^{(t)}(X; Z_\ell), I^{(t)}(Z_\ell; Y))$. After training, for each layer ℓ we select its OIC from these coordinates; the OIC summarizes the layer’s capacity to jointly capture input and target information. We apply the *same* estimator architecture, schedule, and hyperparameters to all bidirectional and unidirectional models, enabling a like-for-like comparison. The full procedure is given in Algorithm 1. [The detailed random-seed results are provided in Appendix C.6.](#)

Figure 3 compares the *average OIC* across all layers between bidirectional and unidirectional LMs. We observe that bidirectional models consistently retain higher mutual information for both $I(X; Z)$ and $I(Z; Y)$. Notably, even smaller bidirectional models (e.g., RoBERTa-base, 125M) surpass larger unidirectional models (e.g., MobileLLM-600M, SmoILM2-360M) in OIC on many datasets. To further elucidate this behavior, Figure 4 visualizes the *information-plane trajectories* layer by layer over the estimator training horizon T , contrasting bidirectional and unidirectional models on multiple datasets. Across layers and epochs, bidirectional models trace trajectories with systematically higher $I(X; Z)$ and $I(Z; Y)$, aligning with their larger OICs. Complementarily, Figure 9 shows a token-level MI analysis from the final layer (after fine-tuning on SST-2), which further highlights the representational advantage of bidirectional models.

Layer-wise Linear Probing. To quantify how much task-relevant information each layer encodes, we conduct a standard *layer-wise linear probing* analysis. Given a fine-tuned model with layers $\{\ell = 1, \dots, L\}$, let $Z_\ell(x) \in \mathbb{R}^{d_\ell}$ denote the hidden representation at layer ℓ for an input example x . For each dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, we extract frozen representations $\mathcal{Z}_\ell = \{Z_\ell(x_i) \mid i = 1, \dots, N\}$.

For every layer ℓ , we train a logistic regression classifier on the fixed representations $Z_\ell(x)$ while keeping all model parameters frozen. The procedure consists of three steps: (i) extract $Z_\ell(x_i)$ for each training example, (ii) train a logistic regression classifier on the pairs $(Z_\ell(x_i), y_i)$, and (iii) evaluate the trained probe on the held-out split to obtain a layer-specific classification accuracy. This metric quantifies how linearly decodable the labels are from each layer. If a simple linear classifier achieves high accuracy at depth ℓ , then Z_ℓ contains strong task-relevant structure.

432 Figure 5 shows the resulting layer-wise probe accuracies. Across all architectures (RoBERTa-Base,
 433 RoBERTa-Large, SmoLLM2-135M, SmoLLM2-360M) and across all datasets (SST-2, MRPC,
 434 QNLI-1, RTE, CoLA, QNLI-2), we observe a consistent trend: *bidirectional models exhibit higher*
 435 *probe accuracy than unidirectional models at nearly every depth, including the earliest layers.* This
 436 indicates that bidirectional representations retain more task-relevant mutual information and hence a
 437 higher OIC, leading to richer and more linearly decodable features throughout the network. The linear
 438 probing results therefore provide independent evidence supporting our main claim that bidirectional
 439 architectures produce more informative representations than unidirectional ones.

440 Key Finding

441 **OIC** is strongly correlated with model performance: representations with higher OIC values—i.e.,
 442 high mutual information with both the input and the output—consistently yield better downstream
 443 task accuracy.

444 Evidence for the MI-Performance Link.

445 A clear pattern emerges: *bidirectional* models (top block of Table 1) consistently
 446 achieve higher average accuracy and lower
 447 regression loss than *unidirectional* models (bottom block), even when the latter
 448 have comparable or larger parameter counts.
 449 In particular, smaller bidirectional models
 450 such as DeBERTa-v3-Base, RoBERTa-Base,
 451 and ModernBERT-Base outperform larger
 452 unidirectional models (e.g., GPT-2 Large,
 453 MobileLLM-600M) on both classification
 454 and regression metrics. This indicates that
 455 bidirectional architectures provide more effec-
 456 tive context understanding under the same or
 457 lower compute budget. These findings align
 458 closely with our mutual-information analy-
 459 sis in Section 2. FlowNIB shows that lay-
 460 ers in bidirectional models carry systemati-
 461 cally higher MI with both the input X and
 462 the target Y than their unidirectional coun-
 463 terparts. Therefore it supports our central claim:
 464 *models with higher MI about the input and*
 465 *target yield better downstream task perfor-*
 466 *mance*, and bidirectional models benefit from
 467 this advantage more strongly than unidirec-
 468 tional models. The full results are provided
 469 in Appendix E.

Model	Method	Acc.	Loss
DeBERTa-v3-Base	Pooling	77.90	0.209 / 0.314
	Masking	81.52	0.197 / 0.298
DeBERTa-v3-Large	Pooling	80.96	0.187 / 0.295
	Masking	84.73	0.184 / 0.282
RoBERTa-Base	Pooling	76.53	0.218 / 0.314
	Masking	79.95	0.206 / 0.308
RoBERTa-Large	Pooling	80.14	0.197 / 0.298
	Masking	83.95	0.294 / 0.297
ModernBERT-Base	Pooling	76.74	0.229 / 0.324
	Masking	79.73	0.220 / 0.320
ModernBERT-Large	Pooling	80.35	0.200 / 0.305
	Masking	83.84	0.219 / 0.325
GPT-2 Medium	Pooling	71.02	0.313 / 0.387
	Generation	72.04	0.300 / 0.375
GPT-2 Large	Pooling	71.26	0.288 / 0.366
	Generation	72.07	0.279 / 0.354
SmoLLM2-135M	Pooling	71.37	0.218 / 0.322
	Generation	72.82	0.210 / 0.317
SmoLLM2-360M	Pooling	72.95	0.213 / 0.314
	Generation	74.40	0.207 / 0.310
MobileLLM-125M	Pooling	70.48	0.211 / 0.320
	Generation	71.92	0.205 / 0.314
MobileLLM-350M	Pooling	71.89	0.200 / 0.308
	Generation	73.73	0.198 / 0.304
MobileLLM-600M	Pooling	74.50	0.193 / 0.302
	Generation	76.55	0.193 / 0.302

473 Table 1: Accuracy (%). **Acc.** denotes the average
 474 accuracy over all classification tasks (detailed results
 475 in Table 8), and **Loss** denotes the average MSE/MAE
 476 over all regression tasks (detailed results in Table 9).

Model	Layer	Heads	Embd. Dim	Max Length	Vocab Size	Params	FLOPs	MACs	Time
ModernBERT-base	22	12	768	8192	50368	149M	28.258	14.118	1.15
ModernBERT-large	28	16	1024	8192	50368	395M	87.883	43.923	2.53
RoBERTa-base	12	12	768	514	50265	125M	21.760	10.870	2.11
RoBERTa-large	24	16	1024	514	50265	355M	77.344	38.656	6.06
DeBERTa-v3-base	12	12	768	512	128100	184M	39.275	19.629	2.41
DeBERTa-v3-large	24	16	1024	512	128100	435M	136.943	68.451	6.48
GPT2-small	12	12	768	1024	50257	117M	21.756	10.872	2.10
GPT2-medium	24	16	1024	1024	50257	345M	77.342	38.655	6.04
GPT2-large	36	20	1280	1024	50257	762M	181.254	90.597	12.46
SmoLLM-135M	30	9	576	2048	49152	135M	27.185	13.590	4.10
SmoLLM-360M	32	15	960	2048	49152	360M	80.541	40.265	7.04
MobileLLM-125M	30	9	576	2048	32000	125M	31.900	15.950	3.83
MobileLLM-600M	40	18	1152	2048	32000	600M	154.408	77.196	8.47

484 Table 2: Overview of bidirectional (top) and unidirectional (bottom) model architectures evaluated in
 485 our experiments, including FLOPs and MACs. Training time.

486 **Bidirectional vs. Unidirectional Model Efficiency.** Although bidirectional Transformers are theo-
 487 retically more expensive—due to full-sequence self-attention at every layer—the empirical results in
 488 Table 2 reveal a different practical trend. When controlling for the same training conditions (learning
 489 rate 2×10^{-5} , batch size 64, and two epochs on SST-2 using a single H100 GPU), several *smaller
 490 bidirectional models* not only train faster but also achieve higher accuracy than *larger unidirectional
 491 models*.

492 For example, **RoBERTa-base** (125M, bidirectional) requires only 21.8 GFLOPs and trains in 2.11 s
 493 per step—substantially faster than **MobileLLM-125M** (3.83 s) and even the larger **GPT2-medium**
 494 (4.38 s), despite both being unidirectional models. Similarly, **ModernBERT-base** (149M) achieves
 495 competitive compute cost (28.3 GFLOPs, 1.15 s) compared to unidirectional models of similar or
 496 larger size, such as SmolLM2-135M (2.52 s) or GPT2-large (12.46 s). This pattern continues at larger
 497 scales: **RoBERTa-large** (355M, 6.06 s) trains faster and with fewer FLOPs than **MobileLLM-360M**
 498 (7.04 s) and significantly outperforms **GPT2-large** (762M, 12.46 s). Even the largest bidirectional
 499 model, **DeBERTa-v3-large**, remains competitive with the unidirectional MobileLLM-600M despite
 500 having more expressive capacity.

501 Combined with our mutual information analysis and linear probing results, these findings demon-
 502 strate that bidirectional architectures encode *richer, more task-relevant information* at each layer.
 503 Consequently, a *smaller bidirectional model can match or exceed the performance of a much larger
 504 unidirectional model—while requiring less compute and achieving faster training time*. Thus, in
 505 practical settings, bidirectional models offer a more *efficient and powerful* trade-off between compu-
 506 tational cost and representational quality.

507 4 RELATED WORK

510 **Information bottleneck in deep learning** The IB principle has been studied from both practical
 511 and theoretical perspectives in deep learning. On the practical side, (Alemi et al., 2016; Higgins
 512 et al., 2017; Achille & Soatto, 2018) formulated the IB problem as a deep learning objective and
 513 introduced variational approximations to enable optimization via gradient descent. On the theoretical
 514 side, (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017) provided an information-theoretic
 515 framework for understanding deep learning, establishing the IB as a foundational tool for analyzing
 516 representation learning and generalization in deep learning. These fundamental ideas have inspired a
 517 wide range of follow-up works (Goldfeld & Polyanskiy, 2020; Saxe et al., 2019; Shwartz-Ziv, 2022)
 518 that further investigate deep learning dynamics through the lens of information theory.

519 **Mutual information estimation** Mutual information quantifies the statistical dependence between
 520 two random variables and plays an important role in the IB principle. However, the mutual information
 521 is notoriously difficult to estimate between continuous high-dimensional random variables. Traditional
 522 nonparametric approaches (Fraser & Swinney, 1986; Moon et al., 1995; Darbellay & Vajda, 1999;
 523 Suzuki et al., 2008; Kwak & Choi, 2002; Kraskov et al., 2004) typically are not scalable with
 524 dimension and sample size. To achieve an efficient estimator, recent work (Nguyen et al., 2010;
 525 Nowozin et al., 2016) characterized the mutual information of two random variables with the Kullback-
 526 Leibler (KL-) divergence (Kullback, 1997) between their joint distribution and the product of the
 527 marginals and used a dual representations to cast the KL divergence. The Mutual Information Neural
 528 Estimator (MINE) (Belghazi et al., 2018) utilized the dual representation of the KL divergence and
 529 estimated mutual information via gradient descent over neural networks and thus scaled well.

531 5 CONCLUSION

532 This work investigates why bidirectional models outperform unidirectional ones in natural language
 533 understanding and context modeling, combining theory with empirical evidence. We introduce
 534 **FlowNIB**, a dynamic, IB-based framework that tracks layer-wise mutual information over training.
 535 Our results show that bidirectional models retain more input information and more predictive
 536 information, yielding stronger representations and better downstream performance. FlowNIB offers a
 537 principled explanation for this advantage and suggests new directions for analyzing and improving
 538 deep language models.

540 REFERENCES
541

542 Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
543 through noisy computation. *IEEE transactions on pattern analysis and machine intelligence*, 40
544 (12):2897–2905, 2018.

545 Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
546 bottleneck. *arXiv preprint arXiv:1612.00410*, 2016.

547 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm -
548 blazingly fast and remarkably powerful, 2024.

549 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
550 Courville, and Devon Hjelm. Mutual information neural estimation. In *International conference on
551 machine learning*, pp. 531–540. PMLR, 2018.

552 Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
553 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. *arXiv preprint
554 arXiv:1708.00055*, 2017.

555 Hao Cheng, Dongze Lian, Shenghua Gao, and Yanlin Geng. Utilizing information bottleneck to
556 evaluate the capability of deep neural networks for image classification. *Entropy*, 21(5):456, 2019.

557 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
558 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint
559 arXiv:1905.10044*, 2019.

560 Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
561 encoders as discriminators rather than generators. *arXiv preprint arXiv:2003.10555*, 2020.

562 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience, 2006.

563 Georges A Darbellay and Igor Vajda. Estimation of the information by an adaptive partitioning of the
564 observation space. *IEEE Transactions on Information Theory*, 45(4):1315–1321, 1999.

565 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
566 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
567 the North American chapter of the association for computational linguistics: human language
568 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

569 Chun Fan, Jiwei Li, Xiang Ao, Fei Wu, Yuxian Meng, and Xiaofei Sun. Layer-wise model pruning
570 based on mutual information. *arXiv preprint arXiv:2108.12594*, 2021.

571 Andrew M Fraser and Harry L Swinney. Independent coordinates for strange attractors from mutual
572 information. *Physical review A*, 33(2):1134, 1986.

573 Ziv Goldfeld and Yury Polyanskiy. The information bottleneck problem and its applications in
574 machine learning. *IEEE Journal on Selected Areas in Information Theory*, 1(1):19–38, 2020.

575 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
576 with disentangled attention. *arXiv preprint arXiv:2006.03654*, 2020.

577 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
578 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
579 constrained variational framework. In *International conference on learning representations*, 2017.

580 Nabil Hossain, John Krumm, and Michael Gamon. ” president vows to cut_i taxes_i, hair”: Dataset and
581 analysis of creative text editing for humorous headlines. *arXiv preprint arXiv:1906.00274*, 2019.

582 Zhiying Jiang, Raphael Tang, Ji Xin, and Jimmy Lin. Inserting information bottlenecks for attribution
583 in transformers. *arXiv preprint arXiv:2012.13838*, 2020.

584 Md Kowsher, Tara Esmaeilbeig, Chun-Nam Yu, Mojtaba Soltanalian, and Niloofar Yousefi. Ro-
585 coft: Efficient finetuning of large language models with row-column updates. *arXiv preprint
586 arXiv:2410.10075*, 2024.

594 Md Kowsher, Nusrat Jahan Prottasha, Prakash Bhat, Chun-Nam Yu, Mojtaba Soltanalian, Ivan
 595 Garibay, Ozlem Garibay, Chen Chen, and Niloofar Yousefi. Predicting through generation: Why
 596 generation is better for prediction. *arXiv preprint arXiv:2502.17817*, 2025.

597

598 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
 599 *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 69(6):066138, 2004.

600 Solomon Kullback. *Information theory and statistics*. Courier Corporation, 1997.

601

602 Nojun Kwak and Chong-Ho Choi. Input feature selection by mutual information based on parzen
 603 window. *IEEE transactions on pattern analysis and machine intelligence*, 24(12):1667–1671,
 604 2002.

605 Qintong Li, Zhiyong Wu, Lingpeng Kong, and Wei Bi. Explanation regeneration via information
 606 bottleneck. *arXiv preprint arXiv:2212.09603*, 2022.

607

608 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 609 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 610 approach. *arXiv preprint arXiv:1907.11692*, 2019.

611 Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
 612 Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
 613 sub-billion parameter language models for on-device use cases. In *Forty-first International
 614 Conference on Machine Learning*, 2024.

615 Mokshay Madiman and Prasad Tetali. Information inequalities for joint distributions, with interpreta-
 616 tions and applications. *IEEE Transactions on Information Theory*, 56(6):2699–2713, 2010.

617

618 Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
 619 Zamparelli. A SICK cure for the evaluation of compositional distributional semantic models.
 620 In *Proceedings of the Ninth International Conference on Language Resources and Evaluation
 621 (LREC'14)*, pp. 216–223, Reykjavik, Iceland, May 2014a. European Language Resources Associa-
 622 tion (ELRA). URL http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf.

623

624 Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
 625 Zamparelli. The sick (sentences involving compositional knowledge) dataset for relatedness and
 626 entailment. URL: <https://doi.org/10.5281/zenodo.2787612>, 2014b.

627

628 Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information using
 629 kernel density estimators. *Physical Review E*, 52(3):2318, 1995.

630

631 Thanh T Nguyen and Jaesik Choi. Layer-wise learning of stochastic neural networks with information
 632 bottleneck. *arXiv preprint arXiv:1712.01272*, 2017.

633

634 XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
 635 and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*,
 56(11):5847–5861, 2010.

636

637 Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
 638 using variational divergence minimization. *Advances in neural information processing systems*, 29,
 2016.

639

640 Alec Radford. Improving language understanding with unsupervised learning. *OpenAI Res*, 2018.

641

642 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 643 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

644

645 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 646 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 647 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

648

649 Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In *2007
 650 15th European signal processing conference*, pp. 606–610. IEEE, 2007.

648 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 649 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.
 650

651 Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
 652 Tracey, and David D Cox. On the information bottleneck theory of deep learning. *Journal of
 653 Statistical Mechanics: Theory and Experiment*, 2019(12):124020, 2019.

654 Matthew Shardlow, Michael Cooper, and Marcos Zampieri. Complex: A new corpus for lexical
 655 complexity prediction from likert scale data. *arXiv preprint arXiv:2003.07008*, 2020.
 656

657 Ravid Shwartz-Ziv. Information flow in deep neural networks. *arXiv preprint arXiv:2202.06749*,
 658 2022.

659 Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
 660 *arXiv preprint arXiv:1703.00810*, 2017.
 661

662 Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi Kanamori. Approximating mutual informa-
 663 tion by maximum likelihood density ratio estimation. In *New challenges for feature selection in
 664 data mining and knowledge discovery*, pp. 5–20. PMLR, 2008.

665 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *2015
 666 ieee information theory workshop (itw)*, pp. 1–5. Ieee, 2015.
 667

668 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv
 669 preprint physics/0004057*, 2000.

670 R Vinayakumar, B Premjith, Sachin Kumar, Soman Kp, and Prabaharan Poornachandran. deepcyber-
 671 net at emoint-2017: Deep emotion intensities in tweets. In *Proceedings of the 8th Workshop on
 672 Computational Approaches to Subjectivity, Sentiment and Social Media Analysis*, pp. 259–263,
 673 2017.

674 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
 675 A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint
 676 arXiv:1804.07461*, 2018.
 677

678 Shaojie Wang, Sirui Ding, and Na Zou. Rethinking the understanding ability across llms through
 679 mutual information. *arXiv preprint arXiv:2505.23790*, 2025.

680 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
 681 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, bet-
 682 ter, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context
 683 finetuning and inference. *arXiv preprint arXiv:2412.13663*, 2024.

684 Xuansheng Wu, Jiayi Yuan, Wenlin Yao, Xiaoming Zhai, and Ninghao Liu. Interpreting and
 685 steering llms with mutual information-based explanations on sparse autoencoders. *arXiv preprint
 686 arXiv:2502.15576*, 2025.
 687

688 Zhou Yang, Zhengyu Qi, Zhaochun Ren, Zhikai Jia, Haizhou Sun, Xiaofei Zhu, and Xiangwen Liao.
 689 Exploring information processing in large language models: Insights from information bottleneck
 690 theory. *arXiv preprint arXiv:2501.00999*, 2025.

691 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 692 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.
 693

694 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 695 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings
 696 of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.
 697

698

699

700

701

702	CONTENTS	
703		
704		
705	1 Introduction	1
706		
707	2 Methodology	3
708		
709	3 Experiments	5
710		
711	4 Related work	10
712		
713	5 Conclusion	10
714		
715		
716	A Bidirectional vs Unidirectional Representation	15
717		
718	B FlowNIB: Flow Neural Information Bottleneck	19
719		
720	C Ablation Study	23
721		
722	C.1 Effect of step size δ on FlowNIB dynamics	23
723	C.2 Effective Dimensionality Across Models	23
724	C.3 Effective Dimensionality vs. Output Complexity:	24
725	C.4 Mutual Information Dynamics Across Output Dimensions and Layers:	24
726	C.5 Validating Generalized Effective Dimensionality	24
727	C.6 Stability Across Random Seeds	24
728	C.7 Bidirectional vs. Unidirectional Attention in Time-Series Forecasting	25
729		
730		
731		
732	D LoRA Based Performance Comparison	26
733		
734	E Details Results	27
735		
736	F Dataset	28
737		
738	G Environment Setup	29
739		
740		
741	H Evaluation Metrics	29
742		
743	I Model Description	29
744		
745	J Hyperparameters	29
746		
747		
748	K Model Profile Information	30
749		
750	L PredGen vs. One-Token Generation:	33
751		
752		
753		
754		
755		

756 USE OF LARGE LANGUAGE MODELS
757

758 We used a large language model (GPT) solely for minor writing assistance, such as grammar checking,
759 language polishing, and improving readability. No content generation, ideation, experimental design,
760 data analysis, or result interpretation was performed by the LLM. All research contributions, technical
761 content, and results in this paper are entirely the work of the authors.
762

763 A BIDIRECTIONAL VS UNIDIRECTIONAL REPRESENTATION
764

765 **Theorem A.1** (Conditioning Reduces Entropy). *Let X and Y be continuous random variables with
766 joint density $f_{X,Y}(x,y)$, marginal densities $f_X(x)$, $f_Y(y)$, and conditional density $f_{X|Y}(x|y)$. The
767 differential entropy satisfies:*
768

$$769 \quad H(X) \geq H(X|Y), \\ 770$$

771 where $H(X)$ and $H(X|Y)$ denote the marginal and conditional differential entropy, respectively.
772 (Cover & Thomas, 2006)
773

774 *Proof.* For continuous random variables, differential entropy is defined as:
775

$$777 \quad H(X) = - \int f_X(x) \log f_X(x) dx, \quad H(X|Y) = - \iint f_{X,Y}(x,y) \log f_{X|Y}(x|y) dx dy. \\ 778$$

780 Substituting $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$ into $H(X|Y)$, we derive:
781

$$782 \quad H(X|Y) = - \iint f_{X,Y}(x,y) \log \frac{f_{X,Y}(x,y)}{f_Y(y)} dx dy \\ 783$$

785 Expanding the logarithm:
786

$$787 \quad H(X|Y) = \underbrace{- \iint f_{X,Y}(x,y) \log f_{X,Y}(x,y) dx dy}_{H(X,Y)} + \iint f_{X,Y}(x,y) \log f_Y(y) dx dy. \\ 788$$

790 The second term simplifies using the marginal $\int f_{X,Y}(x,y) dx = f_Y(y)$:
791

$$793 \quad \iint f_{X,Y}(x,y) \log f_Y(y) dx dy = \int f_Y(y) \log f_Y(y) dy = -H(Y). \\ 794$$

796 Thus,
797

$$799 \quad H(X|Y) = H(X, Y) - H(Y).$$

800 To show $H(X) \geq H(X|Y)$, we invoke the non-negativity of the Kullback-Leibler (KL) divergence:
801

$$803 \quad D_{\text{KL}}(f_{X,Y} \| f_X f_Y) = f_{X,Y}(x,y) \log \frac{f_{X,Y}(x,y)}{f_X(x) f_Y(y)} dx dy \geq 0. \\ 804$$

806 Expanding the integrand:
807

$$808 \quad D_{\text{KL}} = f_{X,Y}(x,y) \log f_{X,Y}(x,y) dx dy - f_{X,Y}(x,y) \log f_X(x) dx dy - f_{X,Y}(x,y) \log f_Y(y) dx dy. \\ 809$$

810 Recognizing the entropy terms:
 811

812

$$813 D_{\text{KL}} = -H(X, Y) + H(X) + H(Y) \geq 0 \implies H(X) + H(Y) \geq H(X, Y).$$

814

815 Substituting $H(X, Y) = H(X|Y) + H(Y)$ into the inequality:
 816

817

$$818 H(X) \geq H(X|Y).$$

819

820 \square

821 **Theorem A.2** (Monotonicity of Conditional Entropy). *Let X, Y, Z be continuous random variables.
 822 Then the differential entropy satisfies:*

823

$$824 H(X | Y) \geq H(X | Y, Z),$$

825

826 with equality if and only if $X \perp Z | Y$. More generally, for any sequence Y_1, \dots, Y_n ,

827

$$H(X | Y_1) \geq H(X | Y_1, Y_2) \geq \dots \geq H(X | Y_1, \dots, Y_n).$$

828 *Proof.* We begin with the definition of conditional differential entropy:
 829

830

$$831 H(X | Y) = - \iint f_{X,Y}(x, y) \log f_{X|Y}(x | y) dx dy,$$

832

$$H(X | Y, Z) = -f_{X,Y,Z}(x, y, z) \log f_{X|Y,Z}(x | y, z) dx dy dz.$$

833 Recall that:
 834

835

$$f_{X|Y}(x | y) = \int f_{X|Y,Z}(x | y, z) f_{Z|Y}(z | y) dz.$$

836

837 Now apply Jensen's inequality using the convexity of $-\log(\cdot)$:

838

$$839 -\log \left(\int f_{X|Y,Z}(x | y, z) f_{Z|Y}(z | y) dz \right) \leq - \int f_{Z|Y}(z | y) \log f_{X|Y,Z}(x | y, z) dz.$$

840

841 Multiplying both sides by $f_{X|Y}(x | y)$ and integrating over x, y , we obtain:
 842

843

$$844 H(X | Y) = - \iint f_{X,Y}(x, y) \log f_{X|Y}(x | y) dx dy$$

845

$$\geq -f_{X,Y,Z}(x, y, z) \log f_{X|Y,Z}(x | y, z) dx dy dz$$

846

$$= H(X | Y, Z).$$

847

848 Equality holds iff Jensen's inequality becomes an equality, which occurs if and only if
 849

850

$$f_{X|Y,Z}(x | y, z) = f_{X|Y}(x | y) \quad \text{a.e. in } z,$$

851 i.e., $X \perp Z | Y$.
 852

853 For the generalization, apply this result inductively:
 854

$$H(X | Y_1) \geq H(X | Y_1, Y_2) \geq \dots \geq H(X | Y_1, \dots, Y_n).$$

855 \square

856 **Theorem A.3** (Bidirectional Representations Preserve More Mutual Information). *Let X denote a
 857 sequence input x_1, x_2, \dots, x_n . Let Z_ℓ^\rightarrow denote the unidirectional hidden representation constructed
 858 of layer ℓ from the forward context:
 859*

860

$$Z_\ell^\rightarrow = (z_1^\rightarrow, z_2^\rightarrow, \dots, z_n^\rightarrow) \quad \text{with } z_t^\rightarrow = f(x_1, \dots, x_t),$$

861 and Z_ℓ^\leftarrow the backward representation:
 862

863

$$Z_\ell^\leftarrow = (z_1^\leftarrow, z_2^\leftarrow, \dots, z_n^\leftarrow) \quad \text{with } z_t^\leftarrow = g(x_t, \dots, x_n).$$

864 Let the bidirectional representation be:

$$865 \quad Z_\ell^{\leftrightarrow} = (Z_\ell^{\rightarrow}, Z_\ell^{\leftarrow}).$$

866 Then the mutual information between X and the bidirectional representation satisfies:

$$867 \quad I(X; Z_\ell^{\leftrightarrow}) \geq I(X; Z_\ell^{\rightarrow}),$$

868 with equality if and only if $Z_\ell^{\leftarrow} \perp X \mid Z_\ell^{\rightarrow}$.

874 *Proof.* We begin with the identity:

$$875 \quad I(X; Z) = H(X) - H(X \mid Z).$$

878 Apply this to both representations:

$$879 \quad I(X; Z_\ell^{\rightarrow}) = H(X) - H(X \mid Z_\ell^{\rightarrow}),$$

$$880 \quad I(X; Z_\ell^{\leftrightarrow}) = H(X) - H(X \mid Z_\ell^{\rightarrow}, Z_\ell^{\leftarrow}).$$

883 Since Z_ℓ^{\leftrightarrow} contains strictly more information than Z_ℓ^{\rightarrow} , we can invoke the *monotonicity of conditional entropy* A.2:

$$886 \quad H(X \mid Z_\ell^{\rightarrow}) \geq H(X \mid Z_\ell^{\rightarrow}, Z_\ell^{\leftarrow}),$$

887 with equality iff $X \perp Z_\ell^{\leftarrow} \mid Z_\ell^{\rightarrow}$.

888 Subtracting both sides from $H(X)$ gives:

$$889 \quad I(X; Z_\ell^{\leftrightarrow}) = H(X) - H(X \mid Z_\ell^{\rightarrow}, Z_\ell^{\leftarrow}) \geq H(X) - H(X \mid Z_\ell^{\rightarrow}) = I(X; Z_\ell^{\rightarrow}).$$

892 Thus:

$$893 \quad I(X; Z_\ell^{\leftrightarrow}) \geq I(X; Z_\ell^{\rightarrow}).$$

895 Equality holds iff:

$$896 \quad H(X \mid Z_\ell^{\rightarrow}) = H(X \mid Z_\ell^{\rightarrow}, Z_\ell^{\leftarrow}),$$

897 which by the equality condition of monotonicity of conditional entropy holds iff:

$$898 \quad X \perp Z_\ell^{\leftarrow} \mid Z_\ell^{\rightarrow}.$$

901 Similarly with respect to output we can show:

$$902 \quad I(Z_\ell^{\leftrightarrow}; Y) \geq I(Z_\ell^{\rightarrow}; Y).$$

904 This completes the proof. □

905 **Theorem A.4** (General Bound on Representation Difference). *Let $Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow} \in \mathbb{R}^d$ denote the 906 bidirectional and unidirectional representations of the same input token at a given layer, and define:*

$$907 \quad \Delta_Z := Z_\ell^{\leftrightarrow} - Z_\ell^{\rightarrow}.$$

911 Then the expected squared difference satisfies:

$$912 \quad \mathbb{E}\|\Delta_Z\|^2 = \text{tr Cov}(Z_\ell^{\leftrightarrow}) + \text{tr Cov}(Z_\ell^{\rightarrow}) - 2\text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow}) + \|\mathbb{E}[\Delta_Z]\|^2.$$

913 In particular, we have the following bound:

$$915 \quad \begin{aligned} & \text{tr Cov}(Z_\ell^{\leftrightarrow}) + \text{tr Cov}(Z_\ell^{\rightarrow}) - 2|\text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow})| \\ & \leq \mathbb{E}\|\Delta_Z\|^2 - \|\mathbb{E}[\Delta_Z]\|^2 \\ & \leq \text{tr Cov}(Z_\ell^{\leftrightarrow}) + \text{tr Cov}(Z_\ell^{\rightarrow}) + 2|\text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow})|. \end{aligned}$$

918 *Proof.* By the covariance identity, we have:

$$919 \quad \text{Cov}(\Delta_Z) = \text{Cov}(Z_\ell^{\leftrightarrow}) + \text{Cov}(Z_\ell^{\rightarrow}) - \text{Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow}) - \text{Cov}(Z_\ell^{\rightarrow}, Z_\ell^{\leftrightarrow}).$$

920 Taking the trace and noting that $\text{tr}(A^\top) = \text{tr}(A)$, we obtain:

$$921 \quad \text{tr Cov}(\Delta_Z) = \text{tr Cov}(Z_\ell^{\leftrightarrow}) + \text{tr Cov}(Z_\ell^{\rightarrow}) - 2 \text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow}).$$

922 The expected squared norm decomposes as:

$$923 \quad \mathbb{E}\|\Delta_Z\|^2 = \text{tr Cov}(\Delta_Z) + \|\mathbb{E}[\Delta_Z]\|^2.$$

924 Substituting the expression for $\text{Cov}(\Delta_Z)$ yields the stated identity.

925 Finally, since for any real scalar a , we have $-|a| \leq a \leq |a|$, it follows:

$$926 \quad -|\text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow})| \leq \text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow}) \leq |\text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow})|,$$

927 which implies:

$$928 \quad \begin{aligned} \text{tr Cov}(\Delta_Z) &\in \left[\text{tr Cov}(Z_\ell^{\leftrightarrow}) + \text{tr Cov}(Z_\ell^{\rightarrow}) - 2|\text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow})|, \right. \\ 929 &\quad \left. \text{tr Cov}(Z_\ell^{\leftrightarrow}) + \text{tr Cov}(Z_\ell^{\rightarrow}) + 2|\text{tr Cov}(Z_\ell^{\leftrightarrow}, Z_\ell^{\rightarrow})| \right]. \end{aligned}$$

930 Substitute into the expectation equation to complete the proof. \square

931 **Lemma A.5** (Effective Dimensionality of Bidirectional Representations). *Let $Z_\ell^{\rightarrow} \in \mathbb{R}^D$ denote the unidirectional representation and $Z_\ell^{\leftrightarrow} := (Z_\ell^{\rightarrow}, Z_\ell^{\leftarrow}) \in \mathbb{R}^{2D}$ the concatenated bidirectional representation of input X . Define ℓ_2 -norm-based effective dimension as*

$$932 \quad d_{\text{eff}}(Z) := \frac{(\sum_i \lambda_i)^2}{\sum_i \lambda_i^2},$$

933 where λ_i are eigenvalues of the covariance matrix of Z_ℓ . If $\text{Cov}(Z^{\leftarrow}, Z_\ell^{\rightarrow})$ is non-singular, then:

$$934 \quad d_{\text{eff}}(Z_\ell^{\leftrightarrow}) \geq d_{\text{eff}}(Z_\ell^{\rightarrow}),$$

935 with equality iff Z^{\leftarrow} is conditionally redundant given Z_ℓ^{\rightarrow} (i.e., $\text{Cov}(Z^{\leftarrow} \mid Z_\ell^{\rightarrow}) = 0$).

936 *Proof.* Let $\Sigma^{\rightarrow} := \text{Cov}(Z_\ell^{\rightarrow}) \in \mathbb{R}^{D \times D}$ and $\Sigma^{\leftrightarrow} := \text{Cov}(Z_\ell^{\leftrightarrow}) \in \mathbb{R}^{2D \times 2D}$ denote the covariance matrices of unidirectional and bidirectional representations, respectively.

937 By block structure:

$$938 \quad \Sigma^{\leftrightarrow} = \begin{bmatrix} \Sigma^{\rightarrow} & C \\ C^\top & \Sigma^{\leftarrow} \end{bmatrix},$$

939 where $C := \text{Cov}(Z_\ell^{\rightarrow}, Z_\ell^{\leftarrow})$.

940 Let $\{\lambda_i^{\rightarrow}\}_{i=1}^D$ be eigenvalues of Σ^{\rightarrow} , and $\{\lambda_j^{\leftrightarrow}\}_{j=1}^{2D}$ eigenvalues of Σ^{\leftrightarrow} .

941 Since Σ^{\leftrightarrow} augments Σ^{\rightarrow} with additional variables Z^{\leftarrow} and cross-covariance C , by eigenvalue interlacing theorem (Cauchy's interlacing), we have:

$$942 \quad \sum_{j=1}^{2D} \lambda_j^{\leftrightarrow} \geq \sum_{i=1}^D \lambda_i^{\rightarrow},$$

943 and

$$944 \quad \sum_{j=1}^{2D} (\lambda_j^{\leftrightarrow})^2 \geq \sum_{i=1}^D (\lambda_i^{\rightarrow})^2,$$

945 with strict inequality if C or Σ^{\leftarrow} is nonzero.

972 Applying definition:

973

$$974 d_{\text{eff}}(Z_{\ell}^{\leftrightarrow}) = \frac{(\sum_j \lambda_j^{\leftrightarrow})^2}{\sum_j (\lambda_j^{\leftrightarrow})^2}.$$

975

976 Since numerator and denominator both increase under positive-definite augmentation, and quadratic-
977 over-linear ratio increases under positive additive terms (Jensen’s inequality), we conclude:

978

$$d_{\text{eff}}(Z_{\ell}^{\leftrightarrow}) \geq d_{\text{eff}}(Z_{\ell}^{\rightarrow}).$$

979

980 Equality holds iff $\Sigma^{\leftarrow} = 0$ and $C = 0$, implying Z^{\leftarrow} carries no additional variance or covariance
981 beyond Z_{ℓ}^{\rightarrow} . \square

982

983 B FLOWNIB: FLOW NEURAL INFORMATION BOTTLENECK

984

985 We consider, for each layer ℓ , the Markov chain

986

$$X \longrightarrow Z_{\ell} \longrightarrow Y,$$

987

988 where X denotes the input, Z_{ℓ} the layer- ℓ representation (induced by an encoder $p_{\theta}(z_{\ell} | x)$), and Y
989 the target variable.

990 Our goal is to learn a representation Z_{ℓ} that:

991

- 992 • compresses the input information by minimizing $I(X; Z_{\ell})$,
- 993 • preserves predictive information by maximizing $I(Z_{\ell}; Y)$.

994

995 The classical **Information Bottleneck** (IB) principle (Tishby et al., 2000; Tishby & Zaslavsky, 2015)
996 formalizes this trade-off as

997

$$\min_{p(z_{\ell} | x)} I(X; Z_{\ell}) - \beta I(Z_{\ell}; Y),$$

998

999 where $\beta > 0$ controls the balance between compression and prediction.

1000 MI requires high-dimensional density ratios over $p(x, z_{\ell})$ vs. $p(x)p(z_{\ell})$ and $p(z_{\ell}, y)$ vs. $p(z_{\ell})p(y)$,
1001 which are intractable to compute exactly when X, Z_{ℓ} are high-dimensional. The KL divergence

1002

$$D_{\text{KL}}(p(x, z_{\ell}) \| p(x)p(z_{\ell}))$$

1003

1004 is especially problematic because neither joint nor marginals are known in practice and must be
1005 estimated (Belghazi et al., 2018). In deep networks, deterministic real-valued layers can also lead to
1006 unbounded $I(X; Z_{\ell})$ in the continuous setting; in practice, one uses variational lower bounds and
1007 careful estimator training. These issues make vanilla IB difficult to apply directly to large models.

1008 **FlowNIB approach.** To address these challenges, we introduce **FlowNIB**, which gradually shifts
1009 emphasis from input preservation to target prediction during training or post-hoc estimation. We use
1010 a time-dependent trade-off $\alpha : \mathbb{N} \rightarrow [0, 1]$ that monotonically decays from 1 to 0 as the estimator
1011 training step t increases (the model can be frozen). The FlowNIB loss at step t for layer ℓ is

1012

$$\mathcal{L}_{\ell}(\theta, t) = -\left(\alpha(t) I(X; Z_{\ell}) + (1 - \alpha(t)) I(Z_{\ell}; Y)\right),$$

1013 so early steps ($\alpha \approx 1$) emphasize $I(X; Z_{\ell})$, while later steps ($\alpha \approx 0$) emphasize $I(Z_{\ell}; Y)$.

1014 Each mutual information term is

1015

$$I(X; Z_{\ell}) = D_{\text{KL}}(p(x, z_{\ell}) \| p(x)p(z_{\ell})), \quad I(Z_{\ell}; Y) = D_{\text{KL}}(p(z_{\ell}, y) \| p(z_{\ell})p(y)),$$

1016

1017 with D_{KL} the Kullback–Leibler divergence. Since exact KLS are infeasible in high dimensions, we
1018 use variational lower bounds (MINE-style) (Belghazi et al., 2018):

1019

$$I(X; Z_{\ell}) \geq \mathbb{E}_{p(x, z_{\ell})}[T_{xz, \ell}(x, z_{\ell})] - \log \mathbb{E}_{p(x)p(z_{\ell})}[e^{T_{xz, \ell}(x, z_{\ell})}],$$

1020

1021

$$I(Z_{\ell}; Y) \geq \mathbb{E}_{p(z_{\ell}, y)}[T_{zy, \ell}(z_{\ell}, y)] - \log \mathbb{E}_{p(z_{\ell})p(y)}[e^{T_{zy, \ell}(z_{\ell}, y)}],$$

1022

1023 where $T_{xz, \ell}$ and $T_{zy, \ell}$ are learned scalar-valued critics (small neural networks) trained on joint
1024 pairs and product-of-marginals pairs (implemented by shuffling). Expectations are estimated with

1026 minibatches; we use the same critic architecture, batch size, negative sampling, optimizer, and steps
 1027 across layers and models for comparability.
 1028

1029 Because X, Z_ℓ, Y can have different scales and dimensions, we normalize MI estimates using the
 1030 effective dimension (participation-ratio effective rank) (Roy & Vetterli, 2007):
 1031

$$d_{\text{eff}}(Z_\ell) = \frac{(\sum_i \lambda_i)^2}{\sum_i \lambda_i^2},$$

1034 where $\{\lambda_i\}$ are the eigenvalues of $\text{Cov}(Z_\ell)$ (estimated via PCA). The normalized MI estimates are
 1035

$$\hat{I}(X; Z_\ell) = \frac{\mathbb{E}_{p(x, z_\ell)}[T_{xz, \ell}(x, z_\ell)] - \log \mathbb{E}_{p(x)p(z_\ell)}[e^{T_{xz, \ell}(x, z_\ell)}]}{d_{\text{eff}}(Z_\ell)^2},$$

$$\hat{I}(Z_\ell; Y) = \frac{\mathbb{E}_{p(z_\ell, y)}[T_{zy, \ell}(z_\ell, y)] - \log \mathbb{E}_{p(z_\ell)p(y)}[e^{T_{zy, \ell}(z_\ell, y)}]}{d_{\text{eff}}(Y)^2}.$$

1041 *Remark.* The $d_{\text{eff}}(\cdot)^2$ factor is a practical normalization for scale-matching across layers/models; it
 1042 does not change the fact that the estimates are variational lower bounds.
 1043

Thus, the final loss optimized during FlowNIB training is

$$\mathcal{L}_\ell(\theta, t) = -\left(\alpha(t) \hat{I}(X; Z_\ell) + (1 - \alpha(t)) \hat{I}(Z_\ell; Y)\right),$$

1047 which, expanded, becomes
 1048

$$\begin{aligned} \mathcal{L}_\ell(\theta, t) = & -\left(\alpha(t) \frac{\mathbb{E}_{p(x, z_\ell)}[T_{xz, \ell}(x, z_\ell)] - \log \mathbb{E}_{p(x)p(z_\ell)}[e^{T_{xz, \ell}(x, z_\ell)}]}{d_{\text{eff}}(Z_\ell)^2} \right. \\ & \left. + (1 - \alpha(t)) \frac{\mathbb{E}_{p(z_\ell, y)}[T_{zy, \ell}(z_\ell, y)] - \log \mathbb{E}_{p(z_\ell)p(y)}[e^{T_{zy, \ell}(z_\ell, y)}]}{d_{\text{eff}}(Y)^2}\right). \end{aligned}$$

1055 Here, θ denotes the parameters of the encoder $p_\theta(z_\ell | x)$ (if trained end-to-end) and of the critics
 1056 $T_{xz, \ell}, T_{zy, \ell}$. In our post-hoc setting, the encoder is frozen and θ refers to the critic parameters; $\alpha(t)$ is
 1057 the estimator step index. All MI values are neural *lower bounds* and are used for *relative* comparisons
 1058 across layers (e.g., for OIC selection), not as absolute MI.
 1059

1060 **Theorem B.1** (Consistency under optimal critics (per layer)). *Fix a layer ℓ and let $(X, Z_\ell) \sim p(x, z_\ell)$ and
 1061 $(Z_\ell, Y) \sim p(z_\ell, y)$ with the Markov chain $X \rightarrow Z_\ell \rightarrow Y$. Assume $p(x, z_\ell) \ll p(x)p(z_\ell)$ and
 1062 $p(z_\ell, y) \ll p(z_\ell)p(y)$, and that the relevant expectations are finite. Suppose the Donsker–Varadhan
 1063 optima (unique up to an additive constant) are attained:*

$$T_{xz, \ell}^*(x, z_\ell) = \log \frac{p(x, z_\ell)}{p(x)p(z_\ell)} + c_{xz, \ell}, \quad T_{zy, \ell}^*(z_\ell, y) = \log \frac{p(z_\ell, y)}{p(z_\ell)p(y)} + c_{zy, \ell}.$$

1066 Let the dimension-normalized estimators be
 1067

$$\hat{I}(X; Z_\ell) = \frac{\mathbb{E}_{p(x, z_\ell)}[T_{xz, \ell}(x, z_\ell)] - \log \mathbb{E}_{p(x)p(z_\ell)}[e^{T_{xz, \ell}(x, z_\ell)}]}{d_{\text{eff}}(Z_\ell)^2},$$

$$\hat{I}(Z_\ell; Y) = \frac{\mathbb{E}_{p(z_\ell, y)}[T_{zy, \ell}(z_\ell, y)] - \log \mathbb{E}_{p(z_\ell)p(y)}[e^{T_{zy, \ell}(z_\ell, y)}]}{d_{\text{eff}}(Y)^2},$$

1073 where $d_{\text{eff}}(\cdot) \in (0, \infty)$ are fixed scale factors (e.g., participation-ratio effective ranks). Then
 1074

$$\hat{I}(X; Z_\ell) \xrightarrow{T_{xz, \ell} \rightarrow T_{xz, \ell}^*} \frac{I(X; Z_\ell)}{d_{\text{eff}}(Z_\ell)}, \quad \hat{I}(Z_\ell; Y) \xrightarrow{T_{zy, \ell} \rightarrow T_{zy, \ell}^*} \frac{I(Z_\ell; Y)}{d_{\text{eff}}(Y)^2}.$$

1077 *Proof.* We show the claim for (X, Z_ℓ) ; the (Z_ℓ, Y) case is identical. By the DV representation,
 1078

$$I(X; Z_\ell) = \sup_T \left\{ \mathbb{E}_{p(x, z_\ell)}[T(x, z_\ell)] - \log \mathbb{E}_{p(x)p(z_\ell)}[e^{T(x, z_\ell)}] \right\}.$$

1080 Under the stated assumptions the supremum is achieved at $T_{xz,\ell}^*(x, z_\ell) = \log \frac{p(x, z_\ell)}{p(x)p(z_\ell)} + c$ for any
 1081 constant c , and the objective is invariant to c :

$$1083 \mathbb{E}[T + c] - \log \mathbb{E}[e^{T+c}] = \mathbb{E}[T] - \log \mathbb{E}[e^T].$$

1084 Substituting $T_{xz,\ell}^*$ gives

$$1086 \mathbb{E}_{p(x, z_\ell)} \left[\log \frac{p(x, z_\ell)}{p(x)p(z_\ell)} \right] - \log \mathbb{E}_{p(x)p(z_\ell)} \left[\frac{p(x, z_\ell)}{p(x)p(z_\ell)} \right] = I(X; Z_\ell) - \log 1 = I(X; Z_\ell).$$

1088 By definition, the normalized estimator satisfies

$$1089 \hat{I}(X; Z_\ell) = \frac{\mathbb{E}_{p(x, z_\ell)}[T_{xz,\ell}] - \log \mathbb{E}_{p(x)p(z_\ell)}[e^{T_{xz,\ell}}]}{d_{\text{eff}}(Z_\ell)^2}.$$

1092 Hence, as $T_{xz,\ell} \rightarrow T_{xz,\ell}^*$ in function space, the numerator converges to $I(X; Z_\ell)$, so $\hat{I}(X; Z_\ell) \rightarrow$
 1093 $I(X; Z_\ell)/d_{\text{eff}}(Z_\ell)^2$. \square

1095 *Remark.* If Y is discrete (e.g., class labels), one may set $d_{\text{eff}}(Y) = 1$ or compute it from a fixed
 1096 embedding of Y ; the theorem holds for any finite, positive normalizer.

1097 **Lemma B.2** (Non-Monotonic Dependence of Mutual Information on Output Dimension). *Let*
 1098 $X \in \mathbb{R}^{d_X}$, $Z \in \mathbb{R}^{d_Z}$, and $Y \in \mathbb{R}^{d_Y}$ *denote input, latent, and output variables, respectively, with*
 1099 d_X, d_Z *fixed and* d_Y *variable.*

1100 *Then under FlowNIB optimization, the mutual information $I(X; Z)$ and $I(Z; Y)$ are non-monotonic*
 1101 *functions of d_Y , satisfying:*

$$1104 \frac{\partial I(X; Z)}{\partial d_Y} > 0 \quad \text{for } d_Y < k, \quad \frac{\partial I(X; Z)}{\partial d_Y} < 0 \quad \text{for } d_Y > k$$

1106 and similarly for $I(Z; Y)$, for some critical threshold $k \approx d_X$.

1108 *Proof Sketch.* FlowNIB optimizes a tradeoff between $I(X; Z)$ and $I(Z; Y)$, constrained by the
 1109 model's representational capacity d_Z and data complexity.

1110 When d_Y is small ($d_Y \ll d_X$), the predictive target contains limited information; thus $I(Z; Y)$ is
 1111 small and the latent representation does not need high complexity.

1112 As d_Y increases toward d_X , the predictive task demands richer information; both $I(X; Z)$ and
 1113 $I(Z; Y)$ increase to capture relevant features.

1115 However, once $d_Y > d_X$, the output space exceeds the input manifold's capacity; the latent represen-
 1116 tation Z_ℓ cannot fully carry the increased predictive information due to fixed d_Z , leading to saturation
 1117 and eventual decline in both $I(X; Z)$ and $I(Z; Y)$ as redundant or noisy output components exceed
 1118 representational limits.

1119 This yields a non-monotonic dependency of mutual information on d_Y , peaking around $d_Y \approx d_X$,
 1120 then declining as d_Y further increases.

1121 \square

1123 **Proposition B.3** (Effective Dimensionality Adaptation under FlowNIB). *Let $X \in \mathbb{R}^{d_X}$ and $Y \in \mathbb{R}^{d_Y}$*
 1124 *be input and output random variables with dimensions d_X, d_Y . Let Z_ℓ denote the latent representation*
 1125 *at layer ℓ produced by a model trained under FlowNIB.*

1126 *Then, under optimal critic approximation and continuous optimization, the effective dimension*
 1127 *$d_{\text{eff}}(Z_\ell)$ exhibits the following dependence on d_Y (with d_X fixed):*

$$1129 \frac{\partial d_{\text{eff}}(Z_\ell)}{\partial d_Y} \begin{cases} < 0 & \text{if } d_Y \ll d_X \\ 1130 \approx 0 & \text{if } d_Y \approx d_X \\ 1131 > 0 & \text{if } d_Y \gg d_X \end{cases}$$

1133 *i.e., the effective dimension $d_{\text{eff}}(Z_\ell)$ decreases with d_Y when d_Y is small, plateaus when $d_Y \approx d_X$,*
 1134 *and increases when d_Y exceeds d_X .*

1134 **Algorithm 1** FlowNIB: Flow Neural Information Bottleneck

1135

1136 **Require:** Dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, pretrained model f_θ , MI critics T_{xz} and T_{zy} , scheduler $\alpha(t)$,

1137 number of training steps T

1138 1: Initialize FlowNIB parameters and critics

1139 2: **for** $t = 1$ to T **do**

1140 3: Sample mini-batch $\{(x, y)\}$ from \mathcal{D}

1141 4: Compute hidden representation $Z = f_\theta(x)$

1142 5: Estimate $I(X; Z)$ using MINE:
 $\hat{I}(X; Z) \leftarrow \mathbb{E}_{p(x, z)}[T_{xz}(x, z)] - \log \mathbb{E}_{p(x)p(z)}[e^{T_{xz}(x, z)}]$

1143 6: Estimate $I(Z; Y)$ using MINE:
 $\hat{I}(Z; Y) \leftarrow \mathbb{E}_{p(z, y)}[T_{zy}(z, y)] - \log \mathbb{E}_{p(z)p(y)}[e^{T_{zy}(z, y)}]$

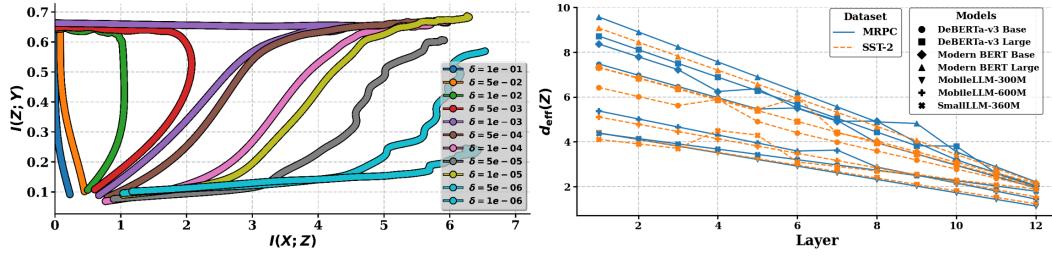
1144 7: Normalize MI by effective dimensions:
 $\hat{I}_n(X; Z) \leftarrow \frac{\hat{I}(X; Z)}{d_{\text{eff}}(Z)^2}, \quad \hat{I}_n(Z; Y) \leftarrow \frac{\hat{I}(Z; Y)}{d_{\text{eff}}(Y)^2}$

1145 8: Compute dynamic loss:
 $\mathcal{L}_{\text{FlowNIB}} \leftarrow -(\alpha(t) \cdot \hat{I}_n(X; Z) + (1 - \alpha(t)) \cdot \hat{I}_n(Z; Y))$

1146 9: Update schedule: $\alpha(t+1) \leftarrow \max(0, \alpha(t) - \delta)$

1147 10: Backpropagate and update θ, T_{xz}, T_{zy}

1148 11: **end for**



1164 Figure 6: (Left) Information plane trajectories under varying step sizes δ for $\alpha(t)$ in FlowNIB. Each
1165 curve shows the progression of mutual information $I(X; Z)$ and $I(Z; Y)$ across 2000 training epochs.
1166 (Right) Effective dimensionality $d_{\text{eff}}(Z)$ across layers for different models on MRPC and SST-2.
1167 Bidirectional models show higher $d_{\text{eff}}(Z)$ than unidirectional models at every layer.

1171 *Proof Sketch.* Under FlowNIB, the latent representation Z_ℓ is optimized to balance information
1172 preservation $I(X; Z_\ell)$ and predictive sufficiency $I(Z_\ell; Y)$, modulated dynamically by $\alpha(t)$.

1173 When $d_Y \ll d_X$, the predictive information $I(Z_\ell; Y)$ is small; the model prioritizes compressing
1174 irrelevant input variance, resulting in reduced $d_{\text{eff}}(Z_\ell)$.

1176 When $d_Y \approx d_X$, the predictive complexity of Y matches the input complexity; the model maintains
1177 $d_{\text{eff}}(Z_\ell)$ to balance preserving input and predictive information.

1178 When $d_Y \gg d_X$, the model must expand Z_ℓ to capture sufficient predictive capacity, increasing
1179 $d_{\text{eff}}(Z_\ell)$ to span a higher-dimensional output manifold.

1180 Empirical observations support this trend, where $d_{\text{eff}}(Z_\ell)$ traces a non-monotonic dependency on d_Y ,
1181 reflecting an intrinsic adaptation of latent geometry to output complexity.

□

1183
1184
1185
1186
1187

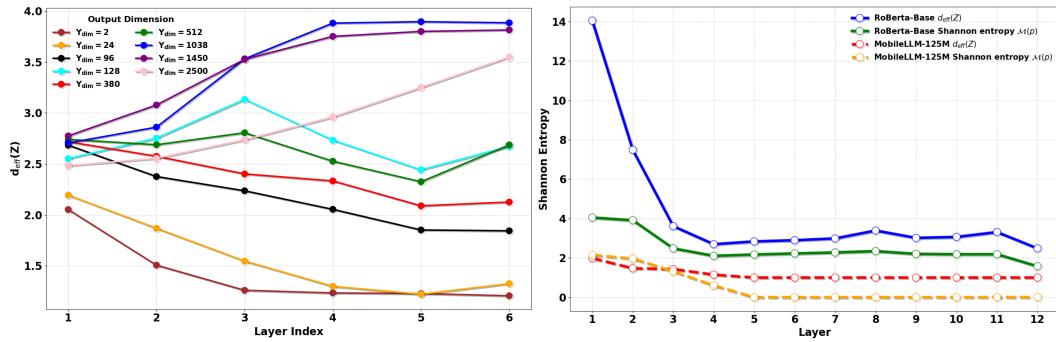


Figure 7: Effective dimension and Shannon entropy across network layers. **Left:** Effective dimension $d_{\text{eff}}(Z)$ across layers for different output dimensions Y_{dim} . **Right:** Shannon entropy $\mathcal{M}(p)$ across layers for RoBERTa-Base and MobileLLM-125M. Both plots use bold markers and shadows to emphasize trends in representation capacity and information compression.

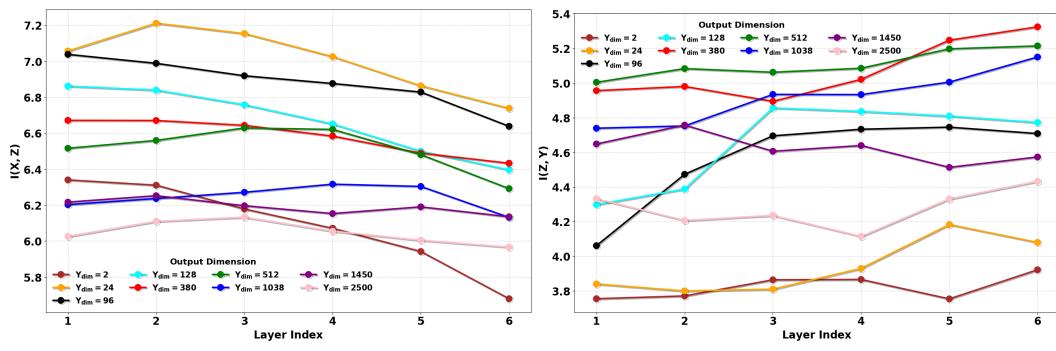


Figure 8: Visualization of mutual information across layers for different output dimensions. The left plot shows $I(X; Z)$ and the right plot shows $I(Z; Y)$ for various output dimensions Y_{dim} . Each curve represents a specific output dimension, with bold markers and shadows to highlight the trends. This analysis provides insights into the evolution of representation capacity and target alignment across network layers as the output dimension increases.

C ABLATION STUDY

C.1 EFFECT OF STEP SIZE δ ON FLOWNIB DYNAMICS

We conducted an ablation study on the MRPC dataset to analyze the influence of the step size δ controlling the decay of $\alpha(t)$ in FlowNIB. Specifically, we varied δ logarithmically from 10^{-1} to 10^{-11} and measured the evolution of mutual information $I(X; Z)$ and $I(Z; Y)$ throughout training. Figure 6(left) shows the corresponding trajectories in the Information Plane. We observe that large step sizes (e.g., $\delta = 10^{-1}$) induce rapid compression, sharply reducing $I(X; Z)$ early in training but failing to preserve sufficient predictive information $I(Z; Y)$, likely due to premature information loss. Conversely, very small step sizes (e.g., $\delta = 10^{-6}$) cause negligible decay of $\alpha(t)$, leading to nearly static representations that retain high $I(X; Z)$ but fail to increase $I(Z; Y)$. Intermediate step sizes (e.g., $\delta = 10^{-3}$ to $\delta = 10^{-4}$) achieve the most desirable balance, gradually reducing $I(X; Z)$ while increasing $I(Z; Y)$, effectively steering the model toward the information bottleneck frontier. These findings empirically validate our theoretical insight that δ serves as a critical control knob governing the speed and quality of information compression in FlowNIB.

C.2 EFFECTIVE DIMENSIONALITY ACROSS MODELS

We measure effective dimensionality $d_{\text{eff}}(Z)$ across layers for DeBERTaV3 (base, large), Modern-BERT (base, large), MobileLLM (300M, 600M), and SmallLLM (360M) on MRPC and SST-2. To ensure fair comparison across models with different depths, we normalize layer indices to a common

1242 scale of 1 to 12. Figure 6(right) shows that $d_{\text{eff}}(Z)$ decreases monotonically with depth for all models,
 1243 reflecting progressive compression (reasons of decreasing in Ablation Study C.4).

1244 Importantly, bidirectional models consistently exhibit higher $d_{\text{eff}}(Z)$ than unidirectional models at
 1245 every layer. For example, on MRPC, DeBERTaV3-Large starts at 8.73 and compresses to 1.98, while
 1246 MobileLLM-600M starts at 5.38 and compresses to 1.44. Similar trends appear on SST-2. These
 1247 findings empirically support Lemma 2.3, confirming that bidirectional representations retain richer
 1248 and more expressive features throughout depth.

1250 C.3 EFFECTIVE DIMENSIONALITY VS. OUTPUT COMPLEXITY:

1251 We study how the effective dimensionality $d_{\text{eff}}(Z)$ of the latent representations changes with different
 1252 output dimensions using the time-series forecasting dataset ETTh1 (Zhou et al., 2021) by following
 1253 Proposition B.3. We use a fixed 6-layer network with each layer having 128 units and keep the
 1254 input dimension fixed at $d_X = 380$. We vary the output dimension d_Y from very small ($d_Y = 2$)
 1255 to much larger than the input ($d_Y = 2500$). As shown in Figure 7, when the output dimension is
 1256 much smaller than the input ($d_Y \ll d_X$), the effective dimension $d_{\text{eff}}(Z)$ decreases across layers,
 1257 showing that the representation becomes more compressed. As d_Y grows closer to or larger than d_X ,
 1258 we observe a non-monotonic trend: the dimension first compresses, then expands. When $d_Y \gg d_X$,
 1259 the effective dimension increases across layers, suggesting that the model adjusts the complexity of
 1260 its representations to match the complexity of the prediction task. This behavior occurs even without
 1261 directly optimizing for it in FlowNIB, showing that the shape of the output affects how the model
 1262 organizes its internal representations.

1264 C.4 MUTUAL INFORMATION DYNAMICS ACROSS OUTPUT DIMENSIONS AND LAYERS:

1265 We explore how changing the output dimension Y_{dim} affects mutual information and model per-
 1266 formance by following Lemma B.2. We trained the same model with different output sizes:
 1267 $Y_{\text{dim}} \in \{2, 24, 96, 128, 380, 512, 1038, 1450, 2500\}$, and measured the mutual information between
 1268 inputs and hidden layers $I(X; Z)$, and between hidden layers and outputs $I(Z; Y)$, after training. As
 1269 shown in Figure 8, $I(X; Z)$ generally decreases across layers, especially for larger Y_{dim} , meaning
 1270 more information is lost as the network gets deeper. At the same time, $I(Z; Y)$ increases with
 1271 depth, but for large Y_{dim} , it saturates early—suggesting it’s harder for the model to align with very
 1272 high-dimensional outputs. Interestingly, models with intermediate output dimensions (like $Y_{\text{dim}} = 96$
 1273 or 128) show a better balance: they retain useful input information and achieve strong alignment with
 1274 the output. This balance leads to better performance. Overall, we find that output dimensionality plays
 1275 a key role in controlling how well the model balances input compression and predictive accuracy,
 1276 making it an important hyperparameter to tune.

1278 C.5 VALIDATING GENERALIZED EFFECTIVE DIMENSIONALITY

1279 To validate our definition of generalized effective dimensionality, we compare the layerwise trends of
 1280 $d_{\text{eff}}(Z)$ (based on the ℓ_2 -norm participation ratio) and the Shannon entropy $\mathcal{M}(p)$ across two models:
 1281 RoBERTa-Base and MobileLLM-125M. As shown in Figure 7 (Right), both metrics follow similar
 1282 trends across layers—confirming that higher entropy leads to higher effective dimension, consistent
 1283 with our definition $d_{\text{eff}}(Z; \mathcal{M}) := \exp(\mathcal{M}(p))$. Notably, RoBERTa-Base maintains higher entropy
 1284 and effective dimension than MobileLLM-125M at every layer, reflecting its richer representational
 1285 capacity. The first few layers show a sharp drop in entropy, followed by a stable regime, aligning
 1286 with the known compression phase in transformer representations. This empirical behavior confirms
 1287 that both the entropy and d_{eff} satisfy the expected monotonicity and boundedness properties outlined
 1288 in Definition 2.2, including non-negativity and the Schur-concavity property.

1291 C.6 STABILITY ACROSS RANDOM SEEDS

1292 In this section, we examine the stability of FlowNIB with respect to random initialization and
 1293 minibatch sampling. For each model and dataset, we run FlowNIB with 10 different random seeds
 1294 and report the mean and standard deviation of the estimated mutual information. The results for
 1295 $I(X; Z_\ell)$ and $I(Z_\ell; Y)$ are summarized in Tables 3 and 4, respectively.

1296	Model	SST-2	MRPC	RTE	HellaSwag	CoLA	SICK	STS-B	LCP
1297	GPT-2.medium	3.134 ± 0.046	2.513 ± 0.034	2.843 ± 0.034	2.534 ± 0.042	4.120 ± 0.043	2.754 ± 0.047	2.643 ± 0.036	3.102 ± 0.046
1298	GPT-2.large	3.322 ± 0.035	2.523 ± 0.043	3.123 ± 0.035	2.701 ± 0.045	4.935 ± 0.061	4.101 ± 0.043	2.832 ± 0.037	3.112 ± 0.049
1299	SmoLM2-135M	2.938 ± 0.038	2.532 ± 0.041	2.732 ± 0.048	2.711 ± 0.032	4.532 ± 0.053	2.847 ± 0.032	2.743 ± 0.042	3.103 ± 0.041
1300	SmoLM2-360M	3.183 ± 0.038	2.583 ± 0.035	3.212 ± 0.046	2.742 ± 0.036	4.943 ± 0.054	4.242 ± 0.045	2.934 ± 0.037	3.105 ± 0.034
1301	MobileLLM-125M	3.382 ± 0.049	2.573 ± 0.042	2.932 ± 0.048	2.643 ± 0.037	4.464 ± 0.043	3.012 ± 0.038	2.684 ± 0.043	3.108 ± 0.041
1302	MobileLLM-350M	3.773 ± 0.050	2.612 ± 0.047	3.224 ± 0.048	2.732 ± 0.033	4.837 ± 0.056	4.132 ± 0.042	2.892 ± 0.050	3.110 ± 0.053
1303	MobileLLM-600M	3.937 ± 0.055	2.623 ± 0.031	3.323 ± 0.045	2.821 ± 0.036	5.743 ± 0.049	4.353 ± 0.058	2.833 ± 0.041	3.112 ± 0.044
1304	deberta-v3-base	4.212 ± 0.046	2.622 ± 0.047	3.522 ± 0.055	2.783 ± 0.033	5.134 ± 0.051	4.372 ± 0.057	3.143 ± 0.038	3.103 ± 0.052
1305	deberta-v3-large	4.372 ± 0.048	2.654 ± 0.045	3.824 ± 0.044	2.824 ± 0.037	6.353 ± 0.069	5.382 ± 0.051	2.563 ± 0.050	3.115 ± 0.050
1306	roberta-base	3.662 ± 0.036	2.522 ± 0.037	3.212 ± 0.045	2.753 ± 0.044	5.243 ± 0.057	4.183 ± 0.052	2.693 ± 0.041	3.104 ± 0.033
1307	roberta-large	4.012 ± 0.044	2.658 ± 0.034	3.924 ± 0.054	2.832 ± 0.039	6.339 ± 0.060	5.123 ± 0.054	2.893 ± 0.034	3.112 ± 0.047
1308	modern-bert-base	3.372 ± 0.044	2.574 ± 0.050	3.423 ± 0.047	2.792 ± 0.039	5.123 ± 0.057	4.772 ± 0.060	2.593 ± 0.031	3.107 ± 0.047
1309	modern-bert-large	3.938 ± 0.038	2.693 ± 0.038	3.901 ± 0.054	2.864 ± 0.036	5.938 ± 0.064	5.247 ± 0.053	3.021 ± 0.035	3.110 ± 0.044

Table 3: Estimated $I(X; Z_\ell)$ (mean ± std over 10 seeds).

1308	Model	SST-2	MRPC	RTE	HellaSwag	CoLA	SICK	STS-B	LCP
1309	GPT-2.medium	0.314 ± 0.022	0.513 ± 0.029	0.843 ± 0.031	0.534 ± 0.032	0.754 ± 0.030	0.172 ± 0.019	0.243 ± 0.028	0.102 ± 0.025
1310	GPT-2.large	0.322 ± 0.026	0.523 ± 0.029	1.123 ± 0.032	0.701 ± 0.030	0.901 ± 0.034	0.235 ± 0.028	0.320 ± 0.021	0.112 ± 0.022
1311	SmoLM2-135M	0.380 ± 0.022	0.532 ± 0.025	0.732 ± 0.035	0.711 ± 0.028	0.747 ± 0.029	0.152 ± 0.023	0.243 ± 0.023	0.103 ± 0.017
1312	SmoLM2-360M	0.483 ± 0.027	0.583 ± 0.031	1.212 ± 0.043	0.742 ± 0.032	0.902 ± 0.031	0.243 ± 0.023	0.431 ± 0.025	0.105 ± 0.027
1313	MobileLLM-125M	0.312 ± 0.024	0.573 ± 0.029	0.932 ± 0.030	0.643 ± 0.032	0.612 ± 0.025	0.164 ± 0.025	0.214 ± 0.027	0.108 ± 0.025
1314	MobileLLM-350M	0.373 ± 0.030	0.612 ± 0.032	1.224 ± 0.038	0.732 ± 0.028	0.882 ± 0.035	0.237 ± 0.027	0.392 ± 0.023	0.110 ± 0.026
1315	MobileLLM-600M	0.737 ± 0.035	0.623 ± 0.030	1.323 ± 0.036	0.821 ± 0.030	0.953 ± 0.032	0.273 ± 0.021	0.433 ± 0.023	0.112 ± 0.026
1316	deberta-v3-base	1.212 ± 0.036	0.622 ± 0.024	0.982 ± 0.037	0.783 ± 0.037	1.072 ± 0.040	0.434 ± 0.022	0.313 ± 0.024	0.103 ± 0.025
1317	deberta-v3-large	1.472 ± 0.042	0.654 ± 0.028	1.194 ± 0.041	0.824 ± 0.034	1.482 ± 0.046	0.553 ± 0.028	0.463 ± 0.026	0.115 ± 0.018
1318	roberta-base	1.062 ± 0.033	0.522 ± 0.023	0.912 ± 0.030	0.753 ± 0.031	0.983 ± 0.030	0.343 ± 0.024	0.293 ± 0.022	0.104 ± 0.021
1319	roberta-large	1.412 ± 0.045	0.658 ± 0.034	1.124 ± 0.037	0.832 ± 0.033	1.203 ± 0.035	0.439 ± 0.026	0.383 ± 0.023	0.112 ± 0.019
1320	modern-bert-base	1.172 ± 0.041	0.574 ± 0.032	0.942 ± 0.035	0.792 ± 0.028	0.982 ± 0.036	0.342 ± 0.027	0.293 ± 0.029	0.107 ± 0.021
1321	modern-bert-large	1.338 ± 0.038	0.693 ± 0.034	1.001 ± 0.033	0.864 ± 0.030	1.110 ± 0.034	0.413 ± 0.028	0.421 ± 0.026	0.110 ± 0.017

Table 4: Estimated $I(Z_\ell; Y)$ (mean ± std over 10 seeds).

Overall, the variance across seeds is modest. For both $I(X; Z_\ell)$ and $I(Z_\ell; Y)$, the standard deviations are small compared to the differences between models and to the gap between unidirectional and bidirectional architectures. In particular, bidirectional models (e.g., DeBERTa-v3, RoBERTa, ModernBERT) consistently exhibit higher mean mutual information than unidirectional models across all datasets, and this ordering is stable under different seeds. We do not observe cases where a model with lower mean MI surpasses a higher-MI model once the standard deviations are taken into account.

The same pattern holds within each model family and across datasets: models and layers that are identified as more informative by FlowNIB retain that ranking when averaged over 10 runs, and the error bars do not change the qualitative conclusions. This supports our use of FlowNIB as a *relative* diagnostic tool: while we do not claim to recover the exact true mutual information, the estimates are stable enough across random seeds to reliably compare layers and architectures and to link higher MI (especially at the OIC) with improved downstream performance.

C.7 BIDIRECTIONAL VS. UNIDIRECTIONAL ATTENTION IN TIME-SERIES FORECASTING

To check whether our mutual-information findings also hold beyond NLU, we conduct a small case study on multivariate time-series forecasting using the ETTh1 and ETTh2 benchmarks. In all experiments, we use the *same* Transformer architecture for both settings: a 2-layer Transformer with hidden dimension 512 and input sequence length 256. The only difference is the attention pattern: **Uni** uses standard causal (unidirectional) attention, while **Bi** uses bidirectional attention over the input window.

Table 5 reports the forecasting MSE for different prediction horizons on ETTh1 and ETTh2. Across all horizons and on both datasets, the bidirectional model achieves consistently lower MSE than the unidirectional model. The gap is small for short horizons (e.g., 24, 96), and becomes more pronounced as the prediction horizon increases, showing that bidirectional attention provides more robust long-range forecasting.

Table 6 shows the corresponding mutual information $I(Z_\ell; Y)$ measured with FlowNIB for the same models and horizons. For both ETTh1 and ETTh2, the bidirectional model has higher $I(Z_\ell; Y)$ than the unidirectional model at every horizon, indicating that its representations Z_ℓ carry more target-relevant information. In addition, $I(Z_\ell; Y)$ gradually decreases as the prediction horizon grows, matching the increase in MSE and reflecting the increased difficulty of the task.

		ETTh1		ETTh2	
	Horizon	Uni	Bi	Uni	Bi
24	0.65	0.60	1.40	1.32	
96	0.80	0.75	1.74	1.65	
128	0.95	0.90	2.01	1.90	
380	1.18	1.10	2.51	2.40	
512	1.38	1.30	2.95	2.80	
1038	1.72	1.64	3.30	3.183	

Table 5: Forecasting MSE on ETTh1 and ETTh2 for different prediction horizons. Bi = bidirectional attention; Uni = unidirectional (causal) attention.

		ETTh1		ETTh2	
	Horizon	$I(Z_\ell; Y)_{\text{Uni}}$	$I(Z_\ell; Y)_{\text{Bi}}$	$I(Z_\ell; Y)_{\text{Uni}}$	$I(Z_\ell; Y)_{\text{Bi}}$
24	2.07	2.24	1.86	2.03	
96	1.99	2.18	1.79	1.97	
128	1.94	2.11	1.73	1.89	
380	1.87	2.02	1.64	1.80	
512	1.76	1.89	1.54	1.70	
1038	1.61	1.73	1.42	1.59	

Table 6: Mutual information $I(Z_\ell; Y)$ on ETTh1 and ETTh2 for different prediction horizons. Bi = bidirectional attention; Uni = unidirectional (causal) attention.

Together, these results provide a simple but concrete example in a non-NLU setting where (i) bidirectional attention improves performance under a matched architecture, and (ii) higher mutual information between Z_ℓ and the target Y aligns with better forecasting accuracy. This supports our main claim that bidirectional representations tend to encode richer task-relevant information, and that FlowNIB’s MI estimates track meaningful performance differences even outside standard language understanding benchmarks.

D LORA BASED PERFORMANCE COMPARISON

Table 7 shows the performance comparison between bidirectional and unidirectional models using LoRA.

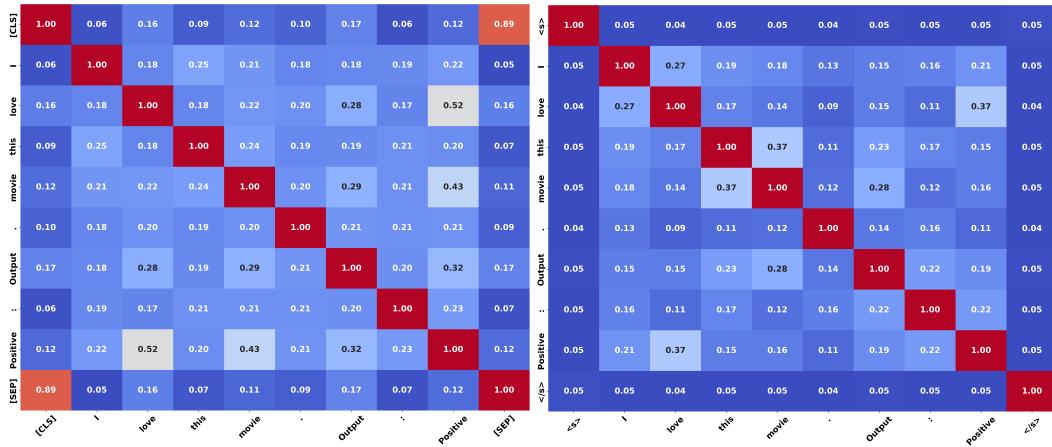


Figure 9: Token-level mutual information matrix on the SST-2 dataset for sentiment classification, computed from the final hidden layer representations. (Left) RoBERTa-base; (Right) SmallIM2-360

1404	Model	Method	SST-2	MRPC	QNLI	RTE	CoLA	MNLI	BoolQ	HellaSwag	SIQA	Avg.
1405	DeBERTa-v3-Base	Pooling	95.12	88.75	91.75	82.85	85.43	85.96	63.55	55.22	46.74	77.15
1406	DeBERTa-v3-Base	Masking	96.22	90.03	93.10	85.92	88.55	88.10	65.05	68.33	61.92	81.81
1407	DeBERTa-v3-Large	Pooling	96.25	92.88	94.67	88.90	94.12	91.92	65.48	58.15	52.04	81.82
1408	DeBERTa-v3-Large	Masking	96.94	94.95	95.35	90.85	93.05	91.96	65.12	74.10	66.41	85.30
1409	RoBERTa-Base	Pooling	93.80	83.40	91.13	82.20	85.45	85.95	62.10	51.78	44.63	75.72
1410	RoBERTa-Base	Masking	94.80	86.10	93.42	86.02	88.25	87.20	63.80	65.33	61.12	80.45
1411	RoBERTa-Large	Pooling	95.12	88.40	93.76	86.10	93.02	90.14	64.00	56.23	47.15	79.66
1412	RoBERTa-Large	Masking	96.67	91.98	95.10	88.45	95.33	90.92	64.25	70.35	62.45	83.83
1413	ModernBERT-Base	Pooling	93.70	82.40	90.25	81.52	84.22	86.02	62.00	54.18	45.70	75.78
1414	ModernBERT-Base	Masking	94.92	84.05	92.88	85.00	85.80	88.55	61.35	62.00	60.00	78.95
1415	ModernBERT-Large	Pooling	95.00	88.55	93.50	87.32	90.25	92.80	63.50	59.00	48.50	79.82
1416	ModernBERT-Large	Masking	96.32	91.10	95.12	88.50	91.02	92.10	63.90	72.42	64.33	83.42
1417	GPT-2 Medium	Pooling	92.70	84.32	90.42	68.50	79.15	78.02	62.33	36.80	37.42	69.96
1418	GPT-2 Medium	Generation	93.40	85.72	91.65	69.02	80.10	79.43	63.00	36.55	42.12	71.00
1419	GPT-2 Large	Pooling	93.75	85.50	83.35	65.90	82.85	79.55	63.50	39.20	40.50	70.68
1420	GPT-2 Large	Generation	94.05	87.05	85.12	67.88	84.23	81.72	64.05	39.70	45.02	71.98
1421	SmoLM2-360M	Pooling	93.80	84.20	90.92	69.90	81.22	84.10	62.75	41.20	41.55	72.18
1422	SmoLM2-360M	Generation	94.52	85.85	91.93	70.50	83.80	85.10	62.60	42.40	49.45	73.68
1423	SmoLM2-135M	Pooling	91.90	83.05	89.43	67.55	80.15	81.52	61.35	37.00	40.25	70.13
1424	SmoLM2-135M	Generation	92.80	83.85	90.05	68.12	81.82	82.78	61.70	40.00	46.20	71.59
1425	MobileLLM-125M	Pooling	92.25	81.42	89.82	68.42	79.12	81.35	59.50	32.30	40.40	69.07
1426	MobileLLM-125M	Generation	92.98	82.35	90.22	68.92	80.42	82.20	60.25	36.12	47.33	70.53
1427	MobileLLM-350M	Pooling	93.00	82.65	90.32	69.55	81.58	82.55	62.05	35.42	41.50	70.73
1428	MobileLLM-350M	Generation	94.10	82.98	90.85	70.25	82.62	83.40	62.85	39.20	50.05	72.15
1429	MobileLLM-600M	Pooling	94.25	86.80	90.92	71.32	83.92	84.12	63.50	44.50	44.20	73.06
1430	MobileLLM-600M	Generation	94.95	87.55	91.50	72.02	85.92	84.30	63.75	47.80	57.32	75.68

Table 7: Accuracy results across nine NLP classification tasks comparing bidirectional and unidirectional models under pooling, masking, and generation inference strategies using LoRA fine-tuning.

E DETAILS RESULTS

1429	Model	Method	SST-2	MRPC	QNLI	RTE	CoLA	MNLI	BoolQ	HellaSwag	SIQA	Avg.
1430	DeBERTa-v3-Base	Pooling	95.52	89.21	92.43	83.48	86.23	86.43	64.23	56.00	47.54	77.90
1431	DeBERTa-v3-Base	Masking	95.75	91.17	92.48	84.98	87.44	87.22	64.23	69.49	60.90	81.52
1432	DeBERTa-v3-Large	Pooling	95.67	93.45	93.58	88.38	93.34	90.76	64.73	57.34	51.43	80.96
1433	DeBERTa-v3-Large	Masking	96.11	94.04	94.14	89.93	92.95	91.43	64.98	73.43	65.53	84.73
1434	RoBERTa-Base	Pooling	94.24	84.53	91.96	83.45	86.34	86.34	63.82	52.43	45.64	76.53
1435	RoBERTa-Base	Masking	95.14	85.13	92.27	84.58	87.44	86.38	63.96	64.53	60.16	79.95
1436	RoBERTa-Large	Pooling	95.68	89.54	94.17	86.32	93.85	90.87	64.82	57.35	48.69	80.14
1437	RoBERTa-Large	Masking	96.23	91.25	94.38	87.84	95.83	91.13	63.82	71.43	63.67	83.95
1438	ModernBERT-Base	Pooling	94.35	83.33	91.98	82.81	84.92	87.44	63.70	55.32	46.81	76.74
1439	ModernBERT-Base	Masking	95.38	85.43	92.43	84.12	84.43	88.21	62.17	63.54	61.86	79.73
1440	ModernBERT-Large	Pooling	95.37	89.43	94.22	86.74	89.95	93.23	64.22	60.32	49.67	80.35
1441	ModernBERT-Large	Masking	95.89	89.93	94.57	87.78	90.79	92.98	64.72	73.18	64.68	83.84
1442	GPT-2 Medium	Pooling	93.80	85.78	91.17	69.67	80.24	78.81	63.43	37.83	38.45	71.02
1443	GPT-2 Medium	Generation	94.14	85.93	91.93	69.83	81.43	80.18	63.54	37.93	43.45	72.04
1444	GPT-2 Large	Pooling	93.97	86.27	84.01	66.78	83.89	80.06	64.13	40.32	41.91	71.26
1445	GPT-2 Large	Generation	94.24	87.23	84.56	67.34	83.87	82.34	64.16	39.53	45.34	72.07
1446	SmoLM2-135M	Pooling	92.58	84.59	90.56	68.12	81.48	82.83	62.43	38.34	41.41	71.37
1447	SmoLM2-135M	Generation	93.00	84.83	90.68	68.93	82.48	83.58	62.27	41.78	47.86	72.82
1448	SmoLM2-360M	Pooling	94.26	84.80	91.61	70.70	82.07	85.12	63.13	42.45	42.43	72.95
1449	SmoLM2-360M	Generation	94.65	85.32	92.32	71.11	84.53	84.89	62.92	43.69	50.20	74.40
1450	MobileLLM-125M	Pooling	93.05	82.43	90.58	69.32	80.29	82.98	60.73	33.45	41.45	70.48
1451	MobileLLM-125M	Generation	93.15	83.35	90.54	69.53	80.53	83.24	61.26	37.42	48.23	71.92
1452	MobileLLM-350M	Pooling	93.85	83.68	90.85	70.33	82.38	83.45	63.42	36.28	42.74	71.89
1453	MobileLLM-350M	Generation	94.68	83.57	91.09	71.43	82.87	84.58	63.71	40.13	51.54	73.73
1454	MobileLLM-600M	Pooling	94.86	87.34	91.34	72.45	84.56	84.93	64.18	45.32	45.54	74.50
1455	MobileLLM-600M	Generation	95.14	87.87	91.37	72.29	86.30	84.79	64.12	48.53	58.54	76.55

Table 8: Accuracy(%) results across nine NLP classification tasks comparing bidirectional and unidirectional models under pooling, masking, and generation inference strategies.

Our results show that bidirectional models consistently outperform unidirectional models across both classification and regression tasks (Table 8, Table 9). For example, in classification, DeBERTa-v3-Large achieves the highest average accuracy of 84.73% using masked token prediction, improving by +3.77% over its pooling-based variant. Furthermore, we observe that even RoBERTa-base outperforms MobileLLM-600M in several tasks, highlighting a consistent trend with mutual information (MI): better MI is correlated with improved context modeling and task performance.

Overall, these findings highlight that masking inference yields stronger gains in bidirectional models, while generation provides modest improvements for unidirectional models but fails to close the

1458	Model	Method	WASSA	SICK	STSB	LCP	CRP	Humicroedit	Avg.
1459	DeBERTa-v3-Base	Pooling	0.017/0.107	0.163/0.297	0.363/0.455	0.007/0.076	0.429/0.518	0.278/0.432	0.209/0.314
		Masking	0.013/0.091	0.135/0.277	0.373/0.462	0.006/0.060	0.385/0.478	0.274/0.423	0.197/0.298
1460	DeBERTa-v3-Large	Pooling	0.016/0.102	0.140/0.281	0.353/0.442	0.007/0.073	0.345/0.457	0.263/0.419	0.187/0.295
		Masking	0.012/0.075	0.132/0.274	0.348/0.414	0.005/0.051	0.340/0.459	0.268/0.421	0.184/0.282
1461	RoBERTa-Base	Pooling	0.016/0.097	0.168/0.300	0.364/0.452	0.007/0.066	0.465/0.535	0.293/0.438	0.218/0.314
		Masking	0.015/0.094	0.145/0.294	0.353/0.448	0.007/0.065	0.431/0.517	0.289/0.431	0.206/0.308
1462	RoBERTa-Large	Pooling	0.015/0.097	0.153/0.291	0.351/0.439	0.006/0.060	0.376/0.469	0.283/0.432	0.197/0.298
		Masking	0.016/0.099	0.152/0.291	0.350/0.429	0.003/0.059	0.366/0.475	0.281/0.431	0.294/0.297
1463	ModernBERT-Base	Pooling	0.016/0.092	0.207/0.350	0.469/0.517	0.006/0.069	0.376/0.469	0.302/0.447	0.229/0.324
		Masking	0.015/0.093	0.173/0.328	0.482/0.536	0.006/0.067	0.364/0.471	0.281/0.430	0.220/0.320
1464	ModernBERT-Large	Pooling	0.016/0.093	0.160/0.307	0.378/0.468	0.006/0.060	0.341/0.453	0.302/0.449	0.200/0.305
		Masking	0.150/0.294	0.150/0.292	0.371/0.462	0.006/0.005	0.344/0.457	0.293/0.441	0.219/0.325
1465	GPT-2 Medium	Pooling	0.019/0.112	0.662/0.619	0.427/0.499	0.008/0.084	0.369/0.476	0.394/0.535	0.313/0.387
		Generation	0.018/0.111	0.673/0.620	0.412/0.490	0.008/0.083	0.345/0.457	0.347/0.493	0.300/0.375
1466	GPT-2 Large	Pooling	0.018/0.105	0.623/0.583	0.442/0.522	0.007/0.080	0.324/0.443	0.318/0.463	0.288/0.366
		Generation	0.017/0.107	0.583/0.523	0.423/0.499	0.007/0.078	0.326/0.446	0.323/0.473	0.279/0.354
1467	SmoILM2-135M	Pooling	0.017/0.105	0.192/0.336	0.424/0.489	0.007/0.076	0.369/0.476	0.304/0.450	0.218/0.322
		Generation	0.017/0.106	0.175/0.319	0.403/0.484	0.007/0.076	0.366/0.475	0.295/0.442	0.210/0.317
1468	SmoILM2-360M	Pooling	0.017/0.104	0.173/0.310	0.407/0.488	0.006/0.061	0.340/0.459	0.338/0.463	0.213/0.314
		Generation	0.017/0.105	0.170/0.298	0.394/0.481	0.006/0.060	0.332/0.454	0.323/0.462	0.207/0.310
1469	MobileLLM-125M	Pooling	0.020/0.111	0.197/0.354	0.419/0.492	0.006/0.070	0.323/0.446	0.302/0.451	0.211/0.320
		Generation	0.019/0.113	0.192/0.324	0.410/0.491	0.006/0.068	0.312/0.448	0.293/0.442	0.205/0.314
1470	MobileLLM-350M	Pooling	0.018/0.104	0.191/0.336	0.394/0.482	0.006/0.063	0.310/0.436	0.282/0.431	0.200/0.308
		Generation	0.017/0.105	0.187/0.320	0.391/0.478	0.006/0.063	0.309/0.437	0.278/0.421	0.198/0.304
1471	MobileLLM-600M	Pooling	0.017/0.105	0.181/0.320	0.384/0.474	0.006/0.063	0.301/0.432	0.274/0.421	0.193/0.302
		Generation	0.017/0.105	0.172/0.318	0.381/0.472	0.006/0.063	0.308/0.419	0.278/0.438	0.193/0.302

Table 9: Regression results (MSE/MAE) across six NLP regression tasks comparing bidirectional and unidirectional models under pooling, masking, and generation inference strategies.

accuracy and error gap, reinforcing the advantage of bidirectional context and masking for both classification and regression.

F DATASET

The details of datasets are described in Table 10

Dataset	Task Type	Domain	Description
SST-2 (Wang et al., 2018)	Classification	Sentiment Analysis	The Stanford Sentiment Treebank, a binary sentiment classification dataset labeling sentences as positive or negative.
MRPC (Wang et al., 2018)	Classification	Paraphrase Detection	The Microsoft Research Paraphrase Corpus for detecting whether two sentences are semantically equivalent.
QNLI (Wang et al., 2018)	Classification	Question Answering / NLI	A question natural language inference dataset built from SQuAD, determining if a context sentence contains the answer.
RTE (Wang et al., 2018)	Classification	Natural Language Inference	The Recognizing Textual Entailment dataset for determining if a hypothesis is entailed by a premise.
MNLI (Wang et al., 2018)	Classification	Natural Language Inference	Multi-Genre Natural Language Inference dataset covering entailment, neutral, and contradiction relations across multiple genres.
CoLA (Wang et al., 2018)	Classification	Grammatical Acceptability	Corpus of Linguistic Acceptability, evaluating whether sentences conform to English grammatical rules.
BoolQ (Clark et al., 2019)	Classification	Reading Comprehension	Boolean Questions dataset with yes/no questions based on Wikipedia passages requiring reading comprehension.
HellaSwag (Zellers et al., 2019)	Classification	Commonsense Reasoning	Tests commonsense reasoning by selecting the most plausible continuation of a given scenario.
SIQA (Sap et al., 2019)	Classification	Social Intelligence	Social IQa dataset evaluating models' understanding of social situations, emotions, and intentions.
WASSA (Vinayakumar et al., 2017)	Regression	Emotion Intensity	WASSA-2017 dataset for predicting emotion intensity scores for tweets across multiple emotions.
SICK (Marelli et al., 2014a)	Regression	Semantic Similarity	Sentences Involving Compositional Knowledge dataset for measuring sentence similarity and entailment.
STSB-regression (Cer et al., 2017)	Regression	Semantic Similarity	Semantic Textual Similarity Benchmark scored on a continuous scale from 0 to 5.
LCP (Shardlow et al., 2020)	Regression	Lexical Complexity	Lexical Complexity Prediction dataset for predicting the complexity of words within their context.
CRP (Shardlow et al., 2020)	Regression	Complex Word Identification	Complex Word Identification dataset from SemEval, labeling words as simple or complex in context.
Humicroedit (Hossain et al., 2019)	Regression	Humor Perception	SemEval humor dataset evaluating the impact of small text edits (micro-edits) on humor perception.

Table 10: Overview of the 16 benchmark datasets used in our experiments across classification and regression tasks.

1512 **G ENVIRONMENT SETUP**
15131514 All experiments are conducted using PyTorch 2.0 and Hugging Face Transformers version 4.50.
1515 Training and evaluation are performed on a single NVIDIA A100 GPU with 80GB of memory. We use
1516 Python 3.10 within an Anaconda virtual environment configured with CUDA 12.1. Key dependencies
1517 include NumPy, SciPy, scikit-learn, and tqdm for data processing and evaluation. Random seeds are
1518 fixed across all runs to ensure reproducibility.
15191520 **H EVALUATION METRICS**
15211522 We evaluate our models using task-specific metrics selected for their interpretability, relevance, and
1523 comparability to prior work. For **classification tasks**, we adopt *accuracy* as the primary metric,
1524 defined as the ratio of correct predictions to the total number of predictions:
1525

1526
$$\text{Accuracy} = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}.$$

1527

1528 Accuracy provides a straightforward measure of model correctness and aligns with standard practices
1529 in classification benchmarks (Wang et al., 2018).
15301531 For **regression tasks**, we report both *mean squared error (MSE)* and *mean absolute error (MAE)* to
1532 capture complementary aspects of prediction error. MSE emphasizes larger errors due to the squared
1533 term, while MAE reflects the average magnitude of errors:
1534

1535
$$\text{MSE} = \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2, \quad \text{MAE} = \frac{1}{N} \sum_{i=1}^N |y_i - \hat{y}_i|,$$

1536 where N is the number of samples, y_i is the ground-truth label, and \hat{y}_i is the predicted value. These
1537 metrics ensure a robust evaluation of both typical and extreme prediction errors (Cer et al., 2017;
1538 Marelli et al., 2014b).
15391540 In addition to task performance metrics, we measure the *mutual information* between the input
1541 X and the learned representation Z_ℓ , denoted $I(X; Z)$. Mutual information quantifies how much
1542 information about the input is preserved in Z_ℓ , providing insight into the information bottleneck
1543 trade-off (Tishby & Zaslavsky, 2015). We estimate $I(X; Z)$ using a variational lower bound based on
1544 Mutual Information Neural Estimation (Belghazi et al., 2018), following prior work in information-
1545 theoretic analyses of neural networks.
15461547 All metrics are computed using scikit-learn and official benchmark evaluation scripts. Model selection
1548 is performed based on validation set performance, with final metrics reported on the held-out test sets.
15491550 **I MODEL DESCRIPTION**
15511552 We compare our method with a range of pretrained language models covering both bidirectional and
1553 unidirectional architectures. The bidirectional baselines include **DeBERTaV3-Base** (He et al., 2020),
1554 **DeBERTaV3-Large** (He et al., 2020), **RoBERTa-Base** (Liu et al., 2019), **RoBERTa-Large** (Liu et al.,
1555 2019), **ModernBERT-Base** (Warner et al., 2024), and **ModernBERT-Large** (Warner et al., 2024).
1556 The unidirectional baselines include **GPT-2 Medium** (Radford et al., 2019), **GPT-2 Large** (Rad-
1557 ford et al., 2019), **MobileLLM-125M** (Liu et al., 2024), **MobileLLM-350M** (Liu et al., 2024),
1558 **MobileLLM-630M** (Liu et al., 2024), **SmolLM-135M** (Allal et al., 2024), and **SmolLM-360M** (Al-
1559 lal et al., 2024). These models are selected to cover a range of sizes and architectures, enabling a
1560 fair and broad evaluation of representational learning. We focus on smaller model sizes to allow
1561 fair comparisons since large bidirectional models are not readily available. All baseline models are
1562 fine-tuned using RoCoFT adapters with an adapter rank of $r = 3$, enabling efficient fine-tuning
1563 without modifying the main model parameters. We use a cosine learning rate schedule for training.
15641565 **J HYPERPARAMETERS**
15661567 We select hyperparameters systematically to ensure consistent and balanced evaluation across all
1568 tasks and models. For classification tasks, we set the learning rate to 1×10^{-4} with batch sizes
1569

1566 between 8 and 16. For regression tasks, we increase the learning rate to 1×10^{-3} with batch sizes
 1567 ranging from 8 to 32. All models are fine-tuned using the AdamW optimizer with a cosine learning
 1568 rate schedule, weight decay values in the range of 0.1 to 0.2, and a warmup ratio of 0.1. Gradient
 1569 accumulation steps are varied between 1 and 8 depending on GPU memory capacity. To improve
 1570 training stability, gradients are clipped at a maximum norm of 1.0, and label smoothing with a factor
 1571 of 0.1 is applied where applicable. Each model is trained for 2 to 30 epochs, with warmup steps
 1572 selected between 100 and 500. These hyperparameter settings are held consistent across experimental
 1573 runs to ensure fair comparisons and reproducibility. This finding aligns with earlier work showing
 1574 the benefits of bidirectional models for non-autoregressive NLP tasks. A detailed breakdown of
 1575 the hyperparameters used for each dataset and model is provided in Appendix, including Table 11
 1576 (Humicroedit), Table 12 (WASSA), Table 13 (SICK), Table 14 (STS-B), Table 15 (LCP), Table 16
 1577 (SST-2), Table 17 (MRPC), Table 18 (QNLI), Table 19 (RTE), Table 20 (CoLA), Table 21 (MNLI),
 1578 Table 22 (BoolQ), Table 23 (HellaSwag), and Table 24 (SIQA).

Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
MobileLLM-350M	6e-4	16	1	0.2	Cosine	3	512	10 / 100
SmolLM-360M	6e-4	16	1	0.2	Cosine	3	512	10 / 100
SmolLM-135M	6e-4	16	1	0.2	Cosine	3	512	10 / 100
ModernBERT-base	6e-4	16	1	0.2	Cosine	3	512	10 / 100
GPT2-medium	6e-4	16	1	0.2	Cosine	3	512	10 / 100
GPT2-large	6e-4	16	1	0.2	Cosine	3	512	10 / 100
deberta-v3-base	6e-4	16	1	0.2	Cosine	3	512	10 / 100
roberta-base	6e-4	16	1	0.2	Cosine	3	512	10 / 100
roberta-large	6e-4	16	1	0.2	Cosine	3	512	10 / 100
deberta-v3-large	6e-4	16	1	0.2	Cosine	3	512	10 / 100
Mobile-llm-125	6e-4	16	1	0.2	Cosine	3	512	10 / 100
Mobile-llm-630	6e-4	16	1	0.2	Cosine	3	512	10 / 100
moden-bert-large	6e-4	16	1	0.2	Cosine	3	512	10 / 100

Table 11: Hyperparameter settings for the Humicroedit dataset for each evaluated model.

Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
SmolLM-135M	5e-4	14	1	0.2	Cosine	3	512	10 / 100
MobileLLM-350M	5e-4	14	1	0.2	Cosine	3	512	10 / 100
SmolLM-360M	5e-4	14	1	0.2	Cosine	3	512	10 / 100
GPT2-medium	5e-4	14	1	0.2	Cosine	3	512	10 / 100
GPT2-large	5e-4	14	1	0.2	Cosine	3	512	10 / 100
ModernBERT-base	5e-4	14	1	0.2	Cosine	3	512	10 / 100
deberta-v3-base	6e-4	16	1	0.2	Cosine	3	512	10 / 100
roberta-base	6e-4	16	1	0.2	Cosine	3	512	10 / 100
roberta-large	6e-4	16	1	0.2	Cosine	3	512	10 / 100
deberta-v3-large	6e-4	16	1	0.2	Cosine	3	512	10 / 100
Mobile-llm-125	6e-4	16	1	0.2	Cosine	3	512	10 / 100
Mobile-llm-630	6e-4	16	1	0.2	Cosine	3	512	10 / 100
moden-bert-large	6e-4	16	1	0.2	Cosine	3	512	10 / 100

Table 12: Hyperparameter settings for the WASSA dataset for each evaluated model.

Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
SmolLM-360M	1e-3	14	1	0.2	Cosine	3	512	20 / 100
SmolLM-135M	1e-3	14	1	0.2	Cosine	3	512	20 / 100
ModernBERT-base	1e-3	8	2	0.2	Cosine	3	512	20 / 100
deberta-v3-base	1e-3	8	2	0.2	Cosine	3	512	20 / 100
GPT2-medium	1e-3	14	1	0.2	Cosine	3	512	20 / 100
GPT2-large	1e-3	14	1	0.2	Cosine	3	512	20 / 100
roberta-base	1e-3	8	2	0.2	Cosine	3	512	20 / 100
roberta-large	1e-3	8	2	0.2	Cosine	3	512	20 / 100
deberta-v3-large	1e-3	8	2	0.2	Cosine	3	512	20 / 100
Mobile-llm-125	1e-3	8	2	0.2	Cosine	3	512	20 / 100
Mobile-llm-630	1e-3	8	2	0.2	Cosine	3	512	20 / 100
moden-bert-large	1e-3	8	2	0.2	Cosine	3	512	20 / 100

Table 13: Hyperparameter settings for the SICK dataset for each evaluated model.

K MODEL PROFILE INFORMATION

We conduct a comprehensive CPU profiling analysis of twelve transformer models to understand the computational bottlenecks and runtime behavior that influence performance. The models we evaluate include DeBERTa-v3-Base Table 25, DeBERTa-v3-Large Table 26, RoBERTa-Base Table 27, RoBERTa-Large Table 28, ModernBERT-Base Table 29, ModernBERT-Large Table 30, GPT-2 Medium Table 31, GPT-2 Large Table 32, SmolLM-135M Table 33, SmolLM-360M Table 34, MobileLLM-125M Table 35, and MobileLLM-600M Table 37. Our CPU profiling shows

1620	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps	Max Grad Norm
1621	SmolLM-360M	2e-4	8	1	0.1	Cosine	3	512	10 / 100	1
1622	MobileLLM-350M	2e-4	8	1	0.1	Cosine	3	512	10 / 100	1
1623	SmolLM-135M	2e-4	8	1	0.1	Cosine	3	512	10 / 100	1
1624	deberta-v3-base	6e-4	16	1	0.2	Cosine	3	512	20 / 100	1
1625	roberta-base	6e-4	16	1	0.2	Cosine	3	512	20 / 100	1
1626	roberta-large	6e-4	16	1	0.2	Cosine	3	512	20 / 100	1
1627	deberta-v3-large	6e-4	16	1	0.2	Cosine	3	512	20 / 100	1
1628	Mobile-llm-125	6e-4	16	1	0.2	Cosine	3	512	20 / 100	1
1629	Mobile-llm-630	6e-4	16	1	0.2	Cosine	3	512	20 / 100	1
1630	moden-bert-large	6e-4	16	1	0.2	Cosine	3	512	20 / 100	1
1631	GPT2-medium	1e-4	16	4	0.0	Cosine	3	512	10 / 100	1
1632	GPT2-large	1e-4	16	4	0.0	Cosine	3	512	10 / 100	1
1633	ModemBERT-base	1e-4	16	4	0.0	Cosine	3	512	10 / 100	1
1634	GPT2-medium	5e-4	4	4	0.2	Cosine	3	512	10 / 100	1
1635	GPT2-large	5e-4	4	4	0.2	Cosine	3	512	10 / 100	1
1636	roberta-base	1e-3	10	1	0.2	Cosine	3	512	10 / 100	1
1637	roberta-large	1e-3	10	1	0.2	Cosine	3	512	10 / 100	1
1638	deberta-v3-large	1e-3	10	1	0.2	Cosine	3	512	10 / 100	1
1639	Mobile-llm-125	1e-3	10	1	0.2	Cosine	3	512	10 / 100	1
1640	Mobile-llm-630	1e-3	10	1	0.2	Cosine	3	512	10 / 100	1
1641	moden-bert-large	1e-3	10	1	0.2	Cosine	3	512	10 / 100	1
1642	deberta-v3-base	2e-3	32	1	0.2	Cosine	3	512	10 / 100	1

Table 14: Hyperparameter settings for the STSB dataset for each evaluated model.

1642	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1643	SmolLM-360M	5e-4	4	4	0.2	Cosine	3	512	10 / 100
1644	MobileLLM-350M	5e-4	4	4	0.2	Cosine	3	512	10 / 100
1645	SmolLM-135M	5e-4	4	4	0.2	Cosine	3	512	10 / 100
1646	ModernBERT-base	5e-4	4	4	0.2	Cosine	3	512	10 / 100
1647	deberta-v3-base	1e-3	10	1	0.2	Cosine	3	512	10 / 100
1648	roberta-base	1e-3	10	1	0.2	Cosine	3	512	10 / 100
1649	roberta-large	1e-3	10	1	0.2	Cosine	3	512	10 / 100
1650	deberta-v3-large	1e-3	10	1	0.2	Cosine	3	512	10 / 100
1651	Mobile-llm-125	1e-3	10	1	0.2	Cosine	3	512	10 / 100
1652	Mobile-llm-630	1e-3	10	1	0.2	Cosine	3	512	10 / 100
1653	moden-bert-large	1e-3	10	1	0.2	Cosine	3	512	10 / 100
1654	GPT2-medium	1e-4	8	2	0.1	Cosine	3	512	3 / 500
1655	GPT2-large	1e-4	8	2	0.1	Cosine	3	512	3 / 500
1656	ModemBERT-base	1e-4	8	2	0.1	Cosine	3	512	3 / 500
1657	deberta-v3-base	1e-4	16	4	0.00	Cosine	3	512	3 / 100
1658	roberta-base	1e-4	16	4	0.00	Cosine	3	512	3 / 100
1659	roberta-large	1e-4	16	4	0.00	Cosine	3	512	3 / 100
1660	deberta-v3-large	1e-4	16	4	0.00	Cosine	3	512	3 / 100
1661	Mobile-llm-125	1e-4	16	4	0.00	Cosine	3	512	3 / 100
1662	Mobile-llm-630	1e-4	16	4	0.00	Cosine	3	512	3 / 100
1663	moden-bert-large	1e-4	16	4	0.00	Cosine	3	512	3 / 100

Table 15: Hyperparameter settings for the LCP dataset for each evaluated model.

1664	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1665	SmolLM-360M	1e-4	8	2	0.1	Cosine	3	512	3 / 500
1666	MobileLLM-350M	1e-4	8	2	0.1	Cosine	3	512	3 / 500
1667	SmolLM-135M	1e-4	8	2	0.1	Cosine	3	512	3 / 500
1668	ModernBERT-base	1e-4	8	2	0.1	Cosine	3	512	3 / 500
1669	deberta-v3-base	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1670	roberta-base	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1671	roberta-large	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1672	deberta-v3-large	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1673	GPT2-medium	5e-4	4	4	0.1	Cosine	3	512	3 / 500
1674	GPT2-large	3e-3	32	1	0.00	Cosine	3	512	2 / 100

Table 16: Hyperparameter settings for the SST-2 dataset for each evaluated model.

1675	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1676	SmolLM-360M	5e-4	4	4	0.1	Cosine	3	512	10 / 100
1677	MobileLLM-350M	5e-4	4	4	0.1	Cosine	3	512	10 / 100
1678	SmolLM-135M	5e-4	4	4	0.1	Cosine	3	512	10 / 100
1679	ModernBERT-base	5e-4	4	4	0.1	Cosine	3	512	10 / 100
1680	deberta-v3-base	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1681	roberta-base	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1682	roberta-large	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1683	deberta-v3-large	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1684	GPT2-medium	5e-4	4	4	0.1	Cosine	3	512	10 / 100
1685	GPT2-large	3e-3	32	1	0.00	Cosine	3	512	5 / 100

Table 17: Hyperparameter settings for the MRPC dataset for each evaluated model.

1686	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1687	SmolLM-360M	2e-4	8	2	0.1	Cosine	3	512	2 / 500
1688	MobileLLM-350M	2e-4	8	2	0.1	Cosine	3	512	2 / 500
1689	SmolLM-135M	2e-4	8	2	0.1	Cosine	3	512	2 / 500
1690	ModernBERT-base	2e-4	8	2	0.1	Cosine	3	512	2 / 500
1691	GPT2-medium	2e-4	8	2	0.1	Cosine	3	512	2 / 500
1692	GPT2-large	1e-4	12	4	0.00	Cosine	3	512	2 / 100
1693	deberta-v3-base	1e-4	12	4	0.00	Cosine	3	512	2 / 100
1694	roberta-base	1e-4	12	4	0.00	Cosine	3	512	2 / 100
1695	roberta-large	1e-4	12	4	0.00	Cosine	3	512	2 / 100
1696	deberta-v3-large	1e-4	12	4	0.00	Cosine	3	512	2 / 100
1697	Mobile-llm-125	1e-4	12	4	0.00	Cosine	3	512	2 / 100
1698	Mobile-llm-630	1e-4	12	4	0.00	Cosine	3	512	2 / 100
1699	moden-bert-large	1e-4	12	4	0.00	Cosine	3	512	2 / 100

Table 18: Hyperparameter settings for the QNLI dataset for each evaluated model.

1674	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1675	SmollM-360M	1e-4	4	8	0.00	Cosine	3	512	30 / 100
1676	MobileLLM-350M	1e-4	4	8	0.00	Cosine	3	512	30 / 100
1677	SmollM-135M	1e-4	4	8	0.00	Cosine	3	512	30 / 100
1678	ModernBERT-base	1e-4	4	8	0.00	Cosine	3	512	30 / 100
1679	GPT2-medium	1e-4	4	8	0.00	Cosine	3	512	30 / 100
1680	GPT2-large	1e-3	16	2	0.00	Cosine	3	512	30 / 100
1681	deberta-v3-base	1e-4	16	8	0.00	Cosine	3	512	30 / 100
1682	roberta-base	1e-4	16	8	0.00	Cosine	3	512	30 / 100
1683	roberta-large	1e-4	16	8	0.00	Cosine	3	512	30 / 100
1684	deberta-v3-large	1e-4	16	8	0.00	Cosine	3	512	30 / 100
1685	Mobile-llm-125	1e-4	16	8	0.00	Cosine	3	512	30 / 100
1686	Mobile-llm-630	1e-4	16	8	0.00	Cosine	3	512	30 / 100
1687	moden-bert-large	1e-4	16	8	0.00	Cosine	3	512	30 / 100

Table 19: Hyperparameter settings for the RTE dataset for each evaluated model.

1688	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1689	SmollM-360M	2e-5	8	1	0.1	Cosine	3	512	10 / 500
1690	MobileLLM-350M	2e-5	8	1	0.1	Cosine	3	512	10 / 500
1691	SmollM-135M	2e-5	8	1	0.1	Cosine	3	512	10 / 500
1692	ModernBERT-base	2e-5	8	1	0.1	Cosine	3	512	10 / 500
1693	GPT2-medium	2e-5	8	1	0.1	Cosine	3	512	10 / 500
1694	GPT2-large	1e-3	64	1	0.00	Cosine	3	512	10 / 100
1695	deberta-v3-base	2e-5	4	8	0.00	Cosine	3	512	10 / 100
1696	roberta-base	2e-5	4	8	0.00	Cosine	3	512	10 / 100
1697	roberta-large	2e-5	4	8	0.00	Cosine	3	512	10 / 100
1698	deberta-v3-large	2e-5	4	8	0.00	Cosine	3	512	10 / 100
1699	Mobile-llm-125	5e-4	4	4	0.1	Cosine	3	512	10 / 100
1700	Mobile-llm-630	5e-4	4	4	0.1	Cosine	3	512	10 / 100
1701	moden-bert-large	5e-4	4	4	0.1	Cosine	3	512	10 / 100

Table 20: Hyperparameter settings for the COLA dataset for each evaluated model.

1702	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1703	SmollM-360M	2e-4	8	4	0.00	Cosine	3	512	2 / 500
1704	MobileLLM-350M	2e-4	8	4	0.00	Cosine	3	512	2 / 500
1705	SmollM-135M	2e-4	8	4	0.00	Cosine	3	512	2 / 500
1706	ModernBERT-base	2e-4	8	4	0.00	Cosine	3	512	2 / 500
1707	GPT2-medium	2e-4	8	4	0.00	Cosine	3	512	2 / 500
1708	GPT2-large	1e-3	32	1	0.00	Cosine	3	512	2 / 100
1709	deberta-v3-base	1e-3	14	1	0.00	Cosine	3	512	2 / 100
1710	roberta-base	1e-3	14	1	0.00	Cosine	3	512	2 / 100
1711	roberta-large	1e-3	14	1	0.00	Cosine	3	512	2 / 100
1712	deberta-v3-large	1e-3	14	1	0.00	Cosine	3	512	2 / 100
1713	Mobile-llm-125	1e-3	14	1	0.00	Cosine	3	512	2 / 100
1714	Mobile-llm-630	1e-3	14	1	0.00	Cosine	3	512	2 / 100
1715	moden-bert-large	2e-4	8	4	0.00	Cosine	3	512	2 / 500

Table 21: Hyperparameter settings for the MNLI dataset for each evaluated model.

1716	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1717	ModernBERT-base	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1718	MobileLLM-350M	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1719	SmollM-360M	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1720	SmollM-135M	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1721	GPT2-medium	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1722	GPT2-large	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1723	deberta-v3-base	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1724	roberta-base	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1725	roberta-large	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1726	deberta-v3-large	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1727	Mobile-llm-125	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1728	Mobile-llm-630	3e-4	128	1	0.00	Cosine	3	512	100 / 100
1729	moden-bert-large	3e-4	128	1	0.00	Cosine	3	512	100 / 100

Table 22: Hyperparameter settings for the BoolQ dataset for each evaluated model.

1730	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1731	deberta-v3-base	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1732	mobilellm-350M	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1733	SmollM-360M	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1734	SmollM-135M	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1735	ModernBERT-base	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1736	GPT2-medium	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1737	GPT2-large	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1738	roberta-base	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1739	roberta-large	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1740	deberta-v3-large	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1741	Mobile-llm-125	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1742	Mobile-llm-630	1e-4	16	1	0.00	Cosine	3	512	12 / 100
1743	moden-bert-large	1e-4	16	1	0.00	Cosine	3	512	12 / 100

Table 23: Hyperparameter settings for the HellaSwag dataset for each evaluated model.

1728	Model	Learning Rate	Batch Size	Grad Accum	Weight Decay	LR Scheduler	Rank	Max Length	Epochs / Warmup Steps
1729	deberta-v3-base	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1730	mobilellm-350M	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1731	SmolLM-360M	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1732	SmolLM-135M	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1733	ModernBERT-base	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1734	GPT2-medium	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1735	GPT2-large	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1736	roberta-base	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1737	roberta-large	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1738	deberta-v3-large	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1739	Mobile-llm-125	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1740	Mobile-llm-630	3e-4	16	1	0.00	Cosine	3	512	4 / 100
1741	moden-bert-large	3e-4	16	1	0.00	Cosine	3	512	4 / 100

Table 24: Hyperparameter settings for the SIQA dataset for each evaluated model.

that bidirectional models are often comparable to unidirectional models. For example, DeBERTa-v3-Base Table 25 and ModernBERT-Base Table 29 complete inference in 502ms and 347ms, respectively, while GPT-2 Medium Table 31 takes 1126ms—more than double the time. Larger bidirectional models like DeBERTa-v3-Large Table 26 and RoBERTa-Large Table 28 have runtimes comparable to GPT-2 Large Table 32 in total execution time and compute distribution. Bidirectional models spread CPU usage more evenly across attention, normalization, and embedding layers, whereas unidirectional models spend over 85% of their time on addmm, suggesting less efficient resource utilization. Additionally, compact bidirectional models like SmolLM-135M Table 33 and MobileLLM-125M Table 35 show runtimes similar to GPT-2 Medium, indicating that this efficiency advantage holds even at smaller scales.

1750	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1751	aten::linear	0.51%	2.580ms	77.29%	388.420ms	4.046ms	96
1752	aten::addmm	74.66%	375.212ms	76.25%	383.177ms	3.991ms	96
1753	aten::matmul	0.27%	1.333ms	8.83%	44.372ms	924.422µs	48
1754	aten::bmm	8.25%	41.477ms	8.26%	41.502ms	864.622µs	48
1755	aten::copy_	4.84%	24.308ms	4.84%	24.308ms	79.180µs	307
1756	aten::gather	2.73%	13.696ms	2.73%	13.696ms	570.650µs	24
1757	aten::clone	0.12%	618.044µs	2.26%	11.360ms	135.242µs	84
1758	aten::contiguous	0.04%	207.146µs	2.08%	10.476ms	145.499µs	72
1759	aten::repeat	0.12%	586.012µs	1.62%	8.156ms	339.848µs	24
1760	aten::add	1.17%	5.887ms	1.22%	6.136ms	84.054µs	73

Self CPU time total: 502.528ms

Table 25: CPU profiling results for DeBERTa-v3-Base showing operation-wise breakdown of computation time.

1764	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1765	aten::linear	0.30%	4.865ms	82.66%	1.329s	6.921ms	192
1766	aten::addmm	80.79%	1.299s	82.08%	1.319s	6.872ms	192
1767	aten::matmul	0.15%	2.466ms	7.37%	118.530ms	1.235ms	96
1768	aten::bmm	7.03%	113.072ms	7.04%	113.118ms	1.178ms	96
1769	aten::copy_	3.91%	62.848ms	3.91%	62.848ms	103.539µs	607
1770	aten::gather	2.17%	34.856ms	2.17%	34.856ms	726.164µs	48
1771	aten::clone	0.07%	1.160ms	1.78%	28.664ms	170.619µs	168
1772	aten::contiguous	0.03%	443.678µs	1.63%	26.265ms	182.397µs	144
1773	aten::repeat	0.08%	1.258ms	1.23%	19.738ms	411.214µs	48
1774	aten::add	0.88%	14.152ms	0.91%	14.626ms	100.871µs	145

Self CPU time total: 1608ms

Table 26: CPU profiling results for DeBERTa-v3-Large showing operation-wise breakdown of computation time.

L PREDGEN VS. ONE-TOKEN GENERATION:

The original PredGen framework (Kowsher et al., 2025) showed that generating multiple output tokens retains higher mutual information with the input, leading to better performance on regression

1782

1783

1784

1785

1786

1787

1788

1789

1790

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
aten::linear	0.22%	2.579ms	92.35%	1.079s	14.774ms	73
aten::addmm	91.46%	1.068s	91.93%	1.074s	14.706ms	73
aten::scaled_dot_product_attention	0.02%	187.093μs	5.13%	59.890ms	4.991ms	12
aten::scaled_dot_product_flash_attention_for_cpu	5.04%	58.850ms	5.11%	59.703ms	4.975ms	12
aten::gelu	1.15%	13.426ms	1.15%	13.426ms	1.119ms	12
aten::layer_norm	0.03%	356.267μs	0.74%	8.673ms	346.936μs	25
aten::native_layer_norm	0.67%	7.832ms	0.71%	8.317ms	332.685μs	25
aten::copy_	0.42%	4.888ms	0.42%	4.888ms	61.871μs	79
aten::add	0.25%	2.868ms	0.25%	2.878ms	106.586μs	27
aten::ne	0.14%	1.675ms	0.14%	1.675ms	1.675ms	1

Self CPU time total: 1168ms

1791

Table 27: CPU profiling results for RoBERTa-Base showing operation-wise breakdown of computation time.

1792

1793

1794

1795

1796

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
aten::linear	0.39%	4.022ms	94.22%	982.099ms	6.773ms	145
aten::addmm	92.45%	963.703ms	93.46%	974.219ms	6.719ms	145
aten::scaled_dot_product_attention	0.03%	304.568μs	3.29%	34.249ms	1.427ms	24
aten::scaled_dot_product_flash_attention_for_cpu	3.13%	32.634ms	3.26%	33.945ms	1.414ms	24
aten::gelu	1.00%	10.469ms	1.00%	10.469ms	436.198μs	24
aten::copy_	0.93%	9.662ms	0.93%	9.662ms	63.987μs	151
aten::layer_norm	0.04%	434.620μs	0.75%	7.775ms	158.670μs	49
aten::native_layer_norm	0.63%	6.605ms	0.70%	7.340ms	149.800μs	49
aten::add	0.45%	4.657ms	0.45%	4.670ms	91.559μs	51
aten::view	0.22%	2.325ms	0.22%	2.325ms	4.754μs	489

Self CPU time total: 1042ms

1805

1806

Table 28: CPU profiling results for RoBERTa-Large showing operation-wise breakdown of computation time.

1807

1808

1809

1810

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
aten::linear	0.15%	532.099μs	81.11%	282.061ms	3.205ms	88
aten::matmul	0.62%	2.164ms	81.03%	281.778ms	2.562ms	110
aten::mm	79.88%	277.768ms	79.89%	277.814ms	3.157ms	88
aten::scaled_dot_product_attention	0.07%	230.328μs	6.25%	21.748ms	988.565μs	22
aten::scaled_dot_product_flash_attention_for_cpu	5.85%	20.351ms	6.19%	21.518ms	978.096μs	22
aten::layer_norm	0.13%	462.996μs	2.60%	9.037ms	200.831μs	45
aten::native_layer_norm	2.28%	7.919ms	2.47%	8.574ms	190.542μs	45
aten::mul	2.17%	7.550ms	2.35%	8.189ms	53.177μs	154
aten::add	1.82%	6.327ms	1.82%	6.327ms	71.901μs	88
aten::gelu	1.40%	4.852ms	1.40%	4.852ms	220.545μs	22

Self CPU time total: 347.749ms

1818

Table 29: CPU profiling results for ModernBERT-Base showing operation-wise breakdown of computation time.

1819

1820

1821

1822

1823

1824

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
aten::linear	0.03%	818.323μs	81.17%	2.223s	19.850ms	112
aten::matmul	0.14%	3.970ms	81.15%	2.223s	15.876ms	140
aten::mm	80.90%	2.216s	80.90%	2.216s	19.785ms	112
aten::embedding	0.00%	61.446μs	12.23%	335.032ms	335.032ms	1
aten::index_select	12.23%	334.935ms	12.23%	334.953ms	334.953ms	1
aten::layer_norm	0.02%	470.737μs	2.22%	60.931ms	1.069ms	57
aten::native_layer_norm	2.18%	59.590ms	2.21%	60.460ms	1.061ms	57
aten::scaled_dot_product_attention	0.02%	564.994μs	1.45%	39.851ms	1.423ms	28
aten::scaled_dot_product_flash_attention_for_cpu	1.38%	37.714ms	1.43%	39.286ms	1.403ms	28
aten::gelu	0.89%	24.332ms	0.89%	24.332ms	868.986μs	28

Self CPU time total: 2739ms

1832

Table 30: CPU profiling results for ModernBERT-large showing operation-wise breakdown of computation time.

1833

1834

1835

	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1836	aten::addmm	86.77%	976.892ms	88.05%	991.390ms	10.327ms	96
1837	aten::mul	3.18%	35.802ms	3.35%	37.679ms	392.489 μ s	96
1838	aten::scaled_dot_product_attention	0.04%	396.746 μ s	2.76%	31.048ms	1.294ms	24
1839	aten::scaled_dot_product_flash_attention_for_cpu	2.60%	29.255ms	2.72%	30.652ms	1.277ms	24
1840	aten::copy_	2.07%	23.295ms	2.07%	23.295ms	80.886 μ s	288
1841	aten::add	1.95%	21.947ms	1.99%	22.375ms	230.671 μ s	97
1842	aten::contiguous	0.03%	298.059 μ s	1.01%	11.422ms	118.983 μ s	96
1843	aten::clone	0.07%	742.482 μ s	0.99%	11.124ms	115.879 μ s	96
1844	aten::pow	0.87%	9.819ms	0.88%	9.867ms	411.125 μ s	24
1845	aten::tanh	0.79%	8.921ms	0.79%	8.921ms	371.720 μ s	24
1846	Self CPU time total: 1126ms						

Table 31: CPU profiling results for GPT-2 Medium showing operation-wise breakdown of computation time.

	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1848	aten::addmm	87.92%	2.160s	89.08%	2.188s	15.196ms	144
1849	aten::mul	2.84%	69.731ms	2.98%	73.160ms	508.058 μ s	144
1850	aten::scaled_dot_product_attention	0.02%	560.556 μ s	2.74%	67.311ms	1.870ms	36
1851	aten::scaled_dot_product_flash_attention_for_cpu	2.63%	64.497ms	2.72%	66.750ms	1.854ms	36
1852	aten::copy_	1.82%	44.776ms	1.82%	44.776ms	103.647 μ s	432
1853	aten::add	1.77%	43.543ms	1.80%	44.286ms	305.422 μ s	145
1854	aten::contiguous	0.02%	548.391 μ s	0.87%	21.351ms	148.269 μ s	144
1855	aten::clone	0.06%	1.422ms	0.85%	20.802ms	144.461 μ s	144
1856	aten::pow	0.81%	19.877ms	0.81%	19.970ms	554.714 μ s	36
1857	aten::tanh	0.70%	17.260ms	0.70%	17.260ms	479.437 μ s	36
1858	Self CPU time total: 2456ms						

Table 32: CPU profiling results for GPT-2 Large showing operation-wise breakdown of computation time.

	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1859	aten::linear	0.35%	1.889ms	80.94%	441.637ms	2.103ms	210
1860	aten::matmul	1.44%	7.863ms	79.89%	435.925ms	2.066ms	211
1861	aten::mm	77.90%	425.052ms	77.93%	425.217ms	2.025ms	210
1862	aten::scaled_dot_product_attention	0.07%	360.301 μ s	6.26%	34.135ms	1.138ms	30
1863	aten::scaled_dot_product_flash_attention_for_cpu	5.84%	31.891ms	6.19%	33.775ms	1.126ms	30
1864	aten::mul	2.73%	14.911ms	2.74%	14.958ms	54.590 μ s	274
1865	aten::clone	0.18%	963.449 μ s	1.87%	10.198ms	84.981 μ s	120
1866	aten::copy_	1.54%	8.398ms	1.54%	8.398ms	34.277 μ s	245
1867	aten::silu	1.51%	8.256ms	1.51%	8.256ms	275.204 μ s	30
1868	aten::add	1.29%	7.025ms	1.48%	8.054ms	44.496 μ s	181
1869	Self CPU time total: 545.639ms						

Table 33: CPU profiling results for SmoLLM-135M showing operation-wise breakdown of computation time.

	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1870	aten::linear	0.14%	1.401ms	87.03%	895.172ms	3.996ms	224
1871	aten::matmul	0.44%	4.559ms	86.59%	890.629ms	3.958ms	225
1872	aten::mm	85.92%	883.710ms	85.93%	883.826ms	3.946ms	224
1873	aten::scaled_dot_product_attention	0.18%	1.871ms	3.82%	39.269ms	1.227ms	32
1874	aten::scaled_dot_product_flash_attention_for_cpu	3.49%	35.847ms	3.64%	37.398ms	1.169ms	32
1875	aten::mul	2.46%	25.292ms	2.46%	25.319ms	86.708 μ s	292
1876	aten::silu	1.36%	13.992ms	1.36%	13.992ms	437.260 μ s	32
1877	aten::add	1.07%	11.014ms	1.14%	11.728ms	60.769 μ s	193
1878	aten::clone	0.07%	706.630 μ s	1.00%	10.261ms	80.166 μ s	128
1879	aten::copy_	0.87%	8.908ms	0.87%	8.908ms	34.131 μ s	261
1880	Self CPU time total: 1029ms						

Table 34: CPU profiling results for SmoLLM-360M showing operation-wise breakdown of computation time.

	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1881	aten::linear	0.15%	1.007ms	87.11%	600.140ms	2.844ms	211
1882	aten::matmul	0.52%	3.615ms	86.62%	596.730ms	2.815ms	212
1883	aten::mm	85.81%	591.196ms	85.83%	591.306ms	2.802ms	211
1884	aten::scaled_dot_product_attention	0.06%	386.293 μ s	4.25%	29.303ms	976.771 μ s	30
1885	aten::scaled_dot_product_flash_attention_for_cpu	4.04%	27.832ms	4.20%	28.917ms	963.894 μ s	30
1886	aten::mul	2.28%	15.710ms	2.29%	15.770ms	57.554 μ s	274
1887	aten::silu	1.45%	9.993ms	1.45%	9.993ms	333.109 μ s	30
1888	aten::add	0.98%	6.723ms	1.06%	7.271ms	40.174 μ s	181
1889	aten::clone	0.09%	604.621 μ s	0.91%	6.256ms	52.131 μ s	120
1890	aten::copy_	0.76%	5.251ms	0.76%	5.215ms	21.432 μ s	245
1891	Self CPU time total: 688.943ms						

Table 35: CPU profiling results for MobileLLM-125M showing operation-wise breakdown of computation time.

1890	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1891	aten::linear	0.14%	1.401ms	87.03%	895.172ms	3.996ms	224
1892	aten::matmul	0.44%	4.559ms	86.59%	890.629ms	3.958ms	225
1893	aten::mm	85.92%	883.710ms	85.93%	883.826ms	3.946ms	224
1894	aten::scaled_dot_product_attention	0.18%	1.871ms	3.82%	39.269ms	1.227ms	32
1895	aten::scaled_dot_product_flash_attention_for_cpu	3.49%	35.847ms	3.64%	37.398ms	1.169ms	32
1896	aten::mul	2.46%	25.292ms	2.46%	25.319ms	86.708μs	292
1897	aten::silu	1.36%	13.992ms	1.36%	13.992ms	437.260μs	32
1898	aten::add	1.07%	11.014ms	1.14%	11.728ms	60.769μs	193
1899	aten::clone	0.07%	706.630μs	1.00%	10.261ms	80.166μs	128
1900	aten::copy_	0.87%	8.908ms	0.87%	8.908ms	34.131μs	261
1901	Self CPU time total: 1029ms						

Table 36: CPU profiling results for SmoLLM-360M showing operation-wise breakdown of computation time.

1901	Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Calls
1902	aten::linear	0.10%	1.933ms	90.92%	1.808s	6.433ms	281
1903	aten::matmul	0.30%	6.000ms	90.62%	1.802s	6.389ms	282
1904	aten::mm	90.18%	1.793s	90.18%	1.793s	6.381ms	281
1905	aten::scaled_dot_product_attention	0.02%	431.170μs	2.74%	54.424ms	1.361ms	40
1906	aten::scaled_dot_product_flash_attention_for_cpu	2.62%	52.116ms	2.72%	53.992ms	1.350ms	40
1907	aten::mul	1.65%	32.805ms	1.65%	32.838ms	90.214μs	364
1908	aten::silu	1.46%	28.972ms	1.46%	28.972ms	724.307μs	40
1909	aten::add	0.77%	15.238ms	0.81%	16.094ms	66.778μs	241
1910	aten::clone	0.05%	1.018ms	0.65%	13.012ms	81.323μs	160
1911	aten::copy_	0.55%	10.926ms	0.55%	10.926ms	33.617μs	325
1912	Self CPU time total: 1988ms						

Table 37: CPU profiling results for MobileLLM-600M showing operation-wise breakdown of computation time.

and classification tasks compared to pooling-based methods. However, this approach incurs high computational cost due to sequence-level decoding. To improve efficiency, we propose a simplified variant that performs *single-token generation* or *masked prediction*, predicting one specific token (e.g., via a masked or prompt-inserted position). We extract its hidden state and pass it through a lightweight MLP for final prediction. This method achieves competitive results across six regression benchmarks (Table 38).

1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

1944										
1945										
1946										
1947										
1948										
1949										
1950										
1951										
1952										
1953										
1954										
1955										
1956	Model	PEFT	Method	WASSA	SICK	STSB	LCP	CRP	Humicrodit	Avg.
Llama2-7B	LoRA	Predictor	0.454/0.151	0.860/0.280	0.965/0.950	0.930/0.105	1.014/0.784	1.348/1.046	0.928/0.553	
		Generator	0.090/0.023	0.340/0.195	0.610/0.630	0.900/0.105	0.465/0.349	0.650/0.505	0.509/0.301	
		PredGen	0.088/0.022	0.320/0.190	0.576/0.569	0.062/0.008	0.420/0.280	0.550/0.455	0.338/0.257	
		Generation*	0.089/0.023	0.315/0.192	0.582/0.574	0.065/0.009	0.430/0.290	0.548/0.457	0.335/0.258	
	AdaLoRA	Predictor	0.424/0.148	0.845/0.270	0.950/0.935	0.918/0.100	1.020/0.790	1.360/1.050	0.920/0.549	
		Generator	0.087/0.022	0.325/0.185	0.600/0.620	0.890/0.097	0.455/0.335	0.630/0.490	0.498/0.291	
		PredGen	0.080/0.020	0.305/0.185	0.575/0.570	0.058/0.006	0.405/0.270	0.535/0.440	0.326/0.248	
		Generation*	0.079/0.020	0.308/0.186	0.578/0.572	0.057/0.006	0.410/0.274	0.532/0.442	0.325/0.247	
	RoCoFT	Predictor	0.424/0.148	0.854/0.274	0.958/0.942	0.924/0.102	0.990/0.770	1.340/1.040	0.915/0.546	
		Generator	0.085/0.021	0.332/0.191	0.605/0.623	0.895/0.099	0.460/0.337	0.641/0.497	0.503/0.295	
		PredGen	0.084/0.021	0.311/0.187	0.583/0.580	0.060/0.007	0.405/0.274	0.543/0.448	0.332/0.253	
		Generation*	0.083/0.020	0.308/0.186	0.578/0.575	0.061/0.008	0.410/0.278	0.548/0.450	0.332/0.253	
	DoRA	Predictor	0.511/0.150	0.850/0.275	0.960/0.945	0.922/0.104	0.980/0.780	1.355/1.048	0.930/0.550	
		Generator	0.086/0.022	0.330/0.190	0.607/0.625	0.885/0.100	0.462/0.338	0.645/0.500	0.503/0.296	
		PredGen	0.085/0.021	0.301/0.184	0.580/0.578	0.061/0.007	0.415/0.275	0.540/0.445	0.333/0.252	
		Generation*	0.084/0.021	0.303/0.185	0.584/0.580	0.062/0.008	0.418/0.278	0.538/0.444	0.334/0.253	
Llama2-13B	LoRA	Predictor	0.370/0.130	0.800/0.250	0.920/0.910	0.880/0.090	0.950/0.720	1.280/1.000	0.867/0.517	
		Generator	0.075/0.018	0.310/0.175	0.580/0.590	0.850/0.090	0.430/0.310	0.600/0.460	0.474/0.274	
		PredGen	0.074/0.018	0.287/0.169	0.550/0.540	0.052/0.006	0.380/0.250	0.500/0.400	0.308/0.231	
		Generation*	0.073/0.018	0.289/0.170	0.553/0.542	0.051/0.006	0.385/0.254	0.495/0.402	0.309/0.232	
	AdaLoRA	Predictor	0.360/0.125	0.810/0.255	0.930/0.920	0.890/0.095	0.960/0.730	1.300/1.010	0.875/0.522	
		Generator	0.078/0.019	0.315/0.178	0.585/0.600	0.860/0.093	0.440/0.320	0.610/0.470	0.481/0.280	
		PredGen	0.078/0.019	0.300/0.175	0.530/0.530	0.054/0.006	0.390/0.255	0.510/0.410	0.315/0.236	
		Generation*	0.077/0.019	0.302/0.176	0.528/0.529	0.055/0.007	0.395/0.258	0.508/0.411	0.316/0.237	
	RoCoFT	Predictor	0.380/0.135	0.790/0.245	0.910/0.900	0.870/0.088	0.940/0.710	1.270/0.990	0.860/0.511	
		Generator	0.072/0.017	0.305/0.172	0.575/0.580	0.845/0.088	0.425/0.305	0.590/0.450	0.860/0.511	
		PredGen	0.070/0.017	0.288/0.169	0.545/0.538	0.053/0.007	0.375/0.248	0.495/0.401	0.307/0.232	
		Generation*	0.071/0.018	0.286/0.170	0.548/0.540	0.054/0.007	0.378/0.250	0.493/0.400	0.308/0.233	
	DoRA	Predictor	0.365/0.128	0.805/0.252	0.925/0.913	0.924/0.102	0.955/0.725	1.290/1.005	0.877/0.521	
		Generator	0.076/0.018	0.312/0.176	0.590/0.605	0.855/0.092	0.435/0.315	0.605/0.465	0.479/0.279	
		PredGen	0.070/0.016	0.295/0.172	0.555/0.548	0.053/0.006	0.385/0.252	0.505/0.405	0.311/0.233	
		Generation*	0.069/0.016	0.297/0.173	0.558/0.550	0.054/0.007	0.388/0.254	0.502/0.406	0.312/0.234	
Llama2-8B	LoRA	Predictor	0.380/0.140	0.820/0.260	0.940/0.925	0.910/0.098	0.970/0.740	1.310/1.020	0.888/0.531	
		Generator	0.081/0.019	0.320/0.180	0.595/0.610	0.870/0.095	0.440/0.325	0.620/0.480	0.488/0.285	
		PredGen	0.077/0.019	0.298/0.173	0.565/0.555	0.055/0.006	0.395/0.260	0.520/0.420	0.318/0.239	
		Generation*	0.078/0.019	0.300/0.174	0.562/0.553	0.054/0.006	0.398/0.263	0.518/0.419	0.320/0.240	
	AdaLoRA	Predictor	0.375/0.135	0.830/0.265	0.945/0.930	0.910/0.098	0.980/0.750	1.320/1.030	0.893/0.535	
		Generator	0.080/0.020	0.325/0.183	0.600/0.615	0.875/0.097	0.450/0.330	0.630/0.485	0.493/0.288	
		PredGen	0.078/0.019	0.303/0.177	0.570/0.560	0.057/0.007	0.400/0.265	0.509/0.410	0.323/0.243	
		Generation*	0.077/0.019	0.305/0.178	0.573/0.562	0.058/0.007	0.403/0.268	0.505/0.412	0.322/0.242	
	RoCoFT	Predictor	0.390/0.145	0.810/0.255	0.935/0.920	0.910/0.098	0.960/0.730	1.300/1.015	0.884/0.527	
		Generator	0.082/0.020	0.315/0.177	0.585/0.605	0.865/0.092	0.435/0.320	0.610/0.475	0.482/0.282	
		PredGen	0.079/0.020	0.288/0.169	0.565/0.558	0.058/0.007	0.385/0.255	0.530/0.425	0.317/0.238	
		Generation*	0.078/0.020	0.290/0.170	0.567/0.559	0.059/0.008	0.388/0.258	0.528/0.426	0.318/0.239	
	DoRA	Predictor	0.385/0.138	0.825/0.261	0.950/0.935	0.905/0.096	0.975/0.745	1.315/1.025	0.893/0.533	
		Generator	0.078/0.019	0.322/0.179	0.592/0.608	0.880/0.096	0.445/0.328	0.625/0.482	0.490/0.285	
		PredGen	0.073/0.018	0.300/0.175	0.562/0.558	0.066/0.007	0.390/0.262	0.525/0.425	0.319/0.241	
		Generation*	0.072/0.018	0.302/0.176	0.564/0.560	0.065/0.007	0.393/0.265	0.523/0.426	0.320/0.242	

Table 38: Regression performance of different PEFT methods across benchmarks, reported as MAE/MSE. **Generation*** denotes single-token generation.

1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

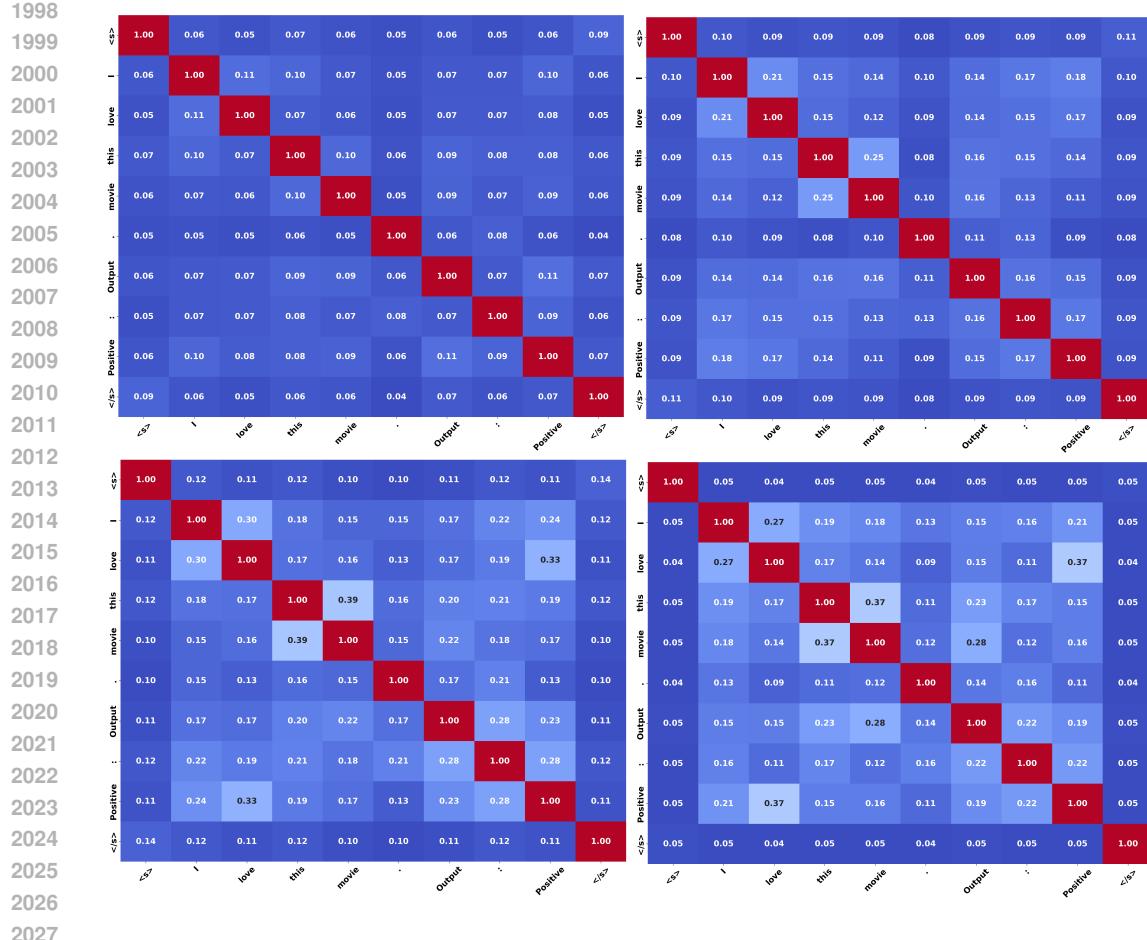


Figure 10: Token-level mutual information on the SST-2 dataset, computed using representations from layers 1, 8, 16, and 30 of MobileLLM. The figure highlights how information evolves across layers during fine-tuning.

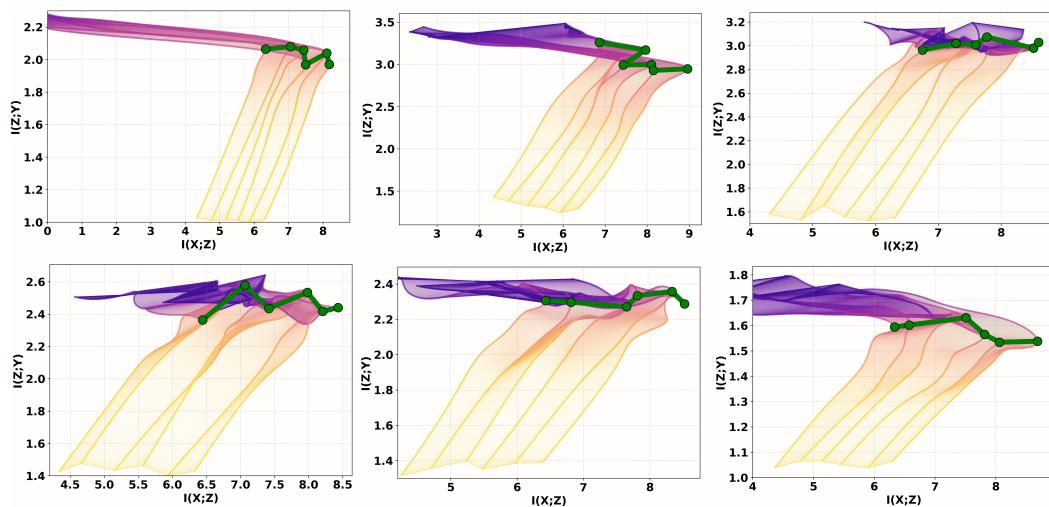


Figure 11: Mutual information on the ETTh1 dataset for different prediction horizons: 24, 96, 128, 380, 512, and 1038. The figure illustrates how information flow varies as the prediction target becomes more distant.