Under review as a conference paper at ICLR 2026

FLOWNIB: AN INFORMATION BOTTLENECK ANALYSIS
OF BIDIRECTIONAL VS. UNIDIRECTIONAL LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bidirectional language models (LMs) consistently show stronger context under-
standing than unidirectional models, yet the theoretical reason remains unclear. We
present a simple information bottleneck (IB) perspective: bidirectional representa-
tions preserve more mutual information (MI) about both the input and the target,
yielding richer features for downstream tasks. We adopt a layer—wise view and
hypothesize that, at comparable capacity, bidirectional layers retain more useful
signal than unidirectional ones. To test this claim empirically, we present Flow
Neural Information Bottleneck (FlowNIB), a lightweight, post-hoc framework
capable of estimating comparable mutual information values for individual layers
in LMs, quantifying how much mutual information each layer carries for a dataset.
FlowNIB takes three inputs—(i) the original LM’s inputs/dataset, (ii) ground—truth
labels, and (iii) layer activations—simultaneously estimates the mutual information
for both the input-layer and layer—label pairs. Empirically, bidirectional LM layers
exhibit higher mutual information than similar—and even larger—unidirectional
LMs. As a result, bidirectional LMs outperform unidirectional LMs across exten-
sive experiments on NLU benchmarks (e.g., GLUE), commonsense reasoning, and
regression tasks, demonstrating superior context understanding.

1 INTRODUCTION

Large language models have brought significant advancements in natural language understanding
(NLU) tasks. Among them, bidirectional models such as BERT have demonstrated superior perfor-
mance in natural language understanding, while unidirectional models like GPT dominate generation
tasks. As shown in Table 1 of Devlin et al.|(2019), the BERT-base model outperforms GPT (Radford)
2018)) across all GLUE benchmarks (Wang et al., |2018)) despite having a comparable model size
— for example, achieving 66.4% accuracy on the RTE task versus GPT’s 56.0%. Moreover, the
empirical evidence (Li et al.;,[2022; [Liu et al.||2019; Ratfel et al.,|2020; [Clark et al.,2020) consistently
demonstrate that bidirectional LMs outperform unidirectional LMs on a wide range of NLU tasks.

While the empirical advantage of bidirectional models is well documented, a clear theoretical account
is limited. We adopt an information-theoretic view based on the Information Bottleneck (IB) principle
(Tishby et al., 2000). Let Z be a layer representation and write I(X; Z) for the mutual information
between the input X and Z, and I(Z;Y") for the mutual information between Z and the label Y.
In IB, desirable representations compress the input (small /(X; Z)) while preserving task-relevant
content (large I(Z;Y)).

Our claim is that, at comparable capacity, a bidirectional layer retains more information about the
input and transmits more information relevant to predicting the target than a unidirectional layer;
formally, for corresponding layers ¢ : I(X;Z;”) > I(X;Z,7),1(Z7;Y) > I(Z;;Y) with
strict inequalities under mild conditions (e.g., when future context reduces input uncertainty or
contributes predictive signal). Intuitively, the bidirectional representation Z;” conditions on both past
and future tokens, whereas the unidirectional representation Z,” conditions only on the past. Since
conditioning reduces entropy (Madiman & Tetali, 2010), H(X | Z;7) < H(X | Z;?), and therefore
I(X;Z;) > 1(X; Z;7). To make the IB analysis applicable to LMs, we formalize the following:

Under review as a conference paper at ICLR 2026

2000 2000

o 1750 1750
1500 1500
0.3 1250 1250
-~))
- < <
% -1000 § ~1000 §
=o0.2 & &
750 750
500 -500
0.1
-250 -250
%0 02 o2 os6 o8 10 12 1a ° 00 02 04 06 08 10 12 14 °

|(x;zf I(X;Z).

Figure 1: Information-plane trajectories under FlowNIB training for (left) DeBERTaV3-Base (bidi-
rectional) and (right) MobileLLM-350M (unidirectional) on MRPC. Each curve shows mutual
information I(Z,;Y") versus I(X; Zy) over training epochs, colored by epoch index. A small cumu-
lative horizontal offset is added to I(X; Z;) for successive layers (+0.1 per layer on the left, +0.05
on the right) to visually separate layer-wise trajectories; this shift is for visualization only and does
not affect the underlying MI values. The green line connects the Optimal Information Coordinate
(OIC) for each layer, from lower to upper layers.

Definition 1.1 (A valid information plane (post hoc)). Let a language model (LM) have L hidden
layers with layer-£ output Z, for £ = 1,..., L, input X, and target Y under data distribution p(z, y).
Let {7 (t)}tZO denote a mutual information estimator family (e.g., MINE, InfoNCE) obtained by
training the estimator for ¢ internal steps on (X, Z;) and (Z,,Y") while the LM is frozen. Define the
epoch-t information plane as T := { (IV(X;2,), I®(Z;Y)) : £=1,...,L} C R%. We
say ZI1) is well-defined if, for all £: (i) Finite-valuedness: 1)(X; Z;) and I)(Z;;Y) are finite[]
(ii) Layerwise indexability: Each point is associated with its layer index ¢ (ties in coordinates are
allowed). (iii) Temporal consistency: Across t, the same estimator architecture/hyperparameters
and the same p(z,) are used, so {Z[!1};> is a well-defined sequence. (iv) Differentiability: The
maps driving 1) are a.e. differentiable in their inputs so that gradients exist when backpropagating
through Z,.

Remark 1.2 (Dynamics). Empirical “fitting” (both I(X; Z;) and I(Z;;Y') rise) and “compression”
(I(X; Zy) decreases while I(Zy; Y') continues to rise) patterns are diagnostic and not required for
well-definedness.

Recent work has used the IB to improve training (Alemi et al.| 2016; Nguyen & Choi,|2017; Achille
& Soatto, [2018)) and to visualize training dynamics (Shwartz-Ziv & Tishbyl |2017; |Cheng et al.| 2019).
Applying IB to language models remains challenging: layer representations are high-dimensional,
MI estimation is expensive. Very recent work applies IB to LMs but is largely descriptive such
as explaining the model behavior (Wang et al., [2025; [Wu et al.,[2025)), attribution-focused studies
(Jiang et al., |2020), in-context learning (Yang et al., 2025)), and pruning-oriented work (Fan et al.,
2021)) which limits to estimate empirical MI of a layer between input-layer and layer-output pairs.
However, to test our claim empirically, we require a joint empirical assessment that captures a layer’s
information-carrying capacity—how much information it preserves from the input and how much it
conveys to the target at a time which helps to show bidirectional layers exhibit higher joint information
capacity than unidirectional layers.

We estimate mutual information using MINE (Belghazi et al., [2018), which optimizes a lower-bound
objective on the true MIE| For a layer Zy, MINE can independently estimate either I(X; Z;) or
I(Zy;Y'). However, our goal is to understand how much information a representation Z, carries
about both the input and the target simultaneously. Independent MINE critics yield values that are

"For deterministic real-valued networks, avoid infinite MI by injecting small noise into Z, or applying a
fixed quantizer.

The Donsker—Varadhan objective underlying MINE is a lower bound in theory; however, with finite data,
finite critic capacity, and imperfect optimization, the resulting estimates are not calibrated and depend on the
critic’s expressiveness. Thus MINE should be interpreted as providing relative, rather than absolute, MI values.

Under review as a conference paper at ICLR 2026

incomparable across layers due to different optimization dynamics and critic capacities, making joint
interpretation difficult.

To address this, we introduce FlowNIB, a simple extension of MINE that jointly approximates
I(X; Zy) and I(Z;;Y) within a unified optimization process. FlowNIB trains two critics using a
curriculum parameter «(¢) that initially emphasizes I(X; Z,) and gradually shifts toward I(Zy;Y")
over T iterations. This produces a continuous information—flow trajectory

which places both MI quantities on the same geometric path and makes them directly comparable
across layers. From this trajectory, we select the point where the representation jointly maximizes
information about X and Y'; we refer to this coordinate as the Optimal Information Coordinate (OIC).

Definition 1.3 (Optimal Information Coordinate (OIC)). Let each epoch ¢t € {0,...,T} yield
xy = I®(X; Z,) and y; = IV(Z,;Y). For a trade-off weight v € [0, 1], we define OIC for layer
tel

t*(,-)/) € argmtax YT+ (1 - 7) Yt, OIC"/ = (xt*('y)a yt*(v))'

A scale-balanced choice is v* = o fRy, where R, = max; x; — min; x; and Ry, = max; y; —

ming .

We then compare OICs after fine-tuning on the same dataset between bidirectional and unidirectional
LMs to see which carries more information for both input and output. In Figure [I| we see the
bidirectional LM has a higher OIC than the unidirectional LM. Beyond the theoretical explanation,
we empirically compare OICs using FlowNIB across diverse datasets and show clear benefits for
downstream tasks. In particular, on standard benchmarks such as GLUE, commonsense reasoning,
and regression tasks, a small bidirectional model outperforms a larger unidirectional model.

Contributions. (i) We provide a theoretical explanation for why bidirectional language models
achieve better context understanding, showing that they can carry higher mutual information than
unidirectional models. (ii) To estimate mutual information in high-dimensional LLM representations,
we propose FlowNIB, a simple and testable framework that jointly estimates I(X; Z;) and I(Z;;Y),
quantifying the information capacity of Z,. (iii) Empirically, we show that downstream task per-
formance is strongly correlated with mutual information: models (and layers) with higher mutual
information about both the input X and the target Y consistently achieve higher accuracy.

2 METHODOLOGY

Unidirectional language models, such as GPT, construct each hidden representation using only left-
to-right context (Allal et al.,2024)). In contrast, bidirectional models like BERT encode each token
using both past and future context (He et al.,|2020; Liu et al.,[2019). This architectural asymmetry
raises a natural question: can bidirectional representations carry more information?

z7) be the

N

Let X = (z1,...,%,) denote the input sequence. For layer ¢, let Z,” = (z17,...
forward (causal) representations, where z;” depends only on <. Let Z;~ = (21 ,..., 25) be the
backward (anti-causal) representations, where z;~ depends only on z>;. A unidirectional model
uses Z,”, whereas a bidirectional model augments this with Z;~ and forms the full bidirectional
representation Z;” = (Z 2) (e.g., by concatenation or another fusion). We measure repre-
sentational quality via mutual information: I(X;Z) = H(X)— H(X | Z), where H(X | Z) is
the conditional entropy of the input given Z. Because Z;” includes strictly more context than 7,7, it
can, in principle, reduce uncertainty about X more effectively. This follows from the monotonicity of
conditional entropy: conditioning on more information reduces entropy (Theorem|[A.2). In this sense,
Z;~ defines an information-theoretic upper bound on how much information any representation
obtained by deterministically merging the forward and backward directions can retain about the input,
and this upper bound is at least as large as that of the purely forward representation Z;”. Therefore,
bidirectional models can, in principle, produce latent representations that retain at least as much
(often strictly more) information about the input sequence as purely unidirectional models.

Theorem 2.1 (Full version in Appendix [A3). Bidirectional representations preserve more mutual in-
formation about the input and the output: I(X; Z;7) > I(X;Z;”)and I(Z;7;Y) > I1(Z;7;Y).

Under review as a conference paper at ICLR 2026

While mutual information quantifies how much information a representation Z, preserves about the
input or the target, it does not describe the internal structure or complexity of that representation.
To complement MI, we analyze the spectral properties of Z, via effective dimensionality, which
captures how many orthogonal directions in representation space carry significant variance. This
helps characterize how richly each layer encodes information.

Definition 2.2 (Generalized Effective Dimensionality). Let ¥z, = Cov(Z,) and let Ay, ..., A, be
its nonzero eigenvalues, where n = rank(Xz,). Define the normalized spectrum p; == A;/ 37| ;.
The generalized effective dimensionality of Z, under a spectral functional M is

deii (Zo; M) := exp (M(p)),

where M (p) is a real-valued function of the spectrum that satisfies: (i) nonnegativity: M(p) > 0;
(i) maximality: M (p) < log n, with equality iff p; = 1/n for all ¢; (iii) Schur-concavity: if p’ >~ p
then M(p’) < M(p).

Examples. (1) Shannon entropy: M(p) = —> " p;logp; yields deg(Z;) = exp(H(p))
(Roy & Vetterli, 2007). (2) ¢, participation ratio: M(p) = log(1/ Y1 | p?) gives det(Z¢) =
(O Ai)?/ >, AZ. Intuitively, the /5 participation ratio measures how many eigen-directions are
effectively active: if the spectrum is spread out over many eigenvalues, deg is large, whereas if most
variance concentrates on a few eigenvalues, d.g becomes small. Unless otherwise stated, we adopt
the /5 version as the default. The effect of alternative measures is explored in Appendix [C.3]

Lemma 2.3 (Bidirectional Representations Exhibit Higher Spectral Complexity). Let Z;* € R de-
note the unidirectional representation and Z;* := (Z;", Z;~) € R?P the concatenated bidirectional
representation of an input X. If Cov(Z;~, Z;”) is nonsingular, then deg (Z;7; M) > deg(Z;7; M),
with equality iff Z;~ is conditionally redundant given Z;”, i.e., Cov(Z;~ | Z;”) = 0.

See Appendix [A23] for the proof and Appendix [C.2]for an ablation.
@ Key Finding

Bidirectional representations retain at least as much (and typically strictly more) mutual infor-
mation about the input than unidirectional representations. They also exhibit higher effective
dimensionality throughout depth, reflecting richer and more expressive latent spaces.

FlowNIB. For empirical validation of Theorem 2.1} we need a quantitative way to measure mutual
information and check whether a bidirectional model yields higher MI than a unidirectional model at
each layer. We therefore use FlowNIB, which is based on MINE. Because we work with finite data
and a neural network critic, the resulting MI values are only approximate and should be viewed as
relative scores, not exact or perfectly calibrated quantities. We use these scores to compare different
layers and model types (e.g., bidirectional vs. unidirectional) and to study how they correlate with
downstream accuracy, rather than to claim new exact information-theoretic bounds. After fine-tuning
the LM on a dataset, FlowNIB approximates the mutual information of each layer, quantifying how
much information a layer carries about both the input and the target. FlowNIB is simple: it trains two
independent MINE critics by minimizing a single objective with a time-varying weight:

£ot) = (e 1(X:Z0) + (1-a() 1(ZY)).)

Here a(t) : {0,...,T} — [0,1] is a discrete, monotonically non-increasing schedule. A key
motivation for the schedule is that training two separate MINE critics for I(X; Zy) and I(Zy;Y')
produces MI values that are not comparable: neural MI estimators depend strongly on critic capacity,
optimization dynamics, and early stopping. FlowNIB resolves this by coupling both critics into
a single optimization trajectory. Early in training (o ~ 1), the objective focuses on maximizing
I1(X; Zy), so the critic learns how much information the representation Z, can retain about the input
X. As «(t) decreases, the emphasis gradually shifts toward I(Z,;Y), and the critic instead learns
how much of that representation is predictive of the target Y. This curriculum allows the critic to
explore, along one continuous training path, the extent to which Z; is informative about X and about
Y. Because both MI estimates are produced by the same critic network under shared optimization
dynamics, each point (I(Y)(X; Z,), I)(Z,;Y)) along the trajectory can be interpreted as a joint

Under review as a conference paper at ICLR 2026

estimate of “how much Z, knows about X and how much it tells us about Y,” and these pairs are
geometrically aligned and directly comparable across time and across layers.

At some iteration t*, the critic has simultaneously optimized both quantities under comparable
conditions, making the pair (I**")(X; Z;), I®*")(Z,;Y")) a faithful measure of how much information
the representation Z, retains about the input and how much of that information it transforms into
target-relevant structure. We call this point the Optimal Information Coordinate (OIC). Because the
critic is a trainable neural network, independent optimization may cause it to memorize patterns of
X or Y rather than estimate MI consistently. FlowNIB avoids this by aligning both critics within
a unified optimization procedure, preventing such memorization from distorting the comparison
between layers or between model types.

Formally, a(t) : {0,...,T}—[0,1] is a discrete, monotonically non-increasing schedule. We use
a(0) = 1 and a(t+1) = max{0, a(t) — 6}, where § > 0 is a small step (e.g., § = 0.001); if T is
small, a larger § ensures the schedule covers [1, 0] within T steps (see Appendix for an ablation
on 6). At each step ¢, we record the information-plane coordinate (I (X; Z;), I™(Z,;Y)).

During training, we optionally normalize I(X; Z;) by the per-layer effective dimension d.g(Z,) and
I(Z4;Y) by deg (Y) to reduce scale effects. This normalization is used only for optimization and
does not affect the MI values we report. Figure [7(a) shows that the effective dimension depends
strongly on the size of the output space. When the label space of YV is small, deg(Z,) starts at a
moderate value and typically drops as we go deeper, because the task does not require the network to
maintain a large amount of information. When Y is high-dimensional, d.g(Z;) instead increases
with depth as the network needs richer representations to solve the task.

A similar pattern appears in Figure 8] for mutual information, consistent with our Key Finding 2} For
low-dimensional Y, I(X; Z) usually decreases with depth, while I(Z;Y") increases only slightly.
For high-dimensional Y, 1(Z;Y") rises much more sharply and tends to saturate later. These trends
explain the apparent scale imbalance in Figure 3} on GLUE (where labels take only 2-3 values),
I(X; Z) often appears much larger than I(Z;Y") simply because the label space is small. Since
effective dimension correlates with the amount of mutual information a layer can realistically encode,
normalizing by deg(-) provides a simple, task-aware scaling that keeps the FlowNIB objective
in equation [I] balanced (see Proposition [B.3]and Ablations[C.2] [C.3] and[C.4]for details).

Overall epochs t = 0,..., T, we then select the OIC for each layer, which summarizes the layer’s
capacity to jointly capture information about the input and the target, as detailed in Figure[3]

In Practice. (i) Fine-tune the LM on a dataset with inputs X and targets Y. (ii) Run the model once to
cache (XY, Z,) for all layers ¢. (iii) For each ¢, fit two critics on this fixed cache—one for I(X; Z,
and one for I(Zy; Y)—using the same neural MI setup (iv) Train the critics by minimizing equation
with the schedule «(t). (v) Compute the OICs. We report these as relative measurements (e.g., for
OIC selection) rather than absolute MI valuesE| Full details are in Appendix @

3 EXPERIMENTS

This section presents empirical evidence for our theoretical findings. We conduct two complementary
evaluations. First, after fine-tuning each model on a dataset, we apply sequence-level FlowNIB to
every layer ¢, obtaining per-epoch coordinates (1 (X5 Zy), IW(Zy; Y)). In practice, we take X to
be the embedded input sequence (token embeddings plus positional embeddings from the model’s
embedding layer), and Z;(x) to be a sequence-level representation at layer ¢. For each layer we
then select the OIC to summarize its joint ability to retain input information and align with the
target; comparing OICs across layers, we want to show that bidirectional LMs consistently achieve
higher information than unidirectional LMs. Second, because large bidirectional LMs are limited,
we perform downstream fine-tuning under a matched parameter budget (<600M parameters) on
both classification and regression benchmarks, and compare task performance to test whether the
information advantage translates into end-task gains. To ensure a fair comparison, all models use
identical data splits, training budgets, and a common PEFT recipe, RoCoFT (Kowsher et al.,[2024),
which updates a small subset of existing weight rows without introducing new adapter parameters

3 All MI numbers are neural lower-bound estimates with fixed hyperparameters across layers and models; no
additional noise or quantization is added.

Under review as a conference paper at ICLR 2026

(we update three rows per linear layer). This setup is closer to full fine-tuning in parameterization
while preserving pretrained information and keeping the fine-tuning footprint comparable across
architectures. In contrast, adapter-based PEFT methods add new parameters that can confound
comparisons. Additional results with LoRA appear in Appendix Table[7] For FlowNIB, we report
relative MI quantities (for OIC selection and comparison) using the same estimator architecture, batch
size, negative sampling scheme, optimizer, and training steps across layers and models; absolute MI
numbers are not the focus.

@

Poolin,

Figure 2: Illustration of representation extraction methods: (a) prediction from CLS-token (bidirec-
tional), (b) prediction from pooled embedding (unidirectional), (c) prediction from masked token
(bidirectional), and (d) prediction from next-token generation (unidirectional).

Model framework. While standard approaches apply a pooling operation by averaging over the
final hidden states followed by a classifier, we adopt an alternative strategy inspired by the PredGen
framework (Kowsher et al., |2025). Instead of averaging, PredGen follows the native behavior of
LMs—e.g., masked prediction or next-token generation—for prediction tasks. PredGen demonstrates
that leveraging the model’s generative or masking capability, rather than relying solely on pooled
representations, retains higher mutual information with the input and improves prediction quality.
However, a key limitation of PredGen is the increased computational cost of multi-token generation,
especially for regression-type tasks.

To address this, we modify this framework to use a single-token generation or masked prediction setup
for both the downstream task and mutual information estimation, as illustrated in Figure 2] (right).
Specifically, the model predicts a single masked token at a designated position, from which we extract
the corresponding final hidden state. This representation is then passed through a lightweight MLP
classifier. In Table[38] we compare single-token prediction with PredGen across diverse datasets; see
Appendix [L]for details.

In short, we focus on answering the following three research questions: (i) Do bidirectional models
preserve more useful information than unidirectional models? (ii) Does higher mutual information
lead to better context modeling? (iii) Does predicting a single token (e.g., masked token or next
token) lead to better performance than traditional methods?

@ Key Finding

We illustrate a simplified variant of the PredGen framework that replaces multi-token genera-
tion with single-token generation or masked prediction. This approach achieves comparable
performance to PredGen while substantially reducing inference cost and training complexity. See
Appendix Table38] for the comparison between single token-based prediction and PredGen.

Datasets: We evaluate our models across 16 diverse NLP datasets spanning classification and
regression tasks to ensure a comprehensive analysis of representational learning under the information
bottleneck framework. For classification, we include SST-2, MRPC, QNLI, RTE, MNLI, and
CoLA from the GLUE benchmark (Wang et al., 2018), as well as BoolQ (Clark et al. [2019),
HellaSwag (Zellers et al., 2019), and SociallQA (Sap et al.} 2019), covering a range of linguistic
challenges such as sentiment analysis, natural language inference, grammatical acceptability, question
answering, and commonsense reasoning. The regression tasks comprise STS-B (Cer et al.| 2017),
SICK (Marelli et al., 2014a), WASSA (Vinayakumar et al.,|2017), LCP (Shardlow et al., [2020),
CRP (Shardlow et al.,[2020), and Humicroedit (Hossain et al., 2019), addressing semantic textual

Under review as a conference paper at ICLR 2026

6.0

4.5

1(X;2)

1.5

0.0

1.2

0.8

nZ;Y)

0.4

0.0

Direction
Unidirectional
[Bidirectional

SST-2

SST-2

RTE

ESSSSSSS S SSSSSRRRY

Hel

laSwag

RSSSSSSSSSSSSSSSKR Ny

SICK

HellaSwag

ColLA

CoLA

SICK

==

GPT-2_medium
GPT-2_large
SmolLM2-135M
SmolLM2-360M
MobileLLM-125M
MobileLLM-350M
MobileLLM-600M

(NN

ISSSSSSSSS SNSRI

STS-B Lcep

GPT-2_medium
GPT-2_large
SmolLM2-135M
SmolLM2-360M
MobileLLM-125M
MobileLLM-350M
MobileLLM-600M

ganonm

STS-B LC

deberta-v3-base
deberta-v3-large
roberta-base
roberta-large
moden-bert-base
modern-bert-large

BON0ND

deberta-v3-base
deberta-v3-large
roberta-base
roberta-large
moden-bert-base
modern-bert-large

Figure 3: Average OIC I(X; Z) (top) and I(Z;Y") (bottom) across all layers for unidirectional and
bidirectional LMs over multiple datasets. Bars show dataset-wise and average values, comparing
information flow differences between architectures.

2.5
2.00
0.5
2.0 1.75
0.4 1.50
s T =15 o
%0.3 > $1.25
[))
Son =1.00
0.2
0.75
0.1 0.5 0.50
o o0 0.25
"o 1 2 3 4 5 8 a 6 8 10 2 6 8 10 12 14
1(X;2) 1(X;2) 10X;2)
0.40 1.6
0.35 1.4
0.30 12— ———
5025 s1o
No.20 Nos
0.15 0.6
0.10 0.4
0.05 0.2
3 a 0005 2 a 8 QX 1 2 3 a 5 6
1(X;2) 1X;2) 1(X;2)

Figure 4: Mutual information flow comparison between bidirectional (top) and unidirectional (bottom)
models across three datasets. The first column shows results on the SICK dataset using DeBERTa-
base and MobileLLM-350M. The second column shows SST-2 results using RoBERTa-base and
MobileLLM-350M. The third column presents results on the CoLA dataset using DeBERTa-v3-Large

and MobileLLM-600M.

Under review as a conference paper at ICLR 2026

—— SST-2 «— MRPC —— QNLI-1 —— RTE —— CoLA —— QNLI-2
(a) RoBERTa-Base (b) RoBERTa-Large (c) SmolLM2-135M (d) SmolLM2-360M

60 M

2 4 6 8 10 12 5 10 15 20 25 10 20 30 10 20 30
Layers Layers Layers Layers

Accuracy

Figure 5: Layer-wise linear probe accuracy. For each layer ¢, a logistic regression classifier is trained
on frozen representations Z,(x) to predict dataset labels. Accuracy increases with depth across all
architectures and tasks, indicating that deeper layers encode stronger task-aligned information.

similarity, lexical complexity prediction, and humor detection. Dataset sizes range from approximately
2,500 to 400,000 examples, with either binary or multi-class classification labels, or continuous-
valued targets for regression. We exclude generation-based tasks because bidirectional language
models are not designed for auto-regressive generation; instead, we focus on tasks requiring strong
contextual representations to assess representational sufficiency under the information bottleneck.
Additional dataset statistics are provided in Table[I0]in the Appendix. In addition, the details of used
models architecture, hyperparameters, evaluation metrics, and environment setup are provided in
Appendix [, Appendix[J} Appendix [H] and Appendix [G] respectively.

Ml results. To measure layerwise information, we first fine-tune each model on the target dataset,
then run a single pass to cache triplets (X,Y, Z,) for every layer ¢ € L, where Z, denotes the
layer’s activations on X. Given this fixed cache, we instantiate two identical two- fully connected
layer (nn.Linear() in pytorch) estimator networks (same widths, nonlinearity, and initialization): one
estimates I (X; Z,) and the other estimates I(Z;;Y"). Both estimators are trained jointly under the
common FlowNIB objective in Eq. equation |I|with a discrete schedule «/(¢) that linearly decays from
1t00: a(0) =1, a(t+1) = max{0,a(t) — 6}, J = 0.001. Unless noted otherwise, we use a
batch size of 128, T' = 2000 training epochs, run each experiment with 10 random seeds, and the
same optimizer and negative-sampling scheme across all layers and models. At each step ¢ we record
the information-plane coordinate (I)(X;Z;), IV (Z,;Y)). After training, for each layer ¢ we
select its OIC from these coordinates; the OIC summarizes the layer’s capacity to jointly capture input
and target information. We apply the same estimator architecture, schedule, and hyperparameters to
all bidirectional and unidirectional models, enabling a like-for-like comparison. The full procedure is
given in Algorithm[I] The detailed random-seed results are provided in Appendix [C.6]

Figure [3|compares the average OIC across all layers between bidirectional and unidirectional LMs.
We observe that bidirectional models consistently retain higher mutual information for both I(X; Z)
and I(Z;Y). Notably, even smaller bidirectional models (e.g., RoOBERTa-base, 125M) surpass
larger unidirectional models (e.g., MobileLLM-600M, SmolLM2-360M) in OIC on many datasets.
To further elucidate this behavior, Figure] visualizes the information-plane trajectories layer by
layer over the estimator training horizon 7T, contrasting bidirectional and unidirectional models on
multiple datasets. Across layers and epochs, bidirectional models trace trajectories with systematically
higher I(X; Z) and I(Z;Y), aligning with their larger OICs. Complementarily, Figure E| shows a
token-level MI analysis from the final layer (after fine-tuning on SST-2), which further highlights the
representational advantage of bidirectional models.

Layer-wise Linear Probing. To quantify how much task-relevant information each layer encodes,
we conduct a standard layer-wise linear probing analysis. Given a fine-tuned model with layers {¢ =
1,..., L}, let Zy(x) € R% denote the hidden representation at layer ¢ for an input example x. For
each dataset D = {(z;,y;)}},, we extract frozen representations Zy = { Z(z;) |i=1,..., N}

For every layer ¢, we train a logistic regression classifier on the fixed representations Z,(x) while
keeping all model parameters frozen. The procedure consists of three steps: (i) extract Z;(x;) for
each training example, (ii) train a logistic regression classifier on the pairs (Z((.T,,;), Yi), and (iii)
evaluate the trained probe on the held-out split to obtain a layer-specific classification accuracy. This
metric quantifies how linearly decodable the labels are from each layer. If a simple linear classifier
achieves high accuracy at depth ¢, then Z, contains strong task-relevant structure.

Under review as a conference paper at ICLR 2026

Figure B]shows the resulting layer-wise probe accuracies. Across all architectures (RoOBERTa-Base,
RoBERTa-Large, SmoLLM2-135M, SmoLLLM2-360M) and across all datasets (SST-2, MRPC,
QNLI-1, RTE, CoLLA, QNLI-2), we observe a consistent trend: bidirectional models exhibit higher
probe accuracy than unidirectional models at nearly every depth, including the earliest layers. This
indicates that bidirectional representations retain more task-relevant mutual information and hence a
higher OIC, leading to richer and more linearly decodable features throughout the network. The linear

probing results therefore provide independent evidence supporting our main claim that bidirectional
architectures produce more informative representations than unidirectional ones.

@ Key Finding

OIC is strongly correlated with model performance: representations with higher OIC values—i.e.,
high mutual information with both the input and the output—consistently yield better downstream

task accuracy.

Evidence for the MI-Performance Link.
A clear pattern emerges: bidirectional mod-
els (top block of Table [I) consistently
achieve higher average accuracy and lower
regression loss than unidirectional mod-
els (bottom block), even when the latter
have comparable or larger parameter counts.
In particular, smaller bidirectional models
such as DeBERTa-v3-Base, RoOBERTa-Base,
and ModernBERT-Base outperform larger
unidirectional models (e.g., GPT-2 Large,
MobileLLM-600M) on both classification
and regression metrics. This indicates that
bidirectional architectures provide more effec-
tive context understanding under the same or
lower compute budget. These findings align
closely with our mutual-information analy-
sis in Section [2] FlowNIB shows that lay-
ers in bidirectional models carry systemati-
cally higher MI with both the input X and
the target Y than their unidirectional counter-
parts. Therefore it supports our central claim:
models with higher MI about the input and
target yield better downstream task perfor-
mance, and bidirectional models benefit from
this advantage more strongly than unidirec-
tional models. The full results are provided

in Appendix

Model Method Acc. Loss

DeBERTa-v3-Base Pooling 77.90 | 0.209/0.314
Masking 81.52 | 0.197/0.298
DeBERTa-v3-Large | Pooling 80.96 | 0.187/0.295
Masking 84.73 | 0.184/0.282

RoBERTa-Base Pooling 76.53 | 0.218/0.314
Masking 79.95 | 0.206/0.308
RoBERTa-Large Pooling 80.14 | 0.197/0.298

Masking 83.95 | 0.294/0.297
ModernBERT-Base | Pooling 76.74 | 0.229/0.324
Masking 79.73 | 0.220/0.320
ModernBERT-Large | Pooling 80.35 | 0.200/0.305
Masking 83.84 | 0.219/0.325

GPT-2 Medium Pooling 71.02 | 0.313/0.387
Generation | 72.04 | 0.300/0.375
GPT-2 Large Pooling 71.26 | 0.288/0.366

Generation | 72.07 | 0.279/0.354
SmolLM2-135M Pooling 71.37 | 0.218/0.322
Generation | 72.82 | 0.210/0.317
SmolLM2-360M Pooling 72.95 | 0.213/0.314
Generation | 74.40 | 0.207/0.310
MobileLLM-125M | Pooling 70.48 | 0.211/0.320
Generation | 71.92 | 0.205/0.314
MobileLLM-350M | Pooling 71.89 | 0.200/0.308
Generation | 73.73 | 0.198/0.304
MobileLLM-600M | Pooling 74.50 | 0.193/0.302
Generation | 76.55 | 0.193/0.302

Table 1: Accuracy (%). Acc. denotes the average
accuracy over all classification tasks (detailed results
in Table |§|), and Loss denotes the average MSE/MAE
over all regression tasks (detailed results in Table E[)

Model Layer | Heads | Embd. Dim Max Length Vocab Size | Params | FLOPs | MACs | Time
ModernBERT-base | 22 12 768 8192 50368 149M 28.258 14.118 | 1.15
ModernBERT-large | 28 16 1024 8192 50368 395M 87.883 | 43.923 | 2.53
RoBERTa-base 12 12 768 514 50265 125M 21.760 10.870 | 2.11
RoBERTa-large 24 16 1024 514 50265 355M 77.344 | 38.656 | 6.06
DeBERTa-v3-base 12 12 768 512 128100 184M 39.275 19.629 | 2.41
DeBERTa-v3-large | 24 16 1024 512 128100 435M 136.943 | 68.451 | 6.48
GPT2-small 12 12 768 1024 50257 117M 21.756 10.872 | 2.10
GPT2-medium 24 16 1024 1024 50257 345M 77.342 | 38.655 | 6.04
GPT2-large 36 20 1280 1024 50257 762M 181.254 | 90.597 | 12.46
SmolLM-135M 30 9 576 2048 49152 135M 27.185 13.590 | 4.10
SmolLM-360M 32 15 960 2048 49152 360M 80.541 | 40.265 | 7.04
MobileLLM-125M | 30 9 576 2048 32000 125M 31.900 15.950 | 3.83
MobileLLM-600M | 40 18 1152 2048 32000 600M 154.408 | 77.196 | 8.47

Table 2: Overview of bidirectional (top) and unidirectional (bottom) model architectures evaluated in
our experiments, including FLOPs and MACs. Training time.

Under review as a conference paper at ICLR 2026

Bidirectional vs. Unidirectional Model Efficiency. Although bidirectional Transformers are theo-
retically more expensive— due to full-sequence self-attention at every layer—the empirical results in
Table[2]reveal a different practical trend. When controlling for the same training conditions (learning
rate 2 x 1072, batch size 64, and two epochs on SST-2 using a single H100 GPU), several smaller
bidirectional models not only train faster but also achieve higher accuracy than larger unidirectional
models.

For example, RoOBERTa-base (125M, bidirectional) requires only 21.8 GFLOPs and trains in 2.11 s
per step—substantially faster than MobileLLM-125M (3.83 s) and even the larger GPT2-medium
(4.38 s), despite both being unidirectional models. Similarly, ModernBERT-base (149M) achieves
competitive compute cost (28.3 GFLOPs, 1.15 s) compared to unidirectional models of similar or
larger size, such as SmolLM2-135M (2.52 s) or GPT2-large (12.46 s). This pattern continues at larger
scales: RoOBERTa-large (355M, 6.06 s) trains faster and with fewer FLOPs than Mobile LLM-360M
(7.04 s) and significantly outperforms GPT2-large (762M, 12.46 s). Even the largest bidirectional
model, DeBERTa-v3-large, remains competitive with the unidirectional MobileLLM-600M despite
having more expressive capacity.

Combined with our mutual information analysis and linear probing results, these findings demon-
strate that bidirectional architectures encode richer, more task-relevant information at each layer.
Consequently, a smaller bidirectional model can match or exceed the performance of a much larger
unidirectional model—while requiring less compute and achieving faster training time. Thus, in
practical settings, bidirectional models offer a more efficient and powerful trade-off between compu-
tational cost and representational quality.

4 RELATED WORK

Information bottleneck in deep learning The IB principle has been studied from both practical
and theoretical perspectives in deep learning. On the practical side, (Alemi et al., 2016} [Higgins|
let all, 2017 [Achille & Soatto} 2018)) formulated the IB problem as a deep learning objective and
introduced variational approximations to enable optimization via gradient descent. On the theoretical
side, (Tishby & Zaslavsky}, 2015}, [Shwartz-Ziv & Tishby| [2017) provided an information-theoretic
framework for understanding deep learning, establishing the IB as a foundational tool for analyzing
representation learning and generalization in deep learning. These fundamental ideas have inspired a
wide range of follow-up works (Goldfeld & Polyanskiyl, [2020; [Saxe et al 2019} [Shwartz-Ziv], [2022)
that further investigate deep learning dynamics through the lens of information theory.

Mutual information estimation Mutual information quantifies the statistical dependence between
two random variables and plays an important role in the IB principle. However, the mutual information
is notoriously difficult to estimate between continuous high-dimensional random variables. Traditional
nonparametric approaches (Fraser & Swinneyl, [1986; Moon et al.,[1995},[Darbellay & Vajdal, [T999;
Suzuki et all, 2008; [Kwak & Choil, 2002; Kraskov et al., [2004) typically are not scalable with
dimension and sample size. To achieve an efficient estimator, recent work (Nguyen et al, 2010;
Nowozin et al.| 2016)) characterized the mutual information of two random variables with the Kullback-
Leibler (KL-) divergence between their joint distribution and the product of the
marginals and used a dual representations to cast the KL divergence. The Mutual Information Neural
Estimator (MINE) (Belghazi et al.l 2018)) utilized the dual representation of the KL divergence and
estimated mutual information via gradient descent over neural networks and thus scaled well.

5 CONCLUSION

This work investigates why bidirectional models outperform unidirectional ones in natural language
understanding and context modeling, combining theory with empirical evidence. We introduce
FlowNIB, a dynamic, IB-based framework that tracks layer-wise mutual information over training.
Our results show that bidirectional models retain more input information and more predictive
information, yielding stronger representations and better downstream performance. FlowNIB offers a
principled explanation for this advantage and suggests new directions for analyzing and improving
deep language models.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
through noisy computation. IEEE transactions on pattern analysis and machine intelligence, 40
(12):2897-2905, 2018.

Alexander A Alemi, lan Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm -
blazingly fast and remarkably powerful, 2024.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531-540. PMLR, 2018.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Hao Cheng, Dongze Lian, Shenghua Gao, and Yanlin Geng. Utilizing information bottleneck to
evaluate the capability of deep neural networks for image classification. Entropy, 21(5):456, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, 2006.

Georges A Darbellay and Igor Vajda. Estimation of the information by an adaptive partitioning of the
observation space. IEEE Transactions on Information Theory, 45(4):1315-1321, 1999.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Chun Fan, Jiwei Li, Xiang Ao, Fei Wu, Yuxian Meng, and Xiaofei Sun. Layer-wise model pruning
based on mutual information. arXiv preprint arXiv:2108.12594, 2021.

Andrew M Fraser and Harry L Swinney. Independent coordinates for strange attractors from mutual
information. Physical review A, 33(2):1134, 1986.

Ziv Goldfeld and Yury Polyanskiy. The information bottleneck problem and its applications in
machine learning. IEEE Journal on Selected Areas in Information Theory, 1(1):19-38, 2020.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Nabil Hossain, John Krumm, and Michael Gamon. ” president vows to cut; taxes;, hair”: Dataset and
analysis of creative text editing for humorous headlines. arXiv preprint arXiv:1906.00274, 2019.

Zhiying Jiang, Raphael Tang, Ji Xin, and Jimmy Lin. Inserting information bottlenecks for attribution
in transformers. arXiv preprint arXiv:2012.13838, 2020.

Md Kowsher, Tara Esmaeilbeig, Chun-Nam Yu, Mojtaba Soltanalian, and Niloofar Yousefi. Ro-
coft: Efficient finetuning of large language models with row-column updates. arXiv preprint
arXiv:2410.10075, 2024.

11

Under review as a conference paper at ICLR 2026

Md Kowsher, Nusrat Jahan Prottasha, Prakash Bhat, Chun-Nam Yu, Mojtaba Soltanalian, Ivan
Garibay, Ozlem Garibay, Chen Chen, and Niloofar Yousefi. Predicting through generation: Why
generation is better for prediction. arXiv preprint arXiv:2502.17817, 2025.

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. Estimating mutual information.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Nojun Kwak and Chong-Ho Choi. Input feature selection by mutual information based on parzen
window. IEEE transactions on pattern analysis and machine intelligence, 24(12):1667-1671,
2002.

Qintong Li, Zhiyong Wu, Lingpeng Kong, and Wei Bi. Explanation regeneration via information
bottleneck. arXiv preprint arXiv:2212.09603, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
sub-billion parameter language models for on-device use cases. In Forty-first International
Conference on Machine Learning, 2024.

Mokshay Madiman and Prasad Tetali. Information inequalities for joint distributions, with interpreta-
tions and applications. IEEE Transactions on Information Theory, 56(6):2699-2713, 2010.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli. A SICK cure for the evaluation of compositional distributional semantic models.
In Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), pp. 216-223, Reykjavik, Iceland, May 2014a. European Language Resources Associ-
ation (ELRA). URL http://www.lrec—-conf.org/proceedings/lrec2014/pdf/
363_Paper.pdf.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli. The sick (sentences involving compositional knowledge) dataset for relatedness and
entailment. URL: https://doi. org/10.5281/zenodo, 2787612, 2014b.

Young-II Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information using
kernel density estimators. Physical Review E, 52(3):2318, 1995.

Thanh T Nguyen and Jaesik Choi. Layer-wise learning of stochastic neural networks with information
bottleneck. arXiv preprint arXiv:1712.01272, 2017.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847-5861, 2010.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,

2016.
Alec Radford. Improving language understanding with unsupervised learning. OpenAI Res, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606—610. IEEE, 2007.

12

http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf

Under review as a conference paper at ICLR 2026

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

Matthew Shardlow, Michael Cooper, and Marcos Zampieri. Complex: A new corpus for lexical
complexity prediction from likert scale data. arXiv preprint arXiv:2003.07008, 2020.

Ravid Shwartz-Ziv. Information flow in deep neural networks. arXiv preprint arXiv:2202.06749,
2022.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi Kanamori. Approximating mutual informa-
tion by maximum likelihood density ratio estimation. In New challenges for feature selection in
data mining and knowledge discovery, pp. 5-20. PMLR, 2008.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pp. 1-5. Teee, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

R Vinayakumar, B Premjith, Sachin Kumar, Soman Kp, and Prabaharan Poornachandran. deepcyber-
net at emoint-2017: Deep emotion intensities in tweets. In Proceedings of the 8th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 259263,
2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Shaojie Wang, Sirui Ding, and Na Zou. Rethinking the understanding ability across llms through
mutual information. arXiv preprint arXiv:2505.23790, 2025.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallstrom, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, bet-
ter, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context
finetuning and inference. arXiv preprint arXiv:2412.13663, 2024.

Xuansheng Wu, Jiayi Yuan, Wenlin Yao, Xiaoming Zhai, and Ninghao Liu. Interpreting and
steering 1lms with mutual information-based explanations on sparse autoencoders. arXiv preprint
arXiv:2502.15576, 2025.

Zhou Yang, Zhengyu Qi, Zhaochun Ren, Zhikai Jia, Haizhou Sun, Xiaofei Zhu, and Xiangwen Liao.
Exploring information processing in large language models: Insights from information bottleneck
theory. arXiv preprint arXiv:2501.00999, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 1110611115, 2021.

13

Under review as a conference paper at ICLR 2026

CONTENTS

T TIntreduction|

2 Methodology|

Xperiments

4 Related workl

5 Conclusion

|A Bidirectional vs Unidirectional Representation|

[B_FlowNIB: Flow Neural Information Bottleneckl

[C Ablation Study|

IC.1 Effect of step size 0 on FlowNIB dynamics|

|C.2 Effective Dimensionality Across Models|

|C.3 Effective Dimensionality vs. Output Complexity:|

|C.4 Mutual Information Dynamics Across Output Dimensions and Layers:|

|IC.5 Validating Generalized Effective Dimensionality|

|IC.6 Stability Across Random Seeds|.

|C.7 Bidirectional vs. Unidirectional Attention in Time-Series Forecasting|

[D ToRA Based Performance Comparison|

Details Resul

[F_Datasefl

(G Environment Setup|

H FEvaluation Meificy

I Model Description|

|J Hyperparameters|

[K_Model Profile Information|

14

10

10

15

19

23
23
23
24

24
24
25

26

27

28

29

29

29

29

30

33

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

We used a large language model (GPT) solely for minor writing assistance, such as grammar checking,
language polishing, and improving readability. No content generation, ideation, experimental design,
data analysis, or result interpretation was performed by the LLM. All research contributions, technical
content, and results in this paper are entirely the work of the authors.

A BIDIRECTIONAL VS UNIDIRECTIONAL REPRESENTATION
Theorem A.1 (Conditioning Reduces Entropy). Let X and Y be continuous random variables with

joint density fx y (x,y), marginal densities fx(x), fy (y), and conditional density fxy (x|y). The
differential entropy satisfies:

H(X) > H(X]Y),

where H(X) and H(X|Y') denote the marginal and conditional differential entropy, respectively.
(Cover & Thomas, |2006|)

Proof. For continuous random variables, differential entropy is defined as:

HX) = - / fx(@)log fx (z)de, HX|Y) = - / / Fxy (@, y) log fx v (aly)dady.

Substituting fx |y (z|y) = f’(f“/’i((;y) into H(XY'), we derive:

H(X|Y) = - / e (@) 1ogwdxdy

Expanding the logarithm:

HX[Y) - - / Fxov (29) log fx.v (e, y) dady + / Fxv () log fy (y) dady.

H(X,Y)

The second term simplifies using the marginal [fxy (z,y)dz = fy (y):

/fx,y(x,y)logfy(y)dxdy - / frWlogfyydy = —H(Y).
Thus,
H(X|Y) = H(X,Y) — H(Y).

To show H(X) > H(X|Y), we invoke the non-negativity of the Kullback-Leibler (KL) divergence:

Ixy(®,y)

(@) fr ()

Y
o

Do (fx,v|lfxfy) = Ixy(z,y)log

Expanding the integrand:

Dxr = fx,y(z,y)log fxy(x,y)drdy—fx y(z,y)log fx (z)dxdy—fx vy (z,y)log fy (y)dzdy.

15

Under review as a conference paper at ICLR 2026

Recognizing the entropy terms:

Dq = —H(X,)Y) + HX)+ HY) > 0 = H(X)+ HY) > HX,Y).

Substituting H(X,Y) = H(X|Y) + H(Y) into the inequality:

H(X) > H(X|Y).
O

Theorem A.2 (Monotonicity of Conditional Entropy). Let X,Y, Z be continuous random variables.
Then the differential entropy satisfies:

H(X |Y)> H(X|Y,2),
with equality if and only if X L Z | Y. More generally, for any sequence Y1, ...,Y,,
Proof. We begin with the definition of conditional differential entropy:
HEX|Y) =~ [[x(ew)los fxy (o |) dod
H(X Y, Z) = —fxyz(@,y, 2)log fx)v.z(z | y, 2) dz dy d=.
Recall that:
fxy(z|y) = /fxmz(ff |y, 2)fz)v (2| y)dz.

Now apply Jensen’s inequality using the convexity of — log(+):

o ([pavzte Lz (1 0)d:) < = [fav (e [n)os fapvate |9

Multiplying both sides by fx|y (z |) and integrating over z, y, we obtain:

H(X|Y)= *//fX,Y(ﬂfay) log fx|v(z | y)dxdy
> —fxyv,z(x,y,2)10g fx|v,z(v | y,2) dx dy dz
=H(X|Y,2).
Equality holds iff Jensen’s inequality becomes an equality, which occurs if and only if
fX|Y,Z($ ly,2) = fX|Y(93 |y) ae.inz,
ie, X 1Z]|Y.
For the generalization, apply this result inductively:

O
Theorem A.3 (Bidirectional Representations Preserve More Mutual Information). Let X denote a
sequence input 1, T, ..., Ty. Let Z;7 denote the unidirectional hidden representation constructed
of layer { from the forward context:
Z7 = (27,25 2n) withzy = f(x1,...,2¢),
and Z§~ the backward representation:
Zy = (21 25 5oz) withzi =g(zy,... zp).

16

Under review as a conference paper at ICLR 2026

Let the bidirectional representation be:

Zi =27, 20).

Then the mutual information between X and the bidirectional representation satisfies:
I(X;277) = 1(X; Z7),
with equality ifand only if Z;~ L X | Z,”.

Proof. We begin with the identity:
I(X;Z2)=H(X)-H(X | 2).

Apply this to both representations:
[(X:27) = H(X) ~ H(X | 277),
I(X:277) = H(X) — H(X | 277, 7;").

Since Z; contains strictly more information than Z,”, we can invoke the monotonicity of conditional

entropy A2}

H(X | 2,7) > H(X | Z, Z7),
with equality iff X L Z;~ | Z,”.
Subtracting both sides from H (X)) gives:

I(X;27)=H(X)-H(X | 2,7, 27) 2 HX) - H(X | 2,7) = I(X; Z,7).
Thus:
I(X;Z7) =2 I(X:Z,7).

Equality holds iff:

H(X|Z7)=H(X | 2.7,27),
which by the equality condition of monotonicity of conditional entropy holds iff:

X1z |7z

Similarly with respect to output we can show:
I(Z;75Y) 2 1(Z75Y).
This completes the proof.
O

Theorem A.4 (General Bound on Representation Difference). Let Z;7,Z,” € R? denote the
bidirectional and unidirectional representations of the same input token at a given layer, and define:

ANy =27 —Z;.
Then the expected squared difference satisfies:
E||Az||* = tr Cov(Z;") + tr Cov(Z;7) — 2tr Cov(ZS7, Z;7) + ||B[AZ]|1?.
In particular, we have the following bound:
tr Cov(Z;”) + tr Cov(Z;7) — 2| tr Cov(Z;”, Z;)]

< E[Az]* — [[E[AZ]|?
<trCov(Z;?) + trCov(Z,;7) + 2| tr Cov(Z;7, Z;7)|.

17

Under review as a conference paper at ICLR 2026

Proof. By the covariance identity, we have:
Cov(Ayz) = Cov(Z;7) + Cov(Z;7) — Cov(Z;7,Z;7) — Cov(Z,7, Z57).

Taking the trace and noting that tr(A ") = tr(A), we obtain:

tr Cov(Az) = trCov(Z;7) + tr Cov(Z;”) — 2tr Cov(Z;7, Z;7).
The expected squared norm decomposes as:

EAz|2 = tr Cov(Az) + [E[A]2

Substituting the expression for Cov(A z) yields the stated identity.
Finally, since for any real scalar a, we have —|a| < a < |al, it follows:

—|trCov(Z;7,Z;7)| < tr Cov(Z;7, Z;7) < |tr Cov(Z;7, Z;7)|,

which implies:

tr Cov(Ag) € [tr Cov(Z;7) + tr Cov(Z;7) —2|tr Cov(Z;7,Z;7),
tr Cov(Z;”) + tr Cov(Z;”) + 2|tr Cov(Z;”, Zf)u

Substitute into the expectation equation to complete the proof. O

Lemma A.5 (Effective Dimensionality of Bidirectional Representations). Let Z,”> € R denote
the unidirectional representation and Z;> = (Z;7,7) € R?P the concatenated bidirectional
representation of input X. Define {s-norm-based effective dimension as

2
det(Z) := (élj\zg) ;
where \; are eigenvalues of the covariance matrix of Zy. If Cov(Z*, Z;”) is non-singular, then:
det(Z;7) > det(Z,),
with equality iff Z* is conditionally redundant given Z;” (i.e., Cov(Z* | Z,”) = 0).
Proof. Let 7 := Cov(Z,7) € RP*P and £ := Cov(Z;7) € R?P*2D denote the covariance
matrices of unidirectional and bidirectional representations, respectively.
By block structure:
=[5 s
where C := Cov(Z;7,Z).
Let {\;”}2, be eigenvalues of ¥, and {*}32, eigenvalues of X

Since ¥ augments X7 with additional variables Z* and cross-covariance C, by eigenvalue
interlacing theorem (Cauchy’s interlacing), we have:

2D D
D AT ZD N
j=1 i=1

and
2D D
D= ()
j=1 i=1

with strict inequality if C' or ¥ is nonzero.

18

Under review as a conference paper at ICLR 2026

Applying definition:
< (ZJ)\;—))2
)
AN/
Since numerator and denominator both increase under positive-definite augmentation, and quadratic-
over-linear ratio increases under positive additive terms (Jensen’s inequality), we conclude:

deff(Zﬁ) > deﬁ(Z?)~

Equality holds iff X" = 0 and C' = 0, implying Z*~ carries no additional variance or covariance
beyond Z,”. O

B FLOWNIB: FLOW NEURAL INFORMATION BOTTLENECK

We consider, for each layer ¢, the Markov chain
X — Zy — Y,

where X denotes the input, Z, the layer-£ representation (induced by an encoder py(z¢ | z)), and YV’
the target variable.

Our goal is to learn a representation Z, that:

* compresses the input information by minimizing I(X; Z;),
* preserves predictive information by maximizing I(Z;Y").
The classical Information Bottleneck (IB) principle (Tishby et al.|[2000; Tishby & Zaslavsky}2015)
formalizes this trade-off as
J(fniln) I(X;Zy) — BI(ZyY),
plze|T

where 3 > 0 controls the balance between compression and prediction.

MI requires high-dimensional density ratios over p(z, z¢) vs. p(z)p(z¢) and p(ze, y) vs. p(z¢)p(y),
which are intractable to compute exactly when X, Z, are high-dimensional. The KL divergence

Dxu(p(@, z0) || p(x)p(20))

is especially problematic because neither joint nor marginals are known in practice and must be
estimated (Belghazi et al., 2018)). In deep networks, deterministic real-valued layers can also lead to
unbounded I(X; Zy) in the continuous setting; in practice, one uses variational lower bounds and
careful estimator training. These issues make vanilla IB difficult to apply directly to large models.

FlowNIB approach. To address these challenges, we introduce FlowNIB, which gradually shifts
emphasis from input preservation to target prediction during training or post-hoc estimation. We use
a time-dependent trade-off o : N — [0, 1] that monotonically decays from 1 to 0 as the estimator
training step ¢ increases (the model can be frozen). The FlowNIB loss at step ¢ for layer ¢ is

£0,1) = () I(X; Z0) + (1-a() I(Z5Y)),
so early steps («~= 1) emphasize I(X; Z;), while later steps («~0) emphasize I(Z;;Y).

Each mutual information term is

I(X;Zy) = Dxu(p(x, z0) || p(x)p(ze)), 1(Z5;Y) = Dxu(p(ze,y) | p(20)p(y)),

with Dy, the Kullback-Leibler divergence. Since exact KLs are infeasible in high dimensions, we
use variational lower bounds (MINE-style) (Belghazi et al., 2018):

I(szf) > Ep(z,zZ)[sz,Z(xvzl):l - logEp(r)p(zz)[eTIz’Z(wﬁzz)]7

I(Z5Y) 2 Eplarp[Teye(ze,9)] = 108 Epzppiy[e= 9],

where T, ; and T, , are learned scalar-valued critics (small neural networks) trained on joint
pairs and product-of-marginals pairs (implemented by shuffling). Expectations are estimated with

19

Under review as a conference paper at ICLR 2026

minibatches; we use the same critic architecture, batch size, negative sampling, optimizer, and steps
across layers and models for comparability.

Because X, Z;, Y can have different scales and dimensions, we normalize MI estimates using the
effective dimension (participation-ratio effective rank) (Roy & Vetterli, [2007):

(Zi)‘i)Q
DA

where {\;} are the eigenvalues of Cov(Z;) (estimated via PCA). The normalized MI estimates are

deg(Zy) =

doxe g Entwen Loz e(@,20)] 108 Bpaypiep[eT=1*0)]
(X;Zp) = o (Z0)2 ;

o By [Ty e (2o, y)] = 10g By)iy (€770 0¥
(ZeY) =) .

Remark. The deg(+)? factor is a practical normalization for scale-matching across layers/models; it
does not change the fact that the estimates are variational lower bounds.

Thus, the final loss optimized during FlowNIB training is

£o0.) = —(a) 10X Z0) + (1-a() 1(Z5Y)),
which, expanded, becomes
_ Ep(r,o0) [Toz,e (T, 2)] — 108 Bpy () p(zpy[€725 (@50)]
‘Cﬁ(a?t) - —<O[(t) deﬂ'(Zf)z

E
+ (1 _ Oé(t)) p(2e,y)

[sz,é(zfv y)} - 10g EP(ZZ)p(y)[esz,e(Zby)]
deff(Y)z :

Here, 0 denotes the parameters of the encoder py(z¢ |) (if trained end-to-end) and of the critics
Ty2.0, T,y 0. In our post-hoc setting, the encoder is frozen and 6 refers to the critic parameters; c(t) is
the estimator step index. All MI values are neural lower bounds and are used for relative comparisons
across layers (e.g., for OIC selection), not as absolute MI.

Theorem B.1 (Consistency under optimal critics (per layer)). Fix a layer £ and let (X, Z;) ~ p(x, z¢)
and (Z4,Y) ~ p(z¢,y) with the Markov chain X — Zy — Y. Assume p(x, z¢) < p(x)p(z¢) and
p(ze,y) < p(2¢)p(y), and that the relevant expectations are finite. Suppose the Donsker—Varadhan
optima (unique up to an additive constant) are attained:

. p(, 2¢) . p(ze:y)
T7, /(x,2¢) =log ————= + sz, T, (20, y) =log ——~ + Coy 0.
el 2) p(x)p(ze) 7 wel#09) plzeply)
Let the dimension-normalized estimators be
I(X:2Z) = Ep(o,20) [Toz,0(%; 20)] = 108 Ep(ayp(en) €754 70)]
’ dest (Z¢)? ’
i Zey) = Erteen LG y)] ~ 108 By [0]
I dcﬁ" (Y)2)
where deg (+) € (0, 00) are fixed scale factors (e.g., participation-ratio effective ranks). Then
- Toze—=Th . 1(X; Zy) A Toy,e=T3y 0 1(Z3Y)
1(X;Z : 1(ZyY : .
() E) deﬂ”(ZZ>2, (I2)) deff(Y)2

Proof. We show the claim for (X, Z;); the (Z;,Y') case is identical. By the DV representation,

I(X7 ZZ) = Sl%p {Ep(w,zg) [T(‘T7 ZE)] - log Ep(w)p(ze) [eT(x’ZZ)]}'

20

Under review as a conference paper at ICLR 2026

Under the stated assumptions the supremum is achieved at T, oz, 2¢) =log pz(’spz(i)Z) + c for any

constant ¢, and the objective is invariant to c:

E[T + c] — logE[e"*¢] = E[T] — log E[e”].

Substituting 17, , gives

p(x,2¢) P

Ep(a,z0)| 108 7255725 | = 108 Epap(en) | 77555 | = (X5 20) — log 1 = I(X; Zp).

By definition, the normalized estimator satisfies

j X:7,)) = EP(:E,Z[)[Tzz,E] - log]E[)(;C)p(z[)[eTmz’q
(’ Z) - deH(Zé)Q .

Hence, as T, ¢ — T}, , in function space, the numerator converges to (X; Z), so I(X;2) —
I(X; Ze) [dest(Z0)?. 0

Remark. If Y is discrete (e.g., class labels), one may set deg(Y) = 1 or compute it from a fixed
embedding of Y'; the theorem holds for any finite, positive normalizer.

Lemma B.2 (Non-Monotonic Dependence of Mutual Information on Output Dimension). Let
X e R, Z e R, and Y € R%¥ denote input, latent, and output variables, respectively, with
dx,dz fixed and dy variable.

Then under FlowNIB optimization, the mutual information I(X; Z) and 1(Z;Y') are non-monotonic
Sfunctions of dy, satisfying:

AI(X; Z) OI(X: Z)
8dy adY
and similarly for 1(Z;Y), for some critical threshold k ~ dx.

>0 fordy <k, <0 fordy >k

Proof Sketch. FlowNIB optimizes a tradeoff between I(X; Z) and I(Z;Y’), constrained by the
model’s representational capacity dz and data complexity.

When dy is small (dy < dx), the predictive target contains limited information; thus I(Z;Y") is
small and the latent representation does not need high complexity.

As dy increases toward dyx, the predictive task demands richer information; both 1(X; Z) and
I(Z;Y) increase to capture relevant features.

However, once dy > dx, the output space exceeds the input manifold’s capacity; the latent represen-
tation Z, cannot fully carry the increased predictive information due to fixed dz, leading to saturation
and eventual decline in both I(X; Z) and I(Z;Y") as redundant or noisy output components exceed
representational limits.

This yields a non-monotonic dependency of mutual information on dy, peaking around dy = dyx,
then declining as dy further increases.

O

Proposition B.3 (Effective Dimensionality Adaptation under FlowNIB). Let X € R4X andY € R4
be input and output random variables with dimensions dx , dy . Let Zy denote the latent representation
at layer { produced by a model trained under FlowNIB.

Then, under optimal critic approximation and continuous optimization, the effective dimension
det(Z¢) exhibits the following dependence on dy (with dx fixed):

<0 ifdy <dy
~0 ifdy"rb’dx
>0 ifdy >dx

i.e., the effective dimension deg(Z;) decreases with dy when dy is small, plateaus when dy ~ dx,
and increases when dy exceeds dx.

Odest (Z0)
Ody

21

Under review as a conference paper at ICLR 2026

Algorithm 1 FlowNIB: Flow Neural Information Bottleneck

Require: Dataset D = {(z;,y;)}¥,, pretrained model fy, MI critics T}, and T, scheduler (%),
number of training steps 7'
1: Initialize FlowNIB parameters and critics
2: fort =1t0 T do
3: Sample mini-batch {(z,y)} from D
4: Compute hidden representation Z = fp(x)
5: Estimate I(X; Z) using MINE:
I(X; Z) —]Ep(:mz) [sz (1‘, Z)] - log]Ep(w)p(z) [eTmZ(LZ)]
6: Estimate I(Z;Y") using MINE:
I(Z; Y) A]Ep(z,y) [sz(zv y)] - log]Ep(z)p(y) [6sz(z,y)]

7: Normalize MI by effective dimensions:
Py I(X:2) § (. I(z;y)
I’I’L(Xyz) <_ deff(Z)Z’ I’I’L(Z,Y> % det‘f(Y)2

8: Compute dynamic loss:

Liowns = (a(t) - [,(X:2) + (1= a(t)) - [,(Z:Y))
9: Update schedule: ot + 1) < max(0, a(t) — 9)
10: Backpropagate and update 0, T}, T,
11: end for

Models
DeBERTa-v3 Base
DeBERTa-v3 Large
Modern BERT Base
Modern BERT Large
MobileLLM-300M
MobileLLM-600M
SmallLLM-360M

Dataset

*+aromeo

3 4
1(X;2) Layer

Figure 6: (Left)Information plane trajectories under varying step sizes d for «(t) in FlowNIB. Each
curve shows the progression of mutual information I(X; Z) and I(Z;Y") across 2000 training epochs.
(Right) Effective dimensionality d.g(Z) across layers for different models on MRPC and SST-2.
Bidirectional models show higher dog(Z) than unidirectional models at every layer.

Proof Sketch. Under FlowNIB, the latent representation Z, is optimized to balance information
preservation I(X; Zy) and predictive sufficiency I(Z,;Y'), modulated dynamically by «(t).

When dy < dy, the predictive information I(Z,;Y) is small; the model prioritizes compressing
irrelevant input variance, resulting in reduced deg (Zp).

When dy ~ dx, the predictive complexity of ¥ matches the input complexity; the model maintains
det (Zy) to balance preserving input and predictive information.

When dy > dx, the model must expand Z, to capture sufficient predictive capacity, increasing
de(Z¢) to span a higher-dimensional output manifold.

Empirical observations support this trend, where des(Z;) traces a non-monotonic dependency on dy,
reflecting an intrinsic adaptation of latent geometry to output complexity.

O

22

Under review as a conference paper at ICLR 2026

w0 == RoBerta-Base du(Z)
=Om RoBerta-Base Shannon entropy M(p)
<O+ MoblileLLM-125M dur(2)

MobileLLM-125M Shannon entropy M(p)

Output Dimension

3.5, @ Yum=96 @~ Yum=1450
) Yam=128 Yaim=2500
-0~ Yam =380

Shannon Entropy

2] = O e e O e e —

SRS -
T O = O O O o O o O o wm On m wmOm o)

i 2 3 a 5 6 i 2 3 2 5 3 7 8 9 10 11 12
Layer Index Layer

Figure 7: Effective dimension and Shannon entropy across network layers. Left: Effective dimension
degr(Z) across layers for different output dimensions Yg;,,. Right: Shannon entropy M (p) across
layers for RoOBERTa-Base and MobileLLM-125M. Both plots use bold markers and shadows to
emphasize trends in representation capacity and information compression.

7.2 Output Dimension
& Yaim=2 = Yaim=128 ~@= Yaim=512 ~®= Yaim = 1450
5.2| <0~ Yem=24 ~®= Yim=380 =@ Yin=1038 Yaim = 2500

7.0 &~ Yiim =96
$ 5.0
6.8
4.8

6.0
Output Dimensior n 4.0
5.8{ @ Yam=2 = Yam=128 ~@= Yam=512 ~@= Yum=1450
= Yam=24 ~®= Yam=380 @~ Yam=1038 Yaim = 2500 3.8 ___
& Yin=96 ———

1 2 3 4 5 6 1 2 3 4 5 6
Layer Index Layer Index

Figure 8: Visualization of mutual information across layers for different output dimensions. The
left plot shows I(X; Z) and the right plot shows I(Z;Y") for various output dimensions Yg;,,,. Each
curve represents a specific output dimension, with bold markers and shadows to highlight the trends.
This analysis provides insights into the evolution of representation capacity and target alignment
across network layers as the output dimension increases.

C ABLATION STUDY

C.1 EFFECT OF STEP SIZE § ON FLOWNIB DYNAMICS

We conducted an ablation study on the MRPC dataset to analyze the influence of the step size ¢
controlling the decay of «(t) in FlowNIB . Specifically, we varied & logarithmically from 10~! to
107! and measured the evolution of mutual information I(X; Z) and I(Z;Y’) throughout training.
Figure[6fleft) shows the corresponding trajectories in the Information Plane. We observe that large
step sizes (e.g., § = 10~1) induce rapid compression, sharply reducing I(X; Z) early in training but
failing to preserve sufficient predictive information 7(Z;Y"), likely due to premature information loss.
Conversely, very small step sizes (e.g., § = 107°) cause negligible decay of a(t), leading to nearly
static representations that retain high I(X; Z) but fail to increase I(Z;Y"). Intermediate step sizes
(e.g.,d = 1073 to § = 10~*) achieve the most desirable balance, gradually reducing 7(X; Z) while
increasing I(Z;Y), effectively steering the model toward the information bottleneck frontier. These
findings empirically validate our theoretical insight that ¢ serves as a critical control knob governing
the speed and quality of information compression in FlowNIB.

C.2 EFFECTIVE DIMENSIONALITY ACROSS MODELS
We measure effective dimensionality deg(Z) across layers for DeBERTaV3 (base, large), Modern-

BERT (base, large), MobileLLM (300M, 600M), and SmallLLM (360M) on MRPC and SST-2. To
ensure fair comparison across models with different depths, we normalize layer indices to a common

23

Under review as a conference paper at ICLR 2026

scale of 1 to 12. Figure Ekright) shows that d.g (Z) decreases monotonically with depth for all models,
reflecting progressive compression (reasons of decreasing in Ablation Study [C.4).

Importantly, bidirectional models consistently exhibit higher dog(Z) than unidirectional models at
every layer. For example, on MRPC, DeBERTaV3-Large starts at 8.73 and compresses to 1.98, while
MobileLLM-600M starts at 5.38 and compresses to 1.44. Similar trends appear on SST-2. These
findings empirically support Lemma[2.3] confirming that bidirectional representations retain richer
and more expressive features throughout depth.

C.3 EFFECTIVE DIMENSIONALITY VS. OUTPUT COMPLEXITY:

We study how the effective dimensionality dog(Z) of the latent representations changes with different
output dimensions using the time-series forecasting dataset ETTh1 (Zhou et al.l 2021) by following
Proposition [B:3] We use a fixed 6-layer network with each layer having 128 units and keep the
input dimension fixed at dx = 380. We vary the output dimension dy from very small (dy = 2)
to much larger than the input (dy = 2500). As shown in Figure[7] when the output dimension is
much smaller than the input (dy < dx), the effective dimension d.g(Z) decreases across layers,
showing that the representation becomes more compressed. As dy grows closer to or larger than d,
we observe a non-monotonic trend: the dimension first compresses, then expands. When dy > dx,
the effective dimension increases across layers, suggesting that the model adjusts the complexity of
its representations to match the complexity of the prediction task. This behavior occurs even without
directly optimizing for it in FlowNIB, showing that the shape of the output affects how the model
organizes its internal representations.

C.4 MUTUAL INFORMATION DYNAMICS ACROSS OUTPUT DIMENSIONS AND LAYERS:

We explore how changing the output dimension Yy;,, affects mutual information and model per-
formance by following Lemma [B2] We trained the same model with different output sizes:
Yaim € {2,24, 96,128,380, 512, 1038, 1450, 2500}, and measured the mutual information between
inputs and hidden layers I(X; Z), and between hidden layers and outputs 1(Z;Y"), after training. As
shown in Figure 8} I(X; Z) generally decreases across layers, especially for larger Yy, meaning
more information is lost as the network gets deeper. At the same time, /(Z;Y") increases with
depth, but for large Yq;nm, it saturates early—suggesting it’s harder for the model to align with very
high-dimensional outputs. Interestingly, models with intermediate output dimensions (like Ygi,, = 96
or 128) show a better balance: they retain useful input information and achieve strong alignment with
the output. This balance leads to better performance. Overall, we find that output dimensionality plays
a key role in controlling how well the model balances input compression and predictive accuracy,
making it an important hyperparameter to tune.

C.5 VALIDATING GENERALIZED EFFECTIVE DIMENSIONALITY

To validate our definition of generalized effective dimensionality, we compare the layerwise trends of
dest (Z) (based on the ¢5-norm participation ratio) and the Shannon entropy M (p) across two models:
RoBERTa-Base and MobileLLM-125M. As shown in Figure[7] (Right), both metrics follow similar
trends across layers—confirming that higher entropy leads to higher effective dimension, consistent
with our definition deg(Z; M) := exp(M(p)). Notably, ROBERTa-Base maintains higher entropy
and effective dimension than MobileLLM-125M at every layer, reflecting its richer representational
capacity. The first few layers show a sharp drop in entropy, followed by a stable regime, aligning
with the known compression phase in transformer representations. This empirical behavior confirms
that both the entropy and d,g satisfy the expected monotonicity and boundedness properties outlined
in Definition [2.2] including non-negativity and the Schur-concavity property.

C.6 STABILITY ACROSS RANDOM SEEDS

In this section, we examine the stability of FlowNIB with respect to random initialization and
minibatch sampling. For each model and dataset, we run FlowNIB with 10 different random seeds
and report the mean and standard deviation of the estimated mutual information. The results for
I(X; Z;) and I(Z;Y') are summarized in Tables[3|and [4] respectively.

24

Under review as a conference paper at ICLR 2026

Model SST-2 MRPC RTE HellaSwag CoLA SICK STS-B LCP
GPT-2_medium 3.134 +0.046 2.513 +0.034 2.843 +0.034 2.534 +0.042 4.120 £ 0.043 2.754 £+ 0.047 2.643 £ 0.036 3.102 £ 0.046
GPT-2_large 3.3224+0.035 2.523 £0.043 3.123 +£0.035 2.701 £ 0.045 4.935 £ 0.061 4.101 £ 0.043 2.832 £ 0.037 3.112 & 0.049

SmolLM2-135M 2.938 £ 0.038 2.532 £ 0.041 2.732 4+ 0.048 2.711 £0.032 4.532 £ 0.053 2.847 4+ 0.032 2.743 £ 0.042 3.103 + 0.041
SmolLM2-360M 3.183 £ 0.038 2.583 £ 0.035 3.212 4+ 0.046 2.742 £ 0.036 4.943 4 0.054 4.242 £ 0.045 2.934 4 0.037 3.105 £ 0.034
MobileLLM-125M 3.382 £ 0.049 2.573 £ 0.042 2.932 + 0.048 2.643 £ 0.037 4.464 +0.043 3.012 £ 0.038 2.684 4+ 0.043 3.108 £ 0.041
MobileLLM-350M 3.773 £ 0.050 2.612 £ 0.047 3.224 +0.048 2.732 £+ 0.033 4.837 +0.056 4.132 4 0.042 2.892 £ 0.050 3.110 % 0.053
MobileLLM-600M 3.937 + 0.055 2.623 £ 0.031 3.323 +0.045 2.821 £ 0.036 5.743 4+ 0.049 4.353 £ 0.058 2.833 4 0.040 3.112 + 0.044
deberta-v3-base 4.212 4+ 0.040 2.622 £ 0.047 3.522 £ 0.055 2.783 +0.033 5.134 £0.051 4.3724+0.057 3.143 £+ 0.038 3.103 £ 0.052
deberta-v3-large 4.372 4+ 0.048 2.654 £0.045 3.824 4 0.044 2.824 +0.037 6.353 &£ 0.069 5.382 + 0.051 2.563 £ 0.050 3.115 % 0.050
roberta-base 3.662 + 0.036 2.522 + 0.037 3.212 4 0.045 2.753 £0.044 5.243 +0.057 4.183 +£0.052 2.693 £ 0.041 3.104 & 0.033
roberta-large 4.012 4+ 0.042 2.658 £+ 0.034 3.924 +0.054 2.832 4+ 0.039 6.339 £0.060 5.123 +0.051 2.893 £ 0.034 3.112 + 0.047
modern-bert-base 3.372 £ 0.044 2.574 £ 0.050 3.423 +0.047 2.792 £ 0.039 5.123 + 0.057 4.772 £ 0.060 2.593 4 0.031 3.107 £ 0.047
modern-bert-large 3.938 £ 0.038 2.693 £ 0.038 3.901 +0.054 2.864 £ 0.036 5.938 +0.064 5.247 £+ 0.053 3.021 £ 0.035 3.110 & 0.044

Table 3: Estimated (X; Z,) (mean =+ std over 10 seeds).

Model SST-2 MRPC RTE HellaSwag CoLA SICK STS-B LCP
GPT-2_medium 0.314 +0.022 0.513 £0.029 0.843 4 0.031 0.534 £ 0.032 0.754 4 0.030 0.172+0.019 0.243 £ 0.028 0.102 &+ 0.025
GPT-2_large 0.322+£0.026 0.523 £0.029 1.123 +£0.032 0.701 £ 0.030 0.901 £ 0.034 0.235 £ 0.028 0.320 £ 0.021 0.112 &+ 0.022

SmolLM2-135M 0.380 £ 0.022 0.532 £ 0.025 0.732 4+ 0.035 0.711 £ 0.028 0.747 +0.029 0.152 £ 0.023 0.243 £ 0.023 0.103 +0.017
SmolLM2-360M 0.483 £ 0.027 0.583 £ 0.031 1.2124+0.043 0.742 £ 0.032 0.902 4+ 0.031 0.243 £ 0.023 0.431 4 0.025 0.105 + 0.027
MobileLLM-125M 0.312 £ 0.024 0.573 £ 0.029 0.932 +0.030 0.643 £ 0.032 0.612 +0.025 0.164 4+ 0.025 0.214 £ 0.027 0.108 + 0.025
MobileLLM-350M 0.373 £ 0.030 0.612 £ 0.032 1.224 4+ 0.038 0.732 £ 0.028 0.882 4 0.035 0.237 £ 0.027 0.392 4 0.023 0.110 £ 0.026
MobileLLM-600M 0.737 £ 0.035 0.623 £ 0.030 1.323 +0.036 0.821 £ 0.030 0.953 +0.032 0.273 £ 0.021 0.433 4+ 0.023 0.112 + 0.026
deberta-v3-base 1.212+0.036 0.622 4 0.024 0.982 £ 0.037 0.783 +0.037 1.072 £ 0.040 0.434 +0.022 0.313 £ 0.024 0.103 £ 0.025
deberta-v3-large 1.472 £ 0.042 0.654 £ 0.028 1.194 +0.041 0.824 £ 0.034 1.482 4 0.046 0.553 £ 0.028 0.463 4 0.026 0.115 + 0.018
roberta-base 1.062 £ 0.033 0.522 £ 0.023 0.912 4+ 0.030 0.753 £0.031 0.983 +0.030 0.343 £0.024 0.293 £ 0.022 0.104 £ 0.021
roberta-large 1.412 +£0.045 0.658 +0.034 1.124 £ 0.037 0.832 4+ 0.033 1.203 £ 0.035 0.439 +0.026 0.383 £ 0.023 0.112 £ 0.019
modern-bert-base 1.172 £ 0.041 0.574 £ 0.032 0.942 £ 0.035 0.792 £ 0.028 0.982 + 0.036 0.342 £ 0.027 0.293 +0.029 0.107 £ 0.021
modern-bert-large 1.338 £ 0.038 0.693 £ 0.034 1.001 +0.033 0.864 £+ 0.030 1.110 +0.034 0.413 £+ 0.028 0.421 £0.026 0.110 +0.017

Table 4: Estimated I(Z;;Y") (mean =+ std over 10 seeds).

Overall, the variance across seeds is modest. For both I(X; Z;) and I(Zy;Y'), the standard deviations
are small compared to the differences between models and to the gap between unidirectional and
bidirectional architectures. In particular, bidirectional models (e.g., DeBERTa-v3, RoOBERTa, Mod-
ernBERT) consistently exhibit higher mean mutual information than unidirectional models across all
datasets, and this ordering is stable under different seeds. We do not observe cases where a model
with lower mean MI surpasses a higher-MI model once the standard deviations are taken into account.

The same pattern holds within each model family and across datasets: models and layers that are
identified as more informative by FlowNIB retain that ranking when averaged over 10 runs, and the
error bars do not change the qualitative conclusions. This supports our use of FlowNIB as a relative
diagnostic tool: while we do not claim to recover the exact true mutual information, the estimates are
stable enough across random seeds to reliably compare layers and architectures and to link higher MI
(especially at the OIC) with improved downstream performance.

C.7 BIDIRECTIONAL VS. UNIDIRECTIONAL ATTENTION IN TIME-SERIES FORECASTING

To check whether our mutual-information findings also hold beyond NLU, we conduct a small
case study on multivariate time-series forecasting using the ETTh1 and ETTh2 benchmarks. In all
experiments, we use the same Transformer architecture for both settings: a 2-layer Transformer with
hidden dimension 512 and input sequence length 256. The only difference is the attention pattern:
Uni uses standard causal (unidirectional) attention, while Bi uses bidirectional attention over the
input window.

Table 5] reports the forecasting MSE for different prediction horizons on ETTh1 and ETTh2. Across
all horizons and on both datasets, the bidirectional model achieves consistently lower MSE than
the unidirectional model. The gap is small for short horizons (e.g., 24, 96), and becomes more
pronounced as the prediction horizon increases, showing that bidirectional attention provides more
robust long-range forecasting.

Table|§| shows the corresponding mutual information I(Z; Y') measured with FlowNIB for the same
models and horizons. For both ETTh1 and ETTh2, the bidirectional model has higher I(Z;;Y")
than the unidirectional model at every horizon, indicating that its representations Z, carry more
target-relevant information. In addition, I(Z,;Y") gradually decreases as the prediction horizon
grows, matching the increase in MSE and reflecting the increased difficulty of the task.

25

Under review as a conference paper at ICLR 2026

ETThl ETTh2
Horizon Uni Bi Uni Bi
24 0.65 0.60 140 1.32
96 080 0.75 174 1.65
128 095 090 201 1.90
380 1.18 1.10 251 240
512 .38 1.30 295 2.80

1038 1.72 1.64 330 3.183

Table 5: Forecasting MSE on ETTh1 and ETTh?2 for different prediction horizons. Bi = bidirectional
attention; Uni = unidirectional (causal) attention.

ETThl ETTh2
Horizon I(Ze;Y)uni 1(Ze;Y)si L(Ze;Y)uni 1(Ze;Y)Bi
24 2.07 2.24 1.86 2.03
96 1.99 2.18 1.79 1.97
128 1.94 2.11 1.73 1.89
380 1.87 2.02 1.64 1.80
512 1.76 1.89 1.54 1.70
1038 1.61 1.73 1.42 1.59

Table 6: Mutual information I(Zy; Y') on ETTh1 and ETTh?2 for different prediction horizons. Bi =
bidirectional attention; Uni = unidirectional (causal) attention.

Together, these results provide a simple but concrete example in a non-NLU setting where (i)
bidirectional attention improves performance under a matched architecture, and (ii) higher mutual
information between Z, and the target Y aligns with better forecasting accuracy. This supports our
main claim that bidirectional representations tend to encode richer task-relevant information, and that
FlowNIB’s MI estimates track meaningful performance differences even outside standard language
understanding benchmarks.

D LoORA BASED PERFORMANCE COMPARISON

Table 7] shows the performance comparison between bidirectional and unidirectional models using
LoRA.

| <s>

love

movie this

¢
2 H
£ Ed
]

& H
&

@ A
&)
2 v

o ”
& P

< o &

Figure 9: Token-level mutual information matrix on the SST-2 dataset for sentiment classification,
computed from the final hidden layer representations. (Left) RoBERTa-base; (Right) SmallM2-360

26

Under review as a conference paper at ICLR 2026

Model Method SST-2 MRPC | QNLI | RTE | CoLA | MNLI | BoolQ | HellaSwag | SIQA | Avg.
DeBERTa-v3-Base | Pooling 9512 88.75 | 91.75 | 82.85 | 8543 | 85.96 | 63.55 55.22 46.74 | 77.15
Masking 9622 90.03 | 93.10 | 85.92 | 88.55 | 88.10 | 65.05 68.33 61.92 | 81.81
DeBERTa-v3-Large | Pooling 96.25 9288 | 94.67 | 88.90 | 94.12 | 91.92 | 6548 58.15 52.04 | 81.82
Masking 9694 9495 | 9535 | 90.85 | 93.05 | 91.96 | 65.12 74.10 66.41 | 85.30

RoBERTa-Base Pooling 93.80 83.40 91.13 | 82.20 | 85.45 | 8595 | 62.10 51.78 44.63 | 75.72
Masking 9480 86.10 93.42 | 86.02 | 88.25 | 87.20 | 63.80 65.33 61.12 | 80.45
RoBERTa-Large Pooling 95.12 88.40 93.76 | 86.10 | 93.02 | 90.14 | 64.00 56.23 47.15 | 79.66
Masking 96.67 91.98 95.10 | 88.45 | 95.33 | 90.92 | 64.25 70.35 62.45 | 83.83
ModernBERT-Base | Pooling 93.70 82.40 90.25 | 81.52 | 84.22 | 86.02 | 62.00 54.18 45.70 | 75.78

Masking 9492 84.05 | 92.88 | 85.00 | 85.80 | 88.55 | 61.35 62.00 60.00 | 78.95
ModernBERT-Large | Pooling 95.00 88.55 | 93.50 | 87.32 | 90.25 | 92.80 | 63.50 59.00 48.50 | 79.82
Masking 96.32 91.10 | 95.12 | 88.50 | 91.02 | 92.10 | 63.90 72.42 64.33 | 83.42

GPT-2 Medium Pooling 9270 84.32 | 9042 | 68.50 | 79.15 | 78.02 | 62.33 36.80 37.42 | 69.96
Generation | 93.40 8572 | 91.65 | 69.02 | 80.10 | 79.43 | 63.00 36.55 42.12 | 71.00
GPT-2 Large Pooling 9375 8550 | 8335 | 6590 | 82.85 | 79.55 | 63.50 39.20 40.50 | 70.68

Generation | 94.05 87.05 85.12 | 67.88 | 84.23 | 81.72 | 64.05 39.70 45.02 | 71.98
SmolLM2-360M Pooling 93.80 8420 | 90.92 | 69.90 | 81.22 | 84.10 | 62.75 41.20 41.55 | 72.18
Generation | 94.52 8585 | 91.93 | 70.50 | 83.80 | 85.10 | 62.60 42.40 49.45 | 73.68
SmolLM2-135M Pooling 91.90 83.05 89.43 | 67.55 | 80.15 | 81.52 | 61.35 37.00 40.25 | 70.13
Generation | 92.80 83.85 | 90.05 | 68.12 | 81.82 | 82.78 | 61.70 40.00 46.20 | 71.59
MobileLLM-125M | Pooling 9225 8142 | 89.82 | 6842 | 79.12 | 81.35 | 59.50 32.30 40.40 | 69.07
Generation | 9298 8235 | 90.22 | 68.92 | 80.42 | 8220 | 60.25 36.12 47.33 | 70.53
MobileLLM-350M | Pooling 93.00 82.65 | 90.32 | 69.55 | 81.58 | 82.55 | 62.05 35.42 41.50 | 70.73
Generation | 94.10 8298 | 90.85 | 70.25 | 82.62 | 83.40 | 62.85 39.20 50.05 | 72.15
MobileLLM-600M | Pooling 9425 86.80 | 90.92 | 71.32 | 83.92 | 84.12 | 63.50 44.50 44.20 | 73.06
Generation | 9495 87.55 | 91.50 | 72.02 | 8592 | 84.30 | 63.75 47.80 57.32 | 75.68

Table 7: Accuracy results across nine NLP classification tasks comparing bidirectional and unidirec-
tional models under pooling, masking, and generation inference strategies using LoRA fine-tuning.

E DETAILS RESULTS

Model Method SST-2 MRPC | QNLI | RTE | CoLA | MNLI | BoolQ | HellaSwag | SIQA | Avg.
DeBERTa-v3-Base | Pooling 9552 89.21 9243 | 83.48 | 86.23 | 86.43 | 64.23 56.00 47.54 | 77.90
Masking 9575 91.17 | 9248 | 8498 | 87.44 | 8722 | 64.23 69.49 60.90 | 81.52
DeBERTa-v3-Large | Pooling 95.67 9345 | 93.58 | 88.38 | 93.34 | 90.76 | 64.73 57.34 51.43 | 80.96
Masking 96.11 94.04 | 94.14 | 89.93 | 9295 | 91.43 | 64.98 73.43 65.53 | 84.73

RoBERTa-Base Pooling 9424 8453 | 91.96 | 83.45 | 86.34 | 86.34 | 63.82 52.43 45.64 | 76.53
Masking 95.14 85.13 | 92.27 | 84.58 | 87.44 | 86.38 | 63.96 64.53 60.16 | 79.95
RoBERTa-Large Pooling 95.68 89.54 | 94.17 | 86.32 | 93.85 | 90.87 | 64.82 57.35 48.69 | 80.14

Masking 96.23 9125 | 9438 | 87.84 | 95.83 | 91.13 | 63.82 71.43 63.67 | 83.95
ModernBERT-Base | Pooling 9435 8333 | 9198 | 82.81 | 84.92 | 87.44 | 63.70 55.32 46.81 | 76.74
Masking 9538 8543 | 9243 | 84.12 | 84.43 | 8321 | 62.17 63.54 61.86 | 79.73
ModernBERT-Large | Pooling 9537 89.43 | 9422 | 86.74 | 89.95 | 9323 | 64.22 60.32 49.67 | 80.35
Masking 95.89 89.93 | 94.57 | 87.78 | 90.79 | 92.98 | 64.72 73.18 64.68 | 83.84

GPT-2 Medium Pooling 9380 8578 | 91.17 | 69.67 | 80.24 | 78.81 | 63.43 37.83 38.45 | 71.02
Generation | 94.14 8593 91.93 | 69.83 | 81.43 | 80.18 | 63.54 37.93 4345 | 72.04
GPT-2 Large Pooling 9397 86.27 84.01 | 66.78 | 83.89 | 80.06 | 64.13 40.32 4191 | 71.26

Generation | 94.24 87.23 84.56 | 67.34 | 83.87 | 82.34 | 64.16 39.53 45.34 | 72.07
SmolLM2-135M Pooling 92.58 8459 | 90.56 | 68.12 | 81.48 | 82.83 | 62.43 38.34 41.41 | 71.37
Generation | 93.00 84.83 | 90.68 | 68.93 | 82.48 | 83.58 | 62.27 41.78 47.86 | 72.82
SmolLM2-360M Pooling 9426 84.80 | 91.61 | 70.70 | 82.07 | 85.12 | 63.13 42.45 4243 | 72.95
Generation | 94.65 8532 | 9232 | 71.11 | 84.53 | 84.89 | 62.92 43.69 50.20 | 74.40
MobileLLM-125M | Pooling 93.05 8243 | 90.58 | 69.32 | 80.29 | 8298 | 60.73 33.45 41.45 | 70.48
Generation | 93.15 8335 | 90.54 | 69.53 | 80.53 | 83.24 | 61.26 37.42 4823 | 71.92
MobileLLM-350M | Pooling 9385 83.68 | 90.85 | 70.33 | 82.38 | 83.45 | 63.42 36.28 4274 | 71.89
Generation | 94.68 83.57 | 91.09 | 7143 | 82.87 | 84.58 | 63.71 40.13 51.54 | 73.73
MobileLLM-600M | Pooling 9486 8734 | 91.34 | 7245 | 84.56 | 8493 | 64.18 4532 45.54 | 74.50
Generation | 95.14 87.87 | 91.37 | 72.29 | 86.30 | 84.79 | 64.12 48.53 58.54 | 76.55

Table 8: Accuracy(%) results across nine NLP classification tasks comparing bidirectional and
unidirectional models under pooling, masking, and generation inference strategies.

Our results show that bidirectional models consistently outperform unidirectional models across both
classification and regression tasks (Table (8| Table E]) For example, in classification, DeBERTa-v3-
Large achieves the highest average accuracy of 84.73% using masked token prediction, improving by
+3.77% over its pooling-based variant. Furthermore, we observe that even RoBERTa-base outperforms
MobileLLM-600M in several tasks, highlighting a consistent trend with mutual information (MI):
better MI is correlated with improved context modeling and task performance.

Overall, these findings highlight that masking inference yields stronger gains in bidirectional models,
while generation provides modest improvements for unidirectional models but fails to close the

27

Under review as a conference paper at ICLR 2026

Model Method
DeBERTa-v3-Base Pooling
Masking
DeBERTa-v3-Large Pooling
Masking
RoBERTa-Base Pooling
Masking
RoBERTa-Large Pooling
Masking
ModernBERT-Base Pooling
Masking
ModernBERT-Large Pooling
Masking
GPT-2 Medium Pooling
Generation
GPT-2 Large Pooling
Generation
SmolLM2-135M Pooling
Generation
SmolLM2-360M Pooling
Generation
MobileLLM-125M Pooling
Generation
MobileLLM-350M Pooling
Generation
MobileLLM-600M Pooling
Generation

WASSA

©0.017/0.107

0.013/0.091
0.016/0.102
0.012/0.075
0.016/0.097
0.015/0.094
0.015/0.097
0.016/0.099
0.016/0.092
0.015/0.093
0.016/0.093
0.150/0.294
0.019/0.112
0.018/0.111
0.018/0.105
0.017/0.107
0.017/0.105
0.017/0.106
0.017/0.104
0.017/0.105
0.020/0.111
0.019/0.113
0.018/0.104
0.017/0.105
0.017/0.105
0.017/0.105

SICK
0.163/0.297
0.135/0.277
0.140/0.281
0.132/0.274
0.168/0.300
0.145/0.294
0.153/0.291
0.152/0.291
0.207/0.350
0.173/0.328
0.160/0.307
0.150/0.292
0.662/0.619
0.673/0.620
0.623/0.583
0.583/0.523
0.192/0.336
0.175/0.319
0.173/0.310
0.170/0.298
0.197/0.354
0.192/0.324
0.191/0.336
0.187/0.320
0.181/0.320
0.172/0.318

STSB
0.363/0.455
0.373/0.462
0.353/0.442
0.348/0.414
0.364/0.452
0.353/0.448
0.351/0.439
0.350/0.429
0.469/0.517
0.482/0.536
0.378/0.468
0.371/0.462
0.427/0.499
0.412/0.490
0.442/0.522
0.423/0.499
0.424/0.489
0.403/0.484
0.407/0.488
0.394/0.481
0.419/0.492
0.410/0.491
0.394/0.482
0.391/0.478
0.384/0.474
0.381/0.472

LCP CRP Humicroedit Avg.
0.007/0.076 | 0.429/0.518 | 0.278/0.432 0.209/0.314
0.006/0.060 | 0.385/0.478 | 0.274/0.423 0.197/0.298
0.007/0.073 | 0.345/0.457 | 0.263/0.419 0.187/0.295
0.005/0.051 | 0.340/0.459 | 0.268/0.421 0.184/0.282
0.007/0.066 | 0.465/0.535 | 0.293/0.438 0.218/0.314
0.007/0.065 | 0.431/0.517 | 0.289/0.431 0.206/0.308
0.006/0.060 | 0.376/0.469 | 0.283/0.432 0.197/0.298
0.603/0.059 | 0.366/0.475 | 0.281/0.431 0.294/0.297
0.006/0.069 | 0.376/0.469 | 0.302/0.447 0.229/0.324
0.006/0.067 | 0.364/0.471 0.281/0.430 0.220/0.320
0.006/0.060 | 0.341/0.453 | 0.302/0.449 0.200/0.305
0.006/0.005 | 0.344/0.457 | 0.293/0.441 0.219/0.325
0.008/0.084 | 0.369/0.476 | 0.394/0.535 0.313/0.387
0.008/0.083 | 0.345/0.457 | 0.347/0.493 0.300/0.375
0.007/0.080 | 0.324/0.443 | 0.318/0.463 0.288/0.366
0.007/0.078 | 0.326/0.446 | 0.323/0.473 0.279/0.354
0.007/0.076 | 0.369/0.476 | 0.304/0.450 0.218/0.322
0.007/0.076 | 0.366/0.475 0.295/0.442 0.210/0.317
0.006/0.061 | 0.340/0.459 | 0.338/0.463 0.213/0.314
0.006/0.060 | 0.332/0.454 | 0.323/0.462 0.207/0.310
0.006/0.070 | 0.323/0.446 | 0.302/0.451 0.211/0.320
0.006/0.068 | 0.312/0.448 | 0.293/0.442 0.205/0.314
0.006/0.063 | 0.310/0.436 | 0.282/0.431 0.200/0.308
0.006/0.063 | 0.309/0.437 | 0.278/0.421 0.198/0.304
0.006/0.063 | 0.301/0.432 | 0.274/0.421 0.193/0.302
0.006/0.063 | 0.308/0.419 | 0.278/0.438 0.193/0.302

Table 9: Regression results (MSE/MAE) across six NLP regression tasks comparing bidirectional
and unidirectional models under pooling, masking, and generation inference strategies.

accuracy and error gap, reinforcing the advantage of bidirectional context and masking for both
classification and regression.

F DATASET

The details of datasets are described in Table [10]

Dataset
SST-2 (Wang et al.|2018)

MRPC (Wang et al.{2018)

QNLI (Wang et al.|2018)

RTE (Wang et al./2018)

MNLI (Wang et al.|2018)

CoLA (Wang et al.||2018)

BoolQ (Clark et al.|[2019)
HellaSwag (Zellers et al.|[2019)
SIQA (Sap et al.[2019)

WASSA (Vinayakumar et al.|2017)
SICK (Marelli et al./[2014a)
STSB-regression (Cer et al.|[2017)
LCP (Shardlow et al.[[2020)

CRP (Shardlow et al.}2020)

Humicroedit (Hossain et al.|2019)

Task Type
Classification

Classification
Classification
Classification
Classification
Classification
Classification
Classification
Classification
Regression
Regression
Regression
Regression
Regression

Regression

Domain
Sentiment Analysis

Paraphrase Detection
Question Answering / NLI
Natural Language Inference
Natural Language Inference
Grammatical Acceptability
Reading Comprehension
Commonsense Reasoning
Social Intelligence

Emotion Intensity

Semantic Similarity
Semantic Similarity
Lexical Complexity
Complex Word Identification

Humor Perception

Description

" The Stanford Sentiment Treebank, a binary sentiment classifica-

tion dataset labeling sentences as positive or negative.

The Microsoft Research Paraphrase Corpus for detecting whether
two sentences are semantically equivalent.

A question natural language inference dataset built from SQuAD,
determining if a context sentence contains the answer.

The Recognizing Textual Entailment dataset for determining if a
hypothesis is entailed by a premise.

Multi-Genre Natural Language Inference dataset covering entail-
ment, neutral, and contradiction relations across multiple genres.
Corpus of Linguistic Acceptability, evaluating whether sentences
conform to English grammatical rules.

Boolean Questions dataset with yes/no questions based on
Wikipedia passages requiring reading comprehension.

Tests commonsense reasoning by selecting the most plausible
continuation of a given scenario.

Social IQa dataset evaluating models’ understanding of social
situations, emotions, and intentions.

WASSA-2017 dataset for predicting emotion intensity scores for
tweets across multiple emotions.

Sentences Involving Compositional Knowledge dataset for mea-
suring sentence similarity and entailment.

Semantic Textual Similarity Benchmark scored on a continuous
scale from 0 to 5.

Lexical Complexity Prediction dataset for predicting the com-
plexity of words within their context.

Complex Word Identification dataset from SemEval, labeling
words as simple or complex in context.

SemEval humor dataset evaluating the impact of small text edits
(micro-edits) on humor perception.

Table 10: Overview of the 16 benchmark datasets used in our experiments across classification and

regression tasks.

28

Under review as a conference paper at ICLR 2026

G ENVIRONMENT SETUP

All experiments are conducted using PyTorch 2.0 and Hugging Face Transformers version 4.50.
Training and evaluation are performed on a single NVIDIA A100 GPU with 80GB of memory. We use
Python 3.10 within an Anaconda virtual environment configured with CUDA 12.1. Key dependencies
include NumPy, SciPy, scikit-learn, and tqdm for data processing and evaluation. Random seeds are
fixed across all runs to ensure reproducibility.

H EVALUATION METRICS

We evaluate our models using task-specific metrics selected for their interpretability, relevance, and
comparability to prior work. For classification tasks, we adopt accuracy as the primary metric,
defined as the ratio of correct predictions to the total number of predictions:

Number of correct predictions
Total number of predictions

Accuracy =

Accuracy provides a straightforward measure of model correctness and aligns with standard practices
in classification benchmarks (Wang et al., [2018)).

For regression tasks, we report both mean squared error (MSE) and mean absolute error (MAE) to
capture complementary aspects of prediction error. MSE emphasizes larger errors due to the squared
term, while MAE reflects the average magnitude of errors:

1 & 1 &
MSE = > (v —4:)°, MAE= =3 |y —dil,
i=1 i=1
where NV is the number of samples, y; is the ground-truth label, and g; is the predicted value. These
metrics ensure a robust evaluation of both typical and extreme prediction errors (Cer et al.l 2017}
Marelli et al.,|[2014b).

In addition to task performance metrics, we measure the mutual information between the input
X and the learned representation Z, denoted I(X; Z). Mutual information quantifies how much
information about the input is preserved in Z,, providing insight into the information bottleneck
trade-off (Tishby & Zaslavsky} 2015). We estimate I(X; Z) using a variational lower bound based on
Mutual Information Neural Estimation (Belghazi et al., [2018), following prior work in information-
theoretic analyses of neural networks.

All metrics are computed using scikit-learn and official benchmark evaluation scripts. Model selection
is performed based on validation set performance, with final metrics reported on the held-out test sets.

I MODEL DESCRIPTION

We compare our method with a range of pretrained language models covering both bidirectional and
unidirectional architectures. The bidirectional baselines include DeBERTaV3-Base (He et al., 2020),
DeBERTaV3-Large (He et al.,|2020), RoBERTa-Base (Liu et al.,[2019), RoBERTa-Large (Liu et al.,
2019), ModernBERT-Base (Warner et al.,[2024), and ModernBERT-Large (Warner et al., [2024)).
The unidirectional baselines include GPT-2 Medium (Radford et al.l|2019), GPT-2 Large (Rad-
ford et al., 2019), MobileLLM-125M (Liu et al., [2024), MobileLLM-350M (Liu et al., [2024),
MobileLLM-630M (Liu et al., [2024), SmolLM-135M (Allal et al., 2024), and SmolLM-360M (Al4
lal et al., |2024). These models are selected to cover a range of sizes and architectures, enabling a
fair and broad evaluation of representational learning. We focus on smaller model sizes to allow
fair comparisons since large bidirectional models are not readily available. All baseline models are
fine-tuned using RoCoFT adapters with an adapter rank of » = 3, enabling efficient fine-tuning
without modifying the main model parameters. We use a cosine learning rate schedule for training.

J HYPERPARAMETERS

We select hyperparameters systematically to ensure consistent and balanced evaluation across all
tasks and models. For classification tasks, we set the learning rate to 1 x 10~* with batch sizes

29

Under review as a conference paper at ICLR 2026

between 8 and 16. For regression tasks, we increase the learning rate to 1 x 10~3 with batch sizes
ranging from 8 to 32. All models are fine-tuned using the AdamW optimizer with a cosine learning
rate schedule, weight decay values in the range of 0.1 to 0.2, and a warmup ratio of 0.1. Gradient
accumulation steps are varied between 1 and 8 depending on GPU memory capacity. To improve
training stability, gradients are clipped at a maximum norm of 1.0, and label smoothing with a factor
of 0.1 is applied where applicable. Each model is trained for 2 to 30 epochs, with warmup steps
selected between 100 and 500. These hyperparameter settings are held consistent across experimental
runs to ensure fair comparisons and reproducibility. This finding aligns with earlier work showing
the benefits of bidirectional models for non-autoregressive NLP tasks. A detailed breakdown of
the hyperparameters used for each dataset and model is provided in Appendix, including Table[TT]
(Humicroedit), Table[T2] (WASSA), Table[13]|(SICK), Table[T4] (STS-B), Table[T15](LCP), Table
(SST-2), Table[T7] (MRPC), Table [T8] (QNLI), Table[I9](RTE), Table 20 (CoLA), Table 21 (MNLI),
Table 22| (BoolQ), Table 23] (HellaSwag), and Table[24] (SIQA).

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Schedul Rank Max Length | Epochs / Warmup Steps
MobileLLM-350M | 6e-4 16 1 02 Cosine 3 512 107100
SmolLM-360M 6Ge-4 16 1 0.2 Cosine 3 512 10/ 100
SmolLM-135M 6e-4 16 1 0.2 Cosine 3 512 10/ 100
ModernBERT-base | 6e-4 16 1 0.2 Cosine 3 512 10/ 100
GPT2-medium 6e-4 16 1 0.2 Cosine 3 512 10/ 100
GPT2-large 6e-4 16 1 0.2 Cosine 3 512 107100
deberta-v3-base 6e-4 16 1 0.2 Cosine 3 512 10/ 100
roberta-base 6e-4 16 1 0.2 Cosine 3 512 10/ 100
roberta-large 6e-4 16 1 0.2 Cosine 3 512 10/ 100
deberta-v3-large 6e-4 16 1 0.2 Cosine 3 512 10/ 100
Mobile-1lm-125 6e-4 16 1 0.2 Cosine 3 512 10/ 100
Mobile-1lm-630 6e-4 16 1 0.2 Cosine 3 512 10/ 100
moden-bert-large 6e-4 16 1 0.2 Cosine 3 512 10/100

Table 11: Hyperparameter settings for the Humicroedit dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Schedul Rank Max Length | Epochs / Warmup Steps
SmolLM-135M Se-4 14 1 0.2 Cosine 3 512 10/ 100
MobileLLM-350M | Se-4 14 1 0.2 Cosine 3 512 10/ 100
SmolLM-360M Se-4 14 1 0.2 Cosine 3 512 10/ 100
GPT2-medium Se-4 14 1 0.2 Cosine 3 512 10/100
GPT2-large Se-4 14 1 0.2 Cosine 3 512 10/ 100
ModernBERT-base | Se-4 14 1 0.2 Cosine 3 512 10/100
deberta-v3-base 6e-4 16 1 0.2 Cosine 3 512 10/ 100
roberta-base 6e-4 16 1 0.2 Cosine 3 512 10/ 100
roberta-large 6e-4 16 1 0.2 Cosine 3 512 10/100
deberta-v3-large 6e-4 16 1 0.2 Cosine 3 512 10/ 100
Mobile-1lm-125 6e-4 16 1 0.2 Cosine 3 512 10/100
Mobile-1Im-630 6Ge-4 16 1 0.2 Cosine 3 512 10/100
moden-bert-large 6e-4 16 1 0.2 Cosine 3 512 107100

Table 12: Hyperparameter settings for the WASSA dataset for each evaluated model.

Model Learning Rate | Batch Size | Grad Accum | Weight Decay | LR Scl Rank | Max Length | Epochs / Warmup Steps
SmolLM-360M le-3 14 1 0.2 Cosine 3 512 20/ 100
SmolLM-135M le-3 14 1 0.2 Cosine 3 512 20/ 100
ModernBERT-base | le-3 8 2 0.2 Cosine 3 512 20/ 100
deberta-v3-base le-3 8 2 0.2 Cosine 3 512 20/ 100
GPT2-medium le-3 14 1 0.2 Cosine 3 512 20/100
GPT2-large le-3 14 1 0.2 Cosine 3 512 20/ 100
roberta-base le-3 8 2 0.2 Cosine 3 512 20/ 100
roberta-large le-3 8 2 0.2 Cosine 3 512 20/ 100
deberta-v3-large le-3 8 2 0.2 Cosine 3 512 20/ 100
Mobile-1lm-125 le-3 8 2 0.2 Cosine 3 512 20/ 100
Mobile-1lm-630 le-3 8 2 0.2 Cosine 3 512 20/100
moden-bert-large le-3 8 2 0.2 Cosine 3 512 20/ 100

Table 13: Hyperparameter settings for the SICK dataset for each evaluated model.

K MODEL PROFILE INFORMATION

We conduct a comprehensive CPU profiling analysis of twelve transformer models to understand
the computational bottlenecks and runtime behavior that influence performance. The models we
evaluate include DeBERTa-v3-Base [Table 25| DeBERTa-v3-Large [Table 26| RoBERTa- Base
ble 27, RoBERTa-Large [Table 28] ModernBERT Base [Table 29] ModernBERT-Large
GPT—2 Medium [Table 31} GPT-2 Large [Table 32] SmolLM-135M [Table 33| - SmolLM- 360M [E
MobileLLM-125M [Table 35| and MobileLLM-600M [Table 37, Our CPU profiling shows

30

Under review as a conference paper at ICLR 2026

Model Learning Rate Batch Size Grad Accum | Weight Decay | LR Scheduler | Rank Max Length | Epochs / Warmup Steps | Max Grad Norm
SmolLM-360M 2e-4 8 1 0.1 Cosine 3 512 10/100 1
MobileLLM-350M | 2e-4 8 1 0.1 Cosine 3 512 10/ 100 1
SmolLM-135M 2e-4 8 1 0.1 Cosine 3 512 10/100 1
deberta-v3-base 6e-4 16 1 0.2 Cosine 3 512 20/100 1
roberta-base 6e-4 16 1 0.2 Cosine 3 512 20/ 100 1
roberta-large 6e-4 16 1 0.2 Cosine 3 512 20/ 100 1
deberta-v3-large 6e-4 16 1 0.2 Cosine 3 512 20/ 100 1
Mobile-1lm-125 6e-4 16 1 0.2 Cosine 3 512 207100 1
Mobile-1lm-630 6e-4 16 1 0.2 Cosine 3 512 20/100 1
moden-bert-large 6e-4 16 1 0.2 Cosine 3 512 20/100 1
GPT2-medium le-4 16 4 0.0 Cosine 3 512 10/ 100 1
GPT2-large le-4 16 4 0.0 Cosine 3 512 10/100 1
ModernBERT-base | le-4 16 4 0.0 Cosine 3 512 10/100 1

Table 14: Hyperparameter settings for the STSB dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Schedul Rank Max Length | Epochs / Warmup Steps
SmolLM-360M Se-4 4 4 0.2 Cosine 3 512 10/ 100
MobileLLM-350M | Se-4 4 4 0.2 Cosine 3 512 10/ 100
SmolLM-135M Se-4 4 4 0.2 Cosine 3 512 10/ 100
ModernBERT-base | Se-4 4 4 0.2 Cosine 3 512 10/ 100
GPT2-medium Se-4 4 4 0.2 Cosine 3 512 10/ 100
GPT2-large Se-4 4 4 0.2 Cosine 3 512 10/ 100
roberta-base le-3 10 1 0.2 Cosine 3 512 107100
roberta-large le-3 10 1 0.2 Cosine 3 512 10/100
deberta-v3-large le-3 10 1 0.2 Cosine 3 512 10/ 100
Mobile-1lm-125 le-3 10 1 0.2 Cosine 3 512 10/ 100
Mobile-1lm-630 le-3 10 1 0.2 Cosine 3 512 10/100
moden-bert-large le-3 10 1 0.2 Cosine 3 512 10/100
deberta-v3-base 2e-3 32 1 0.2 Cosine 3 512 10/ 100

Table 15: Hyperparameter settings for the LCP dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Schedul Rank Max Length | Epochs / Warmup Steps
SmolLM-360M le-4 8 2 0.1 Cosine 3 512 3 /500
MobileLLM-350M | le-4 8 2 0.1 Cosine 3 512 3/500
SmolLM-135M le-4 8 2 0.1 Cosine 3 512 3/500
ModernBERT-base | le-4 8 2 0.1 Cosine 3 512 3/500
deberta-v3-base le-4 16 4 0.00 Cosine 3 512 3/100
roberta-base le-4 16 4 0.00 Cosine 3 512 3/100
roberta-large le-4 16 4 0.00 Cosine 3 512 3/100
deberta-v3-large le-4 16 4 0.00 Cosine 3 512 3/100
Mobile-1lm-125 le-4 16 4 0.00 Cosine 3 512 3/100
Mobile-1lm-630 le-4 16 4 0.00 Cosine 3 512 37100
moden-bert-large le-4 16 4 0.00 Cosine 3 512 3/100
GPT2-medium le-4 8 2 0.1 Cosine 3 512 37500
GPT2-large 3e-3 32 1 0.00 Cosine 3 512 2/100
Table 16: Hyperparameter settings for the SST-2 dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Scheduler | Rank Max Length | Epochs / Warmup Steps
SmolLM-360M Se-4 4 4 0.1 Cosine 3 512 10/ 100
MobileLLM-350M | 5e-4 4 4 0.1 Cosine 3 512 10/ 100
SmolLM-135M Se-4 4 4 0.1 Cosine 3 512 10/ 100
ModernBERT-base | 5e-4 4 4 0.1 Cosine 3 512 10/ 100
deberta-v3-base le-3 64 1 0.00 Cosine 3 512 10/ 100
roberta-base le-3 64 1 0.00 Cosine 3 512 10/ 100
roberta-large le-3 64 1 0.00 Cosine 3 512 107100
deberta-v3-large le-3 64 1 0.00 Cosine 3 512 107100
GPT2-medium Se-4 4 4 0.1 Cosine 3 512 10/ 100
GPT2-large le-4 16 2 0.00 Cosine 3 512 107100
Mobile-1lm-125 3e-3 16 1 0.00 Cosine 3 512 5/100
Mobile-1lm-630 3e-3 16 1 0.00 Cosine 3 512 5/100
moden-bert-large Se-4 4 4 0.1 Cosine 3 512 10/100

Table 17: Hyperparameter settings for the MRPC dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Scheduler | Rank Max Length | Epochs / Warmup Steps
SmolLM-360M 2e-4 8 2 0.1 Cosine 3 512 2/500
MobileLLM-350M | 2e-4 8 2 0.1 Cosine 3 512 2/500
SmolLM-135M 2e-4 8 2 0.1 Cosine 3 512 2/500
ModernBERT-base | 2e-4 8 2 0.1 Cosine 3 512 2/500
GPT2-medium 2e-4 8 2 0.1 Cosine 3 512 2/500
GPT2-large le-4 12 4 0.00 Cosine 3 512 2/100
deberta-v3-base le-4 12 4 0.00 Cosine 3 512 2/100
roberta-base le-4 12 4 0.00 Cosine 3 512 2/100
roberta-large le-4 12 4 0.00 Cosine 3 512 2/100
deberta-v3-large le-4 12 4 0.00 Cosine 3 512 2/100
Mobile-1lm-125 le-4 12 4 0.00 Cosine 3 512 2/100
Mobile-1lm-630 le-4 12 4 0.00 Cosine 3 512 2/100
moden-bert-large le-4 12 4 0.00 Cosine 3 512 2/100

Table 18: Hyperparameter settings for the QNLI dataset for each evaluated model.

31

Under review as a conference paper at ICLR 2026

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Scheduler | Rank Max Length | Epochs / Warmup Steps
SmolLM-360M le-4 4 8 0.00 Cosine 3 512 30/100
MobileLLM-350M | le-4 4 8 0.00 Cosine 3 512 30/ 100
SmolLM-135M le-4 4 8 0.00 Cosine 3 512 30/100
ModernBERT-base | le-4 4 8 0.00 Cosine 3 512 30/ 100
GPT2-medium le-4 4 8 0.00 Cosine 3 512 30/ 100
GPT2-large le-3 16 2 0.00 Cosine 3 512 30/ 100
deberta-v3-base le-4 16 8 0.00 Cosine 3 512 30/100
roberta-base le-4 16 8 0.00 Cosine 3 512 30/ 100
roberta-large le-4 16 8 0.00 Cosine 3 512 30/100
deberta-v3-large le-4 16 8 0.00 Cosine 3 512 30/100
Mobile-1lm-125 le-4 16 8 0.00 Cosine 3 512 30/100
Mobile-11m-630 le-4 16 8 0.00 Cosine 3 512 30/100
moden-bert-large le-4 16 8 0.00 Cosine 3 512 30/100

Table 19: Hyperparameter settings for the RTE dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Schedul Rank Max Length | Epochs / Warmup Steps
SmolLM-360M 2e-5 8 1 0.1 Cosine 3 512 107500
MobileLLM-350M | 2e-5 8 1 0.1 Cosine 3 512 10/500
SmolLM-135M 2e-5 8 1 0.1 Cosine 3 512 10/500
ModernBERT-base | 2e-5 8 1 0.1 Cosine 3 512 10/500
GPT2-medium 2e-5 8 1 0.1 Cosine 3 512 10/500
GPT2-large le-3 64 1 0.00 Cosine 3 512 10/ 100
deberta-v3-base 2e-5 4 8 0.00 Cosine 3 512 10/ 100
roberta-base 2e-5 4 8 0.00 Cosine 3 512 10/ 100
roberta-large 2e-5 4 8 0.00 Cosine 3 512 10/ 100
deberta-v3-large 2e-5 4 8 0.00 Cosine 3 512 10/ 100
Mobile-1lm-125 Se-4 4 4 0.1 Cosine 3 512 10/ 100
Mobile-1lm-630 Se-4 4 4 0.1 Cosine 3 512 10/100
moden-bert-large Se-4 4 4 0.1 Cosine 3 512 10/100

Table 20: Hyperparameter settings for the COLA dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Scheduler | Rank Max Length | Epochs / Warmup Steps
SmolLM-360M 2e-4 8 4 0.00 Cosine 3 512 2/500
MobileLLM-350M | 2e-4 8 4 0.00 Cosine 3 512 2/500
SmolLM-135M 2e-4 8 4 0.00 Cosine 3 512 2/500
ModernBERT-base | 2e-4 8 4 0.00 Cosine 3 512 2/500
GPT2-medium 2e-4 8 4 0.00 Cosine 3 512 2/500
GPT2-large le-3 32 1 0.00 Cosine 3 512 2/100
deberta-v3-base le-3 14 1 0.00 Cosine 3 512 2/100
roberta-base le-3 14 1 0.00 Cosine 3 512 2/100
roberta-large le-3 14 1 0.00 Cosine 3 512 2/100
deberta-v3-large le-3 14 1 0.00 Cosine 3 512 2/100
Mobile-1lm-125 le-3 14 1 0.00 Cosine 3 512 2/100
Mobile-1lm-630 le-3 14 1 0.00 Cosine 3 512 2/100
moden-bert-large 2e-4 8 4 0.00 Cosine 3 512 2/500

Table 21: Hyperparameter settings for the MNLI dataset for each evaluated model.

Model Learning Rate | Batch Size Grad Accum | Weight Decay LR Schedul Rank Max Length | Epochs / Warmup Steps
ModernBERT-base | 3e-4 128 1 0.00 Cosine 3 512 100/ 100
MobileLLM-350M | 3e-4 128 1 0.00 Cosine 3 512 100/ 100
SmolLM-360M 3e-4 128 1 0.00 Cosine 3 512 100/ 100
SmolLM-135M 3e-4 128 1 0.00 Cosine 3 512 100/ 100
GPT2-medium 3e-4 128 1 0.00 Cosine 3 512 100/ 100
GPT2-large 3e-4 128 1 0.00 Cosine 3 512 100/ 100
deberta-v3-base 3e-4 128 1 0.00 Cosine 3 512 100/ 100
roberta-base 3e-4 128 1 0.00 Cosine 3 512 100/ 100
roberta-large 3e-4 128 1 0.00 Cosine 3 512 100/ 100
deberta-v3-large 3e-4 128 1 0.00 Cosine 3 512 100/ 100
Mobile-1lm-125 3e-4 128 1 0.00 Cosine 3 512 100/ 100
Mobile-1lm-630 3e-4 128 1 0.00 Cosine 3 512 100/ 100
moden-bert-large 3e-4 128 1 0.00 Cosine 3 512 100/ 100

Table 22: Hyperparameter settings for the BoolQ dataset for each evaluated model.

Model Learning Rate | Batch Size | Grad Accum | Weight Decay | LR Scheduler | Rank | Max Length | Epochs / Warmup Steps
deberta-v3-base le-4 16 1 0.00 Cosine 3 512 127100
mobilellm-350M le-4 16 1 0.00 Cosine 3 512 12/ 100
SmolLM-360M le-4 16 1 0.00 Cosine 3 512 12/100
SmolLM-135M le-4 16 1 0.00 Cosine 3 512 12/100
ModernBERT-base | le-4 16 1 0.00 Cosine 3 512 12/100
GPT2-medium le-4 16 1 0.00 Cosine 3 512 12/100
GPT2-large le-4 16 1 0.00 Cosine 3 512 12/100
roberta-base le-4 16 1 0.00 Cosine 3 512 12/100
roberta-large le-4 16 1 0.00 Cosine 3 512 12/100
deberta-v3-large le-4 16 1 0.00 Cosine 3 512 12/100
Mobile-1lm-125 le-4 16 1 0.00 Cosine 3 512 127100
Mobile-1lm-630 le-4 16 1 0.00 Cosine 3 512 12/100
moden-bert-large le-4 16 1 0.00 Cosine 3 512 12/100

Table 23: Hyperparameter settings for the HellaSwag dataset for each evaluated model.

32

Under review as a conference paper at ICLR 2026

Model Learning Rate | Batch Size | Grad Accum | Weight Decay | LR Schedul Rank | Max Length | Epochs / Warmup Steps
deberta-v3-base 3e-4 16 1 0.00 Cosine 3 512 4/100
mobilellm-350M 3e-4 16 1 0.00 Cosine 3 512 4/100
SmolLM-360M 3e-4 16 1 0.00 Cosine 3 512 4/100
SmolLM-135M 3e-4 16 1 0.00 Cosine 3 512 4/100
ModernBERT-base | 3e-4 16 1 0.00 Cosine 3 512 4/100
GPT2-medium 3e-4 16 1 0.00 Cosine 3 512 4/100
GPT2-large 3e-4 16 1 0.00 Cosine 3 512 4/100
roberta-base 3e-4 16 1 0.00 Cosine 3 512 4/100
roberta-large 3e-4 16 1 0.00 Cosine 3 512 4/100
deberta-v3-large 3e-4 16 1 0.00 Cosine 3 512 4/100
Mobile-1lm-125 3e-4 16 1 0.00 Cosine 3 512 4/100
Mobile-1lm-630 3e-4 16 1 0.00 Cosine 3 512 4/100
moden-bert-large 3e-4 16 1 0.00 Cosine 3 512 4/100

Table 24: Hyperparameter settings for the SIQA dataset for each evaluated model.

that bidirectional models are often comparable to unidirectional models. For example, DeBERTa-v3-
Base|[Table 25|and ModernBERT-Base [Table 29| complete inference in 502ms and 347ms, respectively,
while GPT-2 Medium takes 1126ms—more than double the time. Larger bidirectional
models like DeBERTa-v3-Large and RoBERTa-Large have runtimes comparable to
GPT-2 Large[Table 37]in total execution time and compute distribution. Bidirectional models spread
CPU usage more evenly across attention, normalization, and embedding layers, whereas unidirec-
tional models spend over 85% of their time on addmm, suggesting less efficient resource utilization.
Additionally, compact bidirectional models like SmolLM-135M and MobileLLM-125M [Ta]
show runtimes similar to GPT-2 Medium, indicating that this efficiency advantage holds even
at smaller scales.

Name Self CPU % | Self CPU | CPU total % | CPU total | CPU time avg | # of Calls
aten::linear 0.51% 2.580ms 77.29% 388.420ms 4.046ms 96
aten::addmm 74.66% 375.212ms 76.25% 383.177ms 3.991ms 96
aten::matmul 0.27% 1.333ms 8.83% 44.372ms 924.422ps 48
aten::bmm 8.25% 41.477ms 8.26% 41.502ms 864.622us 48
aten::copy- 4.84% 24.308ms 4.84% 24.308ms 79.180us 307
aten::gather 2.73% 13.696ms 2.73% 13.696ms 570.650us 24
aten::clone 0.12% 618.044pus 2.26% 11.360ms 135.242ps 84
aten::contiguous 0.04% 207.146ps 2.08% 10.476ms 145.499ps 72
aten::repeat 0.12% 586.012us 1.62% 8.156ms 339.848us 24
aten::add 1.17% 5.887ms 1.22% 6.136ms 84.054us 73

Self CPU time total: 502.528ms

Table 25: CPU profiling results for DeBERTa-v3-Base showing operation-wise breakdown of compu-
tation time.

Name Self CPU % | Self CPU | CPU total % | CPU total | CPU time avg | # of Calls
aten::linear 0.30% 4.865ms 82.66% 1.329s 6.921ms 192
aten::addmm 80.79% 1.299s 82.08% 1.319s 6.872ms 192
aten::matmul 0.15% 2.466ms 7.37% 118.530ms 1.235ms 96
aten::bmm 7.03% 113.072ms 7.04% 113.118ms 1.178ms 96
aten::copy- 391% 62.848ms 391% 62.848ms 103.539us 607
aten::gather 2.17% 34.856ms 2.17% 34.856ms 726.164ps 48
aten::clone 0.07% 1.160ms 1.78% 28.664ms 170.619us 168
aten::contiguous 0.03% 443.678us 1.63% 26.265ms 182.397us 144
aten::repeat 0.08% 1.258ms 1.23% 19.738ms 411.214ps 48
aten::add 0.88% 14.152ms 0.91% 14.626ms 100.871ps 145

Self CPU time total: 1608 ms

Table 26: CPU profiling results for DeBERTa-v3-Large showing operation-wise breakdown of

computation time.

L PREDGEN VS. ONE-TOKEN GENERATION:

The original PredGen framework (Kowsher et al 2025) showed that generating multiple output
tokens retains higher mutual information with the input, leading to better performance on regression

33

Under review as a conference paper at ICLR 2026

Name Self CPU % | Self CPU | CPU total % | CPU total | CPU time avg | # of Calls
aten::linear 0.22% 2.579ms 92.35% 1.079s 14.774ms 73
aten::addmm 91.46% 1.068s 91.93% 1.074s 14.706ms 73
aten::scaled_dot_product_attention 0.02% 187.093ps 5.13% 59.890ms 4.991ms 12
aten::_scaled_dot_product_flash_attention_for_cpu 5.04% 58.850ms 5.11% 59.703ms 4.975ms 12
aten::gelu 1.15% 13.426ms 1.15% 13.426ms 1.119ms 12
aten::layer_norm 0.03% 356.267us 0.74% 8.673ms 346.936us 25
aten::native_layer_norm 0.67% 7.832ms 0.71% 8.317ms 332.685us 25
aten::copy- 0.42% 4.888ms 0.42% 4.888ms 61.871ps 79
aten::add 0.25% 2.868ms 0.25% 2.878ms 106.586ps 27
aten::ne 0.14% 1.675ms 0.14% 1.675ms 1.675ms 1

Self CPU time total: 1168ms

Table 27: CPU profiling results for ROBERTa-Base showing operation-wise breakdown of computa-
tion time.

Name Self CPU % | Self CPU | CPU total % | CPU total CPU time avg # of Calls
aten::linear 0.39% 4.022ms 94.22% 982.099ms 6.773ms 145
aten::addmm 92.45% 963.703ms 93.46% 974.219ms 6.719ms 145
aten::scaled_dot_product_attention 0.03% 304.568us 3.29% 34.249ms 1.427ms 24
aten::_scaled_dot_product_flash_attention_for_cpu 3.13% 32.634ms 3.26% 33.945ms 1.414ms 24
aten::gelu 1.00% 10.469ms 1.00% 10.469ms 436.198us 24
aten::copy_ 0.93% 9.662ms 0.93% 9.662ms 63.987us 151
aten::layer_norm 0.04% 434.620us 0.75% 7.775ms 158.670us 49
aten::native_layer_norm 0.63% 6.605ms 0.70% 7.340ms 149.800ps 49
aten::add 0.45% 4.657ms 0.45% 4.670ms 91.559us 51
aten::view 0.22% 2.325ms 0.22% 2.325ms 4.754ps 489

Self CPU time total: 1042ms

Table 28: CPU profiling results for RoOBERTa-Large showing operation-wise breakdown of computa-
tion time.

Name Self CPU % | Self CPU | CPU total % | CPU total CPU time avg # of Calls
aten::linear 0.15% 532.099us 81.11% 282.061ms 3.205ms | 88
aten::matmul 0.62% 2.164ms 81.03% 281.778ms 2.562ms 110
aten::mm 79.88% 277.768ms 79.89% 277.814ms 3.157ms 88
aten::scaled_dot_product_attention 0.07% 230.328us 6.25% 21.748ms 988.565us 22
aten::_scaled_dot_product_flash_attention_for_cpu 5.85% 20.351ms 6.19% 21.518ms 978.096ps 22
aten::layer_norm 0.13% 462.996us 2.60% 9.037ms 200.831us 45
aten::native_layer_norm 2.28% 7.919ms 2.47% 8.574ms 190.542ps 45
aten::mul 2.17% 7.550ms 2.35% 8.189ms 53.177ps 154
aten::add 1.82% 6.327ms 1.82% 6.327ms 71.901ps 88
aten::gelu 1.40% 4.852ms 1.40% 4.852ms 220.545us 22

Self CPU time total: 347.749ms

Table 29: CPU profiling results for ModernBERT-Base showing operation-wise breakdown of
computation time.

Name Self CPU % | Self CPU | CPU total % | CPU total CPU time avg # of Calls
aten::linear 0.03% 818.323us 81.17% 2.223s 19.850ms 112
aten::matmul 0.14% 3.970ms 81.15% 2.223s 15.876ms 140
aten::mm 80.90% 2.216s 80.90% 2.216s 19.785ms 112
aten::embedding 0.00% 61.446ps 12.23% 335.032ms 335.032ms 1
aten::index_select 12.23% 334.935ms 12.23% 334.953ms 334.953ms 1
aten::layer_norm 0.02% 470.737us 2.22% 60.931ms 1.069ms 57
aten::native_layer_norm 2.18% 59.590ms 221% 60.460ms 1.061ms 57
aten::scaled_dot_product_attention 0.02% 564.994us 1.45% 39.851ms 1.423ms 28
aten::_scaled_dot_product_flash_attention_for_cpu 1.38% 37.714ms 1.43% 39.286ms 1.403ms 28
aten::gelu 0.89% 24.332ms 0.89% 24.332ms 868.986us 28

Self CPU time total: 2739ms

Table 30: CPU profiling results for ModernBERT-large showing operation-wise breakdown of
computation time.

34

Under review as a conference paper at ICLR 2026

Name Self CPU % | Self CPU | CPU total % | CPU total CPU time avg # of Calls
aten::addmm 86.77% 976.892ms 88.05% 991.390ms 10.327ms 96
aten::mul 3.18% 35.802ms 3.35% 37.679ms 392.489us 96
aten::scaled_dot_product_attention 0.04% 396.746ps 2.76% 31.048ms 1.294ms 24
aten::_scaled_dot_product_flash_attention_for_cpu 2.60% 29.255ms 2.72% 30.652ms 1.277ms 24
aten::copy- 2.07% 23.295ms 2.07% 23.295ms 80.886us 288
aten::add 1.95% 21.947ms 1.99% 22.375ms 230.671ps 97
aten::contiguous 0.03% 298.059us 1.01% 11.422ms 118.983us 96
aten::clone 0.07% 742.482us 0.99% 11.124ms 115.879us 96
aten::pow 0.87% 9.819ms 0.88% 9.867ms 411.125ps 24
aten::tanh 0.79% 8.921ms 0.79% 8.921ms 371.720us 24

Self CPU time total: 1126ms

Table 31: CPU profiling results for GPT-2 Medium showing operation-wise breakdown of computa-
tion time.

Name Self CPU % | Self CPU | CPU total % | CPU total | CPU time avg | # of Calls
aten::addmm 87.92% 2.160s 89.08% 2.188s 15.196ms 144
aten::mul 2.84% 69.731ms 2.98% 73.160ms 508.058us 144
aten::scaled_dot_product_attention 0.02% 560.556ps 2.74% 67.311ms 1.870ms 36
aten::_scaled_dot_product_flash_attention_for_cpu 2.63% 64.497ms 2.72% 66.750ms 1.854ms 36
aten::copy- 1.82% 44.776ms 1.82% 44.776ms 103.647us 432
aten::add 1.77% 43.543ms 1.80% 44.286ms 305.422us 145
aten::contiguous 0.02% 548.391pus 0.87% 21.351ms 148.269us 144
aten::clone 0.06% 1.422ms 0.85% 20.802ms 144.461ps 144
aten::pow 0.81% 19.877ms 0.81% 19.970ms 554.714ps 36
aten::tanh 0.70% 17.260ms 0.70% 17.260ms 479.437us 36

Self CPU time total: 2456ms

Table 32: CPU profiling results for GPT-2 Large showing operation-wise breakdown of computation
time.

Name Self CPU % | Self CPU | CPU total % | CPU total CPU time avg # of Calls
aten::linear 0.35% 1.889ms 80.94% 441.637ms 2.103ms 210
aten::matmul 1.44% 7.863ms 79.89% 435.925ms 2.066ms 211
aten::mm 77.90% 425.052ms 77.93% 425.217ms 2.025ms 210
aten::scaled_dot_product_attention 0.07% 360.301ps 6.26% 34.135ms 1.138ms 30
aten::_scaled_dot_product_flash_attention_for_cpu 5.84% 31.891ms 6.19% 33.775ms 1.126ms 30
aten::mul 2.73% 14.911ms 2.74% 14.958ms 54.590ps 274
aten::clone 0.18% 963.449us 1.87% 10.198ms 84.981us 120
aten::copy-_ 1.54% 8.398ms 1.54% 8.398ms 34.277ps 245
aten::silu 1.51% 8.256ms 1.51% 8.256ms 275.204ps 30
aten::add 1.29% 7.025ms 1.48% 8.054ms 44.496us 181

Self CPU time total: 545.639ms

Table 33: CPU profiling results for SmolLM-135M showing operation-wise breakdown of computa-
tion time.

Name Self CPU % | Self CPU | CPU total % | CPU total CPU time avg # of Calls
aten::linear 0.14% 1.401ms 87.03% 895.172ms 3.996ms 224
aten::matmul 0.44% 4.559ms 86.59% 890.629ms 3.958ms 225
aten::mm 85.92% 883.710ms 85.93% 883.826ms 3.946ms 224
aten::scaled_dot_product_attention 0.18% 1.871ms 3.82% 39.269ms 1.227ms 32
aten::_scaled_dot_product_flash_attention_for_cpu 3.49% 35.847ms 3.64% 37.398ms 1.169ms 32
aten::mul 2.46% 25.292ms 2.46% 25.319ms 86.708us 292
aten::silu 1.36% 13.992ms 1.36% 13.992ms 437.260ps 32
aten::add 1.07% 11.014ms 1.14% 11.728ms 60.769us 193
aten::clone 0.07% 706.630us 1.00% 10.261ms 80.166ps 128
aten::copy- 0.87% 8.908ms 0.87% 8.908ms 34.131ps 261

Self CPU time total: 1029ms

Table 34: CPU profiling results for SmolLM-360M showing operation-wise breakdown of computa-
tion time.

Name Self CPU % | Self CPU | CPU total % | CPU total | CPU time avg | # of Calls
aten::linear 0.15% 1.007ms 87.11% 600.140ms 2.844ms 211
aten::matmul 0.52% 3.615ms 86.62% 596.730ms 2.815ms 212
aten::mm 85.81% 591.196ms 85.83% 591.306ms 2.802ms 211

aten::scaled_dot_product_attention 0.06% 386.293us 4.25% 29.303ms 976.771ps 30

ate caled_dot_product_flash_attention_for_cpu 4.04% 27.832ms 4.20% 28.917ms 963.894ps 30
aten::mul 2.28% 15.710ms 2.29% 15.770ms 57.554ps 274
aten::silu 1.45% 9.993ms 1.45% 9.993ms 333.109us 30
aten::add 0.98% 6.723ms 1.06% 7.271ms 40.174ps 181
aten::clone 0.09% 604.621us 0.91% 6.256ms 52.131us 120
aten::copy_ 0.76% 5.251ms 0.76% 5.215ms 21.432us 245

¥
Self CPU time total: 688.943ms

Table 35: CPU profiling results for MobileLLM-125M showing operation-wise breakdown of
computation time.

35

Under review as a conference paper at ICLR 2026

Name Self CPU % | Self CPU | CPU total % | CPU total CPU time avg # of Calls
aten::linear 0.14% 1.401ms 87.03% 895.172ms 3.996ms [224
aten::matmul 0.44% 4.559ms 86.59% 890.629ms 3.958ms 225
aten::mm 85.92% 883.710ms 85.93% 883.826ms 3.946ms 224
aten::scaled_dot_product_attention 0.18% 1.871ms 3.82% 39.269ms 1.227ms 32
aten::_scaled_dot_product_flash_attention_for_cpu 3.49% 35.847ms 3.64% 37.398ms 1.169ms 32
aten::mul 2.46% 25.292ms 2.46% 25.319ms 86.708us 292
aten::silu 1.36% 13.992ms 1.36% 13.992ms 437.260us 32
aten::add 1.07% 11.014ms 1.14% 11.728ms 60.769us 193
aten::clone 0.07% 706.630us 1.00% 10.261ms 80.166ps 128
aten::copy_ 0.87% 8.908ms 0.87% 8.908ms 34.131ps 261

Self CPU time total: 1029ms

Table 36: CPU profiling results for SmolLM-360M showing operation-wise breakdown of computa-
tion time.

Name Self CPU % | Self CPU | CPU total % | CPU total | CPU time avg | # of Calls
aten::linear 0.10% 1.933ms 90.92% 1.808s 6.433ms 281
aten::matmul 0.30% 6.000ms 90.62% 1.802s 6.389ms 282
aten::mm 90.18% 1.793s 90.18% 1.793s 6.381ms 281
aten::scaled_dot_product_attention 0.02% 431.170ps 2.74% 54.424ms 1.361ms 40
aten::_scaled_dot_product_flash_attention_for_cpu 2.62% 52.116ms 2.72% 53.992ms 1.350ms 40
aten::mul 1.65% 32.805ms 1.65% 32.838ms 90.214ps 364
aten::silu 1.46% 28.972ms 1.46% 28.972ms 724.307us 40
aten::add 0.77% 15.238ms 0.81% 16.094ms 66.778us 241
aten::clone 0.05% 1.018ms 0.65% 13.012ms 81.323us 160
aten::copy.- 0.55% 10.926ms 0.55% 10.926ms 33.617us 325

Self CPU time total: 1988ms

Table 37: CPU profiling results for MobileLLM-600M showing operation-wise breakdown of
computation time.

and classification tasks compared to pooling-based methods. However, this approach incurs high
computational cost due to sequence-level decoding. To improve efficiency, we propose a simplified
variant that performs single-token generation or masked prediction, predicting one specific token
(e.g., via a masked or prompt-inserted position). We extract its hidden state and pass it through a
lightweight MLP for final prediction. This method achieves competitive results across six regression
benchmarks (Table [38]).

36

Under review as a conference paper at ICLR 2026

Model PEFT Method WASSA SICK STSB LCP CRP Humicroedit Avg.
LoRA Predictor 0.454/0.151 | 0.860/0.280 0.965/0.950 | 0.930/0.105 | 1.014/0.784 | 1.348/1.046 | 0.928/0.553
Generator 0.090/0.023 | 0.340/0.195 0.610/0.630 | 0.900/0.105 | 0.465/0.349 | 0.650/0.505 | 0.509/0.301
PredGen 0.088/0.022 | 0.320/0.190 0.576/0.569 | 0.062/0.008 | 0.420/0.280 | 0.550/0.455 | 0.338/0.257
Generation®* 0.089/0.023 | 0.315/0.192 0.582/0.574 | 0.065/0.009 | 0.430/0.290 | 0.548/0.457 | 0.335/0.258
AdaLoRA Predictor 0.424/0.148 | 0.845/0.270 0.950/0.935 | 0.918/0.100 | 1.020/0.790 | 1.360/1.050 | 0.920/0.549
Llama2-7B Generator 0.087/0.022 | 0.325/0.185 0.600/0.620 | 0.890/0.097 | 0.455/0.335 | 0.630/0.490 | 0.498/0.291
PredGen 0.080/0.020 | 0.305/0.185 0.575/0.570 | 0.058/0.006 | 0.405/0.270 | 0.535/0.440 | 0.326/0.248
Generation* 0.079/0.020 | 0.308/0.186 0.578/0.572 | 0.057/0.006 | 0.410/0.274 | 0.532/0.442 | 0.325/0.247
RoCoFT Predictor 0.424/0.148 | 0.854/0.274 0.958/0.942 | 0.924/0.102 | 0.990/0.770 | 1.340/1.040 | 0.915/0.546
Generator 0.085/0.021 | 0.332/0.191 0.605/0.623 | 0.895/0.099 | 0.460/0.337 | 0.641/0.497 | 0.503/0.295
PredGen 0.084/0.021 | 0.311/0.187 0.583/0.580 | 0.060/0.007 | 0.405/0.274 | 0.543/0.448 | 0.332/0.253
Generation* 0.083/0.020 | 0.308/0.186 0.578/0.575 | 0.061/0.008 | 0.410/0.278 | 0.548/0.450 | 0.332/0.253
DoRA Predictor 0.511/0.150 | 0.850/0.275 0.960/0.945 | 0.922/0.104 | 0.980/0.780 | 1.355/1.048 | 0.930/0.550
Generator 0.086/0.022 | 0.330/0.190 0.607/0.625 | 0.885/0.100 | 0.462/0.338 | 0.645/0.500 | 0.503/0.296
PredGen 0.085/0.021 | 0.301/0.184 0.580/0.578 | 0.061/0.007 | 0.415/0.275 | 0.540/0.445 | 0.333/0.252
Generation* 0.084/0.021 | 0.303/0.185 0.584/0.580 | 0.062/0.008 | 0.418/0.278 | 0.538/0.444 | 0.334/0.253
LoRA Predictor 0.370/0.130 | 0.800/0.250 0.920/0.910 | 0.880/0.090 | 0.950/0.720 | 1.280/1.000 | 0.867/0.517
Generator 0.075/0.018 | 0.310/0.175 0.580/0.590 | 0.850/0.090 | 0.430/0.310 | 0.600/0.460 | 0.474/0.274
PredGen 0.074/0.018 | 0.287/0.169 0.550/0.540 | 0.052/0.006 | 0.380/0.250 | 0.500/0.400 | 0.308/0.231
Generation* 0.073/0.018 | 0.289/0.170 0.553/0.542 | 0.051/0.006 | 0.385/0.254 | 0.495/0.402 | 0.309/0.232
AdaLoRA Predictor 0.360/0.125 | 0.810/0.255 0.930/0.920 | 0.890/0.095 | 0.960/0.730 | 1.300/1.010 | 0.875/0.522
Llama2-13B Generator 0.078/0.019 | 0.315/0.178 0.585/0.600 | 0.860/0.093 | 0.440/0.320 | 0.610/0.470 | 0.481/0.280
PredGen 0.078/0.019 | 0.300/0.175 0.530/0.530 | 0.054/0.006 | 0.390/0.255 | 0.510/0.410 | 0.315/0.236
Generation* 0.077/0.019 | 0.302/0.176 0.528/0.529 | 0.055/0.007 | 0.395/0.258 | 0.508/0.411 | 0.316/0.237
RoCoFT Predictor 0.380/0.135 | 0.790/0.245 0.910/0.900 | 0.870/0.088 | 0.940/0.710 | 1.270/0.990 | 0.860/0.511
Generator 0.072/0.017 | 0.305/0.172 0.575/0.580 | 0.845/0.088 | 0.425/0.305 | 0.590/0.450 | 0.860/0.511
PredGen 0.070/0.017 | 0.288/0.169 0.545/0.538 | 0.053/0.007 | 0.375/0.248 | 0.495/0.401 | 0.307/0.232
Generation* 0.071/0.018 | 0.286/0.170 0.548/0.540 | 0.054/0.007 | 0.378/0.250 | 0.493/0.400 | 0.308/0.233
DoRA Predictor 0.365/0.128 | 0.805/0.252 0.925/0.915 | 0.924/0.102 | 0.955/0.725 | 1.290/1.005 | 0.877/0.521
Generator 0.076/0.018 | 0.312/0.176 0.590/0.605 | 0.855/0.092 | 0.435/0.315 | 0.605/0.465 | 0.479/0.279
PredGen 0.070/0.016 | 0.295/0.172 0.555/0.548 | 0.053/0.006 | 0.385/0.252 | 0.505/0.405 | 0.311/0.233
Generation* 0.069/0.016 | 0.297/0.173 0.558/0.550 | 0.054/0.007 | 0.388/0.254 | 0.502/0.406 | 0.312/0.234
LoRA Predictor 0.380/0.140 | 0.820/0.260 0.940/0.925 | 0.910/0.098 | 0.970/0.740 | 1.310/1.020 | 0.888/0.531
Generator 0.081/0.019 | 0.320/0.180 0.595/0.610 | 0.870/0.095 | 0.440/0.325 | 0.620/0.480 | 0.488/0.285
PredGen 0.077/0.019 | 0.298/0.173 0.565/0.555 | 0.055/0.006 | 0.395/0.260 | 0.520/0.420 | 0.318/0.239
Generation* 0.078/0.019 | 0.300/0.174 0.562/0.553 | 0.054/0.006 | 0.398/0.263 | 0.518/0.419 | 0.320/0.240
AdaLoRA Predictor 0.375/0.135 | 0.830/0.265 0.945/0.930 | 0.910/0.098 | 0.980/0.750 | 1.320/1.030 | 0.893/0.535
Llama2-8B Generator 0.080/0.020 | 0.325/0.183 0.600/0.615 | 0.875/0.097 | 0.450/0.330 | 0.630/0.485 | 0.493/0.288
PredGen 0.078/0.019 | 0.303/0.177 0.570/0.560 | 0.057/0.007 | 0.400/0.265 | 0.509/0.410 | 0.323/0.243
Generation* 0.077/0.019 | 0.305/0.178 0.573/0.562 | 0.058/0.007 | 0.403/0.268 | 0.505/0.412 | 0.322/0.242
RoCoFT Predictor 0.390/0.145 | 0.810/0.255 0.935/0.920 | 0.910/0.098 | 0.960/0.730 | 1.300/1.015 | 0.884/0.527
Generator 0.082/0.020 | 0.315/0.177 0.585/0.605 | 0.865/0.092 | 0.435/0.320 | 0.610/0.475 | 0.482/0.282
PredGen 0.079/0.020 | 0.288/0.169 0.565/0.558 | 0.058/0.007 | 0.385/0.255 | 0.530/0.425 | 0.317/0.238
Generation* 0.078/0.020 | 0.290/0.170 0.567/0.559 | 0.059/0.008 | 0.388/0.258 | 0.528/0.426 | 0.318/0.239
DoRA Predictor 0.385/0.138 | 0.825/0.261 0.950/0.935 | 0.905/0.096 | 0.975/0.745 | 1.315/1.025 | 0.893/0.533
Generator 0.078/0.019 | 0.322/0.179 0.592/0.608 | 0.880/0.096 | 0.445/0.328 | 0.625/0.482 | 0.490/0.285
PredGen 0.073/0.018 | 0.300/0.175 0.562/0.558 | 0.066/0.007 | 0.390/0.262 | 0.525/0.425 | 0.319/0.241
Generation* 0.072/0.018 | 0.302/0.176 0.564/0.560 | 0.065/0.007 | 0.393/0.265 | 0.523/0.426 | 0.320/0.242

Table 38: Regression performance of different PEFT methods across benchmarks, reported as
MAE/MSE. Generation* denotes single-token generation.

37

Under review as a conference paper at ICLR 2026

Positive

</s>

o
2
k]
&

</s>

Positive

</s>

Figure 10: Token-level mutual information on the SST-2 dataset, computed using representations
from layers 1, 8, 16, and 30 of MobileLLM. The figure highlights how information evolves across
layers during fine-tuning.

2.2 3.5 3.2
3.0 m
20 3.0 2.8
1.8 2.6
£ 525 £
Nie N N 2.4
1.4 20 >
s 2.0
1.2 1.5 18
1.6
L i 2 3 a 5 6 7 &8 5 6 6 L
1(X;2) 1(X;2) X;2)
2.6 2.4 1.8
1.7
2.4 7 2.2 & 1.6
2.2
- o - 1.5
s £° £
N2.o N N1.4
= =18 =
1.3
1.8
1.6 1.2
1.6
14 1.1
1.4 0+
45 50 55 6.0 65 7.0 7.5 8.0 85 6 1o, 8
1X;2) 1(X;2) 1(X;2)

Figure 11: Mutual information on the ETTh1 dataset for different prediction horizons: 24, 96, 128,
380, 512, and 1038. The figure illustrates how information flow varies as the prediction target
becomes more distant.

38

	Introduction
	Methodology
	Experiments
	Related work
	Conclusion
	Bidirectional vs Unidirectional Representation
	FlowNIB: Flow Neural Information Bottleneck
	Ablation Study
	Effect of step size on FlowNIB dynamics
	Effective Dimensionality Across Models
	Effective Dimensionality vs. Output Complexity:
	 Mutual Information Dynamics Across Output Dimensions and Layers:
	Validating Generalized Effective Dimensionality
	Stability Across Random Seeds
	Bidirectional vs. Unidirectional Attention in Time-Series Forecasting

	LoRA Based Performance Comparison
	Details Results
	Dataset
	Environment Setup
	Evaluation Metrics
	Model Description
	Hyperparameters
	Model Profile Information
	PredGen vs. One-Token Generation:

