
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

IMPROVED STATE MIXING IN HIGHER-ORDER AND
BLOCK DIAGONAL LINEAR RECURRENT NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear recurrent networks (LRNNs) and linear state space models (SSMs) promise
computational and memory efficiency on long-sequence modeling tasks, yet their
diagonal state transitions limit expressivity. Dense and/or nonlinear architectures
(e.g., LSTMs) on the other hand are provably more expressive, but computationally
costly. Here, we explore how expressivity in LRNNs can be increased via richer
state mixing across time and channels while maintaining competitive efficiency.
Specifically, we introduce two structured LRNN architectures: (i) Higher-order
Linear Recurrent Units (H-LRU), which generalize first-order recurrence to m-
th order, mixing multiple past states, and (ii) Block-Diagonal LRUs (BD-LRU),
which enable dense intra-block channel mixing. Per-channel (H-LRU) / per-row
(BD-LRU) L1-normalization of selective gates stabilizes training and allows for
scaling window/block sizes. In synthetic sequence-modeling benchmarks (com-
pression, selective copying, associative recall), H-LRU is found to be the most
parameter-efficient in compression, while the performance of BD-LRU matches or
exceeds those of linear SSMs (Mamba), low-rank LRNNs (DeltaNet) and LSTM
baselines. In permutation composition tasks (S3-S5), BD-LRU is found to effi-
ciently solve these tasks at moderate block sizes, outperforming both linear and
non-linear baselines. A parallel-scan implementation of the proposed architec-
tures keeps the throughput competitive with diagonal LRNNs for moderate orders
(H-LRU) and block sizes (BD-LRU), while preserving the efficiency that moti-
vated LRNNs. These results indicate that the structure of state mixing rather than
width alone shapes expressivity of LRNNs, offering a practical route to closing the
efficiency–expressivity gap in linear sequence models.

1 INTRODUCTION

Recent studies have highlighted fundamental limitations of linear recurrent networks (LRNNs) by
showing that the structure of the state-transition matrix results in a trade-off between efficiency and
expressivity (Merrill and Sabharwal, 2023; Cirone et al., 2024; Merrill et al., 2024). Architectures
based on diagonal matrices enable an efficient implementation but are inherently limited in expressive
power, while dense models are provably more expressive yet computationally prohibitive. To bridge
this gap, several LRNN architectures have been proposed: efficient structured architectures such
as ones with diagonal-plus-low-rank matrices (Yang et al., 2024a; Peng et al., 2025) and their
products (Siems et al., 2025), ones based on approximations of dense matrices at test time (Sun et al.,
2024; Movahedi et al., 2025; von Oswald et al., 2025), and other solutions that are de facto equivalent
to block-diagonal architectures (e.g., oscillatory blocks (Rusch and Rus, 2024) and complex-valued
states (Orvieto et al., 2023; De et al., 2024)). Together, these studies suggest that exploring the
configuration space between diagonal and dense transition matrices may yield more expressive LRNN
models.

When designing block-diagonal recurrences, the immediate issue one faces is that of dynamical
stability and forward pass normalization – a crucial element that is well studied and discussed in
diagonal LRNNs (Orvieto et al., 2023; Wang and Li, 2023; Zucchet and Orvieto, 2024), yet requires
additional care in non-diagonal linear architectures where eigenvalues are not readily available.
Traditionally, stability has been ensured by parameterizations that constrain eigenvalues of the
transition matrix inside the complex unit disk (Arjovsky et al., 2016; Helfrich et al., 2018), a strategy
that effectively mitigates vanishing and exploding gradients. More recently, similar conditions have

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

been applied to derive efficient reparameterizations that ensure stability in diagonal linear recurrent
units (Orvieto et al., 2023; De et al., 2024). In both selective and non-selective SSMs (designed in
continuous-time), stability is achieved by exponential parametrization, resulting from zero-order-hold
discretization techniques (Gu et al., 2021; Gu and Dao, 2023). Finally, in LRNNs with diagonal-
plus-low-rank transition matrices, normalization arises naturally from the structure of generalized
Householder transformations (Yang et al., 2024b). Although several recent studies have examined
block-diagonal architectures, they either focus on parameterizations of non-selective models (Biegun
et al., 2024; Rusch and Rus, 2024; Walker et al., 2025), analyze only the stability of the state-
transition matrix norm (Fan et al., 2023), or rely on architectures where this matrix is normalized by
design (Yang et al., 2024b), without fully addressing the problem of joint normalization of selective
state-transition matrix and selective input gates, which has been previously shown critical for sequence
modeling in diagonal LRNNs Orvieto et al. (2023); Gu and Dao (2023); De et al. (2024).

Building on this line of work, we explore how to improve expressivity of LRNNs through structured
selective state mixing, while preserving their computational efficiency. Starting from basic consider-
ations, we introduce two architectures with such mixing: (i) Higher-order Linear Recurrent Units
(H-LRU), which generalize first-order recurrence to m-th order, which allow for mixing multiple past
states, and (ii) Block-Diagonal LRUs (BD-LRU), which enable dense intra-block channel mixing. We
equip these models with input-dependent selective gates which are restricted by per-channel/row L1
normalization. This normalization allows both architectures to effectively scale with window or block
size, respectively, and achieve competitive or superior accuracy to diagonal, low-rank and non-linear
baselines on a set of synthetic sequence modeling tasks. In addition, a parallel-scan implementation
maintains high throughput for moderate block sizes, preserving the efficiency that motivates linear
recurrences. Overall, contrary to the common belief that width alone determines performance, our
results indicate that expressivity is primarily shaped by the structure of state mixing.

2 HIGHER-ORDER AND BLOCK DIAGONAL LINEAR RECURRENT NETWORKS.

Modern linear recurrent models (e.g., S4, LRU, Mamba), as well as linear attention models (e.g.
GLA, DeltaNet), exchange information between tokens by means of a recurrent mechanism

ht = at ⊙ ht−1 + bt ⊙ vt, (1)

where ht ∈ RN is the hidden state computed at time t, and at,bt are input-dependent and potentially
state-dependent gates prescribing how current information vt = Wvxt (pointwise function of the
input xt) gets stored in the network state.

Through this mechanism the output of the network at time t, a function of the hidden state ht,
can access information about past inputs v1,v2, . . . ,vt. In fact, one can write in closed form
ht =

∑t
i=1(

∏t
j=t−i aj) ⊙ bi ⊙ vi. However, as is well known from both modern and classical

literature, the system above suffers from vanishing gradients with respect to the inputs (Pascanu et al.,
2013; Wang and Li, 2023; Zucchet and Orvieto, 2024). Standard approaches to address this issue are
to re-parametrize the entries of at such that they absolute values are close to a value of 1 (Orvieto
et al., 2023), and to increase the dimensionality of ht (Orvieto et al., 2024). Although it can be shown
that this strategy can help memorization (Arora et al., 2023; Okpekpe and Orvieto, 2025), it is also
known that going beyond diagonal formulations – i.e. mixing the hidden state as Atht−1 instead of
at ⊙ ht−1 = diag(at)ht−1 – can drastically improve performance on challenging reasoning tasks
involving state-tracking (Merrill et al., 2024; Cirone et al., 2024; Movahedi et al., 2025).

An orthogonal approach to diagonal state expansion that we consider here, is to instead design
recursions of higher complexity. An example in recent literature comes from (Rusch and Rus,
2024), where the authors consider system equations given by the second-order oscillatory ordinary
differential equation h′′(t) = −ā(t) ⊙ h(t) + b̄(t) ⊙ v(t). After discretization1, this leads to a
second-order difference equation of the form

ht = a1,t ⊙ ht−1 + a2,t ⊙ ht−2 + a0,t ⊙ vt, (2)

where coefficients ai,t are a function of the discretization method. Notably, the model 2 can already
be made more expressive if we allow arbitrary selective gates a1,t,a2,t,a0,t in contrast to the fixed
parameterization of discretization schemes.

1Plugging in the second-order backward estimate h′′(t)∆ ≃ ht − 2ht−1 + ht−2 (Hairer et al., 1993).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Higher-order Recurrence Inspired by Eq. 2, we generalize Eq. 1 and introduce Higher-order
Linear Recurrent Units (H-LRUs) as follows:

ht =

m∑
i=1

ai,t ⊙ ht−i + a0,t ⊙ vt. (H-LRU)

This parametrizes the state evolution by an m-th order difference equation. Such models are a
standard tool in time series statistics for forecasting (ARMA processes, see e.g. Hamilton (2020))
and are canonical in systems theory, since they lead to minimal realization (i.e., with provably the
smallest memory size) of linear dynamical systems (Glad and Ljung, 2018).

To see the connection with controllable canonical forms for transition matrices in systems theory,
it is sufficient to denote by hk

t−1 the k-th coordinate (k ∈ {1, 2, . . . , N}) of ht and by aki,t the k-th
coordinate of ai,t. Then, with × denoting the standard matrix multiplication,

hk
t = Ak

t × hk
t−1 + ak0,t ⊙ vk

t ,

Ak
t =


ak1,t · · · akm−1,t akm,t

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 , hk
t−1 =

hk
t−1
...

hk
t−m

 , ak0,t =

a
k
0,t
...
0

 , vk
t =

v
k
t
...
0

 , (3)

where Ak is a structured companion-like matrix which allows richer dynamic modes (e.g. oscillatory
modes). Though eigenvalues for Ak

t are not available in closed form2, dynamical stability for the
system above can be guaranteed and is crucial for performance, as we will discuss in the next section.

Block Diagonal Representation. The substitution in Eq. 3 allows us to rewrite the system equations
in H-LRU as a generalized first-order recurrence

ht = At × ht−1 + a0,t ⊙ vt, (4)

A = diag(A1
t , . . . ,A

N
t), ht−1 =

h
1
t−1
...

hN
t−1

 , a0,t =

a
1
0,t
...

aN0,t

 , vt =

v1
t
...

vN
t

 ,

revealing that the H-LRU architecture corresponds to a recurrent network with a structured block
diagonal state-transition matrix.

Independently, we also investigate a second kind of recurrence with complexity higher than the
diagonal case, the block diagonal linear recurrent unit (BD-LRU). In contrast to the structured
temporal state mixing implemented inside H-LRU blocks, BD-LRU implements dense channel
mixing inside all blocks for all vectors and matrices by setting

hk
t = Ak × hk

t−1 + ak0,t ⊙ vk
t , (BD-LRU)

Ak
t =


ak1,1,t · · · ak1,m−1,t ak1,m,t

ak2,1,t · · · ak2,m−1,t ak2,m,t
...

. . .
...

...
akm,1,t · · · akm,m−1,t akm,m,t

 , hk
t−1 =

hk
1,t−1

...
hk
m,t−1

 , ak0,t =

ak1,0,t
...

akm,0,t

 , vk
t =

 vk1,t
...

vkm,t

 .

(5)
As for H-LRU (Eq. 4), the block size m of BD-LRU corresponds to the size of a square matrix Ak

and k ∈ [1, N] corresponds to the block index of this matrix. The hidden size of BD-LRU is equal to
the extended block diagonal representation of the H-LRU architecture. But in contrast to H-LRU
(Eq. 4), all vectors ak0 ,h

k
t ,v

k
t ∈ Rm and all matrices Ak ∈ Rm×m in BD-LRU are dense and there is

no dependence on the several previous hidden states that is characteristic of the H-LRU architecture.
Importantly, the structure of BD-LRU does not allow for the same eigenvalue analysis as is possible
for H-LRU. Yet, as we show in the next section, we can guarantee its dynamical stability using a
normalization technique similar to that of H-LRU.

To endow the models with input selectivity, we introduce input-dependent gates for both H-LRU
(a′j,t = Linearj(xt)) and BD-LRU (a′i,j,t = Lineari,j(xt)). Figure 1 provides a schematic illustration
of the proposed gating mechanisms in block-diagonal form, showing both the state gates that form
the state-transition matrix and the input gates applied to external inputs.

2Solve the equation χAk (λ) = det(λI−Ak) = λm−ak
1,tλ

m−1−ak
2,tλ

m−2−· · ·−ak
m−1,tλ−ak

m,t = 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

H-LRU

BD-LRU
state gates input gates

state gates input gates

Figure 1: Structure and performance of proposed H-LRU and BD-LRU architectures. (Left) A
schematic illustration of the gating mechanisms in block-diagonal form, showing both the state
gates that constitute the state-transition matrix and the input gates that act on external inputs. The
structure of the gates’ selectivity is color-coded: white squares indicate fixed zero gates, black squares
indicate fixed identity gates, other colors indicate active selective gates; similar color palette indicates
row-wise normalization. (Right) Summary of the performance of proposed and baseline models
across all considered tasks (compression, selective copying, in context recall, permutation). Results
are shown for different window sizes m (H-LRU) and block sizes m (BD-LRU). The y-axis denotes
the mean test accuracy of model chosen by best performance. The x-axis indicates the number of
recurrent flops. Note that H-LRU and BD-LRU can achieve better or matching performance while
requiring fewer recurrent operations than both linear and non-linear baselines.

3 NORMALIZATION

Normalization schemes for RNNs which impose restrictions on the eigenvalues of the state-transition
matrix have proven to be very effective as they directly address the vanishing and exploding gradient
problem (Pascanu et al., 2013). This approach has led to the development of a variety of models
with restrictions on the norm of the state-transition matrix (Arjovsky et al., 2016; Helfrich et al.,
2018). More recently, similar normalization techniques were applied to exponentiated gates in linear
recurrent units (LRU, Orvieto et al. (2023)) and optimized discretization schemes in state space
models (SSM, Gu et al. (2021)). However, as detailed in Orvieto et al. (2023), stability in a dynamical
systems sense (i.e., requiring that the eigenvalues of the hidden-to-hidden transition be less than one
in absolute value) does not necessarily guarantee a properly normalized forward pass in this case.
This can negatively affect performance, as discussed in the next section.

To understand this phenomenon, one can consider the trivial one-dimensional linear setting ht =
aht−1 + bxt, where xt = 1 for all t. For a ∈ (0, 1), as t → ∞, ht converges to the value
(1− a)−1b, which can be substantially greater than 1 if a gets close to 1, as allowed and incentivized
by recent sigmoidal parametrizations (Orvieto et al., 2023). Of course, the forward-pass norm in
this case is preserved if input and forget gates are adapted, that is, if we consider RNNs of the form
ht = aht−1 + (1− a)xt, i.e., b = 1− a. This directly translates to the case of a diagonal network
where models such as S4 (Gu et al., 2020) and Mamba (Gu and Dao, 2023) adopt a forget gate of the
form a = e∆, coupled with an input gate b = ∆ ≈ (1− a) if ∆ is close to zero. As suggested also
directly from the original GRU formulation (Cho et al., 2014) as well as recent works (Feng et al.,
2024), for the diagonal setting (coinciding with m = 1 in H-LRU and BD-LRU) it is convenient to
start by adapting Eq. 1 to ht = at ⊙ ht−1 + (1− at)⊙ vt. Stability for m ≥ 1 is guaranteed when
choosing coefficients as prescribed by the next proposition.

Proposition 1 Consider either the H-LRU or the BD-LRU architectures, written in matrix form
as shown in Equations 3 and 5. If for any k ∈ [1, N], the k-th recurrent non-diagonal block
hk
t = Ak

t ×hk
t−1+ak0,t⊙vk

t is such that the matrix Ak
t := [Ak

t ,a
k
0,t] ∈ Rm×(m+1) has the property

that
∑m+1

j=1 |(Ak
t)i,j | = 1 for every row i ∈ [1,m], then the recurrence is stable from a dynamical

systems perspective and the forward pass is normalized, meaning that ∥hT ∥∞ ≤ maxt∈[0,T] ∥vt∥∞.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

The proposition above suggests that to achieve a normalized forward pass, L1-normalization should
be applied to raw selective gates. For H-LRU, it is sufficient to normalize over all m+ 1 coefficients
of the m-th order recurrence, while for BD-LRU, we apply a row-wise normalization over the hidden
state gates and the input gate. Let us therefore denote as a′s the raw gates (linear functions of the
input) before normalization. We set

H-LRU: aj,t =
f(a′j,t)∑m
l=0 f(a

′
l,t)

; BD-LRU: ai,j,t =
f(a′i,j,t)∑m
l=0 f(a

′
i,l,t)

, (6)

where f(·) is a gate parametrization function; the block index is omitted for clarity. Note that this
normalization only affects the elements inside on-diagonal blocks and has no impact on off-diagonal
blocks (consisting of zero matrices). Note that the introduced normalization restricts eigenvalues of
the state-transition matrix to be smaller than the L1 norm of the corresponding row, meaning that the
eigenvalues of the state-transition matrix are limited by a value of the input gate

|λi,t| ≤
m∑
l=1

|ai,l,t| = 1− |ai,0,t|, (7)

where i is the channel index in H-LRU or row index in BD-LRU. This results in a joint normalization
for input and state gates that allows selective block-diagonal LRNNs to balance attention to hidden
states and inputs in a similar way as in first-order non-selective and selective LRUs (Orvieto et al.,
2023; De et al., 2024). This is in contrast to previous studies on selective block-diagonal LRNNs that
only addressed the stability of the state-transition matrix (Fan et al., 2023).

Although the introduced normalization guarantees the stability of the recurrence, it has been shown
that gradient-based learning is also highly sensitive to the specific choice of parametrization (Zucchet
and Orvieto, 2024). In contrast to the normalization used in non-selective block-diagonal LRNNs that
rely on structured parameterizations such as discretization schemes (Rusch and Rus, 2024; Walker
et al., 2025), joint parametrization of the state-transition matrices and input gate (Fan et al., 2023), and
exponential reparametrization (Orvieto et al., 2023; Biegun et al., 2024), our proposed normalization
is more general as it can be applied to variety of both non-selective and selective parameterizations.
This allowed us to independently evaluate several variants of gate parameterizations that are defined
by the function f in Eq. 6. As can be seen in Figure 2, our normalization strategy greatly improves
performance of both H-LRUs and BD-LRUs.

4 EXPERIMENTS ON TOKEN MANIPULATION TASKS

The sequence modeling capabilities of modern neural architectures are often evaluated through
large-scale experiments involving models with billions of parameters and trained on trillions of
tokens (Kaplan et al., 2020; Waleffe et al., 2024). However, recent studies have shown that many
of these capabilities can be assessed using smaller models trained on carefully designed synthetic
datasets which target specific tasks that are crucial for general sequence modeling (Arora et al., 2023;
Poli et al., 2024).

First, the well-established equivalence between lossless compression and probabilistic modeling
suggests that models that compress well also generalize well (Shannon, 1948; Hutter, 2005). Indeed,
recent work shows that there is a clear connection between language modeling and compression (Gu,
2025), although with some difference in scaling laws (Delétang et al., 2023). In light of this, we
include in our evaluation a task that tests the efficiency of temporal information integration, the
auto-encoding compression task from Poli et al. (2024).

Next, general sequence modeling requires not only the ability to develop a fixed prediction algorithm,
but also the capacity to adapt dynamically to changes within the input context. Such in-context abilities
have been extensively studied and have been suggested to explain the success of the Transformer
architecture (Olsson et al., 2022). To benchmark this basic capability, we choose the selective copying
and associative recall tasks that have been shown to be good indicators of the in-context abilities
of sequence models (Arora et al., 2023; Poli et al., 2024), as well as indicators of downstream
capabilities (Waleffe et al., 2024).

Normalization allows scaling with window size. The specifics of parametrization play a crucial
role in the sensitivity of parameters under gradient-based learning, especially in the context of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

RNNs (Zucchet and Orvieto, 2024). In Section 3, we derived a parametrization/normalization strategy
on input and forget gates that guarantees forward pass stability, following insights from previous
literature (Orvieto et al., 2023). Here, we show that our normalization strategies are crucial for
performance. We tested several variants of the function f for L1 normalization in 6: exponentiated
gate exp(·) (softmax normalization), sigmoidal gates σ(·), ReLU gates relu(·). As a baseline, we
also tested all models without normalization.

A B
Figure 2: Scaling of performance
with window/block size on the com-
pression task for L1 normaliza-
tion with different parameteriza-
tions. Results are shown for dif-
ferent window/block sizes m of
the higher-order LRU (H-LRU) and
block diagonal LRU (BD-LRU). A.
Comparison between H-LRUs. B.
Comparison between BD-LRUs.

We found that both softmax and sigmoidal L1 normalizations allowed the models to effectively scale
with window and block size, see Fig. 2. Without normalization, both H-LRU and BD-LRU improve at
lower rate with window size, while the ReLU normalization reduced the performance at chance level.
With softmax or sigmoidal L1 normalizations, the improvement with window size was especially
pronounced between a window/block size of 1 and 2. We attribute this to the fact that starting from
the window/block size of 2, both H-LRU and BD-LRU get access to complex eigenvalues, so our
results are in good agreement with previous studies that showed the benefits of oscillatory modes
in recurrent networks (Rusch and Mishra, 2021; Effenberger et al., 2022; Dubinin and Effenberger,
2024; Rusch and Rus, 2024).

We noticed that for moderate block sizes (m ∈ [2, 5]), the softmax normalization performed com-
parable or better than sigmoidal normalization, making this the default choice for all the remaining
experiments. That also agrees with previous findings that exponentiation of the gates benefit gradient-
based learning (Orvieto et al., 2023; Zhang et al., 2024).

Scaling with hidden state is limited by state mixing. Next, we performed experiments in which
we investigated the difference between scaling the window size and the hidden size.

In these experiments we found that for both H-LRUs and BD-LRUs, the scaling with hidden size
could not compensate for a lack of expressivity. In other words, window/block size was found to be
the key factor for performance, see Fig. 3. We also found that scaling of H-LRUs and BD-LRUs
results in models that are competitive with LSTMs and achieve higher performance than other linear
recurrent baselines, both diagonal ones such as Mamba and low-rank ones such as DeltaNet and
DeltaProduct, see Table 1. In line with the observed limitations of diagonal RNNs, we found that
scaling the hidden size in a Mamba model also had limited effect on performance, see Fig. 3.

Our scaling experiments show a direct trade-off between parameter efficiency and peak performance,
as governed by the block and window sizes for BD-LRU and H-LRU, respectively. Models with
smaller block/window sizes saturate in performance at lower parameter counts, demonstrating high
efficiency. In contrast, models with larger block/window sizes require a larger hidden dimension to
match the performance of the smaller models, but can ultimately achieve a much higher performance.
This indicates that richer state mixing increases a model’s expressive power at the expense of
parameter efficiency.
H-LRUs are parameter efficient. We also found that in the compression task which does not
require complex token manipulation, H-LRU demonstrated the most parameter efficient scaling with
hidden size, achieving accuracies not accessible to Mamba and LSTM of similar sizes (in terms
of the number of trainable parameters), see Fig. 3. This aligns well with our predictions that the
inductive bias introduced by extended temporal mixing results in hidden representations with better
compression capabilities.

BD-LRUs are expressive across tasks. In contrast to the compression task, the selective copying
task requires more extensive token manipulation. We found that the performance of BD-LRUs

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

A

B

Figure 3: Performance of different single-layer models as a function of the hidden size in the
compression task (A) and the selective copying task (B). Results are shown for different window sizes
(H-LRU) and block sizes (BD-LRU) m. We compare our networks with different configurations of
Mamba (with two sizes of the convolution kernel (2,4) and several values of the state space expansion
factor (2,4,8)). For comparison to low-rank models, we also include DeltaNet and DeltaProduct with
4 Householder transforms which have different number of heads (2,4,8).

scales more favorably with hidden size than the one of H-LRUs. Furthermore, BD-LRUs were able
to outperform Mamba and DeltaNet, achieving performance that is competitive with LSTMs and
DeltaProduct. At the same time, BD-LRUs achieved the best performance also in the compression task.
Overall, the introduced normalization scheme allows BD-LRU to efficiently utilize the expressivity
of their dense block diagonal structure to approximate a variety of mixing patterns and to achieve
the best overall results on our set of synthetic tasks, see Table 1. In addition, the performance of
H-LRU and BD-LRU scales more favorably than the one of the diagonal LRU, highlighting again the
advantage of access to imaginary eigenvalues.

Models Recall Copy Compress Overall

LSTM 1.000 1.000 0.750 0.916
Mamba2 1.000 0.807 0.720 0.842
Deltanet[-1,1] 1.000 0.892 0.782 0.892
Deltaproduct4[-1,1] 1.000 1.000 0.717 0.906
BD-LRU m1 0.772 0.828 0.722 0.773
BD-LRU m2 1.000 0.958 0.750 0.902
BD-LRU m3 1.000 0.980 0.752 0.911
BD-LRU m4 1.000 0.983 0.782 0.922
BD-LRU m5 1.000 0.985 0.775 0.920
H-LRU m1 0.771 0.815 0.733 0.772
H-LRU m2 0.968 0.855 0.760 0.861
H-LRU m3 0.980 0.845 0.760 0.862
H-LRU m4 0.953 0.838 0.757 0.849
H-LRU m5 0.953 0.833 0.755 0.847

Table 1: Performance on the in-context recall, selective copying and compression tasks. The presented
results are the average of best test accuracies across four configurations of the corresponding synthetic
dataset with different vocabulary sizes, sequence lengths and number of training examples. Results
are shown for different window (H-LRU) abd block sizes (BD-LRU) m. Note that the performance
of our models consistently improves as the window/block size increases. All models are single-layer
configurations with a maximum of 1M parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5 EXPERIMENTS ON PERMUTATION TASKS

An important property of dense recurrent networks is that one layer of such model can easily solve
inherently sequential tasks such as permutation composition. In theory, linear diagonal networks and
Transformers can also solve any of these tasks, but only if we assume an infinite depth approximation.
In practice, it has been shown that they cannot effectively approximate the evolution of recurrent state
with a bounded number of layers (Merrill et al., 2024). Furthermore, it was proposed that there is a
parallelism-expressivity trade-off, in which efficient parallelization comes at the expense of decreased
expressivity (Merrill and Sabharwal, 2023).

To evaluate the ability of a model to learn a permutation structure from data, we use a synthetic
dataset based on the symmetric group Sn - the group of all permutations over n elements (Merrill
et al., 2024). Each instance in the dataset corresponds to a specific permutation sampled from Sn, and
the model is tasked with learning the mapping that defines the permutation purely from input-output
examples within a sequence. We evaluated model performance on a series of increasingly complex
permutation learning tasks derived from the symmetric groups S2 through S5.

Models S3 (10k) S3 (250) S4 (50k) S4 (3k) S5 (100k) Overall

LSTM 1.000 0.320 1.000 0.370 1.000 0.738
Mamba2 0.660 0.280 0.430 0.120 0.260 0.350
Deltanet[-1,1] 1.000 0.260 0.470 0.140 0.140 0.402
Deltaproduct4[-1,1] 1.000 0.270 1.000 0.130 0.140 0.508
BD-LRU m1 0.560 0.370 0.340 0.220 0.210 0.340
BD-LRU m2 1.000 0.480 0.700 0.360 0.340 0.576
BD-LRU m3 1.000 1.000 1.000 0.390 0.480 0.774
BD-LRU m4 1.000 1.000 1.000 1.000 0.870 0.974
BD-LRU m5 1.000 1.000 1.000 1.000 1.000 1.000
H-LRU m1 0.570 0.360 0.330 0.210 0.210 0.336
H-LRU m2 0.590 0.290 0.370 0.160 0.260 0.334
H-LRU m3 0.610 0.280 0.400 0.160 0.310 0.352
H-LRU m4 0.620 0.290 0.410 0.160 0.280 0.352
H-LRU m5 0.610 0.280 0.430 0.160 0.380 0.372

Table 2: Model performance on permutation composition tasks (S3, S4, S5) for varying data regimes.
The values reflect the impact of window size (H-LRU) and block size (BD-LRU), both denoted by
m. We note that BD-LRU performance consistently improves with block size, demonstrating strong
sample efficiency by solving the tasks even given limited training data. All models are single-layer
configurations with a maximum of 1M parameters.

BD-LRUs efficiently learn permutations. All tested recurrent architectures (H-LRU, BD-LRU,
LSTM, Deltanet, Deltaproduct) were able to perfectly solve the S2 task, which represents a uniquely
simple permutation group as it is also a commutative cyclic group. However, as the group order
increases over S3 to S5, the non-commutative structure of the permutation tasks increasingly posed
challenges for the models, see Table 2. Performance of the H-LRU was found to decrease pro-
gressively with increasing group size, indicating a limited capacity for modeling compositional
permutations. Increasing the order of recurrence m did not seem to provide any benefits for the
performance. We conclude that a strict inductive bias on the structure of the transition matrix prevents
H-LRU from solving this task. In contrast, the BD-LRU with moderate block sizes was able to
successfully solve all permutation tasks for all group sizes, matching the performance of LSTM and
outperforming all other recurrent architectures tested. Importantly, consistent with the previously
demonstrated parameter efficiency, the BD-LRU with block size 5 also solved the S5 task using as
few as 200K parameters, matching the parameter efficiency of more computationally demanding
non-linear LSTM model.

Furthermore, we found that BD-LRUs are also sample-efficient in learning permutations, outper-
forming even LSTM in the regime of limited training data. We notice that in our low training token
regime Deltaproduct4 fails to learn the S5 dataset. However, when the number of training samples
approaches the token counts used in the study Siems et al. (2025), it is capable of solving S5 task,
showing that low-rank matrices are less sample-efficient compared to BD-LRU. Our findings align

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

well with our predictions that dense blocks of BD-LRU are well-suited for implementing permutations
between hidden states. The consistent improvement with larger block sizes on permutation tasks of
increasing complexity highlights the advantage of the inductive bias in the BD-LRU architecture.

6 IMPLEMENTATION

The parallel scan algorithm in diagonal LRNNs allows them to efficiently process long sequences
using constant memory and with logarithmic time complexity. Following the classic approach
Blelloch (1990), we consider a first-order recurrence of the form

hi+1 =

{
b0, if i = 0

(hi

⊗
ai)

⊕
bi, if 0 ≤ i < n

, (8)

where hi,bi,bi ∈ RN . If
⊕

and
⊗

are binary associative operators such as point-wise vector
multiplication and summation, then parallel scan enables efficient parallel processing by reducing the
time complexity from NT to N log(T).

The formula 8 also holds if ai = Ai ∈ RN×N and associative operator
⊗

is vector-matrix mul-
tiplication. In this case, parallel scan changes the time complexity from N2T to N3 log(T). For
large dense matrices Ai or short sequences, this change in complexity is not beneficial due to the
high complexity of matrix-matrix multiplication (N3). However, if we exploit the block diagonal
structure of the transition matrices in H-LRU and BD-LRU, we can reduce the time complexity of
parallel scan from N3 log(T) to Hm3 log(T), where m is the block size and H is the number of
blocks (Hm = N). Therefore, for moderate block sizes with m2 ≪ N we can achieve a significant
increase in throughput in the parallel scan implementation compared to sequential implementation.

A B

Figure 4: Model throughput on the selective copying task on a sequence length of 2048. (A)
Comparison across models containing 1M parameters. All models have different hidden sizes to
compensate for the differences in architectures. Note that our most efficient implementation relies on
compilation with maximal autotuning; thus, the performance differences across block sizes primarily
reflect kernel optimization in PyTorch. (B) Comparison of sequential, higher-order parallel, and
autotuned higher-order parallel implementations of BD-LRUs with a hidden size of 128, illustrating
the trade-off between expressivity and efficiency. BD-LRU is shown for illustration purposes only,
but H-LRU employs the same parallel scan implementation and achieves comparable throughput.

Parallel scan implementation enables competitive throughput. In experiments with single-layer
models containing 1M parameters and sequences of length 2048, we observed that a parallel scan
implementation enables BD-LRUs and H-LRUs to achieve throughput comparable to the one of
linear baselines, see Fig. 4A. Our most efficient implementation relies on compilation with maximal
autotuning; thus, the performance differences across block sizes primarily reflect kernel optimization
in PyTorch. We found that certain block sizes align more favorably with GPU architectures, analogous
to how specific batch sizes optimize memory utilization. Thus, designing specialized CUDA kernels
could further improve performance, which we leave for future work.

When evaluating smaller models where runtime is less influenced by GPU characteristics and more
reflective of algorithmic complexity, we found that increasing block size reduces throughput, revealing
the predicted trade-off between expressivity and efficiency, see Fig. 4B. Overall, our results show
that higher-order parallel scan is able to scale throughput effectively with sequence length, offering
substantial improvements over sequential implementations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 REPRODUCIBILITY AND LLM USAGE STATEMENTS

All code used for the simulations performed in this study will be made publicly available (GitHub
repo) subject to the acceptance of this work. Code snippets of the critical parts of the implementations
are made available in Appendix G. Parts of the text were refined with the assistance of an LLM to
improve wording and readability.

REFERENCES

Arjovsky, M., Shah, A., Bengio, Y., 2016. Unitary evolution recurrent neural networks, in: Interna-
tional Conference on Machine Learning, PMLR. pp. 1120–1128.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli, M., Zou, J., Rudra, A., Ré, C., 2023. Zoology:
Measuring and improving recall in efficient language models. arXiv preprint arXiv:2312.04927 .

Biegun, K., Dolga, R., Cunningham, J., Barber, D., 2024. Rotrnn: Modelling long sequences with
rotations. arXiv preprint arXiv:2407.07239 .

Blelloch, G.E., 1990. Prefix sums and their applications .

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.,
2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 .

Cirone, N.M., Orvieto, A., Walker, B., Salvi, C., Lyons, T., 2024. Theoretical foundations of deep
selective state-space models. arXiv preprint arXiv:2402.19047 .

Dao, T., Gu, A., 2024. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060 .

De, S., Smith, S.L., Fernando, A., Botev, A., Cristian-Muraru, G., Gu, A., Haroun, R., Berrada, L.,
Chen, Y., Srinivasan, S., et al., 2024. Griffin: Mixing gated linear recurrences with local attention
for efficient language models. arXiv preprint arXiv:2402.19427 .

Delétang, G., Ruoss, A., Duquenne, P.A., Catt, E., Genewein, T., Mattern, C., Grau-Moya, J.,
Wenliang, L.K., Aitchison, M., Orseau, L., et al., 2023. Language modeling is compression. arXiv
preprint arXiv:2309.10668 .

Dubinin, I., Effenberger, F., 2024. Fading memory as inductive bias in residual recurrent networks.
Neural networks 173, 106179.

Effenberger, F., Carvalho, P., Dubinin, I., Singer, W., 2022. A biology-inspired recurrent oscillator
network for computations in high-dimensional state space. BioRxiv .

Fan, T.H., Chi, T.C., Rudnicky, A.I., 2023. Advancing regular language reasoning in linear recurrent
neural networks. arXiv preprint arXiv:2309.07412 .

Feng, L., Tung, F., Ahmed, M.O., Bengio, Y., Hajimirsadeghi, H., 2024. Were rnns all we needed?
arXiv preprint arXiv:2410.01201 .

Glad, T., Ljung, L., 2018. Control theory. CRC press.

Gu, A., 2025. On the tradeoffs of state space models and transformers. URL: https://
goombalab.github.io/blog/2025/tradeoffs/.

Gu, A., Dao, T., 2023. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752 .

Gu, A., Goel, K., Ré, C., 2021. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396 .

Gu, A., Gulcehre, C., Paine, T., Hoffman, M., Pascanu, R., 2020. Improving the gating mechanism
of recurrent neural networks, in: International Conference on Machine Learning, PMLR. pp.
3800–3809.

10

https://goombalab.github.io/blog/2025/tradeoffs/
https://goombalab.github.io/blog/2025/tradeoffs/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Hairer, E., Wanner, G., Nørsett, S.P., 1993. Solving ordinary differential equations I: Nonstiff
problems. Springer.

Hamilton, J.D., 2020. Time series analysis. Princeton university press.

Helfrich, K., Willmott, D., Ye, Q., 2018. Orthogonal recurrent neural networks with scaled cayley
transform, in: International Conference on Machine Learning, PMLR. pp. 1969–1978.

Hutter, M., 2005. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer Science & Business Media.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., Amodei, D., 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 .

Loshchilov, I., Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 .

Loshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 .

Merrill, W., Petty, J., Sabharwal, A., 2024. The illusion of state in state-space models. arXiv preprint
arXiv:2404.08819 .

Merrill, W., Sabharwal, A., 2023. The parallelism tradeoff: Limitations of log-precision transformers.
Transactions of the Association for Computational Linguistics 11, 531–545.

Movahedi, S., Sarnthein, F., Cirone, N.M., Orvieto, A., 2025. Fixed-point rnns: From diagonal to
dense in a few iterations. arXiv preprint arXiv:2503.10799 .

Okpekpe, D., Orvieto, A., 2025. When recalling in-context, transformers are not ssms. arXiv preprint
arXiv:2508.19029 .

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai,
Y., Chen, A., et al., 2022. In-context learning and induction heads. arXiv preprint arXiv:2209.11895
.

Orvieto, A., De, S., Gulcehre, C., Pascanu, R., Smith, S.L., 2024. Universality of linear recurrences
followed by non-linear projections: Finite-width guarantees and benefits of complex eigenvalues,
in: International Conference on Machine Learning, PMLR. pp. 38837–38863.

Orvieto, A., Smith, S.L., Gu, A., Fernando, A., Gulcehre, C., Pascanu, R., De, S., 2023. Resurrecting
recurrent neural networks for long sequences, in: International Conference on Machine Learning,
PMLR. pp. 26670–26698.

von Oswald, J., Scherrer, N., Kobayashi, S., Versari, L., Yang, S., Schlegel, M., Maile, K., Schimpf,
Y., Sieberling, O., Meulemans, A., et al., 2025. Mesanet: Sequence modeling by locally optimal
test-time training. arXiv preprint arXiv:2506.05233 .

Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the difficulty of training recurrent neural networks.
International conference on machine learning , 1310–1318.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al., 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32.

Peng, B., Zhang, R., Goldstein, D., Alcaide, E., Du, X., Hou, H., Lin, J., Liu, J., Lu, J., Merrill,
W., et al., 2025. Rwkv-7” goose” with expressive dynamic state evolution. arXiv preprint
arXiv:2503.14456 .

Poli, M., Thomas, A.W., Nguyen, E., Ponnusamy, P., Deiseroth, B., Kersting, K., Suzuki, T., Hie,
B., Ermon, S., Ré, C., et al., 2024. Mechanistic design and scaling of hybrid architectures. arXiv
preprint arXiv:2403.17844 .

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Rusch, T.K., Mishra, S., 2021. Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate
and (gradient) stable architecture for learning long time dependencies. arXiv:2010.00951 [cs, stat]
arXiv:2010.00951.

Rusch, T.K., Rus, D., 2024. Oscillatory state-space models. arXiv preorvieprint arXiv:2410.03943 .

Sarnthein, F., 2025. Linear recurrences accessible to everyone, in: ICLR Blogposts 2025.

Shannon, C.E., 1948. A mathematical theory of communication. The Bell system technical journal
27, 379–423.

Siems, J., Carstensen, T., Zela, A., Hutter, F., Pontil, M., Grazzi, R., 2025. Deltaproduct: Improving
state-tracking in linear rnns via householder products. arXiv preprint arXiv:2502.10297 .

Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G., Dubois, Y., Chen, X., Wang, X., Koyejo, S.,
et al., 2024. Learning to (learn at test time): Rnns with expressive hidden states. arXiv preprint
arXiv:2407.04620 .

Waleffe, R., Byeon, W., Riach, D., Norick, B., Korthikanti, V., Dao, T., Gu, A., Hatamizadeh, A.,
Singh, S., Narayanan, D., et al., 2024. An empirical study of mamba-based language models.
arXiv preprint arXiv:2406.07887 .

Walker, B., Yang, L., Cirone, N.M., Salvi, C., Lyons, T., 2025. Structured linear cdes: Maximally
expressive and parallel-in-time sequence models. arXiv preprint arXiv:2505.17761 .

Wang, S., Li, Q., 2023. Stablessm: Alleviating the curse of memory in state-space models through
stable reparameterization. arXiv preprint arXiv:2311.14495 .

Yang, S., Kautz, J., Hatamizadeh, A., 2024a. Gated delta networks: Improving mamba2 with delta
rule. arXiv preprint arXiv:2412.06464 .

Yang, S., Wang, B., Zhang, Y., Shen, Y., Kim, Y., 2024b. Parallelizing linear transformers with the
delta rule over sequence length. arXiv preprint arXiv:2406.06484 .

Zhang, M., Bhatia, K., Kumbong, H., Ré, C., 2024. The hedgehog & the porcupine: Expressive
linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347 .

Zucchet, N., Orvieto, A., 2024. Recurrent neural networks: vanishing and exploding gradients are
not the end of the story. Advances in Neural Information Processing Systems 37, 139402–139443.

12

http://arxiv.org/abs/2010.00951

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A CONCLUSION AND OUTLOOK

We introduced H-LRU and BD-LRU as structured extensions of linear recurrent models that enhance
temporal and channel-wise state mixing. Our results show that proper gate normalization is essential
for scaling such models with window/block size, that H-LRU excels at parameter-efficient com-
pression, while overall BD-LRU is the best-performing architecture on our benchmark of synthetic
tasks, and that a parallel-scan implementation can maintain competitive efficiency of block diagonal
architectures. Overall, our empirical results indicate that the state-mixing structure, rather than width
alone, acts as an important driver for improved expressivity in LRNNs.

One potential limitation is that our study explored only a subset of the possible parametrizations for
the selective gates; a broader investigation could uncover even more effective formulations. Another
limitation lies in computational performance; we observed that the throughput of our models degrades
more rapidly with increasing batch sizes compared to highly optimized baselines such as Mamba.
We attribute this to the absence of custom, low-level kernels, which presents a clear direction for
future engineering efforts. Evaluating the proposed architectures on large-scale language modeling,
investigating deeper and hybrid architectures, their generalization to higher-order and block-diagonal
SSMs, and, in general, optimizing the implementation to further improve computational efficiency
are additional topics left for future studies.

B EXPERIMENTS

Synthetic token manipulation tasks. We benchmarked our architectures using the Mechanistic
Architecture Design (MAD) framework (Poli et al., 2024), a framework for efficient model evaluation
and prototyping. The MAD protocol is motivated by the challenge of predicting how architectural
choices impact performance at scale. The working hypothesis of MAD is that an architecture’s
macroscopic scaling behavior can be effectively predicted by its performance on a set of microscopic,
mechanistic tasks.

The benchmark consists of a diverse suite of sequence modeling challenges designed to test core
token manipulation capabilities. By evaluating models at a small, fixed computational scale, MAD
produces a relative ranking of architectures that has been shown to be predictive of their compute-
optimal performance in large-scale language modeling (Poli et al., 2024). This approach not only
approximates scaling outcomes, but also provides valuable insights into the compositional skills and
failure modes of a given design.

In particular, we utilize three tasks from the MAD framework:

• Compression task. Models are tasked to compress a random sequence of input tokens
into a single aggregation token. Then, this aggregation token is passed through an encoder
MLP, the output of which is used to reconstruct the original sequence via a decoder MLP.
All models were tested using a standard encoder-decoder architecture (Embedding, Tested
Model, MLP Encoder, MLP Decoder).

• Selective copying task. Models are tasked with copying tokens from one position of an
input sequence to a later position of the sequence, while ignoring irrelevant noise tokens
that are randomly inserted into the sequence. This task is designed to evaluate the ability of
a model to perform selective temporal integration in the specific order of occurrence in the
sequence. All models were tested using a standard decoder-only architecture (Embedding,
Tested Model, MLP Decoder).

• Associative recall task. Models are presented with an input sequence of key-value pairs and
tasked with retrieving all values from the input sequence associated with the presented keys.
This task tests the ability of a model to adaptively retrieve information depending on the
established in-context associations. All models were tested using a standard decoder-only
architecture (Embedding, Tested Model, MLP Decoder).

In our experiments, each model was evaluated across four configurations: a baseline (vocabulary size:
16, sequence length: 64, training examples: 20,000) and three variations designed to probe specific
failure modes. These variations all use the same base parameters, but independently (i) increase the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

vocabulary size to 32, (ii) extend the sequence length to 128, or (iii) reduce the training set to 10,000
examples to test vocabulary handling, long-range capabilities, and sample efficiency, respectively.

Synthetic permutation tasks. In our experiments, we employ synthetic datasets derived from
the symmetric permutation groups Sn, which denotes the group of all possible permutations of n
elements. These groups provide a natural hierarchy of complexity: S2 contains only two permutations
and is fully commutative, making it relatively simple to model. In contrast, groups with n ≤ 3 (e.g.,
S3, S4, S5) are non-commutative, and their size grows factorially with n, which rapidly increases the
difficulty of learning the underlying structure. For instance, S3, with six elements, is the smallest non-
commutative group. Geometrically, S3 can be interpreted as the group of symmetries of an equilateral
triangle, including both rotations and reflections. The complexity increases substantially with S4,
which contains 24 elements and corresponds to the full symmetry group of a regular tetrahedron. S4

introduces more intricate subgroup structures and non-trivial normal subgroups. Extending further,
S5 has 120 elements and is the first symmetric group that is not solvable, representing the symmetries
of a regular pentagon in the plane.

We assess model performance on the synthetic permutation group task from Merrill et al. (2024),
which is designed to probe state-tracking and generalization to complex structures. Using their
toolbox, we generated datasets for the symmetric groups S3, S4, and S5 with a fixed sequence
length of 16. To evaluate sample efficiency, we created five distinct data configurations: S3 (10k and
250 examples), S4 (50k and 3k examples), and S5 (100k examples). The S5 setting is particularly
data-limited compared to the multi-million-example setups used in previous studies (Siems et al.,
2025). All models were tested using a standard decoder-only architecture (Embedding, Tested Model,
MLP Decoder), consistent with the MAD benchmark protocol.

Training details. All models were implemented in PyTorch (Paszke et al., 2019). For training, we
follow the experimental settings of the MAD framework. All models are trained with the AdamW
optimizer (Loshchilov and Hutter, 2017) with parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and a
cosine scheduler (Loshchilov and Hutter, 2016) (minimum LR: 0.00001), with the initial learning
rate selected from 0.001, 0.0005, 0.0001. The final reported metric is the best test accuracy across
all three learning rate configurations and five runs with distinct random seeds. For training we
used NVIDIA A100 and NVIDIA H100, while we used NVIDIA H100 for benchmarking the best
throughput across models.

C COMPUTATIONAL COMPLEXITY

This section provides a breakdown of the Floating Point Operations (FLOPs) required for hidden-
to-hidden state transition in the recurrent architectures discussed. For this breakdown, we define
the dimension of the hidden state as H . The sequence length is denoted as T . For Mamba2, the
state expansion factor is denoted by S. In DeltaNet and DeltaProduct4, Nh denotes the number of
heads, C denotes the number of chunks in the DeltaNet implementation, Hn denotes the number of
Householder transformations, and r = 1 denotes low rank. The calculations focus on the recurrence
mechanism, omitting additional components like the input projections or gating, as they can be
precomputed in advance. A multiply-add operation is counted as 2 FLOPs.

Table 3: Summary of computational costs for hidden state updates.
Architecture FLOPs per recurrent step Implementation complexity
LSTM 8H2 + 25H O(TH2)
H-LRU 2Hm+ 2H O(Hm2log(T))
BD-LRU 2Hm2 + 2H O(Hm2log(T))
Mamba2 2HS O(T (H2 +HS))
DeltaNet Nh(4Hr + 4H) O(TCH + TH2)
DeltaProduct4 HnNh(4Hr + 4H) O(Hn(TCH + TH2))

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

D PROOF OF PROPOSITION 1.

First, note that stability is trivial. We can reason blockwise: assuming
∑

j |(Ak
t)i,j | ≤ 1 implies that

the eigenvalues of state-transition matrix λk
i,t ≤ 1. Therefore, the product of such matrices will result

in dynamical stability.

Next, by block-diagonality, it is sufficient to show that for all k ∈ [1,m], ∥hk
T ∥∞ ≤

maxt∈[0,T] ∥vk
t ∥∞. Let hk

i,t be the i-th coordinate of the generic k-th block hidden state hk
t at

time t.

hk
1,t
...

hk
m,t

 =


ak1,1,t · · · ak1,m−1,t ak1,m,t

ak2,1,t · · · ak2,m−1,t ak2,m,t
...

. . .
...

...
akm,1,t · · · akm,m−1,t akm,m,t

×

hk
1,t−1

...
hk
m,t−1

+

ak1,0,t
...

akm,0,t

⊙

 vk1,t
...

vkm,t

 . (9)

Hence,

hk
i,t =

m∑
j=1

aki,j,th
k
j,t−1 + aki,0,tv

k
i,t. (10)

It is then clear that by subadditivity of the absolute value,

|hk
i,t| ≤

m∑
j=1

|aki,j,t| · |hk
j,t−1|+ |aki,0,t| · |vki,t|. (11)

Hence, by collecting the non-coefficient terms, we find a further upper bound

|hk
i,t| ≤

 m∑
j=1

|aki,j,t|+ |aki,0,t|

 ·max

[
|vki,t−1|, max

j∈[1,m]
|hk

j,t|
]
. (12)

By hypothesis,
∑m

j=1 |aki,j,t|+ |aki,0,t| =
∑

j |(Ak
t)i,j | ≤ 1, and hence we conclude that

|hk
i,t| ≤ max

[
|vki,t|, max

j∈[1,m]
|hk

j,t−1|
]
. (13)

At this point, we can finalize the proof by induction. We want to show that ∥hk
T ∥∞ ≤

maxt∈[0,T] ∥vk
t ∥∞. Let us start from T = 1. Since hk

i,0 = 0 for all i ∈ [1,m], we have

hk
i,1 = aki,0,tv

k
i,1, (14)

hence, again because
∑

j |(Ak
0)i,j | ≤ 1, |hk

i,1| ≤ |vki,1|, we can conclude that ∥hk
1∥∞ ≤ ∥vk

1∥∞. Let
us then assume by induction that ∥hk

T−1∥∞ ≤ maxt∈[0,T−1] ∥vk
t ∥∞. Recall that by Equation 13,

|hk
i,t| ≤ max

[
|vki,t|, max

j∈[1,m]
|hk

j,t−1|
]

(15)

= max
[
|vki,t|, ∥hk

t−1∥∞
]
. (16)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Hence,
∥hk

t ∥∞ = max
j∈[1,m]

|hk
j,t| (17)

≤ max
j∈[1,m]

max
[
|vki,t|, ∥hk

t−1∥∞
]

(18)

= max

[
max

j∈[1,m]
|vki,t|, ∥hk

t−1∥∞
]

(19)

≤ max

[
∥vk

t ∥∞, max
t∈[0,T−1]

∥vk
t ∥∞∥

]
(20)

= max
t∈[0,T]

∥vk
t ∥∞, (21)

where in the second-last line we used the induction hypothesis.

E SELECTIVITY ABLATION

To isolate and quantify the contribution of selectivity, we conducted an ablation study. In this analysis,
the input-dependent selective gates in both the H-LRU and BD-LRU architectures were replaced with
data-invariant, learnable parameters.

As hypothesized, the non-selective variants exhibited a significant performance degradation compared
to their selective counterparts on our synthetic benchmark. On tasks requiring dynamic token
manipulation—such as in-context recall, selective copying, and permutation composition—the non-
selective models failed to achieve meaningful performance. For these tasks, increasing the window or
block size yielded no discernible improvement, confirming the necessity of selectivity.

However, the results on the compression task were more nuanced, see Fig. 5. We observed that our
proposed L1 normalization scheme enabled the non-selective models to improve with larger block
and window sizes, albeit at a lower rate than their selective analogs.

A B C

Figure 5: A. Scaling of performance with window size on the compression task. Results are shown
for different window sizes m of non-selective higher-order LRU (H-LRU) and block diagonal LRU
(BD-LRU). For the convolution network, the variation in window size corresponds to the same
variation in a kernel size. B. Comparison of scaling properties between different parameterizations
for H-LRU. C. Comparison of scaling properties between different parameterizations for BD-LRU.

To highlight the advantages of recurrent architectures, we used a convolution layer as a baseline.
This model is limited to explicit, local time mixing within its kernel, in contrast to the implicit and
unbounded temporal integration provided by a hidden state. Our experiments showed that H-LRU
decisively outperforms the convolution on the compression task. This demonstrates the critical role
of recurrent state mixing for tasks requiring efficient long-range temporal reasoning. Furthermore,
the non-selective H-LRU with large window sizes (m > 15) demonstrated strong performance,
surpassing the LSTM and Mamba baselines and even approaching the performance of our selective
models. This finding underscores the powerful inductive bias of the higher-order recurrence for
parameter-efficient compression.

In contrast, the non-selective BD-LRU performed poorly on the compression task, only marginally
surpassing the convolution baseline. Interestingly, for this non-selective variant, the sigmoidal L1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

normalization outperformed softmax normalization, highlighting a difference in how these schemes
interact with selective versus fixed parameterizations.

In addition, when we analyzed H-LRU with minimal point-wise selective gates which don’t mix
channel dimensions, we observed very moderate improvement in compression task. This indicates
that not only selectivity itself but also density of selectivity in gates plays important role in improving
networks’ expressivity.

While the overall performance of these non-selective models is modest, their parameter efficiency can
become advantageous in resource-constrained settings. Given the strong compression results of the
non-selective H-LRU, we hypothesize that such models could be optimized for use as highly efficient
embedding layers, a direction we leave for future research.

F RELATION BETWEEN EXPRESSIVITY OF LRUS AND STATE SPACE DUALITY

Recently, it has been shown that there is a direct correspondence between state space models, the
Transformer architecture and structured attention matrices Dao and Gu (2024). Following this
approach, we can reformulate the general LRU as a general discrete time SSM

ht = At × ht−1 +Bt × vt

yt = Ct × ht.
(22)

Here, we consider the general case of SSMs, in which mixing matrices Ct,At,Bt are dense matrices.
We note that although state space models are commonly defined in continuous time, they have to be
discretized for implementation, at which point they conform to the discrete form described by Eq. 22.
In this study, we effectively ignored the role of Ct, but it can be introduced without affecting the
validity of our arguments.

Following the approach of reformulating state space models (SSMs) as attention mechanisms, the
architecture given in Eq. 22 can be expressed in block matrix representation assuming a fixed sequence
length T :

y1
y2
y3
...
yT

 =


C1B1 0 0 · · · 0

C2A1B1 C2A2 0 · · · 0
C3A2D1B1 C3A2B2 C3B3 · · · 0

...
...

...
. . .

...
CT

∏T
j=1 AjB1 CT

∏T
j=2 AjB2 · · · · · · CTBT



v1
v2
v3
...
vT


If we abstract the details of SSMs matrices, we obtain the generalized attention formulation:

y1
y2
y3
...

 =


A1,1 0 0 · · · 0
A2,1 A2,2 0 · · · 0

A3,1 A3,2 A3,3
. . .

...
...

...
...

. . .
...



v1
v2
v3
...

 . (23)

Importantly, elements Ak,l of the block attention matrix are matrices as well in this representation.
According to State Space Duality Dao and Gu (2024), both the attention in Transformers and diagonal
SMMs result in diagonal matrices Ak,l. So, their architecture allows for efficient parallelization as it
separates temporal mixing from channel mixing.

In contrast to diagonal SSMs and LRUs, both H-LRU and BD-LRU architectures result in block-
diagonal matrices Ak,l, allowing richer but limited by block channel mixing inside the generalized
block attention matrix 23. Such channel mixing allows for the state mixing patterns that are not
accessible to one layer of diagonal LRU or SSMs. Although the channel mixing in H-LRU is more
expressive than the one in a diagonal LRU, it is still more restricted compared to BD-LRU (it is
equivalent to mixing only in one row of block-diagonal matrix), placing expressivity of H-LRU
between diagonal LRU and BD-LRU. Notably, if we extend SSMs with higher-order or block-
diagonal structures, their expressivity would lag behind analogous LRUs due to the restrictions on
mixing patterns imposed by the chosen discretization scheme. Overall, the generalized block attention
formulation 23 reveals that for both LRUs and SSMs, diagonal, higher-order, block diagonal and
dense variants form a hierarchy of architectures, each providing access to increasingly complex state
mixing patterns which result in increased expressivity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

G CODE SNIPPETS

Following the approach for diagonal LRNNs (Sarnthein, 2025), we implement forward and backward
pass for block-diagonal recurrence based on associative scan in PyTorch.

1 import torch
2 from torch.autograd.function import Function, FunctionCtx
3 from torch._higher_order_ops.associative_scan import associative_scan
4

5 # helper function to implement reverse mode
6 def shift(input, shifts, fillval=0):
7 # torch.roll without the copy of the wrap-around section
8 if shifts > 0:
9 output = torch.cat([torch.full_like(input[:, :shifts,...], fillval),

10 input[:, :-shifts,...]], dim=1)
11 if shifts < 0:
12 output = torch.cat([input[:, -shifts:,...],
13 torch.full_like(input[:, shifts:,...], fillval)], dim=1)
14 return output
15

16 # Forward pass of associative scan
17 def scan_hop_fwd(inputs:torch.Tensor, coeffs:torch.Tensor, reverse=False):
18

19 # Higher-Order Op Implementation
20 def op(acc:dict, curr:dict):
21 c = torch.einsum('bcij,bcjk->bcik',curr['c'],acc['c'])
22 x = curr['x'] + torch.einsum('bcij,bcj->bci',curr['c'],acc['x'])
23 return dict(x=x, c=c)
24

25 outputs = associative_scan(op, dict(x=inputs, c=coeffs), dim=1,
26 reverse=reverse, combine_mode='generic')['x']
27 return outputs
28

29 # Backward pass that uses forward pass in reverse mode
30 def scan_hop_bwd(d_outputs:torch.Tensor, coeffs:torch.Tensor,
31 outputs:torch.Tensor, reverse=False):
32 coeffs_bwd = shift(coeffs, -1 if not reverse else 1, fillval=0).permute(0,1,2,4,3)
33 d_inputs = scan_hop_fwd(inputs=d_outputs, coeffs=coeffs_bwd, reverse=(not reverse))
34 d_coeffs = torch.einsum('btci,btck->btcik',d_inputs,
35 shift(outputs, shifts=1 if not reverse else -1, fillval=0))
36 return d_inputs, d_coeffs
37

38 # Autograd wrapper
39 class ScanHopFn(Function):
40 @staticmethod
41 def forward(ctx:FunctionCtx, inputs:torch.Tensor,
42 coeffs:torch.Tensor, reverse:bool=False) -> torch.Tensor:
43 outputs = scan_hop_fwd(inputs=inputs, coeffs=coeffs, reverse=reverse)
44 ctx.save_for_backward(coeffs, outputs)
45 ctx.reverse = reverse
46 return outputs
47

48 @staticmethod
49 def backward(ctx:FunctionCtx, d_outputs:torch.Tensor):
50 coeffs, outputs = ctx.saved_tensors
51 d_inputs, d_coeffs = scan_hop_bwd(d_outputs=d_outputs, coeffs=coeffs,
52 outputs=outputs, reverse=ctx.reverse)
53 return d_inputs, d_coeffs, None
54

55 # Scan function
56 def hopscan(inputs:torch.Tensor, coeffs:torch.Tensor):
57 return ScanHopFn.apply(inputs, coeffs)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Simplified version of H-LRU with autotuned higher-order parallel scan

1 import torch
2 import torch.nn.functional as F
3 import torch.nn as nn
4 from scans.hopscan import hopscan
5

6 @torch.compile(mode="max-autotune", dynamic=False)
7 class HLRU(nn.Module):
8 def __init__(
9 self,

10 input_dim: int,
11 window_dim: int = 4,
12 hidden_dim: int = 64,
13 **kwargs
14):
15 super().__init__()
16 self.input_dim = input_dim
17 self.hidden_dim = hidden_dim
18 self.window_dim = window_dim
19 # initialize projections and gates
20 self.proj_gates = nn.Linear(self.input_dim, self.hidden_dim*(self.window_dim+1),
21 bias=True)
22 self.proj_v = nn.Linear(self.input_dim, self.hidden_dim,
23 bias=False)
24 self.proj_out = torch.nn.Linear(self.hidden_dim*self.window_dim, self.input_dim,
25 bias=False)
26 # structred 1-off diagonal matrix for companion form
27 self.register_buffer("A_temp", torch.diag(torch.ones(self.window_dim-1), 1))
28

29 def forward(self,
30 x: torch.Tensor,
31 *args, **kwargs
32):
33 """
34 x (torch.Tensor): tensor of shape (B T N)
35 y (torch.Tensor): tensor of shape (B T N)
36 """
37 B, T, _ = x.size()
38 # projection of input to hidden size
39 v = self.proj_v(x) # B T H
40 # projections that form selective state gates and input gates
41 gates = self.proj_gates(x) # B T H*(m+1)
42 gates = gates.reshape(B,T,self.hidden_dim,self.window_dim+1)
43

44 # softmax normalization of coeff A and a_0
45 A_t = torch.softmax(gates,-1) # B T H m+1
46 # apply gate to input a_0*v
47 a0v = A_t[:,:,:,-1:]*v[:,:,:].unsqueeze(-1) # B T H
48 # gated input is padded with zeros to get structured form
49 a0v = F.pad(a0v,(0,self.window_dim-1)) # B T H m
50 # pad A_t to get block diagonal form
51 A_t = F.pad(A_t[:,:,:,:-1].unsqueeze(-1),(0,self.window_dim-1))
52 # in order to get companion form
53 # we add A_temp which is structred 1-off diagonal matrix
54 A_t = self.A_temp + A_t # B T H m m
55

56 # parallel scan
57 # takes (B T H m) and (B T H m m) and returns (B T H m)
58 y=hopscan(a0v, A_t) # B T H m
59

60 # reshape and project back
61 y=y.reshape(B,T,self.hidden_dim*self.window_dim) # B T H*m
62 y=self.proj_out(y) # B T N

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Simplified version of BD-LRU with autotuned higher-order parallel scan

1 import torch
2 import torch.nn.functional as F
3 import torch.nn as nn
4 from scans.hopscan import hopscan
5

6 @torch.compile(mode="max-autotune", dynamic=False)
7 class BDLRU(nn.Module):
8 def __init__(
9 self,

10 input_dim: int,
11 window_dim: int = 4,
12 hidden_dim: int = 64,
13 **kwargs
14):
15 super().__init__()
16 self.input_dim = input_dim
17 self.hidden_dim = hidden_dim
18 self.window_dim = window_dim
19 # initialize projections and gates
20 self.proj_gates = nn.Linear(self.input_dim,
21 self.hidden_dim*self.window_dim*(self.window_dim+1),
22 bias=True)
23 self.proj_v = nn.Linear(self.input_dim, self.hidden_dim*self.window_dim,
24 bias=False)
25 self.proj_out = torch.nn.Linear(self.hidden_dim*self.window_dim, self.input_dim,
26 bias=False)
27

28 def forward(self,
29 x: torch.Tensor,
30 *args, **kwargs
31):
32 """
33 x (torch.Tensor): tensor of shape (B T N)
34 y (torch.Tensor): tensor of shape (B T N)
35 """
36 B, T, _ = x.size()
37 # projection of input to hidden size
38 v = self.proj_v(x) # B T H*m
39 # projections that form selective state gates and input gates
40 gates = self.proj_gates(x) # B T H*m*(m+1)
41 gates = gates.reshape(B,T,self.hidden_dim,self.window_dim,self.window_dim+1)
42

43 # softmax normalization of coeff A and a_0
44 A_t = torch.softmax(gates,-1) # B T H m m+1
45 # apply gate to input a_0*v
46 a0v = A_t[:,:,:,:,-1]*v[:,:,:,:] # B T H m
47 # state-transition matrix
48 A_t = A_t[:,:,:,:,:-1] # B T H m m
49

50 # parallel scan
51 # takes (B T H m) and (B T H m m) and returns (B T H m)
52 y=hopscan(a0v, A_t) # B T H m
53

54 # reshape and project back
55 y=y.reshape(B,T,self.hidden_dim*self.window_dim) # B T H*m
56 y=self.proj_out(y) # B T N

20

	Introduction
	Higher-order and block diagonal linear recurrent networks.
	Normalization
	Experiments on token manipulation tasks
	Experiments on permutation tasks
	Implementation
	Reproducibility and LLM usage statements
	Conclusion and outlook
	Experiments
	Computational complexity
	Proof of Proposition 1.
	Selectivity ablation
	Relation between expressivity of LRUs and State Space Duality
	Code snippets

