
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

IMPROVED STATE MIXING IN HIGHER-ORDER AND
BLOCK DIAGONAL LINEAR RECURRENT NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear recurrent networks (LRNNs) and linear state space models (SSMs) promise
computational and memory efficiency on long-sequence modeling tasks, yet their
diagonal state transitions limit expressivity. Dense and/or nonlinear architectures
(e.g., LSTMs) on the other hand are provably more expressive, but computationally
costly. Here, we explore how expressivity in LRNNs can be increased via richer
state mixing across time and channels while maintaining competitive efficiency.
Specifically, we introduce two structured LRNN architectures: (i) Higher-order
Linear Recurrent Units (H-LRU), which generalize first-order recurrence to m-
th order, mixing multiple past states, and (ii) Block-Diagonal LRUs (BD-LRU),
which enable dense intra-block channel mixing. Per-channel (H-LRU) / per-row
(BD-LRU) L1-normalization of selective gates stabilizes training and allows for
scaling window/block sizes. In synthetic sequence-modeling benchmarks (com-
pression, selective copying, associative recall), H-LRU is found to be the most
parameter-efficient in compression, while the performance of BD-LRU matches or
exceeds those of linear SSMs (Mamba), low-rank LRNNs (DeltaNet) and LSTM
baselines. In permutation composition tasks (S3-S5), BD-LRU is found to effi-
ciently solve these tasks at moderate block sizes, outperforming both linear and
non-linear baselines. A parallel-scan implementation of the proposed architec-
tures keeps the throughput competitive with diagonal LRNNs for moderate orders
(H-LRU) and block sizes (BD-LRU), while preserving the efficiency that moti-
vated LRNNs. These results indicate that the structure of state mixing rather than
width alone shapes expressivity of LRNNs, offering a practical route to closing the
efficiency–expressivity gap in linear sequence models.

1 INTRODUCTION

Recent studies have highlighted fundamental limitations of linear recurrent networks (LRNNs) by
showing that the structure of the state-transition matrix results in a trade-off between efficiency and
expressivity (Merrill and Sabharwal, 2023; Cirone et al., 2024; Merrill et al., 2024). Architectures
based on diagonal matrices enable an efficient implementation but are inherently limited in expressive
power, while dense models are provably more expressive yet computationally prohibitive. To bridge
this gap, several LRNN architectures have been proposed: efficient structured architectures such
as ones with diagonal-plus-low-rank matrices (Yang et al., 2024a; Peng et al., 2025) and their
products (Siems et al., 2025), ones based on approximations of dense matrices at test time (Sun et al.,
2024; Movahedi et al., 2025; von Oswald et al., 2025), and other solutions that are de facto equivalent
to block-diagonal architectures (e.g., oscillatory blocks (Rusch and Rus, 2024) and complex-valued
states (Orvieto et al., 2023; De et al., 2024)). Together, these studies suggest that exploring the
configuration space between diagonal and dense transition matrices may yield more expressive LRNN
models.

When designing block-diagonal recurrences, the immediate issue one faces is that of dynamical
stability and forward pass normalization – a crucial element that is well studied and discussed in
diagonal LRNNs (Orvieto et al., 2023; Wang and Li, 2023; Zucchet and Orvieto, 2024), yet requires
additional care in non-diagonal linear architectures where eigenvalues are not readily available.
Traditionally, stability has been ensured by parameterizations that constrain eigenvalues of the
transition matrix inside the complex unit disk (Arjovsky et al., 2016; Helfrich et al., 2018), a strategy
that effectively mitigates vanishing and exploding gradients. More recently, similar conditions have

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

been applied to derive efficient reparameterizations that ensure stability in diagonal linear recurrent
units (Orvieto et al., 2023; De et al., 2024). In both selective and non-selective SSMs (designed in
continuous-time), stability is achieved by exponential parametrization, resulting from zero-order-hold
discretization techniques (Gu et al., 2021; Gu and Dao, 2023). Finally, in LRNNs with diagonal-
plus-low-rank transition matrices, normalization arises naturally from the structure of generalized
Householder transformations (Yang et al., 2024b). Although several recent studies have examined
block-diagonal architectures, they either focus on parameterizations of non-selective models (Biegun
et al., 2024; Rusch and Rus, 2024; Walker et al., 2025), analyze only the stability of the state-
transition matrix norm (Fan et al., 2023), or rely on architectures where this matrix is normalized by
design (Yang et al., 2024b), without fully addressing the problem of joint normalization of selective
state-transition matrix and selective input gates, which has been previously shown critical for sequence
modeling in diagonal LRNNs Orvieto et al. (2023); Gu and Dao (2023); De et al. (2024).

Building on this line of work, we explore how to improve expressivity of LRNNs through structured
selective state mixing, while preserving their computational efficiency. Starting from basic consider-
ations, we introduce two architectures with such mixing: (i) Higher-order Linear Recurrent Units
(H-LRU), which generalize first-order recurrence to m-th order, which allow for mixing multiple past
states, and (ii) Block-Diagonal LRUs (BD-LRU), which enable dense intra-block channel mixing. We
equip these models with input-dependent selective gates which are restricted by per-channel/row L1
normalization. This normalization allows both architectures to effectively scale with window or block
size, respectively, and achieve competitive or superior accuracy to diagonal, low-rank and non-linear
baselines on a set of synthetic sequence modeling tasks. In addition, a parallel-scan implementation
maintains high throughput for moderate block sizes, preserving the efficiency that motivates linear
recurrences. Overall, contrary to the common belief that width alone determines performance, our
results indicate that expressivity is primarily shaped by the structure of state mixing.

2 HIGHER-ORDER AND BLOCK DIAGONAL LINEAR RECURRENT NETWORKS.

Modern linear recurrent models (e.g., S4, LRU, Mamba), as well as linear attention models (e.g.
GLA, DeltaNet), exchange information between tokens by means of a recurrent mechanism

ht = at ⊙ ht−1 + bt ⊙ vt, (1)

where ht ∈ RN is the hidden state computed at time t, and at,bt are input-dependent and potentially
state-dependent gates prescribing how current information vt = Wvxt (pointwise function of the
input xt) gets stored in the network state.

Through this mechanism the output of the network at time t, a function of the hidden state ht,
can access information about past inputs v1,v2, . . . ,vt. In fact, one can write in closed form
ht =

∑t
i=1(

∏t
j=t−i aj) ⊙ bi ⊙ vi. However, as is well known from both modern and classical

literature, the system above suffers from vanishing gradients with respect to the inputs (Pascanu et al.,
2013; Wang and Li, 2023; Zucchet and Orvieto, 2024). Standard approaches to address this issue are
to re-parametrize the entries of at such that they absolute values are close to a value of 1 (Orvieto
et al., 2023), and to increase the dimensionality of ht (Orvieto et al., 2024). Although it can be shown
that this strategy can help memorization (Arora et al., 2023; Okpekpe and Orvieto, 2025), it is also
known that going beyond diagonal formulations – i.e. mixing the hidden state as Atht−1 instead of
at ⊙ ht−1 = diag(at)ht−1 – can drastically improve performance on challenging reasoning tasks
involving state-tracking (Merrill et al., 2024; Cirone et al., 2024; Movahedi et al., 2025).

An orthogonal approach to diagonal state expansion that we consider here, is to instead design
recursions of higher complexity. An example in recent literature comes from (Rusch and Rus,
2024), where the authors consider system equations given by the second-order oscillatory ordinary
differential equation h′′(t) = −ā(t) ⊙ h(t) + b̄(t) ⊙ v(t). After discretization1, this leads to a
second-order difference equation of the form

ht = a1,t ⊙ ht−1 + a2,t ⊙ ht−2 + a0,t ⊙ vt, (2)

where coefficients ai,t are a function of the discretization method. Notably, the model 2 can already
be made more expressive if we allow arbitrary selective gates a1,t,a2,t,a0,t in contrast to the fixed
parameterization of discretization schemes.

1Plugging in the second-order backward estimate h′′(t)∆ ≃ ht − 2ht−1 + ht−2 (Hairer et al., 1993).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Higher-order Recurrence Inspired by Eq. 2, we generalize Eq. 1 and introduce Higher-order
Linear Recurrent Units (H-LRUs) as follows:

ht =

m∑
i=1

ai,t ⊙ ht−i + a0,t ⊙ vt. (H-LRU)

This parametrizes the state evolution by an m-th order difference equation. Such models are a
standard tool in time series statistics for forecasting (ARMA processes, see e.g. Hamilton (2020))
and are canonical in systems theory, since they lead to minimal realization (i.e., with provably the
smallest memory size) of linear dynamical systems (Glad and Ljung, 2018).

To see the connection with controllable canonical forms for transition matrices in systems theory,
it is sufficient to denote by hk

t−1 the k-th coordinate (k ∈ {1, 2, . . . , N}) of ht and by aki,t the k-th
coordinate of ai,t. Then, with × denoting the standard matrix multiplication,

hk
t = Ak

t × hk
t−1 + ak0,t ⊙ vk

t ,

Ak
t =


ak1,t · · · akm−1,t akm,t

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 , hk
t−1 =

hk
t−1
...

hk
t−m

 , ak0,t =

a
k
0,t
...
0

 , vk
t =

v
k
t
...
0

 , (3)

where Ak is a structured companion-like matrix which allows richer dynamic modes (e.g. oscillatory
modes). Though eigenvalues for Ak

t are not available in closed form2, dynamical stability for the
system above can be guaranteed and is crucial for performance, as we will discuss in the next section.

Block Diagonal Representation. The substitution in Eq. 3 allows us to rewrite the system equations
in H-LRU as a generalized first-order recurrence

ht = At × ht−1 + a0,t ⊙ vt, (4)

A = diag(A1
t , . . . ,A

N
t), ht−1 =

h
1
t−1
...

hN
t−1

 , a0,t =

a
1
0,t
...

aN0,t

 , vt =

v1
t
...

vN
t

 ,

revealing that the H-LRU architecture corresponds to a recurrent network with a structured block
diagonal state-transition matrix.

Independently, we also investigate a second kind of recurrence with complexity higher than the
diagonal case, the block diagonal linear recurrent unit (BD-LRU). In contrast to the structured
temporal state mixing implemented inside H-LRU blocks, BD-LRU implements dense channel
mixing inside all blocks for all vectors and matrices by setting

hk
t = Ak × hk

t−1 + ak0,t ⊙ vk
t , (BD-LRU)

Ak
t =


ak1,1,t · · · ak1,m−1,t ak1,m,t

ak2,1,t · · · ak2,m−1,t ak2,m,t
...

. . .
...

...
akm,1,t · · · akm,m−1,t akm,m,t

 , hk
t−1 =

hk
1,t−1

...
hk
m,t−1

 , ak0,t =

ak1,0,t
...

akm,0,t

 , vk
t =

 vk1,t
...

vkm,t

 .

(5)
As for H-LRU (Eq. 4), the block size m of BD-LRU corresponds to the size of a square matrix Ak

and k ∈ [1, N] corresponds to the block index of this matrix. The hidden size of BD-LRU is equal to
the extended block diagonal representation of the H-LRU architecture. But in contrast to H-LRU
(Eq. 4), all vectors ak0 ,h

k
t ,v

k
t ∈ Rm and all matrices Ak ∈ Rm×m in BD-LRU are dense and there is

no dependence on the several previous hidden states that is characteristic of the H-LRU architecture.
Importantly, the structure of BD-LRU does not allow for the same eigenvalue analysis as is possible
for H-LRU. Yet, as we show in the next section, we can guarantee its dynamical stability using a
normalization technique similar to that of H-LRU.

To endow the models with input selectivity, we introduce input-dependent gates for both H-LRU
(a′j,t = Linearj(xt)) and BD-LRU (a′i,j,t = Lineari,j(xt)). Fig. 1 provides a schematic illustration
of the proposed gating mechanisms in block-diagonal form, showing both the state gates that form
the state-transition matrix and the input gates applied to external inputs.

2Solve the equation χAk (λ) = det(λI−Ak) = λm−ak
1,tλ

m−1−ak
2,tλ

m−2−· · ·−ak
m−1,tλ−ak

m,t = 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

efficiency expressivity

block size

BD-LRU

state gates input
gates

H-LRU

A

B

C D

ours

ours

ours

Figure 1: Structure and performance of the proposed H-LRU and BD-LRU architectures. A. A
schematic illustration of the theoretically predicted trade-off between expressivity and efficiency
of block-diagonal linear recurrent networks. B. Schematic illustration of the gating mechanisms in
block-diagonal form, showing both the state gates that constitute the state-transition matrix and the
input gates that act on external inputs. The structure of the gates’ selectivity is color-coded: white
squares indicate fixed zero gates, black squares indicate fixed identity gates, other colors indicate
active selective gates; similar color palettes indicates row-wise normalization. C. Summary of the
performance of the proposed and the baseline models. The x-axis indicates the number of FLOPs per
recurrent step. The y-axis denotes the mean test accuracy over all considered tasks (compression,
selective copying, in context recall, permutation) of the overall best performing model configuration
(hidden size up to 6k). Optimal hidden sizes vary between models, see also Fig. 5. Note that H-LRU
and BD-LRU can achieve better or matching performance than both linear and non-linear baselines
while requiring fewer FLOPs per recurrent step. Diagonal LRU presents the best results across both
H-LRU m1 and BD-LRU m1, which are identical models for m = 1. D. Best performance for
different window sizes m (H-LRU) and block sizes m (BD-LRU).

3 NORMALIZATION

Normalization schemes for RNNs which impose restrictions on the eigenvalues of the state-transition
matrix have proven to be very effective as they directly address the vanishing and exploding gradient
problem (Pascanu et al., 2013). This approach has led to the development of a variety of models
with restrictions on the norm of the state-transition matrix (Arjovsky et al., 2016; Helfrich et al.,
2018). More recently, similar normalization techniques were applied to exponentiated gates in linear
recurrent units (LRU, Orvieto et al. (2023)) and optimized discretization schemes in state space
models (SSM, Gu et al. (2021)). However, as detailed in Orvieto et al. (2023), stability in a dynamical
systems sense (i.e., requiring that the eigenvalues of the hidden-to-hidden transition be less than one
in absolute value) does not necessarily guarantee a properly normalized forward pass in this case.
This can negatively affect performance, as discussed in the next section.

To understand this phenomenon, one can consider the trivial one-dimensional linear setting ht =
aht−1 + bxt, where xt = 1 for all t. For a ∈ (0, 1), as t → ∞, ht converges to the value
(1− a)−1b, which can be substantially greater than 1 if a gets close to 1, as allowed and incentivized
by recent sigmoidal parametrizations (Orvieto et al., 2023). Of course, the forward-pass norm in
this case is preserved if input and forget gates are adapted, that is, if we consider RNNs of the form
ht = aht−1 + (1− a)xt, i.e., b = 1− a. This directly translates to the case of a diagonal network
where models such as S4 (Gu et al., 2020) and Mamba (Gu and Dao, 2023) adopt a forget gate of the
form a = e∆, coupled with an input gate b = ∆ ≈ (1− a) if ∆ is close to zero. As suggested also
directly from the original GRU formulation (Cho et al., 2014) as well as recent works (Feng et al.,
2024), for the diagonal setting (coinciding with m = 1 in H-LRU and BD-LRU) it is convenient to
start by adapting Eq. 1 to ht = at ⊙ ht−1 + (1− at)⊙ vt. Stability for m ≥ 1 is guaranteed when
choosing coefficients as prescribed by the next proposition.

Proposition 1 Consider either the H-LRU or the BD-LRU architectures, written in matrix form
as shown in Equations 3 and 5. If for any k ∈ [1, N], the k-th recurrent non-diagonal block
hk
t = Ak

t ×hk
t−1+ak0,t⊙vk

t is such that the matrix Ak
t := [Ak

t ,a
k
0,t] ∈ Rm×(m+1) has the property

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

that
∑m+1

j=1 |(Ak
t)i,j | = 1 for every row i ∈ [1,m], then the recurrence is stable from a dynamical

systems perspective and the forward pass is normalized, meaning that ∥hT ∥∞ ≤ maxt∈[0,T] ∥vt∥∞.

The proposition above suggests that to achieve a normalized forward pass, L1-normalization should
be applied to raw selective gates. For H-LRU, it is sufficient to normalize over all m+ 1 coefficients
of the m-th order recurrence, while for BD-LRU, we apply a row-wise normalization over the hidden
state gates and the input gate. Let us therefore denote as a′s the raw gates (linear functions of the
input) before normalization. We set

H-LRU: aj,t =
f(a′j,t)∑m
l=0 f(a

′
l,t)

; BD-LRU: ai,j,t =
f(a′i,j,t)∑m
l=0 f(a

′
i,l,t)

, (6)

where f(·) is a gate parametrization function; the block index is omitted for clarity. Note that this
normalization only affects the elements inside on-diagonal blocks and has no impact on off-diagonal
blocks (consisting of zero matrices). Note that the introduced normalization restricts eigenvalues of
the state-transition matrix to be smaller than the L1 norm of the corresponding row, meaning that the
eigenvalues of the state-transition matrix are limited by a value of the input gate

|λi,t| ≤
m∑
l=1

|ai,l,t| = 1− |ai,0,t|, (7)

where i is the channel index in H-LRU or row index in BD-LRU. This results in a joint normalization
for input and state gates that allows selective block-diagonal LRNNs to balance attention to hidden
states and inputs in a similar way as in first-order non-selective and selective LRUs (Orvieto et al.,
2023; De et al., 2024). This is in contrast to previous studies on selective block-diagonal LRNNs that
only addressed the stability of the state-transition matrix (Fan et al., 2023).

Although the introduced normalization guarantees the stability of the recurrence, it has been shown
that gradient-based learning is also highly sensitive to the specific choice of parametrization (Zucchet
and Orvieto, 2024). In contrast to the normalization used in non-selective block-diagonal LRNNs that
rely on structured parameterizations such as discretization schemes (Rusch and Rus, 2024; Walker
et al., 2025), joint parametrization of the state-transition matrices and input gate (Biegun et al., 2024),
and exponential reparametrization (Orvieto et al., 2023), our proposed normalization is more general
as it can be applied to variety of both non-selective and selective parameterizations. This allowed us
to independently evaluate several variants of gate parameterizations that are defined by the function f
in Eq. 6. As can be seen in Fig. 2, our normalization strategy greatly improves performance of both
H-LRUs and BD-LRUs.

4 EXPERIMENTS ON TOKEN MANIPULATION TASKS

The sequence modeling capabilities of modern neural architectures are often evaluated through
large-scale experiments involving models with billions of parameters and trained on trillions of
tokens (Kaplan et al., 2020; Waleffe et al., 2024). However, recent studies have shown that many
of these capabilities can be assessed using smaller models trained on carefully designed synthetic
datasets which target specific tasks that are crucial for general sequence modeling (Arora et al., 2023;
Poli et al., 2024).

First, the well-established equivalence between lossless compression and probabilistic modeling
suggests that models that compress well also generalize well (Shannon, 1948; Hutter, 2005). Indeed,
recent work shows that there is a clear connection between language modeling and compression (Gu,
2025), although with some difference in scaling laws (Delétang et al., 2023). In light of this, we
include in our evaluation a task that tests the efficiency of temporal information integration, the
auto-encoding compression task from Poli et al. (2024).

Next, general sequence modeling requires not only the ability to develop a fixed prediction algorithm,
but also the capacity to adapt dynamically to changes within the input context. Such in-context abilities
have been extensively studied and have been suggested to explain the success of the Transformer
architecture (Olsson et al., 2022). To benchmark this basic capability, we choose the selective copying
and associative recall tasks that have been shown to be good indicators of the in-context abilities
of sequence models (Arora et al., 2023; Poli et al., 2024), as well as indicators of downstream
capabilities (Waleffe et al., 2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Normalization allows scaling with window size. The specifics of parametrization play a crucial
role in the sensitivity of parameters under gradient-based learning, especially in the context of
RNNs (Zucchet and Orvieto, 2024). In Section 3, we derived a parametrization/normalization strategy
on input and forget gates that guarantees forward pass stability, following insights from previous
literature (Orvieto et al., 2023). Here, we show that our normalization strategies are crucial for
performance. We tested several variants of the function f for L1 normalization in 6: exponentiated
gate exp(·) (softmax normalization), sigmoidal gates σ(·), ReLU gates relu(·). As a baseline, we
also tested all models without normalization.

A B
Figure 2: Scaling of performance
with window/block size on the com-
pression task for L1 normaliza-
tion with different parameteriza-
tions. Results are shown for dif-
ferent window/block sizes m of
the higher-order LRU (H-LRU) and
block diagonal LRU (BD-LRU). A.
Comparison between H-LRUs. B.
Comparison between BD-LRUs.

We found that both softmax and sigmoidal L1 normalizations allowed the models to effectively scale
with window and block size, see Fig. 2. Without normalization and with the ReLU normalization,
both H-LRU and BD-LRU improve at lower rate with window size. With softmax or sigmoidal L1 nor-
malizations, the improvement with window size was especially pronounced between a window/block
size of 1 and 2. Our eigenvalue analysis (see Appendix J) indicates that this gain corresponds to
the emergence of negative eigenvalues, consistent with the findings of Grazzi et al. (2024). We also
observe that further improvements in performance are associated with a broader range of complex
eigenvalues, which are enabled starting from the block size 3. These results also align well with
previous studies on beneficial role of oscillatory dynamics in recurrent networks (Rusch and Mishra,
2021; Effenberger et al., 2022; Dubinin and Effenberger, 2024; Rusch and Rus, 2024).

We noticed that for moderate block sizes (m ∈ [2, 5]), the softmax normalization performed com-
parable or better than sigmoidal normalization, making this the default choice for all the remaining
experiments. That also agrees with previous findings that exponentiation of the gates benefit gradient-
based learning (Orvieto et al., 2023; Zhang et al., 2024).

Scaling with hidden state is limited by state mixing. Next, we performed experiments in which we
investigated the difference between scaling the window size and the hidden size. In these experiments
we found that for both H-LRUs and BD-LRUs, the scaling with hidden size could not compensate
for a lack of expressivity. In other words, window/block size was found to be the key factor for
performance, see Fig. 5. We also found that scaling of H-LRUs and BD-LRUs results in models that
are competitive with LSTMs and achieve higher performance than other linear recurrent baselines,
both diagonal ones such as Mamba and low-rank ones such as DeltaNet and DeltaProduct, see Table
1. In line with the observed limitations of diagonal RNNs, we found that scaling the hidden size in a
Mamba model also had limited effect on performance, see Fig. 5. Notably, we also found distinct
scaling behaviors for the compression and our other tasks, aligning with previous results Delétang
et al. (2023). In the compression (auto-encoding) task, models with smaller block size outperformed
larger counterparts, while performance on autoregressive tasks scaled positively with block size.
Therefore, the decrease in aggregate performance for larger block sizes is substantially driven by the
results on the compression task.

Our scaling experiments show a direct trade-off between parameter efficiency and peak performance,
as governed by the block and window sizes for BD-LRU and H-LRU, respectively. Models with
smaller block/window sizes saturate in performance at lower parameter counts, demonstrating high
efficiency. In contrast, models with larger block/window sizes require a larger hidden dimension to
match the performance of the smaller models, but can ultimately achieve a much higher performance.
This indicates that richer state mixing increases a model’s expressive power at the expense of
parameter efficiency.
H-LRUs are parameter efficient. We also found that in the compression task which does not
require complex token manipulation, H-LRU demonstrated the most parameter efficient scaling with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Models Recall Copy Compress Overall

LSTM 1.000 1.000 0.750 0.916
Mamba2 1.000 0.807 0.720 0.842
Deltanet[-1,1] 1.000 0.892 0.782 0.892
Deltaproduct4[-1,1] 1.000 1.000 0.717 0.906
BD-LRU m1 (ours) 0.775 0.835 0.725 0.778
BD-LRU m2 1.000 0.962 0.760 0.908
BD-LRU m3 1.000 0.980 0.762 0.916
BD-LRU m5 1.000 0.985 0.782 0.922
BD-LRU m8 1.000 0.992 0.748 0.913
H-LRU m1 (ours) 0.785 0.848 0.760 0.797
H-LRU m2 0.998 0.855 0.770 0.874
H-LRU m3 1.000 0.855 0.772 0.876
H-LRU m5 1.000 0.838 0.775 0.871
H-LRU m8 1.000 0.810 0.768 0.859

Table 1: Performance on the in-context recall, selective copying and compression tasks. The presented
results are the average of best test accuracies across four configurations of the corresponding synthetic
dataset with different vocabulary sizes, sequence lengths and number of training examples. Results are
shown for different window (H-LRU) abd block sizes (BD-LRU) m. Note that overall performance
of our models consistently improves with window/block size up to approximately 3–5, after which
the gains saturate or exhibit slight degradation. All models are single-layer configurations with a
maximum overall hidden dimension of 6144. See Appendix C for extended table.

hidden size, achieving accuracies not accessible to Mamba and LSTM of similar sizes (in terms
of the number of trainable parameters), see Fig. 5. This aligns well with our predictions that the
inductive bias introduced by extended temporal mixing results in hidden representations with better
compression capabilities.
BD-LRUs are expressive across tasks. In contrast to the compression task, the selective copying
task requires more extensive token manipulation. We found that the performance of BD-LRUs
scales more favorably with hidden size than the one of H-LRUs. Furthermore, BD-LRUs were able
to outperform Mamba and DeltaNet, achieving performance that is competitive with LSTMs and
DeltaProduct. At the same time, BD-LRUs achieved the best performance also in the compression task.
Overall, the introduced normalization scheme allows BD-LRU to efficiently utilize the expressivity
of their dense block diagonal structure to approximate a variety of mixing patterns and to achieve the
best overall results on our set of synthetic tasks, see Table 1.

5 EXPERIMENTS ON PERMUTATION TASKS

An important property of dense recurrent networks is that one layer of such model can easily solve
inherently sequential tasks such as permutation composition. In theory, linear diagonal networks and
Transformers can also solve any of these tasks, but only if we assume an infinite depth approximation.
In practice, it has been shown that they cannot effectively approximate the evolution of recurrent state
with a bounded number of layers (Merrill et al., 2024). Furthermore, it was proposed that there is a
parallelism-expressivity trade-off, in which efficient parallelization comes at the expense of decreased
expressivity (Merrill and Sabharwal, 2023).

To evaluate the ability of a model to learn a permutation structure from data, we use a synthetic
dataset based on the symmetric group Sn - the group of all permutations over n elements (Merrill
et al., 2024). Each instance in the dataset corresponds to a specific permutation sampled from Sn, and
the model is tasked with learning the mapping that defines the permutation purely from input-output
examples within a sequence. We evaluated model performance on a series of increasingly complex
permutation learning tasks derived from the symmetric groups S2 through S5.

BD-LRUs efficiently learn permutations. All tested recurrent architectures (H-LRU, BD-LRU,
LSTM, Deltanet, Deltaproduct) were able to perfectly solve the S2 task, which represents a uniquely
simple permutation group as it is also a commutative cyclic group. However, as the group order
increases over S3 to S5, the non-commutative structure of the permutation tasks increasingly posed

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Models S3 (10k samples) S3 (250) S4 (50k) S4 (3k) S5 (100k) Overall

LSTM 1.000 0.320 1.000 0.370 1.000 0.738
Mamba2 0.660 0.280 0.430 0.120 0.260 0.350
Deltanet[-1,1] 1.000 0.260 0.470 0.140 0.140 0.402
Deltaproduct4[-1,1] 1.000 0.270 1.000 0.130 0.140 0.508
BD-LRU m1 (ours) 0.560 0.380 0.340 0.220 0.210 0.340
BD-LRU m2 1.000 0.490 0.700 0.360 0.340 0.576
BD-LRU m3 1.000 1.000 1.000 0.430 0.480 0.782
BD-LRU m5 1.000 1.000 1.000 1.000 1.000 1.000
BD-LRU m8 1.000 1.000 1.000 1.000 1.000 1.000
H-LRU m1 (ours) 0.570 0.360 0.350 0.210 0.230 0.344
H-LRU m2 0.600 0.310 0.370 0.190 0.260 0.346
H-LRU m3 0.610 0.320 0.400 0.210 0.320 0.372
H-LRU m5 0.620 0.320 0.450 0.190 0.380 0.392
H-LRU m8 0.640 0.280 0.490 0.170 0.390 0.394

Table 2: Model performance on permutation composition tasks for different datasets of different sizes:
S3 (10k training samples), S3 (250 training samples), S4 (50k training samples), S4 (3k training
samples) S5 (100k training samples). The accuracy values reflect the impact of window size (H-LRU)
and block size (BD-LRU), both denoted by m. We note that BD-LRU performance improves with
block size, demonstrating strong sample efficiency by solving the tasks even given limited training
data. All models are single-layer configurations with a maximum overall hidden dimension of 6144.
See Appendix C for extended table.

challenges for the models, see Table 2. Performance of the H-LRU was found to decrease pro-
gressively with increasing group size, indicating a limited capacity for modeling compositional
permutations. Increasing the order of recurrence m did not seem to provide any benefits for the
performance. We conclude that a strict inductive bias on the structure of the transition matrix prevents
H-LRU from solving this task. Moreover, we found that H-LRU is unable to solve our permutation
tasks despite having access to negative and complex eigenvalues (see Appendix J for our eigenvalue
analysis). This indicates that the presence of such eigenvalues is insufficient for these tasks and
highlights that the structure of state mixing plays a more critical role.

In contrast, BD-LRU with moderate block sizes was able to successfully solve all permutation
tasks for all group sizes, matching the performance of LSTM and outperforming all other recurrent
architectures tested. Importantly, consistent with the previously demonstrated parameter efficiency,
BD-LRU with block size 5 also solved the S5 task using as few as 200K parameters, matching the
parameter efficiency of more computationally demanding non-linear LSTM model. Furthermore, we
found that BD-LRUs are also sample-efficient in learning permutations, outperforming even LSTM
in the regime of limited training data. We notice that in our low training token regime Deltaproduct4
fails to learn the S5 dataset. However, when the number of training samples approaches the token
counts used in the study Siems et al. (2025), it is capable of solving S5 task, showing that low-rank
matrices are less sample-efficient compared to BD-LRU. Our findings align well with our predictions
that dense blocks of BD-LRU are well-suited for implementing permutations between hidden states.
The consistent improvement with larger block sizes on permutation tasks of increasing complexity
highlights the advantage of the inductive bias in BD-LRU architecture.

6 IMPLEMENTATION

The parallel scan algorithm in LRNNs allows them to efficiently process long sequences using
constant memory and with logarithmic time complexity. Following the classic approach (Blelloch,
1990), we consider a recurrence of the form

hi+1 =

{
b0, if i = 0

(hi

⊗
v Ai)

⊕
bi, if 0 ≤ i < n

, (8)

where hi,bi ∈ RN ,Ai ∈ RN×N and associative operators:
⊗

v is matrix-vector multiplication,⊗
M is matrix-matrix multiplication and

⊕
point-wise vector summation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Defining following associative operator • and making substitution to sequence of pairs,

HOPscan =

{
ci = [Ai,bi]

ci • cj ≡ [ci,A
⊗

M cj,A, (ci,b
⊗

v cj,A)
⊕

cj,b]
, (9)

reduces recurrence 8 to classic prefix sum and allows application of up and down sweeps of the
Blelloch scan (For pytorch implementation see Appendix I).

In many modern LRNNs, Ai is diagonal (ci,A
⊗

M cj,A ∼ N), therefore parallel scan 9 enables
efficient parallel processing by reducing the time complexity from NT to N log(T). However,
in more general case presented in Eq. 8, parallel scan changes the time complexity from N2T
to N3 log(T). For large dense matrices Ai amd/or short sequences, this change in complexity is
not beneficial due to the high complexity of matrix-matrix multiplication (ci,A

⊗
M cj,A ∼ N3).

However, if we exploit the block diagonal structure of the transition matrices in H-LRU and BD-LRU,
we can reduce the time complexity of parallel scan from N3 log(T) to Hm3 log(T), where m is the
block size and H is the number of blocks (Hm = N). Therefore, for moderate block sizes with
m2 ≪ N we can achieve a significant increase in throughput in the parallel scan implementation
compared to sequential implementation.

A B C

Figure 3: Model throughput on the selective copying task. (A) Comparison of sequential, higher-
order parallel, and autotuned higher-order parallel implementations of BD-LRUs with 128 blocks
and with a sequence length of 2048, illustrating advantage of parallel scan implementation and the
trade-off between expressivity and efficiency. BD-LRU is shown for illustration purposes only, but
H-LRU employs the same parallel scan implementation and achieves comparable throughput. (B)
Comparison for layers with hidden size of 768 and accordingly adjusted number of blocks. Note
that trade-off between expressivity and efficiency increases over longer sequences. (C) Throughput
comparison of parameter-matched layers (∼33M parameters). Number of blocks is adjusted to ensure
consistent model sizes across architectures. BD-LRU achieves throughput competitive with other
LRNN baselines. Notably, larger block sizes demonstrate higher practical efficiency despite increased
theoretical complexity, due to superior utilization of GPU hardware operations.

Parallel scan implementation enables competitive throughput. In experiments with single-
layer models containing 128 blocks and trained on sequences of length 2048, when runtime is less
influenced by GPU characteristics and more reflective of algorithmic complexity, we found that
increasing block size reduces throughput, revealing the predicted trade-off between expressivity and
efficiency, see Fig. 3A. For comparison, we also evaluated models with a fixed hidden size of 768
and adjusted the number of blocks accordingly, see 3B. We found that the expressivity–efficiency
trade-off becomes more pronounced as sequence length increases. In particular, block sizes larger
than 16 exhibit a substantial decline in throughput at longer sequence lengths.

We also tested models with parameter-matched layers (∼33M parameters), where number of blocks
is adjusted to ensure consistent model sizes across architectures, see Fig. 3C. We note that our
most efficient implementation relies on compilation with maximal autotuning; thus, the performance
differences across block sizes primarily reflect kernel optimization in PyTorch and achieved GPU
utilization. We found that certain block sizes align more favorably with GPU architectures, analogous
to how specific batch sizes optimize memory utilization. In particular, we found that moderately large
block sizes (m = 16) demonstrate higher practical efficiency despite increased theoretical complexity,
due to superior utilization of GPU hardware operations.

Overall, we observed that our parallel scan implementation offers substantial improvements over
sequential implementations, enables BD-LRUs and H-LRUs to achieve throughput comparable to the
one of linear baselines, and effectively scales with sequence length.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 REPRODUCIBILITY AND LLM USAGE STATEMENTS

All code used for the simulations performed in this study will be made publicly available (GitHub
repo) subject to the acceptance of this work. Code snippets of the critical parts of the implementations
are made available in Appendix I. Parts of the text were refined with the assistance of an LLM to
improve wording and readability.

REFERENCES

Ajroldi, N., 2024. plainlm: Language model pretraining in pytorch.

Arjovsky, M., Shah, A., Bengio, Y., 2016. Unitary evolution recurrent neural networks, in: Interna-
tional Conference on Machine Learning, PMLR. pp. 1120–1128.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli, M., Zou, J., Rudra, A., Ré, C., 2023. Zoology:
Measuring and improving recall in efficient language models. arXiv preprint arXiv:2312.04927 .

Biegun, K., Dolga, R., Cunningham, J., Barber, D., 2024. Rotrnn: Modelling long sequences with
rotations. arXiv preprint arXiv:2407.07239 .

Blelloch, G.E., 1990. Prefix sums and their applications .

Chang, Y., Bisk, Y., 2024. Language models need inductive biases to count inductively. arXiv
preprint arXiv:2405.20131 .

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.,
2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 .

Chomsky, N., 1956. Three models for the description of language. IRE Transactions on information
theory 2, 113–124.

Cirone, N.M., Orvieto, A., Walker, B., Salvi, C., Lyons, T., 2024. Theoretical foundations of deep
selective state-space models. arXiv preprint arXiv:2402.19047 .

Dao, T., Gu, A., 2024. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060 .

De, S., Smith, S.L., Fernando, A., Botev, A., Cristian-Muraru, G., Gu, A., Haroun, R., Berrada, L.,
Chen, Y., Srinivasan, S., et al., 2024. Griffin: Mixing gated linear recurrences with local attention
for efficient language models. arXiv preprint arXiv:2402.19427 .

Delétang, G., Ruoss, A., Duquenne, P.A., Catt, E., Genewein, T., Mattern, C., Grau-Moya, J.,
Wenliang, L.K., Aitchison, M., Orseau, L., et al., 2023. Language modeling is compression. arXiv
preprint arXiv:2309.10668 .

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wenliang, L.K., Catt, E., Cundy, C., Hutter,
M., Legg, S., Veness, J., et al., 2022. Neural networks and the chomsky hierarchy. arXiv preprint
arXiv:2207.02098 .

Dubinin, I., Effenberger, F., 2024. Fading memory as inductive bias in residual recurrent networks.
Neural networks 173, 106179.

Effenberger, F., Carvalho, P., Dubinin, I., Singer, W., 2022. A biology-inspired recurrent oscillator
network for computations in high-dimensional state space. BioRxiv .

Fan, T.H., Chi, T.C., Rudnicky, A.I., 2023. Advancing regular language reasoning in linear recurrent
neural networks. arXiv preprint arXiv:2309.07412 .

Feng, L., Tung, F., Ahmed, M.O., Bengio, Y., Hajimirsadeghi, H., 2024. Were rnns all we needed?
arXiv preprint arXiv:2410.01201 .

Glad, T., Ljung, L., 2018. Control theory. CRC press.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Grazzi, R., Siems, J., Zela, A., Franke, J.K., Hutter, F., Pontil, M., 2024. Unlocking state-tracking in
linear rnns through negative eigenvalues. arXiv preprint arXiv:2411.12537 .

Gromov, A., 2023. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679 .

Gu, A., 2025. On the tradeoffs of state space models and transformers. URL: https://
goombalab.github.io/blog/2025/tradeoffs/.

Gu, A., Dao, T., 2023. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752 .

Gu, A., Goel, K., Ré, C., 2021. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396 .

Gu, A., Gulcehre, C., Paine, T., Hoffman, M., Pascanu, R., 2020. Improving the gating mechanism
of recurrent neural networks, in: International Conference on Machine Learning, PMLR. pp.
3800–3809.

Hairer, E., Wanner, G., Nørsett, S.P., 1993. Solving ordinary differential equations I: Nonstiff
problems. Springer.

Hamilton, J.D., 2020. Time series analysis. Princeton university press.

Helfrich, K., Willmott, D., Ye, Q., 2018. Orthogonal recurrent neural networks with scaled cayley
transform, in: International Conference on Machine Learning, PMLR. pp. 1969–1978.

Hutter, M., 2005. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer Science & Business Media.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., Amodei, D., 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 .

Loshchilov, I., Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 .

Loshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 .

Merrill, W., Petty, J., Sabharwal, A., 2024. The illusion of state in state-space models. arXiv preprint
arXiv:2404.08819 .

Merrill, W., Sabharwal, A., 2023. The parallelism tradeoff: Limitations of log-precision transformers.
Transactions of the Association for Computational Linguistics 11, 531–545.

Movahedi, S., Sarnthein, F., Cirone, N.M., Orvieto, A., 2025. Fixed-point rnns: From diagonal to
dense in a few iterations. arXiv preprint arXiv:2503.10799 .

Okpekpe, D., Orvieto, A., 2025. When recalling in-context, transformers are not ssms. arXiv preprint
arXiv:2508.19029 .

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai,
Y., Chen, A., et al., 2022. In-context learning and induction heads. arXiv preprint arXiv:2209.11895
.

Orvieto, A., De, S., Gulcehre, C., Pascanu, R., Smith, S.L., 2024. Universality of linear recurrences
followed by non-linear projections: Finite-width guarantees and benefits of complex eigenvalues,
in: International Conference on Machine Learning, PMLR. pp. 38837–38863.

Orvieto, A., Smith, S.L., Gu, A., Fernando, A., Gulcehre, C., Pascanu, R., De, S., 2023. Resurrecting
recurrent neural networks for long sequences, in: International Conference on Machine Learning,
PMLR. pp. 26670–26698.

von Oswald, J., Scherrer, N., Kobayashi, S., Versari, L., Yang, S., Schlegel, M., Maile, K., Schimpf,
Y., Sieberling, O., Meulemans, A., et al., 2025. Mesanet: Sequence modeling by locally optimal
test-time training. arXiv preprint arXiv:2506.05233 .

11

https://goombalab.github.io/blog/2025/tradeoffs/
https://goombalab.github.io/blog/2025/tradeoffs/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the difficulty of training recurrent neural networks.
International conference on machine learning , 1310–1318.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al., 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32.

Penedo, G., Kydlı́ček, H., Lozhkov, A., Mitchell, M., Raffel, C.A., Von Werra, L., Wolf, T., et al.,
2024. The fineweb datasets: Decanting the web for the finest text data at scale. Advances in Neural
Information Processing Systems 37, 30811–30849.

Peng, B., Zhang, R., Goldstein, D., Alcaide, E., Du, X., Hou, H., Lin, J., Liu, J., Lu, J., Merrill,
W., et al., 2025. Rwkv-7” goose” with expressive dynamic state evolution. arXiv preprint
arXiv:2503.14456 .

Poli, M., Thomas, A.W., Nguyen, E., Ponnusamy, P., Deiseroth, B., Kersting, K., Suzuki, T., Hie,
B., Ermon, S., Ré, C., et al., 2024. Mechanistic design and scaling of hybrid architectures. arXiv
preprint arXiv:2403.17844 .

Rusch, T.K., Mishra, S., 2021. Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate
and (gradient) stable architecture for learning long time dependencies. arXiv:2010.00951 [cs, stat]
arXiv:2010.00951.

Rusch, T.K., Rus, D., 2024. Oscillatory state-space models. arXiv preorvieprint arXiv:2410.03943 .

Sarnthein, F., 2025. Linear recurrences accessible to everyone, in: ICLR Blogposts 2025.

Shannon, C.E., 1948. A mathematical theory of communication. The Bell system technical journal
27, 379–423.

Siems, J., Carstensen, T., Zela, A., Hutter, F., Pontil, M., Grazzi, R., 2025. Deltaproduct: Improving
state-tracking in linear rnns via householder products. arXiv preprint arXiv:2502.10297 .

Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G., Dubois, Y., Chen, X., Wang, X., Koyejo, S.,
et al., 2024. Learning to (learn at test time): Rnns with expressive hidden states. arXiv preprint
arXiv:2407.04620 .

Waleffe, R., Byeon, W., Riach, D., Norick, B., Korthikanti, V., Dao, T., Gu, A., Hatamizadeh, A.,
Singh, S., Narayanan, D., et al., 2024. An empirical study of mamba-based language models.
arXiv preprint arXiv:2406.07887 .

Walker, B., Yang, L., Cirone, N.M., Salvi, C., Lyons, T., 2025. Structured linear cdes: Maximally
expressive and parallel-in-time sequence models. arXiv preprint arXiv:2505.17761 .

Wang, S., Li, Q., 2023. Stablessm: Alleviating the curse of memory in state-space models through
stable reparameterization. arXiv preprint arXiv:2311.14495 .

Yang, S., Kautz, J., Hatamizadeh, A., 2024a. Gated delta networks: Improving mamba2 with delta
rule. arXiv preprint arXiv:2412.06464 .

Yang, S., Wang, B., Zhang, Y., Shen, Y., Kim, Y., 2024b. Parallelizing linear transformers with the
delta rule over sequence length. arXiv preprint arXiv:2406.06484 .

Zhang, M., Bhatia, K., Kumbong, H., Ré, C., 2024. The hedgehog & the porcupine: Expressive
linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347 .

Zucchet, N., Orvieto, A., 2024. Recurrent neural networks: vanishing and exploding gradients are
not the end of the story. Advances in Neural Information Processing Systems 37, 139402–139443.

12

http://arxiv.org/abs/2010.00951

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A CONCLUSION AND OUTLOOK

We introduced H-LRU and BD-LRU as structured extensions of linear recurrent models that enhance
temporal and channel-wise state mixing. Our results show that proper gate normalization is essential
for scaling such models with window/block size, that H-LRU excels at parameter-efficient compres-
sion, while overall BD-LRU is the best-performing architecture on our benchmark of synthetic tasks,
and that our parallel-scan implementation can maintain competitive efficiency of block diagonal
architectures. Taken together, our empirical results indicate that the state-mixing structure, rather
than width alone, acts as an important driver for improved expressivity in LRNNs.

In our experiments, we observed clear task-dependent differences in how performance scales with
block size. Simple tasks such as in-context recall, S3, and Parity are effectively solved with block size
2, nearly eliminating any expressivity–efficiency trade-off. More challenging autoregressive problems
such as selective copying, S4, S5, and Regular Languages benefit substantially from larger block sizes.
In contrast, the compression auto-encoding task exhibits a distinct scaling pattern: intermediate block
sizes achieve the best results, while very large blocks degrade average performance across datasets.
We also observe the same scaling behavior in our language modeling experiments, supporting general
nature of our findings (see Appendix B).

We also find that H-LRU is particularly effective on compression, likely due to its higher-order recur-
rence structure, whereas BD-LRU is highly parameter- and sample-efficient on permutation-heavy
tasks, consistent with the advantages of dense intra-block mixing. Importantly, both architectures
maintain strong throughput on long sequences, making moderate-to-large block sizes viable in
practice; however, for very large parameter counts, GPU utilization can become a bottleneck.

Overall, our results indicate that the optimal block or window size m is inherently task-dependent.
In practice, we recommend beginning with moderate block/window sizes(with moderate hidden
dimension) and adjusting upward or downward based on task complexity, sequence length, and
modeling objective, thereby navigating the expressivity–efficiency trade-off. More broadly, the
problem of selecting appropriate inductive biases and model scales remains an open research question
in machine learning, and we hope that our findings contribute an additional perspective to this ongoing
direction of research.

One potential limitation is that our study explored only a subset of the possible parametrizations for
the selective gates; a broader investigation could uncover even more effective formulations. Another
limitation lies in computational performance; we observed that the throughput of our models degrades
more rapidly with increasing batch sizes compared to highly optimized baselines such as Mamba,
which presents a clear direction for future engineering efforts. Evaluating the proposed architectures
on large-scale language modeling, investigating deeper and hybrid architectures, their generalization
to higher-order and block-diagonal SSMs, and, in general, optimizing the implementation to further
improve computational efficiency are additional topics left for future studies.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

B LANGUAGE MODELING

Our language modeling experiments with BD-LRU and H-LRU further corroborate the findings from
our synthetic task evaluations, see Fig. 4. By varying the hidden size of BD-LRU, we obtain models
in the 140M–210M parameter range, see Fig. 4A. BD-LRU with moderate block sizes achieve the
best perplexity, whereas diagonal models (m = 1) show early saturation with increasing hidden size.
These difference are in good agreement with what we found on the MAD benchmark. Architectures
with block sizes between 2 and 4 outperform diagonal networks, while models with 8 and 16 block
sizes, despite being theoretically more expressive, underperform in practice. These results indicate
that moderate block sizes provide a more effective inductive bias for language modeling, in line with
our observations on synthetic tasks

We also conducted language-modeling experiments with H-LRU using configurations matched in
parameter count to their BD-LRU counterparts, see Fig. 4B for 140M parameters. Consistent with
our synthetic benchmarks, H-LRU exhibits stronger parameter efficiency. However, to match the
parameter budget of a BD-LRU, H-LRU requires increasing hidden dimension by a factor of m,
which in turn reduces throughput and increases memory consumption by approximately the same
factor, see 6. For example, H-LRU model with m = 16 shown in Figure 4B already occupies 95%
of the H100 GPU memory while containing only 140 M parameters. Therefore, although H-LRU
is more parameter-efficient, it is substantially more computationally demanding and more costly to
scale compared to BD-LRU.

We conduct our experiments on 2.5B tokens from the well-established FineWeb dataset(Penedo
et al., 2024) using the PlainLM training setup (Ajroldi, 2024). All models are trained on a single
NVIDIA H100 GPU, with the largest configuration utilizing approximately 95% of the device’s
memory. All models are trained with the AdamW optimizer (Loshchilov and Hutter, 2017) with
parameters β1 = 0.9, β2 = 0.95, ϵ = 10−8 and a cosine scheduler (Loshchilov and Hutter, 2016)
(max LR 0.003, min LR: 10−5). Consistent with our throughput analysis 6, we observe that models
with larger block sizes achieve higher training throughput for the same parameter count due to better
GPU utilization. Overall, our language-modeling results align well with the results observed on
synthetic tasks for both architectures.

A B

Figure 4: Scaling analysis with hidden size with respect to final perplexity on 2.5B token of FineWeb.
All models are trained on a single NVIDIA H100 GPU. A. By varying the hidden size of BD-LRU, we
obtain models in the 140M–210M parameter range. Note that moderate block sizes provide a more
effective inductive bias for language modeling. B. We compare H-LRU and BD-LRU models with
140M parameters. Note that matching the parameter budget of a BD-LRU requires increasing the
H-LRU hidden dimension by a factor of m, making H-LRU substantially more costly to scale. For
example, shown H-LRU model with m = 16 already utilizes 95% of the H100 GPU memory, while
BD-LRU with m = 16 can be scaled up to 210M parameters with the same memory requirements,
see A.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

C EXTENDED TABLES AND ADDITIONAL FIGURES

Models Recall Copy Compress Overall

LSTM 1.000 1.000 0.750 0.916
Mamba2 1.000 0.807 0.720 0.842
Deltanet[-1,1] 1.000 0.892 0.782 0.892
Deltaproduct4[-1,1] 1.000 1.000 0.717 0.906
BD-LRU m1 (ours) 0.775 0.835 0.725 0.778
BD-LRU m2 1.000 0.962 0.760 0.908
BD-LRU m3 1.000 0.980 0.762 0.916
BD-LRU m4 1.000 0.983 0.785 0.922
BD-LRU m5 1.000 0.985 0.782 0.922
BD-LRU m6 1.000 0.980 0.775 0.918
BD-LRU m8 1.000 0.992 0.748 0.913
BD-LRU m16 1.000 0.998 0.725 0.907
H-LRU m1 (ours) 0.785 0.848 0.760 0.797
H-LRU m2 0.998 0.855 0.770 0.874
H-LRU m3 1.000 0.855 0.772 0.876
H-LRU m4 1.000 0.845 0.775 0.873
H-LRU m5 1.000 0.838 0.775 0.871
H-LRU m6 1.000 0.818 0.775 0.864
H-LRU m8 1.000 0.810 0.768 0.859
H-LRU m16 1.000 0.680 0.705 0.795

Table 3: Performance on the in-context recall, selective copying and compression tasks. The presented
results are the average of best test accuracies across four configurations of the corresponding synthetic
dataset with different vocabulary sizes, sequence lengths and number of training examples. Results are
shown for different window (H-LRU) abd block sizes (BD-LRU) m. Note that overall performance
of our models consistently improves with window/block size up to approximately 3–5, after which
the gains saturate or exhibit slight degradation. All models are single-layer configurations with a
maximum overall hidden dimension of 6144.

A

B

Figure 5: Performance of different single-layer models as a function of the hidden size in the
compression task (A) and the selective copying task (B). Results are shown for different window sizes
(H-LRU) and block sizes (BD-LRU) m. We compare our networks with different configurations of
Mamba (with two sizes of the convolution kernel (2,4) and several values of the state space expansion
factor (2,4,8)). For comparison to low-rank models, we also include DeltaNet and DeltaProduct with
4 Householder transforms which have different number of heads (2,4,8).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Models S3 (10k samples) S3 (250) S4 (50k) S4 (3k) S5 (100k) Overall

LSTM 1.000 0.320 1.000 0.370 1.000 0.738
Mamba2 0.660 0.280 0.430 0.120 0.260 0.350
Deltanet[-1,1] 1.000 0.260 0.470 0.140 0.140 0.402
Deltaproduct4[-1,1] 1.000 0.270 1.000 0.130 0.140 0.508
BD-LRU m1 (ours) 0.560 0.380 0.340 0.220 0.210 0.340
BD-LRU m2 1.000 0.490 0.700 0.360 0.340 0.576
BD-LRU m3 1.000 1.000 1.000 0.430 0.480 0.782
BD-LRU m4 1.000 1.000 1.000 1.000 0.880 0.976
BD-LRU m5 1.000 1.000 1.000 1.000 1.000 1.000
BD-LRU m6 1.000 1.000 1.000 1.000 1.000 1.000
BD-LRU m8 1.000 1.000 1.000 1.000 1.000 1.000
BD-LRU m16 1.000 1.000 1.000 1.000 1.000 1.000
H-LRU m1 (ours) 0.570 0.360 0.350 0.210 0.230 0.344
H-LRU m2 0.600 0.310 0.370 0.190 0.260 0.346
H-LRU m3 0.610 0.320 0.400 0.210 0.320 0.372
H-LRU m4 0.620 0.310 0.410 0.190 0.340 0.374
H-LRU m5 0.620 0.320 0.450 0.190 0.380 0.392
H-LRU m6 0.630 0.280 0.450 0.170 0.390 0.384
H-LRU m8 0.640 0.280 0.490 0.170 0.390 0.394
H-LRU m16 0.660 0.260 0.510 0.160 0.390 0.396

Table 4: Model performance on permutation composition tasks for different datasets of different sizes:
S3 (10k training samples), S3 (250 training samples), S4 (50k training samples), S4 (3k training
samples) S5 (100k training samples). The accuracy values reflect the impact of window size (H-LRU)
and block size (BD-LRU), both denoted by m. We note that BD-LRU performance improves with
block size, demonstrating strong sample efficiency by solving the tasks even given limited training
data. All models are single-layer configurations with a maximum overall hidden dimension of 6144.

D EXPERIMENTS

Synthetic token manipulation tasks. We benchmarked our architectures using the Mechanistic
Architecture Design (MAD) framework (Poli et al., 2024), a framework for efficient model evaluation
and prototyping. The MAD protocol is motivated by the challenge of predicting how architectural
choices impact performance at scale. The working hypothesis of MAD is that an architecture’s
macroscopic scaling behavior can be effectively predicted by its performance on a set of microscopic,
mechanistic tasks.

The benchmark consists of a diverse suite of sequence modeling challenges designed to test core
token manipulation capabilities. By evaluating models at a small, fixed computational scale, MAD
produces a relative ranking of architectures that has been shown to be predictive of their compute-
optimal performance in large-scale language modeling (Poli et al., 2024). This approach not only
approximates scaling outcomes, but also provides valuable insights into the compositional skills and
failure modes of a given design.

In particular, we utilize three tasks from the MAD framework:

• Compression task. Models are tasked to compress a random sequence of input tokens
into a single aggregation token. Then, this aggregation token is passed through an encoder
MLP, the output of which is used to reconstruct the original sequence via a decoder MLP.
All models were tested using a standard encoder-decoder architecture (Embedding, Tested
Model, MLP Encoder, MLP Decoder).

• Selective copying task. Models are tasked with copying tokens from one position of an
input sequence to a later position of the sequence, while ignoring irrelevant noise tokens
that are randomly inserted into the sequence. This task is designed to evaluate the ability of
a model to perform selective temporal integration in the specific order of occurrence in the
sequence. All models were tested using a standard decoder-only architecture (Embedding,
Tested Model, MLP Decoder).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

• Associative recall task. Models are presented with an input sequence of key-value pairs and
tasked with retrieving all values from the input sequence associated with the presented keys.
This task tests the ability of a model to adaptively retrieve information depending on the
established in-context associations. All models were tested using a standard decoder-only
architecture (Embedding, Tested Model, MLP Decoder).

In our experiments, each model was evaluated across four configurations: a baseline (vocabulary size:
16, sequence length: 64, training examples: 20,000) and three variations designed to probe specific
failure modes. These variations all use the same base parameters, but independently (i) increase the
vocabulary size to 32, (ii) extend the sequence length to 128, or (iii) reduce the training set to 10,000
examples to test vocabulary handling, long-range capabilities, and sample efficiency, respectively.

Synthetic permutation tasks. In our experiments, we employ synthetic datasets derived from
the symmetric permutation groups Sn, which denotes the group of all possible permutations of n
elements. These groups provide a natural hierarchy of complexity: S2 contains only two permutations
and is fully commutative, making it relatively simple to model. In contrast, groups with n ≤ 3 (e.g.,
S3, S4, S5) are non-commutative, and their size grows factorially with n, which rapidly increases the
difficulty of learning the underlying structure. For instance, S3, with six elements, is the smallest non-
commutative group. Geometrically, S3 can be interpreted as the group of symmetries of an equilateral
triangle, including both rotations and reflections. The complexity increases substantially with S4,
which contains 24 elements and corresponds to the full symmetry group of a regular tetrahedron. S4

introduces more intricate subgroup structures and non-trivial normal subgroups. Extending further,
S5 has 120 elements and is the first symmetric group that is not solvable, representing the symmetries
of a regular pentagon in the plane.

We assess model performance on the synthetic permutation group task from Merrill et al. (2024),
which is designed to probe state-tracking and generalization to complex structures. Using their
toolbox, we generated datasets for the symmetric groups S3, S4, and S5 with a fixed sequence
length of 16. To evaluate sample efficiency, we created five distinct data configurations: S3 (10k and
250 examples), S4 (50k and 3k examples), and S5 (100k examples). The S5 setting is particularly
data-limited compared to the multi-million-example setups used in previous studies (Siems et al.,
2025). All models were tested using a standard decoder-only architecture (Embedding, Tested Model,
MLP Decoder), consistent with the MAD benchmark protocol.

Training details. All models were implemented in PyTorch (Paszke et al., 2019). For training, we
follow the experimental settings of the MAD framework. All models are trained with the AdamW
optimizer (Loshchilov and Hutter, 2017) with parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and a
cosine scheduler (Loshchilov and Hutter, 2016) (minimum LR: 0.00001), with the initial learning
rate selected from 0.001, 0.0005, 0.0001. The final reported metric is the best test accuracy across
all three learning rate configurations and five runs with distinct random seeds. For training we
used NVIDIA A100 and NVIDIA H100, while we used NVIDIA H100 for benchmarking the best
throughput across models.

E COMPUTATIONAL COMPLEXITY

This section provides a breakdown of the Floating Point Operations (FLOPs) required for hidden-
to-hidden state transition in the recurrent architectures discussed. For this breakdown, we define
the dimension of the hidden state as H . The sequence length is denoted as T . For Mamba2, the
state expansion factor is denoted by S. In DeltaNet and DeltaProduct4, Nh denotes the number of
heads, C denotes the number of chunks in the DeltaNet implementation, Hn denotes the number of
Householder transformations, and r = 1 denotes low rank. The calculations focus on the recurrence
mechanism, omitting additional components like the input projections or gating, as they can be
precomputed in advance. A multiply-add operation is counted as 2 FLOPs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 5: Summary of computational costs for hidden state updates.

Architecture FLOPs per recurrent step Implementation complexity
LSTM 8H2 + 25H O(TH2)
H-LRU 2Hm+ 2H O(Hm2log(T))
BD-LRU 2Hm2 + 2H O(Hm2log(T))
Mamba2 2HS O(T (H2 +HS))
DeltaNet Nh(4Hr + 4H) O(TCH + TH2)
DeltaProduct4 HnNh(4Hr + 4H) O(Hn(TCH + TH2))

F PROOF OF PROPOSITION 1.

First, note that stability is trivial. We can reason blockwise: assuming
∑

j |(Ak
t)i,j | ≤ 1 implies that

the eigenvalues of state-transition matrix λk
i,t ≤ 1. Therefore, the product of such matrices will result

in dynamical stability.

Next, by block-diagonality, it is sufficient to show that for all k ∈ [1,m], ∥hk
T ∥∞ ≤

maxt∈[0,T] ∥vk
t ∥∞. Let hk

i,t be the i-th coordinate of the generic k-th block hidden state hk
t at

time t.

hk
1,t
...

hk
m,t

 =


ak1,1,t · · · ak1,m−1,t ak1,m,t

ak2,1,t · · · ak2,m−1,t ak2,m,t
...

. . .
...

...
akm,1,t · · · akm,m−1,t akm,m,t

×

hk
1,t−1

...
hk
m,t−1

+

ak1,0,t
...

akm,0,t

⊙

 vk1,t
...

vkm,t

 . (10)

Hence,

hk
i,t =

m∑
j=1

aki,j,th
k
j,t−1 + aki,0,tv

k
i,t. (11)

It is then clear that by subadditivity of the absolute value,

|hk
i,t| ≤

m∑
j=1

|aki,j,t| · |hk
j,t−1|+ |aki,0,t| · |vki,t|. (12)

Hence, by collecting the non-coefficient terms, we find a further upper bound

|hk
i,t| ≤

 m∑
j=1

|aki,j,t|+ |aki,0,t|

 ·max

[
|vki,t−1|, max

j∈[1,m]
|hk

j,t|
]
. (13)

By hypothesis,
∑m

j=1 |aki,j,t|+ |aki,0,t| =
∑

j |(Ak
t)i,j | ≤ 1, and hence we conclude that

|hk
i,t| ≤ max

[
|vki,t|, max

j∈[1,m]
|hk

j,t−1|
]
. (14)

At this point, we can finalize the proof by induction. We want to show that ∥hk
T ∥∞ ≤

maxt∈[0,T] ∥vk
t ∥∞. Let us start from T = 1. Since hk

i,0 = 0 for all i ∈ [1,m], we have

hk
i,1 = aki,0,tv

k
i,1, (15)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

hence, again because
∑

j |(Ak
0)i,j | ≤ 1, |hk

i,1| ≤ |vki,1|, we can conclude that ∥hk
1∥∞ ≤ ∥vk

1∥∞. Let
us then assume by induction that ∥hk

T−1∥∞ ≤ maxt∈[0,T−1] ∥vk
t ∥∞. Recall that by Equation 14,

|hk
i,t| ≤ max

[
|vki,t|, max

j∈[1,m]
|hk

j,t−1|
]

(16)

= max
[
|vki,t|, ∥hk

t−1∥∞
]
. (17)

Hence,

∥hk
t ∥∞ = max

j∈[1,m]
|hk

j,t| (18)

≤ max
j∈[1,m]

max
[
|vki,t|, ∥hk

t−1∥∞
]

(19)

= max

[
max

j∈[1,m]
|vki,t|, ∥hk

t−1∥∞
]

(20)

≤ max

[
∥vk

t ∥∞, max
t∈[0,T−1]

∥vk
t ∥∞∥

]
(21)

= max
t∈[0,T]

∥vk
t ∥∞, (22)

where in the second-last line we used the induction hypothesis.

G SELECTIVITY ABLATION

To isolate and quantify the contribution of selectivity, we conducted an ablation study. In this analysis,
the input-dependent selective gates in both the H-LRU and BD-LRU architectures were replaced with
data-invariant, learnable parameters.

As hypothesized, the non-selective variants exhibited a significant performance degradation compared
to their selective counterparts on our synthetic benchmark. On tasks requiring dynamic token
manipulation—such as in-context recall, selective copying, and permutation composition—the non-
selective models failed to achieve meaningful performance. For these tasks, increasing the window or
block size yielded no discernible improvement, confirming the necessity of selectivity.

However, the results on the compression task were more nuanced, see Fig. 6. We observed that our
proposed L1 normalization scheme enabled the non-selective models to improve with larger block
and window sizes, albeit at a lower rate than their selective analogs.

A B C D

Figure 6: Scaling analysis of non-selective models on the compression task. A. Performance as a
function of window size m of non-selective higher-order LRU (H-LRU) and block size m of block
diagonal LRU (BD-LRU). For the convolutional baseline, the performance presented as a function
of kernel size. B. The same results plotted against parameter count. Note that scaling with window
size of non-selective H-LRU demonstrates extreme parameter efficiency, resulting in a nearly vertical
trajectory on the plot. C. Comparison of scaling properties between different parameterizations for
H-LRU. D. Comparison of scaling properties between different parameterizations for BD-LRU.

To highlight the advantages of recurrent architectures, we used a convolution layer as a baseline.
This model is limited to explicit, local time mixing within its kernel, in contrast to the implicit and
unbounded temporal integration provided by a hidden state. Our experiments showed that H-LRU
decisively outperforms the convolution on the compression task. This demonstrates the critical role

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

of recurrent state mixing for tasks requiring efficient long-range temporal reasoning. Furthermore,
the non-selective H-LRU with large window sizes (m > 15) demonstrated strong performance,
surpassing the LSTM and Mamba baselines and even approaching the performance of our selective
models. This finding underscores the powerful inductive bias of the higher-order recurrence for
parameter-efficient compression.

In contrast, the non-selective BD-LRU performed poorly on the compression task, only marginally
surpassing the convolution baseline. Interestingly, for this non-selective variant, the sigmoidal L1
normalization outperformed softmax normalization, highlighting a difference in how these schemes
interact with selective versus fixed parameterizations.

In addition, when we analyzed H-LRU with minimal point-wise selective gates which don’t mix
channel dimensions, we observed very moderate improvement in compression task. This indicates
that not only selectivity itself but also density of selectivity in gates plays important role in improving
networks’ expressivity.

While the overall performance of these non-selective models is modest, their parameter efficiency can
become advantageous in resource-constrained settings. Given the strong compression results of the
non-selective H-LRU, we hypothesize that such models could be optimized for use as highly efficient
embedding layers, a direction we leave for future research.

H RELATION BETWEEN EXPRESSIVITY OF LRUS AND STATE SPACE DUALITY

Recently, it has been shown that there is a direct correspondence between state space models, the
Transformer architecture and structured attention matrices Dao and Gu (2024). Following this
approach, we can reformulate the general LRU as a general discrete time SSM

ht = At × ht−1 +Bt × vt

yt = Ct × ht.
(23)

Here, we consider the general case of SSMs, in which mixing matrices Ct,At,Bt are dense matrices.
We note that although state space models are commonly defined in continuous time, they have to be
discretized for implementation, at which point they conform to the discrete form described by Eq. 23.
In this study, we effectively ignored the role of Ct, but it can be introduced without affecting the
validity of our arguments.

Following the approach of reformulating state space models (SSMs) as attention mechanisms, the
architecture given in Eq. 23 can be expressed in block matrix representation assuming a fixed sequence
length T :

y1
y2
y3
...
yT

 =


C1B1 0 0 · · · 0

C2A1B1 C2B2 0 · · · 0
C3A2A1B1 C3A2B2 C3B3 · · · 0

...
...

...
. . .

...
CT

∏T
j=1 AjB1 CT

∏T
j=2 AjB2 · · · · · · CTBT



v1
v2
v3
...
vT


If we abstract the details of SSMs matrices, we obtain the generalized attention formulation:

y1
y2
y3
...

 =


A1,1 0 0 · · · 0
A2,1 A2,2 0 · · · 0

A3,1 A3,2 A3,3
. . .

...
...

...
...

. . .
...



v1
v2
v3
...

 . (24)

Importantly, elements Ak,l of the block attention matrix are matrices as well in this representation.
According to State Space Duality Dao and Gu (2024), both the attention in Transformers and diagonal
SMMs result in diagonal matrices Ak,l. So, their architecture allows for efficient parallelization as it
separates temporal mixing from channel mixing.

In contrast to diagonal SSMs and LRUs, both H-LRU and BD-LRU architectures result in block-
diagonal matrices Ak,l, allowing richer but limited by block channel mixing inside the generalized

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

block attention matrix 24. Such channel mixing allows for the state mixing patterns that are not
accessible to one layer of diagonal LRU or SSMs. Although the channel mixing in H-LRU is more
expressive than the one in a diagonal LRU, it is still more restricted compared to BD-LRU (it is
equivalent to mixing only in one row of block-diagonal matrix), placing expressivity of H-LRU
between diagonal LRU and BD-LRU. Notably, if we extend SSMs with higher-order or block-
diagonal structures, their expressivity would lag behind analogous LRUs due to the restrictions on
mixing patterns imposed by the chosen discretization scheme. Overall, the generalized block attention
formulation 24 reveals that for both LRUs and SSMs, diagonal, higher-order, block diagonal and
dense variants form a hierarchy of architectures, each providing access to increasingly complex state
mixing patterns which result in increased expressivity.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

I CODE SNIPPETS

Following the approach for diagonal LRNNs (Sarnthein, 2025), we implement forward and backward
pass for block-diagonal recurrence based on associative scan in PyTorch.

1 import torch
2 from torch.autograd.function import Function, FunctionCtx
3 from torch._higher_order_ops.associative_scan import associative_scan
4

5 # helper function to implement reverse mode
6 def shift(input, shifts, fillval=0):
7 # torch.roll without the copy of the wrap-around section
8 if shifts > 0:
9 output = torch.cat([torch.full_like(input[:, :shifts,...], fillval),

10 input[:, :-shifts,...]], dim=1)
11 if shifts < 0:
12 output = torch.cat([input[:, -shifts:,...],
13 torch.full_like(input[:, shifts:,...], fillval)], dim=1)
14 return output
15

16 # Forward pass of associative scan
17 def scan_hop_fwd(inputs:torch.Tensor, coeffs:torch.Tensor, reverse=False):
18

19 # Higher-Order Op Implementation
20 def op(acc:dict, curr:dict):
21 c = torch.einsum('bcij,bcjk->bcik',curr['c'],acc['c'])
22 x = curr['x'] + torch.einsum('bcij,bcj->bci',curr['c'],acc['x'])
23 return dict(x=x, c=c)
24

25 outputs = associative_scan(op, dict(x=inputs, c=coeffs), dim=1,
26 reverse=reverse, combine_mode='generic')['x']
27 return outputs
28

29 # Backward pass that uses forward pass in reverse mode
30 def scan_hop_bwd(d_outputs:torch.Tensor, coeffs:torch.Tensor,
31 outputs:torch.Tensor, reverse=False):
32 coeffs_bwd = shift(coeffs, -1 if not reverse else 1, fillval=0).permute(0,1,2,4,3)
33 d_inputs = scan_hop_fwd(inputs=d_outputs, coeffs=coeffs_bwd, reverse=(not reverse))
34 d_coeffs = torch.einsum('btci,btck->btcik',d_inputs,
35 shift(outputs, shifts=1 if not reverse else -1, fillval=0))
36 return d_inputs, d_coeffs
37

38 # Autograd wrapper
39 class ScanHopFn(Function):
40 @staticmethod
41 def forward(ctx:FunctionCtx, inputs:torch.Tensor,
42 coeffs:torch.Tensor, reverse:bool=False) -> torch.Tensor:
43 outputs = scan_hop_fwd(inputs=inputs, coeffs=coeffs, reverse=reverse)
44 ctx.save_for_backward(coeffs, outputs)
45 ctx.reverse = reverse
46 return outputs
47

48 @staticmethod
49 def backward(ctx:FunctionCtx, d_outputs:torch.Tensor):
50 coeffs, outputs = ctx.saved_tensors
51 d_inputs, d_coeffs = scan_hop_bwd(d_outputs=d_outputs, coeffs=coeffs,
52 outputs=outputs, reverse=ctx.reverse)
53 return d_inputs, d_coeffs, None
54

55 # Scan function
56 def hopscan(inputs:torch.Tensor, coeffs:torch.Tensor):
57 return ScanHopFn.apply(inputs, coeffs)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Simplified version of H-LRU with autotuned higher-order parallel scan

1 import torch
2 import torch.nn.functional as F
3 import torch.nn as nn
4 from scans.hopscan import hopscan
5

6 @torch.compile(mode="max-autotune", dynamic=False)
7 class HLRU(nn.Module):
8 def __init__(
9 self,

10 input_dim: int,
11 window_dim: int = 4,
12 hidden_dim: int = 64,
13 **kwargs
14):
15 super().__init__()
16 self.input_dim = input_dim
17 self.hidden_dim = hidden_dim
18 self.window_dim = window_dim
19 # initialize projections and gates
20 self.proj_gates = nn.Linear(self.input_dim, self.hidden_dim*(self.window_dim+1),
21 bias=True)
22 self.proj_v = nn.Linear(self.input_dim, self.hidden_dim,
23 bias=False)
24 self.proj_out = torch.nn.Linear(self.hidden_dim*self.window_dim, self.input_dim,
25 bias=False)
26 # structred 1-off diagonal matrix for companion form
27 self.register_buffer("A_temp", torch.diag(torch.ones(self.window_dim-1), 1))
28

29 def forward(self,
30 x: torch.Tensor,
31 *args, **kwargs
32):
33 """
34 x (torch.Tensor): tensor of shape (B T N)
35 y (torch.Tensor): tensor of shape (B T N)
36 """
37 B, T, _ = x.size()
38 # projection of input to hidden size
39 v = self.proj_v(x) # B T H
40 # projections that form selective state gates and input gates
41 gates = self.proj_gates(x) # B T H*(m+1)
42 gates = gates.reshape(B,T,self.hidden_dim,self.window_dim+1)
43

44 # softmax normalization of coeff A and a_0
45 A_t = torch.softmax(gates,-1) # B T H m+1
46 # apply gate to input a_0*v
47 a0v = A_t[:,:,:,-1:]*v[:,:,:].unsqueeze(-1) # B T H
48 # gated input is padded with zeros to get structured form
49 a0v = F.pad(a0v,(0,self.window_dim-1)) # B T H m
50 # pad A_t to get block diagonal form
51 A_t = F.pad(A_t[:,:,:,:-1].unsqueeze(-1),(0,self.window_dim-1))
52 # in order to get companion form
53 # we add A_temp which is structred 1-off diagonal matrix
54 A_t = self.A_temp + A_t # B T H m m
55

56 # parallel scan
57 # takes (B T H m) and (B T H m m) and returns (B T H m)
58 y=hopscan(a0v, A_t) # B T H m
59

60 # reshape and project back
61 y=y.reshape(B,T,self.hidden_dim*self.window_dim) # B T H*m
62 y=self.proj_out(y) # B T N

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Simplified version of BD-LRU with autotuned higher-order parallel scan

1 import torch
2 import torch.nn.functional as F
3 import torch.nn as nn
4 from scans.hopscan import hopscan
5

6 @torch.compile(mode="max-autotune", dynamic=False)
7 class BDLRU(nn.Module):
8 def __init__(
9 self,

10 input_dim: int,
11 window_dim: int = 4,
12 hidden_dim: int = 64,
13 **kwargs
14):
15 super().__init__()
16 self.input_dim = input_dim
17 self.hidden_dim = hidden_dim
18 self.window_dim = window_dim
19 # initialize projections and gates
20 self.proj_gates = nn.Linear(self.input_dim,
21 self.hidden_dim*self.window_dim*(self.window_dim+1),
22 bias=True)
23 self.proj_v = nn.Linear(self.input_dim, self.hidden_dim*self.window_dim,
24 bias=False)
25 self.proj_out = torch.nn.Linear(self.hidden_dim*self.window_dim, self.input_dim,
26 bias=False)
27

28 def forward(self,
29 x: torch.Tensor,
30 *args, **kwargs
31):
32 """
33 x (torch.Tensor): tensor of shape (B T N)
34 y (torch.Tensor): tensor of shape (B T N)
35 """
36 B, T, _ = x.size()
37 # projection of input to hidden size
38 v = self.proj_v(x) # B T H*m
39 # projections that form selective state gates and input gates
40 gates = self.proj_gates(x) # B T H*m*(m+1)
41 gates = gates.reshape(B,T,self.hidden_dim,self.window_dim,self.window_dim+1)
42

43 # softmax normalization of coeff A and a_0
44 A_t = torch.softmax(gates,-1) # B T H m m+1
45 # apply gate to input a_0*v
46 a0v = A_t[:,:,:,:,-1]*v[:,:,:,:] # B T H m
47 # state-transition matrix
48 A_t = A_t[:,:,:,:,:-1] # B T H m m
49

50 # parallel scan
51 # takes (B T H m) and (B T H m m) and returns (B T H m)
52 y=hopscan(a0v, A_t) # B T H m
53

54 # reshape and project back
55 y=y.reshape(B,T,self.hidden_dim*self.window_dim) # B T H*m
56 y=self.proj_out(y) # B T N

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

J EIGENVALUE ANALYSIS

-1.0

-0.5

0

0.5

1.0

Im
ag

BD-LRU m5, time step 0 BD-LRU m5, time step 1 BD-LRU m5, time step 2 BD-LRU m5, time step 3

-1.0

-0.5

0

0.5

1.0

Im
ag

BD-LRU m4, time step 0 BD-LRU m4, time step 1 BD-LRU m4, time step 2 BD-LRU m4, time step 3

-1.0

-0.5

0

0.5

1.0

Im
ag

BD-LRU m3, time step 0 BD-LRU m3, time step 1 BD-LRU m3, time step 2 BD-LRU m3, time step 3

-1.0

-0.5

0

0.5

1.0

Im
ag

BD-LRU m2, time step 0 BD-LRU m2, time step 1 BD-LRU m2, time step 2 BD-LRU m2, time step 3

-1.0 -0.5 0 0.5 1.0
Real

-1.0

-0.5

0

0.5

1.0

Im
ag

BD-LRU m1, time step 0

-1.0 -0.5 0 0.5 1.0
Real

BD-LRU m1, time step 1

-1.0 -0.5 0 0.5 1.0
Real

BD-LRU m1, time step 2

-1.0 -0.5 0 0.5 1.0
Real

BD-LRU m1, time step 3

(a)

Im
ag

BD-LRU m5, time step 0 BD-LRU m5, time step 1 BD-LRU m5, time step 2 BD-LRU m5, time step 3

Im
ag

BD-LRU m4, time step 0 BD-LRU m4, time step 1 BD-LRU m4, time step 2 BD-LRU m4, time step 3

Im
ag

BD-LRU m3, time step 0 BD-LRU m3, time step 1 BD-LRU m3, time step 2 BD-LRU m3, time step 3

Im
ag

BD-LRU m2, time step 0 BD-LRU m2, time step 1 BD-LRU m2, time step 2 BD-LRU m2, time step 3

Real

Im
ag

H-LRU m1, time step 0

Real

H-LRU m1, time step 1

Real

H-LRU m1, time step 2

Real

H-LRU m1, time step 3

(b)

-1.0

-0.5

0

0.5

1.0

Im
ag

H-LRU m5, time step 0 H-LRU m5, time step 1 H-LRU m5, time step 2 H-LRU m5, time step 3

-1.0

-0.5

0

0.5

1.0

Im
ag

H-LRU m4, time step 0 H-LRU m4, time step 1 H-LRU m4, time step 2 H-LRU m4, time step 3

-1.0

-0.5

0

0.5

1.0

Im
ag

H-LRU m3, time step 0 H-LRU m3, time step 1 H-LRU m3, time step 2 H-LRU m3, time step 3

-1.0

-0.5

0

0.5

1.0

Im
ag

H-LRU m2, time step 0 H-LRU m2, time step 1 H-LRU m2, time step 2 H-LRU m2, time step 3

-1.0 -0.5 0 0.5 1.0
Real

-1.0

-0.5

0

0.5

1.0

Im
ag

H-LRU m1, time step 0

-1.0 -0.5 0 0.5 1.0
Real

H-LRU m1, time step 1

-1.0 -0.5 0 0.5 1.0
Real

H-LRU m1, time step 2

-1.0 -0.5 0 0.5 1.0
Real

H-LRU m1, time step 3

(c)

Im
ag

H-LRU m5, time step 0 H-LRU m5, time step 1 H-LRU m5, time step 2 H-LRU m5, time step 3

Im
ag

H-LRU m4, time step 0 H-LRU m4, time step 1 H-LRU m4, time step 2 H-LRU m4, time step 3

Im
ag

H-LRU m3, time step 0 H-LRU m3, time step 1 H-LRU m3, time step 2 H-LRU m3, time step 3

Im
ag

H-LRU m2, time step 0 H-LRU m2, time step 1 H-LRU m2, time step 2 H-LRU m2, time step 3

Real

Im
ag

H-LRU m1, time step 0

Real

H-LRU m1, time step 1

Real

H-LRU m1, time step 2

Real

H-LRU m1, time step 3

(d)

Figure 7: Eigenvalues of LRUs on S5 dataset. (a) BD-LRU with softmax normalization. (b) BD-LRU
without normalization. (c) H-LRU with softmax normalization. (d) H-LRU without normalization.
Each subplot corresponds to a specific time step (horizontal axis) and block size (vertical axis).
Models without normalization exhibit unstable transition matrices. Note that as block size increases,
the number of available symmetries increases as well.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

K CHOMSKY HIERARCHY TASKS

The Chomsky hierarchy formalizes increasing levels of expressiveness and computational complexity
of formal languages into several hierarchical classes (Chomsky, 1956; Delétang et al., 2022). Here,
we tested several tasks from this hierarchy: Parity, Cycle Navigation, Modular Arithmetic with and
without brackets. Parity task requires computing whether given binary string is even or not. Cycle
Navigation requires computing the end position given a sequence of movements on a cycle of length
5. Modular Arithmetic tasks require computing the result modulo 5 for given sequence of numbers in
(0, 1, 2, 3, 4) and operations in (+,−, ·), with or without brackets.

In our experiments, we observe that similar to S3 task, Parity task can be solved by BD-LRU with
access to negative eigenvalues (m ≥ 2). For Cycle Navigation task we obtain similar results as for S5

task. BD-LRU is able to solve it starting from m = 5. Therefore, the results on these two tasks from
Chomsky Hierarchy support our previously found advantage of BD-LRUs on permutations tasks.

Modular arithmetic tasks present a challenge for highly parallel Transformer architecture, often
require grokking and having pure generalization (Gromov, 2023). In contrast, it has been shown
that sequential nature of state mixing in RNNs has a strongly beneficial bias for arithmetic-like
induction (Merrill and Sabharwal, 2023). However, both our linear variants and other modern LRNNs
struggle with such arithmetic tasks (Siems et al., 2025), supporting the idea that nonlinearity of
state transitions is crucial in such tasks (Chang and Bisk, 2024). In our experiments, we found that
BD-LRU were able to solve Modular Arithmetic without brackets, while the version with brackets
remained challenging, similar to other RNNs.

Models cycle nav mod arith no brack mod arith w brack parity

LSTM 1.000 0.976 0.663 1.000
BD-LRU m1 0.434 0.370 0.370 0.512
BD-LRU m2 0.425 0.493 0.417 1.000
BD-LRU m3 0.597 0.546 0.434 1.000
BD-LRU m4 0.608 0.459 0.435 1.000
BD-LRU m5 1.000 0.525 0.422 1.000
BD-LRU m6 1.000 0.433 0.440 1.000
BD-LRU m8 1.000 0.553 0.395 1.000
BD-LRU m16 1.000 1.000 0.448 1.000

Table 6

26

	Introduction
	Higher-order and block diagonal linear recurrent networks.
	Normalization
	Experiments on token manipulation tasks
	Experiments on permutation tasks
	Implementation
	Reproducibility and LLM usage statements
	Conclusion and outlook
	Language modeling
	Extended tables and additional figures
	Experiments
	Computational complexity
	Proof of Proposition 1.
	Selectivity ablation
	Relation between expressivity of LRUs and State Space Duality
	Code snippets
	Eigenvalue analysis
	Chomsky Hierarchy Tasks

