
000 001 002 003 004 005 IMPROVED STATE MIXING IN HIGHER-ORDER AND 006 BLOCK DIAGONAL LINEAR RECURRENT NETWORKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 Linear recurrent networks (LRNNs) and linear state space models (SSMs) promise
033 computational and memory efficiency on long-sequence modeling tasks, yet their
034 diagonal state transitions limit expressivity. Dense and/or nonlinear architectures
035 (e.g., LSTMs) on the other hand are provably more expressive, but computationally
036 costly. Here, we explore how expressivity in LRNNs can be increased via richer
037 state mixing across time and channels while maintaining competitive efficiency.
038 Specifically, we introduce two structured LRNN architectures: (i) Higher-order
039 Linear Recurrent Units (H-LRU), which generalize first-order recurrence to m -
040 th order, mixing multiple past states, and (ii) Block-Diagonal LRUs (BD-LRU),
041 which enable dense intra-block channel mixing. Per-channel (H-LRU) / per-row
042 (BD-LRU) L1-normalization of selective gates stabilizes training and allows for
043 scaling window/block sizes. In synthetic sequence-modeling benchmarks (com-
044 pression, selective copying, associative recall), H-LRU is found to be the most
045 parameter-efficient in compression, while the performance of BD-LRU matches or
046 exceeds those of linear SSMs (Mamba), low-rank LRNNs (DeltaNet) and LSTM
047 baselines. In permutation composition tasks (S_3 - S_5), BD-LRU is found to effi-
048 ciently solve these tasks at moderate block sizes, outperforming both linear and
049 non-linear baselines. A parallel-scan implementation of the proposed architec-
050 tures keeps the throughput competitive with diagonal LRNNs for moderate orders
051 (H-LRU) and block sizes (BD-LRU), while preserving the efficiency that moti-
052 vated LRNNs. These results indicate that the structure of state mixing rather than
053 width alone shapes expressivity of LRNNs, offering a practical route to closing the
054 efficiency-expressivity gap in linear sequence models.

055 1 INTRODUCTION

056 Recent studies have highlighted fundamental limitations of linear recurrent networks (LRNNs) by
057 showing that the structure of the state-transition matrix results in a trade-off between efficiency and
058 expressivity (Merrill and Sabharwal, 2023; Cirone et al., 2024; Merrill et al., 2024). Architectures
059 based on diagonal matrices enable an efficient implementation but are inherently limited in expressive
060 power, while dense models are provably more expressive yet computationally prohibitive. To bridge
061 this gap, several LRNN architectures have been proposed: efficient structured architectures such
062 as ones with diagonal-plus-low-rank matrices (Yang et al., 2024a; Peng et al., 2025) and their
063 products (Siems et al., 2025), ones based on approximations of dense matrices at test time (Sun et al.,
064 2024; Movahedi et al., 2025; von Oswald et al., 2025), and other solutions that are *de facto* equivalent
065 to block-diagonal architectures (e.g., oscillatory blocks (Rusch and Rus, 2024) and complex-valued
066 states (Orvieto et al., 2023; De et al., 2024)). Together, these studies suggest that exploring the
067 configuration space between diagonal and dense transition matrices may yield more expressive LRNN
068 models.

069 When designing block-diagonal recurrences, the immediate issue one faces is that of dynamical
070 stability and forward pass normalization – a crucial element that is well studied and discussed in
071 diagonal LRNNs (Orvieto et al., 2023; Wang and Li, 2023; Zucchetti and Orvieto, 2024), yet requires
072 additional care in non-diagonal linear architectures where eigenvalues are not readily available.
073 Traditionally, stability has been ensured by parameterizations that constrain eigenvalues of the
074 transition matrix inside the complex unit disk (Arjovsky et al., 2016; Helfrich et al., 2018), a strategy
075 that effectively mitigates vanishing and exploding gradients. More recently, similar conditions have

been applied to derive efficient reparameterizations that ensure stability in diagonal linear recurrent units (Orvieto et al., 2023; De et al., 2024). In both selective and non-selective SSMs (designed in continuous-time), stability is achieved by exponential parametrization, resulting from zero-order-hold discretization techniques (Gu et al., 2021; Gu and Dao, 2023). Finally, in LRNNs with diagonal-plus-low-rank transition matrices, normalization arises naturally from the structure of generalized Householder transformations (Yang et al., 2024b). Although several recent studies have examined block-diagonal architectures, they either focus on parameterizations of non-selective models (Biegun et al., 2024; Rusch and Rus, 2024; Walker et al., 2025), analyze only the stability of the state-transition matrix norm (Fan et al., 2023), or rely on architectures where this matrix is normalized by design (Yang et al., 2024b), without fully addressing the problem of joint normalization of selective state-transition matrix and selective input gates, which has been previously shown critical for sequence modeling in diagonal LRNNs Orvieto et al. (2023); Gu and Dao (2023); De et al. (2024).

Building on this line of work, we explore how to improve expressivity of LRNNs through structured selective state mixing, while preserving their computational efficiency. Starting from basic considerations, we introduce two architectures with such mixing: (i) Higher-order Linear Recurrent Units (H-LRU), which generalize first-order recurrence to m -th order, which allow for mixing multiple past states, and (ii) Block-Diagonal LRUs (BD-LRU), which enable dense intra-block channel mixing. We equip these models with input-dependent selective gates which are restricted by per-channel/row L1 normalization. This normalization allows both architectures to effectively scale with window or block size, respectively, and achieve competitive or superior accuracy to diagonal, low-rank and non-linear baselines on a set of synthetic sequence modeling tasks. In addition, a parallel-scan implementation maintains high throughput for moderate block sizes, preserving the efficiency that motivates linear recurrences. Overall, contrary to the common belief that width alone determines performance, our results indicate that expressivity is primarily shaped by the structure of state mixing.

2 HIGHER-ORDER AND BLOCK DIAGONAL LINEAR RECURRENT NETWORKS.

Modern linear recurrent models (e.g., S4, LRU, Mamba), as well as linear attention models (e.g. GLA, DeltaNet), exchange information between tokens by means of a recurrent mechanism

$$\mathbf{h}_t = \mathbf{a}_t \odot \mathbf{h}_{t-1} + \mathbf{b}_t \odot \mathbf{v}_t, \quad (1)$$

where $\mathbf{h}_t \in \mathbb{R}^N$ is the hidden state computed at time t , and $\mathbf{a}_t, \mathbf{b}_t$ are input-dependent and potentially state-dependent gates prescribing how current information $\mathbf{v}_t = \mathbf{W}_v \mathbf{x}_t$ (pointwise function of the input \mathbf{x}_t) gets stored in the network state.

Through this mechanism the output of the network at time t , a function of the hidden state \mathbf{h}_t , can access information about past inputs $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t$. In fact, one can write in closed form $\mathbf{h}_t = \sum_{i=1}^t (\prod_{j=t-i}^t \mathbf{a}_j) \odot \mathbf{b}_i \odot \mathbf{v}_i$. However, as is well known from both modern and classical literature, the system above suffers from vanishing gradients with respect to the inputs (Pascanu et al., 2013; Wang and Li, 2023; Zucchetti and Orvieto, 2024). Standard approaches to address this issue are to re-parametrize the entries of \mathbf{a}_t such that their absolute values are close to a value of 1 (Orvieto et al., 2023), and to increase the dimensionality of \mathbf{h}_t (Orvieto et al., 2024). Although it can be shown that this strategy can help memorization (Arora et al., 2023; Okpeke and Orvieto, 2025), it is also known that going beyond diagonal formulations – i.e. mixing the hidden state as $\mathbf{A}_t \mathbf{h}_{t-1}$ instead of $\mathbf{a}_t \odot \mathbf{h}_{t-1} = \text{diag}(\mathbf{a}_t) \mathbf{h}_{t-1}$ – can drastically improve performance on challenging reasoning tasks involving state-tracking (Merrill et al., 2024; Cirone et al., 2024; Movahedi et al., 2025).

An *orthogonal* approach to diagonal state expansion that we consider here, is to instead design recursions of *higher complexity*. An example in recent literature comes from (Rusch and Rus, 2024), where the authors consider system equations given by the second-order oscillatory ordinary differential equation $\mathbf{h}''(t) = -\bar{\mathbf{a}}(t) \odot \mathbf{h}(t) + \bar{\mathbf{b}}(t) \odot \mathbf{v}(t)$. After discretization¹, this leads to a second-order difference equation of the form

$$\mathbf{h}_t = \mathbf{a}_{1,t} \odot \mathbf{h}_{t-1} + \mathbf{a}_{2,t} \odot \mathbf{h}_{t-2} + \mathbf{a}_{0,t} \odot \mathbf{v}_t, \quad (2)$$

where coefficients $\mathbf{a}_{i,t}$ are a function of the discretization method. Notably, the model 2 can already be made more expressive if we allow arbitrary selective gates $\mathbf{a}_{1,t}, \mathbf{a}_{2,t}, \mathbf{a}_{0,t}$ in contrast to the fixed parameterization of discretization schemes.

¹Plugging in the second-order backward estimate $\mathbf{h}''(t)\Delta \simeq \mathbf{h}_t - 2\mathbf{h}_{t-1} + \mathbf{h}_{t-2}$ (Hairer et al., 1993).

108 **Higher-order Recurrence** Inspired by Eq. 2, we generalize Eq. 1 and introduce Higher-order
 109 Linear Recurrent Units (H-LRUs) as follows:

$$110 \quad \mathbf{h}_t = \sum_{i=1}^m \mathbf{a}_{i,t} \odot \mathbf{h}_{t-i} + \mathbf{a}_{0,t} \odot \mathbf{v}_t. \quad (\text{H-LRU})$$

113 This parametrizes the state evolution by an m -th order difference equation. Such models are a
 114 standard tool in time series statistics for forecasting (ARMA processes, see e.g. Hamilton (2020))
 115 and are *canonical* in systems theory, since they lead to minimal realization (i.e., with provably the
 116 smallest memory size) of linear dynamical systems (Glad and Ljung, 2018).

117 To see the connection with controllable canonical forms for transition matrices in systems theory,
 118 it is sufficient to denote by h_{t-1}^k the k -th coordinate ($k \in \{1, 2, \dots, N\}$) of \mathbf{h}_t and by $a_{i,t}^k$ the k -th
 119 coordinate of $\mathbf{a}_{i,t}$. Then, with \times denoting the standard matrix multiplication,

$$120 \quad \mathbf{h}_t^k = \mathbf{A}_t^k \times \mathbf{h}_{t-1}^k + \mathbf{a}_{0,t}^k \odot \mathbf{v}_t^k,$$

$$121 \quad \mathbf{A}_t^k = \begin{bmatrix} a_{1,t}^k & \dots & a_{m-1,t}^k & a_{m,t}^k \\ 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & 0 \end{bmatrix}, \quad \mathbf{h}_{t-1}^k = \begin{bmatrix} h_{t-1}^k \\ \vdots \\ h_{t-m}^k \end{bmatrix}, \quad \mathbf{a}_{0,t}^k = \begin{bmatrix} a_{0,t}^k \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{v}_t^k = \begin{bmatrix} v_t^k \\ \vdots \\ 0 \end{bmatrix}, \quad (3)$$

126 where \mathbf{A}^k is a structured companion-like matrix which allows richer dynamic modes (e.g. oscillatory
 127 modes). Though eigenvalues for \mathbf{A}_t^k are not available in closed form², dynamical stability for the
 128 system above can be guaranteed and is crucial for performance, as we will discuss in the next section.

129 **Block Diagonal Representation.** The substitution in Eq. 3 allows us to rewrite the system equations
 130 in H-LRU as a generalized first-order recurrence

$$132 \quad \mathbf{h}_t = \mathbf{A}_t \times \mathbf{h}_{t-1} + \mathbf{a}_{0,t} \odot \mathbf{v}_t, \quad (4)$$

$$133 \quad \mathbf{A} = \text{diag}(\mathbf{A}_t^1, \dots, \mathbf{A}_t^N), \quad \mathbf{h}_{t-1} = \begin{bmatrix} \mathbf{h}_{t-1}^1 \\ \vdots \\ \mathbf{h}_{t-1}^N \end{bmatrix}, \quad \mathbf{a}_{0,t} = \begin{bmatrix} \mathbf{a}_{0,t}^1 \\ \vdots \\ \mathbf{a}_{0,t}^N \end{bmatrix}, \quad \mathbf{v}_t = \begin{bmatrix} \mathbf{v}_t^1 \\ \vdots \\ \mathbf{v}_t^N \end{bmatrix},$$

137 revealing that the H-LRU architecture corresponds to a recurrent network with a structured block
 138 diagonal state-transition matrix.

139 Independently, we also investigate a second kind of recurrence with complexity higher than the
 140 diagonal case, the block diagonal linear recurrent unit (BD-LRU). In contrast to the structured
 141 temporal state mixing implemented inside H-LRU blocks, BD-LRU implements dense channel
 142 mixing inside all blocks for all vectors and matrices by setting

$$143 \quad \mathbf{h}_t^k = \mathbf{A}^k \times \mathbf{h}_{t-1}^k + \mathbf{a}_{0,t}^k \odot \mathbf{v}_t^k, \quad (\text{BD-LRU})$$

$$144 \quad \mathbf{A}_t^k = \begin{bmatrix} a_{1,1,t}^k & \dots & a_{1,m-1,t}^k & a_{1,m,t}^k \\ a_{2,1,t}^k & \dots & a_{2,m-1,t}^k & a_{2,m,t}^k \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1,t}^k & \dots & a_{m,m-1,t}^k & a_{m,m,t}^k \end{bmatrix}, \quad \mathbf{h}_{t-1}^k = \begin{bmatrix} h_{1,t-1}^k \\ \vdots \\ h_{m,t-1}^k \end{bmatrix}, \quad \mathbf{a}_{0,t}^k = \begin{bmatrix} a_{1,0,t}^k \\ \vdots \\ a_{m,0,t}^k \end{bmatrix}, \quad \mathbf{v}_t^k = \begin{bmatrix} v_{1,t}^k \\ \vdots \\ v_{m,t}^k \end{bmatrix}. \quad (5)$$

149 As for H-LRU (Eq. 4), the block size m of BD-LRU corresponds to the size of a square matrix \mathbf{A}^k
 150 and $k \in [1, N]$ corresponds to the block index of this matrix. The hidden size of BD-LRU is equal to
 151 the extended block diagonal representation of the H-LRU architecture. But in contrast to H-LRU
 152 (Eq. 4), all vectors $\mathbf{a}_0^k, \mathbf{h}_t^k, \mathbf{v}_t^k \in \mathbb{R}^m$ and all matrices $\mathbf{A}^k \in \mathbb{R}^{m \times m}$ in BD-LRU are dense and there is
 153 no dependence on the several previous hidden states that is characteristic of the H-LRU architecture.
 154 Importantly, the structure of BD-LRU does not allow for the same eigenvalue analysis as is possible
 155 for H-LRU. Yet, as we show in the next section, we can guarantee its dynamical stability using a
 156 normalization technique similar to that of H-LRU.

157 To endow the models with input selectivity, we introduce input-dependent gates for both H-LRU
 158 ($a'_{j,t} = \text{Linear}_j(\mathbf{x}_t)$) and BD-LRU ($a'_{i,j,t} = \text{Linear}_{i,j}(\mathbf{x}_t)$). Fig. 1 provides a schematic illustration
 159 of the proposed gating mechanisms in block-diagonal form, showing both the state gates that form
 160 the state-transition matrix and the input gates applied to external inputs.

161 ²Solve the equation $\chi_{\mathbf{A}^k}(\lambda) = \det(\lambda I - \mathbf{A}^k) = \lambda^m - a_{1,t}^k \lambda^{m-1} - a_{2,t}^k \lambda^{m-2} - \dots - a_{m-1,t}^k \lambda - a_{m,t}^k = 0$.

162
163
164
165
166
167
168
169
170
171
172

Figure 1: Structure and performance of the proposed H-LRU and BD-LRU architectures. **A.** A schematic illustration of the theoretically predicted trade-off between expressivity and efficiency of block-diagonal linear recurrent networks. **B.** Schematic illustration of the gating mechanisms in block-diagonal form, showing both the state gates that constitute the state-transition matrix and the input gates that act on external inputs. The structure of the gates' selectivity is color-coded: white squares indicate fixed zero gates, black squares indicate fixed identity gates, other colors indicate active selective gates; similar color palettes indicates row-wise normalization. **C.** Summary of the performance of the proposed and the baseline models. The x-axis indicates the number of FLOPs per recurrent step. The y-axis denotes the mean test accuracy over all considered tasks (compression, selective copying, in context recall, permutation) of the overall best performing model configuration (hidden size up to 6k). Optimal hidden sizes vary between models, see also Fig. 5. Note that H-LRU and BD-LRU can achieve better or matching performance than both linear and non-linear baselines while requiring fewer FLOPs per recurrent step. Diagonal LRU presents the best results across both H-LRU m1 and BD-LRU m1, which are identical models for $m = 1$. **D.** Best performance for different window sizes m (H-LRU) and block sizes m (BD-LRU).

3 NORMALIZATION

Normalization schemes for RNNs which impose restrictions on the eigenvalues of the state-transition matrix have proven to be very effective as they directly address the vanishing and exploding gradient problem (Pascanu et al., 2013). This approach has led to the development of a variety of models with restrictions on the norm of the state-transition matrix (Arjovsky et al., 2016; Helfrich et al., 2018). More recently, similar normalization techniques were applied to exponentiated gates in linear recurrent units (LRU, Orvieto et al. (2023)) and optimized discretization schemes in state space models (SSM, Gu et al. (2021)). However, as detailed in Orvieto et al. (2023), stability in a dynamical systems sense (i.e., requiring that the eigenvalues of the hidden-to-hidden transition be less than one in absolute value) does not necessarily guarantee a properly normalized forward pass in this case. This can negatively affect performance, as discussed in the next section.

To understand this phenomenon, one can consider the trivial one-dimensional linear setting $h_t = ah_{t-1} + bx_t$, where $x_t = 1$ for all t . For $a \in (0, 1)$, as $t \rightarrow \infty$, h_t converges to the value $(1-a)^{-1}b$, which can be substantially greater than 1 if a gets close to 1, as allowed and incentivized by recent sigmoidal parametrizations (Orvieto et al., 2023). Of course, the forward-pass norm in this case is preserved if input and forget gates are adapted, that is, if we consider RNNs of the form $h_t = ah_{t-1} + (1-a)x_t$, i.e., $b = 1 - a$. This directly translates to the case of a diagonal network where models such as S4 (Gu et al., 2020) and Mamba (Gu and Dao, 2023) adopt a forget gate of the form $a = e^\Delta$, coupled with an input gate $b = \Delta \approx (1 - a)$ if Δ is close to zero. As suggested also directly from the original GRU formulation (Cho et al., 2014) as well as recent works (Feng et al., 2024), for the diagonal setting (coinciding with $m = 1$ in H-LRU and BD-LRU) it is convenient to start by adapting Eq. 1 to $\mathbf{h}_t = \mathbf{a}_t \odot \mathbf{h}_{t-1} + (1 - \mathbf{a}_t) \odot \mathbf{v}_t$. Stability for $m \geq 1$ is guaranteed when choosing coefficients as prescribed by the next proposition.

Proposition 1 Consider either the H-LRU or the BD-LRU architectures, written in matrix form as shown in Equations 3 and 5. If for any $k \in [1, N]$, the k -th recurrent non-diagonal block $\mathbf{h}_t^k = \mathbf{A}_t^k \times \mathbf{h}_{t-1}^k + \mathbf{a}_{0,t}^k \odot \mathbf{v}_t^k$ is such that the matrix $\mathcal{A}_t^k := [\mathbf{A}_t^k, \mathbf{a}_{0,t}^k] \in \mathbb{R}^{m \times (m+1)}$ has the property

216 that $\sum_{j=1}^{m+1} |(\mathcal{A}_t^k)_{i,j}| = 1$ for every row $i \in [1, m]$, then the recurrence is stable from a dynamical
 217 systems perspective and the forward pass is normalized, meaning that $\|\mathbf{h}_T\|_\infty \leq \max_{t \in [0, T]} \|\mathbf{v}_t\|_\infty$.
 218

219 The proposition above suggests that to achieve a normalized forward pass, L1-normalization should
 220 be applied to raw selective gates. For H-LRU, it is sufficient to normalize over all $m + 1$ coefficients
 221 of the m -th order recurrence, while for BD-LRU, we apply a row-wise normalization over the hidden
 222 state gates and the input gate. Let us therefore denote as a' s the raw gates (linear functions of the
 223 input) before normalization. We set

$$224 \quad \mathbf{H-LRU: } a_{j,t} = \frac{f(a'_{j,t})}{\sum_{l=0}^m f(a'_{l,t})}; \quad \mathbf{BD-LRU: } a_{i,j,t} = \frac{f(a'_{i,j,t})}{\sum_{l=0}^m f(a'_{i,l,t})}, \quad (6)$$

225 where $f(\cdot)$ is a gate parametrization function; the block index is omitted for clarity. Note that this
 226 normalization only affects the elements inside on-diagonal blocks and has no impact on off-diagonal
 227 blocks (consisting of zero matrices). Note that the introduced normalization restricts eigenvalues of
 228 the state-transition matrix to be smaller than the $L1$ norm of the corresponding row, meaning that the
 229 eigenvalues of the state-transition matrix are limited by a value of the input gate
 230

$$232 \quad |\lambda_{i,t}| \leq \sum_{l=1}^m |a_{i,l,t}| = 1 - |a_{i,0,t}|, \quad (7)$$

233 where i is the channel index in H-LRU or row index in BD-LRU. This results in a joint normalization
 234 for input and state gates that allows selective block-diagonal LRNNs to balance attention to hidden
 235 states and inputs in a similar way as in first-order non-selective and selective LRUs (Orvieto et al.,
 236 2023; De et al., 2024). This is in contrast to previous studies on selective block-diagonal LRNNs that
 237 only addressed the stability of the state-transition matrix (Fan et al., 2023).
 238

239 Although the introduced normalization guarantees the stability of the recurrence, it has been shown
 240 that gradient-based learning is also highly sensitive to the specific choice of parametrization (Zucchet
 241 and Orvieto, 2024). In contrast to the normalization used in non-selective block-diagonal LRNNs that
 242 rely on structured parameterizations such as discretization schemes (Rusch and Rus, 2024; Walker
 243 et al., 2025), joint parametrization of the state-transition matrices and input gate (Biegun et al., 2024),
 244 and exponential reparametrization (Orvieto et al., 2023), our proposed normalization is more general
 245 as it can be applied to variety of both non-selective and selective parameterizations. This allowed us
 246 to independently evaluate several variants of gate parameterizations that are defined by the function f
 247 in Eq. 6. As can be seen in Fig. 2, *our normalization strategy greatly improves performance of both*
 248 *H-LRUs and BD-LRUs.*
 249

250 4 EXPERIMENTS ON TOKEN MANIPULATION TASKS

251 The sequence modeling capabilities of modern neural architectures are often evaluated through
 252 large-scale experiments involving models with billions of parameters and trained on trillions of
 253 tokens (Kaplan et al., 2020; Waleffe et al., 2024). However, recent studies have shown that many
 254 of these capabilities can be assessed using smaller models trained on carefully designed synthetic
 255 datasets which target specific tasks that are crucial for general sequence modeling (Arora et al., 2023;
 256 Poli et al., 2024).

257 First, the well-established equivalence between lossless compression and probabilistic modeling
 258 suggests that models that compress well also generalize well (Shannon, 1948; Hutter, 2005). Indeed,
 259 recent work shows that there is a clear connection between language modeling and compression (Gu,
 260 2025), although with some difference in scaling laws (Delétang et al., 2023). In light of this, we
 261 include in our evaluation a task that tests the efficiency of temporal information integration, the
 262 auto-encoding compression task from Poli et al. (2024).
 263

264 Next, general sequence modeling requires not only the ability to develop a fixed prediction algorithm,
 265 but also the capacity to adapt dynamically to changes within the input context. Such *in-context abilities*
 266 have been extensively studied and have been suggested to explain the success of the Transformer
 267 architecture (Olsson et al., 2022). To benchmark this basic capability, we choose the selective copying
 268 and associative recall tasks that have been shown to be good indicators of the in-context abilities
 269 of sequence models (Arora et al., 2023; Poli et al., 2024), as well as indicators of downstream
 270 capabilities (Waleffe et al., 2024).

Normalization allows scaling with window size. The specifics of parametrization play a crucial role in the sensitivity of parameters under gradient-based learning, especially in the context of RNNs (Zucchetti and Orvieto, 2024). In Section 3, we derived a parametrization/normalization strategy on input and forget gates that guarantees forward pass stability, following insights from previous literature (Orvieto et al., 2023). Here, we show that our normalization strategies are crucial for performance. We tested several variants of the function f for L1 normalization in 6: exponentiated gate $\exp(\cdot)$ (softmax normalization), sigmoidal gates $\sigma(\cdot)$, ReLU gates $\text{relu}(\cdot)$. As a baseline, we also tested all models without normalization.

Figure 2: Scaling of performance with window/block size on the compression task for L1 normalization with different parameterizations. Results are shown for different window/block sizes m of the higher-order LRU (H-LRU) and block diagonal LRU (BD-LRU). **A.** Comparison between H-LRUs. **B.** Comparison between BD-LRUs.

We found that both softmax and sigmoidal L1 normalizations allowed the models to effectively scale with window and block size, see Fig. 2. Without normalization and with the ReLU normalization, both H-LRU and BD-LRU improve at lower rate with window size. With softmax or sigmoidal L1 normalizations, the improvement with window size was especially pronounced between a window/block size of 1 and 2. Our eigenvalue analysis (see Appendix J) indicates that this gain corresponds to the emergence of negative eigenvalues, consistent with the findings of Grazzi et al. (2024). We also observe that further improvements in performance are associated with a broader range of complex eigenvalues, which are enabled starting from the block size 3. These results also align well with previous studies on beneficial role of oscillatory dynamics in recurrent networks (Rusch and Mishra, 2021; Effenberger et al., 2022; Dubinin and Effenberger, 2024; Rusch and Rus, 2024).

We noticed that for moderate block sizes ($m \in [2, 5]$), the softmax normalization performed comparable or better than sigmoidal normalization, making this the default choice for all the remaining experiments. That also agrees with previous findings that exponentiation of the gates benefit gradient-based learning (Orvieto et al., 2023; Zhang et al., 2024).

Scaling with hidden state is limited by state mixing. Next, we performed experiments in which we investigated the difference between scaling the window size and the hidden size. In these experiments we found that for both H-LRUs and BD-LRUs, the scaling with hidden size could not compensate for a lack of expressivity. In other words, window/block size was found to be the key factor for performance, see Fig. 5. We also found that scaling of H-LRUs and BD-LRUs results in models that are competitive with LSTMs and achieve higher performance than other linear recurrent baselines, both diagonal ones such as Mamba and low-rank ones such as DeltaNet and DeltaProduct, see Table 1. In line with the observed limitations of diagonal RNNs, we found that scaling the hidden size in a Mamba model also had limited effect on performance, see Fig. 5. Notably, we also found distinct scaling behaviors for the compression and our other tasks, aligning with previous results Delétang et al. (2023). In the compression (auto-encoding) task, models with smaller block size outperformed larger counterparts, while performance on autoregressive tasks scaled positively with block size. Therefore, the decrease in aggregate performance for larger block sizes is substantially driven by the results on the compression task.

Our scaling experiments show a direct trade-off between parameter efficiency and peak performance, as governed by the block and window sizes for BD-LRU and H-LRU, respectively. Models with smaller block/window sizes saturate in performance at lower parameter counts, demonstrating high efficiency. In contrast, models with larger block/window sizes require a larger hidden dimension to match the performance of the smaller models, but can ultimately achieve a much higher performance. This indicates that richer state mixing increases a model's expressive power at the expense of parameter efficiency.

H-LRUs are parameter efficient. We also found that in the compression task which does not require complex token manipulation, H-LRU demonstrated the most parameter efficient scaling with

Models	Recall	Copy	Compress	Overall
LSTM	1.000	1.000	0.750	0.916
Mamba2	1.000	0.807	0.720	0.842
Deltanet[-1,1]	1.000	0.892	<u>0.782</u>	0.892
Deltaproduct ₄ [-1,1]	1.000	1.000	0.717	0.906
BD-LRU m1 (ours)	0.775	0.835	0.725	0.778
BD-LRU m2	1.000	0.962	0.760	0.908
BD-LRU m3	1.000	0.980	0.762	0.916
BD-LRU m5	1.000	0.985	<u>0.782</u>	0.922
BD-LRU m8	1.000	0.992	0.748	0.913
H-LRU m1 (ours)	0.785	0.848	0.760	0.797
H-LRU m2	0.998	0.855	0.770	0.874
H-LRU m3	1.000	0.855	0.772	0.876
H-LRU m5	1.000	0.838	0.775	0.871
H-LRU m8	1.000	0.810	0.768	0.859

Table 1: Performance on the in-context recall, selective copying and compression tasks. The presented results are the average of best test accuracies across four configurations of the corresponding synthetic dataset with different vocabulary sizes, sequence lengths and number of training examples. Results are shown for different window (H-LRU) and block sizes (BD-LRU) m . Note that overall performance of our models consistently improves with window/block size up to approximately 3–5, after which the gains saturate or exhibit slight degradation. All models are single-layer configurations with a maximum overall hidden dimension of 6144. See Appendix C for extended table.

hidden size, achieving accuracies not accessible to Mamba and LSTM of similar sizes (in terms of the number of trainable parameters), see Fig. 5. This aligns well with our predictions that the inductive bias introduced by extended temporal mixing results in hidden representations with better compression capabilities.

BD-LRUs are expressive across tasks. In contrast to the compression task, the selective copying task requires more extensive token manipulation. We found that the performance of BD-LRUs scales more favorably with hidden size than the one of H-LRUs. Furthermore, BD-LRUs were able to outperform Mamba and DeltaNet, achieving performance that is competitive with LSTMs and DeltaProduct. At the same time, BD-LRUs achieved the best performance also in the compression task. Overall, the introduced normalization scheme allows BD-LRU to efficiently utilize the expressivity of their dense block diagonal structure to approximate a variety of mixing patterns and to achieve the best overall results on our set of synthetic tasks, see Table 1.

5 EXPERIMENTS ON PERMUTATION TASKS

An important property of dense recurrent networks is that one layer of such model can easily solve inherently sequential tasks such as permutation composition. In theory, linear diagonal networks and Transformers can also solve any of these tasks, but only if we assume an infinite depth approximation. In practice, it has been shown that they cannot effectively approximate the evolution of recurrent state with a bounded number of layers (Merrill et al., 2024). Furthermore, it was proposed that there is a parallelism-expressivity trade-off, in which efficient parallelization comes at the expense of decreased expressivity (Merrill and Sabharwal, 2023).

To evaluate the ability of a model to learn a permutation structure from data, we use a synthetic dataset based on the symmetric group S_n – the group of all permutations over n elements (Merrill et al., 2024). Each instance in the dataset corresponds to a specific permutation sampled from S_n , and the model is tasked with learning the mapping that defines the permutation purely from input-output examples within a sequence. We evaluated model performance on a series of increasingly complex permutation learning tasks derived from the symmetric groups S_2 through S_5 .

BD-LRUs efficiently learn permutations. All tested recurrent architectures (H-LRU, BD-LRU, LSTM, Deltanet, Deltaproduct) were able to perfectly solve the S_2 task, which represents a uniquely simple permutation group as it is also a commutative cyclic group. However, as the group order increases over S_3 to S_5 , the non-commutative structure of the permutation tasks increasingly posed

Models	S_3 (10k samples)	S_3 (250)	S_4 (50k)	S_4 (3k)	S_5 (100k)	Overall
LSTM	1.000	0.320	1.000	0.370	1.000	0.738
Mamba2	0.660	0.280	0.430	0.120	0.260	0.350
Deltanet[-1,1]	1.000	0.260	0.470	0.140	0.140	0.402
Deltaproduct ₄ [-1,1]	1.000	0.270	1.000	0.130	0.140	0.508
BD-LRU m1 (ours)	0.560	0.380	0.340	0.220	0.210	0.340
BD-LRU m2	1.000	0.490	0.700	0.360	0.340	0.576
BD-LRU m3	1.000	1.000	1.000	0.430	0.480	0.782
BD-LRU m5	1.000	1.000	1.000	1.000	1.000	1.000
BD-LRU m8	1.000	1.000	1.000	1.000	1.000	1.000
H-LRU m1 (ours)	0.570	0.360	0.350	0.210	0.230	0.344
H-LRU m2	0.600	0.310	0.370	0.190	0.260	0.346
H-LRU m3	0.610	0.320	0.400	0.210	0.320	0.372
H-LRU m5	0.620	0.320	0.450	0.190	0.380	0.392
H-LRU m8	0.640	0.280	0.490	0.170	0.390	0.394

Table 2: Model performance on permutation composition tasks for different datasets of different sizes: S_3 (10k training samples), S_3 (250 training samples), S_4 (50k training samples), S_4 (3k training samples) S_5 (100k training samples). The accuracy values reflect the impact of window size (H-LRU) and block size (BD-LRU), both denoted by m . We note that BD-LRU performance improves with block size, demonstrating strong sample efficiency by solving the tasks even given limited training data. All models are single-layer configurations with a maximum overall hidden dimension of 6144. See Appendix C for extended table.

challenges for the models, see Table 2. Performance of the H-LRU was found to decrease progressively with increasing group size, indicating a limited capacity for modeling compositional permutations. Increasing the order of recurrence m did not seem to provide any benefits for the performance. We conclude that a strict inductive bias on the structure of the transition matrix prevents H-LRU from solving this task. Moreover, we found that H-LRU is unable to solve our permutation tasks despite having access to negative and complex eigenvalues (see Appendix J for our eigenvalue analysis). This indicates that the presence of such eigenvalues is insufficient for these tasks and highlights that the structure of state mixing plays a more critical role.

In contrast, BD-LRU with moderate block sizes was able to successfully solve all permutation tasks for all group sizes, matching the performance of LSTM and outperforming all other recurrent architectures tested. Importantly, consistent with the previously demonstrated parameter efficiency, BD-LRU with block size 5 also solved the S_5 task using as few as 200K parameters, matching the parameter efficiency of more computationally demanding non-linear LSTM model. Furthermore, we found that BD-LRUs are also sample-efficient in learning permutations, outperforming even LSTM in the regime of limited training data. We notice that in our low training token regime Deltaproduct₄ fails to learn the S_5 dataset. However, when the number of training samples approaches the token counts used in the study Siems et al. (2025), it is capable of solving S_5 task, showing that low-rank matrices are less sample-efficient compared to BD-LRU. Our findings align well with our predictions that dense blocks of BD-LRU are well-suited for implementing permutations between hidden states. The consistent improvement with larger block sizes on permutation tasks of increasing complexity highlights the advantage of the inductive bias in BD-LRU architecture.

6 IMPLEMENTATION

The parallel scan algorithm in LRNNs allows them to efficiently process long sequences using constant memory and with logarithmic time complexity. Following the classic approach (Blelloch, 1990), we consider a recurrence of the form

$$\mathbf{h}_{i+1} = \begin{cases} \mathbf{b}_0, & \text{if } i = 0 \\ (\mathbf{h}_i \otimes_v \mathbf{A}_i) \oplus \mathbf{b}_i, & \text{if } 0 \leq i < n \end{cases}, \quad (8)$$

where $\mathbf{h}_i, \mathbf{b}_i \in \mathbb{R}^N$, $\mathbf{A}_i \in \mathbb{R}^{N \times N}$ and associative operators: \otimes_v is matrix-vector multiplication, \otimes_M is matrix-matrix multiplication and \oplus point-wise vector summation.

432 Defining following associative operator \bullet and making substitution to sequence of pairs,

433

$$434 \quad HOPscan = \begin{cases} \mathbf{c}_i = [\mathbf{A}_i, \mathbf{b}_i] \\ \mathbf{c}_i \bullet \mathbf{c}_j \equiv [\mathbf{c}_{i,A} \otimes_M \mathbf{c}_{j,A}, (\mathbf{c}_{i,b} \otimes_v \mathbf{c}_{j,A}) \oplus \mathbf{c}_{j,b}] \end{cases}, \quad (9)$$

435 reduces recurrence 8 to classic prefix sum and allows application of up and down sweeps of the
436 Blelloch scan (For pytorch implementation see Appendix I).

437 In many modern LRNNs, \mathbf{A}_i is diagonal ($\mathbf{c}_{i,A} \otimes_M \mathbf{c}_{j,A} \sim N$), therefore parallel scan 9 enables
438 efficient parallel processing by reducing the time complexity from NT to $N \log(T)$. However,
439 in more general case presented in Eq. 8, parallel scan changes the time complexity from N^2T
440 to $N^3 \log(T)$. For large dense matrices \mathbf{A}_i and/or short sequences, this change in complexity is
441 not beneficial due to the high complexity of matrix-matrix multiplication ($\mathbf{c}_{i,A} \otimes_M \mathbf{c}_{j,A} \sim N^3$).
442 However, if we exploit the block diagonal structure of the transition matrices in H-LRU and BD-LRU,
443 we can reduce the time complexity of parallel scan from $N^3 \log(T)$ to $Hm^3 \log(T)$, where m is the
444 block size and H is the number of blocks ($Hm = N$). Therefore, for moderate block sizes with
445 $m^2 \ll N$ we can achieve a significant increase in throughput in the parallel scan implementation
446 compared to sequential implementation.

450 Figure 3: Model throughput on the selective copying task. (A) Comparison of sequential, higher-
451 order parallel, and autotuned higher-order parallel implementations of BD-LRUs with 128 blocks
452 and with a sequence length of 2048, illustrating advantage of parallel scan implementation and the
453 trade-off between expressivity and efficiency. BD-LRU is shown for illustration purposes only, but
454 H-LRU employs the same parallel scan implementation and achieves comparable throughput. (B)
455 Comparison for layers with hidden size of 768 and accordingly adjusted number of blocks. Note
456 that trade-off between expressivity and efficiency increases over longer sequences. (C) Throughput
457 comparison of parameter-matched layers (~33M parameters). Number of blocks is adjusted to ensure
458 consistent model sizes across architectures. BD-LRU achieves throughput competitive with other
459 LRNN baselines. Notably, larger block sizes demonstrate higher practical efficiency despite increased
460 theoretical complexity, due to superior utilization of GPU hardware operations.

461 **Parallel scan implementation enables competitive throughput.** In experiments with single-
462 layer models containing 128 blocks and trained on sequences of length 2048, when runtime is less
463 influenced by GPU characteristics and more reflective of algorithmic complexity, we found that
464 increasing block size reduces throughput, revealing the predicted trade-off between expressivity and
465 efficiency, see Fig. 3A. For comparison, we also evaluated models with a fixed hidden size of 768
466 and adjusted the number of blocks accordingly, see 3B. We found that the expressivity–efficiency
467 trade-off becomes more pronounced as sequence length increases. In particular, block sizes larger
468 than 16 exhibit a substantial decline in throughput at longer sequence lengths.

469 We also tested models with parameter-matched layers (~33M parameters), where number of blocks
470 is adjusted to ensure consistent model sizes across architectures, see Fig. 3C. We note that our
471 most efficient implementation relies on compilation with maximal autotuning; thus, the performance
472 differences across block sizes primarily reflect kernel optimization in PyTorch and achieved GPU
473 utilization. We found that certain block sizes align more favorably with GPU architectures, analogous
474 to how specific batch sizes optimize memory utilization. In particular, we found that moderately large
475 block sizes ($m = 16$) demonstrate higher practical efficiency despite increased theoretical complexity,
476 due to superior utilization of GPU hardware operations.

477 Overall, we observed that our parallel scan implementation offers substantial improvements over
478 sequential implementations, enables BD-LRUs and H-LRUs to achieve throughput comparable to the
479 one of linear baselines, and effectively scales with sequence length.

486 7 REPRODUCIBILITY AND LLM USAGE STATEMENTS 487

488 All code used for the simulations performed in this study will be made publicly available (GitHub
489 repo) subject to the acceptance of this work. Code snippets of the critical parts of the implementations
490 are made available in Appendix I. Parts of the text were refined with the assistance of an LLM to
491 improve wording and readability.

493 REFERENCES 494

495 Ajroldi, N., 2024. plainlm: Language model pretraining in pytorch.

496 Arjovsky, M., Shah, A., Bengio, Y., 2016. Unitary evolution recurrent neural networks, in: Interna-
497 tional Conference on Machine Learning, PMLR. pp. 1120–1128.

498 Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli, M., Zou, J., Rudra, A., Ré, C., 2023. Zoology:
499 Measuring and improving recall in efficient language models. arXiv preprint arXiv:2312.04927 .

500 Biegut, K., Dolga, R., Cunningham, J., Barber, D., 2024. Rotrnn: Modelling long sequences with
501 rotations. arXiv preprint arXiv:2407.07239 .

502 Blelloch, G.E., 1990. Prefix sums and their applications .

503 Chang, Y., Bisk, Y., 2024. Language models need inductive biases to count inductively. arXiv
504 preprint arXiv:2405.20131 .

505 Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.,
506 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation.
507 arXiv preprint arXiv:1406.1078 .

508 Chomsky, N., 1956. Three models for the description of language. IRE Transactions on information
509 theory 2, 113–124.

510 Cirone, N.M., Orvieto, A., Walker, B., Salvi, C., Lyons, T., 2024. Theoretical foundations of deep
511 selective state-space models. arXiv preprint arXiv:2402.19047 .

512 Dao, T., Gu, A., 2024. Transformers are ssms: Generalized models and efficient algorithms through
513 structured state space duality. arXiv preprint arXiv:2405.21060 .

514 De, S., Smith, S.L., Fernando, A., Botev, A., Cristian-Muraru, G., Gu, A., Haroun, R., Berrada, L.,
515 Chen, Y., Srinivasan, S., et al., 2024. Griffin: Mixing gated linear recurrences with local attention
516 for efficient language models. arXiv preprint arXiv:2402.19427 .

517 Delétang, G., Ruoss, A., Duquenne, P.A., Catt, E., Genewein, T., Mattern, C., Grau-Moya, J.,
518 Wenliang, L.K., Aitchison, M., Orseau, L., et al., 2023. Language modeling is compression. arXiv
519 preprint arXiv:2309.10668 .

520 Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wenliang, L.K., Catt, E., Cundy, C., Hutter,
521 M., Legg, S., Veness, J., et al., 2022. Neural networks and the chomsky hierarchy. arXiv preprint
522 arXiv:2207.02098 .

523 Dubinin, I., Effenberger, F., 2024. Fading memory as inductive bias in residual recurrent networks.
524 Neural networks 173, 106179.

525 Effenberger, F., Carvalho, P., Dubinin, I., Singer, W., 2022. A biology-inspired recurrent oscillator
526 network for computations in high-dimensional state space. BioRxiv .

527 Fan, T.H., Chi, T.C., Rudnicky, A.I., 2023. Advancing regular language reasoning in linear recurrent
528 neural networks. arXiv preprint arXiv:2309.07412 .

529 Feng, L., Tung, F., Ahmed, M.O., Bengio, Y., Hajimirsadeghi, H., 2024. Were rnns all we needed?
530 arXiv preprint arXiv:2410.01201 .

531 Glad, T., Ljung, L., 2018. Control theory. CRC press.

540 Grazzi, R., Siems, J., Zela, A., Franke, J.K., Hutter, F., Pontil, M., 2024. Unlocking state-tracking in
541 linear rnns through negative eigenvalues. arXiv preprint arXiv:2411.12537 .
542

543 Gromov, A., 2023. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679 .
544

545 Gu, A., 2025. On the tradeoffs of state space models and transformers. URL: <https://goombalab.github.io/blog/2025/tradeoffs/>.
546

547 Gu, A., Dao, T., 2023. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
548 preprint arXiv:2312.00752 .
549

550 Gu, A., Goel, K., Ré, C., 2021. Efficiently modeling long sequences with structured state spaces.
551 arXiv preprint arXiv:2111.00396 .
552

553 Gu, A., Gulcehre, C., Paine, T., Hoffman, M., Pascanu, R., 2020. Improving the gating mechanism
554 of recurrent neural networks, in: International Conference on Machine Learning, PMLR. pp.
555 3800–3809.
556

557 Hairer, E., Wanner, G., Nørsett, S.P., 1993. Solving ordinary differential equations I: Nonstiff
558 problems. Springer.
559

560 Hamilton, J.D., 2020. Time series analysis. Princeton university press.
561

562 Helfrich, K., Willmott, D., Ye, Q., 2018. Orthogonal recurrent neural networks with scaled cayley
563 transform, in: International Conference on Machine Learning, PMLR. pp. 1969–1978.
564

565 Hutter, M., 2005. Universal artificial intelligence: Sequential decisions based on algorithmic
566 probability. Springer Science & Business Media.
567

568 Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
569 J., Amodei, D., 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 .
570

571 Loshchilov, I., Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
572 arXiv:1608.03983 .
573

574 Loshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint
575 arXiv:1711.05101 .
576

577 Merrill, W., Petty, J., Sabharwal, A., 2024. The illusion of state in state-space models. arXiv preprint
578 arXiv:2404.08819 .
579

580 Merrill, W., Sabharwal, A., 2023. The parallelism tradeoff: Limitations of log-precision transformers.
581 Transactions of the Association for Computational Linguistics 11, 531–545.
582

583 Movahedi, S., Sarnthein, F., Cirone, N.M., Orvieto, A., 2025. Fixed-point rnns: From diagonal to
584 dense in a few iterations. arXiv preprint arXiv:2503.10799 .
585

586 Okpekpe, D., Orvieto, A., 2025. When recalling in-context, transformers are not ssms. arXiv preprint
587 arXiv:2508.19029 .
588

589 Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai,
590 Y., Chen, A., et al., 2022. In-context learning and induction heads. arXiv preprint arXiv:2209.11895
591 .
592

593 Orvieto, A., De, S., Gulcehre, C., Pascanu, R., Smith, S.L., 2024. Universality of linear recurrences
594 followed by non-linear projections: Finite-width guarantees and benefits of complex eigenvalues,
595 in: International Conference on Machine Learning, PMLR. pp. 38837–38863.
596

597 Orvieto, A., Smith, S.L., Gu, A., Fernando, A., Gulcehre, C., Pascanu, R., De, S., 2023. Resurrecting
598 recurrent neural networks for long sequences, in: International Conference on Machine Learning,
599 PMLR. pp. 26670–26698.
600

601 von Oswald, J., Scherrer, N., Kobayashi, S., Versari, L., Yang, S., Schlegel, M., Maile, K., Schimpf,
602 Y., Sieberling, O., Meulemans, A., et al., 2025. Mesanet: Sequence modeling by locally optimal
603 test-time training. arXiv preprint arXiv:2506.05233 .
604

594 Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the difficulty of training recurrent neural networks.
595 International conference on machine learning , 1310–1318.
596

597 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
598 N., Antiga, L., et al., 2019. Pytorch: An imperative style, high-performance deep learning library.
599 Advances in neural information processing systems 32.

600 Penedo, G., Kydlíček, H., Lozhkov, A., Mitchell, M., Raffel, C.A., Von Werra, L., Wolf, T., et al.,
601 2024. The fineweb datasets: Decanting the web for the finest text data at scale. Advances in Neural
602 Information Processing Systems 37, 30811–30849.

603

604 Peng, B., Zhang, R., Goldstein, D., Alcaide, E., Du, X., Hou, H., Lin, J., Liu, J., Lu, J., Merrill,
605 W., et al., 2025. “Rwkv-7” goose” with expressive dynamic state evolution. arXiv preprint
606 arXiv:2503.14456 .

607 Poli, M., Thomas, A.W., Nguyen, E., Ponnusamy, P., Deisereth, B., Kersting, K., Suzuki, T., Hie,
608 B., Ermon, S., Ré, C., et al., 2024. Mechanistic design and scaling of hybrid architectures. arXiv
609 preprint arXiv:2403.17844 .

610 Rusch, T.K., Mishra, S., 2021. Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate
611 and (gradient) stable architecture for learning long time dependencies. arXiv:2010.00951 [cs, stat]
612 arXiv:2010.00951.

613

614 Rusch, T.K., Rus, D., 2024. Oscillatory state-space models. arXiv preorvиеprint arXiv:2410.03943 .

615 Sarnthein, F., 2025. Linear recurrences accessible to everyone, in: ICLR Blogposts 2025.

616

617 Shannon, C.E., 1948. A mathematical theory of communication. The Bell system technical journal
618 27, 379–423.

619

620 Siems, J., Carstensen, T., Zela, A., Hutter, F., Pontil, M., Grazzi, R., 2025. Deltaproduct: Improving
621 state-tracking in linear rnns via householder products. arXiv preprint arXiv:2502.10297 .

622

623 Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G., Dubois, Y., Chen, X., Wang, X., Koyejo, S.,
624 et al., 2024. Learning to (learn at test time): Rnns with expressive hidden states. arXiv preprint
625 arXiv:2407.04620 .

626

627 Waleffe, R., Byeon, W., Riach, D., Norick, B., Korthikanti, V., Dao, T., Gu, A., Hatamizadeh, A.,
628 Singh, S., Narayanan, D., et al., 2024. An empirical study of mamba-based language models.
629 arXiv preprint arXiv:2406.07887 .

630

631 Walker, B., Yang, L., Cirone, N.M., Salvi, C., Lyons, T., 2025. Structured linear cdes: Maximally
632 expressive and parallel-in-time sequence models. arXiv preprint arXiv:2505.17761 .

633

634 Wang, S., Li, Q., 2023. Stablessm: Alleviating the curse of memory in state-space models through
635 stable reparameterization. arXiv preprint arXiv:2311.14495 .

636

637 Yang, S., Kautz, J., Hatamizadeh, A., 2024a. Gated delta networks: Improving mamba2 with delta
638 rule. arXiv preprint arXiv:2412.06464 .

639

640 Yang, S., Wang, B., Zhang, Y., Shen, Y., Kim, Y., 2024b. Parallelizing linear transformers with the
641 delta rule over sequence length. arXiv preprint arXiv:2406.06484 .

642

643 Zhang, M., Bhatia, K., Kumbong, H., Ré, C., 2024. The hedgehog & the porcupine: Expressive
644 linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347 .

645

646 Zucchet, N., Orvieto, A., 2024. Recurrent neural networks: vanishing and exploding gradients are
647 not the end of the story. Advances in Neural Information Processing Systems 37, 139402–139443.

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

648
649

A CONCLUSION AND OUTLOOK

650
651
652
653
654
655
656

We introduced H-LRU and BD-LRU as structured extensions of linear recurrent models that enhance temporal and channel-wise state mixing. Our results show that proper gate normalization is essential for scaling such models with window/block size, that H-LRU excels at parameter-efficient compression, while overall BD-LRU is the best-performing architecture on our benchmark of synthetic tasks, and that our parallel-scan implementation can maintain competitive efficiency of block diagonal architectures. Taken together, our empirical results indicate that the state-mixing structure, rather than width alone, acts as an important driver for improved expressivity in LRNNs.

657
658
659
660
661
662
663
664

In our experiments, we observed clear task-dependent differences in how performance scales with block size. Simple tasks such as in-context recall, S3, and Parity are effectively solved with block size 2, nearly eliminating any expressivity–efficiency trade-off. More challenging autoregressive problems such as selective copying, S4, S5, and Regular Languages benefit substantially from larger block sizes. In contrast, the compression auto-encoding task exhibits a distinct scaling pattern: intermediate block sizes achieve the best results, while very large blocks degrade average performance across datasets. We also observe the same scaling behavior in our language modeling experiments, supporting general nature of our findings (see Appendix B).

665
666
667
668
669

We also find that H-LRU is particularly effective on compression, likely due to its higher-order recurrence structure, whereas BD-LRU is highly parameter- and sample-efficient on permutation-heavy tasks, consistent with the advantages of dense intra-block mixing. Importantly, both architectures maintain strong throughput on long sequences, making moderate-to-large block sizes viable in practice; however, for very large parameter counts, GPU utilization can become a bottleneck.

670
671
672
673
674
675
676

Overall, our results indicate that the optimal block or window size m is inherently task-dependent. In practice, we recommend beginning with moderate block/window sizes (with moderate hidden dimension) and adjusting upward or downward based on task complexity, sequence length, and modeling objective, thereby navigating the expressivity–efficiency trade-off. More broadly, the problem of selecting appropriate inductive biases and model scales remains an open research question in machine learning, and we hope that our findings contribute an additional perspective to this ongoing direction of research.

677
678
679
680
681
682
683
684

One potential limitation is that our study explored only a subset of the possible parametrizations for the selective gates; a broader investigation could uncover even more effective formulations. Another limitation lies in computational performance; we observed that the throughput of our models degrades more rapidly with increasing batch sizes compared to highly optimized baselines such as Mamba, which presents a clear direction for future engineering efforts. Evaluating the proposed architectures on large-scale language modeling, investigating deeper and hybrid architectures, their generalization to higher-order and block-diagonal SSMs, and, in general, optimizing the implementation to further improve computational efficiency are additional topics left for future studies.

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 B LANGUAGE MODELING 703

704 Our language modeling experiments with BD-LRU and H-LRU further corroborate the findings from
705 our synthetic task evaluations, see Fig. 4. By varying the hidden size of BD-LRU, we obtain models
706 in the 140M–210M parameter range, see Fig. 4A. BD-LRU with moderate block sizes achieve the
707 best perplexity, whereas diagonal models ($m = 1$) show early saturation with increasing hidden size.
708 These difference are in good agreement with what we found on the MAD benchmark. Architectures
709 with block sizes between 2 and 4 outperform diagonal networks, while models with 8 and 16 block
710 sizes, despite being theoretically more expressive, underperform in practice. These results indicate
711 that moderate block sizes provide a more effective inductive bias for language modeling, in line with
712 our observations on synthetic tasks

713 We also conducted language-modeling experiments with H-LRU using configurations matched in
714 parameter count to their BD-LRU counterparts, see Fig. 4B for 140M parameters. Consistent with
715 our synthetic benchmarks, H-LRU exhibits stronger parameter efficiency. However, to match the
716 parameter budget of a BD-LRU, H-LRU requires increasing hidden dimension by a factor of m ,
717 which in turn reduces throughput and increases memory consumption by approximately the same
718 factor, see 6. For example, H-LRU model with $m = 16$ shown in Figure 4B already occupies 95%
719 of the H100 GPU memory while containing only 140 M parameters. Therefore, although H-LRU
720 is more parameter-efficient, it is substantially more computationally demanding and more costly to
721 scale compared to BD-LRU.

722 We conduct our experiments on 2.5B tokens from the well-established FineWeb dataset(Penedo
723 et al., 2024) using the PlainLM training setup (Ajroldi, 2024). All models are trained on a single
724 NVIDIA H100 GPU, with the largest configuration utilizing approximately 95% of the device’s
725 memory. All models are trained with the AdamW optimizer (Loshchilov and Hutter, 2017) with
726 parameters $\beta_1 = 0.9$, $\beta_2 = 0.95$, $\epsilon = 10^{-8}$ and a cosine scheduler (Loshchilov and Hutter, 2016)
727 (max LR 0.003, min LR: 10^{-5}). Consistent with our throughput analysis 6, we observe that models
728 with larger block sizes achieve higher training throughput for the same parameter count due to better
729 GPU utilization. Overall, our language-modeling results align well with the results observed on
730 synthetic tasks for both architectures.

743
744 Figure 4: Scaling analysis with hidden size with respect to final perplexity on 2.5B token of FineWeb.
745 All models are trained on a single NVIDIA H100 GPU. **A.** By varying the hidden size of BD-LRU, we
746 obtain models in the 140M–210M parameter range. **Note that moderate block sizes provide a more**
747 **effective inductive bias for language modeling.** **B.** We compare H-LRU and BD-LRU models with
748 140M parameters. **Note that matching the parameter budget of a BD-LRU requires increasing the**
749 **H-LRU hidden dimension by a factor of m , making H-LRU substantially more costly to scale.** For
750 example, shown H-LRU model with $m = 16$ already utilizes 95% of the H100 GPU memory, while
751 BD-LRU with $m = 16$ can be scaled up to 210M parameters with the same memory requirements,
752 see A.

756 **C EXTENDED TABLES AND ADDITIONAL FIGURES**
757

758

Models	Recall	Copy	Compress	Overall
LSTM	1.000	1.000	0.750	0.916
Mamba2	1.000	0.807	0.720	0.842
Deltanet[-1,1]	1.000	0.892	<u>0.782</u>	0.892
Deltaproduct ₄ [-1,1]	1.000	1.000	0.717	0.906
BD-LRU m1 (ours)	0.775	0.835	0.725	0.778
BD-LRU m2	1.000	0.962	0.760	0.908
BD-LRU m3	1.000	0.980	0.762	0.916
BD-LRU m4	1.000	0.983	0.785	0.922
BD-LRU m5	1.000	0.985	<u>0.782</u>	0.922
BD-LRU m6	1.000	0.980	<u>0.775</u>	0.918
BD-LRU m8	1.000	0.992	0.748	0.913
BD-LRU m16	1.000	0.998	0.725	0.907
H-LRU m1 (ours)	0.785	0.848	0.760	0.797
H-LRU m2	0.998	0.855	0.770	0.874
H-LRU m3	1.000	0.855	0.772	0.876
H-LRU m4	1.000	0.845	0.775	0.873
H-LRU m5	1.000	0.838	0.775	0.871
H-LRU m6	1.000	0.818	0.775	0.864
H-LRU m8	1.000	0.810	0.768	0.859
H-LRU m16	1.000	0.680	0.705	0.795

770 Table 3: Performance on the in-context recall, selective copying and compression tasks. The presented
771 results are the average of best test accuracies across four configurations of the corresponding synthetic
772 dataset with different vocabulary sizes, sequence lengths and number of training examples. Results are
773 shown for different window (H-LRU) and block sizes (BD-LRU) m . Note that overall performance
774 of our models consistently improves with window/block size up to approximately 3–5, after which
775 the gains saturate or exhibit slight degradation. All models are single-layer configurations with a
776 maximum overall hidden dimension of 6144.

801 Figure 5: Performance of different single-layer models as a function of the hidden size in the
802 compression task (A) and the selective copying task (B). Results are shown for different window sizes
803 (H-LRU) and block sizes (BD-LRU) m . We compare our networks with different configurations of
804 Mamba (with two sizes of the convolution kernel (2,4) and several values of the state space expansion
805 factor (2,4,8)). For comparison to low-rank models, we also include DeltaNet and DeltaProduct with
806 4 Householder transforms which have different number of heads (2,4,8).

Models	S_3 (10k samples)	S_3 (250)	S_4 (50k)	S_4 (3k)	S_5 (100k)	Overall
LSTM	1.000	0.320	1.000	0.370	1.000	0.738
Mamba2	0.660	0.280	0.430	0.120	0.260	0.350
Deltanet[-1,1]	1.000	0.260	0.470	0.140	0.140	0.402
Deltaproduct ₄ [-1,1]	1.000	0.270	1.000	0.130	0.140	0.508
BD-LRU m1 (ours)	0.560	0.380	0.340	0.220	0.210	0.340
BD-LRU m2	1.000	0.490	0.700	0.360	0.340	0.576
BD-LRU m3	1.000	1.000	1.000	0.430	0.480	0.782
BD-LRU m4	1.000	1.000	1.000	1.000	0.880	0.976
BD-LRU m5	1.000	1.000	1.000	1.000	1.000	1.000
BD-LRU m6	1.000	1.000	1.000	1.000	1.000	1.000
BD-LRU m8	1.000	1.000	1.000	1.000	1.000	1.000
BD-LRU m16	1.000	1.000	1.000	1.000	1.000	1.000
H-LRU m1 (ours)	0.570	0.360	0.350	0.210	0.230	0.344
H-LRU m2	0.600	0.310	0.370	0.190	0.260	0.346
H-LRU m3	0.610	0.320	0.400	0.210	0.320	0.372
H-LRU m4	0.620	0.310	0.410	0.190	0.340	0.374
H-LRU m5	0.620	0.320	0.450	0.190	0.380	0.392
H-LRU m6	0.630	0.280	0.450	0.170	0.390	0.384
H-LRU m8	0.640	0.280	0.490	0.170	0.390	0.394
H-LRU m16	0.660	0.260	0.510	0.160	0.390	0.396

Table 4: Model performance on permutation composition tasks for different datasets of different sizes: S_3 (10k training samples), S_3 (250 training samples), S_4 (50k training samples), S_4 (3k training samples) S_5 (100k training samples). The accuracy values reflect the impact of window size (H-LRU) and block size (BD-LRU), both denoted by m . We note that BD-LRU performance improves with block size, demonstrating strong sample efficiency by solving the tasks even given limited training data. All models are single-layer configurations with a maximum overall hidden dimension of 6144.

D EXPERIMENTS

Synthetic token manipulation tasks. We benchmarked our architectures using the Mechanistic Architecture Design (MAD) framework (Poli et al., 2024), a framework for efficient model evaluation and prototyping. The MAD protocol is motivated by the challenge of predicting how architectural choices impact performance at scale. The working hypothesis of MAD is that an architecture’s macroscopic scaling behavior can be effectively predicted by its performance on a set of microscopic, mechanistic tasks.

The benchmark consists of a diverse suite of sequence modeling challenges designed to test core token manipulation capabilities. By evaluating models at a small, fixed computational scale, MAD produces a relative ranking of architectures that has been shown to be predictive of their compute-optimal performance in large-scale language modeling (Poli et al., 2024). This approach not only approximates scaling outcomes, but also provides valuable insights into the compositional skills and failure modes of a given design.

In particular, we utilize three tasks from the MAD framework:

- **Compression task.** Models are tasked to compress a random sequence of input tokens into a single aggregation token. Then, this aggregation token is passed through an encoder MLP, the output of which is used to reconstruct the original sequence via a decoder MLP. All models were tested using a standard encoder-decoder architecture (Embedding, Tested Model, MLP Encoder, MLP Decoder).
- **Selective copying task.** Models are tasked with copying tokens from one position of an input sequence to a later position of the sequence, while ignoring irrelevant noise tokens that are randomly inserted into the sequence. This task is designed to evaluate the ability of a model to perform selective temporal integration in the specific order of occurrence in the sequence. All models were tested using a standard decoder-only architecture (Embedding, Tested Model, MLP Decoder).

864 • **Associative recall task.** Models are presented with an input sequence of key-value pairs and
865 tasked with retrieving all values from the input sequence associated with the presented keys.
866 This task tests the ability of a model to adaptively retrieve information depending on the
867 established in-context associations. All models were tested using a standard decoder-only
868 architecture (Embedding, Tested Model, MLP Decoder).

869

870

871 In our experiments, each model was evaluated across four configurations: a baseline (vocabulary size:
872 16, sequence length: 64, training examples: 20,000) and three variations designed to probe specific
873 failure modes. These variations all use the same base parameters, but independently (i) increase the
874 vocabulary size to 32, (ii) extend the sequence length to 128, or (iii) reduce the training set to 10,000
875 examples to test vocabulary handling, long-range capabilities, and sample efficiency, respectively.

876

877 **Synthetic permutation tasks.** In our experiments, we employ synthetic datasets derived from
878 the symmetric permutation groups S_n , which denotes the group of all possible permutations of n
879 elements. These groups provide a natural hierarchy of complexity: S_2 contains only two permutations
880 and is fully commutative, making it relatively simple to model. In contrast, groups with $n \leq 3$ (e.g.,
881 S_3, S_4, S_5) are non-commutative, and their size grows factorially with n , which rapidly increases the
882 difficulty of learning the underlying structure. For instance, S_3 , with six elements, is the smallest non-
883 commutative group. Geometrically, S_3 can be interpreted as the group of symmetries of an equilateral
884 triangle, including both rotations and reflections. The complexity increases substantially with S_4 ,
885 which contains 24 elements and corresponds to the full symmetry group of a regular tetrahedron. S_4
886 introduces more intricate subgroup structures and non-trivial normal subgroups. Extending further,
887 S_5 has 120 elements and is the first symmetric group that is not solvable, representing the symmetries
888 of a regular pentagon in the plane.

889 We assess model performance on the synthetic permutation group task from Merrill et al. (2024),
890 which is designed to probe state-tracking and generalization to complex structures. Using their
891 toolbox, we generated datasets for the symmetric groups S_3, S_4 , and S_5 with a fixed sequence
892 length of 16. To evaluate sample efficiency, we created five distinct data configurations: S_3 (10k and
893 250 examples), S_4 (50k and 3k examples), and S_5 (100k examples). The S_5 setting is particularly
894 data-limited compared to the multi-million-example setups used in previous studies (Siems et al.,
895 2025). All models were tested using a standard decoder-only architecture (Embedding, Tested Model,
896 MLP Decoder), consistent with the MAD benchmark protocol.

897

898 **Training details.** All models were implemented in PyTorch (Paszke et al., 2019). For training, we
899 follow the experimental settings of the MAD framework. All models are trained with the AdamW
900 optimizer (Loshchilov and Hutter, 2017) with parameters $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$ and a
901 cosine scheduler (Loshchilov and Hutter, 2016) (minimum LR: 0.000001), with the initial learning
902 rate selected from 0.001, 0.0005, 0.0001. The final reported metric is the best test accuracy across
903 all three learning rate configurations and five runs with distinct random seeds. For training we
904 used NVIDIA A100 and NVIDIA H100, while we used NVIDIA H100 for benchmarking the best
905 throughput across models.

906

907

908 E COMPUTATIONAL COMPLEXITY

909

910 This section provides a breakdown of the Floating Point Operations (FLOPs) required for hidden-
911 to-hidden state transition in the recurrent architectures discussed. For this breakdown, we define
912 the dimension of the hidden state as H . The sequence length is denoted as T . For Mamba2, the
913 state expansion factor is denoted by S . In DeltaNet and DeltaProduct4, N_h denotes the number of
914 heads, C denotes the number of chunks in the DeltaNet implementation, H_n denotes the number of
915 Householder transformations, and $r = 1$ denotes low rank. The calculations focus on the recurrence
916 mechanism, omitting additional components like the input projections or gating, as they can be
917 precomputed in advance. A multiply-add operation is counted as 2 FLOPs.

Table 5: Summary of computational costs for hidden state updates.

Architecture	FLOPs per recurrent step	Implementation complexity
LSTM	$8H^2 + 25H$	$O(TH^2)$
H-LRU	$2Hm + 2H$	$O(Hm^2 \log(T))$
BD-LRU	$2Hm^2 + 2H$	$O(Hm^2 \log(T))$
Mamba2	$2HS$	$O(T(H^2 + HS))$
DeltaNet	$N_h(4Hr + 4H)$	$O(TCH + TH^2)$
DeltaProduct4	$H_nN_h(4Hr + 4H)$	$O(H_n(TCH + TH^2))$

F PROOF OF PROPOSITION 1.

First, note that stability is trivial. We can reason blockwise: assuming $\sum_j |(\mathcal{A}_t^k)_{i,j}| \leq 1$ implies that the eigenvalues of state-transition matrix $\lambda_{i,t}^k \leq 1$. Therefore, the product of such matrices will result in dynamical stability.

Next, by block-diagonality, it is sufficient to show that for all $k \in [1, m]$, $\|\mathbf{h}_T^k\|_\infty \leq \max_{t \in [0, T]} \|\mathbf{v}_t^k\|_\infty$. Let $h_{i,t}^k$ be the i -th coordinate of the generic k -th block hidden state \mathbf{h}_t^k at time t .

$$\begin{bmatrix} h_{1,t}^k \\ \vdots \\ h_{m,t}^k \end{bmatrix} = \begin{bmatrix} a_{1,1,t}^k & \cdots & a_{1,m-1,t}^k & a_{1,m,t}^k \\ a_{2,1,t}^k & \cdots & a_{2,m-1,t}^k & a_{2,m,t}^k \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1,t}^k & \cdots & a_{m,m-1,t}^k & a_{m,m,t}^k \end{bmatrix} \times \begin{bmatrix} h_{1,t-1}^k \\ \vdots \\ h_{m,t-1}^k \end{bmatrix} + \begin{bmatrix} a_{1,0,t}^k \\ \vdots \\ a_{m,0,t}^k \end{bmatrix} \odot \begin{bmatrix} v_{1,t}^k \\ \vdots \\ v_{m,t}^k \end{bmatrix}. \quad (10)$$

Hence,

$$h_{i,t}^k = \sum_{j=1}^m a_{i,j,t}^k h_{j,t-1}^k + a_{i,0,t}^k v_{i,t}^k. \quad (11)$$

It is then clear that by subadditivity of the absolute value,

$$|h_{i,t}^k| \leq \sum_{j=1}^m |a_{i,j,t}^k| \cdot |h_{j,t-1}^k| + |a_{i,0,t}^k| \cdot |v_{i,t}^k|. \quad (12)$$

Hence, by collecting the non-coefficient terms, we find a further upper bound

$$|h_{i,t}^k| \leq \left(\sum_{j=1}^m |a_{i,j,t}^k| + |a_{i,0,t}^k| \right) \cdot \max \left[|v_{i,t-1}^k|, \max_{j \in [1, m]} |h_{j,t}^k| \right]. \quad (13)$$

By hypothesis, $\sum_{i=1}^m |a_{i,i,t}^k| + |a_{i,0,t}^k| = \sum_{i,j} |(\mathcal{A}_t^k)_{i,j}| \leq 1$, and hence we conclude that

$$|h_{i,t}^k| \leq \max \left[|v_{i,t}^k|, \max_{j \in [1, m]} |h_{j,t-1}^k| \right]. \quad (14)$$

At this point, we can finalize the proof by induction. We want to show that $\|\mathbf{h}_T^k\|_\infty \leq \max_{t \in [0, T]} \|\mathbf{v}_t^k\|_\infty$. Let us start from $T = 1$. Since $h_{i,0}^k = 0$ for all $i \in [1, m]$, we have

$$h_{i,1}^k = a_{i,0,t}^k v_{i,1}^k, \quad (15)$$

972 hence, again because $\sum_j |(\mathcal{A}_0^k)_{i,j}| \leq 1$, $|h_{i,1}^k| \leq |v_{i,1}^k|$, we can conclude that $\|\mathbf{h}_1^k\|_\infty \leq \|\mathbf{v}_1^k\|_\infty$. Let
 973 us then assume by induction that $\|\mathbf{h}_{T-1}^k\|_\infty \leq \max_{t \in [0, T-1]} \|\mathbf{v}_t^k\|_\infty$. Recall that by Equation 14,
 974

$$975 \quad |h_{i,t}^k| \leq \max \left[|v_{i,t}^k|, \max_{j \in [1, m]} |h_{j,t-1}^k| \right] \quad (16)$$

$$976 \quad = \max [|v_{i,t}^k|, \|\mathbf{h}_{t-1}^k\|_\infty]. \quad (17)$$

979 Hence,

$$981 \quad \|\mathbf{h}_t^k\|_\infty = \max_{j \in [1, m]} |h_{j,t}^k| \quad (18)$$

$$983 \quad \leq \max_{j \in [1, m]} \max [|v_{i,t}^k|, \|\mathbf{h}_{t-1}^k\|_\infty] \quad (19)$$

$$985 \quad = \max \left[\max_{j \in [1, m]} |v_{i,t}^k|, \|\mathbf{h}_{t-1}^k\|_\infty \right] \quad (20)$$

$$987 \quad \leq \max \left[\|\mathbf{v}_t^k\|_\infty, \max_{t \in [0, T-1]} \|\mathbf{v}_t^k\|_\infty \right] \quad (21)$$

$$989 \quad = \max_{t \in [0, T]} \|\mathbf{v}_t^k\|_\infty, \quad (22)$$

991 where in the second-last line we used the induction hypothesis.

994 G SELECTIVITY ABLATION

996 To isolate and quantify the contribution of selectivity, we conducted an ablation study. In this analysis,
 997 the input-dependent selective gates in both the H-LRU and BD-LRU architectures were replaced with
 998 data-invariant, learnable parameters.

999 As hypothesized, the non-selective variants exhibited a significant performance degradation compared
 1000 to their selective counterparts on our synthetic benchmark. On tasks requiring dynamic token
 1001 manipulation—such as in-context recall, selective copying, and permutation composition—the non-
 1002 selective models failed to achieve meaningful performance. For these tasks, increasing the window or
 1003 block size yielded no discernible improvement, confirming the necessity of selectivity.

1004 However, the results on the compression task were more nuanced, see Fig. 6. We observed that our
 1005 proposed $L1$ normalization scheme enabled the non-selective models to improve with larger block
 1006 and window sizes, albeit at a lower rate than their selective analogs.

1015 Figure 6: Scaling analysis of non-selective models on the compression task. **A.** Performance as a
 1016 function of window size m of non-selective higher-order LRU (H-LRU) and block size m of block
 1017 diagonal LRU (BD-LRU). For the convolutional baseline, the performance presented as a function
 1018 of kernel size. **B.** The same results plotted against parameter count. Note that scaling with window
 1019 size of non-selective H-LRU demonstrates extreme parameter efficiency, resulting in a nearly vertical
 1020 trajectory on the plot. **C.** Comparison of scaling properties between different parameterizations for
 1021 H-LRU. **D.** Comparison of scaling properties between different parameterizations for BD-LRU.

1022 To highlight the advantages of recurrent architectures, we used a convolution layer as a baseline.
 1023 This model is limited to explicit, local time mixing within its kernel, in contrast to the implicit and
 1024 unbounded temporal integration provided by a hidden state. Our experiments showed that H-LRU
 1025 decisively outperforms the convolution on the compression task. This demonstrates the critical role

1026 of recurrent state mixing for tasks requiring efficient long-range temporal reasoning. Furthermore,
 1027 the non-selective H-LRU with large window sizes ($m > 15$) demonstrated strong performance,
 1028 surpassing the LSTM and Mamba baselines and even approaching the performance of our selective
 1029 models. This finding underscores the powerful inductive bias of the higher-order recurrence for
 1030 parameter-efficient compression.

1031 In contrast, the non-selective BD-LRU performed poorly on the compression task, only marginally
 1032 surpassing the convolution baseline. Interestingly, for this non-selective variant, the sigmoidal $L1$
 1033 normalization outperformed softmax normalization, highlighting a difference in how these schemes
 1034 interact with selective versus fixed parameterizations.

1035 In addition, when we analyzed H-LRU with minimal point-wise selective gates which don't mix
 1036 channel dimensions, we observed very moderate improvement in compression task. This indicates
 1037 that not only selectivity itself but also density of selectivity in gates plays important role in improving
 1038 networks' expressivity.

1039 While the overall performance of these non-selective models is modest, their parameter efficiency can
 1040 become advantageous in resource-constrained settings. Given the strong compression results of the
 1041 non-selective H-LRU, we hypothesize that such models could be optimized for use as highly efficient
 1042 embedding layers, a direction we leave for future research.

1044 H RELATION BETWEEN EXPRESSIVITY OF LRUS AND STATE SPACE DUALITY

1045 Recently, it has been shown that there is a direct correspondence between state space models, the
 1046 Transformer architecture and structured attention matrices Dao and Gu (2024). Following this
 1047 approach, we can reformulate the general LRU as a general discrete time SSM

$$1048 \begin{aligned} \mathbf{h}_t &= \mathbf{A}_t \times \mathbf{h}_{t-1} + \mathbf{B}_t \times \mathbf{v}_t \\ 1049 \mathbf{y}_t &= \mathbf{C}_t \times \mathbf{h}_t. \end{aligned} \quad (23)$$

1050 Here, we consider the general case of SSMs, in which mixing matrices $\mathbf{C}_t, \mathbf{A}_t, \mathbf{B}_t$ are dense matrices.
 1051 We note that although state space models are commonly defined in continuous time, they have to be
 1052 discretized for implementation, at which point they conform to the discrete form described by Eq. 23.
 1053 In this study, we effectively ignored the role of \mathbf{C}_t , but it can be introduced without affecting the
 1054 validity of our arguments.

1055 Following the approach of reformulating state space models (SSMs) as attention mechanisms, the
 1056 architecture given in Eq. 23 can be expressed in block matrix representation assuming a fixed sequence
 1057 length T :

$$1058 \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \\ \mathbf{y}_T \end{bmatrix} = \begin{bmatrix} \mathbf{C}_1 \mathbf{B}_1 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{C}_2 \mathbf{A}_1 \mathbf{B}_1 & \mathbf{C}_2 \mathbf{B}_2 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{C}_3 \mathbf{A}_2 \mathbf{A}_1 \mathbf{B}_1 & \mathbf{C}_3 \mathbf{A}_2 \mathbf{B}_2 & \mathbf{C}_3 \mathbf{B}_3 & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_T \prod_{j=1}^T \mathbf{A}_j \mathbf{B}_1 & \mathbf{C}_T \prod_{j=2}^T \mathbf{A}_j \mathbf{B}_2 & \cdots & \cdots & \mathbf{C}_T \mathbf{B}_T \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \vdots \\ \mathbf{v}_T \end{bmatrix}$$

1059 If we abstract the details of SSMs matrices, we obtain the generalized attention formulation:

$$1060 \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{A}}_{1,1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \overline{\mathbf{A}}_{2,1} & \overline{\mathbf{A}}_{2,2} & \mathbf{0} & \cdots & \mathbf{0} \\ \overline{\mathbf{A}}_{3,1} & \overline{\mathbf{A}}_{3,2} & \overline{\mathbf{A}}_{3,3} & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \vdots \end{bmatrix}. \quad (24)$$

1061 Importantly, elements $\overline{\mathbf{A}}_{k,l}$ of the block attention matrix are matrices as well in this representation.
 1062 According to State Space Duality Dao and Gu (2024), both the attention in Transformers and diagonal
 1063 SMMs result in diagonal matrices $\overline{\mathbf{A}}_{k,l}$. So, their architecture allows for efficient parallelization as it
 1064 separates temporal mixing from channel mixing.

1065 In contrast to diagonal SMMs and LRUs, both H-LRU and BD-LRU architectures result in block-
 1066 diagonal matrices $\overline{\mathbf{A}}_{k,l}$, allowing richer but limited by block channel mixing inside the generalized

1080 block attention matrix 24. Such channel mixing allows for the state mixing patterns that are not
1081 accessible to one layer of diagonal LRU or SSMs. Although the channel mixing in H-LRU is more
1082 expressive than the one in a diagonal LRU, it is still more restricted compared to BD-LRU (it is
1083 equivalent to mixing only in one row of block-diagonal matrix), placing expressivity of H-LRU
1084 between diagonal LRU and BD-LRU. Notably, if we extend SSMs with higher-order or block-
1085 diagonal structures, their expressivity would lag behind analogous LRUs due to the restrictions on
1086 mixing patterns imposed by the chosen discretization scheme. Overall, the generalized block attention
1087 formulation 24 reveals that for both LRUs and SSMs, diagonal, higher-order, block diagonal and
1088 dense variants form a hierarchy of architectures, each providing access to increasingly complex state
1089 mixing patterns which result in increased expressivity.

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 I CODE SNIPPETS

1136 Following the approach for diagonal LRNNs (Sarnthein, 2025), we implement forward and backward
1137 pass for block-diagonal recurrence based on associative scan in PyTorch.
1138

```
1139 1 import torch
1140 2 from torch.autograd.function import Function, FunctionCtx
1141 3 from torch._higher_order_ops.associative_scan import associative_scan
1142 4
1143 5 # helper function to implement reverse mode
1144 6 def shift(input, shifts, fillval=0):
1145 7     # torch.roll without the copy of the wrap-around section
1146 8     if shifts > 0:
1147 9         output = torch.cat([torch.full_like(input[:, :shifts,...], fillval),
114810                         input[:, :-shifts,...]], dim=1)
114911     if shifts < 0:
115012         output = torch.cat([input[:, -shifts:,...],
115113                         torch.full_like(input[:, shifts:,...], fillval)], dim=1)
115214     return output
115315
115416 # Forward pass of associative scan
115517 def scan_hop_fwd(inputs:torch.Tensor, coeffs:torch.Tensor, reverse=False):
115618
115719     # Higher-Order Op Implementation
115820     def op(acc:dict, curr:dict):
115921         c = torch.einsum('bcij,bcjk->bcik', curr['c'], acc['c'])
116022         x = curr['x'] + torch.einsum('bcij,bcjk->bci', curr['c'], acc['x'])
116123         return dict(x=x, c=c)
116224
116325     outputs = associative_scan(op, dict(x=inputs, c=coeffs), dim=1,
116426                             reverse=reverse, combine_mode='generic')['x']
116527     return outputs
116628
116729 # Backward pass that uses forward pass in reverse mode
116830 def scan_hop_bwd(d_outputs:torch.Tensor, coeffs:torch.Tensor,
116931                 outputs:torch.Tensor, reverse=False):
117032     coeffs_bwd = shift(coeffs, -1 if not reverse else 1, fillval=0).permute(0,1,2,4,3)
117133     d_inputs = scan_hop_fwd(inputs=d_outputs, coeffs=coeffs_bwd, reverse=(not reverse))
117234     d_coeffs = torch.einsum('btci,btck->btck', d_inputs,
117335                             shift(outputs, shifts=1 if not reverse else -1, fillval=0))
117436     return d_inputs, d_coeffs
117537
117638 # Autograd wrapper
117739 class ScanHopFn(Function):
117840     @staticmethod
117941         def forward(ctx:FunctionCtx, inputs:torch.Tensor,
118042                     coeffs:torch.Tensor, reverse:bool=False) -> torch.Tensor:
118143             outputs = scan_hop_fwd(inputs=inputs, coeffs=coeffs, reverse=reverse)
118244             ctx.save_for_backward(coeffs, outputs)
118345             ctx.reverse = reverse
118446             return outputs
118547
118648     @staticmethod
118749         def backward(ctx:FunctionCtx, d_outputs:torch.Tensor):
118850             coeffs, outputs = ctx.saved_tensors
118951             d_inputs, d_coeffs = scan_hop_bwd(d_outputs=d_outputs, coeffs=coeffs,
119052                                             outputs=outputs, reverse=ctx.reverse)
119153             return d_inputs, d_coeffs, None
119254
119355 # Scan function
119456 def hopscan(inputs:torch.Tensor, coeffs:torch.Tensor):
119557     return ScanHopFn.apply(inputs, coeffs)
```

```

1188 Simplified version of H-LRU with autotuned higher-order parallel scan
1189
1190 1 import torch
1191 2 import torch.nn.functional as F
1192 3 import torch.nn as nn
1193 4 from scans.hopscan import hopscan
1194 5
1195 6 @torch.compile(mode="max-autotune", dynamic=False)
1196 7 class HLRU(nn.Module):
1197 8     def __init__(
1198 9         self,
1200 10        input_dim: int,
1201 11        window_dim: int = 4,
1202 12        hidden_dim: int = 64,
1203 13        **kwargs
1204 14    ):
1205 15        super().__init__()
1206 16        self.input_dim = input_dim
1207 17        self.hidden_dim = hidden_dim
1208 18        self.window_dim = window_dim
1209 19        # initialize projections and gates
1210 20        self.proj_gates = nn.Linear(self.input_dim, self.hidden_dim*(self.window_dim+1),
1211 21                                bias=True)
1212 22        self.proj_v = nn.Linear(self.input_dim, self.hidden_dim,
1213 23                                bias=False)
1214 24        self.proj_out = torch.nn.Linear(self.hidden_dim*self.window_dim, self.input_dim,
1215 25                                bias=False)
1216 26        # structured 1-off diagonal matrix for companion form
1217 27        self.register_buffer("A_temp", torch.diag(torch.ones(self.window_dim-1), 1))
1218 28
1219 29    def forward(self,
1220 30        x: torch.Tensor,
1221 31        *args, **kwargs
1222 32    ):
1223 33        """
1224 34        x (torch.Tensor): tensor of shape (B T N)
1225 35        y (torch.Tensor): tensor of shape (B T N)
1226 36        """
1227 37        B, T, _ = x.size()
1228 38        # projection of input to hidden size
1229 39        v = self.proj_v(x) # B T H
1230 40        # projections that form selective state gates and input gates
1231 41        gates = self.proj_gates(x) # B T H*(m+1)
1232 42        gates = gates.reshape(B, T, self.hidden_dim, self.window_dim+1)
1233 43
1234 44        # softmax normalization of coeff A and a_0
1235 45        A_t = torch.softmax(gates, -1) # B T H m+1
1236 46        # apply gate to input a_0*v
1237 47        a0v = A_t[:, :, :, -1:] * v[:, :, :, :].unsqueeze(-1) # B T H
1238 48        # gated input is padded with zeros to get structured form
1239 49        a0v = F.pad(a0v, (0, self.window_dim-1)) # B T H m
1240 50        # pad A_t to get block diagonal form
1241 51        A_t = F.pad(A_t[:, :, :, :-1].unsqueeze(-1), (0, self.window_dim-1))
1242 52        # in order to get companion form
1243 53        # we add A_temp which is structured 1-off diagonal matrix
1244 54        A_t = self.A_temp + A_t # B T H m m
1245 55
1246 56        # parallel scan
1247 57        # takes (B T H m) and (B T H m m) and returns (B T H m)
1248 58        y = hopscan(a0v, A_t) # B T H m
1249 59
1250 60        # reshape and project back
1251 61        y = y.reshape(B, T, self.hidden_dim * self.window_dim) # B T H*m
1252 62        y = self.proj_out(y) # B T N

```

1242 Simplified version of BD-LRU with autotuned higher-order parallel scan
1243

```

1244 1 import torch
1245 2 import torch.nn.functional as F
1246 3 import torch.nn as nn
1247 4 from scans.hopscan import hopscan
1248 5
1249 6 @torch.compile(mode="max-autotune", dynamic=False)
1250 7 class BDLRU(nn.Module):
1251 8     def __init__(
1252 9         self,
125310         input_dim: int,
125411         window_dim: int = 4,
125512         hidden_dim: int = 64,
125613         **kwargs
125714     ):
125815         super().__init__()
125916         self.input_dim = input_dim
126017         self.hidden_dim = hidden_dim
126118         self.window_dim = window_dim
126219         # initialize projections and gates
126320         self.proj_gates = nn.Linear(self.input_dim,
126421                         self.hidden_dim * self.window_dim * (self.window_dim + 1),
126522                         bias=True)
126623         self.proj_v = nn.Linear(self.input_dim, self.hidden_dim * self.window_dim,
126724                         bias=False)
126825         self.proj_out = torch.nn.Linear(self.hidden_dim * self.window_dim, self.input_dim,
126926                         bias=False)

127027     def forward(self,
127128         x: torch.Tensor,
127229         *args, **kwargs
127330     ):
127431         """
127532         x (torch.Tensor): tensor of shape (B T N)
127633         y (torch.Tensor): tensor of shape (B T N)
127734         """
127835         B, T, _ = x.size()
127936         # projection of input to hidden size
128037         v = self.proj_v(x) # B T H*m
128138         # projections that form selective state gates and input gates
128239         gates = self.proj_gates(x) # B T H*m*(m+1)
128340         gates = gates.reshape(B, T, self.hidden_dim, self.window_dim, self.window_dim + 1)
128441
128542         # softmax normalization of coeff A and a_0
128643         A_t = torch.softmax(gates, -1) # B T H m m+1
128744         # apply gate to input a_0*v
128845         a0v = A_t[:, :, :, :, -1] * v[:, :, :, :, :] # B T H m
128946         # state-transition matrix
129047         A_t = A_t[:, :, :, :, :-1] # B T H m m

129148         # parallel scan
129249         # takes (B T H m) and (B T H m m) and returns (B T H m)
129350         y = hopscan(a0v, A_t) # B T H m

129451         # reshape and project back
129552         y = y.reshape(B, T, self.hidden_dim * self.window_dim) # B T H*m
129653         y = self.proj_out(y) # B T N

```

1296 J EIGENVALUE ANALYSIS

Figure 7: Eigenvalues of LRU models on S5 dataset. (a) BD-LRU with softmax normalization. (b) BD-LRU without normalization. (c) H-LRU with softmax normalization. (d) H-LRU without normalization. Each subplot corresponds to a specific time step (horizontal axis) and block size (vertical axis). Models without normalization exhibit unstable transition matrices. Note that as block size increases, the number of available symmetries increases as well.

1350 K CHOMSKY HIERARCHY TASKS 1351

1352 The Chomsky hierarchy formalizes increasing levels of expressiveness and computational complexity
1353 of formal languages into several hierarchical classes (Chomsky, 1956; Delétang et al., 2022). Here,
1354 we tested several tasks from this hierarchy: Parity, Cycle Navigation, Modular Arithmetic with and
1355 without brackets. Parity task requires computing whether given binary string is even or not. Cycle
1356 Navigation requires computing the end position given a sequence of movements on a cycle of length
1357 5. Modular Arithmetic tasks require computing the result modulo 5 for given sequence of numbers in
1358 $(0, 1, 2, 3, 4)$ and operations in $(+, -, \cdot)$, with or without brackets.

1359 In our experiments, we observe that similar to S_3 task, Parity task can be solved by BD-LRU with
1360 access to negative eigenvalues ($m \geq 2$). For Cycle Navigation task we obtain similar results as for S_5
1361 task. BD-LRU is able to solve it starting from $m = 5$. Therefore, the results on these two tasks from
1362 Chomsky Hierarchy support our previously found advantage of BD-LRUs on permutations tasks.

1363 Modular arithmetic tasks present a challenge for highly parallel Transformer architecture, often
1364 require grokking and having pure generalization (Gromov, 2023). In contrast, it has been shown
1365 that sequential nature of state mixing in RNNs has a strongly beneficial bias for arithmetic-like
1366 induction (Merrill and Sabharwal, 2023). However, both our linear variants and other modern LRNNs
1367 struggle with such arithmetic tasks (Siems et al., 2025), supporting the idea that nonlinearity of
1368 state transitions is crucial in such tasks (Chang and Bisk, 2024). In our experiments, we found that
1369 BD-LRU were able to solve Modular Arithmetic without brackets, while the version with brackets
1370 remained challenging, similar to other RNNs.

1371 Models	1372 cycle nav	1373 mod arith no brack	1374 mod arith w brack	1375 parity
1376 LSTM	1377 1.000	1378 0.976	1379 0.663	1380 1.000
1381 BD-LRU m1	1382 0.434	1383 0.370	1384 0.370	1385 0.512
1386 BD-LRU m2	1387 0.425	1388 0.493	1389 0.417	1390 1.000
1391 BD-LRU m3	1392 0.597	1393 0.546	1394 0.434	1395 1.000
1396 BD-LRU m4	1397 0.608	1398 0.459	1399 0.435	1400 1.000
1401 BD-LRU m5	1402 1.000	1403 0.525	1404 0.422	1405 1.000
1406 BD-LRU m6	1407 1.000	1408 0.433	1409 0.440	1410 1.000
1411 BD-LRU m8	1412 1.000	1413 0.553	1414 0.395	1415 1.000
1416 BD-LRU m16	1417 1.000	1418 1.000	1419 0.448	1420 1.000

1421 Table 6