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Abstract
Long-document QA presents challenges with001
large-scale text and long-distance dependen-002
cies. Recent advances in Large Language Mod-003
els (LLMs) enable entire documents to be pro-004
cessed in a single pass. However, their com-005
putational cost is significantly high. Retrieval-006
Augmented Generation (RAG) methods split007
text into smaller chunks, but they often yield008
inferior results and may lose global context.009
Recent approaches that integrate LLMs into010
RAG via iterative summarization either under-011
utilize LLM capabilities or still incur high com-012
putational costs. In this paper, we combine013
the high accuracy of LLMs with the efficiency014
of RAG and propose LLM-Guided Dynamic015
Progress Control with Attention-Based Hierar-016
chical Weighted Graph (PECAN). Our method017
introduces two key improvements: (1) LLM-018
Guided Dynamic Progress Control: We lever-019
age LLMs to dynamically control the retrieval020
process, adjusting the amount of retrieved in-021
formation based on different queries to achieve022
a better balance of effectiveness and efficiency.023
(2) Attention-Guided Retrieval: We propose a024
novel retrieval method that constructs a hierar-025
chical graph where edges are derived by LLM026
attention weights. Experimental results demon-027
strate that PECAN achieves LLM-level perfor-028
mance while maintaining computational com-029
plexity comparable to that of RAG methods on030
two single-document and two multi-document031
QA datasets. 1032

1 Introduction033

Long-document Question Answering (QA) poses034

several challenges, including handling large-scale035

texts, uneven information distribution, and long-036

distance dependencies. While Large Language037

Models (LLMs) (Dubey et al., 2024; Yang et al.,038

2024; Team et al., 2024; OpenAI et al., 2024) can039

process entire documents after undergoing a con-040

text extension training stage, this approach is com-041

putationally intensive and inefficient, as queries042

1The source code will be released upon paper acceptance.

often target only small segments of the text. In 043

contrast, Retrieval-Augmented Generation (RAG) 044

(Tay et al., 2022; Santhanam et al., 2022; Lin et al., 045

2023) mitigate this by segmenting long documents 046

into chunks and retrieving the most relevant seg- 047

ments. However, studies like LongBench (Bai et al., 048

2024b) have demonstrated that the performance of 049

RAG methods is often inferior to directly feeding 050

the full document into LLMs (Zhang et al., 2023; 051

Nair et al., 2023; Newman et al., 2023). RAG 052

methods may suffer from incomplete retrieval, lack 053

of global context, and struggle to capture long- 054

distance dependencies. Recent methods, such as 055

MeMWalker (Chen et al., 2023a) and RAPTOR 056

(Sarthi et al., 2024) employ LLMs to iteratively 057

summarize text into a tree. These methods use con- 058

cise summaries generated by LLM to capture the 059

global context while leveraging RAG to retrieve 060

detailed information. However, MeMWalker still 061

incurs a high computational cost since it repeatedly 062

relies on the LLM to determine retrieval strategies, 063

while RAPTOR only uses the LLM for summariza- 064

tion and heavily depends on traditional RAG. 065

In this paper, we propose a new method, LLM- 066

Guided Dynamic Progress Control with Attention- 067

Based Hierarchical Weighted Graph (PECAN), com- 068

bining LLM accuracy and RAG efficiency. Unlike 069

existing approaches, our method dynamically struc- 070

tures and searches information using an Attention- 071

Guided Hierarchical Graph. Our approach com- 072

prises two stages: Attention Graph Construction 073

and Dynamic Graph Search. In the Attention Graph 074

Construction stage, we prompt an LLM to generate 075

multiple Information Points (IPs), each typically 076

focusing on a single or a few events. These IPs 077

form a Hierarchical Weighted Directed Acyclic 078

Graph (HWDAG), where LLM attention weights 079

between the generated nodes and the input nodes 080

define relationships between lower- and higher- 081

level nodes. This structure efficiently consolidate 082

and summarize information about the same event 083

from various sources, and enabling efficient event 084
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SpongeBob SquarePants is an American animated television series created by Stephen 
Hillenburg for Nickelodeon.
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“SpongeBob SquarePants” is set in the fictional underwater city of Bikini Bottom and 
centers on the adventures of SpongeBob SquarePants, an anthropomorphic sea sponge.12

American animated television series "SpongeBob SquarePants" ... an anthropomorphic 
sea sponge named SpongeBob SquarePants, attempting to get a job at a local restaurant 
called the Krusty Krab. However, he is tasked to find a seemingly non-existent …

5

"SpongeBob SquarePants" is an American animated television series created by marine 
biologist and animator Stephen Hillenburg ... centers on the adventures of SpongeBob 
SquarePants, an over-optimistic sea sponge that annoys other characters…

6

"SpongeBob SquarePants" chronicles the adventures and endeavors of the title 
character and his various friends in the fictional underwater city of Bikini Bottom … 
show originated in an unpublished, educational comic book …
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Figure 1: Overview of the attention-guided many-to-many summarization process for constructing the Hierarchical
Weighted Directed Acyclic Graph (HWDAG). Each node represents an Information Point (IP), typically summa-
rizing one or a few events, and can have multiple predecessors and successors. The edge weights, derived from
the LLM’s attention during summarization, indicate the strength of relationships and the flow of information from
lower-level nodes to higher-level nodes. The thickness of the red line on the right indicates the magnitude of the
attention weights. For example, node #11 is more closely related to nodes #5 and #6, while node #12 is more
associated with nodes #6 and #7. In this instance, the LLM extracts two events from three text chunks, with node #6
referencing both events. (For brevity, long text are truncated.)

identification, as illustrated in Figure 1.085

Building on this graph, during the Dynamic086

Graph Search stage, instead of retrieving fixed-087

size text chunks, we use LLM attention to identify088

relevant high-level summaries and trace back to de-089

tailed information. This method effectively utilizes090

the LLM’s knowledge, capturing both the gener-091

ated summarization and the dynamic flow of in-092

formation between high-level summaries and their093

corresponding detailed content within the graph. In094

addition, previous RAG methods retrieve a static095

number of top-ranked text chunks, which fails to ac-096

count for the fact that different queries may require097

varying amounts of information. This fixed set-098

ting might lead to computational waste for simple099

queries and insufficient retrieval for more complex100

ones. We introduce a novel method called Dy-101

namic Progress Control, which allows the LLM102

to adaptively determine the amount of information103

needed per query. This approach essentially reallo-104

cates computational resources based on the LLM’s105

knowledge to achieve a better balance of effective-106

ness and efficiency. Meanwhile, previous inputs107

are KV-cached so that new documents can be ap-108

pended without reprocessing the entire input. As109

a result, our method can effectively handle queries110

that require varying amounts of information, par-111

ticularly when the necessary details are distributed112

across different parts of the graph. This avoids ad-113

ditional computational overhead and resolves the114

challenge of determining the optimal number of115

chunks to retrieve.116

In experiments, PECAN achieves a good bal-117

ance between effectiveness and efficiency, attaining118

LLM-level performance while keeping computa-119

tional costs on par with RAG methods. In summary,120

our contributions are:121

• We leverage LLMs to dynamically control the re-122

trieval process, adjusting the amount of retrieved 123

information per query without incurring addi- 124

tional computational overhead, leading to a more 125

balanced effectiveness and efficiency. 126

• We propose a novel attention-guided retrieval 127

paradigm that constructs a many-to-many graph 128

using LLM attention weights. In this graph, 129

edges are derived from attention weights, and 130

retrieval is guided accordingly. Each node repre- 131

sents an Information Point (IP) focusing on one 132

or a few events, allowing for structured event 133

tracking rather than simple text chunk retrieval. 134

• Our empirical results show that PECAN achieves 135

LLM-level accuracy while maintaining computa- 136

tional efficiency of traditional RAG methods. 137

2 Related Work 138

Long-Context Language Models Recent long- 139

context language models have focused on over- 140

coming fixed context window limitations, primar- 141

ily through positional interpolation and training 142

on full-length texts. Chen et al. (2023b); Peng 143

et al. (2024); Fu et al. (2024) fine-tuned models on 144

longer inputs and extended Rotary Position Embed- 145

ding (RoPE; Su et al., 2023) for extended contexts. 146

LongRoPE (Ding et al., 2024) performs direct ex- 147

trapolation by rescaling RoPE with varied interpo- 148

lation. LongAlign (Bai et al., 2024a) constructs a 149

long-context dataset, adopting packing and sorted 150

batching strategies. PoSE (Zhu et al., 2024) ma- 151

nipulates position indices by skipping bias terms. 152

SkipAlign (Wu et al., 2024) synthesizes long-range 153

dependencies from the aspect of position indices. 154

Infini-Transformer (Munkhdalai et al., 2024) han- 155

dles infinitely long inputs using compressive mem- 156

ory, masked local attention, and long-term attention 157

mechanisms. Our primary focus is on effectively 158

leveraging LLM capabilities, and the LLMs em- 159

2



ployed in these techniques can serve as the base160

models in our framework.161

RAG Traditional retrieval techniques, such as162

TF-IDF (Jones, 1972) and BM25 (Robertson et al.,163

1995; Robertson and Zaragoza, 2009), rely on164

word-term matching. Subsequently, deep learn-165

ing–based retrieval methods quickly gained pop-166

ularity (Guu et al., 2020; Min et al., 2021; Izac-167

ard et al., 2022; Izacard and Grave, 2021; Wang168

et al., 2023b). Among these, DPR (Karpukhin et al.,169

2020) encodes queries and documents as dense em-170

beddings. ColBERT (Khattab and Zaharia, 2020;171

Santhanam et al., 2022) produces multi-vector rep-172

resentations. DHR (Liu et al., 2021) leverages173

both document-level and passage-level semantics.174

CPT-text (Neelakantan et al., 2022) utilizes con-175

trastive pre-training on unsupervised data. NCI176

(Wang et al., 2022) directly generates relevant doc-177

ument identifiers. RETRO (Borgeaud et al., 2022;178

Wang et al., 2023a) conditions on document chunks179

based on local similarity. HHR (Arivazhagan et al.,180

2023) combines sparse and dense retrieval methods.181

Dragon (Lin et al., 2023) uses contrastive learning182

and data augmentation to train a model, achieving183

state-of-the-art retrieval performance.184

LLM and RAG Additionally, with the rise of185

LLMs, several studies have explored combining186

LLMs with RAG. GENREAD (Yu et al., 2023)187

prompts LLMs to generate contextual documents.188

RECITE (Sun et al., 2023) retrieves from the189

LLM’s internal memory. KGP (Wang et al., 2023c)190

builds a knowledge graph with the LLM navigat-191

ing. Recently, MeMWalker (Chen et al., 2023a)192

constructs tree-based summaries and uses LLMs193

to navigate. RAPTOR (Sarthi et al., 2024) creates194

tree-based summaries and leverages embedding195

similarities to select the most relevant nodes at196

each level for retrieval. In contrast, our approach197

makes greater use of LLM knowledge by employ-198

ing attention mechanisms to construct a graph and199

perform the search, allowing navigation along mul-200

tiple paths and termination at any depth.201

3 Methodology202

Our method consists of two main steps: Attention203

Graph Construction and Dynamic Graph Search.204

In the Attention Graph Construction stage, illus-205

trated in Figure 1, we utilize the LLM’s attention206

weights to build a Hierarchical Weighted Directed207

Acyclic Graph (HWDAG) from documents. This is208

a one-time preprocessing step for each document,209

after which it can be reused for any query to that210

document. In the Dynamic Graph Search stage, as 211

illustrated in Figure 2, we dynamically control the 212

volume of retrieved nodes and perform a search 213

guided by the LLM. 214

Problem Setup The input consists of two parts: 215

a document and multiple queries. The document is 216

processed only by the Attention Graph Construc- 217

tion stage, while the queries are handled by the 218

Dynamic Graph Search stage. Initially, a graph 219

G = (V, E) is constructed from a document, where 220

V denotes the collection of nodes and E denotes 221

the collection of edges. Each node vli ∈ V contains 222

the text of an Information Point (IP) and belongs 223

to level l. Each edge ei,j ∈ E indicates the relat- 224

edness between node vi and node vj , derived from 225

LLM attention weights. Each vi contains tokens 226

{xin}
Ni
n=1, where Ni denotes the number of tokens 227

in node vi. The Dynamic Graph Search stage then 228

uses the graph G to generate a response for each 229

query q. 230

3.1 Attention Graph Construction 231

A document is initially split into chunks of 300 232

tokens, which serve as the first-level nodes V1. For 233

each level, we iteratively summarize nodes from Vl 234

by batching them and feeding them into the LLM 235

to obtain the higher-level nodes Vl+1, as illustrated 236

in Figure 1. Specifically, we select nodes for each 237

batch by sequentially adding them until the total 238

text content length exceeds a threshold s. These 239

nodes are then input into the LLM. We prompt the 240

LLM to generate IPs in the form of bullet points.2 241

We found that this bullet-point prompt ensures that 242

each point contains only a single or a few events 243

and remaining easy for the LLM to process. 244

The attention from a higher-level node vl+1
i to a 245

lower-level node vlj is averaged and then normal- 246

ized across attention weights between nodes, yield- 247

ing the edge weight ei,j from node vi to node vj . 248

The value of ei,j quantifies the extent to which vl+1
i 249

relies on or extracts information from vlj . We focus 250

only on attention weights between high-level and 251

low-level nodes, omitting those within the same 252

node. This approach emphasizes long-distance se- 253

mantic relationships. 254

The computational process is elaborated below: 255

(a) Extracting attention weights. During summa- 256

rization, LLM attention weights are captured and 257

averaged across attention heads and layers. In prac- 258

tice, these weights are iteratively accumulated dur- 259

ing each layer’s inference, thereby limiting memory 260

2The LLM prompt used is shown in Appendix A.1, and an
example of the generated IPs is shown in Appendix D.
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Figure 2: Overview of Dynamic Graph Search. At each iteration, a node is retrieved based on attention weights
when searching the graph. The visited nodes are then fed into the LLM, prompting it to determine whether sufficient
nodes have been gathered to answer the query. Due to KV caching, this process adds no additional computational
cost. The search continues until the LLM indicates that enough relevant nodes have been retrieved, at which point
the final answer is generated. This procedure dynamically adapts to the query, retrieving nodes flexibly across
multiple graph paths and depths.

usage. This results in token-level attention exi,xj261

between tokens xi ∈ vl+1
i and xj ∈ vlj .262

(b) Aggregating token-level attention to node-263

level. For each node vlj , the attention from all its264

tokens to token {e
xi,xj

n
}Nj

n=1 is averaged to to obtain265

the token-to-node attention exi,vlj
. Similarly, for266

node vl+1
i , token-to-node attention {exi

n,v
l
j
}Ni
n=1 is267

averaged to obtain the final node-level edge weight268

evl+1
i ,vlj

, abbreviated as ei,j .269

(c) Normalization. Finally, the edges are normal-270

ized as ei,j =
ei,j∑
j ei,j

, ensuring that
∑

j ei,j = 1.271

If no direct attention exists between two nodes, the272

corresponding edge weight is set to zero.273

3.2 Dynamic Graph Search274

The dynamic graph search process comprises two275

components: Dynamic Progress Control, which276

provides dynamic LLM-guided control, and Graph277

Search, which executes the search process.278

3.2.1 Dynamic Progress Control279

The process begins by initializing a visited set, de-280

noted as S ⊂ V , with the top-level nodes of V ,281

which is fed into an LLM. The LLM is prompted to282

determine whether the current set of visited nodes283

S is sufficient to answer a given query. The prompt284

asks the LLM, “Can this question be answered by285

the following information?”, followed by the query286

and visited nodes S.3 If the response is “No”, the 287

search continues, and the next node is retrieved. 288

The newly retrieved node is added to the visited set 289

S , and this process repeats until the LLM responds 290

with “Yes.” Throughout the search, all previous in- 291

puts, including the prompt, query, and visited nodes 292

S, are cached using KV caching, as illustrated in 293

Figure 2.4 This ensures that no additional com- 294

putational resources are required. Once the LLM 295

responds with “Yes”, the second turn of the prompt 296

will ask the LLM to answer the query and the final 297

answer is obtained. This dynamic approach, termed 298

Dynamic Progress Control, better allocates lim- 299

ited resources among different queries to achieve a 300

better balance between effectiveness and efficiency 301

(see Section 4.3 for analysis). In contrast, previous 302

methods typically relied on a fixed amount of re- 303

trieved content, which led to either computational 304

waste or insufficient information retrieval. 305

3.2.2 Graph Search 306

After identifying a set of IP nodes required to an- 307

swer a query, the set of visited nodes S ⊂ V is 308

provided to the LLM using the prompt shown in 309

Table A2. The attention weight between a visited 310

node vi and the query q, denoted as ri, is gener- 311

ally extracted following the method described in 312

3The complete prompt is shown in Appendix A.2
4See Appendix B for details on the use of KV caching.
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Section 3.1.5 This weight indicates the degree of313

attention that node vi gives to the query q.314
Specifically, for a node vi, we define its prede-315

cessors as Pi. The intersection of Pi and the set of316
visited nodes S is then Qi = Pi∩S . For each node317
vj ∈ Qi, the retrieval score zi for a node vi /∈ S is318
computed as:319

zi =
∑
j∈Qi

rjej,i (1)320

where ej,i represents the edge weight from node321

vj to node vi. This operation is performed for all322

successors of nodes in S.323

This process can also be carried out via matrix324

multiplication. We define the adjacency matrix325

E ∈ R|V|×|V|, where Ei,j = ei,j and |V| denotes326

the number of nodes in V . Next, we construct327

the score vector r ∈ R|V| such that ri = ri if328

vi ∈ S, and ri = 0 otherwise. The final score329

vector z ∈ R|V| is computed as z = ETr, where330

each entry of z represents the corresponding node’s331

score. Finally, the embedding similarity is added to332

z as the final score, and the node with the highest333

final score is retrieved. Notably, PECAN without334

embedding similarity only shows a slight perfor-335

mance degradation, whereas using only embedding336

similarity results in a larger performance decline337

(see the ablation study in Section 4.2).338

The key idea is that if a node (i.e., an Information339

Point) containing an event is strongly correlated340

with the query, then the details about that event are341

likely to be more useful in answering the query.342

We use r to represent the relevance of a high-level343

node to the query and e to represent the relevance344

of a lower-level node to its associated high-level345

node. A high e indicates that the lower-level node346

contains more detailed information about the same347

event, as illustrated in Figures 1 and A1. If a re-348

trieved node provides details that are not relevant349

to the query, its r score will be low, preventing the350

search from continuing along that node. If multi-351

ple nodes are highly relevant to both the query and352

the same successor, that successor node will ac-353

cumulate scores from these multiple predecessors,354

resulting in a higher overall score.355

4 Experiments356

Dataset We use two single-document QA and357

two multi-document QA datasets from LongBench358

(Bai et al., 2024b): NarrativeQA (Kočiský et al.,359

2018) is a single-doc QA dataset containing 1,567360

stories, including full texts of books and movie361

transcripts. Qasper (Dasigi et al., 2021) is a single-362

doc QA dataset with 1,585 papers, designed to363

5See Appendix C for more details.

seek information present in the papers. HotpotQA 364

(Yang et al., 2018) is a multi-doc QA dataset that 365

contains 112,779 examples, focusing on multi-hop 366

QA. MuSiQue (Trivedi et al., 2022) is a multi-doc 367

QA dataset with 24,814 examples featuring 2-4 hop 368

questions and six reasoning types. 6 369

Metrics We use F1 and ROUGE-L (Lin, 2004) as 370

evaluation metrics. The final scores are computed 371

using the evaluation source code from LongBench 372

(Bai et al., 2024b) and Hugging Face Evaluate7. We 373

also measure the average query-dependent TFLOPs 374

(Tera Floating Point Operations) consumed during 375

search and inference for each query. 376

Baseline We employ the following baselines: 377

BM25 (Robertson et al., 1995; Robertson and 378

Zaragoza, 2009) is a bag-of-words based retrieval 379

method. SBERT (Reimers and Gurevych, 2019) 380

is a dense retrieval method that employs dense 381

embeddings. Dragon (Lin et al., 2023) uses con- 382

trastive learning and data augmentation to train a 383

model, achieving state-of-the-art retrieval perfor- 384

mance among eight RAG baselines. LongLLM- 385

Lingua (Jiang et al., 2024) is a prompt compres- 386

sion method that introduces question-aware com- 387

pression based on LLMLingua (Jiang et al., 2023). 388

MeMWalker (Chen et al., 2023a) summarizes con- 389

text into a tree and navigates it to search for relevant 390

information guided by the LLM within a limited 391

input window. RAPTOR (Sarthi et al., 2024) con- 392

structs a tree by recursively embedding, cluster- 393

ing, and summarizing chunks of text. It has two 394

variants: “tree traversal” (RAPTOR-TT) retrieves 395

nodes along a single path from the top of the tree to 396

the bottom, and “collapsed tree” (RAPTOR-CT) 397

flattens all nodes for standard RAG-based retrieval. 398

Llama-3.1-8B (Dubey et al., 2024) expands the 399

context window, enabling documents to be fed into 400

the model, except for a few from NarrativeQA. 401

We use Llama-3.1-8B (Dubey et al., 2024) as the 402

LLM for PECAN and all baselines by running their 403

source code. For MeMWalker, since the source 404

code was not released, we implemented it based on 405

the description in the paper using Llama-3.1. For 406

LongLLMLingua, which employs a smaller model 407

to compress prompts for GPT-3.5, we used the Phi- 408

2-2.7B model provided by LongLLMLingua for 409

compression. For all methods, we adopt a zero-shot 410

approach without Chain-of-Thought (CoT). We use 411

SBERT (Reimers and Gurevych, 2019) as the re- 412

trieval model in PECAN. We set the length threshold 413

6See Appendix E for more statistics.
7https://github.com/huggingface/evaluate
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Method NarrativeQA Qasper

F1 ROUGE-L TFLOPs Ratio F1 ROUGE-L TFLOPs Ratio

BM25 Top-5 52.7 51.8 26.7 0.86x 41.0 39.6 26.3 0.39x
SBERT Top-5 36.5 35.8 26.8 0.86x 44.4 42.4 26.0 0.39x
Dragon Top-5 53.8 52.9 26.9 0.87x 43.0 41.4 24.5 0.36x
MeMWalker 11.2 9.8 353.8 11.41x 39.0 36.8 123.9 1.85x
RAPTOR-TT 40.6 39.8 20.3 0.65x 42.1 40.1 17.7 0.26x
RAPTOR-CT Top-5 48.6 47.8 17.9 0.58x 44.6 42.7 16.6 0.25x
LongLLMLingua 50.5 49.5 1789.4 57.72x 43.2 43.0 159.7 2.39x
BM25 Top-X 53.7 52.9 37.5 1.21x 47.0 45.1 69.3 1.04x
SBERT Top-X 39.5 38.8 37.5 1.21x 46.6 44.5 68.9 1.03x
Dragon Top-X 55.1 54.2 37.5 1.21x 46.9 44.8 67.0 1.00x
RAPTOR-CT Top-X 52.0 51.2 35.1 1.13x 46.9 44.7 67.3 1.01x
Llama-3.1-8B 53.7 52.6 3361.9 108.45x 49.4 47.6 92.5 1.38x

PECAN 61.1 60.2 31.0 1.00x 49.7 47.9 66.9 1.00x

Method HotpotQA MuSiQue

F1 ROUGE-L TFLOPs Ratio F1 ROUGE-L TFLOPs Ratio

BM25 Top-5 40.8 40.9 22.9 1.43x 28.7 28.7 26.3 0.85x
SBERT Top-5 40.9 40.8 22.6 1.41x 30.7 30.8 26.1 0.84x
Dragon Top-5 39.7 39.6 23.3 1.46x 28.5 28.4 28.1 0.91x
MeMWalker 39.7 38.9 93.4 5.84x 24.0 23.5 175.7 5.69x
RAPTOR-TT 38.6 38.5 8.4 0.53x 29.3 29.3 12.6 0.41x
RAPTOR-CT Top-5 40.9 40.4 15.3 0.96x 31.5 31.5 16.1 0.52x
LongLLMLingua 43.4 43.5 43.6 2.73x 34.5 34.4 78.9 2.55x
BM25 Top-X 40.7 40.8 20.0 1.25x 31.8 31.7 35.6 1.15x
SBERT Top-X 40.8 40.7 19.6 1.23x 32.5 32.5 35.6 1.15x
Dragon Top-X 39.2 39.1 20.6 1.29x 30.2 30.1 38.0 1.23x
RAPTOR-CT Top-X 40.7 40.7 17.9 1.12x 35.4 35.2 32.2 1.04x
Llama-3.1-8B 41.3 41.2 23.7 1.48x 35.8 35.7 40.6 1.31x

PECAN 43.5 43.5 16.0 1.00x 36.9 36.8 30.9 1.00x

Table 1: F1 (%), ROUGE-L (%), and TFLOPs of baselines and PECAN on NarrativeQA, Qasper, HotpotQA, and
MuSiQue. TFLOPs are calculated during query-dependent inference. “Ratio” represents the ratio of the baselines’
TFLOPs to PECAN’s TFLOPs. In addition to Top-5, we also include a Top-X setting to match the TFLOPs of PECAN
for a fair comparison. For BM25, SBERT, and Dragon we used Top-7 (NarrativeQA), Top-14 (Qasper), Top-4
(HotpotQA), and Top-7 (MuSiQue); for RAPTOR-CT, we used Top-20, Top-42, Top-12, and Top-22, respectively.

s to 8K. Across all datasets and steps of PECAN,414

including graph construction and search, the input415

window is capped by s and can be processed using416

an NVIDIA A100 80G GPU. A summary graph417

example is illustrated in Appendix D.418

4.1 Main Results419

The main results are shown in Table 1. In addition420

to Top-5 retrieval, we also include a Top-X set-421

ting to match the TFLOPs of PECAN for a fair com-422

parison. For MeMWalker, RAPTOR, and PECAN,423

summarization TFLOPs are not included as sum-424

marization is query-independent. It is worth noting425

that our Dynamic Progress Control can determine426

the appropriate number of nodes to retrieve in a427

single pass, whereas these methods require exten-428

sive hyperparameter searches to find the optimal429

number. For Llama-3.1 on NarrativeQA, we used430

8 A100 80G GPUs, with CPU offloading, to han-431

dle the long documents. However, we could only432

process an input window of 100K tokens under433

these resource constraints, resulting in 22.3% of434

documents being truncated. 435

The performance of BM25, SBERT, and Dragon 436

was similar, with Dragon showing an advantage 437

on NarrativeQA. When comparing the Top-5 and 438

Top-X results, retrieving more fragments gener- 439

ally leads to better performance. LongLLMLin- 440

gua achieves better results than Llama-3.1 on Hot- 441

potQA, possibly because it reorders documents to 442

place the most relevant content upfront, mitigat- 443

ing the lost-in-the-middle effect (Liu et al., 2024). 444

However, for other datasets, the deletion of sen- 445

tences and tokens in LongLLMLingua negatively 446

impacts its performance. The small size difference 447

between Phi-2 and Llama-3.1-8B may not reflect 448

the intended use cases of LongLLMLingua, mak- 449

ing efficiency comparisons challenging. 450

MeMWalker requires the LLM to generate cor- 451

rect responses and formats at every node, which 452

increases computational complexity and raises the 453

risk of navigation failures when the tree becomes 454

large. This contributed to its poor performance on 455

NarrativeQA. RAPTOR-TT shows relatively poor 456
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Method NarrativeQA Qasper HotpotQA MuSiQue

F1 ROUGE-L F1 ROUGE-L F1 ROUGE-L F1 ROUGE-L

PECAN 61.1 60.2 49.7 47.9 43.5 43.4 36.9 36.9

w/o Attention-Guided Retrieval 53.0 52.4 46.9 45.5 41.9 41.7 33.1 32.9
w/o Dynamic Progress Control 53.5 52.9 37.7 36.4 39.4 39.3 27.0 27.1
w/o IP-based Graph 51.4 50.8 47.3 45.5 40.9 40.7 32.3 32.3
w/o Embedding Similarity 59.5 58.7 48.0 46.2 42.9 42.8 35.9 35.8

Table 2: Ablation study of the four components of PECAN with F1 (%) and ROUGE-L (%) on NarrativeQA, Qasper,
HotpotQA, and MuSiQue.

performance as it is constrained by a fixed retrieval457

path from the top to the bottom. RAPTOR-CT Top-458

X achieves high performance but still underper-459

forms compared to PECAN at comparable TFLOPs,460

suggesting that its tree-based summarization is less461

efficient. Llama-3.1-8B excelled on most datasets,462

demonstrating its strong capability. However, for463

particularly long inputs in NarrativeQA, Llama-3.1464

incurred 108.45x TFLOPs, which is significantly465

more computationally expensive than using PECAN.466

PECAN achieves a good balance between effec-467

tiveness and efficiency, and with fewer TFLOPs,468

outperforming all baselines across all four datasets469

in terms of F1 and ROUGE-L. Even for Top-X470

setting, with fewer TFLOPs, PECAN results are still471

better than those of RAPTOR-CT. Compared to472

LongLLMLingua, our method achieved better per-473

formance with lower TFLOPs, although the differ-474

ing application scenarios limit direct comparison.475

PECAN slightly outperforms Llama-3.1 on Qasper,476

HotpotQA, and MuSiQue with fewer TFLOPs, and477

significantly surpasses Llama-3.1 on NarrativeQA478

while incurring much lower computational cost on479

a single GPU, demonstrating its capability to han-480

dle extremely long documents. Since PECAN begins481

with query-related information, the most relevant482

content is presented first, mitigating the "lost-in-483

the-middle" effect. With IPs organized by events,484

PECAN can better track these events, especially as485

long-distance relationships tend to weaken.486

4.2 Ablation Study487

In this section, we study how each component con-488

tributes to performance, as shown in Table 2, and489

describe them below.490

w/o Attention-Guided Retrieval We remove491

the use of attention and rely solely on embedding492

similarity for node search, similar to RAPTOR. Per-493

formance dropped across all datasets, with the most494

significant drop occurring in NarrativeQA, indicat-495

ing that attention scores are particularly effective in496

retrieving hierarchical information from long texts.497

w/o Dynamic Progress Control We conduct re-498

trieval using a fixed number of nodes, correspond-499

ing to the average used by PECAN across the four 500

datasets. Instead of employing Dynamic Progress 501

Control, we retrieve this fixed number of nodes. 502

For documents with many top-level nodes, we limit 503

the initial number of visited nodes S to the preset 504

value divided by the number of levels, with top- 505

level nodes selected using embedding similarity as 506

in RAPTOR to ensure sufficient exploration. We re- 507

tain the same search mechanism so that unselected 508

top-level nodes can still be retrieved via embedding 509

similarity. Without Dynamic Progress Control, per- 510

formance degraded across all datasets, even though 511

the average number of nodes retrieved remained 512

unchanged. See Section 4.3 for a deeper analysis. 513

w/o IP-based Graph We do not use the IP-based 514

many-to-many graph. Instead, following RAPTOR, 515

we adopt a many-to-one summarization that ul- 516

timately forms a tree. Other search approaches 517

remain unchanged. All datasets experience a per- 518

formance decline, with NarrativeQA being partic- 519

ularly affected. This suggests that for complex 520

and lengthy inputs, IPs with many-to-many graph- 521

based relationships are more effective at organizing 522

information and tracking events. 523

w/o Embedding Similarity We remove embed- 524

ding similarity from the final score z, relying en- 525

tirely on attention weights to compute retrieval 526

scores. Across all four datasets, performance shows 527

a slight decrease, though this drop is much smaller 528

than that observed when the attention-guided re- 529

trieval is removed, indicating that attention-guided 530

search plays a more critical role. 531

4.3 Dynamic Retrieval Analysis 532

In this section, we analyze the number of nodes re- 533

trieved by Dynamic Progress Control. Since each 534

node primarily contains an IP with only a small 535

amount of text, PECAN can retrieve more nodes us- 536

ing the same TFLOPs. NarrativeQA consists of 537

stories, where each IP can be described succinctly, 538

whereas Qasper comprises scientific papers, with 539

IPs that are more complex and require longer de- 540

scriptions. Figure 3 presents the frequency distribu- 541

tion of nodes retrieved per query for NarrativeQA, 542
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Figure 3: Frequency distribution of the number of nodes retrieved per query for NarrativeQA, Qasper, HotpotQA,
and MuSiQue. The x-axis represents the number of nodes retrieved per query, while the y-axis indicates the
percentage of queries retrieving that number of nodes. A log-normal distribution is fitted, as shown by yellow line.

31

33

35

37

39

41

43

45

47

49

60

61

62

63

64

65

66

67

1 2 3 4 5 6 7 8

TF
LO

Ps

F1
 (%

)

NarrativeQA

F1 TFLOPs

60

65

70

75

80

85

90

95

49

49.5

50

50.5

51

51.5

52

52.5

1 2 3 4 5 6 7 8

TF
LO

Ps

F1
 (%

)

Qasper

F1 TFLOPs

12

14

16

18

20

22

24

26

28

30

43

43.5

44

44.5

45

45.5

1 2 3 4 5 6 7 8

TF
LO

Ps

F1
 (%

)

HotpotQA

F1 TFLOPs

28

31

34

37

40

43

46

49

52

36

37

38

39

40

41

42

1 2 3 4 5 6 7 8

TF
LO

Ps

F1
 (%

)

MuSiQue

F1 TFLOPs

Figure 4: The F1 (%) and TFLOPs of PECAN on NarrativeQA, Qasper, HotpotQA, and MuSiQue with different stop
patience p. The x-axis represents stop patience. The left y-axis shows the F1 (%) (blue line), and the right y-axis
shows TFLOPs (orange line). As p increases from 1 to 8, both F1 and TFLOPs increase, but the increase in F1
slows when p > 5, while TFLOPs continue to rise.

Qasper, HotpotQA, and MuSiQue. As indicated543

by the log-normal yellow line, the distribution is544

generally right-skewed: most queries retrieve a545

moderate number of nodes, while a few require546

significantly more, forming a long tail. PECAN dy-547

namically tailors the amount of retrieved informa-548

tion to accommodate this long tail—a scenario that549

previous methods cannot handle, as they typically550

retrieve a fixed number of node chunks. HotpotQA,551

in particular, exhibits a more standard right-skewed552

distribution. Qasper, which comprises 1,451 in-553

stances compared to HotpotQA’s 7,405, shows a554

wider range of retrieved nodes (mostly within 80,555

versus mostly within 30 for HotpotQA), resulting556

in greater noise in Qasper. NarrativeQA displays557

a small peak at a low number of retrieved nodes,558

potentially corresponding to easier queries. This559

observation aligns with Kočiský et al. (2018)’s note560

that “a small number of questions and answers are561

shallow paraphrases of sentences in the full docu-562

ment.” MuSiQue explicitly categorizes questions563

by the number of hops, with the majority being564

2-hop questions and some requiring 3 or 4 hops,565

with fewer hops generally indicating a lower infor-566

mation requirement and vice versa. Figure 3 also567

shows two distinct peaks, an observation that aligns568

with MuSiQue’s difficulty distribution and further569

demonstrates that PECAN can dynamically adapt to570

queries of varying complexity.571

4.4 Effectiveness-Efficient Trade-off Study572

In this section, we examine the trade-off between573

effectiveness and efficiency. Similar to the con-574

cept of early stopping patience, we introduce a 575

stop patience hyper-parameter p, which means that 576

the search terminates after the LLM responds with 577

“Yes” p times. As shown in Figure 4, increasing p 578

can further enhance performance beyond the results 579

reported in Table 1, albeit at the cost of increased 580

computational resources. When p < 5, the F1 581

score rises rapidly, and for p > 5, the improve- 582

ment in F1 slows while the TFLOPs increase dis- 583

proportionately. All four datasets exhibit a similar 584

trend with respect to p, demonstrating that Dynamic 585

Graph Search provides a good trade-off between 586

effectiveness and efficiency. PECAN can adjust a 587

single value of p across all datasets to achieve a 588

similar effectiveness-efficiency trade-off, whereas 589

previous methods require hyper-parameter searches 590

on each dataset separately. 591

5 Conclusion 592

In this paper, we introduced PECAN, a novel re- 593

trieval method that incorporates two key innova- 594

tions. The LLM-Guided Dynamic Progress Control 595

adjusts the amount of information retrieved based 596

on the query, achieving a better balance between 597

effectiveness and efficiency. The Attention-Guided 598

Retrieval constructs a many-to-many Hierarchical 599

Weighted Directed Acyclic Graph using LLM at- 600

tention weights to guide the search. Each node 601

represents an Information Point that focuses on 602

one or a few events, enabling the model to effec- 603

tively track them. Empirical results demonstrate 604

that PECAN achieves LLM-level performance while 605

maintaining RAG-level computational complexity. 606
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6 Limitations607

PECAN primarily computes graph edges by averag-608

ing attention across all tokens, treating them as609

equally important. However, tokens may not actu-610

ally be equally significant. Semantically irrelevant611

tokens (e.g., function words like “a,” “an,” “the,”612

etc.) might introduce noise. Nonetheless, since we613

only retain the attention between nodes and omit614

the attention within nodes, this can partially miti-615

gate the issue. Moreover, tokens in different texts616

may appear in similar proportions, so the added617

noise is less noticeable. Nevertheless, our experi-618

ments show that this averaging approach still yields619

good results. We leave a deeper exploration of this620

issue, the development of a more fine-grained atten-621

tion averaging strategy, for future work. Similarly,622

we simply add the attention-based score and the623

embedding similarity score together, resulting in624

an equal weighting of both components. While this625

averaging approach also performs well in our ex-626

periments, future work could explore when and to627

what extent each score should be weighted differ-628

ently to achieve a more refined strategy. In this pa-629

per, we focus on presenting the main framework of630

Dynamic Progress Control and Attention-Guided631

Retrieval, leaving further refinements for future632

work.633
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A Prompt983

A.1 Attention Graph Construction Prompt984

In Attention Graph Construction, we employ an985

LLM to generate Information Points (IPs) in a986

bullet-point format, with each bullet point repre-987

senting an IP. Specifically, the LLM prompt is988

shown in Table A1, along with an example from989

NarrativeQA (Kočiský et al., 2018). Each IP typ-990

ically consists of a single sentence that describes991

one or a few events. T his approach enables Graph992

Search to more effectively retrieve information by993

tracking events rather than continuous text. We994

found that instructing the LLM to produce bullet-995

point lists aligns well with the LLM’s inherent996

knowledge.997

A.2 Graph Search Prompt998

Graph Search uses a two-turn prompt, as shown999

in Table A2, with an example from NarrativeQA1000

(Kočiský et al., 2018). In the first turn, the LLM1001

is prompted to determine whether the current set1002

of visited nodes S is sufficient to answer the query.1003

The prompt asks the LLM, “Can this question be1004

answered by the following information?”, followed1005

by the query and the visited nodes S. If the re-1006

sponse is “No”, the search continues and the next1007

node is retrieved, with all previous context KV1008

cached to avoid additional computation. This pro-1009

cess repeats until the LLM responds with “Yes”.1010

Once the LLM responds with “Yes”, the second1011

turn of the prompt asks the LLM to answer the1012

query.1013

B KV Caching in Dynamic Progress1014

Control1015

This section explains how the KV cache described1016

in Section 3.2.1 is utilized in our approach. In1017

conventional scenarios, KV caching is performed1018

at the token level, where the LLM caches the key-1019

value states of previous tokens when generating1020

the next token. In contrast, our method employs a1021

node-level KV cache.1022

Given the last retrieved node vi in the vis-1023

ited set S, let {xin}
Ni
n=1 denote the tokens1024

of node vi, where Ni represents the num-1025

ber of tokens in vi. The query and visited1026

nodes are represented as [q, v1, . . . , vi, . . . , v|S|],1027

with their corresponding tokens organized as1028

[xq1, . . . , x
q
Nq

, x11, . . . , x
1
N1

, . . . , xi1, . . . , x
i
Ni
].1029

When a new node vj is retrieved, the query, key,1030

and value states for its tokens {xjn}
Nj

n=1 ∈ vj are1031

computed using the LLM’s self-attention mecha- 1032

nism. Since vj also attends to the previously vis- 1033

ited nodes, the stored KV cache containing the to- 1034

kens [xq1, . . . , x
q
Nq

, x11, . . . , x
1
N1

, . . . , xi1, . . . , x
i
Ni
] 1035

is provided as input to the LLM. At this point, the 1036

query states from vj and the key-value states from 1037

q, S, and vj are available for self-attention. 1038

After processing, vj is added to the vis- 1039

ited set S, and the key-value states of its to- 1040

kens {xjn}
Nj

n=1 are stored. These states are 1041

concatenated with the previous KV cache to 1042

form [xq1, . . . , x
q
Nq

, . . . , xi1, . . . , x
i
Ni
, xj1, . . . , x

j
Nj

], 1043

which is then used for the subsequent node re- 1044

trieval. 1045

Once the retrieval process is complete, the key- 1046

value states of all visited nodes in S are cached, and 1047

the LLM is prompted to answer the question using 1048

these cached states. Some LLMs may insert special 1049

tokens between the prompt and response, but these 1050

tokens are minimal, and the additional computation 1051

is negligible. The LLM follows standard decoding 1052

to generate tokens sequentially, leveraging the KV 1053

cache from previous tokens. Importantly, the query, 1054

key, and value states for all nodes, the query, and 1055

the answers are computed only once throughout 1056

the retrieval process, thereby avoiding additional 1057

computational overhead. 1058

C Query-Node Attention Computation 1059

This section describes our method for computing 1060

the query-node relevance r, which is derived from 1061

the attention weights introduced in Section 3.2.2. 1062

We treat the query as a node and employ the 1063

averaging method described in Section 3.1 to com- 1064

pute the relevance score ri between the query and 1065

each node vi. Similarly, we extract only the atten- 1066

tion between the node and the query, omitting other 1067

attention components such as intra-node attention. 1068

We do not apply the normalization procedure from 1069

Section 3.1, which constrains the relevance scores 1070

to sum to 1, because a query may be related to mul- 1071

tiple nodes, and different queries can be associated 1072

with varying numbers of nodes. As a result, each 1073

node may potentially exhibit a strong relation to 1074

the query. 1075

Instead, we adopt a heuristic normalization ap- 1076

proach. Since the query is positioned before the vis- 1077

ited nodes in the prompt, nodes appearing later may 1078

allocate some of their attention to earlier nodes, 1079

often resulting in lower attention scores for later 1080

nodes. Although placing the query at the end would 1081

avoid this issue, it would prevent the query from 1082

being cached in the key-value memory, thereby 1083
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creating a trade-off between performance and ef-1084

ficiency. To address this, we apply an empirical1085

normalization to ri by multiplying it by the posi-1086

tion index of vi, with the query q occupying the1087

first position. For instance, in Figure 2, the ex-1088

tracted attention r15 is multiplied by 4 because it1089

corresponds to the fourth position. Note that this is1090

merely a heuristic approach rather than an ultimate1091

solution. In this paper, we focus on the primary1092

concept of leveraging attention weights and leave1093

a more in-depth exploration of this detail to future1094

work.1095

D Summary Graph Example1096

In this section, we present an example of gener-1097

ated Information Points (IPs) using parts of the1098

first- and second-level nodes from HotpotQA (Yang1099

et al., 2018) (see Figure A1). The nodes on the1100

right represent second-level IPs, which are gener-1101

ated by aggregating information from the first-level1102

chunk nodes on the left. The connections between1103

these nodes denote attention weights, with higher1104

weights visualized as redder and thicker lines.1105

It can be observed that the IPs are derived from1106

multiple chunks. For instance, second-level nodes1107

10, 13, 14, 15, 16, 17, 18, and 19 are connected to1108

several first-level nodes, while second-level nodes1109

11 and 20 primarily rely on a single first-level node1110

with minimal connections elsewhere. From the1111

perspective of the first-level nodes, nodes 2, 5, 6,1112

7, 8, and 9 are connected to multiple second-level1113

nodes, whereas first-level node 3 is attended to only1114

by second-level node 17.1115

The attention weights illustrate the dynamic con-1116

nectivity between nodes. Some nodes connect to1117

multiple others, while others connect to only one.1118

Overall, our method leverages IPs and attention to1119

explicitly capture the relationships between first-1120

level and second-level nodes, enabling the model1121

to understand how each piece of information is1122

interconnected within the text.1123

E Datasets Statistics1124

Table A3 shows the token length statistics for Nar-1125

rativeQA (Kočiský et al., 2018), Qasper (Dasigi1126

et al., 2021), HotpotQA (Yang et al., 2018), and1127

MuSiQue (Trivedi et al., 2022). In particular, Nar-1128

rativeQA is much longer than the other datasets, fol-1129

lowed by Qasper, while HotpotQA and MuSiQue1130

contain relatively shorter texts.1131

F Efficiency Analysis 1132

Table A4 presents the TFLOPs for graph construc- 1133

tion per document (PECAN Attention Graph Con- 1134

struction) and for graph search per query (PECAN 1135

Graph Search). The combined TFLOPs of PECAN 1136

(Attention Graph Construction + Graph Search) 1137

represent the average TFLOPs per query for docu- 1138

ments containing 1, 2, 4, or 8 queries. 1139

As the number of queries per document in- 1140

creases, the TFLOPs for graph construction are 1141

amortized over more queries, reducing the aver- 1142

age TFLOPs per query. In fact, when a document 1143

contains more than 8 queries, our method achieves 1144

lower average TFLOPs per query, even after ac- 1145

counting for summary generation. 1146

For documents with only one query, our 1147

method’s TFLOPs exceed those of Llama-3.1 on 1148

Qasper, HotpotQA, and MuSiQue. During graph 1149

construction, PECAN processes the entire document 1150

along with additional summary generation. How- 1151

ever, on long documents such as those in Narra- 1152

tiveQA, PECAN uses fewer TFLOPs than Llama- 1153

3.1, since the Transformer (Vaswani et al., 2017) 1154

incurs quadratic complexity with very long inputs. 1155

Moreover, while Llama-3.1 processes the entire in- 1156

put at once, our method processes the document in 1157

chunks. As a result, PECAN operates with an 8K in- 1158

put window, enabling it to run on a single GPU. In 1159

contrast, running Llama-3.1 on NarrativeQA with 1160

a 100K-token input window required 8 A100 80G 1161

GPUs (even with CPU offloading). This limita- 1162

tion hinders the practical application of Llama-3.1 1163

in real-world scenarios, whereas our method can 1164

easily run on a single GPU. 1165

G Scientific Artifact Use 1166

The scientific artifacts used in this paper are avail- 1167

able for research use. Our utilization of these arti- 1168

facts is for research purposes. The public datasets 1169

employed in this paper, including NarrativeQA, 1170

Qasper, HotpotQA, and MuSiQue, are not intended 1171

to contain offensive content. 1172
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5: "Help Wanted" is the pilot episode of the American animated television series
"SpongeBob SquarePants". It originally aired on Nickelodeon in the United States on
May 1, 1999, following the television airing of the 1999 Kids' Choice Awards. The
episode follows the protagonist, an anthropomorphic sea sponge named
SpongeBob SquarePants …... his errand, having fulfilled the request of Mr. Krabs
and found a mechanical spatula. He utilizes the spatula to fulfill the anchovies'
hunger. SpongeBob is then welcomed by Mr. Krabs as a Krusty Krab employee.…...

0: SpongeBob SquarePants: Plankton's Robotic Revenge is an action-adventure
video game based on the television series "SpongeBob SquarePants". It was
released in October 2013 for Wii U, Wii, Nintendo 3DS, Nintendo DS, PlayStation 3,
and Xbox 360. The game was developed by Behaviour Interactive and published by
Activision, who took over the license from previous "SpongeBob SquarePants" video
game publisher THQ after the company's bankruptcy and liquidation.…...

6: "SpongeBob SquarePants" is an American animated television series created by
marine biologist and animator Stephen Hillenburg for Nickelodeon. The series is set
in the fictional underwater city of Bikini Bottom, and centers on the adventures and
endeavors of SpongeBob SquarePants, an over-optimistic …... which Hillenburg
created in the mid-1980s. He began developing "SpongeBob SquarePants" into a
television series in 1996 after the cancellation of "Rocko's Modern Life", another
Nickelodeon television series which Hillenburg previously directed.…...

1: SpongeBob SquarePants: Lights, Camera, Pants! is a 2005 party video game
based on the TV series "SpongeBob SquarePants". It was released in October 2005
for the Xbox, PlayStation 2, GameCube, Game Boy Advance, and the PC. It was
released for the Nintendo DS in Korea in 2007, but its North American release was
cancelled …... Nelson Reilly would voice the Dirty Bubble before his death in 2007.
For reasons unknown, Mermaid Man was not voiced by his original voice actor
Ernest Borgnine but instead Joe Alaskey, whowould voice him again in……

2: The SpongeBob SquarePants Movie is a 2004 American live-action/animated
comedy film based on the Nickelodeon television series "SpongeBob SquarePants".
The film was co-written, directed, and co-produced by series creator Stephen
Hillenburg and starred the series' cast of Tom Kenny, Bill Fagerbakke, …… and was
also the first film in the "SpongeBob SquarePants" film series. In the film, Plankton
devises a plan to steal King Neptune's crown and send it to Shell City, and
SpongeBob and Patrick must retrieve the crown to save Mr. Krabs from King
Neptune'swrath and Bikini Bottom from Plankton's plan.……

3: SpongeBob SquarePants 4D: The Great Jelly Rescue (often referred to as
SpongeBob SquarePants 4D or simply The Great Jelly Rescue) is a 4-D film attraction
that serves a sequel to SpongeBob SquarePants 4-D. It follows SpongeBob, Patrick,
and Sandy as they go jellyfishing.……

4: SpongeBob SquarePants: Original Theme Highlights is the first album of songs
played on the Nickelodeon TV series "SpongeBob SquarePants". It includes tracks
sung by the cartoon's characters: SpongeBob SquarePants, Sandy Cheeks, Patrick
Star, Squidward Tentacles, and Plankton. Its total running time is 9 minutes and 9
seconds, spanning seven tracks.……

7: The SpongeBob Movie: Sponge Out of Water is a 2015 American 3D live-
action/animated comedy film based on the animated television series "SpongeBob
SquarePants". A stand-alone sequel to "The SpongeBob SquarePantsMovie" (2004),
it was directed by former series showrunner Paul Tibbitt in his directorial debut ……
Burger-Beard, who steals the Krabby Patty secret formula using a magical book that
makes any text written upon it come true. SpongeBob and his friends must travel to
the surface to confront Burger-Beard and get the formula back.……

8: In addition show's regular cast of voice actors, guest stars have been featured on
"SpongeBob SquarePants", an American animated television series created by
marine biologist and animator Stephen Hillenburg for Nickelodeon. …… episode
first aired on Nickelodeon in the United States on May 1, 1999. The show's ninth
season premiered in 2012, and episodes of "SpongeBob SquarePants" have aired. A
feature-length film adaptation of the show, "The SpongeBob SquarePants Movie",
was released in 2004; in 2015, a sequel, "", was released.……

9: SpongeBob SquarePants 4-D (also known as SpongeBob SquarePants 4-D Ride,
SpongeBob SquarePants: The Ride or SpongeBob SquarePants 3-D) is a cel-shaded
4-D film based upon the popular television series "SpongeBob SquarePants". It can
be found at many aquariums and theme parks across the world …… a motion
simulator with a 3D movie. The effects on the ride vary at different parks. Water
spray, bubbles, wind, leg ticklers, smoke, and smells are usually found.……

14: SpongeBob SquarePants is an American animated television series created by
Stephen Hillenburg for Nickelodeon.

15: "SpongeBob SquarePants" is set in the fictional underwater city of Bikini Bottom
and centers on the adventures and endeavors of SpongeBob SquarePants, an over-
optimistic sea sponge.

10: The show originated from an unpublished, educational comic book titled "The
Intertidal Zone" created by Stephen Hillenburg in the mid-1980s.

11: StephenHillenburg began developing "SpongeBob SquarePants" into a television
series in 1996 after the cancellation of "Rocko'sModern Life”.

12: The pilot episode of "SpongeBob SquarePants" first aired on Nickelodeon in the
United States on May 1, 1999.

13: SpongeBob SquarePants has been featured in various video games, including
"SpongeBob SquarePants: Plankton's Robotic Revenge" and "SpongeBob
SquarePants: Lights, Camera, Pants!"

16: The series has also been adapted into several films, including "The SpongeBob
SquarePants Movie" (2004) and "The SpongeBob Movie: Sponge Out of Water"
(2015).

17: SpongeBob SquarePants 4-D is a 4-D film attraction that serves as a sequel to
SpongeBob SquarePants 4-D, following SpongeBob, Patrick, and Sandy as they go
jellyfishing.

18: SpongeBob SquarePants: Original Theme Highlights is the first album of songs
played on the Nickelodeon TV series "SpongeBob SquarePants", featuring tracks
sung by the cartoon's characters..

19: The series has a wide range of guest stars, including Antonio Banderas, Scarlett
Johansson, Jeffrey Tambor, Alec Baldwin, and David Hasselhoff.

20: SpongeBob SquarePants 4-D is a cel-shaded 4-D film based upon the popular
television series "SpongeBob SquarePants" and can be found at many aquariums
and theme parks across the world.

Figure A1: An example of generated IPs with portions of the first- and second-level nodes from HotpotQA. The
nodes on the right are second-level nodes generated from the first-level nodes on the left. The connections in the
middle represent attention weights, with higher weights shown as redder and thicker lines. For brevity, lines with
attention weights less than 0.05 are omitted, and some lengthy text is truncated.
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Attention Graph Construction

Prompt:

Summary the following information. Each segment is separated by a new line symbol.

......
* Mrs. Tabitha Twitchit expects “fine company” for tea and fetches the children before her friends
arrive.
* Tabitha dresses Moppet and Mittens in clean pinafores and tuckers, and Tom in "all sorts of
elegant uncomfortable clothes" taken from a chest of drawers.
* Tom is fat and bursts several buttons, but his mother sews them back on again.
* Tabitha turns her kittens into the garden to keep them out of the way while she makes hot buttered
toast for the party.
......

Split your summary into different summary points according to the semantic information
in these information points. It is not necessary to generate each summary point for each information
point. Gather and organize information into summary points. In each summary point, try to avoid
using pronouns like he/she/they and instead use full names. Generate in the format of:

* summary point
* summary point
* summary point
......

Do not provide any explanation and start the summary directly.

Response:

* Mrs. Tabitha Twitchit expects fine company for tea and dresses Mittens, Tom Kitten,
and Moppet in clean clothes.
* Mrs. Tabitha Twitchit sends Mittens, Tom Kitten, and Moppet to the garden to keep them out of
the way.
......

Table A1: The prompt used for the LLM during Attention Graph Construction, along with an example from
NarrativeQA. The italicized text represents the example context, while the remaining text represents the prompt
instructions. The prompt instructs the LLM to generate Information Points (IPs) in a bullet-point format, with each
bullet point representing an IP, which aligns well with the LLM’s inherent knowledge.
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Dynamic Graph Search

First-Turn Prompt:

Can this question be answered by the following information? Response “Yes” or “No” in
one word. Do not provide any explanation.

Question:
Where does the mother send her kittens to keep them out of the way while getting ready for the party?

Information:
......
* Mrs. Tabitha Twitchit sends Mittens, Tom Kitten, and Moppet to the garden to keep them out of
the way.
* Tabitha turns her kittens into the garden to keep them out of the way while she makes hot buttered
toast for the party.
......

First-Turn Response:

Yes

Second-Turn Prompt:

Given the above information and question, answer the question as concisely as you can.

Second-Turn Response:

The garden.

Table A2: Prompt used for Graph Search, with an example from NarrativeQA. The italicized text represents the
example context, while the remaining text represents the prompt instructions. In the first turn, the LLM is asked
whether the current context is sufficient to answer the query. If the response is “No,” additional context is appended
to the prompt, and the query is repeated. Once the LLM responds with “Yes,” the second turn prompts the LLM to
provide the final answer directly.

Dataset Average Min Max

NarrativeQA (Kočiský et al., 2018) 79,457 5,077 467,867
Qasper (Dasigi et al., 2021) 4,866 918 29,408
HotpotQA (Yang et al., 2018) 1,318 70 3,575
MuSiQue (Trivedi et al., 2022) 2,267 909 4,432

Table A3: Token length statistics for the NarrativeQA, Qasper, HotpotQA, and MuSiQue datasets, including the
average, minimum, and maximum token lengths per document.

Method NarrativeQA Qasper HotpotQA MuSiQue
TFLOPs TFLOPs TFLOPs TFLOPs

Llama-3.1-8B 3361.9 92.5 23.6 40.6

PECAN Attention Graph Construction 2042.8 136.6 40.2 66.7
PECAN Graph Search 31.0 66.9 16.0 30.9

PECAN Attention Graph Construction + Graph Search
1 queries per document 2073.8 203.5 56.2 97.6
2 queries per document 1052.4 135.2 36.1 64.3
4 queries per document 541.7 101.1 26.1 47.6
8 queries per document 286.4 84.0 21.0 39.2

Table A4: TFLOPs for graph construction and graph search. PECAN graph construction + graph search shows the
average TFLOPs per query when each document contains 1, 2, 4, or 8 queries.

17


	Introduction
	Related Work
	Methodology
	Attention Graph Construction
	Dynamic Graph Search
	Dynamic Progress Control
	Graph Search


	Experiments
	Main Results
	Ablation Study
	Dynamic Retrieval Analysis
	Effectiveness-Efficient Trade-off Study

	Conclusion
	Limitations
	Prompt
	Attention Graph Construction Prompt
	Graph Search Prompt

	KV Caching in Dynamic Progress Control
	Query-Node Attention Computation
	Summary Graph Example
	Datasets Statistics
	Efficiency Analysis
	Scientific Artifact Use

