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ABSTRACT

Recent representation learning approaches to polish global semantics of neural
topic models optimize the weighted linear combination of the evidence lower
bound (ELBO) of the log-likelihood and the discriminative objective that contrasts
instance pairings. However, contrastive learning on the individual level might cap-
ture noisy mutual information that is irrelevant to the topic modeling task. More-
over, there is a potential conflict between the ELBO loss that memorizes input
details for better reconstruction quality, and the contrastive term which attempts
to generalize representations among inputs. To address the issues, we firstly hy-
pothesize that useful features should be shared among multiple input samples. For
that reason, we propose a novel set-based contrastive learning method for neural
topic models to employ the concept of multi-sample representation learning. Sec-
ondly, because the solution of the linear combination approach might not satisfy
all objectives when they compete, we explicitly cast contrastive topic modeling as
gradient-based multi-objective optimization, with the goal of achieving a Pareto
stationary solution. Extensive experiments demonstrate that our framework con-
sistently produces higher-performing neural topic models in terms of topic coher-
ence, topic diversity, and downstream performance.

1 INTRODUCTION

As one of the most prevalent methods for document analysis, topic modeling has been utilized to
discover topics of document corpora, with applications spanning from sentiment analysis (Brody &
Elhadad, 2010; Naskar et al., 2016; Zhao et al., 2020), to language generation (Jelodar et al., 2019;
Nguyen et al., 2021), and to recommender system (Cao et al., 2017; Zhu et al., 2017; Gong et al.,
2018; Jelodar et al., 2019). As a conventional technique, Latent Document Analysis (LDA) (Blei
et al., 2003) and its extensions perform Gibb sampling and mean field approximation to capture
interpretable topic concepts. In recent years, with widespread successes of the Variational Autoen-
coder (VAE) (Kingma & Welling, 2013), neural network for topic modeling has been proposed,
dubbed as Neural Topic Model (Miao et al., 2016), to inherit the encoder-decoder architecture of
VAE. Exploiting the standard Gaussian as the prior distribution, neural topic models have not only
produced expressive global semantics but also achieved high degree of flexibility and scalability to
large-scale document collections (Wang et al., 2021c; 2020; Gupta et al., 2020).

It is well-known that neural topic model training procedure optimizes the evidence lower bound
of the log data likelihood. The lower bound jointly lowers the reconstruction and the latent loss.
Whereas the first component enhances the reconstruction quality, the second one indirectly pressures
the reconstructor by regularizing its inputs, the latent representations, with distributional constraints.
Thus, the joint optimization induces a trade-off between the two losses (Higgins et al., 2016; Lin
et al., 2019a; Asperti & Trentin, 2020). One resolution is to introduce the optimal weight on the
latent term to balance the contradiction, which requires computationally exhaustive and possibly
prohibitively expensive manual hyperparameter tuning (Rybkin et al., 2021). To circumvent the
problem, previous topic modeling research integrates contrastive learning with its pretext task, in-
stance discrimination, as an auxiliary objective (Le & Akoglu, 2019; Nguyen & Luu, 2021; Li et al.,
2022), since input contrastion has been proven as an effective regularizer to promote generalizability
(Tang et al., 2021; Kim et al., 2021; Lee et al., 2022). By iteratively discriminating different sam-
ples, contrastive learning is able to directly adapt to the influence upon the inputs without depending
on manually external assessment.
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Figure 1: Illustration of the intense low-level feature influence on produced topics. We record the
cosine similarity of the input with the document instance 1 and document instance 2’s topic repre-
sentations generated by NTM+CL (Nguyen & Luu, 2021) and our neural topic model. Although
the input and instance 2 both portray the electric topic, the similarity for the (input, instance 1) pair
is higher, because the input and instance 1 share the number of non-zero entries and maximum-
minimum frequency ratio.
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Instance 2
Number of non-zero entries: 3
Max-Min Frequency ratio: 1

study week test school one make use circuit electrical

NTM+CL: 0.2453 
Our Model: 0.0460

NTM+CL: 0.0452 
Our Model: 0.5100

Table 1: Illustration of the effects of peculiar words on topic representations. We record the cosine
similarity of the input and the document instances’ topic representations generated by NTM+CL
(Nguyen & Luu, 2021) and our neural topic model. As shown with underlined numbers, inserting
unusual term, such as zeppelin or scardino, unexpectedly raises the similarity of two unrelated tex-
tual sequences, even surpassing the similarity of the semantically close pair.

Input Document Instance
Cosine Similarity

NTM+CL Our Model

shuttle lands on planet
job career ask development 0.0093 0.0026

star astronaut planet light moon 0.8895 0.9178

shuttle lands on planet zeppelin/scardino
job career ask development zeppelin/scardino 0.9741/0.9413 0.0064/0.0080

star astronaut planet light moon 0.1584/0.2547 0.8268/0.7188

However, in order to discriminate input instances, contrastive learning mainly involves mutual in-
formation, which arouses two significant challenges for neural topic models. First of all, instance
discrimination could intensely concentrate on low-level mutual features (Tschannen et al., 2019),
for instance, the non-zero entry quantity and the ratio of maximum-minimum frequency, which are
illustrated in Figure 1 as incurring irrelevant topic representations. Second, as the contrastive objec-
tive bears a regularizing impact to improve generalization of hidden representations, generalizable
but inefficient features to topic modeling could emerge, especially when the amount of mutual infor-
mation exceeds the minimal sufficient statistics (Tian et al., 2020). For example, the discrimination
task could go beyond mutual topic themes to encode the common existence of peculiar words or
phrases, as depicted in Table 1. As a result, there is a need to control the encoding of the contrastive
objective to rightly balance the influence of mutual information on the neural topic model training.

To address the first issue, we hypothesize that useful signals for neural topic models should be shared
among a group of input documents (Hjelm et al., 2018). For example, if the model aims to seize the
sport topic, it has to detect the common sport theme in multiple documents. Intuitively, such shared
semantics define sufficient information to encourage topic models to attain efficacious features, and
the learned representations should reflect the multi-sample motivation. To this end, we propose a
novel Set-based Contrastive Learning for Neural Topic Models. The set-based concept is realized by
arbitrarily drawing a mini-batch and dividing samples into equivalent sets in each iteration. For set
representation extraction, we employ the class of symmetric functions to accomplish order-invariant
encodings. Furthermore, with a view to maximizing the training efficiency, we propose to permute
the mini-batch a number of times to increase the set quantity.

Regarding the second issue, an apparent resolution is to predetermine linear weights for the ELBO
and contrastive losses, where the weights function as the inductive bias to manage their effects.
Nonetheless, in general scenarios, if the tasks conflict with each other, the linear-combination for-
mulation proves to be a deficient method since there does not exist a parameter set satisfying all
objectives (Liang et al., 2021; Mahapatra & Rajan, 2020). Unfortunately, those schemes apply for
contrastive neural topic models, since the contrastive element could encode excessive mutual infor-
mation that competes with useful features learned by the ELBO loss (Tian et al., 2020). To this
end, we propose to formulate the training of the neural topic model as a multi-objective optimiza-
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tion problem. The optimization takes into account the gradients of the contrastive and the ELBO
loss to find the Pareto stationary solution, which optimally balances the trade-off among objectives
(Sener & Koltun, 2018). Our proposed approach regulates the encoder so that it polishes the overall
encoded topics of neural topic models, as measured by topic interpretability in the empirical study.

In a nutshell, the contributions of our paper are:
• We propose a novel self-supervised constrastive learning task of set discrimination for neu-

ral topic models.
• We reformulate our contrastive-aided topic modeling as a multi-task learning problem and

propose to adapt multi-objective optimization algorithm to find a Pareto solution that mod-
erates the effects of multiple objectives on the topic model parameter update.

• Extensive experiments on four popular topic modeling datasets demonstrate that our ap-
proaches can enhance contrastive neural topic models in terms of topic coherence, topic
diversity, and downstream performance.

2 RELATED WORKS

Neural Topic Models. We consider neural topic models proposed by (Krishnan et al., 2018; Miao
et al., 2016; Srivastava & Sutton, 2017; Dieng et al., 2020; Burkhardt & Kramer, 2019; Card et al.,
2018; Nguyen & Luu, 2021) as the closest line of related works to ours. Recent research has further
sought to constrain the capacity of the latent channel in VAE, thus encouraging the model to learn
more general and disentangled factors. In particular, to advance visual latent information bottleneck,
(Higgins et al., 2016) propose to elevate the latent objective weight, (Mathieu et al., 2019) decom-
pose latent representations, and (Ren et al., 2021) discover traversal directions in generative factors
of unsupervised models. Despite all of those achievements in visual modeling, little effort has been
put into polishing the generalizability of latent representations in neural topic models.

Contrastive Representation Learning. Contemporary contrastive learning mechanisms follow the
sample-wise approach. Several proposed methods to elegantly generate samples comprise using the
momentum encoder to estimate positive views (He et al., 2020), the memory bank to store negative
ones (Wu et al., 2018), and modifying original salient/non-salient entries to create negative/positive
samples (Nguyen & Luu, 2021). Nevertheless, in instance-based contrastive learning, each input is
assumed to perceive a disparate category that different ones are concluded to be separate, regardless
of some level of potential analogy between them. To address the issue, a surge of interest presents the
cluster concept into contrastive representation learning, which groups hidden features into clusters
and performs discrimination among groups (Guo et al., 2022; Li et al., 2020; 2021; Caron et al.,
2020; Wang et al., 2021b). On the other hand, our method operates upon the input level, directly
divides raw documents into random sets, and only aggregates features on-the-fly during training.

Multi-Objective Optimization for Multi-Task Learning (MTL). Latest myriad efforts have been
interested in Multi-Objective Optimization (MOO) for Multi-Task Learning, which can address the
quandary of optimizing competing objectives for deep neural networks (Mahapatra & Rajan, 2020;
Lin et al., 2019b; 2020). Within the framework, the most prominent strategy advocates the gradient-
based approach, leveraging the back-propagated gradients to determine a descent direction for all
loss values. Developed by (Désidéri, 2012), the gradient based MOO has been applied to image
classification (Mahapatra & Rajan, 2020; Liang et al., 2021), semantic segmentation (Liang et al.,
2021), sequential decision making (Roijers et al., 2013), and multi-agent learning (Ghosh et al.,
2013; Pirotta & Restelli, 2016; Parisi et al., 2014). In our circumstance, we propose a novel inter-
pretation of the contrastive neural topic model from the multi-objective optimization viewpoint, in
order to resolve the potential conflict of redundant mutual information with topic modeling signals.

3 BACKGROUND

3.1 NEURAL TOPIC MODELS

Contemporary neural topic model (NTM) inherits the framework of Variational Autoencoder (VAE)
where latent variables are construed as topics. Suppose the linguistic corpus possesses V unique
words, i.e. vocabulary size, each document is represented as a word count vector x ∈ RV and
a latent distribution over K topics z ∈ RK . The NTM makes an assumption that z is generated
from a prior distribution p(z) and x is from the conditional distribution pϕ(x|z) parameterized
by a decoder ϕ. The goal of the model is to discover the document-topic distribution given the
input. The discovery is implemented as the estimation of the posterior distribution p(z|x), which is
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approximated by the variational distribution qθ(z|x), modelled by an encoder θ. Inspired by VAEs,
the NTM is trained to minimize the following objective based upon the Evidence Lower BOund
(ELBO):

min
θ,ϕ

LELBO = −Eqθ(z|x) [log pϕ(x|z)] +KL [qθ(z|x) ∥ p(z)] (1)

The first term above denotes the expected log-likelihood or the reconstruction error. The second
term is the Kullback-Leibler divergence that regularizes qθ(z|x) to be close to the prior distribution
p(z). By enforcing the proximity of the latent distribution to the prior, the regularization term puts
a constraint on the latent bottleneck to bound the reconstruction capacity, thus inducing a trade-off
between the two terms in the ELBO-based objective.

3.2 CONTRASTIVE REPRESENTATION LEARNING

Contrastive formulation maximizes the agreement by learning similar representations for different
views of the same input (called positive pairs), and ensures the disagreement via generating dissim-
ilar representations of disparate inputs (called negative pairs). Technically, given a B-size batch of
input documents X = {x1,x2, . . . ,xB},xi ∈ RV , firstly data augmentation t ∼ T is applied to
each sample xi to acquire the augmented view yi, then form the positive sample (xi,yi), and pairs
that involve augmentations of distinct instances (xi,yj), i ̸= j, become negative samples. Subse-
quently, a prominent approach is to train a projection function f by minimizing the InfoNCE loss
(Oord et al., 2018):

Lnce = −Exi∼X

[
log

ef(xi,yi)∑N
j=1 e

f(xi,yj)

]
, (2)

where f defines a similarity mapping RV × RV → R, estimated as follows:

f(x,y) =
gφ(x)

T gφ(y)

∥ gφ(x) ∥∥ gφ(y) ∥
/τ, (3)

where gφ denotes the neural network parameterized by φ, τ the temperature to rescale the score
from the feature similarity.

3.3 GRADIENT-BASED MULTI-OBJECTIVE OPTIMIZATION FOR MULTI-TASK LEARNING

A MTL problem considers a tuple of M tasks with a vector of non-negative losses:

min
θ

L(θ) = (L1(θ),L2(θ), . . . ,LM (θ))T , (4)

where Li denotes the loss of the i-th task, θ the parameter of the shared hypothesis. In most circum-
stances, no single parameter set can accomplish the minimal values for all loss functions. Instead,
the more prevailing solution is to seek the Pareto stationary solution, which sustains optimal trade-
offs among objectives (Sener & Koltun, 2018; Mahapatra & Rajan, 2020). Theoretically, a Pareto
stationary solution satisfies the Karush-Kuhn-Tucker (KKT) conditions as follows,
Theorem 1. Let θ∗ denote a Pareto point. Then, there exists non-negative scalars {αi}Mi=1, i ∈
{1, 2, . . . ,M} such that

M∑
i=1

αi = 1 and
M∑
i=1

αi∇Li(θ
∗) = 0 (5)

In consequence, the conditions lead to the following optimization problem:

min
{αi}M

t=1

{∥∥∥∥ M∑
i=1

αi∇θsharedLi(θ
shared, θi)

∥∥∥∥2
2

∣∣∣∣ M∑
i=1

αi = 1, αi ≥ 0 ∀i

}
(6)

Either the solution to the above problem does not exist, i.e. the outcome meets the KKT conditions,
or the solution supplies a descent direction that decreases all per-task losses (Désidéri, 2012). Hence,
the procedure would become gradient descent on task-oriented parameters followed by solving (6)
and adapting

∑M
i=1 αi∇θsharedLi(θ

shared, θi) as the gradient update upon shared parameters.
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4 METHODOLOGY

Algorithm 1: Pseudo-code of Multi-task Set-
based Contrastive Neural Topic Model.
# Dataset D, batch size B, encoder
parameter θ, decoder parameter ϕ,
augmentation t ∼ T , learning rate η,
temperature τ

for minibatch in D :
# neural topic model step
for i = 1 to B :

yi = t(xi), zi = fθ(xi), z
′
i = fθ(yi)

LELBO =
1
B

∑B
i=1 LVAE(xi)

# set-based contrastive learning
let π = permutation matrix of size
P ×B

let N = BP
K

, let H = []
for i = 1 to N :

κ = π[:, (i− 1)K + 1 : iK]
h = ϕ (zκ1 , zκ2 , ..., zκK )
h′ = ϕ

(
z′κ1

, z′κ2
, ..., z′κK

)
H.append(h, h′)

si,j =
H⊤

i Hj

∥Hi∥∥Hj∥
/τ ; 1 ≤ i, j ≤ 2N

Lnce =

− 1
2N

∑N
l=1 log

(
e
s2l−1,2l∑2N

j=1 e
s2l−1,j · e

s2l,2l−1∑2N
j=1 e

s2l,j

)
# Multi-objective optimization
α = solver(∇θLnce,∇θLELBO)
Gθ = α∇θLnce + (1− α)∇θLELBO

Gϕ = ∇ϕLELBO

θ = θ − η ·Gθ, ϕ = ϕ− η ·Gϕ

return θ and ϕ

In this section, we introduce the details
and articulate the analysis of our pro-
posed set-based contrastive learning ap-
proach. Thereupon, we delineate the
multi-objective optimization framework
for contrastive neural topic models.

4.1 SET-BASED CONTRASTIVE
LEARNING FOR NEURAL TOPIC MODEL

In this work, we take a step further by
generalizing previous instance discrimina-
tion to the set representation learning by
designating the network to capture order-
invariant features. Future work can be ex-
tended to investigate the efficacy of other
data structures in addition to the set.

Sample augmentation. Firstly, given a
mini-batch of B samples, we perform data
augmentation t ∼ T to generate a set of
B counterpart samples {y1,y2, . . . ,yB},
where yi = t(xi) for i ∈ {1, 2, . . . , B}.
We develop the Embedding-based Sam-
pling (ES) method for the inputs of the
neural topic model. In particular, given
each word j ∈ {1, 2, . . . , V } in xi

whose xi,j > 0, we extract S words
{wj,1, wj,2, . . . , wj,S}, whose pretrained
embeddings are spatially nearest to the one
of word j. Subsequently, we randomize from {wj,s}Ss=1 and substitute xi,j into the wj,s-th entry
of yi. Such substitution creates a new document with semantically similar words to the original
one, thus preserving the original semantics and validating the veracity of our data augmentation
approach.

Feature Extraction. For a mini-batch, each set is constructed by grouping every K input samples.
Subsequently, we proceed to extract the set’s representation as follows,

h = φ(fθ(x1), fθ(x2), . . . , fθ(xK)), (7)

h′ = φ(fθ(y1), fθ(y2), . . . , fθ(yK)), (8)

where fθ denotes the θ-parameterized encoder of the neural topic model, φ the symmetric pooling
operator. We exert this formulation for all of the experiments and report its variants with different
pooling functions in the Appendix.

Input Permutation. A plain process to generate sets of K incidents would be to distribute every K
samples into a set. Unfortunately, this method yields deficient performance because of the following
reasons. Firstly, the number of sets is limited as this naive approach only produces ⌊B

K ⌋ sets, thus
⌊B
K ⌋ positive and 2

(
⌊B
K ⌋ − 1

)
negative pairs for each mini-batch. Secondly, the utilization of input

samples is sub-optimal because each sample is only considered once for the set construction.

To cope with those dilemmas, we propose to permute the input indices to augment both positive and
negative set pairs. Procedurally, in the beginning, we extract hidden features of B input samples.
Next, we create a permutation matrix of size P ×B in which each row is a list of permuted indices
from 1 to B, and inherently P is the number of times we shuffle the indices. Thereafter, each set
can be established by assembling K elements corresponding to the permutation matrix. Eventually,
we conduct pooling to acquire features of the augmented and original sample sets.

Our proposed approach brings about the burgeoning number of positive and negative pairs through
raising the set number to ⌊BP

K ⌋ sets, thus maximizing the capacity of the set-based contrastive
representation learning. Empirical analysis shows the effectiveness of our permutation step.
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4.2 EXPLANATORY ANALYSIS: MERITS OF SET-BASED CONTRASTIVE LEARNING FOR
NEURAL TOPIC MODEL

As indicated in the literature, contrastive discrimination approach will provide valuable representa-
tions if the sampling strategy can form hard negatives and the representation learning can conquer
shared information (Zhang & Stratos, 2021; Hjelm et al., 2018). Here we hypothetically and the-
oretically prove that our set-based contrastive learning enjoys both merits to better polish topic
representations of the neural topic model than the instance-based technique.

Hard Negative Sampling. First of all, we devise a permutation method to enable an input document
to occur in multiple sets. As a result, sets are composed of similar instances and partially overlap
with one another, making differentiating among them more difficult.

Secondly, in some circumstances, hard negatives drawn by individual discrimination systems are
indeed false negatives because they belong to the same document semantic category (Robinson
et al., 2020), leading to semantic collapse. Interestingly enough, our method is able to miti-
gate such representation collapse. Particularly, assume that the predefined topic number is C,
and the topics are balancingly distributed, then the cardinalities of semantic categories for indi-
vidual and set discrimination schemes are C and CK , respectively. Correspondingly, the like-
lihood of incorrectly contrasting samples from the same topic category for set discrimination
pset(false negative|hard negative) = 1/(CK−1) (every set has one augmented sample), whereas for
individual discrimination pind(false negative|hard negative) = 1/C ≥ 1/(CK − 1) (K,C ≥ 2), i.e.
semantic collapse is harder to take place for set-based than individual-based contrastive learning.

That being the case, set discrimination supplies more correctly hard negatives and emerges to be
more daunting than the instance one, consequently leading to better robustness of the topic repre-
sentation learning (Wang et al., 2021a; Ge et al., 2021; Kalantidis et al., 2020).

Common Feature Learning. We prove the common feature learning property of our proposed
set-based contrastive method from two perspectives. First of all, the set-based InfoNCE loss favors
mutual information that is prevalent among documents, according to the following theorem:
Theorem 2. Let xi,xj ,yi,yj be the two elements of a set, and their corresponding augmented
variants, i.e. t(xi) = yi, t(yj) = yj; zi, zj , z′i, z

′
j be the topic representations of xi,xj ,yi,yj , i.e.

f(xi) = zi, f(xj) = zj , f(yi) = z′i, f(yj) = z′j; z and z′ be set features pooled from (zi, zj) and
(z′i, z

′
j), respectively. Define I(x,y) to be the mutual information between two variables x and y,

then:
LInfoNCE(z, z

′) ≤ I(z,xi) + I(z,xj) + I[(xi,xj)|z]. (9)

We provide the proof of the theorem (2) in the Appendix. As it can be observed, the upper bound
of the set-based InfoNCE loss resembles the objective in Deep InfoMax (Hjelm et al., 2018), which
captures common information across multiple inputs.

Second of all, despite aggregating several documents into a set, set representations uses the same di-
mension with instance representations. This bottlenecks set representations in the original boundary,
thus discouraging the topic encoder to learn specific features to a single instance, since sparing space
for instance-specific features will decrease the capacity for mutual features with other instances.

4.3 MULTI-OBJECTIVE OPTIMIZATION FOR NEURAL TOPIC MODEL

Problem Statement. For a given neural topic model, we seek to find preference vectors α that
produces adept gradient update policy

∑
i αi∇fi. For the contrastive neural topic model, because

only the neural topic encoder receives the gradients of both contrastive and topic modeling objec-
tives, we focus on modulating the encoder update while keeping the decoder learning intact. Hence,
motivated by formulation (6), our optimization problem becomes:

min
α

{∥∥∥∥α∇θLnce(θ) + (1− α)∇θLELBO(θ, ϕ)

∥∥∥∥2
2

∣∣∣∣α ≥ 0

}
(10)

which is a convex quadratic optimization with linear constraints. Erstwhile research additionally
integrates prior information to compose solutions that are preference-specific among tasks (Maha-
patra & Rajan, 2020; Lin et al., 2019b; 2020). However, for neural topic modeling domain, such
information is often unavailable, so we exclude it from our problem notation.
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Optimization Solution. Our problem formulation involves convex optimization of multi-
dimensional quadratic function with linear constraints. Formally, we derive the analytical solution
α̂ as:

α̂ = solver[∇θLnce(θ),∇θLELBO(θ, ϕ)] = −

 (∇θLnce(θ)−∇θLELBO(θ, ϕ))
T ∇θLnce(θ)∥∥∥∥∇θLnce(θ)−∇θLELBO(θ, ϕ)

∥∥∥∥2
2


+
(11)

where [.]+ denotes the ReLU operation. After accomplishing α̂, we plug the vector to control the
gradient for the neural topic encoder, while maintaining the update upon the neural topic decoder
whose value is determined by the back-propagation of the reconstruction loss. The pseudo-code of
our Multi-Task Learning framework for Set-based Contrastive Neural Topic Model is depicted in
Algorithm 1.

5 EXPERIMENTS

In this section, we conduct experiments and empirically demonstrate the effectiveness of the pro-
posed methods for neural topic models. We provide the experimental setup and report numerical
results along with qualitative studies. Examples of the produced topics can be found in the Ap-
pendix.

5.1 EXPERIMENTAL SETUP

Benchmark Datasets. We adopt popular benchmark datasets spanning various domains, vocabulary
sizes, and document lengths for experiments: (i) 20Newsgroups (20NG) (Lang, 1995), one of the
most well-known datasets for topic model evaluation, consisting of 18000 documents with 20 labels;
(ii) IMDb (Maas et al., 2011), the dataset of movie reviews, belonging to two sentiment labels, i.e.
positive and negative; (iii) Wikitext-103 (Wiki) (Merity et al., 2016), comprising 28500 articles
from the Good and Featured section on Wikipedia; (iv) AG News (Zhang et al., 2015), consisting of
news titles and articles whose size is 30000 and 1900 for training and testing subsets, respectively.

Evaluation Metrics. To evaluate the topic coherence of generated topics, we follow previous works
(Hoyle et al., 2020; Wang et al., 2019; Card et al., 2018; Nguyen & Luu, 2021) to extract the top
10 words, utilize the testing split of each dataset as the reference corpus to calculate the Normalized
Pointwise Mutual Information (NPMI) score for every topic, then obtain the topics’ mean value.
Furthermore, because the topic quality also depends on the usefulness for downstream tasks, we
estimate the text classification performance of the produced topics, leveraging the F1 score as the
evaluation measure.

Baseline Models. We compare our proposed approaches with the following state-of-the-art neu-
ral topics models: (i) (NTM) (Miao et al., 2016), a topic model that inherits the encoder-decoder
paradigm of the VAE architectue and standard Gaussian as the prior distribution; (ii) (ETM) (Dieng
et al., 2020), a NTM which models the topic-word distribution with topic and word embeddings;
(iii) (DVAE) (Burkhardt & Kramer, 2019), a NTM whose Dirichlet is the prior for both topic and
word distributions; (iv) BATM (Wang et al., 2020), a GAN-based neural topic model which is com-
posed of an encoder, a generator, and a discriminator; (v) W-LDA (Nan et al., 2019), an application
of Wasserstein autoencoder as a topic model; (vi) SCHOLAR (Card et al., 2018), a NTM that in-
corporates external variables and uses logistic normal as the prior distribution; (vii) SCHOLAR +
BAT (Hoyle et al., 2020), a SCHOLAR model applying knowledge distillation in which BERT is the
teacher and the neural topic model is the student; (viii) NTM + CL (Nguyen & Luu, 2021), a NTM
which jointly trains evidence lower bound and the individual-based contrastive learning objective.

Implementation Details. For implementation, we designate MaxPooling as the set representation
extraction function, Word2Vec (Mikolov et al., 2013) as pretrained embedding for our embedding-
based augmentation, and experiment with different set cardinality K ∈ {1, 2, 3, 4, 5, 6} and permu-
tation matrix size P ∈ {1, 2, 4, 8, 16, 32}. More implementation details of neural topic models can
be found in the Appendix.
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Table 2: Topic Coherence and Topic Diversity results on 20NG and IMDb datasets.

Method
20NG IMDb

C = 50 C = 200 C = 50 C = 200
NPMI TD NPMI TD NPMI TD NPMI TD

NTM 0.283±0.004 0.734±0.009 0.277±0.003 0.686±0.004 0.170±0.008 0.777±0.021 0.169±0.003 0.690±0.015
ETM 0.305±0.006 0.776±0.022 0.264±0.002 0.623±0.002 0.174±0.001 0.805±0.019 0.168±0.001 0.687±0.007
DVAE 0.320±0.005 0.824±0.017 0.269±0.003 0.786±0.005 0.183±0.004 0.836±0.010 0.173±0.006 0.739±0.005
BATM 0.314±0.003 0.786±0.014 0.245±0.001 0.623±0.008 0.065±0.008 0.619±0.016 0.090±0.004 0.652±0.008
W-LDA 0.279±0.003 0.719±0.026 0.188±0.001 0.614±0.002 0.136±0.007 0.692±0.016 0.095±0.003 0.666±0.009

SCHOLAR 0.319±0.007 0.788±0.008 0.263±0.002 0.634±0.006 0.168±0.002 0.702±0.014 0.140±0.001 0.675±0.005
SCHOLAR + BAT 0.324±0.006 0.824±0.011 0.272±0.002 0.648±0.009 0.182±0.002 0.825±0.008 0.175±0.003 0.761±0.010

NTM+CL 0.332±0.006 0.853±0.005 0.277±0.003 0.699±0.004 0.191±0.004 0.857±0.010 0.186±0.002 0.843±0.008
Our Model 0.340±0.005 0.913±0.019 0.291±0.003 0.905±0.004 0.200±0.007 0.916±0.008 0.197±0.003 0.892±0.007

Table 3: Topic Coherence and Topic Diversity results on Wiki and AG News datasets.

Method
Wiki AG News

C = 50 C = 200 C = 50 C = 200
NPMI TD NPMI TD NPMI TD NPMI TD

NTM 0.250±0.010 0.817±0.006 0.291±0.009 0.624±0.011 0.197±0.015 0.729±0.007 0.205±0.002 0.797±0.002
ETM 0.332±0.003 0.756±0.013 0.317±0.009 0.671±0.006 0.204±0.004 0.736±0.006 0.055±0.002 0.683±0.005
DVAE 0.404±0.006 0.815±0.009 0.359±0.007 0.721±0.011 0.271±0.016 0.850±0.013 0.182±0.001 0.746±0.005
BATM 0.336±0.010 0.807±0.005 0.319±0.005 0.732±0.012 0.256±0.019 0.754±0.008 0.144±0.003 0.711±0.006
W-LDA 0.451±0.012 0.836±0.007 0.308±0.007 0.725±0.014 0.270±0.033 0.844±0.014 0.135±0.004 0.708±0.004

SCHOLAR 0.429±0.011 0.821±0.010 0.446±0.009 0.860±0.014 0.278±0.024 0.886±0.007 0.185±0.004 0.747±0.002
SCHOLAR + BAT 0.446±0.010 0.824±0.006 0.455±0.007 0.854±0.011 0.272±0.027 0.859±0.008 0.189±0.003 0.750±0.001

NTM+CL 0.481±0.005 0.841±0.012 0.462±0.006 0.831±0.016 0.279±0.025 0.890±0.007 0.190±0.002 0.790±0.006
Our Model 0.496±0.010 0.959±0.010 0.491±0.006 0.938±0.011 0.325±0.012 0.934±0.012 0.221±0.003 0.885±0.004

5.2 MAIN RESULTS

Overall Results. Table 2 and 3 show the topic quality results with topic number C = 50 and
C = 200. We run all models five times with different random seeds and record the mean and
standard deviation of the results. As it can be seen, we have the remarks that our method achieves
the best topic coherence on three benchmark datasets. We outperform the state-of-the-art NTM+CL
(Nguyen & Luu, 2021) and other baselines in both C = 50 and C = 200 scenarios. We also
conduct significance tests to prove the significant and robust improvement of our multi-task set-
based contrastive framework, which can be found in the Appendix.

5.3 DOCUMENT CLASSIFICATION

For the downstream experiment, we extract latent distributions inferred by neural topic models in
the C = 50 setting and train Random Forest classifiers with the number of decision trees of 100
to predict the class of each input. 20NG and IMDb datasets are designated for the experiment. As
shown in Table 4, our model accomplishes the best performance over other neural topic models,
substantiating the refined usefulness of the topic representations yielded by our model.

5.4 ABLATION STUDY

Objective Control Strategy. We perform an ablation study and analyze the importance of our pro-
posed multi-objective training framework. In detail, we remove the Pareto stationary solver and
then conduct the training with the approaches of linear combination, in which we attach the weight
α to the contrastive objective with α ∈ {0.25, 0.5}, the Uncertainty Weighting (UW) (Kendall et al.,
2018), gradient normalization (GradNorm) (Chen et al., 2018), Projecting Conflicting Gradients
(PCGrad) (Yu et al., 2020), and Random Weighting (RW) (Lin et al., 2021). Without the multi-
objective framework, the contrastive neural topic model suffers from sub-optimal performance, as
shown in Table 5. Hypothetically, this means that in the fixed linear and heuristics weighting sys-
tems, the optimization procedure could not efficiently adapt to the phenomenon that the contrastive
objective overwhelms the topic modeling task. Hence, contrasting samples might supply excessive
mutual information which eclipses the useful features for topic learning.

Sample Set Size. Here we investigate the influence of the set size upon the topic representations
of the neural topic model. Procedurally, for P = 8, we gradually increase the number of elements,
execute the training, and plot the results, which are l2-normalized for visibility, in Figure 2. We
observe that the initial growth of the set cardinality results in the performance improvement until
it surpasses the threshold at which the burgeon ceases and the topic quality starts decreasing. In-
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Table 4: Text classification results with topic
representations.

Method 20NG IMDb
BATM 30.8 66.0
SCHOLAR 52.9 83.4
SCHOLAR + BAT 32.2 73.1
NTM+CL 54.4 84.2
Our Model 57.0 86.4

Table 5: Ablation Results on the Objective Con-
trol Strategy.

Method Wiki

C = 50 C = 200
UW 0.482±0.009 0.474±0.005

GradNorm 0.485±0.007 0.469±0.006
PCGrad 0.489±0.011 0.472±0.005

RW 0.492±0.009 0.476±0.007
Linear-α = 0.25 0.483±0.011 0.487±0.007
Linear-α = 0.50 0.491±0.015 0.485±0.004

Our Model 0.496±0.010 0.491±0.006

Figure 2: Topic Coherence with different set
size.
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Figure 3: Topic Coherence with different permu-
tation matrix size.
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tuitively, we reason that escalating the set size leads to more challenging representation learning
because the model needs to gauge common features of more documents. In consequence, only if
representation learning is sufficiently difficult can the network preserve auspicious information to
benefit the topic distribution outputs.

Permutation Matrix Size. We now extend our study to the effect of the matrix permutation size,
i.e. the number of permutation times, on the learned network. Similar to Figure 2, we report the
normalized performance of the set-based contrastive neural topic model with varying numbers of
permutation P ∈ {1, 2, 4, 8, 16, 32} for K = 4 in Figure 3. We realize that set-based discrimination
becomes more effective when the permutation matrix grows because there are elevated numbers of
positive and negative sets. However, when there is overwhelming contrastive information, our multi-
task framework produces adaptive weights to constrain the impact of the discrimination objective,
inducing the convergence of the topic coherence quality.

5.5 ANALYSIS

Effects of Set-based and Instance-based Contrastive Learning on Topic Representations. As
mentioned, Table 1 and Figure 1 include the similarity scores of the input with different document
samples. Different from NTM+CL (Nguyen & Luu, 2021), our model does pull together latent
representations of semantically close topics. For example, in Figure 1, instance 2 still maintains
high equivalence level, despite its noticeable distinction with the input in terms of the low-level
properties. Furthermore, in Table 1, inserting unfamiliar words does not alter the similarity scale
between the input with two document samples. These results indicate that our set-based contrastive
learning focuses on encoding topic information and avoids low-level vector features.

6 CONCLUSION
In this paper, we propose a novel and well-motivated Multi-Task Set-based Contrastive Neural Topic
Model. Our contrastive approach incorporates the set concept to encourage the learning of common
instance features and constructs hard negative samples that partially overlap. We propose to adapt
multi-objective optimization to efficiently polish the encoded topic representations. Extensive exper-
iments indicate that our framework accomplishes state-of-the-art performance in terms of producing
both high-quality and useful topics.
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A PROOF OF THEOREM 2

Theorem 2. Let xi,xj ,yi,yj be the two elements of a set, and their corresponding augmented
variants, i.e. t(xi) = yi, t(yj) = yj; zi, zj , z′i, z

′
j be the topic representations of xi,xj ,yi,yj , i.e.

f(xi) = zi, f(xj) = zj , f(yi) = z′i, f(yj) = z′j; z and z′ be set features pooled from (zi, zj) and
(z′i, z

′
j), respectively. Define I(x,y) to be the mutual information between two variables x and y,

then:
LInfoNCE(z, z

′) ≤ I(z,xi) + I(z,xj) + I[(xi,xj)|z]. (12)

Proof. The probabilistic graphical model of our problem formulation can be denoted as follows,
(X1, X2)

(Z1, Z2)

Z

(Z ′
1, Z

′
2) , which is I-equivalent to

Z ′

(X1, X2)

(Z1, Z2)

Z

(Z ′
1, Z

′
2)

Z ′

Adapting Data Processing Inequality (Beaudry & Renner, 2012) to the above right graph, we have:

I((X1, X2);Z) ≥ I(Z,Z ′) ≥ InfoNCE(Z,Z ′), (13)

where I(X,Y ) represents the joint mutual information between two variables X and Y . Equipped
with the notion of entropy of a random variable, the joint and conditional mutual information quan-
tities can be derived as:

I((X1, X2), Z) = H(X1, X2)−H(X1, X2|Z), (14)
I((X1, X2)|Z) = H(X1|Z) +H(X2|Z)−H(X1, X2|Z), (15)

Moreover, the random construction of the pair of X1 and X2 makes them independent with each
other. Thus,

H(X1, X2) = H(X1) +H(X2) (16)

Combining this with Eq. (14) and (15) yields:

I((X1, X2);Z) = H(X1) +H(X2)−H(X1, X2|Z)

=H(X1) +H(X2)−H(X1|Z)−H(X2|Z) + I(X1, X2|Z)

= I(X1, Z) + I(X2, Z) + I(X1, X2|Z),

which completes the proof.

B SIGNIFICANCE TESTS

Table 6: Significance test results measured on the performance of NTM+CL (Nguyen & Luu, 2021)
and our model.

Metric
20NG IMDb Wiki

C = 50 C = 200 C = 50 C = 200 C = 50 C = 200

p-value 0.0230 0.0422 0.0408 0.0009 0.0406 0.0234

We conduct significance tests and report the p-values in Table 6. All of the p-values are smaller than
0.05, showing our multi-task set-based contrastive framework significantly outperforms the standard
contrastive learning method.
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Table 7: Topic Coherence results with different pooling functions.

Method IMDb

C = 50 C = 200
MinPooling 0.190±0.005 0.186±0.004

MeanPooling 0.194±0.006 0.195±0.010
SumPooling 0.191±0.007 0.188±0.005

GAP (Li et al., 2016) 0.197±0.003 0.196±0.005
FSP (Zhang et al., 2018) 0.199±0.004 0.195±0.007

PSWE (Naderializadeh et al., 2021) 0.194 ±0.006 0.191±0.003

MaxPooling 0.200±0.007 0.197±0.003

C CHOICE OF POOLING FUNCTIONS.

We experiment with different pooling operations and compare their performance with our choice of
MaxPooling function on the IMDb dataset. In detail, we adapt MeanPooling, SumPooling, Global
Attention Pooling (GAP) (Li et al., 2016), Featurewise Sort Pooling (FSP) (Zhang et al., 2018),
and Pooling by Sliced-Wasserstein Embedding (PSWE) Naderializadeh et al. (2021). We report
the outcomes of our multi-task set-based contrastive framework in Table 7. As it can be observed,
MaxPooling acquires the highest topic coherence quality. We hypothesize that different from other
aggregation functions, MaxPooling directly retrieves strong features, thus being able to extract im-
portant information and suppress the noise. In addition, we realize that our proposed framework
consistently outperforms the individual-based contrastive neural topic model, demonstrating the ro-
bustness of set-based contrastive learning with a variety of aggregation functions.

D TOPIC-BY-TOPIC RESULTS.

We perform individual comparison upon each of our topics with the aligned one generated by the
baseline contrastive neural topic model. Inspired by (Hoyle et al., 2020), we construct a bipartite
graph connecting our topics with the baseline ones. We adopt competitive linking to greedily es-
timate the optimal weight for the matching in our bipartite graph matching. The weight of every
connection is the Jensen-Shannon (JS) divergence between two topics. Each iteration will retrieve
two topics whose JS score is the lowest and proceed to remove them from the topic list. The proce-
dure is repeated until the lowest JS score surpasses a definite threshold. Figure 4 (left) depicts the
aligned score for three benchmark datasets. Inspecting visually, we extract 44 most aligned topic
pairs for the comparison procedure. As shown in Figure 4 (right), we observe that our approach
possesses more high-NPMI topics then the NTM+CL baseline. This demonstrates the set-based
contrastive method not only improves general topic quality but also manufactures better individual
topics.

E HYPERPARAMETER SETTINGS

In Table 8, we denote hyperparameter details of our neural topic models, i.e. learning rate η, batch
size B, and the temperature τ for the InfoNCE loss. For training execution, the hyperparameters
vary with respect to the dataset.

F CASE STUDIES

Table 9 shows randomly selected examples of the discovered topics by the individual-based and
our set-based contrastive model. In general, our model produces topics which are more coherent
and less repetitive. For example, in the 20NG dataset, our inferred topic focuses on “computer
screening” topic with closely correlated terms such as “monitor”, “port”, and “vga”, whereas topic
of NTM+CL consists of “apple” and “orange”, which are related to “fruits”. For IMDb, our topic
mainly involves words concerning “martial art movies”. However, NTM+CL mix those words with
“zombies”, “flight”, and “helicopter”. In the same vein, there exists irrelevant words within the
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Figure 4: (left) Jensen-Shannon for aligned topic pairs of NTM+CL (Nguyen & Luu, 2021)
and Our Model. (right) The number of aligned topic pairs which Our Model improves upon
NTM+CL(Nguyen & Luu, 2021).
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Table 8: Hyperparameter Settings for Neural Topic Model Training.

Hyperparameter
20NG IMDb Wiki

C = 50 C = 200 C = 50 C = 200 C = 50 C = 200

sample set size K 4 4 3 3 4 4

permutation matrix size P 8 8 8 8 8 8

temperature τ 0.2 0.2 0.2 0.2 0.2 0.2

learning rate η 0.002 0.002 0.002 0.002 0.001 0.002

batch size B 200 200 200 200 500 500

Table 9: Examples of the topics produced by NTM+CL (Nguyen & Luu, 2021) and Our Model.

Dataset Method NPMI Topic

20NG
NTM+CL 0.2766 mouse monitor orange gateway video apple screen card port vga
Our Model 0.3537 vga monitor monitors colors video screen card mhz cards color

IMDb
NTM+CL 0.1901 seagal ninja martial arts zombie zombies jet fighter flight helicopter
Our Model 0.3143 martial arts seagal jackie chan kung hong ninja stunts kong

Wiki
NTM+CL 0.1070 architectural castle architect buildings grade historic coaster roller sculpture tower
Our Model 0.2513 century building built church house site castle buildings historic listed

baseline topic in the Wiki dataset, for example “grade”, “roller”, and “coaster”, while our topic
entirely concentrates on “architecture”.

G ANALYSIS OF SAMPLING APPROACHES

As indicated by Lnce in Algorithm 1, for each set i, we consider all sets j ̸= i, 1 ≤ j ≤ n as negative
sets. Therefore, we do not specify any negative sampling procedure, which makes our framework
simpler than (Nguyen & Luu, 2021).

As such, to examine whether the enhanced topic quality is derived from such difference in docu-
ment sampling strategies, we proceed to compare our Embedding-based Sampling with Word-based
Sampling (WS) (Nguyen & Luu, 2021) to draw positive and negative documents, which we uti-
lize to construct document sets. Conducted experiments in Table 10 do not observe any significant
difference with respect to sampling strategies, in terms of both topic coherence and topic diversity.
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Table 10: Topic Coherence and Topic Diversity results on 20NG and IMDb datasets with different
sampling strategies.

Method
20NG IMDb

C = 50 C = 200 C = 50 C = 200

NPMI TD NPMI TD NPMI TD NPMI TD

NTM+CL 0.332±0.006 0.775±0.008 0.277±0.003 0.799±0.009 0.191±0.004 0.857±0.010 0.186±0.002 0.856±0.012

Our Model (WS) 0.339±0.005 0.909±0.020 0.289±0.004 0.902±0.004 0.198±0.009 0.914±0.006 0.195±0.001 0.888±0.012

Our Model (ES) 0.340±0.005 0.913±0.019 0.291±0.003 0.905±0.004 0.200±0.007 0.916±0.008 0.197±0.003 0.892±0.007

H FURTHER STUDY OF OBJECTIVE CONTROL STRATEGIES

We extend the comparison of multi-objective optimization (MOO) and other control strategies on
20NG and IMDb datasets in Table 11. In general, we find that our adaptation of gradient-based
MOO balances the contrastive and ELBO losses more proficiently to obtain better topic quality.

Table 11: Topic Coherence and Topic Diversity results on 20NG and IMDb datasets with different
objective control strategies.

Method
20NG IMDb

C = 50 C = 200 C = 50 C = 200

NPMI TD NPMI TD NPMI TD NPMI TD

UW 0.328±0.006 0.837±0.011 0.273±0.003 0.831±0.004 0.187±0.004 0.848±0.007 0.175±0.009 0.818±0.007

GradNorm 0.338±0.006 0.870±0.003 0.276±0.005 0.839±0.006 0.189±0.005 0.873±0.013 0.187±0.008 0.841±0.008

PCGrad 0.327±0.008 0.857±0.008 0.272±0.001 0.828±0.003 0.189±0.003 0.872±0.003 0.186±0.010 0.830±0.006

RW 0.329±0.008 0.864±0.009 0.274±0.003 0.833±0.003 0.186±0.003 0.862±0.005 0.181±0.004 0.823±0.009

Linear - α = 0.25 0.327±0.006 0.862±0.007 0.275±0.001 0.835±0.005 0.184±0.003 0.853±0.019 0.182±0.002 0.825±0.007

Linear - α = 0.5 0.322±0.009 0.850±0.005 0.272±0.001 0.824±0.004 0.187±0.005 0.859±0.009 0.184±0.006 0.829±0.008

Our Model 0.340±0.005 0.913±0.019 0.291±0.003 0.905±0.004 0.200±0.007 0.916±0.008 0.197±0.003 0.892±0.007

I ADDITIONAL EVALUATION OF TOPIC QUALITY

We investigate a larger scope for our proposed set-based contrastive topic model, where we train
prior baselines and our model on Yahoo Answer (Zhang et al., 2015) dataset, which consists of
about 1.4 million training and testing documents. The illustrated results in Table 12 demonstrate
that set-based contrastive topic model does polish the produced topics better than other topic models,
proving both of its effectiveness and efficacy.

Table 12: Topic Coherence and Topic Diversity results on Yahoo Answers dataset.

Method
Yahoo Answers

C = 50 C = 200
NPMI TD NPMI TD

NTM 0.290±0.003 0.897±0.012 0.161±0.001 0.718±0.004
ETM 0.207±0.001 0.808±0.017 0.158±0.002 0.709±0.007
DVAE 0.319±0.001 0.932±0.014 0.163±0.003 0.721±0.004
BATM 0.247±0.004 0.883±0.019 0.177±0.001 0.767±0.003
W-LDA 0.222±0.004 0.821±0.008 0.173±0.005 0.730±0.001

SCHOLAR 0.327±0.005 0.936±0.019 0.191±0.003 0.784±0.004
SCHOLAR+BAT 0.328±0.005 0.940±0.020 0.196±0.001 0.793±0.005

NTM+CL 0.334±0.002 0.954±0.004 0.198±0.001 0.794±0.003
Our Model 0.348±0.004 0.988±0.003 0.208±0.002 0.882±0.001
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