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Abstract

Standard multi-agent reinforcement learning
(MARL) algorithms are vulnerable to sim-to-real
gaps. To address this, distributionally robust
Markov games (RMGs) have been proposed to
enhance robustness in MARL by optimizing the
worst-case performance when game dynamics
shift within a prescribed uncertainty set. RMGs
remains under-explored, from reasonable prob-
lem formulation to the development of sample-
efficient algorithms. Two notorious and open chal-
lenges are the formulation of the uncertainty set
and whether the corresponding RMGs can over-
come the curse of multiagency, where the sample
complexity scales exponentially with the number
of agents. In this work, we propose a natural
class of RMGs inspired by behavioral economics,
where each agent’s uncertainty set is shaped by
both the environment and the integrated behav-
ior of other agents. We first establish the well-
posedness of this class of RMGs by proving the
existence of game-theoretic solutions such as ro-
bust Nash equilibria and coarse correlated equilib-
ria (CCE). Assuming access to a generative model,
we then introduce a sample-efficient algorithm
for learning the CCE whose sample complexity
scales polynomially with all relevant parameters.
To the best of our knowledge, this is the first algo-
rithm to break the curse of multiagency for RMGs,
regardless of the uncertainty set formulation.
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1 Introduction
A flurry of problems naturally involve decision-making
among multiple players, whether human, artificial intel-
ligence, or both, with strategic objectives. Multi-agent
reinforcement learning (MARL) serves as a powerful frame-
work to address these challenges, demonstrating potential in
various applications such as social dilemmas (Leibo et al.,
2017; Baker, 2020; Zhang et al., 2024), autonomous driving
(Lillicrap et al., 2015), robotics (Kober et al., 2013; Rusu
et al., 2017), and games (Mnih et al., 2015; Vinyals et al.,
2019). Despite the recent success of standard MARL, its
transition from prototypes to reliable production is hindered
by robustness concerns due to the complexity and variability
of both the real-world environment and human behaviors.
Specifically, environmental uncertainty can arise from sim-
to-real gaps (Tobin et al., 2017), unexpected disturbance
(Pinto et al., 2017), system noise, and adversarial attacks
(Mahmood et al., 2018); agents’ behaviors are subject to
unknown bounded rationality and variability (Tversky &
Kahneman, 1974). The solution learned at training can fail
catastrophically when faced with a slightly shifted MARL
problem during deployment, resulting in a significant drop
in overall outcomes and each agent’s individual payoff
(Balaji et al., 2019; Zhang et al., 2020a; Zeng et al., 2022;
Yeh et al., 2021; Shi et al., 2024b; Slumbers et al., 2023).

To address robustness challenges, a promising and flexi-
ble framework is (distributionally) robust Markov games
(RMGs) (Littman, 1994; Shapley, 1953). It is a robust coun-
terpart to the common playground of standard MARL prob-
lems — Markov games (MGs) (Zhang et al., 2020c; Kardeş
et al., 2011). In standard MGs, agents consider (competi-
tive) personal objectives and simultaneously interact with
each other within a shared unknown environment. The goal
is to learn some rationally optimal solution concepts called
equilibria, which are joint strategies/policies of agents that
all of them stick with rationally with other agents fixed;
for instance, Nash equilibria (NE) (Nash, 1951; Shapley,
1953), correlated equilibria (CE), and coarse correlated equi-
libria (CCE) (Aumann, 1987; Moulin & Vial, 1978). To
promote robustness, RMGs differ from standard MGs by
defining each agent’s payoff (objective) as its worst-case
performance when the dynamics of the game shift within a

1



Breaking the Curse of Multiagency in Robust MARL

prescribed uncertainty set centered around a nominal envi-
ronment.

1.1 Open challenges of robust MARL

Construction of realistic uncertainty sets. The family
of RMGs is a rich class of problems because of the flexi-
bility in constructing the uncertainty sets to capture differ-
ent uncertainty considerations. The uncertainty sets preva-
lent in current approaches are constructed under the (s,a)-
rectangularity condition, yielding each agent’s objective as
the expectation over the independent risk-aware outcome
on each joint action of other agents’ strategies. While obser-
vations from behavioral economics (Friedman & Mauers-
berger, 2022; Sandomirskiy et al., 2024; Goeree et al., 2005;
Mazumdar et al., 2024) reveal that, to handle other players’
uncertainty, people often use a risk-aware metric outside of
the expected outcome of other players’ joint policy, rather
than flipping the expectation and the risk metric as that
of (s,a)-rectangularity condition. To account for realistic
human decision-making, we are motivated to develop new
classes of RMGs that foster robust solutions for practical
MARL problems.

The curse of multiagency. Sample efficiency is a crucial
challenge for solving MARL due to the limited availability
of data relative to the high dimensionality of the problem.
In MARL, agents strive to learn through interactions with
an unknown environment (Silver et al., 2016; Vinyals et al.,
2019; Achiam et al., 2023; Yang et al., 2025) that is of-
ten extremely large-scale, while data acquisition can be
prohibitively limited by high costs and stakes. As such, a
notable scalability challenge is the the curse of multiagency
— the sample complexity requirement scales exponentially
with the number of agents (induced by the exponentially
growing size of the joint action space). This issue has been
recognized and studied in extensive MARL problems (Song
et al., 2021; Rubinstein, 2017), but remains unresolved
for robust MARL. We concentrate on finite-horizon multi-
player general-sum Markov games, with a widely-used data
collection mechanism — generative model (Kearns & Singh,
1999), where the number of agents is n, the episode length
is H , the size of the state space is S, and the size of the i-th
agent’s action space is Ai, for 1 ≤ i ≤ n.

• Breaking the curse of multiagency in standard MARL.
A line of pioneering work (Jin et al., 2021; Bai & Jin,
2020; Song et al., 2021; Li et al., 2023) has recently in-
troduced a new suite of algorithms using adaptive sam-
pling that provably break the curse of multiagency in
standard MGs. In particular, to find an ε-approximate
CCE, Li et al. (2023) requires a minimax-optimal sam-

ple complexity no more than

Õ

(
H4S

∑n
i=1 Ai

ε2

)
(1)

up to logarithmic factors, which depends only on the
sum of individual actions, rather than the number of
joint actions.

• The persistent curse of multiagency in robust MARL.
The development of provable sample-efficient algo-
rithms for RMGs is largely underexplored, with only a
few recent studies (Zhang et al., 2020c; Kardeş et al.,
2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al.,
2024b). Focusing on a class of RMGs with uncertainty
sets satisfying the (s,a)-rectangularity condition, ex-
isting works all suffer from the curse of multiagency,
significantly limiting their scalability. For example, us-
ing the total variation (TV) distance as the divergence
function, Shi et al. (2024b) relying on non-adaptive
sampling, finds an ε-approximate robust CCE with a
sample complexity no more than

Õ

(
H3S

∏n
i=1 Ai

ε2
min

{
H,

1

min1≤i≤n σi

})
(2)

up to logarithmic factors, where σi ∈ [0, 1) is the
uncertainty level for the i-th agent. As a result, the
sample size requirement becomes prohibitive when
the number of agents is large. Consequently, there is
a significant desire to explore paths that could break
through the curse of multiagency in RMGs, which is
much more involved than its standard counterpart due
to complicated non-linearity introduced by planning
for worst-case performances.

Given these two challenges of uncertainty set construction
and the curse of multiagency, it raises an open question:

Can we design RMGs with realistic uncertainty sets that
come with sample complexity guarantees breaking the

curse of multiagency?

1.2 Contributions

Inspired by behavioral economics, we propose a new class
of RMGs with a fictitious uncertainty set that explicitly
models environmental uncertainties from the perspective of
realistic human players, making it suitable for complex real-
world scenarios. We begin by verifying the game-theoretic
properties of the proposed class of RMGs to ensure the ex-
istence of robust variants of well-known standard equilibria
notions, robust NE and robust CCE. Next, due to the gen-
eral intractability of learning NE, we focus on designing
algorithms that can provably overcome the curse of multia-
gency in learning an approximate robust CCE, referring to
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Algorithm Uncertainty set Equilibria Sample complexity
P2MPO

(s,a)-rectangularity robust NE S4 (
∏n

i=1 Ai)
3
H4/ε2

(Blanchet et al., 2024)
DR-NVI

(s,a)-rectangularity robust NE/CE/CCE SH3 ∏n
i=1 Ai

ε2 min
{
H, 1

min1≤i≤n σi

}
(Shi et al., 2024b)
Robust-Q-FTRL fictitious

(this work) (s, ai)-rectangularity robust CCE SH6 ∑
1≤i≤n Ai

ε4 min
{
H, 1

min1≤i≤n σi

}
Table 1. We show all the existing sample complexity results within the general context of robust Markov games (RMGs) to put our work
into perspective, on finding an ε-approximate equilibrium in finite-horizon multi-agent general-sum robust MG, omitting logarithmic
factors. Our result is the only algorithm that breaks the curse of multiagency regardless of the RMG formulations.

a joint policy where no agent can improve their benefit by
more than ε through rational deviations.. Specifically, for
sampling mechanisms to explore the unknown environment,
we assume access to a generative model that can only draw
samples from the nominal environment (Shi et al., 2024b).
The main contributions are summarized as follows.

• We introduce a new class of robust Markov games us-
ing fictitious uncertainty sets with others-integrated
(s, ai)-rectangularity condition (see Section 2.2 for de-
tails), which is not only realistic viewpoint observed
from behavioral economics, but also a natural adapta-
tion from robust single-agent RL to robust MARL. The
uncertainty set for each agent i can be decomposed
into independent subsets over each state and its own ac-
tion tuple (s, ai), where each subset is a “ball” around
the expected nominal transition determined by other
agents’ policies and the nominal transition kernel, a
distance function ρ, and the radius/uncertainty level σi.
We verify several essential facts of this class of RMGs:
the existence of the desired equilibrium — robust NE
and robust CCE for this new class of RMGs using
game-theoretical tools such as fixed-point theorem; the
existence of best-response policies and robust Bellman
equations.

• We consider the total variation (TV) distance as the
distance metric ρ for uncertainty sets due to its popu-
larity in both theory (Panaganti & Kalathil, 2022; Shi
et al., 2023; Blanchet et al., 2023; Shi et al., 2024b)
and practice (Pan et al., 2023; Lee et al., 2021; Szita
et al., 2003). Focusing on the proposed RMGs with
fictitious uncertainty sets, we design Robust-Q-FTRL
that can provably find ε-approximate robust CCE with
high probability, as long as the sample size exceeds

Õ

(
SH6

∑n
i=1 Ai

ε4
min

{
H,

1

min1≤i≤n σi

})
(3)

up to logarithmic factors, where σi ∈ (0, 1] is the
uncertainty level for the i-th agent. To the best of

our knowledge, this is the first algorithm to break the
curse of multiagency in sample complexity of RMGs
regardless of the uncertainty set definition, which can
provably find an ε-approximate robust CCE using a
sample size that is polynomial to all salient parameters.
Table 1 provides a detailed summary of all existing
sample complexity results in robust MARL1, where our
results show significantly data efficiency with linear
dependency on the size of each agent’s action space,
which is absent from prior works (Blanchet et al., 2024;
Shi et al., 2024b). To achieve this, we utilize adaptive
sampling and online adversarial learning tools, coupled
by a tailored design and analysis for robust MARL due
to the nonlinearity of the robust value function, which
contrasts with the linear payoff functions in standard
MARL with respect to the transition kernel.

Notation. In this paper, we denote [T ] := {1, 2, . . . , T}
for any positive integer T > 0. We define ∆(S) as the
simplex over a set S. For any policy π and function
Q(·) defined over a domain B, the variance of Q under
π is given by Varπ(Q) :=

∑
a∈B π(a)[Q(a) − Eπ[Q]]2.

We define x = [x(s,a)](s,a)∈S×A ∈ RSA as any vec-
tor that represents values for each state-action pair, and
x = [x(s, ai)](s,ai)∈S×Ai

∈ RSAi as any vector repre-
senting agent-wise state-action values. Similarly, we de-
note x = [x(s)]s∈S as any vector representing values for
each state. For X := (S, {Ai}i∈[n], H, {σi}i∈[n],

1
ε ,

1
δ ), let

f(X ) = O(g(X )) denote that there exists a universal con-
stant C1 > 0 such that f ≤ C1g. Furthermore, the notation
Õ(·) is defined similarly to O(·) but hides logarithmic fac-
tors.

1Note that, since we focus on a new class of RMGs, the sample
complexity results in this work cannot be directly compared to
those in prior studies. However, we provide a summary in Table 1
of existing sample complexity results for general RMGs, regardless
of the uncertainty set formulation, for reference.
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2 Preliminaries
In this section, we begin with some background on multi-
agent general-sum standard Markov games (MGs) in finite-
horizon settings, followed by a general framework of a
robust variant of standard MGs —- distributionally robust
Markov games.

2.1 Standard Markov games

A finite-horizon multi-agent general-sum Markov game
(MG) can be characterized by the tuple

MG =
{
S, {Ai}1≤i≤n, P, r,H

}
.

This setup features n agents each striving to maximize their
individual long-term cumulative rewards within a shared
environment. At each time step, all agents observe the
same state over the state space S = {1, · · · , S} within the
shared environment. For each agent i (i ∈ [n]), Ai =
{1, · · · , Ai} denotes its action space containing Ai possible
actions. The joint action space for all agents (resp. the
subset excluding the i-th agent) is defined as A := A1 ×
· · · × An (resp. A−i :=

∏
j ̸=iAj for any i ∈ [n]). We use

the notation a ∈ A (resp. a−i ∈ A−i) to denote a joint
action profile involving all agents (resp. all except the i-th
agent). In addition, the probability transition kernel P =
{Ph}1≤h≤H , with each Ph : S × A 7→ ∆(S), describes
the dynamics of the game: Ph(s

′ | s,a) is the probability of
transitioning from state s ∈ S to state s′ ∈ S at time step
h when agents choose the joint action profile a ∈ A. The
reward function of the game is r = {ri,h}1≤i≤n,1≤h≤H ,
with each ri,h : S × A 7→ [0, 1] normalized to the unit
interval. For any (i, h, s,a) ∈ [n]× [H]×S×A, ri,h(s,a)
represents the immediate reward received by the i-th agent
in state s when the joint action profile a is taken. Lastly,
H > 0 represents the horizon length.

Markov policies and value functions. In this work, we
concentrate on Markov policies that the action selection rule
depends only on the current state s, independent from previ-
ous trajectory. Namely, the i-th (i ∈ [n]) agent chooses ac-
tions according to πi = {πi,h : S 7→ ∆(Ai)}1≤h≤H . Here,
πi,h(a | s) represents the probability of selecting action
a ∈ Ai in state s at time step h. As such, the joint Markov
policy of all agents can be denoted as π = (π1, . . . , πn) :
S × [H] 7→ ∆(A), i.e., given any s ∈ S and h ∈ [H], the
joint action profile a ∈ A of all agents is chosen following
the distribution πh(· | s) = (π1,h, π2,h . . . , πn,h)(· | s) ∈
∆(A).

To continue, for any given joint policy π and transition
kernel P of aMG, the i-th agent’s long-term cumulative
reward can be characterized by the value function V π,P

i,h :

S 7→ R (resp. Q-function Qπ,P
i,h : S × A 7→ R) as below:

for all (h, s, a) ∈ [H]× S ×A,

V π,P
i,h (s) := Eπ,P

[
H∑
t=h

ri,t
(
st,at

)
| sh = s

]
,

Qπ,P
i,h (s,a) := Eπ,P

[
H∑
t=h

ri,t
(
st,at

)
| sh = s,ah = a

]
.

(4)

In this context, the expectation is calculated over the tra-
jectory {(st,at)}h≤t≤H produced by following the joint
policy π under the transition kernel P .

2.2 Distributionally robust Markov games

A general distributionally robust Markov game (RMG) is
represented by the tuple

RMG =
{
S, {Ai}1≤i≤n, {Uσi

ρ (P 0, ·)}1≤i≤n, r,H
}
.

Here, S, {Ai}1≤i≤n, r,H are defined in the same manner as
those in standard MGs (see Section 2.1). RMGs differ from
standard MGs: for each agent i (1 ≤ i ≤ n), the transition
kernel is not fixed but can vary within its own prescribed
uncertainty set Uσi

ρ (P 0, ·) determined by (possibly the cur-
rent policy and) a nominal kernel P 0 : H×S ×A 7→ ∆(S)
that represents a reference (such as the training environ-
ment). The shape and the size of the uncertainty set{
Uσi
ρ (P 0, ·)

}
i∈[n]

are further specified by a divergence
function ρ and the uncertainty levels {σi}i∈[n], serving as
the “distance” metric and the radius respectively.

Various choices of the divergence function have been consid-
ered in the literature of robust RL, including but not limited
to f -divergence (such as total variation, χ2 divergence, and
Kullback-Leibler (KL) divergence) (Yang et al., 2022; Zhou
et al., 2021; Shi & Chi, 2024; Lu et al., 2024; Wang et al.,
2024) and Wasserstein distance (Xu et al., 2023). Adopting
uncertainty sets with different structures leads to distinct
RMGs, as they address distinct types of uncertainty and
game-theoretical solutions. This paper focuses on variabil-
ity in environmental dynamics (transition kernels), though
uncertainty in agents’ reward functions could also be con-
sidered similarly but is omitted for brevity.

Robust value functions and best-response policies. For
any RMG, each agent seeks to maximize its worst-case per-
formance in the presence of other agents’ behaviors despite
perturbations in the environment dynamics, as long as the
kernel transitions remain within its prescribed uncertainty
set. Mathematically, given any joint policy π : S × [H] 7→
∆(A), the worst-case performance of any agent i is char-
acterized by the robust value function V π,σi

i,h and the robust
Q-function Qπ,σi

i,h : for all (i, h, s, ai) ∈ [n]× [H]×S ×Ai,

V π,σi

i,h (s) := inf
P∈Uσi

ρ (P 0,π)
V π,P
i,h (s)
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Qπ,σi

i,h (s, ai) := inf
P∈Uσi

ρ (P 0,π)
Qπ,P

i,h (s, ai). (5)

Note that different from (4), here the Q-function for any i-th
agent is defined only over its own action ai ∈ Ai rather than
the joint action a ∈ A.

To continue, we denote π−i as the policy for all agents
except for the i-th agent. By optimizing the i-th agent’s
policy π′

i : S × [H]→ ∆(Ai) (independent from π−i), we
define the maximum of the robust value function as

V
⋆,π−i,σi

i,h (s) := max
π′
i:S×[H]7→∆(Ai)

V
π′
i×π−i,σi

i,h (s)

= max
π′
i:S×[H]7→∆(Ai)

inf
P∈Uσi

ρ (P 0,π)
V

π′
i×π−i,P

i,h (s) (6)

for all (i, h, s) ∈ [n] × [H] × S. The policy that achieves
the maximum of the robust value function for all (i, h, s) ∈
[n]× [H]× S is called a robust best-response policy.

Solution concepts for robust Markov games. In view
of the conflicting objectives between agents, establishing
equilibrium becomes the goal of solving RMGs. As such,
we introduce two kinds of solution concepts — robust NE
and robust CCE — robust variants of standard NE and CCE
(usually considered in standard MGs) specified to the form
of RMGs.

• Robust NE. A product policy π = π1×π2× · · ·×πn :
S × [H] 7→

∏n
i=1 ∆(Ai) is said to be a robust NE if

V π,σi

i,1 (s) = V
⋆,π−i,σi

i,1 (s), ∀(s, i) ∈ S × [n]. (7)

Given the strategies of the other agents π−i, when each
agent wants to optimize its worst-case performance
when the environment and other agents’ policy stay
within its own uncertainty set Uσi

ρ (P 0, π), robust NE
means that no player can benefit by unilaterally diverg-
ing from its present strategy.

• Robust CCE. A distribution over the joint product pol-
icy ξ := {ξh}h∈[H] : S × [H] 7→ ∆(

∏
i∈[n] ∆(Ai))

is said to be a robust CCE if it holds that for all
(i, s) ∈ [n]× S ,

Eπ∼ξ

[
V π,σi

i,1 (s)
]
≥ Eπ∼ξ

[
V

⋆,π−i,σi

i,1 (s)
]
. (8)

Considering all agents follow the policy drawn from
the distribution ξ, i.e., πh(s) ∼ ξh(s) for all (s, h) ∈
S × [H], when the distribution of all agents but the i-th
agent’s policy is fixed as the marginal distribution of
ξ, robust CCE indicates that no agent can benefit from
deviating from its current policy.

Note that, for standard MGs, CCE is defined as a possibly
correlated joint policy πCCE : S × [H] 7→ ∆(A) (Moulin

& Vial, 1978; Aumann, 1987) if it holds that for all (i, s) ∈
[n]× S ,

V πCCE,P
i,1 (s) ≥ max

π′
i:S×[H]→∆(Ai)

V
π′
i×πCCE

−i ,P

i,1 (s). (9)

This correlated policy πCCE can also be viewed as a distribu-
tion ξ over the product policy space since each joint action
a can be seen as a deterministic product policy. Careful
readers may note that the definition (9) of CCE in standard
MGs is in a different form from the one (8) in RMGs, as the
latter does not include the expectation operator Eπ∼ξ[·] with
respect to the policy distribution (ξ) over the value function.
We emphasize that the definition with the expectation oper-
ator outside of the value (or cost) function with respect to a
distribution of product pure strategies in (8) is a natural for-
mulation originating from game theory (Moulin et al., 2014;
Moulin & Vial, 1978). In standard MARL and previous
robust MARL studies, the definition in (9) is typically used
because (9) and (8) are identical in those situations, as the
expectation operator and the corresponding value functions
are linear with respect to the joint policy, allowing them to
be interchanged (Li et al., 2023; Shi et al., 2024b).

3 Robust Markov Games with Fictitious
Uncertainty Sets

Given the definition of general RMGs, a natural question
arises: what kinds of uncertainty sets should we consider to
achieve the desired robustness in our solutions? To address
this, we focus on a class of RMGs characterized by a type of
natural yet realistic uncertainty sets inspired from behavioral
economics. More discussions of this class of games are
provided momentarily.

3.1 A novel uncertainty set definition in RMGs

We propose a new class of uncertainty sets, named fictitious
uncertainty sets, which count in the uncertainty induced
by both the environment and other agents’ behaviors in an
integrated manner. Before introducing the uncertainty sets,
we provide some auxiliary notations as below. We denote
a vector of any transition kernel P : S × A 7→ ∆(S) or
P 0 : S×A 7→ ∆(S) respectively as: for all (s,a) ∈ S×A,

Ph,s,a := Ph(· | s,a) ∈ R1×S ,

P 0
h,s,a := P 0

h (· | s,a) ∈ R1×S . (10)

For any (possibly correlated) joint Markov policy (defined
in Section 2.1) π : S × [H] 7→ ∆(A), we define the ex-
pected nominal transition kernel conditioned on the situa-
tion that the i-th agent chooses some action ai ∈ Ai and
other agents play according to the conditional policy (i.e.,
a−i ∼ πh(· | s, ai)) given s ∈ S and ai as below: for all
(h, s, ai) ∈ [H]× S ×Ai :

P
π−i

h,s,ai
= Ea∼πh(· | s,ai)

[
P 0
h,s,a

]
5
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=
∑

a−i∈A−i

πh(ai,a−i | s)
πi,h(ai | s)

[
P 0
h,s,a

]
. (11)

Armed with the above definitions, now we are in a posi-
tion to define the fictitious uncertainty sets, which satisfy a
others-integrated (s, ai)-rectangularity condition.

Definition 3.1. For any joint policy π : S × [H] 7→ ∆(A),
divergence function ρ : ∆(S) × ∆(S) 7→ R+ and acces-
sible uncertainty levels σi ≥ 0 for all i ∈ [n], the ficti-
tious uncertainty sets

{
Uσi
ρ (P 0, π)

}
i∈[n]

satisfy the others-
integrated (s, ai)-rectangularity condition: for all i ∈ [n]
and (h, s, ai) ∈ [H]× S ×Ai,

Uσi
ρ (P 0, π) := ⊗ Uσi

ρ

(
P

π−i

h,s,ai

)
, s.t.

Uσi
ρ

(
P

π−i

h,s,ai

)
:=
{
P ∈ ∆(S) : ρ

(
P, P

π−i

h,s,ai

)
≤ σi

}
, (12)

where ⊗ represents the Cartesian product.

In words, conditioned on a fixed joint policy π, the uncer-
tainty set Uσi

ρ (P 0, π) for each i-th agent can be decomposed
into a Cartesian product of subsets over each state and agent-
action pair (s, ai). Each uncertainty subset Uσi

ρ (P
π−i

h,s,ai
)

over (s, ai) is defined as a “ball” around a reference — the
expected nominal transition kernel Pπ−i

h,s,ai
conditioned on

both transition kernel and agents’ joint policy π.

Further discussions of fictitious uncertainty set. Here,
we discuss the proposed fictitious uncertainty sets, focusing
on their practical implications, properties, and relation to
prior works. Prior works on RMGs typically focused on a
type of uncertainty sets with (s,a)-rectangularity condition
(Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024b).
This class of uncertainty sets decouples the uncertainty into
independent subsets for each state-joint action pair (s,a),
accounting for the uncertainty induced by other agents sepa-
rately and independently, mathematically defined as

Uσi
ρ (P 0) := ⊗Uσi(P 0

h,s,a), where

Uσi
ρ (P 0

h,s,a) =
{
Ph,s,a ∈ ∆(S) : ρ(Ph,s,a, P

0
h,s,a) ≤ σi

}
.

• Realistic and predictive of human decisions in com-
parisons to prior works. Observed from experimental
data of behavioral economics, in many games consid-
ering agents’ randomness (Friedman & Mauersberger,
2022; Goeree et al., 2005; Sandomirskiy et al., 2024),
people address other players’ uncertainty in an inte-
grated manner as a risk metric outside of their expected
outcomes (e.g., Risk(Ea−i∈π−i

[V π,P
i,h (ai,a−i)])), in-

stead of in a separate manner as an expectation of the
risk metric over outcomes of each joint action (namely,
Ea−i∈π−i

[Risk(V π.P
i,h (ai,a−i)]). Here, the former

one—which is more realistic—corresponds to our ficti-
tious uncertainty set, while the latter one corresponds

to the uncertainty sets with (s,a)-rectangularity con-
dition (Ma et al., 2023; Blanchet et al., 2023; Shi et al.,
2024b) studied in prior works. Hence, the proposed
uncertainty set modeling is realistic and predictive of
human decision-making behaviors from behavioral eco-
nomics.

• A natural adaptation from single-agent robust RL.
When agents follow some joint policy π : S × [H] 7→
∆(A), fixing other agents’ policy π−i, from the per-
spective of each individual agent i, RMGs with our pro-
posed (s, ai)-rectangularity condition will degrade to
a single-agent robust RL problem with the widely used
(s, ai)-rectangularity condition in the single-agent lit-
erature (Iyengar, 2005; Zhou et al., 2021). Namely,
from any agent i’s viewpoint, in a RMG, it deals with
a “fictitious” player that can not only manipulate the
environmental dynamics but also other players’ policy
π−i.

3.2 Properties of RMGs with fictitious uncertainty set

Throughout the paper, we focus on the class of RMGs with
the above proposed fictitious uncertainty sets, denoted as
RMG in and abbreviated as fictitious RMGs in the remain-
ing of the paper. In this section, we present key facts about
fictitious RMGs related to best-response policies, equilibria,
and the corresponding one-step lookahead robust Bellman
equations. The proofs can be found in the full version (Shi
et al., 2024a).

First, we introduce the following lemma, which verifies the
existence of a robust best-response policy that achieves the
maximum robust value function (cf. (6)) in anyRMG in.

Lemma 3.2. For any i ∈ [n], given π−i : S × [H] 7→
∆(Ai), there exists at least one policy π̃i : S × [H] →
∆(Ai) for the i-th agent that can simultaneously attain
V

π̃i×π−i,σi

i,h (s) = V
⋆,π−i,σi

i,h (s) for all s ∈ S and h ∈ [H].
We refer this policy as the robust best-response policy.

Existence of robust NE and robust CCE. Fictitious
RMGs can be viewed as hierarchical games with n +
nS
∑n

i=1 Ai agents. This includes the original n agents
and n additional sets of S

∑n
i=1 Ai independent adversaries,

each determining the worst-case transitions for one agent
over a state plus agent-wise-action pair. Considering the
solution concepts — robust NE and robust CCE — intro-
duced in Section 2.2, the following theorem verifies the
existence of them for any fictitious RMGs using Kakutani’s
fixed-point theorem (Kakutani, 1941), focusing on robust
NE firstly.

Theorem 3.3 (Existence of robust NE). For any RMG in
=
{
S, {Ai}1≤i≤n, {Uσi

ρ (P 0, ·)}1≤i≤n, r,H
}

with an un-
certainty set defined in Definition 3.1, there exists at least
one robust NE.

6
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Analogous to standard Markov games, since {robust NE} ⊆
{robust CCE}, Theorem 3.3 indicates the existence of ro-
bust CCEs directly. The class of fictitious RMGs feature a
robust counterpart of the Bellman equation — robust Bell-
man equation, which is detailed in the full version (Shi et al.,
2024a).

4 Sample-Efficient Learning: Algorithm and
Theory

In this section, we focus on designing sample-efficient al-
gorithms for solving fictitious RMGs when agents need to
collect data by interacting with the unknown shared environ-
ment in order to learn the equilibria. To proceed, we shall
first specify the data collection mechanism and the diver-
gence function for the uncertainty set. Then we propose a
sample-efficient algorithm Robust-Q-FTRL that leverages
tailored adaptive sampling strategy to break the curse of
multiagency for solving fictitious RMGs.

4.1 Problem setting and goal

Recall that the uncertainty sets are constructed by specifying
a divergence function ρ and the uncertainty level to control
its shape and size. In this work, we focus on using the TV
distance as the divergence function ρ for the uncertainty set,
following Szita et al. (2003); Lee et al. (2021); Pan et al.
(2023); Shi et al. (2023; 2024b), defined by

∀P, P ′ ∈ ∆(S) : ρTV (P, P ′) :=
1

2
∥P − P ′∥1 . (13)

For convenience, throughout the paper, we abbreviate
Uσi(·) := Uσi

ρTV
(·) when there is no ambiguity.

Data collection mechanism: a generative model. We
assume the agents interact with the environment through
a generative model (simulator) (Kearns & Singh, 1999),
which is a widely used sampling mechanism in both single-
agent RL and MARL (Zhang et al., 2020b; Li et al., 2022).
Specifically, at any time step h, we can collect an arbitrary
number of independent samples from any state and joint
action tuple (s,a) ∈ S × A, generated based on the true
nominal transition kernel P 0: sih,s,a

i.i.d∼ P 0
h (· | s,a) for

i = 1, 2, . . ..

Goal. Consider any fictitious RMGs RMG in
=

{
S, {Ai}1≤i≤n, {Uσi(P 0, ·)}1≤i≤n, r,H

}
. In

practice, learning exact robust equilibria is computa-
tionally challenging and may not be necessary, instead
in this work, we focus on finding an approximate
robust CCE (defined in (8)). Namely, a distribution
ξ := {ξh}h∈[H] : [H] × S 7→ ∆(

∏
i∈[n] ∆(Ai)) is said to

be an ε-robust CCE if

gapCCE(ξ) := max
s∈S,1≤i≤n

{
Eπ∼ξ

[
V

⋆,π−i,σi

i,1 (s)
]

− Eπ∼ξ

[
V π,σi

i,1 (s)
] }
≤ ε. (14)

Armed with a generative model of the nominal environ-
ment, the goal becomes learning a robust CCE using as few
samples from the simulator as possible.

4.2 Algorithm design

With the sampling mechanism over a generative model in
hand, we propose an algorithm called Robust-Q-FTRL to
learn an ε-robust CCE in a sample-efficient manner. The
complete procedure is summarized in Algorithm 2. Robust-
Q-FTRL draws inspiration from Q-FTRL developed in the
standard MG literature (Li et al., 2022), but empowers tai-
lored designs for learning in fictitious RMGs to achieve a
robust equilibrium and to tackle statistical challenges arising
from agents’ nonlinear worst-case objectives.

Constructing the empirical model via N -sample estima-
tion. For each time step h, we denote πk

i,h as the current
learning policy of the i-th agent before the beginning of the
k-th iteration for any k ∈ [K]. And we denote the joint
product policy as πk

h = (πk
1,h, · · · , πk

n,h). During each iter-
ation k, for each agent i ∈ [n], we require to generate N
independent samples from the generative model over each
(s, ai) ∈ S × Ai to obtain an empirical model, detailed
in Algorithm 1. It includes an empirical reward function
represented by rki,h ∈ RSAi and transition kernels denoted
by P k

i,h ∈ RSAi×S . Note that different from standard MGs,
we need to generate N samples instead of 1 sample per iter-
ation to handle the additional statistical challenges induced
by the non-linear objective of agents (N will be specified in
Theorem 4.1).
Estimating robust Q-function of the current policy πk

h.
We denote V̂i,h ∈ RS as the estimation of the i-th agent’s
robust value function at time step h. For any agent i, with the
empirical reward function rki,h, empirical kernel P k

i,h, and
the estimated robust value function V̂i,h+1 at the next step in
hand, the robust Q-function {qki,h} of current policy πk

h can
be estimated as: for all (i, h, s, ai) ∈ [n]× [H]× S ×Ai,

qki,h(s, ai) = rki,h(s, ai) + inf
P∈Uσi (Pk

i,h,s,ai
)
PV̂i,h+1. (15)

Unlike the linear function w.r.t. P k
i,h in standard MGs, (15)

lacks a closed form and introduces an additional inner op-
timization problem. Solving (15) directly is computation-
ally challenging due to the need to optimize over an S-
dimensional probability simplex, with complexity growing
exponentially with the state space size S. Fortunately, by
applying strong duality, we can solve (15) equivalently via
its dual problem with tractable computation (Iyengar, 2005):

qki,h(s, ai) = rki,h(s, ai) + max
α∈[mins V̂i,h+1(s),maxs V̂i,h+1(s)]

7
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P k
i,h

[
V̂i,h+1

]
α
− σi

(
α−min

s′

[
V̂i,h+1

]
α
(s′)
)}

, (16)

where [V ]α denotes the clipped version of any vector V ∈
RS determined by some level α ≥ 0, namely,

[V ]α(s) :=

{
α, if V (s) > α,

V (s), otherwise.
(17)

The above two modules are key components of Robust-Q-
FTRL, serving for constructing nonlinear robust objectives
in the online learning process and ensuring the desired sta-
tistical accuracy.

Overall pipeline of Robust-Q-FTRL. With these mod-
ules in place, we introduce Robust-Q-FTRL, which fol-
lows a similar online learning procedure as Q-FTRL for
standard MGs (Li et al., 2022). The complete procedure
is summarized in Algorithm 2. We denote Qk

i,h ∈ RSAi

as the estimated robust Q-function of the equilibrium for
the i-th agent at the k-th iteration of time step h. To begin
with, Robust-Q-FTRL initialize the robust value function,
robust Q-function V̂i,H+1(s) = Q0

i,h(s, ai) = 0, and the
policy π1

i,h(ai | s) = 1/Ai for all (i, s) ∈ [n] × S. Then
subsequently from the final time step h = H to h = 1,
for each step h, a K iterations online learning process will
be executed. At each k-th iteration, given current policy
πk
h, as described above, an empirical model ({rki,h}i∈[n] and
{P k

i,h}i∈[n]) is constructed by N -sample estimation (cf. Al-
gorithm 1). Then the robust Q-function {qki,h}i∈[n] of the
current policy πk

h is estimated by (16).

Now we are ready to specify the loss objective and proceed
the online learning procedure. With the current one-step
update {qki,h}, we update the Q-estimate as Qk

i,h = (1 −
αk)Q

k−1
i,h + αkq

k
i,h. Here, {αk}k∈[K] is a series of rescaled

linear learning rates with some cα ≥ 24, for all k ∈ [K] :

αk =
cα logK

k − 1 + cα logK

αn
k =

{
αk

∏n
i=k+1(1− αi), if 0 < k < n ≤ K

αn if k = n
. (18)

Let the Q-estimate be the online learning loss objective at
this moment, we apply the Follow-the-Regularized-Leader
strategy (Shalev-Shwartz, 2012; Li et al., 2022) to update
the corresponding policy as below:

πk+1
i,h (ai | s) =

exp
(
ηk+1Q

k
i,h(s, ai)

)∑
a′ exp

(
ηk+1Qk

i,h(s, a
′)
)

with ηk+1 =

√
logK

αkH
, k = 1, 2, . . .

(19)

This is a widely used adaptive sampling and learning proce-
dure for MARL problems.

After completing K iterations for time step h, we final-
ize the robust value function estimation by setting it to
its confidence upper bound, incorporating carefully de-
signed optimistic bonus terms {βi,h} as: for all (i, h, s) ∈
[n]× [H]× S ,

βi,h(s) = cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH
K∑

k=1

αK
k

{
Varπk

i,h(·|s)
(
qki,h(s, ·)

)
+H

}
, (20)

where cb denotes some absolute constant, δ ∈ (0, 1) is the
high probability threshold, Finally, after the recursive learn-
ing process ends for all time steps h = H,H − 1, · · · , 1,
we output a distribution of product policy ξ̂ = {ξ̂h}h∈[H]

over all the policies {πk
h = (πk

1,h×· · ·×πk
n,h)}h∈[H],k∈[K]

occurs during the process that defined as

∀(h, k) ∈ [H]× [K] : ξh(π
k
h) := αk. (21)

4.3 Theoretical guarantees

In this section, we provide the theoretical guarantees for the
sample complexity of our proposed algorithm Robust-Q-
FTRL, shown as below:
Theorem 4.1 (Upper bound). Using the TV un-
certainty set defined in (13). Consider any
δ ∈ (0, 1) and any fictitious RMGs RMG in
=
{
S, {Ai}1≤i≤n, {Uσi(P 0, ·)}1≤i≤n, r,H

}
with σi ∈

(0, 1] for all i ∈ [n]. For any ε ≤
√

min
{
H, 1

min1≤i≤n σi

}
,

Algorithm 2 can output an ε-robust CCE ξ̂, i.e.,

gapCCE(ξ̂) ≤ ε

with probability at least 1− δ, as long as

N ≥ C1H
2

ϵ2
min

{
1

min1≤i≤n σi
, H

}
, K ≥ C1H

3

ϵ2
.

(22)

Here C1 is some universal large enough constant. Namely,
it is sufficient if the total number of samples acquired in the
learning process obeys

Nall := HKNS
∑

1≤i≤n

Ai

≥
(C1)

2H6S
∑

1≤i≤n Ai

ε4
min

{
H,

1

min1≤i≤n σi

}
.

Before we jump into more discussions of the above theorem,
in addition, we introduce the information-theoretic minimax
lower bound for this problem as well.

8
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Lower bound for learning in fictitious RMGs. Consid-
ering the instances of fictitious RMGs that the action space
for all the agents except the i-th agent contains only a single
action, i.e., Aj = 1 for all j ̸= i. As such, all the agents
j ̸= i will take a fixed action and the game reduces to a
single-agent robust MDP with (s, a)-rectangularity condi-
tion (Zhou et al., 2021). So the goal of finding the robust
equilibrium — robust NE/CCE also degrades to finding the
optimal policy of the i-th agent. Invoking the results from
Shi et al. (2024b, Theorem 2), the lower bound for the class
of fictitious RMGs is achieved directly: consider any tuple{
S, {Ai}1≤i≤n, {σi}1≤i≤n, H

}
obeying σi ∈ (0, 1 − c1]

with 0 < c1 ≤ 1
4 being any small enough positive constant,

and H > 16 log 2. Let

ε ≤

{
c1
H , if σi ≤ c1

2H ,

1 otherwise
(23)

We can construct a set of fictitious RMGs M =
{RMGiin}i∈[I], such that for any dataset generated
from the nominal environment with in total Nall inde-
pendent samples over all state-action pairs, we have
inf ξ̂ maxRMGi

in∈M

{
PRMGi

in

(
gapCCE(ξ̂) > ε

)}
≥ 1

8 if

Nall ≤
C2SH

3 maxi∈[n] Ai

ε2
min

{
H,

1

mini∈[n] σi

}
.

(24)

Here, the infimum is taken over all estimators ξ̂, PRMGi
in

denotes the probability when the game is RMGiin for all
RMGiin ∈M, and C2 is some small enough constant.

Armed with both the upper bound (Theorem 4.1) and lower
bound in (24), we are now ready to discuss the implications
of our sample complexity results.

Breaking the curse of multiagency in the sample com-
plexity for RMGs. Theorem 4.1 demonstrates that for
any fictitious RMGs, Robust-Q-FTRL algorithm finds an
ϵ-robust CCE when the total number of samples exceeds

Õ

(
SH6

∑
1≤i≤n Ai

ϵ4
min

{
H,

1

min1≤i≤n σi

})
.

To the best of our knowledge, Robust-Q-FTRL with the
above sample complexity is the first algorithm for RMGs
breaking the curse of multiagency, regardless of the types of
uncertainty sets. Our sample complexity depends linearly
on the sum of each agent’s actions

∑n
i=1 Ai rather than their

product
∏n

i=1 Ai—making the algorithm highly scalable as
the number of agents increases.

Comparisons with prior works. Prior works fo-
cus on learning equilibria for a different kind of

robust MGs with (s,a)-rectangular uncertainty sets
(Ma et al., 2023; Blanchet et al., 2023; Shi et al.,
2024b). However, the state-of-the-art sample complex-
ity Õ

(
SH3 ∏n

i=1 Ai

ε2 min
{
H, 1

min1≤i≤n σi

})
(Shi et al.,

2024b) still suffers from the curse of multiagency with an
exponential dependency on the number of agents when all
agents have equal action spaces, which uses nonadaptive
sampling. Our work circumvents the curse of multiagency
by the introduction of a new class of fictitious RMGs in-
spired from behavioral economics, together with resorting
to a tailored adaptive sampling and online learning proce-
dure, providing a fresh perspective to learning practical-
meaningful RMGs.

Technical insights. For sample complexity analysis,
while previous works have addressed the curse of multi-
agency in sequential games like standard Markov games
(MGs) and Markov potential games, these methods are not
directly applicable to RMGs. Prior approaches assume a
linear relationship between the value function and the tran-
sition kernel, allowing statistical errors across K iterations
to cancel out. However, in RMGs, the robust value function,
due to its distributionally robust requirement, is highly non-
linear and often lacks a closed form, making it impossible to
linearly aggregate statistical errors. To tackle the nonlinear
challenges in RMGs, we design a variance-style bonus term
through non-trivial decomposition and control of auxiliary
statistical errors caused by nonlinearity, resulting in a tight
upper bound on regret during the online learning process.

5 Conclusion
Robustness in MARL presents greater challenges than in
single-agent RL due to the strategic interactions between
agents in a game-theoretic setting. This work proposes
a new class of RMGs with fictitious uncertainty sets that
naturally extends from robust single-agent RL and addresses
more realistic problems considering human features where
each agent considers the uncertainty of others in an
integrated manner. We then propose Robust-Q-FTRL, the
first algorithm to break the curse of multiagency in RMGs
regardless of the uncertainty set definitions, with sample
complexity scaling polynomially with all key parameters.
This opens up new research directions in MARL, such as
uncertainty set selection and construction.
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Algorithm 1 N-sample estimation
(
πh = {πj,h}j∈[n], i, h

)
1: Initialization: the reward r̂ = 0 ∈ RSAi and the transition model P̂ = 0 ∈ RSAi×S .
2: for (s, ai) ∈ S ×Ai do
3: for t = 1, 2, · · · , N do
4: Sample at(s, ai) = [aj(s, ai)]1≤j≤n constructed by independent actions drawn from policy:

aj(s, ai)
ind.∼ πj,h(· | s) (j ̸= i) and ai(s, ai) = ai. (25)

5: Sample from the generative model:

rti,h(s, ai) = ri,h(s,a
t(s, ai)), sts,ai

∼ Ph

(
· | s,at(s, ai)

)
. (26)

6: end for
7: Set r̂(s, ai) = 1

N

∑
t∈[N ] r

t
i,h(s, ai) and P̂

(
s′ | s, ai

)
= 1

N

∑
t∈[N ] 1

{
sts,ai

= s′
}

.
8: end for
9: Return: empirical model

(
r̂, P̂

)
.

A Related works
Breaking curse of multiagency for standard Markov games. Breaking the curse of multiagency is a major and preva-
lent challenge in sequential games. In standard multi-agent general-sum MGs, it has been shown that learning a Nash
equilibrium requires an exponential sample complexity (Song et al., 2021; Rubinstein, 2017; Bai & Jin, 2020). How-
ever, for other types of equilibria, such as CE and CCE, many works have successfully broken the curse of multiagency.
Specifically, for finite-horizon general-sum MGs in the tabular setting with finite state and action spaces, Jin et al. (2021)
developed the V-learning algorithm for learning CE and CCE with the sample complexity of Õ(H6S(maxi∈[n] Ai)

2/ϵ2) and
Õ(H6Smaxi∈[n] Ai/ϵ

2), respectively; Daskalakis et al. (2023) achieved a sample complexity of Õ(H11S3 maxi∈[n] Ai/ϵ
3)

for learning a CCE. Beyond tabular settings, Wang et al. (2023) and Cui et al. (2023) extended these results to linear func-
tion approximation, achieving sample complexities of Õ(d4H6

(
maxi∈[n] A

5
i

)
/ϵ2) and Õ(H10d4 log

(
maxi∈[n] Ai

)
/ϵ4),

respectively, where d is the dimension of the linear features. For Markov potential games, a subclass of MGs, Song et al.
(2021) provided a centralized algorithm that learns a NE with a sample complexity of Õ(H4S2 maxi∈[n] Ai/ϵ

3).

Finite-sample analysis for distributionally robust Markov games. Robust Markov games under environmental uncer-
tainty are largely underexplored, with only a few provable algorithms (Zhang et al., 2020a; Kardeş et al., 2011; Ma et al.,
2023; Blanchet et al., 2023; Shi et al., 2024b). Existing sample complexity analyses all suffer from the daunting curse of mul-
tiagency issues, or impose an extremely restricted uncertainty level that can fail to deliver the desired robustness (Ma et al.,
2023; Blanchet et al., 2024; Shi et al., 2024b). Specifically, they all consider a class of RMGs with the (s,a)-rectangularity
condition, where the uncertainty sets for each agent can be decomposed into independent sets over each (s,a) pair. Shi
et al. (2024b) considered the generative model with an uncertainty set measured by the TV distance, Blanchet et al. (2023)
treated a different sampling mechanism with offline data for both the TV distance and KL divergence. In addition, Ma et al.
(2023) required the uncertainty level be much smaller than the accuracy-level and an instance-dependent parameter (i.e.,
σi ≤ max{ ε

SH2 ,
pmin
H } for all i ∈ [n]). This can thus fail to maintain the desired robustness, especially when the accuracy

requirement is high (i.e., ε→ 0) or the RMG has small minimal positive transition probabilities (i.e., pmin → 0).

Robust MARL. Standard MARL algorithms may overfit the training environment and could fail dramatically due to the
perturbations and variability of both agents’ behaviors and the shared environment, leading to performance drop and large
deviation from the equilibrium. To address this, this work considers a robust variant of MARL adopting the distributionally
robust optimization (DRO) framework that has primarily been investigated in supervised learning (Rahimian & Mehrotra,
2019; Gao, 2020; Bertsimas et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019) and has attracted a lot of
attention in promoting robustness in single-agent RL (Nilim & El Ghaoui, 2005; Iyengar, 2005; Badrinath & Kalathil, 2021;
Zhou et al., 2021; Shi & Chi, 2024; Wang et al., 2024; Shi et al., 2023; Clavier et al., 2024). Beyond the RMG framework
considered in this work, recent research has advanced the robustness of MARL algorithms from various perspectives,
including resilience to uncertainties or attacks on states (Han et al., 2022; Zhou & Liu, 2023), the type of agents (Zhang
et al., 2021), other agents’ policies (Li et al., 2019; Kannan et al., 2023), offline data poisoning (Wu et al., 2024; McMahan
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Algorithm 2 Robust-Q-FTRL
1: Input: learning rates {αk} and {ηk+1}, number of iterations K per time step, and number of samples N per iteration.
2: Initialization: V̂i,H+1(s) = Q0

i,h(s, ai) = 0 and π1
i,h(ai | s) = 1/Ai for all i ∈ [n] and then all (h, s, ai) ∈

[H]× S ×Ai.
3: // start recursive learning process.
4: for h = H,H − 1, · · · , 1 do
5: for k = 1, 2, · · · ,K do
6: for i = 1, 2, · · · , n do
7: // construct empirical models and estimate current robust Q-function
8:

(
rki,h, P

k
i,h

)
← N -sample estimation

(
πk
h = {πk

j,h}j∈[n], i, h
)
. (Algorithm 1)

9: Estimate the robust Q-function qki,h of current πk
h according to (16).

10: // online learning procedure
11: Update the Q-estimate Qk

i,h = (1− αk)Q
k−1
i,h + αkq

k
i,h and apply FTRL:

∀(s, ai) ∈ S ×Ai : πk+1
i,h (ai | s) =

exp
(
ηk+1Q

k
i,h(s, ai)

)∑
a′ exp

(
ηk+1Qk

i,h(s, a
′)
) . (27)

12: end for
13: end for
14: // set the final robust value estimate at time step h.
15: for i = 1, 2, · · · , n do
16: For all s ∈ S: set βi,h(s) to be the optimistic bonus term in (20) and

V̂i,h(s) = min
{ K∑

k=1

αK
k

〈
πk
i,h(· | s), qki,h(s, ·)

〉
+ βi,h(s), H − h+ 1

}
. (28)

17: end for
18: end for
19: Output: a set of policies {πk

h = (πk
1,h × · · · × πk

n,h)}k∈[K],h∈[H] and a distribution ξ̂ = {ξ̂h}h∈[H] over them. For any
time step h, ξ̂h is the distribution over {πk

h}k∈[K] so that ξ̂h(πk
h) = αK

k .

et al., 2024), and nonstationary environment (Szita et al., 2003). A recent review can be found in Vial et al. (2022).

15


