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ABSTRACT

Regularization is widely applied to model complexity reduction and neural net-
work compression. Existing L1 and nuclear norm regularizations can achieve
favorable results, but these methods treat all parameters equally and ignore the
importance of the parameters. Taking the trained parameters as prior information
to construct weights, a weighted regularization method is proposed in this paper.
Theoretically, we establish the bounds on the estimation errors for values of the
global minimum for a fully connected single hidden layer neural network. Fur-
ther we prove the estimates generated from the weighted L1 regularization and
the weighted nuclear norm regularization can recover the sparsity and the low
rank structure of a global minimum of the neural network with a high probabil-
ity, respectively. The effectiveness of the algorithm is validated by conducting
a numerical simulation and experiments with popular neural networks on public
datasets from real-world applications.

1 INTRODUCTION

Deep neural networks are often over-parameterized (Belkin et al., 2019). How to delete the redun-
dant parameters of the network and keep the parameters that really work is a key concern of network
compression. In network compression, parameter pruning, parameter quantization, low-rank ap-
proximation, and knowledge distillation are popular methods. Regularization is broadly applied to
these methods to reduce the model complexity and alleviate the overfitting problem, and is now
also widely used to prune unimportant parameters of the neural network to reduce computation and
storage overhead.

There are many variants of regularization methods by choosing different regularization terms (Wen
et al., 2016; He et al., 2017; Alvarez & Salzmann, 2017; Li et al., 2020; Liu et al., 2020), where
L1 regularization and nuclear norm regularization are two commonly used regularization methods.
Specifically, L1 regularization focuses more on promoting the sparsity of connections between neu-
rons, namely unstructured pruning. Meanwhile, the nuclear norm regularization pays more attention
to whether the parameter matrix can be decomposed into a more lightweight two-matrix product,
that is, the low-rank approximation. Both regularization methods have the neural network compres-
sion effect (Jaderberg et al., 2014; Xu et al., 2019; Chen et al., 2020; Papadimitriou & Jain, 2021).
However, existing regularization-based neural network compression techniques select the same reg-
ularization coefficient for each element in the parameter without distinguishing the importance of
the elements, which tends to make the estimates of the really important elements small.

The weighted regularization idea is widely applied in compressed sensing (Daubechies et al., 2008;
Chartrand & Yin, 2008; Candés et al., 2008; Wipf & Nagarajan, 2010; Ba et al., 2014) and image
processing (Gu et al., 2014; Xu et al., 2017; Yair & Michaeli, 2018; Huang et al., 2020). Inspired
by these, we use the inverse of the trained parameters estimates as weights applied to the regular-
ization term to achieve adaptive penalty strength. Specifically, the elements with smaller true values
correspond to larger weighted values, and the elements with larger true values correspond to rela-
tively smaller weighted values. In this way, the purpose of pruning the redundant elements while
protecting the truly critical elements is achieved. However, linear problems are usually considered
in the above fields, and their theoretical analysis is not applicable to neural network compression.
We theoretically prove that the weighted regularization method can accurately recover the ground
truth parametric sparse structure and low-rank structure. Our simulation experiments demonstrate
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that the sparsity and rank of the weighted regularization method are closer to the ground truth pa-
rameters than the general regularization method. In experiments with public datasets, the weighted
regularization method can achieve higher accuracy with the same element sparsity or rank sparsity.

Organizations. The paper is divided into seven sections. Section 3 introduces the network model
used in theoretical analysis. Section 4 provides the problem formulation. Section 5 presents the
design idea and flow of the algorithm. Section 6 gives the assumptions and theoretical analysis. The
last section shows experiments on synthetic data and real datasets.

Contributions. Our work makes the following contributions:

• For network compression, we establish weighted L1 regularization method and weighted
nuclear norm regularization methods respectively.

• We provide error upper bounds between the estimates obtained by two weighted regulariza-
tion methods and some global minimum point of the expected risk with a high probability.

• We prove the zero element and the zero singular value can be correctly identified by select-
ing the appropriate regularization coefficient with only limited amount of data respectively.

• Experiments on synthetic and real datasets demonstrate that the weighted regularization
methods outperform non-weighted counterparts, supporting the theoretical analysis.

2 RELATED WORK

Regularization-based network compression. According to the selection of regularization terms,
the pruning methods by imposing regularization terms (Tang et al., 2022) can be divided into struc-
tured pruning (Wen et al., 2016; He et al., 2017; Scardapane et al., 2017; Li et al., 2019; Mitsuno &
Kurita, 2021; Bui et al., 2021) and unstructured pruning (Louizos et al., 2017; Alvarez & Salzmann,
2017; Srinivas et al., 2017; Ma et al., 2019; Liu et al., 2020; Chen et al., 2020; Tartaglione et al.,
2021; Pandit et al., 2021; Idelbayev & Carreira-Perpiñán, 2022), and the objects used by regulariza-
tion terms can be divided into mask regularization and parameter regularization. Wen et al. (2016)
proposed a structured sparsity learning (SSL) method whose main idea is that different regulariza-
tion terms are applied to achieve different fine-grained structured pruning. In He et al. (2017), a
hierarchical channel pruning method is obtained by setting a mask for each channel and applying
L1 regularization to the mask. Both nuclear norm regularization and grouped regularization are con-
sidered to promote the low-rank and group sparsity of the parameter matrix in Alvarez & Salzmann
(2017). Structured pruning is realized by sparse optimization in Chen et al. (2020), namely L1 reg-
ularization method, and an iterative algorithm is given. To the best of our knowledge, there is no
weighted regularization method for network compression. In this paper, the proposed weighted L1

regularization method is applied to unstructured pruning. Innovation from regularization term, Ma
et al. (2019); Tartaglione et al. (2021); Pandit et al. (2021); Idelbayev & Carreira-Perpiñán (2022) in-
troduce different regularization forms for network compression. Orthogonally, this paper considers
how to improve the performance of the method for the fixed regularization term.

Low-rank approximation based network compression. The low-rank approximation (Jaderberg
et al., 2014; Tai et al., 2015; Xu et al., 2019; Papadimitriou & Jain, 2021) usually decomposes a
parameter matrix into a product of two matrices of smaller dimensions. In Jaderberg et al. (2014);
Xu et al. (2019); Papadimitriou & Jain (2021), low-rank approximations of the original parame-
ters are obtained by minimizing the nuclear norm. In Tai et al. (2015), low-rank approximation is
achieved by adding low-rank constraints in the training process. To obtain a higher compression
rate, Swaminathan et al. (2020) propose the sparse low rank (SLR) method which sparsifies the pa-
rameters while ensuring the low rank of the parameters. Determining the optimal rank, the key of
low-rank approximation, Idelbayev & Carreira-Perpiñán (2020) regard it as a hyperparameter per
layer and Kim et al. (2019) considers the optimal rank selection problem for the whole network.
Yu et al. (2017) considers feature map reconstruction by setting parameter matrix as the sum of
low-rank matrix and sparse matrix, to establish a unified framework of low-rank and sparse matrix.
The proposed weighted idea is an orthogonal direction and can be applied to above nuclear norm
regularization method to improve the low-rank approximation.
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3 RESEARCH MODEL

For theoretical analysis, we consider a d-dimensional input and single output network with one
hidden layer (Zhong et al., 2017; Oymak, 2018; Fu et al., 2020) which has K neurons, however, our
experimental results show that the weighted regularization method also has significant advantages
in deep networks. Similar to Zhong et al. (2017); Fu et al. (2020); Dinh & Ho (2020), assume there
exists a lightweight underlying model, i.e., the ”true” parameter W ∗ = [w∗

1 , · · · , w∗
K ] ∈ Rd×K

which means the number of nonzero elements of W ∗ such that supp(W ∗) < dK and rank(W ∗) <
min{d,K}. The corresponding ”true” distribution of input and output over Rd × R is

D : x ∼ N (0, I), y =

K∑
k=1

ϕ
(
w∗
k
⊤x
)
≜ h(W ∗;x) (1)

where ϕ(z) is the activation function and h(·) is the network architecture.

The training dataset {xi, yi}Ni=1 which are independent and identically distributed (i.i.d.) samples
generated from D satisfies yi = h(W ∗;xi).

The Empirical Risk is defined as

fN (W ) =
1

2N

N∑
i=1

(
K∑
k=1

ϕ(w⊤
k xi)− yi

)2

≜
1

N

N∑
i=1

ℓ (W ;xi, yi) (2)

where ℓ (W ;x, y) is the mean square loss function, i.e., ℓ (W ;x, y) ≜ 1
2

(∑K
k=1 ϕ(w

⊤
k x)− y

)2
.

The Expected Risk is defined as

f(W ) =
1

2
E

(x,y)∼D

( K∑
k=1

ϕ(w⊤
k x)− y

)2
 ≜ E

(x,y)∼D
[ℓ (W ;x, y)] . (3)

4 PROBLEM FORMULATION

For the expected risk, denote the set of its global minimum points as H∗ ≜ {W : f(W ) = f(W ∗)},
that is to say,

H∗ = argmin
W∈Rd×K

f(W ). (4)

By the proof of Lemma 3.1 in Dinh & Ho (2020),i.e., Lemma A.1 in Appendix A.1, all the global
minima of the expected risk can be regarded as the ground truth parameter for generating data in
neural networks. For any global minimum point of the empirical risk fN (W ) denoted as

ŴN ∈ argmin
W∈Rd×K

fN (W ). (5)

Define the point in H∗ closest to ŴN as WH∗ ≜ argmin
W∈H∗

∥W − ŴN∥F .

In this work, we consider sparse and low-rank recovery of WH∗ by L1 and nuclear regularization
respectively. Assume WH∗ ∈ Rd×K is sparse and low-rank which means the number of nonzero
elements of WH∗ such that supp(WH∗) = h < dK and rank(WH∗) = r < min{d,K}.

5 ALGORITHM DESIGN

To improve model generalization, reduce computation and storage consumption, we consider the
regularization method. Existing regularization-based neural network compression techniques select
the same regularization coefficient for each element in the parameter matrix without distinguishing
the importance of the elements, which is unfair and will make the estimation value of the really
important elements small. Thus the weighted regularization is introduced.
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Weighted L1 norm regularization. For ∀W, A ∈ Rd×K , if matrix A is used as the weight, the
weighted L1 norm of matrix W is defined as ∥W∥A,1 ≜

∑d
s=1

∑K
t=1

|W (s,t)|
|A(s,t)| .

Weighted nuclear norm regularization. For ∀W, A ∈ Rd×K and A is full rank, if matrix A is used
as the weight, the weighted nuclear norm of matrix W is defined as ∥W∥A,∗ ≜

∑min{d,K}
l=1

σl(W )
σl(A)

where σl(W ) denotes the l-th singular value of the matrix W singular value in descending order,
i.e., σ1(W ) ≥ · · ·σl(W ) ≥ · · · ≥ σmin{d,K}(W ). The singular values of matrix A are defined the
same way.

Firstly we obtain the initial estimate ŴN by minimizing the empirical risk, i.e., solving the opti-
mization problem (5). Then use the initial estimate ŴN to construct weights according to different
ways to form weighted L1 norm regularization and nuclear norm regularization. Denote the Frobe-
nius norm of matrix as ∥ · ∥F . The square term ∥W − ŴN∥2F in the optimization criterion (6) and
(7) is to strengthen the convexity of the objective function at WH∗ .

min
W∈B(WH∗ ,R)

JN,1(W ) ≜ fN (W ) + λN∥W − ŴN∥2F + γN∥W∥
ŴN ,1

(6)

min
W∈B(WH∗ ,R)

JN,∗(W ) ≜ fN (W ) + λN∥W − ŴN∥2F + γN∥W∥
ŴN ,∗ (7)

where R is the neighborhood radius centered on WH∗ that satisfies local convexity. The specific
sparse recovery and low-rank recovery algorithm process are displayed in Algorithm 1 and 2 re-
spectively.

Algorithm 1 Sparse recovery algorithm

Input: Training data {xi, yi}Ni=1; quadratic term parameter λN > 0; regularization term parameter
γN > 0;

Output: The sparse estimates WN,1

1: compute initial estimates

ŴN ∈ argmin
W∈Rd×K

fN (W ); (8)

2: compute sparse estimates

WN,1 ≜ argmin
W∈B(ŴN ,R̂)

fN (W ) + λN∥W − ŴN∥2F + γN∥W∥
Ŵw

N ,1
. (9)

Algorithm 2 Low-rank recovery algorithm

Input: Training data {xi, yi}Ni=1; quadratic term parameter λN > 0; regularization term parameter
γN > 0;

Output: The low-rank estimates WN,∗
1: compute initial estimates

ŴN ∈ argmin
W∈Rd×K

fN (W ); (10)

2: compute low-rank estimates

WN,∗ ≜ argmin
W∈B(ŴN ,R̂)

fN (W ) + λN∥W − ŴN∥2F + γN∥W∥
Ŵw

N ,∗
. (11)

Remark 5.1 Noting that the feasible domain in optimization criterion (6) and (7) is related to WH∗

which is not available, we consider replacing WH∗ with ŴN at the cost of making the radius of
the feasible domain smaller. By Remark A.1 in Appendix A.2, we can choose R̂ ≜ R − Cδ1 ·(

logN√
N

)1/ν
> 0 where R = min

{√
(2L1+L1L2)

2

2L2
1L

2
3dK

, λN

K7/2

}
.
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Remark 5.2 Noting that the adaptive weights in the regularization terms appear in the de-
nominator, in order that the algorithms are well-defined, we set Ŵw

N (s, t) = ŴN (s, t) +

sgn(ŴN (s, t))
(

logN√
N

)1/ν
and σwl (ŴN ) = σl(ŴN )+sgn(σl(ŴN )

(
logN√
N

)1/ν
where sgn(x) = 1,

if x ≥ 0; sgn(x) = −1, if x < 0. By this way, C1

(
logN√
N

)1/ν
≤ |Ŵw

N (s, t)| ≤ C2

(
logN√
N

)1/ν
and

C3

(
logN√
N

)1/ν
≤ σwl (ŴN ) ≤ C4

(
logN√
N

)1/ν
where C1, C2, C3 and C4 are some constants.

6 THE THEORETICAL RESULTS

We first make the following assumptions about the activation function and coefficient selection of
quadratic term and regular term, i.e., λN and γN .
Assumption 6.1 The activation function ϕ(z) is analytic. The first derivative ϕ′(z) is non-negative
and bounded, i.e., 0 ≤ ϕ′(z) ≤ L1 for some constants L1 > 0. The second derivative ϕ′′(z) and
the third derivative ϕ′′′(z) are bounded, i.e., |ϕ′′(z)| ≤ L2 and |ϕ′′′(z)| ≤ L3 for some constant L2

and L3.
Assumption 6.2 Let

αq(σ) = Ez∼N (0,1) [ϕ
′(σ · z)zq] ,∀q ∈ {0, 1, 2},

βq(σ) = Ez∼N (0,1)

[
ϕ′2(σ · z)zq

]
,∀q ∈ {0, 2},

ρ(σ) ≜ min
{
β0(σ)− α2

0(σ)− α2
1(σ), β2(σ)− α2

1(σ)− α2
2(σ), α0(σ) · α2(σ)− α2

1(σ)
}
.

The first derivative ϕ′(z) satisfies that, for all σ > 0, we have ρ(σ) > 0.
Remark 6.1 Some assumptions are similar to the assumption in Zhong et al. (2017); Oymak (2018).
Generally speaking, they guarantee the local convexity of the neural network.

It is direct to check that Sigmoid activation function ϕ(z) = 1
1+e−z satisfies the above assumptions.

Assumption 6.3 For the coefficient of quadratic term λN , it satisfies λN >

max

{
Cδ1 ·

(
logN√
N

)1/ν
, Cδ2

√
logN
N

}
and λN → 0 as N → ∞. For the coefficient of reg-

ularization term γN , it satisfies γN(
log N√

N

)1/ν → ∞ and γN → 0 as N → ∞ where ν is some positive

constant and Cδ1 , Cδ2 are positive constants depending on δ1 and δ2 respectively.

6.1 THEORETICAL RESULTS OF SPARSE AND LOW-RANK RECOVERY ALGORITHM

This section includes two parts of theoretical analysis. The first part is to provide the upper bounds of
the estimation errors obtained by the two weighted regularization methods respectively. The second
part is to prove the sparse consistency and low-rank consistency.

6.1.1 ERROR BOUNDS FOR SPARSE AND LOW-RANK ESTIMATORS

Theorem 6.1 (The error bound of the estimates by minimizing fN (W )). Assume the activation
function is analytic. Then for ∀δ1 > 0, there exist ν > 0, Cδ1 > 0 and N0(δ1) > 0 for ∀N ≥ N0(δ1)
such that

∥ŴN −WH∗∥F ≤ Cδ1

(
logN√

N

)1/ν

(12)

with probability at least 1− δ1.
Proof The proof is based on the corollary of Lojasewicz’s inequality and generalization bound in
Dinh & Ho (2020). The detailed proof is given in Appendix A.2.
Lemma 6.1 (The empirical Hessian is close to the expected Hessian). Assume Assumption 6.1 and
6.2 hold. The empirical Hessian converges uniformly to the expected Hessian. Namely, ∀δ2 > 0,
there exist Cδ2 > 0 and N0(δ2) > 0, for ∀N ≥ N0(δ2) we have

P

(
sup

W∈B(WH∗ ,R)

∥∥∇2fN (W )−∇2f(W )
∥∥ ≤ Cδ2

√
logN

N

)
≥ 1− δ2. (13)

5



Under review as a conference paper at ICLR 2023

Proof The proof is based on the covering number theory and Bernstein inequality inspired by Mei
et al. (2018); Fu et al. (2020). The detailed proof is given in Appendix A.3.

Lemma 6.2 (Local uniform strong convexity and smoothness of FN (W )). Denote FN (W ) ≜

fN (W ) + λN∥W − ŴN∥2F . Choose λN > Cδ2

√
logN
N , for ∀W ∈ B(WH∗ , R) where R =

min
{√

(2L1+L1L2)
2

2L2
1L

2
3dK

, λN

K7/2

}
, we have

lN · I ⪯ ∇2FN (W ) ⪯ LN · I. (14)

with probability at least 1− δ2, where lN ≜ λN − Cδ2

√
logN
N > 0 and LN ≜ Cδ2

√
logN
N + Lf +

2λN .
Proof The proof is based on the locally convexity of expected risk f(W ) and this good property can
be transferred to the empirical risk fN (W ) by Lemma 6.1. Adding the square term, for fN (W ),
local convexity is strengthened to strong local convexity. The detailed proof is given in Appendix
A.4.
Theorem 6.2 (Error bounds of WN,1 and WN,∗). Let the activation function satisfy assumptions
6.1 and 6.2. Then for any W ∈ B (WH∗ , R), JN,1(W ) and JN,∗(W ) are strongly convex with

probability at least 1 − δ. Choose λN > Cδ2

√
logN
N . Then there exist N0(δ) > 0, for ∀N ≥

N0(δ) we have ∥WN,1−WH∗∥F = O

(√
logN
N + λN

(
logN√
N

)1/ν
+ γN

)
and ∥WN,∗−WH∗∥F =

O

(√
logN
N + λN

(
logN√
N

)1/ν
+ γN

)
with probability at least 1− δ.

Proof The proof is based on the above strong local convexity, we use the theory of convex optimiza-
tion to analyze the error upper bounds of the estimates obtained by the two weighted regularization
methods. The detailed proof is given in Appendix A.6.
Remark 6.2 As long as λN and γN satisfy Assumption 6.3, we can deduce WN,1 → WH∗ and
WN,∗ → WH∗ as N → ∞ with probability at least 1− δ.

6.1.2 SPARSE AND LOW-RANK RECOVERY

For the ground truth parameter WH∗ , define the zero element index set AH∗ and zero singular value
index set BH∗ respectively.

AH∗ = {(s, t) : WH∗(s, t) = 0, s = 1, · · · , d; t = 1, · · · ,K} (15)
BH∗ = {l : σl(WH∗) = 0, l = 1, · · · ,min{d,K}}. (16)

Theorem 6.3 (Sparse and low-rank selection consistency). Define
AN = {(s, t) : WN,1(s, t) = 0, s = 1, · · · , d; t = 1, · · · ,K} (17)
BN = {l : σl(WN,∗) = 0, l = 1, · · · ,min{d,K}}. (18)

Choose γN(
log N√

N

)1/ν → ∞ as N → ∞. There exist N1(δ) > 0, for ∀N ≥ N1(δ), we have AN =

AH∗ and BN = BH∗ with probability at least 1− δ.
Proof The proof is based on the optimality of WN,1, WN,∗ and the selection of regularization coef-
ficient γN in Assumption 6.3. The detailed proof is given in Appendix A.7.
Remark 6.3 Theorem 6.3 shows that the estimates obtained by the weighted regularization methods
can correctly prune redundant elements and redundant singular values.

7 EXPERIMENT

7.1 RESULTS ON SYNTHETIC DATASET

Settings. We consider synthetic simulations to support the theoretical analysis. The designed net-
work is from equation (1) with the input dimension d = 20, hidden dimension K = 80 and ac-
tivation function ϕ(z) = Sigmoid(z). The ground truth parameter W ∗ is sparse and low-rank
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(a) L1 vs. Weighted L1
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Figure 1: (a) The test loss and weight sparsity of L1 and Weighted L1 methods. (b) The test loss
and singular sparsity of Nuclear and Weighted Nuclear methods. (c) The weight histogram of W ∗,
the L1 method, and the Weighted L1 method. (d) The singular values of W ∗, the Nuclear method,
and the Weighted Nuclear method.

with supp(W ∗) = 8 × 80 and rank(W ∗) = 10. We compare the L1 with Weighted L1 meth-
ods (Algorithm 1), Nuclear with Weighted Nuclear methods (Algorithm 2). The gradient descent
algorithm is employed with a learning rate of 0.2 and regularization coefficient γN = 5 , and a
number of iterations of 30, 000. The test error and weight/singular sparsity are used for evalua-
tion. The followed sparsity represents the ratio of near zero weights/singulars. In practice, we set
ϵw = 0.005, ϵs = 0.05.

sparsityw(W ) =

∑d
i

∑K
j I(|Wij | < ϵw)

dK
, sparsitys(W ) =

∑min{d,K}
k I(|σk(W )| < ϵs)

min{d,K}
(19)

Results. Figure 1(a) 1(b) illustrate the test error and sparsity along iterations. For example, Figure
1(a) shows that the Weighted L1 consistently has lower test error and higher sparsity than the L1

method. These results indicate that the weighted method preserve more critical elements, which
is consistent with our theoretical derivation. For further analysis, the distribution of weights and
singular values are shown in Figure 1(c) 1(d), respectively. In Figure 1(c), the red Weighted L1 has
more parameters in the [0, 0.005) interval than the blue L1 method, thus stronger weight sparsity. In
Figure 1(d), the singular values of the red Weighted Nuclear are closer to the target singular values
than the blue Nuclear method when the ids lie between 10 and 19, indicating lower rank.

7.2 RESULTS ON REAL DATASETS

Datasets and Networks. Experiments are conducted on MNIST (LeCun et al., 1998), CIFAR-
10 (Krizhevsky & Hinton, 2009) and Tiny-ImageNet (Le & Yang, 2015). MNIST is a dataset of
handwritten digits with 60, 000 training images and 10, 000 test images. CIFAR-10 is a 10-class
object recognition dataset with 50, 000 training images and 10, 000 test images. Tiny-ImageNet is a
recognition dataset with two hundred classes, 100,000 training images, and 10,000 test images. The
experimental networks include LeNet-300-100 (Krizhevsky & Hinton, 2009) for MNIST, VGG16
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(Simonyan & Zisserman, 2015), ResNet20 (He et al., 2016), ResNet56 for CIFAR-10, and ResNet18
for Tiny-ImageNet.

Settings. We compare the L1 with the Weighted L1 method, and the Nuclear with the Weighted
Nuclear method. The weights of Weighted L1 and Nuclear methods are initialized by the parame-
ters of well-trained networks. Then the regularization is applied to compress networks. For a fair
comparison, the hyper-parameters of non-weighted and weighted methods are kept the same during
optimization. Each experiment is conducted three times across datasets and networks. The weight
decay is set to 0 to eliminate its disturbance to the regularization. Details of other hyper-parameters
such as learning rate and optimizer are listed in Appendix A.8.

Results. Table 1 shows the results between L1 and Weighted L1. Weighted L1 generally has better
performance than L1 both in fully connected networks and convolutional neural networks. For ex-
ample, Weighted L1 has superior average accuracy to L1 (86.89% vs. 84.29%) on ResNet-20 when
the sparsity is 0.95, which indicates that the weighted method preserves more critical elements. Ta-
ble 2 summarizes the results of the Nuclear with the Weighted Nuclear. We can see that the Weighted
Nuclear significantly outperforms the Nuclear method, which suggests the weighted method is help-
ful to preserve the key singular values. Moreover, Figure 2 visualizes that the weighted method has
higher accuracy than the non-weighted method at the same sparsity, verifying the effectiveness of
the proposed methods.

0.80 0.90 0.95 0.98
sparsity

94

95

96

97

98

ac
cu

ra
cy

/%

L1
Weighted L1
Baseline

(a) MNIST, LeNet-300-100, L1 vs. Weighted L1

0.4 0.5 0.6 0.7
sparsity

20

40

60

80

100
ac

cu
ra

cy
/%

Nuclear
Weighted Nuclear
Baseline

(b) MNIST, LeNet-300-100, Nuclear vs. Weighted Nuclear

0.80 0.85 0.90 0.95
sparsity

84

86

88

90

92

ac
cu

ra
cy

/%

L1
Weighted L1
Baseline

(c) CIFAR-10, ResNet20, L1 vs. Weighted L1

0.3 0.4 0.5 0.6
sparsity

55

60

65

70

75

80

85

90

ac
cu

ra
cy

/%

Nuclear
Weighted Nuclear
Baseline

(d) CIFAR-10, ResNet20, Nuclear vs. Weighted Nuclear

0.80 0.85 0.90 0.95
sparsity

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

ac
cu

ra
cy

/%

L1
Weighted L1
Baseline

(e) CIFAR-10, ResNet56, L1 vs. Weighted L1

0.3 0.4 0.5 0.6
sparsity

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

ac
cu

ra
cy

/%

Nuclear
Weighted Nuclear
Baseline

(f) CIFAR-10, ResNet56, Nuclear vs. Weighted Nuclear

Figure 2: Comparison of non-weighted and weighted regularization methods on real datasets and
networks.
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Table 1: Comparison between L1 and Weighted L1 Regularization. The accuracy of Mean ± Std is
reported by three independent experiments.

Dataset Model Baseline (%) sparsityw L1 (%) Weighted L1 (%)

MNIST LeNet-300-100 98.18
0.9 97.75±0.03 98.40±0.02

0.98 94.50±0.30 97.43±0.09

CIFAR-10

VGG16 93.14
0.8 93.21±0.07 93.31±0.06
0.9 93.30±0.01 93.18±0.03

0.99 93.20±0.03 93.19±0.18

ResNet20 92.78
0.8 91.85±0.15 92.40±0.03
0.9 89.41±0.11 90.36±0.09

0.95 84.29±0.36 86.89±0.30

ResNet56 94.69
0.8 94.36±0.07 94.44±0.03
0.9 93.24±0.26 93.88±0.05

0.95 91.15±0.14 92.46±0.12

Tiny-ImageNet ResNet18 53.18
0.9 51.21±1.24 51.01±1.24

0.95 47.74±3.56 48.17±3.24

Table 2: Comparison between Nuclear and Weighted Nuclear Regularization. The accuracy of Mean
± Std is reported by three independent experiments.

Dataset Model Baseline (%) sparsitys Nuclear (%) Weighted Nuclear (%)

MNIST LeNet-300-100 98.18
0.5 94.62±0.49 97.77±0.11
0.6 87.26±0.29 97.38±0.09

CIFAR-10

VGG16 93.14
0.5 91.76±0.65 91.87±0.20
0.6 90.54±0.17 91.12±0.33
0.7 87.18±0.77 89.60±0.86

ResNet20 92.78
0.3 82.08±2.72 86.81±0.29
0.4 72.90±8.76 83.97±1.53
0.5 65.99±6.22 75.31±5.77

ResNet56 94.69
0.3 88.46±1.02 89.93±0.88
0.4 85.25±2.41 88.76±1.22
0.5 82.28±0.97 87.10±0.41

Tiny-ImageNet ResNet18 53.18
0.4 47.17±4.58 50.77±1.59
0.5 44.29±6.19 50.27±1.94

8 CONCLUSION

In this paper, we propose two weighted regularization methods for sparse recovery and low-rank
recovery respectively. For a fully connected single hidden layer neural network, we theoretically
establish the error upper bound of the estimates obtained by the two methods and prove the sparse
recovery consistency and low-rank recovery consistency respectively. The simulation experiment
shows that the sparsity and rank of the weighted method are closer to the ground truth parameters and
have better generalization, that is, the test error is smaller. Experiments on public datasets indicate
that the weighted regularization method can achieve higher accuracy with the same element sparsity
or singular value sparsity. However, the limitation of the proposed method is that the weight setting
of the regularization term depends on the accuracy of the initial estimation ŴN to some sparse
and low-rank minimum point. In the future work, more forms of weighted regularization methods,
such as the non-convex regularization term, will be considered, and deeper neural networks will be
theoretically analyzed.
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A APPENDIX

A.1 PRELIMINARY

For ∀W ∈ Rd×K , denote the k-th column of W as wk. Given that y =
∑K
k=1 ϕ

(
w∗
k
⊤x
)

is
only related to x, ℓ (W ;x, y) is often abbreviated as ℓ (W ;x) for the convenience of statement in
subsequent theoretical analysis. For subsequent theoretical analysis, we first calculate the gradient
and the Hessian of fN (W ) and f(W ). For each j ∈ {1, · · · ,K}, the partial gradient of f(W ) with
respect to wj can be represented as

∂f(W )

∂wj
= E

[(
K∑
k=1

ϕ
(
w⊤
k x
)
− y

)
ϕ′ (w⊤

j x
)
x

]
(20)

For each j, l ∈ {1, · · · ,K}, the second partial derivative of f(W ) for the (j, l)-th block is,

∂2f(W )

∂wj∂wl
= E

[
ξj,l(W ;x) · xx⊤] (21)

where

ξj,l(W ;x) =

{
ϕ′ (w⊤

j x
)
ϕ′ (w⊤

l x
)

for j ̸= l,(∑K
k=1 ϕ

(
w⊤
k x
)
− y
)
ϕ′′ (w⊤

j x
)
+
(
ϕ′ (w⊤

j x
))2

for j = l.
(22)

Accordingly, the gradient of empirical risk is ∇fN (W ) = [∂fN (W )
∂w1

, · · · , ∂fN (W )
∂wK

], where for ∀j ∈
[K],

∂fN (W )

∂wj
=

1

N

N∑
i=1

[(
K∑
k=1

ϕ
(
w⊤
k xi

)
− yi

)
ϕ′ (w⊤

j xi
)
xi

]
. (23)

The Hessian matrix of empirical risk is ∇2fN (W ) = [∂fN (W )
∂wj∂wl

]j∈[K],l∈[K], where

∂2fN (W )

∂wj∂wl
=

1

N

N∑
i=1

[
ξj,l(W ;xi) · xix⊤

i

]
. (24)

Lemma A.1 W ∈ H∗ if and only if h(W ;x) = h(W ∗;x), ∀x ∈ Rd, i.e.,
∑K
k=1 ϕ(w

T
i x) =∑K

k=1 ϕ(w
∗
i
Tx), ∀x ∈ Rd.

By Lemma A.1, we can denote any point in H∗ as W ∗ and it satisfies y =
∑K
k=1 ϕ

(
w∗
k
⊤x
)

.

Lemma A.2 (The intersection of events with high probability is still a high probability event).
∀δA > 0, there exists N0(δA) > 0, for ∀N ≥ N0(δA), we have P(AN ) ≥ 1− δA.

∀δB > 0, there exists N0(δB) > 0, for ∀N ≥ N0(δB), we have P(B) ≥ 1− δB .

Then for ∀N ≥ max{N0(δA), N0(δB)}, we have P(AB) ≥ 1− (δA + δB).

Proof Denote the complement of set B as BC . Noting that P (BC) ≤ δB , we have P(AB) =
P (A) − P (ABC) ≥ 1 − δA − P (ABC) ≥ 1 − δA − P (BC) ≥ 1 − δA − δB where the second
equality comes from P (ABC) ≤ P (BC) ≤ δB . ■

A.2 THE PROOF OF THEOREM 6.1

Before the proof of Theorem 6.1, two key lemmas are shown. The first lemma can be understood as
an extension of Taylor’s expansion when the Hessian matrix is singular.

Lemma A.3 (Lemma 3.2 in Dinh & Ho (2020)). There exist C1, ν > 0 and such that
f(W ) − f(WH∗) ≥ C1 · dist (W,H∗)

ν for all WH∗ ∈ H∗ and W ∈ B (WH∗ , R) ≜{
W ∈ Rd×K : ∥W −WH∗∥F ≤ R

}
.
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The second one provides the generalization bound.

Lemma A.4 (Lemma 3.3 in Dinh & Ho (2020)). For any δ1 > 0, there exist Cδ1 > 0 and Nδ1 > 0
such that ∀N ≥ Nδ1 the generalization bound is

|fN (W )− f(W )| = Cδ1 ·
logN√

N
, ∀W ∈ B (WH∗ , R) (25)

with probability at least 1− δ1.

Based on Lemma A.3 and A.4, we prove Lemma 6.1.

Proof Note dist
(
ŴN ,H∗

)
≜ min

W∈H∗
∥W − ŴN∥F . Define WH∗ ≜ argmin

W∈H∗
∥W − ŴN∥F . Then

dist
(
ŴN ,H∗

)
= ∥WH∗ − ŴN∥F . By Lemma A.3, we can obtain

C1dist
(
ŴN ,H∗

)ν
= C1∥ŴN −WH∗∥νF

≤ f(ŴN )− f(WH∗)

= [f(ŴN )− fN (ŴN )] + [fN (ŴN )− fN (WH∗)] + [fN (WH∗)− f(WH∗)]
(26)

For the second term to the right of the inequality, the optimality of ŴN follows

fN (ŴN )− fN (WH∗) ≤ 0. (27)

Combined with absolute value inequality, further directly we have

C1dist
(
ŴN ,H∗

)ν
≤ |f(ŴN )− fN (ŴN )|+ |fN (WH∗)− f(WH∗)| (28)

Then we just have to consider generalization bounds which is the bound of |fN (W ) − f(W )|.
Combined with Lemma A.4, there exists C2 > 0 such that

C1∥ŴN −WH∗∥νF ≤ |f(ŴN )− fN (ŴN )|+ |fN (WH∗)− f(WH∗)| ≤ 2Cδ1 ·
logN√

N
. (29)

Further, ∥ŴN −WH∗∥F ≤ Cδ1 ·
(

logN√
N

)1/ν
= O

((
logN√
N

)1/ν)
can be drawn directly. ■

Remark A.1 Since point WH∗ in local region B(WH∗ , R) of Algorithm 1 and 2 is unknown,
consider replacing WH∗ with the estimated value ŴN . For any point W ∈ B(W

ŴN
, R),

∥W − ŴN∥F ≤ R. Note that

∥W −WH∗∥F ≤ ∥(W − ŴN ) + (ŴN −WH∗)∥F ≤ ∥W − ŴN∥F + ∥ŴN −WH∗∥F

≤ ∥W − ŴN∥F + Cδ1 ·
(
logN√

N

)1/ν

≤ R. (30)

Noting that ∥W − ŴN∥F ≤ R − Cδ1 ·
(

logN√
N

)1/ν
≜ R̂, we know that B(W

ŴN
, R̂) is a subset of

B(WH∗ , R). By λN > max

{
Cδ1 ·

(
logN√
N

)1/ν
, Cδ2

√
logN
N

}
in Assumption 6.3, we have R̂ > 0.

A.3 THE PROOF OF LEMMA 6.1

Definition A.1 (Sub-exponential norm). For random variable X ∈ Rd, the sub-exponential norm
of X is defined as

∥X∥ψ1
≜ sup

t≥1

1

t

[
E|X|t

]1/t
. (31)
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Definition A.2 (Sub-gaussian norm). For random variable X ∈ Rd, the sub-gaussian norm of X
is defined as

∥X∥ψ2 ≜ sup
t≥1

1√
t

[
E|X|t

]1/t
. (32)

Lemma A.5 (Bernstein inequality for sub-exponential random variables). Let X1, · · · , Xn be inde-
pendent sub-exponential random variables with ∥Xi∥ψ1 ≤ b, and define Sn =

∑n
i=1 (Xi − EXi).

Then there exists a universal constant c such that, for all t > 0,

P(Sn ≥ t) ≤
{
−cmin

(
t2

nb2
,
t

b

)}
. (33)

Lemma A.6 (Lemma 4 in Mei et al. (2018)). Let M ∈ Rd×d be a symmetric d × d matrix and Vϵ
be an ϵ-cover of unit-Euclidean-norm ball B(0, 1), then

∥M∥ ≤ 1

1− 2ϵ
sup
v∈Vϵ

|⟨v,Mv⟩|.

Firstly, we prove that ∥Gi∥ψ1
is upper bounded.

Lemma A.7 (∥Gi∥ψ1
is upper bounded). For Gi =

〈
u,
(
∇2ℓ (W ;xi)− E

[
∇2ℓ(W ;x)

])
u
〉

where
u ∈ B(0, 1) =

{
W ∈ Rd×K : ∥W∥F = 1

}
. There exists some constant C such that

∥Gi∥ψ1
≤ C :≡ τ2. (34)

Proof Note ∥Gi∥ψ1
≤ ∥⟨u,∇ℓ(W ;x)u⟩∥ψ1

+ ∥∇2f(W ;x)∥. For the upper bound of

∥∇2f(W ;x)∥ is known, now let’s focus on the first term with u =
[
u⊤
1 , · · · , u⊤

K

]⊤ ∈ RdK .

∥⟨u,∇ℓ(W ;x)u⟩∥ψ1
≤

K∑
j=1

K∑
l=1

∥∥ξjl · u⊤
j xx

⊤ul
∥∥
ψ1

≤
K∑
j=1

K∑
l=1

sup
t≥1

t−1
(
E
∣∣ξjl · u⊤

j xx
⊤ul
∣∣t)1/t (35)

where

ξj,l(W ) =

{
ϕ′ (w⊤

j x
)
ϕ′ (w⊤

l x
)

for j ̸= l,(∑K
k=1 ϕ

(
w⊤
k x
)
− y
)
ϕ′′ (w⊤

j x
)
+
(
ϕ′ (w⊤

j x
))2

for j = l.
(36)

By the Holder inequality, we can get that(
E
∣∣ξjl · u⊤

j xx
⊤ul
∣∣t)1/t = (E |ξjl|t ·

∣∣u⊤
j xx

⊤ul
∣∣t)1/t ≤ (√E |ξjl|2t ·

√
E
∣∣u⊤
j xx

⊤ul
∣∣2t)1/t

(37)
For ∀j, l ∈ [K], we have

|ξjl| ≤ L2

∣∣∣∣∣
(

K∑
k=1

ϕ
(
w⊤
k x
)
−

K∑
k=1

ϕ
(
w∗
k
⊤x
))∣∣∣∣∣+ L2

1

≤ L1L2

K∑
k=1

∥wk − w∗
k∥ · ∥x∥+ L2

1

= L1L2∥W −W ∗∥F · ∥x∥+ L2
1. (38)

Noting that the input data x ∼ N (0, I) and the moments of normal random variables are bounded,
we can obtain

t−1
(
E
∣∣ξjl · u⊤

j xx
⊤ul
∣∣t)1/t ≤ Ct−1

(
E
∣∣u⊤
j xx

⊤ul
∣∣2t)1/2t

≤ Ct−1

(√
E
∣∣u⊤
j x
∣∣4t ·√E |x⊤ul|4t

)1/2t

. (39)

From the equation (90) and (91) in Fu et al. (2020), we can directly get ∥Gi∥ψ1 ≤ C ≜ τ2. ■
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Now we start the proof of Lemma 6.1 which is listed here again.
Lemma A.8 (Lemma 6.1: The empirical Hessian is close to the expected Hessian). Assume As-
sumption 6.1 and 6.2 hold. The empirical Hessian converges uniformly to the expected Hessian.
Namely, for ∀δ2 > 0, there exists Cδ2 > 0, if N ≥ Cδ2 · dK log dK ≜ N0(δ2), we have

P

(
sup

W∈B(WH∗ ,R)

∥∥∇2fN (W )−∇2f(W )
∥∥ ≤ Cδ2

√
logN

N

)
≥ 1− δ2. (40)

Proof Inspired by Fu et al. (2020), we just need to verify the conditions in Mei et al. (2018). Similar
to the analysis in (Fu et al., 2020; Mei et al., 2018), we also apply the covering number theory. Let
Nϵ be the ϵ−covering number of the Euclidean ball B(W ∗, R). From Lemma 5.2 in Vershynin
(2010), it is known that logNϵ ≤ dK log(3R/ϵ). Let Wϵ = {W1, · · · ,WNϵ

} be the ϵ−cover set
with Nϵ elements. For any W ∈ B(W ∗, R), let j(W ) = argmin

j∈[Nϵ]

∥W − Wj(W )∥F ≤ ϵ for all

W ∈ B(W ∗, R). For any W ∈ B(W ∗, R), we have

∥∥∇2fN (W )−∇2f(W )
∥∥ ≤ 1

N

∥∥∥∥∥
N∑
i=1

[
∇2ℓ (W ;xi)−∇2ℓ

(
Wj(W );xi

)]∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
i=1

∇2ℓ
(
Wj(W );xi

)
− E

[
∇2ℓ

(
Wj(W );x

)]∥∥∥∥∥
+
∥∥E [∇2ℓ

(
Wj(W );x

)]
− E

[
∇2ℓ(W ;x)

]∥∥ . (41)

Hence, we have

P

(
sup

W∈B(W∗,R)

∥∥∇2fN (W )−∇2f(W )
∥∥ ≥ t

)
≤ P (At) + P (Bt) + P (Ct) ,

where the events At, Bt and Ct are defined as

At =

{
sup

W∈B(W∗,R)

1

N

∥∥∥∥∥
N∑
i=1

[
∇2ℓ (W ;xi)−∇2ℓ

(
Wj(W );xi

)]∥∥∥∥∥ ≥ t

3

}
, (42)

Bt =

{
sup
W∈Wϵ

∥∥∥∥∥ 1

N

N∑
i=1

∇2ℓ (W ;xi)− E
[
∇2ℓ(W ;x)

]∥∥∥∥∥ ≥ t

3

}
, (43)

Ct =

{
sup

W∈B(W∗,R)

∥∥E [∇2ℓ
(
Wj(W );x

)]
− E

[
∇2ℓ(W ;x)

]∥∥ ≥ t

3

}
. (44)

Above all, we bound the terms P (At) ,P (Bt), and P (Ct), separately.

1) Upper bound on P (Bt). Inspired by the proof of Lemma 3 in Fu et al. (2020), let V1/4 be a
(
1
4

)
-

cover of the ball B(0, 1) =
{
W ∈ Rd×K : ∥W∥F = 1

}
, where log

∣∣V1/4

∣∣ ≤ dK log 12. Following
from Lemma A.6, we have∥∥∥∥∥ 1

N

N∑
i=1

∇2ℓ (W ;xi)− E
[
∇2ℓ(W ;x)

]∥∥∥∥∥ ≤ sup
v∈V1/4

∣∣∣∣∣
〈
v,

(
1

N

N∑
i=1

∇2ℓ (W ;xi)− E
[
∇2ℓ(W ;x)

])
v

〉∣∣∣∣∣ .
Taking the union bound over Wϵ and V1/4 yields

P(Bt) ≤ P

(
sup

W∈Wϵ,v∈V1/4

∣∣∣∣∣ 1N
N∑
i=1

Gi

∣∣∣∣∣ ≥ t

6

)

≤ exp

(
dK

(
log

3r

ϵ
+ log 12

))
sup

W∈Wϵ,v∈V1/4

P

(∣∣∣∣∣ 1N
N∑
i=1

Gi

∣∣∣∣∣ ≥ t

6

)
. (45)

where Gi =
〈
v,
(
∇2ℓ (W ;xi)− E

[
∇2ℓ(W ;x)

])
v
〉

and E [Gi] = 0. Let a =
[
a⊤1 , · · · , a⊤K

]
∈

RdK .
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Then we will show that ∥Gi∥ψ1
is upper bounded, i.e., there exists some constant C such that

∥Gi∥ψ1
≤ C :≡ τ2.

Applying the Bernstein inequality for sub-exponential random variables to (45), by Theorem 9 in
Mei et al. (2018), we have that for fixed W ∈ Wϵ, v ∈ V 1

4
,

P

(∣∣∣∣∣ 1N
N∑
i=1

〈
v,
(
∇2ℓ (W ;xi)− E

[
∇2ℓ(W ;x)

])
v
〉∣∣∣∣∣ ≥ t

6

)
≤ 2 exp

(
−C ·N ·min

(
t2

τ4
,
t

τ2

))
,

(46)

for some universal constant C. Combining (45) and (46), P(Bt) is upper bounded by

P(Bt) ≤ 2 exp

(
−C ·N ·min

(
t2

τ4
,
t

τ2

)
+ dK log

3r

ϵ
+ dK log 12

)
. (47)

Above all, if

t > C ·max


√

τ4
(
dK log 36r

ϵ + log 4
δ

)
N

,
τ2
(
dK log 36r

ϵ + log 4
δ

)
N

 (48)

for some large enough constant C, we have P(Bt) ≤ δ
2 .

2) Upper bound on P(At) and P(Ct).

These two events will be bounded in a similar way. By the third derivative of the activation function
is bounded in assumption 6.1, for ∀W ̸= W ′ ∈ B (W ∗, R), we have that

∥∥∇2ℓ(W ; z)−∇2ℓ(W ′; z)
∥∥ ≤

K∑
j=1

K∑
l=1

|ξj,l(W )− ξj,l(W
′)| · ∥xx⊤∥ (49)

|ξj,l(W )− ξj,l(W
′)| ≤

(
max
k

|Ti,j,k|
)
· ∥x∥ ·

√
K · ∥W −W ′∥ (50)

For ∀j, l, k ∈ [K], we have

|Tj,l,k| ≤ 2L1 + L1L2 + L3

∣∣∣∣∣
K∑
k=1

ϕ
(
w⊤
k x
)
−

K∑
k=1

ϕ
(
w∗⊤
k x

)∣∣∣∣∣
≤ 2L1 + L1L2 + L1L3

K∑
k=1

∣∣∣(wk − w∗
k)

⊤
x
∣∣∣

≤ 2L1 + L1L2 + L1L3K ∥W −W ∗∥ · ∥x∥. (51)

If ∥W −W ∗∥ ≤ min
{√

(2L1+L1L2)
2

2L2
1L

2
3dK

, 2+L2

KL3

}
, we have max

j,l,k
|Tj,l,k| ≤ (2L1 + L1L2)(1 + ∥x∥).

E

[
sup

W ̸=W ′∈B(W∗,R)

∥∥∇2ℓ(W ;x)−∇2ℓ (W ′;x)
∥∥

∥W −W ′∥F

]
≤

√
K ·K2 · E

[(
max
j,l,k

|Tj,l,k|
)
· ∥x∥ · ∥xx⊤∥

]
≤ C · dK3/2. (52)

For the event Ct which is a deterministic event, we have

sup
W∈B(W∗,R)

∥∥E [∇2ℓ
(
Wj(W );x

)]
− E

[
∇2ℓ(W ;x)

]∥∥
≤ sup
W∈B(W∗,R)

∥∥E [∇2ℓ
(
Wj(W );x

)]
− E

[
∇2ℓ(W ;x)

]∥∥
∥W −Wj(W )∥

· sup
W∈B(W∗,R)

∥W −Wj(W )∥

≤ C · dK3/2 · ϵ (53)
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by letting W ′ = Wj(W ). Thus if t > C · dK3/2 · ϵ, Ct holds.

Similarly, we can bound the event At as below.

P

(
sup

W∈B(W∗,R)

1

N

∥∥∥∥∥
n∑
i=1

[
∇2ℓ (W ;xi)−∇2ℓ

(
Wj(W );xi

)]∥∥∥∥∥ ≥ t

3

)

≤ 3

t
E

[
sup

W∈B(W∗,R)

∥∥∥∥∥ 1

N

N∑
i=1

[
∇2ℓ (W ;xi)−∇2ℓ

(
Wj(W );xi

)]∥∥∥∥∥
]

≤ 3

t
E

[
sup

W∈B(W∗,R)

∥∥∇2ℓ (W ;xi)−∇2ℓ
(
Wj(W );xi

)∥∥]

≤ 3

t
E

[
sup

W∈B(W∗,R)

∥∥∇2ℓ (W ;xi)−∇2ℓ
(
Wj(W );xi

)∥∥∥∥W −Wj(W )

∥∥
F

]
· sup
W∈B(W∗,R)

∥∥W −Wj(W )

∥∥
F

≤ C · dK3/2 · ϵ
t

(54)

where the first inequality follows from the Markov inequality. Thus, taking t ≥ C·dK3/2·ϵ
δ ensures

that P (At) ≤ δ
2 .

3) Final step. By choosing ϵ = δτ2

dK3/2·NdK , we have

t > τ2 ·max

 1

NdK
, C

√
τ4
(
dK log 36r

ϵ + log 4
δ

)
N

, C
τ2
(
dK log 36r

ϵ + log 4
δ

)
N

 . (55)

There exists Cδ as log as N ≥ CδdK log dK, we have

Thus there exists Cδ , for ∀N ≥ Cδ · dK log dK, we can obtain that

P

(
sup

W∈B(W∗,R)

∥∥∇2fN (W )−∇2f(W )
∥∥ ≥ τ2

√
CδdK logN

N

)
≤ δ. (56)

■

A.4 THE PROOF OF LEMMA 6.2

Firstly, we prove Hessian smoothness of expected loss to extend the convexity from the point H∗ to
the region B(WH∗ , R0).

A.4.1 HESSIAN SMOOTHNESS OF EXPECTED LOSS: THE PROOF OF LEMMA A.9

Lemma A.9 (Hessian smoothness of expected loss). Assume W ∈ B(WH∗ , R0) where R0 =√
(2L1+L1L2)

2

2L2
1L

2
3dK

. Then

∥∇2f(W )−∇2f(WH∗)∥ ≤ 4 (2L1 + L1L2)
2
K

7
2 · ∥W −WH∗∥F . (57)

Proof Denote WH∗ as W ∗ for the sake of statement. Let ∆ = ∇2E [ℓ(W ;x)] − ∇2E [ℓ (W ′;x)].
Denote the (j, l)-th block of ∆ as ∆j,l ∈ Rd×d for ∀(j, l) ∈ [K]× [K]. Let a =

[
a⊤1 , · · · , a⊤K

]⊤ ∈
RdK . By the definition of spectral norm,∥∥∇2f(W )−∇2f(W ∗)

∥∥ = max
∥a∥=1

a⊤
(
∇2f(W )−∇2f(W ∗)

)
a = max

∥a∥=1

K∑
j=1

K∑
l=1

a⊤j ∆j,lal.

(58)

Denoting ξj,l(W ) ≜ ∂2E[ℓ(W ;x)]
∂wj∂wl

and ξj,l(W
∗) ≜ ∂2E[ℓ(W∗;x)]

∂w∗
j ∂w

∗
l

, we have

∆j,l =
∂2E [ℓ(W ;x)]

∂wj∂wl
− ∂2E [ℓ(W ∗;x)]

∂w∗
j∂w

∗
l

= E
[
(ξj,l(W )− ξj,l(W

∗)) · xx⊤] (59)
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where

ξj,l(W ) =

{
ϕ′ (w⊤

j x
)
ϕ′ (w⊤

l x
)

for j ̸= l,(∑K
k=1 ϕ

(
w⊤
k x
)
− y
)
ϕ′′ (w⊤

j x
)
+
(
ϕ′ (w⊤

j x
))2

for j = l.
(60)

By the mean value theorem, we have

ξj,l (W ) = ξj,l (W
∗) +

K∑
k=1

〈
∂ξj,l

(
W̃
)

∂w̃k
, wk − w∗

k

〉
(61)

where W̃ = ηW + (1− η)W ∗. Then we can obtain

∆j,l = E

 K∑
k=1

〈
∂ξj,l

(
W̃
)

∂w̃k
, wk − w∗

k

〉xx⊤

 . (62)

Denote ∂ξj,l(W )
∂wk

≜ Tj,l,k · x, where Tj,l,k ∈ R is a scalar. From (60) we can further calculate
∂ξj,l(W )
∂wk

as follows.

∂ξj,l (W )

∂wk
≜ Tj,l,k · x =


ϕ′′ (w⊤

j x
)
ϕ′ (w⊤

l x
)
x for k = j,

ϕ′ (w⊤
j x
)
ϕ′′ (w⊤

l x
)
x for k = l,

0 for k ̸= j and k ̸= l.

(63)

and
∂ξj,j (W )

∂wk
≜ Tj,j,k · x

=

{ [
2ϕ′ (w⊤

j x
)
+ ϕ′ (w⊤

j x
)
· ϕ′′ (w⊤

j x
)
+
(∑K

k=1 ϕ
(
w⊤
k x
)
− y
)
· ϕ′′′ (w⊤

j x
)]

x for k = j,

ϕ′ (w⊤
k x
)
· ϕ′′ (w⊤

j x
)
x for k ̸= j.

(64)

Since the first derivative, second derivative and third derivative of the activation function are
bounded, i.e, |ϕ′(·)| ≤ L1, |ϕ′′(·)| ≤ L2 and |ϕ′′′(·)| ≤ L3. It’s relatively easy to get

|Tj,l,k| ≤ L1L2 (65)

and

|Tj,j,k| ≤ 2L1 + L1L2 + L3

∣∣∣∣∣
K∑
k=1

ϕ
(
w⊤
k x
)
−

K∑
k=1

ϕ
(
w∗⊤
k x

)∣∣∣∣∣ . (66)

Then for ∀j, l, k ∈ [K],

|Tj,l,k| ≤ 2L1 + L1L2 + L3

∣∣∣∣∣
K∑
k=1

ϕ
(
w⊤
k x
)
−

K∑
k=1

ϕ
(
w∗⊤
k x

)∣∣∣∣∣ . (67)

To sum up, by the equation (33-34) in Fu et al. (2020), we can obtain that

∥∥∇2f(W )−∇2f(W ∗)
∥∥ ≤ max

∥a∥=1

K∑
j=1

K∑
l=1

√√√√ K∑
k=1

E
[
T 2
j,l,k

]
·

√√√√ K∑
k=1

∥wk − w∗
k∥2 · ∥aj∥2 · ∥al∥2.

(68)

Now we focus on the upper bound of E
[
T 2
j,l,k

]
. Noticing that∣∣∣∣∣

K∑
k=1

ϕ
(
w⊤
k x
)
−

K∑
k=1

ϕ
(
w∗⊤
k x

)∣∣∣∣∣ ≤
K∑
k=1

(∣∣ϕ (w⊤
k x
)
− ϕ

(
w∗⊤
k x

)∣∣)
≤ L1

K∑
k=1

∣∣∣(wk − w∗
k)

⊤
x
∣∣∣ , (69)
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we can obtain

E
[
T 2
j,l,k

]
≤ 2 (2L1 + L1L2)

2
+ 4L2

1L
2
3K∥W −W ∗∥2F · E[x⊤x]

= (2(2L1 + L1L2)
2
+ 4L2

1L
2
3dK∥W −W ∗∥2F (70)

by ∥wk − w∗
k∥ ≤ ∥W −W ∗∥F and E[x⊤x] = d. Choosing ∥W − W ∗∥F ≤

√
(2L1+L1L2)

2

2L2
1L

2
3dK

, we

have E
[
T 2
j,l,k

]
≤ 4 (2L1 + L1L2)

2. Further we can obtain

∥∥∇2f(W )−∇2f(W ∗)
∥∥ ≤ 4 (2L1 + L1L2)

2
K

5
2 · ∥W −W ∗∥F · max

∥a∥=1

K∑
j=1

K∑
l=1

∥aj∥∥al∥

≤ 4 (2L1 + L1L2)
2
K

7
2 · ∥W −W ∗∥F . (71)

■

A.4.2 LOCAL UNIFORM STRONG CONVEXITY AND SMOOTHNESS OF EXPECTED LOSS: THE
PROOF OF LEMMA A.10

Lemma A.10 (Local strong convexity and smoothness of expected loss). For the population loss

f(·) and ∀W ∈ B
(
WH∗ ,

√
(2L1+L1L2)

2

2L2
1L

2
3dK

)
, we have

lf · I ⪯ ∇2f(W ) ⪯ Lf · I (72)

where lf = −4 (2L1 + L1L2)
2
K

7
2 · ∥W −WH∗∥F and Lf = 4 (2L1 + L1L2)

2
K

7
2 ·

∥W −WH∗∥F +Kσ2
1 .

Proof By Lemma A.9 in the appendix, if ∥W−WH∗∥F ≤
√

(2L1+L1L2)
2

2L2
1L

2
3dK

, we have the second-order
smoothness near the ground truth∥∥∇2f(W )−∇2f(WH∗)

∥∥ ≤ 4 (2L1 + L1L2)
2
K

7
2 · ∥W −WH∗∥F . (73)

From Lemma D.6 and D.7 in Zhong et al. (2017), we get the upper and lower bounds on ∇2f(WH∗)

ρ (σmin(WH∗)) /
(
κ2λ

)
· I ⪯ ∇2f(WH∗) ⪯ K (σmax(WH∗))

2 · I (74)

where κ = σmax(WH∗ )
σmin(WH∗ ) , λ =

∏K
k=1 σk(WH∗ )

(σmin(WH∗ ))K
.

By the equation (73), if ∥W −WH∗∥F ≤
√

(2L1+L1L2)
2

2L2
1L

2
3dK

, we have

σmin

(
∇2f(W )

)
≥ σmin

(
∇2f(WH∗)

)
− ∥∇2f(W )−∇2f(WH∗)∥

≥ ρ (σK) /
(
κ2λ

)
− 4 (2L1 + L1L2)

2
K

7
2 · ∥W −WH∗∥F

= −4 (2L1 + L1L2)
2
K

7
2 · ∥W −WH∗∥F . (75)

By the triangle inequality, the spectral norm of ∇2f(W ), has the following upper bound

∥∇2f(W )∥ ≤ ∥∇2f(W )−∇2f(WH∗)∥+ ∥∇2f(WH∗)∥

≤ 4 (2L1 + L1L2)
2
K

7
2 · ∥W −WH∗∥F +Kσ2

1 . (76)

■

A.4.3 LOCAL UNIFORM STRONG CONVEXITY AND SMOOTHNESS OF EMPIRICAL LOSS: THE
PROOF OF LEMMA 6.2

The square term of our method can strengthen the local convexity to the local strong convexity in
Lemma 6.2, which is convenient to analyze and estimate the recovery degree relative to WH∗ .
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Proof For the smallest singular value of ∇2fN (W ), we have

σmin

(
∇2fN (W )

)
≥ σmin

(
∇2f(W )

)
− ∥∇2fN (W )−∇2f(W )∥. (77)

Noting the definition FN (W ) ≜ fN (W ) + λN∥W − ŴN∥2F , we have

∇2FN (W ) ⪰
(
σmin

(
∇2f(W )

)
− ∥∇2fN (W )−∇2f(W )∥+ 2λN

)
· I. (78)

Noting that
∥∇2fN (W )∥ ≤ ∥∇2fN (W )−∇2f(W )∥+ ∥∇2f(W )∥, (79)

we can obtain
∥∇2FN (W )∥ = ∥∇2fN (W ) + 2λN · I∥ ≤ ∥∇2fN (W )∥+ 2λN . (80)

We first analyze the lower bound of ∇2fN (W ). Combining (77), by Lemma 6.1, we have

σmin

(
∇2f(W )

)
− ∥∇2fN (W )−∇2f(W )∥ ≥ lf − Cδ2

√
logN

N

≥ −4 (2L1 + L1L2)
2
K

7
2 · ∥W −WH∗∥F − Cδ2

√
logN

N
(81)

with probability at least 1 − δ2. Thus if we choose λN > Cδ2

√
logN
N , there exists lN ≜ λN −

Cδ2

√
logN
N > 0 such that

∇2FN (W ) ⪰ lN · I (82)
with probability at least 1− δ2.

Then we analyze the upper bound of ∇2fN (W ). Combining (80), by Lemma 6.1, we have

∥∇2fN (W )−∇2f(W )∥+ ∥∇2f(W )∥ ≤ Cδ2

√
logN

N
+ Lf (83)

with probability at least 1− δ2. By denoting LN ≜ Cδ2

√
logN
N + Lf + 2λN ,

∥∇2FN (W )∥ ≤ ∥∇2fN (W )∥+ 2λN ≤ LN . (84)
with probability at least 1− δ2.

Above all, lN · I ⪯ ∇2FN (W ) ⪯ LN · I with probability at least 1− δ2. ■

A.5 THE PROOF OF LEMMA A.12

Firstly prove a key lemma.
Lemma A.11 For u ∈ B(0, 1) =

{
W ∈ Rd×K : ∥W∥F = 1

}
, ∥⟨∇ℓ(W ), u⟩∥ψ2

is upper bounded,
i.e., there exists some constant C such that

∥⟨∇ℓ(W ), u⟩∥ψ2
≤ C. (85)

Proof Note ∇ℓ(W ;x) = [∂ℓ(W )
∂W1

, · · · , ∂ℓ(W )
∂WK

] where ∂ℓ(W )
∂Wj

=
(∑K

k=1 ϕ
(
w⊤
k x
)
− y
)
ϕ′ (w⊤

j x
)
x,

∀j ∈ [K]. Hence

⟨∇ℓ(W ;x), u⟩ =

(
K∑
k=1

ϕ
(
w⊤
k x
)
− y

)
·
K∑
j=1

ϕ′ (w⊤
j x
) (

u⊤
j x
)

(86)

By the definition of sub-gaussian norm and denoting ζj =
(∑K

k=1 ϕ
(
w⊤
k x
)
− y
)
· ϕ′ (w⊤

j x
)
, we

have

∥⟨∇ℓ(W ), u⟩∥ψ2
≤

K∑
j=1

∥∥ζj · (u⊤
j x
)∥∥
ψ2

=

K∑
j=1

sup
t≥1

1√
t

(
E
∣∣ζj · (u⊤

j x
)∣∣t)1/t

≤
K∑
j=1

sup
t≥1

1√
t

(√
E |ζj |2t ·

√
E
∣∣(u⊤

j x
)∣∣2t)1/t

. (87)
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and

|ζj | =

∣∣∣∣∣
(

K∑
k=1

ϕ
(
w⊤
k x
)
−

K∑
k=1

ϕ
(
w∗
k
⊤x
))

· ϕ′ (w⊤
j x
)∣∣∣∣∣ ≤ L2

1 ·K∥W −W ∗∥F · ∥x∥ (88)

combining (87) and (88), we have ∥⟨∇ℓ(W ), u⟩∥ψ2
≤ C ·K.

Lemma A.12 (The empirical gradient is close to the expected gradient). The empirical gradient
converges uniformly to the expected gradient. Namely, for ∀δ3 > 0, if N ≥ Cδ3 · dK log dK ≜
N0(δ3), we have

P

(
sup

W∈B(WH∗ ,R)

∥∇fN (W )−∇f(W )∥F ≤ Cδ3

√
dK logN

N

)
≥ 1− δ3. (89)

Now we start the proof of A.12.
Proof Combining Lemma A.11, similar to the proof of Lemma A.9, we can get the following con-
centration inequality about the gradient of loss function. ■

A.6 THE PROOF OF THEOREM 6.2

The proof is based on the above strong local convexity, we use the theory of convex optimization
to analyze the error upper bounds of the estimates obtained by the two weighted regularization
methods.
Proof Step 1. The error bound of the estimates of sparse recovery optimization problem.

Denote WN,1 = WH∗ +MN,1, then we just have to focus on the bounds of MN,1. By the optimality
of WN,1, we have
0 ≥ JN (WH∗ +MN,1)− JN (WH∗)

= fN (WH∗ +MN,1) + λN∥WH∗ +MN,1 − ŴN∥2F −
(
fN (WH∗) + λN∥WH∗ − ŴN∥2F

)
+ γN∥WH∗ +MN∥

Ŵw
N ,1

− γN∥WH∗∥
Ŵw

N ,1
. (90)

By the definition of ∥ · ∥
Ŵw

N ,1
and absolute value inequality, we can get

∥WH∗ +MN,1∥Ŵw
N ,1

− ∥WH∗∥
Ŵw

N ,1
=

d∑
s=1

K∑
t=1

|WH∗(s, t) +MN,1(s, t)| − |WH∗(s, t)|∣∣∣Ŵw
N (s, t)

∣∣∣
=

∑
(s,t)∈AH∗

|MN,1(s, t)|∣∣∣ŴN (s, t)
∣∣∣ +

∑
(s,t)∈AC

H∗

|WH∗(s, t) +MN,1(s, t)| − |WH∗(s, t)|∣∣∣Ŵw
N (s, t)

∣∣∣
≥

∑
(s,t)∈AC

H∗

|WH∗(s, t) +MN,1(s, t)| − |WH∗(s, t)|∣∣∣Ŵw
N (s, t)

∣∣∣
≥

∑
(s,t)∈AC

H∗

−|MN,1(s, t)|∣∣∣Ŵw
N (s, t)

∣∣∣
≥ −C3 ∥MN∥F . (91)

where the last inequality follows from the equivalence of norms.

Denote FN (W ) ≜ fN (W ) + λN∥W − ŴN∥2F . By substituting (91) into (90) and the mean value
theorem, there exists W ′ = ξWH∗ + (1− ξ)WN ∈ B (WH∗ , R) for ξ ∈ [0, 1] such that
0 ≥ FN (WH∗ +MN )− FN (WH∗)− γN · C3∥MN,1∥F

= ⟨∇FN (WH∗),MN,1⟩+
1

2
vec(MN,1)

T∇2FN (W ′)vec(MN,1)− C3 · γN∥MN,1∥F

= ⟨∇fN (WH∗),MN,1⟩+ 2λN ⟨WH∗ − ŴN ,MN,1⟩+
1

2
vec(MN,1)

T∇2FN (W ′)vec(MN,1)

− C3 · γN∥MN,1∥F . (92)
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Note WH∗ is the global optimal point, then ∇f(WH∗) = 0. By Lemma A.12, we can obtain for
N ≥ N0(δ3)

∥∇fN (WH∗)∥F ≤ Cδ3

√
logN

N
(93)

with probability at least 1−δ3. From Lemma 6.2, by choosing λN > Cδ2

√
logN
N , the Hessian matrix

of FN (·) at point W ′ ∈ B (WH∗ , R) is positive definite, i.e, ∇2FN (W ′) ⪰ lN · I with probability
at least 1− δ2.

By Lemma A.2, for N ≥ max{N0(δ2), N0(δ3)}, we have

0 ≥ JN (WH∗ +MN,1)− JN (WH∗)

=
lN
2
∥MN,1∥2F −

(
∥∇fN (WH∗)∥F + 2λN∥WH∗ − ŴN∥F

)
∥MN,1∥F − C3 · γN∥MN,1∥F

≥ lN
2
∥MN,1∥F

(
∥MN,1∥F − 2

lN
∥∇fN (WH∗)∥F − 4λN

lN
∥WH∗ − ŴN∥F − 2C3

lN
γN

)
(94)

with probability at least 1 − (δ2 + δ3). By Lemma A.2 and Theorem 6.1, for N ≥
max{N0(δ1), N0(δ2), N0(δ3)} ≜ N0(δ), further we can obtain

∥WN,1 −WH∗∥F ≤ 2

lN
∥∇fN (WH∗)∥F +

4λN
lN

∥WH∗ − ŴN∥F +
2C3

lN
γN

≤ Cδ2
2

lN

√
logN

N
+ Cδ1

4λN
lN

(
logN√

N

)1/ν

+
2C3

lN
γN (95)

with probability at least 1− (δ1 + δ2 + δ3) ≜ δ.

Step 2. The error bound of the estimates of low-rank recovery optimization problem.

Denote WN,∗ = WH∗ +MN,∗, then we just have to focus on the bounds of MN,∗. By the optimality
of WN,∗, we have

0 ≥ JN (WH∗ +MN,∗)− JN (WH∗)

= fN (WH∗ +MN,∗) + λN∥WH∗ +MN,∗ − ŴN∥2F −
(
fN (WH∗) + λN∥WH∗ − ŴN∥2F

)
+ γN∥WH∗ +MN,∗∥Ŵw

N ,∗
− γN∥WH∗∥

Ŵw
N ,∗

. (96)

For the nuclear norm regularization part, we can obtain

∥WN,∗∥Ŵw
N ,∗

− ∥WH∗∥
Ŵw

N ,∗
=

K∑
l=1

σl(WN,∗)− σl(WH∗)

σl(Ŵw
N )

=
∑
l∈BH∗

σl(WN,∗)

σl(Ŵw
N )

+
∑
l∈BC

H∗

σl(WN )− σl(WH∗)

σl(Ŵw
N )

≥ −C4 ∥MN∥F . (97)

Similar to Step 1, for N ≥ N0(δ). we can also get the error bound of WN,∗, i.e.,

∥WN,∗ −WH∗∥F ≤ 2

lN
∥∇fN (WH∗)∥F +

4λN
lN

∥WH∗ − ŴN∥F +
2C4

lN
γN

≤ Cδ2
2

lN

√
logN

N
+ Cδ1

4λN
lN

(
logN√

N

)1/ν

+
2C4

lN
γN (98)

with probability at least 1− δ. ■

A.7 THE PROOF OF THEOREM 6.3

The proof is based on the optimality of WN,1, WN,∗ and the selection of regularization coefficient
γN in Assumption 6.3.
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Proof Step 1. Firstly, we prove the sparse consistency of the estimates WN,1.

Denote WN,1 = WH∗ +MN,1 and WN,1 = WH∗ +MN,1, where

MN,1(s, t) = MN,1(s, t), if (s, t) ∈ AC
H∗ (99)

MN,1(s, t) = 0, if (s, t) ∈ AH∗ . (100)

Suppose that there exists some (s0, t0) ∈ AH∗ such that MN (s0, t0) ̸= 0.

By the optimality of WN,1, we can obtain

0 ≥ JN (WH∗ +MN,1)− JN (WH∗ +MN,1)

= FN (WH∗ +MN,1)− FN (WH∗ +MN,1)

+ γN∥WH∗ +MN,1∥Ŵw
N ,1

− γN∥WH∗ +MN,1∥Ŵw
N ,1

. (101)

Note that

∥WH∗ +MN,1∥Ŵw
N ,1

− ∥WH∗ +MN,1∥Ŵw
N ,1

=

d∑
s=1

K∑
t=1

|WH∗(s, t) +MN,1(s, t)| −
∣∣WH∗(s, t) +MN,1(s, t)

∣∣∣∣∣Ŵw
N (s, t)

∣∣∣
=

∑
(s,t)∈AH∗

|MN,1(s, t)|∣∣∣Ŵw
N (s, t)

∣∣∣ +
∑

(s,t)∈AC
H∗

|WH∗(s, t) +MN,1(s, t)| −
∣∣WH∗(s, t) +MN,1

∣∣∣∣∣Ŵw
N (s, t)

∣∣∣
=

∑
(s,t)∈AH∗

|MN,1(s, t)|∣∣∣Ŵw
N (s, t)

∣∣∣ =
|MN,1(s0, t0)|∣∣∣Ŵw

N (s0, t0)
∣∣∣ (102)

where the second equation comes from WH∗(s, t) = 0, ∀(s, t) ∈ AH∗ and the third equation comes
from MN,1(s, t) = MN,1(s, t), ∀(s, t) ∈ AC

H∗ . Further we can get

γN
1

|Ŵw
N (s0, t0)|

|MN,1(s0, t0)| ≤ FN (WH∗ +MN,1)− FN (WH∗ +MN,1) (103)

By lN · I ⪯ ∇2FN (W ) ⪯ LN · I , we can obtain

FN (WN,1)− FN (WN,1) = ⟨∇FN (W̃N,1),WN,1 −WN,1⟩ ≤ ∥∇FN (W̃N,1)∥F · ∥WN,1 −WN,1∥F
(104)

and

vec(∇FN (W̃N,1))− vec(∇FN (WH∗)) = ∇2FN (W̃ ′
N ) · vec(W̃N,1 −WH∗) (105)

where W̃N,1 = ξWN,1+(1− ξ)WN,1, ξ ∈ [0, 1] and W̃ ′
N,1 = ξ′WH∗ +(1− ξ′)W̃N,1, ξ

′ ∈ [0, 1].

Obviously, we have W̃N,1, W̃
′
N,1 ∈ B (WH∗ , R). Thus

∥∇FN (W̃N,1)∥F ≤ ∥∇FN (WH∗)∥F + LN∥W̃N,1 −WH∗∥F (106)

Noting that

∇FN (WH∗) = ∇fN (WH∗) + 2λN ⟨WH∗ − ŴN ⟩, (107)

we have

∥∇FN (WH∗)∥F ≤ ∥∇fN (WH∗)∥F + 2λN∥WH∗ − ŴN∥F , (108)

further

FN (WN,1)− FN (WN,1)

≤
(
∥∇fN (WH∗)∥F + 2λN∥WH∗ − ŴN∥F + LN∥W̃N,1 −WH∗∥F

)
· ∥WN,1 −WN,1∥F

≜ HN · ∥WN,1 −WN,1∥F (109)
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where HN ≜ ∥∇fN (WH∗)∥F + 2λN∥WH∗ − ŴN∥F + LN∥W̃N,1 −WH∗∥F . Further we have

γN
1

|ŴN (s0, t0)|
|MN,1(s0, t0)| ≤ FN (WH∗ +MN,1)− FN (WH∗ +MN,1)

≤ HN∥MN,1 −MN,1∥ = HN |MN,1(s0, t0)| . (110)

On one hand, since MN,1(s0, t0) ̸= 0, we deduce that

γN
1

|Ŵw
N (s0, t0)|

≤ HN (111)

On the other hand, by Theorem 6.1, we have |Ŵw
N (s0, t0)| ≤ Cδ1

(
logN√
N

)1/ν
. By the error bound

of WN,1, the definition of WN,1 and Lemma A.12, for N ≥ N0(δ), we can get

HN = ∥∇fN (WH∗)∥F + 2λN∥WH∗ − ŴN∥F + LN∥W̃N,1 −WH∗∥F

≤ Cδ3

√
logN

N
+ 2λNCδ1

(
logN√

N

)1/ν

+ LN

(
Cδ2

2

lN

√
logN

N
+ Cδ1

4λN
lN

(
logN√

N

)1/ν

+
2C3

lN
γN

)
→ 0 as N → ∞ (112)

with probability at least 1 − δ. By the choice of γN , i.e., γN(
log N√

N

)1/ν → ∞ as N → ∞, there exists

N1(δ) for ∀N ≥ N1(δ) we can obtain

γN
1

|Ŵw
N (s0, t0)|

≥ 1

Cδ1

γN(
logN√
N

)1/ν > HN (113)

with probability at least 1 − δ. It contradicts equation (111). Now we complete the proof of the
sparse consistency.

Step 2. Nextly, we prove the low-rank consistency of the estimates WN,∗.

Denote WN,∗ = UN,∗ΣN,∗V
T
N,∗ and WN,∗ = UN,∗ΣN,∗V

T
N,∗, where ΣN,∗(l) = σl(WN,∗) and

ΣN,∗(l) = σl(WN,∗).

ΣN,∗(l) = ΣN,∗(l), if l ∈ BCH∗ (114)

ΣN,∗(l) = 0, if l ∈ BH∗ . (115)

Suppose that there exists some l0 ∈ BH∗ such that σl0(ŴN ) ̸= 0.

Still using the optimality of WN,∗, we can obtain

0 ≥ JN (WN,∗)− JN (WN,∗)

= FN (WN,∗) + γN∥WN,∗∥Ŵw
N ,∗

− FN (WN,∗)− γN∥WN,∗∥Ŵw
N ,∗

(116)

Note that

∥WN,∗∥Ŵw
N ,∗

− ∥WN,∗∥Ŵw
N ,∗

=

K∑
l=1

σl(WN,∗)− σl(WN,∗)

σl(Ŵw
N )

=
∑
l∈BH∗

σl(WN,∗)

σl(Ŵw
N )

+
∑
l∈BC

H∗

σl(WN,∗)− σl(WN,∗)

σl(Ŵw
N )

=
σl0(WN,∗)

σl0(Ŵ
w
N )

. (117)

Combining (116), further we can get

γN
1

σl0(Ŵ
w
N )

σl0(WN,∗) ≤ FN (WN,∗)− FN (WN,∗) (118)
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By lN · I ⪯ ∇2FN (W ) ⪯ LN · I , similar to the proof in Step 1, we can obtain

FN (WN,∗)− FN (WN,∗) ≤ HN∥WN,∗ −WN,∗∥F (119)

Further we have

γN
1

σl0(Ŵ
w
N )

σl0(WN,∗) ≤ FN (WN,∗)− FN (WN,∗)

≤ HN∥WN,∗ −WN,∗∥F
= HN∥UN,∗

(
ΣN,∗ − ΣN,∗

)
V T
N,∗∥F

= HN∥ΣN,∗ − ΣN,∗∥F = HN · σl0(WN,∗). (120)

On one hand, since σl0(WN,∗) ̸= 0, we deduce that

γN
1

σl0(ŴN )
≤ HN . (121)

On the other hand, by Theorem 6.1, we have σl0(Ŵ
w
N ) ≤ Cδ

(
logN√
N

)1/ν
and by the error bound of

WN,∗, the definition of WN,∗ and Lemma A.12, we can get HN → 0 as N → ∞ with probability
at least 1− δ. By the choice of γN , there exists N1(δ) for ∀N ≥ N1(δ) we can obtain

γN
1

σl0(Ŵ
w
N )

≥ 1

Cδ1

γN(
logN√
N

)1/ν > HN (122)

with probability at least 1 − δ. It contradicts equation (121). Now we complete the proof of the
low-rank consistency. ■

A.8 EXPERIMENTAL DETAILS ON REAL DATASETS

Our implementation is based on Pytorch 1.8. The hyper-parameters are listed in Table 3.

Table 3: Details of Experimental Setting on Real Datasets in Section 7.2.

Experiments MNIST CIFAR-10 Tiny-ImageNet

Network LeNet-300-100 VGG16 ResNet20 ResNet56 ResNet18
Epochs 30 100 100 100 100

Batch Size 60 128 128 128 128
Optimizer Adam SGD SGD SGD SGD

Momentum - 0.9 0.9 0.9 0.9
Learning Rate 1.2e−3 0.005 0.005 0.005 0.005

Scheduler - CosineAnnealingLR CosineAnnealingLR CosineAnnealingLR CosineAnnealingLR
Weight Decay 0 0 0 0 0

ϵw 0.005 0.0005 0.005 0.005 0.005
ϵs 0.05 0.05 0.05 0.05 0.05
λN 1 1 1 1 1

γN in L1 and Weighted L1 15 30 8 10 50
γN in Nuclear and Weighted Nuclear 8 25 8 10 50
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