

000 001 RISK PHASE TRANSITIONS IN SPIKED REGRESSION: 002 ALIGNMENT DRIVEN BENIGN AND CATASTROPHIC 003 OVERFITTING 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008

010 ABSTRACT 011

013 This paper analyzes the generalization error of minimum-norm interpolating so-
014 lutions in linear regression using spiked covariance data models. The paper char-
015 acterizes how varying spike strengths and target-spike alignments can affect risk,
016 especially in overparameterized settings. The study presents an exact expression
017 for the generalization error, leading to a comprehensive classification of benign,
018 tempered, and catastrophic overfitting regimes based on spike strength, the as-
019 pect ratio $c = d/n$ (particularly as $c \rightarrow \infty$), and target alignment. Notably, in
020 well-specified aligned problems, increasing spike strength can surprisingly induce
021 catastrophic overfitting before achieving benign overfitting. The paper also reveals
022 that target-spike alignment is not always advantageous, identifying specific, some-
023 times counterintuitive, conditions for its benefit or detriment. Alignment with the
024 spike being detrimental is empirically demonstrated to persist in nonlinear models.
025

026 1 INTRODUCTION 027

028 Understanding the generalization error of overparameterized models is a central challenge in modern
029 machine learning. Phenomena such as double descent (Belkin et al., 2019; Hastie et al., 2022)
030 and benign overfitting Bartlett et al. (2020); Mallinar et al. (2022); Tsigler & Bartlett (2023) have
031 spurred research underscoring the critical role of the data's spectral structure Bartlett et al. (2020);
032 Dobriban & Wager (2018); Hastie et al. (2022); Kausik et al. (2024); Mei et al. (2022); Sonthalia &
033 Nadakuditi (2023); Tsigler & Bartlett (2023); Wang et al. (2024a). The spiked covariance model is
034 one commonly considered spectral structure Couillet & Liao (2022). In this model, the data matrix
035 $\mathbf{X} = \mathbf{Z} + \mathbf{A} \in \mathbb{R}^{d \times n}$, comprising n data points in \mathbb{R}^d , is decomposed into a rank-one signal
036 component ("spike") \mathbf{Z} and an isotropic noise component ("bulk") \mathbf{A} . Spiked covariance models
037 emerge naturally in practice, for instance, in the features learned by neural networks during training
038 Sonthalia et al. (2025); Ba et al. (2022; 2023); Damian et al. (2022); Dandi et al. (2024); Martin &
039 Mahoney (2021); Moniri et al. (2023); Wang et al. (2024b). While recent studies have examined
040 benign overfitting in spiked models (Ba et al., 2023; Kausik et al., 2024), they lack a systematic
041 taxonomy spanning spike strength, target-spike alignment, model misspecification, and train-test
042 covariate shift. This paper closes the gap for linear regression.

043 This work explores how general spike sizes and target alignments affect generalization error in least
044 squares linear regression. We consider targets \mathbf{y} generated by:

$$045 \quad \mathbf{y} = \alpha_Z \boldsymbol{\beta}_*^\top \mathbf{z} + \alpha_A \boldsymbol{\beta}_*^\top \mathbf{a} + \boldsymbol{\varepsilon}$$

046 Here, $\mathbf{z} \in \mathbb{R}^d$ represents the signal component, $\mathbf{a} \in \mathbb{R}^d$ corresponds to the bulk component, $\boldsymbol{\varepsilon}$ is
047 observation noise, and $\boldsymbol{\beta}_* \in \mathbb{R}^d$. The coefficients α_Z and α_A model the target's dependence on the
048 spike and bulk components, respectively. Notably, if $\alpha_A \neq \alpha_Z$, the targets are non-linear functions
049 of $\mathbf{x} = \mathbf{z} + \mathbf{a}$, introducing model mis-specification. We address two fundamental questions:
050

- 051 • **Q1:** For a fixed aspect ratio $c = d/n$, in asymptotic proportional regime under what conditions
052 does alignment of the target signal with the data spike improve or impair generalization?
- 053 • **Q2:** In the high-dimensional limit where $c \rightarrow \infty$, when do we observe benign, tempered, or
catastrophic overfitting regimes?

Contributions We present precise characterization of the generalization performance of minimum-norm interpolating solutions in linear regression. Our exact risk decomposition pinpoints conditions for transitions between benign and catastrophic overfitting. This reveals alignment-dependent phenomena obscured by isotropic theories, clarifying how signal structure, data scaling, and overparameterization shape generalization. Our primary contributions are as follows:

- **Precise Risk Characterization:** We derive an exact generalization error decomposition (Theorem 5) into interpretable bias, variance, data noise, and alignment terms.
- **Comprehensive Categorization of Overfitting Regimes:** We precisely classify benign, tempered, or catastrophic overfitting regimes based on spike strength, overparameterization ($c = d/n$), and target alignment (Table 1). Surprisingly, for well-specified aligned problems, increasing spike strength can induce catastrophic overfitting before achieving benign overfitting. Misspecified problems show distinct transitions, often precluding benign overfitting.
- **Conditions for Beneficial Alignment:** Challenging conventional wisdom, we show spike alignment is not always beneficial and depends on spike strength meeting critical thresholds (Table 2). For misspecified problems, beneficial alignment requires α_Z/α_A in a specific, non-trivial range. Counterintuitively, very strong spike dependence (α_Z/α_A) can render alignment detrimental.
- **Empirical Validation:**¹ Empirical validation confirms our theoretical phenomena, including surprising negative alignment impacts, persist in nonlinear models, underscoring broader relevance.

Benign Overfitting in Linear Regression. Significant research has explored benign overfitting in linear regression Bartlett et al. (2020); Cao et al. (2021); Chatterji & Long (2021); Karhadkar et al. (2024); Koehler et al. (2021); Liang & Rakhlin (2020); Mallinar et al. (2022); Muthukumar et al. (2020); Shamir (2022); Tsigler & Bartlett (2023); Wu & Xu (2020). Many studies assume a uniformly bounded largest covariance eigenvalue or lack precise characterizations of its interplay with target alignment and generalization. *Our work allows this eigenvalue to grow, offering precise performance characterizations based on this growth and alignment.* While Kausik et al. (2024) considers spiked models, their focus is on noiseless, well-specified scenarios with specific spike scaling. *Our analysis is broader; encompassing observation noise, misspecification, and general spike scaling.*

Many prior works(Karhadkar et al., 2024; Shamir, 2022; Tsigler & Bartlett, 2023) on benign overfitting with low-rank signals plus isotropic noise require near-orthogonality between signal and noise, sometimes imposing strong conditions like $d = \Omega(n^2 \log n)$. *We instead consider the proportional regime $d/n \rightarrow c = \Theta(1)$, subsequently examining $c \rightarrow \infty$.* This setting is morally similar to allowing $d = \omega(n)$ and aligns with approaches like (Karhadkar et al., 2024) which, for classification, shows misclassification probability can be upper bounded by $Ce^{-d/n}$, vanishing as $d/n \rightarrow \infty$.

Generalization Error with Spiked Covariance. While recovering spike properties Sonthalia & Nadakuditi (2023); Kausik et al. (2024); Nadakuditi (2014); Benaych-Georges & Nadakuditi (2011; 2012) and analyzing generalization error in spiked models Ba et al. (2022; 2023); Mousavi-Hosseini et al. (2023); Moniri et al. (2023) are active research areas, existing analyses often characterize generalization implicitly (e.g., via fixed-point equations) or focus on specific spike strengths/alignments. *In contrast, we provide explicit, generic formulae for generalization error, enabling precise categorization of overfitting regimes and conditions for beneficial spike alignment.*

Notation The subscript on $o, O, \omega, \Omega, \Theta$ will denote which quantity is being sent to infinity.

2 PROBLEM SETTING

We study the generalization of minimum-norm interpolators in high-dimensional linear regression. Using a spiked covariance data model, we quantify how spike strength and alignment influence generalization and the emergence of benign, tempered, or catastrophic overfitting.

Data Model. We consider a data matrix $\mathbf{X} = \mathbf{Z} + \mathbf{A} \in \mathbb{R}^{d \times n}$ with *signal component* \mathbf{Z} and *isotropic noise component* \mathbf{A} that satisfy the following assumptions. Specifically, we shall that the population feature covariance is $\Sigma = \theta^2 \mathbf{u} \mathbf{u}^\top + \tau^2 \mathbf{I}_d$, modeling a rank-one perturbation of isotropic noise.

Assumption 1 (Signal). *Let $\mathbf{u} \in \mathbb{R}^d$ be a fixed unit vector representing the spike direction. Then*

$$\mathbf{Z} = \theta \mathbf{u} \mathbf{v}^\top, \quad (1)$$

¹Our code is available at the anonymous GitHub repository: link

108 **Table 1: Asymptotic Generalization Regimes.** This table summarizes conditions for when over-
 109 fitting is benign, tempered, or catastrophic in the limit where $d/n \rightarrow c$ and subsequently $c \rightarrow \infty$.
 110 The behavior depends on the spike scaling relative to the bulk, target alignment (β_* relative to spike
 111 direction \mathbf{u}), and target specifications α_A, α_Z (train) and $\tilde{\alpha}_A, \tilde{\alpha}_Z$ (test). Here, θ^2 quantifies the scaled
 112 spike strength and τ^2 the scaled bulk variance; the two primary scaling regimes are operator norm
 113 based ($\theta^2 = \gamma\tau^2$) and Frobenius norm based ($\theta^2 = d\tau^2$). The ω, o, O, Θ are all as we send $c \rightarrow \infty$.
 114

Scaling	Benign	Tempered	Catastrophic
Well-Specified, No Covariate Shift: $\alpha_A = \tilde{\alpha}_A = \alpha_Z = \tilde{\alpha}_Z = \alpha > 0$			
$\theta^2 = \gamma\tau^2$	$\gamma = \omega_c(c^2), \beta_* \parallel \mathbf{u}$	All other cases	$o_c(c^2) \geq \gamma \geq \omega_c(1), \beta_* \not\parallel \mathbf{u}$
$\theta^2 = d\tau^2$	$\beta_* \parallel \mathbf{u}$	$\beta_* \not\parallel \mathbf{u}$	Never
Misspecified, No Covariate Shift: $\alpha_A = \tilde{\alpha}_A, \alpha_Z = \tilde{\alpha}_Z, \alpha_A \neq \alpha_Z$			
$\theta^2 = \gamma\tau^2$	Never	All other cases	$o_c(c^2) \geq \gamma \geq \omega_c(1), \beta_* \not\parallel \mathbf{u}$
$\theta^2 = d\tau^2$	Never	Always	Never
Misspecified with Covariate Shift: $\alpha_A \neq \tilde{\alpha}_A$ or $\alpha_Z \neq \tilde{\alpha}_Z$			
$\theta^2 = \gamma\tau^2$	Never	All other cases	$\alpha_Z \neq \tilde{\alpha}_Z, \beta_* \not\parallel \mathbf{u}, \gamma = \omega_c(1)$ or $\alpha_Z = \tilde{\alpha}_Z, \beta_* \not\parallel \mathbf{u}, \omega_c(1) \leq \gamma \leq o_c(c^2)$
$\theta^2 = d\tau^2$	$\alpha_Z = \tilde{\alpha}_Z = \tilde{\alpha}_A, \beta_* \parallel \mathbf{u}$	All other cases	$\alpha_Z \neq \tilde{\alpha}_Z$ and $\beta_* \not\parallel \mathbf{u}$
Spike Recovery: $\alpha_A = \tilde{\alpha}_A = 0, \alpha_Z = \tilde{\alpha}_Z$ (Appendix C)			
$\theta^2 = \gamma\tau^2$	$\gamma\tau^2 = o_c(1)$	$\gamma\tau^2 = \Theta_c(1)$	$\gamma\tau^2 = \omega_c(1)$
$\theta^2 = d\tau^2$	$\tau^2 = o_c(1)$	$\tau^2 = \Theta_c(1)$	Never

141 **Table 2: Conditions for Beneficial Spike Alignment at Finite Aspect Ratios** ($c = d/n$). This
 142 table outlines the specific regions where alignment of the target signal with the data's principal spike
 143 direction improves generalization. Conditions depend on the problem setting (well-specified vs.
 144 mis-specified), the spike scaling regime (operator or frobenius norm based), the overparameterization
 145 level $c = d/n$, and the relative dependence of the targets y on the spike versus the bulk α_Z/α_A .
 146

Setting	Alignment Beneficial Region
Well-Specified, Operator Norm	$\gamma > c(c-2)$
Well-Specified, Frobenius Norm	$c > 1$
Misspecified, No Covariate Shift, Operator Norm	$\frac{1}{c} \leq \frac{\alpha_Z}{\alpha_A} \leq \frac{1}{c} \left(\frac{3c^2 - \gamma + 2c\gamma - 2c}{(c^2 + \gamma)} \right)$
Misspecified, No Covariate Shift, Frobenius Norm	$\frac{1}{c} < \frac{\alpha_Z}{\alpha_A} < 2 - \frac{1}{c}$

158 where $\theta > 0$ controls the spike strength, and the vector $\mathbf{v} \in \mathbb{R}^n$ has i.i.d. standard normal entries.

159 **Assumption 2 (Noise).** The entries of \mathbf{A} have zero mean and variance τ^2 . The matrix \mathbf{A} satisfies:

160

- 161 • Its entries are uncorrelated and possess finite fourth moments.
- 162 • Its distribution is invariant under left and right orthogonal transformations.

162 • The empirical spectral distribution of $\frac{1}{\tau^2 d} \mathbf{A} \mathbf{A}^\top$ converges to the Marchenko–Pastur law as $n, d \rightarrow \infty$ with $d/n \rightarrow c \in (0, \infty)$.

165 **Spike Strength Normalizations.** We consider two key scaling regimes for the spike strength relative to the bulk noise. These lead to distinct generalization behaviors.

167 1) **Operator Norm Scaling** ($\theta^2 = \gamma \tau^2$): Here γ tunes the spike strength θ^2 relative to the noise 168 variance τ^2 . When $\gamma = (1 + \sqrt{c})^2$, the spectral norm of the signal component \mathbf{Z} is comparable 169 to that of the noise component \mathbf{A} . If $\gamma > (1 + \sqrt{c})^2$, the spike emerges as an isolated eigenvalue 170 beyond the bulk spectrum established by \mathbf{A} , a phenomenon known as the Baik–Ben Arous–Péché 171 (BBP) transition (Baik et al., 2005). This scaling reflects spikes in learned neural network features 172 (Ba et al., 2022; Moniri et al., 2023).
173 2) **Frobenius Norm Scaling** ($\theta^2 = d \tau^2$): Here $\theta^2 = d \tau^2$ matches expected signal and noise 174 Frobenius norms ($\mathbb{E}[\|\mathbf{Z}\|_F^2] = \mathbb{E}[\|\mathbf{A}\|_F^2]$) and the spike has macroscopic proportion of the energy. 175 Such strong signals can lead to improved sample complexity, potentially overcoming limitations 176 observed in purely isotropic models (Ba et al., 2023; Mei et al., 2022).

177 **Target Model.** Given $\mathbf{x}_i = \mathbf{z}_i + \mathbf{a}_i$, the targets \mathbf{y} are obtained as follows:

$$178 \quad \mathbf{y}_i = \alpha_Z \mathbf{z}_i^\top \boldsymbol{\beta}_* + \alpha_A \mathbf{a}_i^\top \boldsymbol{\beta}_* + \varepsilon_i, \quad (2)$$

180 where $\boldsymbol{\beta}_* \in \mathbb{R}^d$ in uniformly distributed in the subspace $\{\boldsymbol{\beta} \in \mathbb{S}^{d-1} : \boldsymbol{\beta}^\top \mathbf{u} = \text{fixed constant}\}$ is the 181 true underlying parameter vector. The terms \mathbf{z}_i and \mathbf{a}_i are the i -th columns of \mathbf{Z} and \mathbf{A} respectively. 182 The observation noise ε_i are i.i.d. with $\mathbb{E}[\varepsilon_i] = 0$, $\mathbb{E}[\varepsilon_i^2] = \tau_\varepsilon^2$. The coefficients $\alpha_Z, \alpha_A \in \mathbb{R}$ control 183 the target's dependence on the signal and noise components. If $\alpha_Z \neq \alpha_A$, the true data generating 184 process for \mathbf{y} differentially weights components of x_i , causing model misspecification.

185 **Generalization Risk.** We study the minimum-norm interpolating ordinary least squares estimator:

$$186 \quad \boldsymbol{\beta}_{int} = \mathbf{X}^\dagger \mathbf{y}, \quad \text{with} \quad \hat{\mathbf{y}} = (\tilde{\mathbf{z}} + \tilde{\mathbf{a}}) \boldsymbol{\beta}_{int} \quad (3)$$

187 where \mathbf{X}^\dagger denotes the pseudoinverse. Given a new test data point $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$, where $\tilde{\mathbf{x}} = \tilde{\mathbf{z}} + \tilde{\mathbf{a}}$ and 188 targets $\tilde{\mathbf{y}} = \tilde{\alpha}_Z \tilde{\mathbf{z}}^\top \boldsymbol{\beta}_* + \tilde{\alpha}_A \tilde{\mathbf{a}}^\top \boldsymbol{\beta}_* + \tilde{\varepsilon}$ with potentially with different coefficients $\tilde{\alpha}_Z, \tilde{\alpha}_A$ and model 189 parameters $\tilde{\tau}, \tilde{\tau}_\varepsilon$, the generalization risk is defined as the expected squared prediction error:

$$191 \quad \mathcal{R}(\boldsymbol{\beta}_{int}) = \mathbb{E}_{\mathbf{X}, \varepsilon, \{\tilde{\mathbf{x}}, \tilde{\varepsilon}\}} [(\tilde{\mathbf{y}} - \hat{\mathbf{y}})^2] = \mathbb{E}_{\mathbf{X}, \varepsilon, \{\tilde{\mathbf{x}}, \tilde{\varepsilon}\}} [(\tilde{\mathbf{y}} - \tilde{\mathbf{x}}^\top \boldsymbol{\beta}_{int})^2]. \quad (4)$$

192 The expectation is over the training data $(\mathbf{X}, \varepsilon)$ and the test data realization $(\{\tilde{\mathbf{x}}, \tilde{\varepsilon}\})$. We shall 193 denote the asymptotic excess risk in the proportional regime as follows:

$$194 \quad \mathcal{R}_c = \lim_{n, d \rightarrow \infty, d/n \rightarrow c} \mathcal{R}(\boldsymbol{\beta}_{int}) - \tilde{\tau}_\varepsilon^2.$$

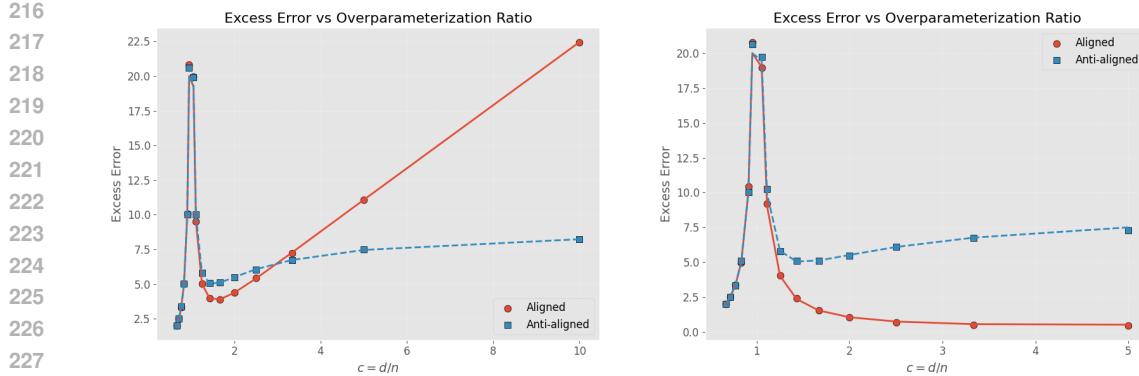
196 **Remark 1** (Generalizing Prior Work). *This problem formulation encompasses several existing 197 models as special cases. For instance, isotropic regression settings studied in Hastie et al. (2022) 198 are recovered by setting $\theta = 0$ (no spike) and $\alpha_Z = 0$. Spike recovery models, such as in Sonthalia 199 & Nadakuditi (2023), correspond to specific choices like $\tau^2 = 1/d$, $\tau_\varepsilon^2 = 0$, and $\alpha_A = 0$. Our 200 generalized setup allows for a nuanced investigation of the interplay between signal structure, target 201 alignment, and overparameterization.*

202 **Quantifying the Benefit of Alignment.** A key aspect of our investigation is to determine when the 203 alignment of the true parameter vector $\boldsymbol{\beta}_*$ with the data's principal spike direction \mathbf{u} is beneficial 204 for generalization. We define alignment as *beneficial* if the generalization risk $\mathcal{R}(\boldsymbol{\beta}_{int})$ (or \mathcal{R}_c), is 205 monotonically decreasing as a function of $(\boldsymbol{\beta}_*^\top \mathbf{u})^2 \in [0, 1]$. Conversely, alignment is *detrimental* if 206 the risk is a monotonically increasing function of $(\boldsymbol{\beta}_*^\top \mathbf{u})^2$.

208 **Characterizing Overfitting Regimes.** Following Bartlett et al. (2020); Mallinar et al. (2022), we 209 classify the asymptotic behavior of the excess risk, \mathcal{R}_c as $c \rightarrow \infty$ as benign, tempered or catastrophic. 210 We say the overfitting is **benign** if $\lim_{c \rightarrow \infty} \mathcal{R}_c$ is zero, **tempered** if this limit is positive and finite, 211 **catastrophic** if this limit is infinite.

212 3 THEORETICAL RESULTS

214 Our core theoretical contribution is a precise analytical formula for excess risk in the spiked covariance 215 model. This result relies on Assumption 3, which encompasses both the operator norm scaling



(a) Operator norm scaling ($\theta^2 = c\tau^2$). Alignment initially improves generalization, but have catastrophic risk as $c \rightarrow \infty$. Anti-alignment yields tempered risk.

(b) Equal Frobenius norm scaling ($\theta^2 = d\tau^2$). Alignment leads to benign overfitting, while anti-alignment results in tempered risk.

Figure 1: Excess error vs. overparameterization ratio $c = d/n$ in the well-specified case. Each plot shows the risk for aligned and anti-aligned targets under different spike scaling regimes. **The scatter plots are empirically obtained and the lines are theory.**

($\theta^2 = \gamma\tau^2$) and Frobenius norm scaling ($\theta^2 = d\tau^2$) regimes. We develop our general risk theorem by analyzing progressively complex scenarios. Specifically, our forthcoming theorems provide specific conditions for benign, tempered, or catastrophic overfitting (as $c \rightarrow \infty$), and determine when, for finite c , alignment of β_* with spike u is beneficial or detrimental.

Assumption 3 (Scaling). As $n, d \rightarrow \infty$ with $d/n \rightarrow c \in (0, \infty)$, we assume that θ^2 and τ^2 satisfy $\Omega(\tau^2) \leq \theta^2 \leq O(d\tau^2)$ and $\tau^2 = \Theta(1)$.

3.1 WELL SPECIFIED PROBLEM

We begin by analyzing the well-specified case, where the target \mathbf{y} is a direct linear function of the observed covariates $\mathbf{X} = \mathbf{Z} + \mathbf{A}$. This scenario is realized by setting:

$$\alpha_Z = \alpha_A = \tilde{\alpha}_Z = \tilde{\alpha}_A = \alpha > 0.$$

Consequently, $y_i = \alpha \mathbf{x}_i^\top \beta_* + \varepsilon_i$, and the model is properly specified.

Theorem 1 (Well-Specified Risk). Given data (\mathbf{X}, \mathbf{y}) and $(\tilde{\mathbf{X}}, \tilde{\mathbf{y}})$ generated according to Assumptions 1 (Signal), 2 (Noise), Equation 2 (Target Model), and Assumption 3 (Scaling). If the well-specification condition $\alpha_Z = \alpha_A = \tilde{\alpha}_Z = \tilde{\alpha}_A = \alpha > 0$ holds, the asymptotic excess risk \mathcal{R}_c is:

$$\mathcal{R}_c = \begin{cases} \tau_\varepsilon^2 \frac{c}{1-c} & \text{if } c < 1 \\ \tau_\varepsilon^2 \frac{1}{c-1} + \alpha^2 \tau^2 \left(1 - \frac{1}{c}\right) \left[\|\beta_*\|^2 + (\beta_*^\top u)^2 \frac{\theta^2 \tau^2 c^2 - 2\theta^2 \tau^2 c - \theta^4}{(\theta^2 + \tau^2 c)^2} \right] & \text{if } c > 1 \end{cases}$$

where u is the unit vector defining the spike direction.

Remark 2. If $\theta^2 = \gamma\tau^2$ with $\gamma = o(1)$ (a regime not allowed by Assumption 3 but useful for sanity checks), the coefficient of $(\beta_*^\top u)^2$ vanishes, the risk expression aligns with that of isotropic models, such as in (Hastie et al., 2022, Theorem 1).

Operator Norm Scaling ($\theta^2 = \gamma\tau^2$). In this regime, the excess risk for $c > 1$ becomes:

$$\mathcal{R}_c = \alpha^2 \tau^2 \left(1 - \frac{1}{c}\right) \left(\|\beta_*\|^2 + \frac{\gamma c^2 - 2\gamma c - \gamma^2}{(\gamma + c)^2} (\beta_*^\top u)^2 \right) + \tau_\varepsilon^2 \frac{1}{c-1}.$$

The formula shows that alignment with the spike direction u is beneficial if and only if the coefficient of $(\beta_*^\top u)^2$ is negative, which occurs when $\gamma > c(c-2)$. We consider different scalings for γ .

Case 1: $\gamma = \Theta_c(1)$ (constant with respect to c). The condition for beneficial alignment, $\gamma > c(c-2)$, interacts intricately with the BBP phase transition condition, $\gamma > (1 + \sqrt{c})^2$. Let $c_* \approx 4.212$ be the unique solution to $c(c-2) = (1 + \sqrt{c})^2$ for $c > 1$.

- For $1 < c < c_*$: Here, $c(c-2) < (1+\sqrt{c})^2$. If $c(c-2) < \gamma < (1+\sqrt{c})^2$, alignment is beneficial even though the BBP transition has *not* occurred (the spike is not resolved from the bulk).
- For $c > c_*$: Here, $c(c-2) > (1+\sqrt{c})^2$. For alignment to be beneficial ($\gamma > c(c-2)$), the BBP transition must have occurred (as $\gamma > c(c-2) \implies \gamma > (1+\sqrt{c})^2$). However, the BBP transition occurring is not sufficient for beneficial alignment. If $(1+\sqrt{c})^2 < \gamma < c(c-2)$, the BBP transition occurs, yet alignment is detrimental.

Regarding the type of overfitting as $c \rightarrow \infty$ (while γ remains constant):

$$\lim_{c \rightarrow \infty} \mathcal{R}_c = \alpha^2 \tau^2 (\|\beta_*\|^2 + \gamma(\beta_*^\top \mathbf{u})^2).$$

Since this limit is a positive constant, we consistently observe *tempered overfitting* when $\gamma = \Theta_c(1)$.

Case 2: $\gamma = \omega_c(1)$ (γ grows with c). The behavior depends on the growth rate of γ relative to c . The limit of the excess risk for $\beta_*^\top \mathbf{u} \neq 0$ as $c \rightarrow \infty$ is:

$$\lim_{c \rightarrow \infty} \mathcal{R}_c = \alpha^2 \tau^2 \cdot \begin{cases} \infty & \text{if } \omega_c(1) \leq \gamma \leq o_c(c^2) \\ \|\beta_*\|^2 + (\frac{1}{\phi} - 1)(\beta_*^\top \mathbf{u})^2 & \text{if } \gamma = \phi c^2 \text{ for const. } \phi > 0 \\ \|\beta_*\|^2 - (\beta_*^\top \mathbf{u})^2 & \text{if } \gamma = \omega_c(c^2) \end{cases}$$

Surprisingly, while $\gamma = \Theta_c(1)$ gives tempered overfitting, increasing spike strength to $\omega_c(1) \leq \gamma \leq o_c(c^2)$ results in *catastrophic overfitting*, even though morally, this version of the problem has less noise. Additionally, we see that this catastrophic overfitting is not present in the anti-aligned ($\beta_*^\top \mathbf{u}$) case. More, aligned with intuition, we see that further increasing the size of the spike improves the generalization performance. Specifically, we get *tempered overfitting* if $\gamma = \phi c^2$ and *benign overfitting* if $\gamma = \omega_c(c^2)$, $\beta_* \parallel \mathbf{u}$ and $\|\beta_*\| = 1$.

For $\gamma = c$, the $(\beta_*^\top \mathbf{u})^2$ coefficient is $(c-3)/4$. Thus, for $1 < c < 3$, alignment is beneficial and for $c > 3$, alignment becomes detrimental. As $c \rightarrow \infty$, if $\beta_* \parallel \mathbf{u}$, the excess risk grows approximately as $\alpha^2 \tau^2 \frac{c}{4} (\beta_*^\top \mathbf{u})^2$, indicating *catastrophic overfitting*. In contrast, if $\beta_* \perp \mathbf{u}$, the excess risk grows like $\alpha^2 \tau^2 (1 - 1/c) \|\beta_*\|^2$, leading to *tempered overfitting*. This transition is illustrated in Figure 1a.

Frobenius Norm Scaling ($\theta^2 = d\tau^2$). The excess risk for $c > 1$ simplifies to:

$$\mathcal{R}_{c>1} = \alpha^2 \tau^2 \left(1 - \frac{1}{c}\right) (\|\beta_*\|^2 - (\beta_*^\top \mathbf{u})^2) + \tau_\varepsilon^2 \frac{1}{c-1}.$$

We have a few observations. First, if $\beta_* \parallel \mathbf{u}$ and $\|\beta_*\| = 1$, the excess risk \mathcal{R}_c tends to 0 as $c \rightarrow \infty$ (*benign overfitting*). Second, if β_* is not perfectly aligned with \mathbf{u} , $\mathcal{R}_c \rightarrow \alpha^2 \tau^2 (\|\beta_*\|^2 - (\beta_*^\top \mathbf{u})^2) > 0$ as $c \rightarrow \infty$ (*tempered overfitting*). Finally, the coefficient of $(\beta_*^\top \mathbf{u})^2$ in the risk formula is negative. Hence, in contrast with the operator norm regime, *alignment is always beneficial* in this regime for $c > 1$, and we visualize these behaviors in Figure 1b.

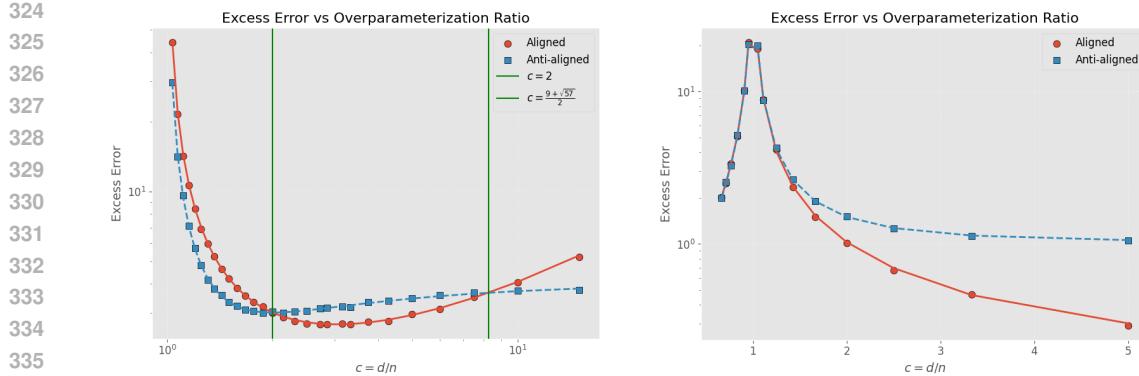
Takeaways for the Well-Specified Case. Spike scaling profoundly impacts overfitting, especially with target alignment. For aligned targets, increasing spike strength can drive transitions from tempered \rightarrow catastrophic \rightarrow tempered \rightarrow benign overfitting, while anti-alignment ($\beta_* \perp \mathbf{u}$) can mitigate catastrophic overfitting. Additionally, alignment with the spike is not always beneficial.

3.2 MISSPECIFIED CASE AND NO COVARIATE SHIFT

We next consider misspecified targets \mathbf{y} with differing dependence on spike \mathbf{Z} and noise \mathbf{A} feature components. Specifically, we assume $\alpha_Z \neq \alpha_A$ but introduce no covariate shift between training and test distributions, i.e., $\tilde{\alpha}_Z = \alpha_Z$ and $\tilde{\alpha}_A = \alpha_A$. This scenario models situations where intrinsic feature properties lead to differential correlations with the target, a common occurrence in practice. For notational convenience, we define $\Delta_c := \alpha_Z - \frac{\alpha_A}{c}$ with $\Delta_1 := \alpha_Z - \alpha_A$.

Theorem 2 (Misspecified). *Let $\mathbf{Z}, \tilde{\mathbf{Z}}$ satisfy Assumption 1, $\mathbf{A}, \tilde{\mathbf{A}}$ satisfy Assumption 2 and $\mathbf{y}, \tilde{\mathbf{y}}$ according to Equation (2). If Assumption 3 holds with $\alpha_Z = \tilde{\alpha}_Z$, $\alpha_A = \tilde{\alpha}_A$, then*

$$\mathcal{R}_c = \begin{cases} \tau_\varepsilon^2 \frac{c}{1-c} + \tau^2 (\beta_*^\top \mathbf{u})^2 \frac{\Delta_1^2}{1-c} \frac{\theta^2}{\theta^2 + \tau^2} & c < 1 \\ \tau_\varepsilon^2 \frac{1}{c-1} + \alpha_A^2 \tau^2 \|\beta_*\|^2 \left(1 - \frac{1}{c}\right) + \tau^2 (\beta_*^\top \mathbf{u})^2 \Delta_c^2 \frac{\theta^2}{\theta^2 + \tau^2 c} \left[\frac{c}{c-1} \frac{\theta^2 + \tau^2 c^2}{\theta^2 + \tau^2 c} - 2 \frac{\alpha_A}{\Delta_c} \right] & c > 1 \end{cases}$$



(a) Under operator norm scaling ($\theta^2 = c\tau^2$) with $\alpha_Z = 1$, $\alpha_A = 2$, alignment initially improves generalization for small c , but becomes harmful beyond a critical point, leading to catastrophic overfitting.

(b) Under Frobenius norm scaling ($\theta = \sqrt{d}\tau$) with $\alpha_A = 1$ and $\alpha_Z = 1.1$, alignment remains better than anti-alignment across all c , but benign overfitting is not achieved unless $\alpha_Z = \alpha_A$.

Figure 2: Transition from beneficial to harmful alignment under mild misspecification. **The scatter plots are empirically obtained and the lines are theory.**

A key observation is that misspecification ($\alpha_Z \neq \alpha_A$) can itself induce double descent, even if $\tau_\varepsilon^2 = 0$. This contrasts with the well-specified case where, if $\tau_\varepsilon^2 = 0$, double descent is absent. However, in the misspecified case, we do not observe double descent if there is no alignment $\beta_*^\top \mathbf{u} = 0$.

Equal Operator Norm Case. For $\theta^2 = \gamma\tau^2$, the excess risk is

$$\mathcal{R} = \begin{cases} \tau^2(\beta_*^\top \mathbf{u})^2 \frac{\Delta_c^2}{1-c} \frac{\gamma}{\gamma+1} + \tau_\varepsilon^2 \frac{c}{1-c} & c < 1 \\ \tau^2 \frac{\gamma}{\gamma+c} (\beta_*^\top \mathbf{u})^2 \Delta_c^2 \left[\left(\frac{c^2+\gamma}{\gamma+c} \frac{c}{c-1} \right) - 2 \frac{\alpha_A}{\Delta_c} \right] + \alpha_A^2 \tau^2 \|\beta_*\|^2 \left(1 - \frac{1}{c} \right) + \tau_\varepsilon^2 \frac{1}{c-1} & c > 1 \end{cases}$$

For $c < 1$, the spike is *detrimental*. For $c > 1$, the behavior depends on α_Z/α_A . In particular, if

$$\frac{1}{c} \leq \frac{\alpha_Z}{\alpha_A} \leq \frac{1}{c} \left(\frac{3c^2 - \gamma + 2c\gamma - 2c}{(c^2 + \gamma)} \right),$$

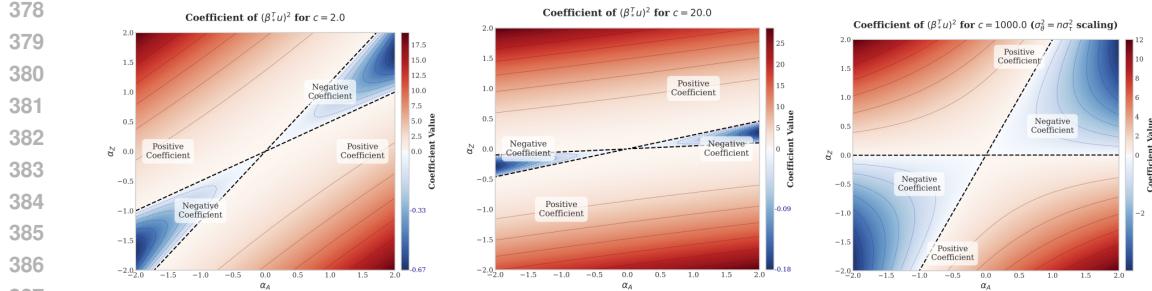
then we have that the coefficient in front of $(\beta_*^\top \mathbf{u})^2$ is negative. Thus, when α_Z/α_A lies between these thresholds, the spike *helps*, but the spike is *harmful* outside this range. As $c \rightarrow \infty$, if $\gamma = o_c(c^2)$, the beneficial region shrinks and *alignment increasingly harms generalization*. On the other hand, if the spike is big enough ($\gamma = \omega_c(c^2)$), we have that the beneficial region limits to $0 \leq \frac{\alpha_Z}{\alpha_A} \leq 2$. Figures 3a and 3b plot the coefficient of $(\beta_*^\top \mathbf{u})^2$ for $c = 2$ and $c = 20$ for $\gamma = c$.

The upper bound on beneficial α_Z/α_A is surprising, as stronger target dependence on the spike might be expected to always favor alignment. Additionally, the dependence on the level of overparameterization c also offers new insights. Consider the example of $\gamma = c$, and $\alpha_Z/\alpha_A = 2$. Then when $c < 2$ or $c > (9 + \sqrt{57})/2$, we have that the ratio is outside the beneficial region. Figure 2a shows that in the beneficial region, the aligned risk is lower than the anti-aligned risk. However, outside the beneficial region, the aligned risk becomes strictly larger than the anti-aligned counterpart.

Next, in terms of benign vs. tempered vs. catastrophic overfitting, we have that

$$\lim_{c \rightarrow \infty} \mathcal{R}_c = \begin{cases} \tau^2 [\gamma \alpha_Z^2 (\beta_*^\top \mathbf{u})^2 + \alpha_A^2 \|\beta_*\|^2] & \beta_* \not\perp \mathbf{u}, \gamma = \Theta_c(1) \\ \infty & \beta_* \not\perp \mathbf{u}, \omega_c(1) \leq \gamma \leq o_c(c^2) \\ \tau^2 \left[\alpha_A^2 \|\beta_*\|^2 + \left(\alpha_Z^2 \left(1 + \frac{1}{\phi} \right) - 2\alpha_Z\alpha_A \right) (\beta_*^\top \mathbf{u})^2 \right] & \beta_* \not\perp \mathbf{u}, \gamma = \phi c^2 \\ \tau^2 (\alpha_A^2 \|\beta_*\|^2 + (\alpha_Z^2 - 2\alpha_Z\alpha_A) (\beta_*^\top \mathbf{u})^2) & \beta_* \not\perp \mathbf{u}, \gamma = \omega_c(c^2) \\ \alpha_A^2 \tau^2 \|\beta_*\|^2 & \beta_* \perp \mathbf{u} \end{cases}.$$

For $\beta_* \not\perp \mathbf{u}$, if $\omega_c(1) \leq \gamma \leq o_c(c^2)$ we have *catastrophic overfitting*. If $\gamma = \Theta_c(c^2)$, overfitting is tempered, with benign overfitting precluded (Appendix Proposition 3). If $\gamma = \omega_c(c^2)$, overfitting is again tempered with benign requiring returning to the well-specified case ($\alpha_A = \alpha_Z$).



(a) Operator norm scaling, $c = 2$. Large beneficial region.
(b) Operator norm scaling, $c = 20$. Smaller beneficial region

(c) Frobenius norm scaling, $c = 1000$. The beneficial region persists at extreme overparameterization.

Figure 3: Phase boundaries for spike alignment impact. Coefficient of $(\beta_*^\top u)^2$ as a function of α_Z/α_A , indicating whether alignment improves or harms generalization.

Equal Frobenius Norm Case. For $\theta^2 = d\tau^2$, the excess risk becomes:

$$\mathcal{R}_{c>1} = \alpha_A^2 \|\beta_*\|^2 \left(1 - \frac{1}{c}\right) + (\beta_*^\top u)^2 \left[\frac{c}{c-1} \left(\alpha_Z - \frac{\alpha_A}{c}\right)^2 - 2\alpha_A \left(\alpha_Z - \frac{\alpha_A}{c}\right) \right] + \frac{\tau_e^2}{c-1}.$$

For $c > 1$, the beneficial region for the ratio α_Z/α_A is defined by: $\frac{1}{c} \leq \frac{\alpha_Z}{\alpha_A} \leq 2 - \frac{1}{c}$. The beneficial region expands with c , making alignment increasingly beneficial in extreme overparameterization (Figure 3c). Beneficial alignment can also be seen in Figure 2b. Here $\alpha_Z/\alpha_A = 1.1$, which is in the beneficial region for $c > 10/9$. Finally, the overfitting is tempered unless $\alpha_A = \alpha_Z$.

3.3 MISSPECIFIED TARGET AND COVARIATE SHIFT

Lastly, in addition to misspecification, we also have covariate shift between train and test. Specifically, $\alpha_Z \neq \tilde{\alpha}_Z$ or $\alpha_A \neq \tilde{\alpha}_A$, hence we have the spike/noise importance differ between train and test. For the **equal operator norm** case, we show the following.

Theorem 3. *Given data Z, \tilde{Z} that satisfy Assumption 1, A, \tilde{A} that satisfy Assumption 2 and y, \tilde{y} according to Equation (2). If Assumption 3 holds, catastrophic overfitting occurs if $\tilde{\alpha}_Z = \alpha_Z$, $\beta_* \not\perp \mathbf{u}$, and $\omega_c(1) \leq \gamma \leq o_c(c^2)$. Additionally, if $\tilde{\alpha}_Z \neq \alpha_Z$ with $\gamma = \omega_c(1)$ and $\beta_* \not\perp \mathbf{u}$ we get catastrophic overfitting. Other scenarios yield tempered overfitting.*

Different covariate shifts pose varying challenges. In particular, if $\alpha_Z \neq \tilde{\alpha}_Z$, (target's spike dependence shifts), then catastrophic overfitting becomes unavoidable for sufficiently large spikes. This contradicts the earlier theoretical intuition, as increasing the spike size in this setting actually induces catastrophic overfitting instead of mitigating it.

Equal Frobenius Norm. In this case, we have the following theorem.

Theorem 4. *Let Z, \tilde{Z} satisfy Assumption 1, A, \tilde{A} satisfy Assumption 2 and y, \tilde{y} according to Equation (2). If Assumption 3 holds and $\alpha_Z \neq \tilde{\alpha}_Z$ then $\mathcal{R}_c = \infty$ for all $c \neq 1$. For $\alpha_Z = \tilde{\alpha}_Z$:*

$$\lim_{c \rightarrow \infty} \mathcal{R}_c = \tau^2 [(\beta_*^\top u)^2 (\alpha_Z^2 - 2\tilde{\alpha}_A \alpha_Z) + \|\beta_*\|^2 \tilde{\alpha}_A^2].$$

If $\alpha_Z \neq \tilde{\alpha}_Z$, catastrophic overfitting occurs. When β_* and \mathbf{u} are parallel, we have that $\tau^2 \|\beta_*\|^2 (\alpha_Z - \tilde{\alpha}_A)^2$. This is benign if and only if $\alpha_Z = \tilde{\alpha}_A$. Notably, if training data is misspecified ($\alpha_A \neq \alpha_Z$) but test data is well-specified and matches the training spike dependence ($\alpha_Z = \tilde{\alpha}_Z = \tilde{\alpha}_A$), benign overfitting becomes achievable.

3.4 GENERAL THEOREM

Prior results are special cases of our main theorem (Theorem 5). Its full form is complex (Appendix D). We present a high-level decomposition here.

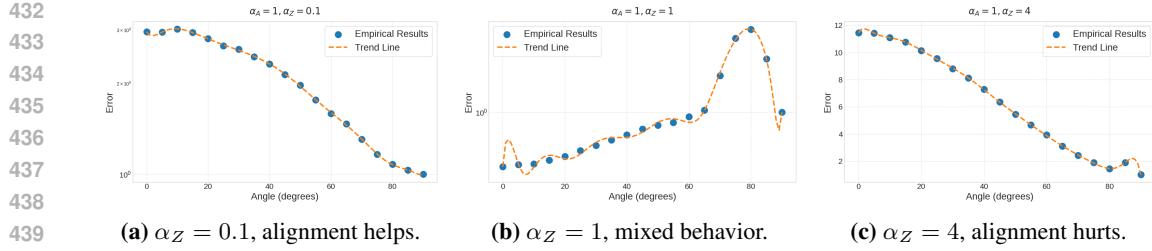


Figure 4: Alignment-phase transitions persist in deep networks. Generalization error vs. angle between spike direction u and ground-truth parameter β_* when fitting data with a 3-layer ReLU networks. The effect of alignment switches as α_Z increases, consistent with the phase transitions predicted by our theory. Experimental details are in AppendixB.

Theorem 5 (Generalization Risk). *Suppose Assumption 1, Assumption 2, and Assumption 3 hold.*

$$\mathcal{R} = \mathbb{E} \left[\underbrace{\left\| \tilde{\alpha}_z \beta_*^\top \tilde{\mathbf{Z}} - \beta_{int}^\top \tilde{\mathbf{Z}} \right\|_F^2}_{\text{Bias}} + \underbrace{\tau^2 \left\| \beta_{int}^\top \tilde{\mathbf{A}} \right\|_F^2}_{\text{Variance}} + \underbrace{\tilde{\alpha}_A^2 \left\| \beta_*^\top \tilde{\mathbf{A}} \right\|_F^2}_{\text{Data Noise}} + \underbrace{\left(-2\tilde{\alpha}_A \beta_*^\top \tilde{\mathbf{A}} \tilde{\mathbf{A}}^\top \beta_{int} \right)}_{\text{Target Alignment}} \right].$$

- **Bias.** This is the squared error between the learned predictor β_{int} and the true parameter β_* projected onto the spike direction u . In particular, the risk penalizes discrepancies only along the top eigen-direction of the population covariance Σ , reflecting the anisotropic influence of the spike.
- **Variance.** The variance is equivalent to $\tau^2 \|\beta_{int}\|_2$. This mirrors classical isotropic regression results (Hastie et al., 2022; Bartlett et al., 2020), but the norm $\|\beta_{int}\|^2$ itself is dependent upon the interaction between signal and noise, the alignment between β_* and u , and the scaling parameters.
- **Data Noise.** The data noise term quantifies the contribution of the noise matrix \mathbf{A} to the target outputs y_i through α_A . Even in the absence of observation noise ($\tau_\varepsilon^2 = 0$), target corruption via data noise can create an irreducible error floor.
- **Target Alignment.** The alignment term measures the inner product between β_{int} and β_* with respect to the sample noise covariance. This cross-term captures how mismatch between β_{int} and β_* , especially when mediated by \mathbf{A} , can amplify or dampen generalization error.

3.5 EXTENSION: NONLINEAR MODELS ALSO EXHIBIT ALIGNMENT PHASE TRANSITIONS

While our theoretical focus is on linear regression, key phenomena like α_Z dependent non-monotonic alignment effects appear in nonlinear models as well. We test this by training 3-layer ReLU networks to predict y (Equation (2)) given X , where we vary the alignment angle between spike u and β_* and record the generalization error. Figure 4, shows our results for three α_Z values. For $\alpha_Z = 0.1$, increasing alignment with the spike is detrimental. For $\alpha_Z = 1$, alignment is beneficial, while for $\alpha_Z = 10$, alignment is detrimental again. This mirrors our theoretical findings that there is a region for beneficial alignment and a nuanced phase transition for different α_Z values.

4 CONCLUSION

This work provided a precise analytical characterization of the generalization error for minimum-norm interpolators in spiked covariance models. We decomposed the risk into interpretable components and comprehensively classified overfitting regimes based on spike strength, target alignment, and overparameterization. We reveal surprising phenomena, such as the potential for increasing spike strength to induce catastrophic overfitting before benign overfitting in well-specified aligned problems, and that strong target-spike alignment is not universally beneficial, especially under model misspecification. These alignment-dependent phase transitions, theoretically derived for linear models, were also empirically observed in nonlinear neural networks, suggesting broader relevance. Our results offer a more nuanced understanding of generalization in the presence of data anisotropy, challenging conventional intuitions and providing a detailed map of risk behaviors in overparameterized settings.

486 REFERENCES
487

488 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
489 dimensional asymptotics of feature learning: How one gradient step improves the representation.
490 In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in
491 Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=akddwRG6EGi>.
492

493 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning in the presence of
494 low-dimensional structure: A spiked random matrix perspective. In *Thirty-seventh Conference on
495 Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=H1IAoCHDWW>.
496

497 Zhidong Bai and Wang Zhou. Large sample covariance matrices without independence structures in
498 columns. 2008.

499 Jinho Baik and Jack W Silverstein. Eigenvalues of large sample covariance matrices of spiked
500 population models. *Journal of multivariate analysis*, 97(6):1382–1408, 2006.

502 Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for
503 nonnull complex sample covariance matrices. 2005.

505 Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
506 regression. *Proceedings of the National Academy of Sciences*, 117(48):30063–30070, 2020.

507 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
508 practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences*,
509 116(32):15849–15854, 2019.

511 Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low
512 rank perturbations of large random matrices. *Advances in Mathematics*, 227(1):494–521, 2011.

513 Florent Benaych-Georges and Raj Rao Nadakuditi. The singular values and vectors of low rank
514 perturbations of large rectangular random matrices. *Journal of Multivariate Analysis*, 111:120–135,
515 2012.

517 Yuan Cao, Quanquan Gu, and Mikhail Belkin. Risk bounds for over-parameterized maximum margin
518 classification on sub-gaussian mixtures. *Advances in Neural Information Processing Systems*, 34:
519 8407–8418, 2021.

520 Niladri S. Chatterji and Philip M. Long. Finite-sample analysis of interpolating linear classifiers in
521 the overparameterized regime. *Journal of Machine Learning Research*, 22(129):1–30, 2021. URL
522 <http://jmlr.org/papers/v22/20-974.html>.

523 Romain Couillet and Zhenyu Liao. *Random Matrix Methods for Machine Learning*. Cambridge
524 University Press, 2022. doi: 10.1017/9781009128490. <https://zhenyu-liao.github.io/book/>.

527 Alex Damian, Jason D. Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
528 with gradient descent, 2022. URL <https://arxiv.org/abs/2206.15144>.

530 Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
531 neural networks learn, one (giant) step at a time. *Journal of Machine Learning Research*, 25(349):
532 1–65, 2024. URL <http://jmlr.org/papers/v25/23-1543.html>.

533 Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression
534 and classification. *The Annals of Statistics*, 46(1):247–279, 2018.

535 Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
536 dimensional ridgeless least squares interpolation. *Annals of statistics*, 50(2):949, 2022.

538 Kedar Karhadkar, Erin George, Michael Murray, Guido F Montufar, and Deanna Needell. Benign
539 overfitting in leaky relu networks with moderate input dimension. *Advances in Neural Information
Processing Systems*, 37:36634–36682, 2024.

540 Chinmaya Kausik, Kashvi Srivastava, and Rishi Sonthalia. Double descent and overfitting under noisy
 541 inputs and distribution shift for linear denoisers. *Transactions on Machine Learning Research*,
 542 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=HxfqTdLIRF>.

543

544 Frederic Koehler, Lijia Zhou, Danica J Sutherland, and Nathan Srebro. Uniform convergence of
 545 interpolators: Gaussian width, norm bounds and benign overfitting. *Advances in Neural Information
 546 Processing Systems*, 34:20657–20668, 2021.

547 Tengyuan Liang and Alexander Rakhlin. Just interpolate. *The Annals of Statistics*, 48(3):1329–1347,
 548 2020.

549 Neil Mallinar, James B Simon, Amirhesam Abedsoltan, Parthe Pandit, Mikhail Belkin, and Pree-
 550 tum Nakkiran. Benign, tempered, or catastrophic: A taxonomy of overfitting. *arXiv preprint
 551 arXiv:2207.06569*, 2022.

552

553 V A Marchenko and Leonid A. Pastur. Distribution of eigenvalues for some sets of random matrices.
 554 *Mathematics of The Ussr-sbornik*, 1:457–483, 1967.

555 Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural networks:
 556 Evidence from random matrix theory and implications for learning. *Journal of Machine Learning
 557 Research*, 22(165):1–73, 2021. URL <http://jmlr.org/papers/v22/20-410.html>.

558

559 Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random feature and
 560 kernel methods: hypercontractivity and kernel matrix concentration. *Applied and Computational
 561 Harmonic Analysis*, 59:3–84, 2022.

562 Carl D. Meyer, Jr. Generalized Inversion of Modified Matrices. *SIAM Journal on Applied Mathemat-
 563 ics*, 1973.

564

565 Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear feature
 566 learning with one gradient step in two-layer neural networks. *arXiv preprint arXiv:2310.07891*,
 567 2023.

568 Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A Erdogdu. Gradient-based feature
 569 learning under structured data. *Advances in Neural Information Processing Systems*, 36:71449–
 570 71485, 2023.

571 Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless interpo-
 572 lation of noisy data in regression. *IEEE Journal on Selected Areas in Information Theory*, 1(1):
 573 67–83, 2020.

574

575 Raj Rao Nadakuditi. Optshrink: An algorithm for improved low-rank signal matrix denoising by
 576 optimal, data-driven singular value shrinkage. *IEEE Transactions on Information Theory*, 60(5):
 577 3002–3018, 2014.

578 Ohad Shamir. The implicit bias of benign overfitting. In Po-Ling Loh and Maxim Raginsky (eds.),
 579 *Proceedings of Thirty Fifth Conference on Learning Theory*, volume 178 of *Proceedings of Machine
 580 Learning Research*, pp. 448–478. PMLR, 02–05 Jul 2022. URL <https://proceedings.mlr.press/v178/shamir22a.html>.

581

582 Rishi Sonthalia and Raj Rao Nadakuditi. Training data size induced double descent for denoising feed-
 583 forward neural networks and the role of training noise. *Transactions on Machine Learning Research*,
 584 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=FdMWtpVT1I>.

585

586 Rishi Sonthalia, Michael Murray, and Guido’ Montúfar. Low rank gradients and where to find them.
 587 In *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL
 588 <https://openreview.net/forum?id=de3kwOXQ9e>.

589

590 Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. *Journal of Machine
 591 Learning Research*, 24(123):1–76, 2023.

592

593 Yutong Wang, Rishi Sonthalia, and Wei Hu. Near-interpolators: Rapid norm growth and the trade-off
 594 between interpolation and generalization. In *International Conference on Artificial Intelligence
 595 and Statistics*, pp. 4483–4491. PMLR, 2024a.

594 Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices and signal propaga-
595 tion in deep neural networks. *arXiv preprint arXiv:2402.10127*, 2024b.
596

597 Denny Wu and Ji Xu. On the optimal weighted ℓ_2 regularization in overparameterized linear
598 regression. *Advances in Neural Information Processing Systems*, 33:10112–10123, 2020.
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Problem Setting	2
654		
655	3 Theoretical Results	4
656		
657	3.1 Well Specified Problem	5
658	3.2 Misspecified Case and no Covariate Shift	6
659	3.3 Misspecified Target and Covariate Shift	8
660	3.4 General Theorem	8
661	3.5 Extension: Nonlinear Models Also Exhibit Alignment Phase Transitions	9
662		
663		
664		
665	4 Conclusion	9
666		
667	A Notation	15
668		
669	B Non-Linear Experiment	15
670		
671		
672	C Spike Recovery Case	15
673		
674	D Proof of Theorem 5	16
675		
676	D.1 Step 0: Rescaling	17
677	D.2 Step 1: Decompose Error	17
678	D.3 Step 2: Simplifying Terms	18
679	D.3.1 Bias	18
680	D.3.2 Variance	18
681	D.3.3 Data Noise	19
682	D.3.4 Target Alignment	19
683	D.3.5 Helper Lemmas	19
684	D.4 Step 3: Random Matrix Theory Estimates	24
685	D.4.1 Step 3(a): Showing that basic building blocks concentrate	24
686	D.4.2 Step 3(b): Bounding the Higher Moments	29
687	D.4.3 Step 3(c): Bounding γ_i moments.	32
688	D.5 Step 4: Bounding the Expectation of Products of Dependent Terms	37
689	D.5.1 Step 4: Bias	37
690	D.5.2 Step 4: Variance	38
691	D.5.3 Step 4: Data Noise	38
692	D.5.4 Step 4: Target Alignment	38
693	D.5.5 Bias: Helper Lemmas	39
694	D.5.6 Variance: Helper Lemmas	43
695		
696		
697		
698		
699		
700		
701		

702	D.5.7 Target Alignment: Helper Lemmas	51
703		
704	D.6 Step 5: Upscaling and Asymptotic Risk Formulas	54
705		
706	E Probability Lemmas	57
707		
708	F Proof of Specific Cases and Overfitting	66
709		
710	F.1 Proof of Theorem 1	66
711		
712	F.2 Proof of Theorem 2	67
713		
714	F.3 Proof of Theorem 3	67
715		
716	F.4 Proof of Theorem 4	68
717		
718		
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 **A NOTATION**
757

759 Symbol	760 Description / Role	761 Typical scaling / range	762 First used
763 d, n	764 Data dimension and sample size	765 $d, n \rightarrow \infty$ with $c = d/n$ 766 fixed	767 Sec. 2
768 c	769 Aspect ratio d/n	770 $(0, \infty)$	771 Sec. 2
772 τ^2/d	773 Noise variance in ambient bulk A	774 $\tau^2 = \Theta(1)$	775 Sec. 2
776 θ^2	777 Spike (signal) variance	778 $\theta^2 = \gamma\tau^2$ (operator-norm) 779 or $\theta^2 = d\tau^2$ (Frobenius)	780 Sec. 2
781 γ	782 Spike-to-noise ratio $\gamma = \theta^2/\tau^2$ (effective outlier eigenvalue)	783 $[0, \infty)$; critical line $\gamma = (1 + \sqrt{c})^2$	784 Sec. 2
785 α_Z, α_A	786 Coeffs. weighting spike vs. bulk in <i>targets</i> y	787 $\Theta(1)$	788 Eq. (2)
789 $\tilde{\alpha}_Z, \tilde{\alpha}_A$	790 Same coefficients for <i>test</i> data (covariate shift)	791 $\Theta(1)$	792 Sec. 3
793 β_*	794 True parameter vector	795 $\ \beta_*\ _2 = 1$	796 Sec. 2
797 \mathbf{u}	798 Spike direction in data covariance	799 $\ \mathbf{u}\ _2 = 1$	800 Sec. 2
801 \mathbf{A}, \mathbf{Z}	802 Bulk noise matrix, rank-one signal matrix	803 $A_{ij} \sim \mathcal{N}(0, \tau^2/d), \mathbf{Z} = \theta \mathbf{u} \mathbf{v}^\top$	804 Sec. 2
805 $\varepsilon, \tau_\varepsilon^2$	806 Label noise and its variance	807 IID, $\mathcal{N}(0, \tau_\varepsilon^2)$	808 Sec. 2

774 **Table 3:** Glossary of recurrent parameters and symbols. All $\Theta(1)$ constants are independent of n, d .
775776 **Other Notations.** We use lowercase a , lowercase bold a , and uppercase bold A letters to denote
777 scalars, vectors, and matrices respectively. We use $\|\cdot\|_2$ to denote the Euclidean norm if the argument
778 is a vector and the operator norm if the argument is a matrix. We use $\|\cdot\|_F$ to denote the Frobenius
779 norm. When slicing one entry from a vector or matrix, we use both a_i, A_{ij} and $\mathbf{a}_i, \mathbf{A}_{ij}$, where the
780 latter intends to emphasize the source of the scalar.
781782 **B NON-LINEAR EXPERIMENT**
783784 We used 500 data points in 750 dimensional space, with a hidden width of 1000. We used full batch
785 gradient descent for 100 epochs with a learning rate of 1e-4. Each data point is averaged over 50
786 trials. Equal Frobenius norm scaling was used for the size of the spike.
787788 **C SPIKE RECOVERY CASE**
789790 We consider the special case where the goal is to recover the spike direction \mathbf{u} . In this setting, the
791 target \mathbf{y} depends only on the spike component \mathbf{Z} , with no contribution from the noise \mathbf{A} :

792
$$\alpha_A = \tilde{\alpha}_A = 0, \quad \alpha_Z = \tilde{\alpha}_Z = \alpha > 0.$$

793 Thus, the target \mathbf{y} is proportional to the signal \mathbf{Z} plus possible observation noise ε .
794795 **Equal Operator Norm** In this regime, we have that the risk is

796
$$\mathcal{R}_{c<1} = \frac{\gamma \alpha_Z^2 \tau^2}{(1-c)(\gamma+1)} (\beta^\top \mathbf{u})^2 + \frac{c}{1-c} \tau_\varepsilon^2, \quad \mathcal{R}_{c>1} = \frac{\gamma c(c^2 + \gamma) \alpha_Z^2 \tau^2}{(c-1)(\gamma+c)^2} (\beta^\top \mathbf{u})^2 + \frac{1}{c-1} \tau_\varepsilon^2$$

800 Here again, we see that when $\gamma = \Theta_c(1)$, we have tempered overfitting and $\omega_c(1) \leq \gamma \leq o_c(c^2)$, we
801 have catastrophic overfitting and for $\gamma = \Omega_c(c^2)$ we get tempered overfitting again.
802803 **Equal Frobenius Norm.** In this regime, we have that

804
$$R_{c<1} = \frac{\alpha_Z^2 \tau^2}{1-c} (\beta^\top \mathbf{u})^2 + \frac{c}{1-c} \tau_\varepsilon^2 \quad R_{c>1} = \frac{c \alpha_Z^2 \tau^2}{c-1} (\beta^\top \mathbf{u})^2 + \frac{1}{c-1} \tau_\varepsilon^2.$$

805 This generalizes the spike recovery setting studied in Sonthalia & Nadakuditi (2023), which assumed
806 noiseless targets ($\tau_\varepsilon = 0$) and the equal Frobenius norm scaling. Our formula allows for observation
807 noise and thus captures the more realistic case where the target \mathbf{y} itself contains randomness not
808 aligned with the spike. Here we see that we have tempered overfitting unless $\tau^2 = o(1)$, which is the
809 case considered in Sonthalia & Nadakuditi (2023).
810

810
811 D PROOF OF THEOREM 5812
813 **Theorem 5** (Generalization Risk). *Suppose Assumption 1, Assumption 2, and Assumption 3 hold.*

814
815
$$\mathcal{R} = \mathbb{E} \left[\underbrace{\left\| \tilde{\alpha}_z \beta_*^\top \tilde{\mathbf{Z}} - \beta_{int}^\top \tilde{\mathbf{Z}} \right\|_F^2}_{\text{Bias}} + \underbrace{\tau^2 \left\| \beta_{int}^\top \tilde{\mathbf{A}} \right\|_F^2}_{\text{Variance}} + \underbrace{\tilde{\alpha}_A^2 \left\| \beta_*^\top \tilde{\mathbf{A}} \right\|_F^2}_{\text{Data Noise}} + \underbrace{\left(-2\tilde{\alpha}_A \beta_*^\top \tilde{\mathbf{A}} \tilde{\mathbf{A}}^\top \beta_{int} \right)}_{\text{Target Alignment}} \right].$$

816
817

818
819 In particular, as $n, d \rightarrow \infty$ with $d/n \rightarrow c \in (0, \infty)$, we have the following expressions for each term.
820821 **Bias:** For $c < 1$, we have that the bias term is
822

823
$$\tilde{\theta}^2 \left[(\beta_*^\top \mathbf{u})^2 \left(\tilde{\alpha}_Z - \alpha_Z + (\alpha_Z - \alpha_A) + \frac{\tau^2}{\theta^2 + \tau^2} \right)^2 + \tau_\varepsilon^2 \frac{c}{1-c} \frac{1}{d(\theta^2 + \tau^2)} \right].$$

824

825 If $c > 1$, we have that the bias term is
826

827
$$\tilde{\theta}^2 (\beta_*^\top \mathbf{u})^2 \left(\tilde{\alpha}_Z - \alpha_Z + \left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{\tau^2 c}{\theta^2 + \tau^2 c} \right)^2 + \tilde{\theta}^2 \left[\alpha_A^2 \frac{\|\beta_*\|^2}{d} \frac{c-1}{c} \frac{\theta^2 \tau^2 c}{(\theta^2 + \tau^2 c)^2} + \tau_\varepsilon^2 \frac{c}{c-1} \frac{\theta^2 + \tau^2}{n(\theta^2 + \tau^2 c)^2} \right].$$

828

829 **Variance:** For $c < 1$, we have that the variance term is
830

831
$$\alpha_A^2 \tilde{\tau}^2 \|\beta_*\|^2 + \tilde{\tau}^2 (\beta_*^\top \mathbf{u})^2 \left[\frac{1}{1-c} \frac{\theta^4 + \theta^2 \tau^2 c}{(\theta^2 + \tau^2)^2} (\alpha_Z - \alpha_A)^2 + 2\alpha_A (\alpha_Z - \alpha_A) \frac{\theta^2}{\theta^2 + \tau^2} \right]$$

832
833
$$+ \tau_\varepsilon^2 \frac{\tilde{\tau}^2}{\tau^2} \left[\frac{c}{1-c} - \frac{\theta^2}{d(\theta^2 + \tau^2)} \frac{c}{1-c} \right].$$

834

835 For $c > 1$, we have that the variance term is
836

837
$$\tilde{\tau}^2 \|\beta_*\|^2 \left(\frac{\alpha_A^2}{c} - \frac{\alpha_A^2}{d} \frac{\theta^2}{\theta^2 + \tau^2 c} \right) + \tilde{\tau}^2 (\beta_*^\top \mathbf{u})^2 \frac{c}{(c-1)} \frac{\theta^2}{\theta^2 + \tau^2 c} \left(\alpha_Z - \frac{\alpha_A}{c} \right)^2$$

838
839
$$+ \tau_\varepsilon^2 \frac{\tilde{\tau}^2}{\tau^2} \left(\frac{1}{c-1} - \frac{\theta^2}{d(\theta^2 + \tau^2 c)} \frac{c}{c-1} \right).$$

840

841 **Data Noise:** For all c , we have that
842

843
$$\tilde{\alpha}_A^2 \tilde{\tau}^2 \|\beta_*\|^2.$$

844 **Target Alignment:** For $c < 1$, we have that the alignment term is
845

846
$$-2\tilde{\alpha}_A \tilde{\tau}^2 \left((\alpha_Z - \alpha_A) \frac{\theta^2}{\theta^2 + \tau^2} (\beta_*^\top \mathbf{u})^2 + \alpha_A \|\beta_*\|^2 \right).$$

847

848 For $c > 1$, we have that the alignment term is
849

850
$$-2\tilde{\alpha}_A \tilde{\tau}^2 \left(\left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{\theta^2}{\theta^2 + \tau^2 c} (\beta_*^\top \mathbf{u})^2 + \alpha_A \|\beta_*\|^2 \left(\frac{1}{c} - \frac{1}{d} \frac{\theta^2}{\theta^2 + \tau^2 c} \right) \right).$$

851

852 **Error terms:** The largest error terms for all c are:
853

854
$$o(1) + O\left(\frac{1}{n}\right) = o(1).$$

855

856 **Remark:** We note that the above theorem is very general and captures all of the theorems in the main
857 text as special cases. It is worth noting that the theorem also incorporates different signal and bulk
858 strengths for test data, namely for $\tilde{\theta}$ and $\tilde{\tau}$.
859860 The proof will be broken up into roughly 6 steps
861862 1. **Rescale the problem** To apply standard results we rescale the problem. Section D.1
863 2. **Decompose the error into four terms.** We shall refer to these terms as the 1) bias, 2)
variance, 3) data noise, and 4) target alignment. Section D.2

864 3. **Simplify the expressions.** We shall then use the result from Meyer (1973) to simplify the
 865 expression for each of the four terms. In particular, we shall express each term as the product
 866 of dependent functions of the eigenvalues of \mathbf{X} . Section D.3
 867 4. **Random matrix theory estimate.** We then use standard results from random matrix theory
 868 such as Marchenko & Pastur (1967); Bai & Zhou (2008); Baik & Silverstein (2006) to
 869 obtain a closed-form formula of the building blocks for the risk. Section D.4
 870 5. **Bound Products.** We then show that products of our building blocks concentrate. Step 4
 871 (Section D.5) then collects the final terms.
 872 6. **Undo Scaling** Step 5 (Section D.6) gives us back the correct scaling.

873 Section E has some generic probability lemmas that we need.

874 **D.1 STEP 0: RESCALING**

875 In order to better align with existing results and use them accordingly, we change our scalings for
 876 now and switch back after our derivation. That is, we divide everything by \sqrt{d} . Hence, we shall use
 877

$$\frac{\theta}{\sqrt{d}} \mathbf{u} \mathbf{w}^\top = \theta \frac{\|\mathbf{w}\|}{\sqrt{d}} \mathbf{u} \frac{\mathbf{w}^\top}{\|\mathbf{w}\|}$$

878 as the spike. We shall let

$$\eta^2 := \theta^2 \frac{\|\mathbf{w}\|^2}{d} \quad \text{and} \quad \mathbf{v} := \frac{\mathbf{w}^\top}{\|\mathbf{w}\|}$$

879 Here, we treat \mathbf{v} as fixed unit norm vector and our spike is

$$\mathbf{Z}_r := \eta \mathbf{u} \mathbf{v}^\top$$

880 The \mathbf{A} noise after dividing by \sqrt{d} is

$$\mathbf{A}_r := \frac{\tau}{\sqrt{d}} \mathbf{N}$$

881 where \mathbf{N} are mean zero variance 1 entries. Here the appendix, we shall use the letter ρ for τ . Finally
 882 let

$$\mathbf{X}_r = \mathbf{Z}_r + \mathbf{A}_r$$

883 We can note that β_{int} , is still the solution to

$$\left\| \frac{\mathbf{y}}{\sqrt{d}} - \beta^\top \mathbf{X}_r \right\|^2, \quad \text{where } \frac{\mathbf{y}}{\sqrt{d}} = \beta_*^\top (\mathbf{Z}_r + \mathbf{A}_r) + \frac{\varepsilon}{\sqrt{d}}.$$

884 We define

$$\frac{\varepsilon}{\sqrt{d}} =: \varepsilon_r \sim \mathcal{N} \left(0, \frac{\tau_\varepsilon^2}{d} \right), \quad \tau_{\varepsilon, r}^2 := \frac{\tau_\varepsilon^2}{d}.$$

885 Then when we want to test, we shall look at the rescaled error

$$\frac{1}{\tilde{n}} \left\| \beta_*^\top (\tilde{\alpha}_Z \tilde{\mathbf{Z}}_r + \tilde{\alpha}_A \tilde{\mathbf{A}}_r) - \beta_{int}^\top (\tilde{\mathbf{Z}}_r + \tilde{\mathbf{A}}_r) \right\|_F^2$$

886 **Through Steps 1 - 4, we shall drop the subscript r.**

887 **D.2 STEP 1: DECOMPOSE ERROR**

888 Using the fact that $\tilde{\mathbf{A}}$ has been zero entries and is independent of $\tilde{\mathbf{Z}}$, we see that we can decompose the
 889 error as follows. Again here we consider \tilde{n} samples of test data and take the average (in expectation,

918 this is the same as one test point).
 919

$$\begin{aligned}
 & \mathbb{E} \left[\frac{1}{\tilde{n}} \left\| \beta_*^\top (\tilde{\alpha}_z \tilde{\mathbf{Z}} + \tilde{\alpha}_A \tilde{\mathbf{A}}) - \beta_{int}^\top (\tilde{\mathbf{Z}} + \tilde{\mathbf{A}}) \right\|_F^2 \right] \\
 &= \mathbb{E} \left[\frac{1}{\tilde{n}} \left\| \tilde{\alpha}_z \beta_*^\top \tilde{\mathbf{Z}} - \beta_{int}^\top \tilde{\mathbf{Z}} \right\|_F^2 \right] + \mathbb{E} \left[\frac{1}{\tilde{n}} \left\| \tilde{\alpha}_A \beta_*^\top \tilde{\mathbf{A}} - \beta_{int}^\top \tilde{\mathbf{A}} \right\|_F^2 \right] \\
 &= \mathbb{E} \left[\underbrace{\frac{1}{\tilde{n}} \left\| \tilde{\alpha}_z \beta_*^\top \tilde{\mathbf{Z}} - \beta_{int}^\top \tilde{\mathbf{Z}} \right\|_F^2}_{\text{Bias}} + \underbrace{\frac{1}{\tilde{n}} \left\| \beta_{int}^\top \tilde{\mathbf{A}} \right\|_F^2}_{\text{Variance}} + \underbrace{\frac{1}{\tilde{n}} \tilde{\alpha}_A^2 \left\| \beta_*^\top \tilde{\mathbf{A}} \right\|_F^2}_{\text{Data Noise}} + \underbrace{\left(-\frac{2}{\tilde{n}} \tilde{\alpha}_A \beta_*^\top \tilde{\mathbf{A}} \tilde{\mathbf{A}}^\top \beta_{int} \right)}_{\text{Target Alignment}} \right].
 \end{aligned}$$

930 We compute these four terms one by one in the following sections.
 931

932 D.3 STEP 2: SIMPLIFYING TERMS

934 This section simplifies the four terms. We begin by recalling results from prior work. We state them
 935 here for completeness.

936 **Theorem 6** (Theorems 3, 5 of Meyer (1973)). *Define the following helper functions $\mathbf{h} = \mathbf{v}^\top \mathbf{A}^\dagger$,
 937 $\mathbf{k} = \mathbf{A}^\dagger \mathbf{u}$, $\mathbf{t} = \mathbf{v}^\top (\mathbf{I} - \mathbf{A}^\dagger \mathbf{A})$, $\xi = 1 + \eta \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u}$, $\mathbf{s} = (\mathbf{I} - \mathbf{A} \mathbf{A}^\dagger) \mathbf{u}$, $\gamma_1 = \eta^2 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2 + \xi^2$,
 938 $\gamma_2 = \eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2 + \xi^2$ and*

$$\begin{aligned}
 p_1 &= -\frac{\eta^2 \|\mathbf{k}\|^2}{\xi} \mathbf{t}^\top - \eta \mathbf{k}, & \mathbf{q}_1^\top &= -\frac{\eta \|\mathbf{t}\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger - \mathbf{h}. \\
 p_2 &= -\frac{\eta^2 \|\mathbf{s}\|^2}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top - \eta \mathbf{k}, & \mathbf{q}_2^\top &= -\frac{\eta \|\mathbf{h}\|^2}{\xi} \mathbf{s}^\top - \mathbf{h},
 \end{aligned}$$

944 Then we have that
 945

$$(\mathbf{Z} + \mathbf{A})^\dagger = \begin{cases} \mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger - \frac{\xi}{\gamma_1} \mathbf{p}_1 \mathbf{q}_1^\top, & c < 1 \\ \mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top - \frac{\xi}{\gamma_2} \mathbf{p}_2 \mathbf{q}_2^\top, & c > 1 \end{cases}.$$

949 The following subsections - Bias D.3.1, Variance D.3.2, Data Noise D.3.3, and Target Alignment D.3.4
 950 - present the linear algebraic simplifications of the results. To derive this results. We shall need some
 951 helper results that are presented in Section D.3.5.
 952

953 D.3.1 BIAS

955 Using Lemma 5, we have that if $c < 1$

$$\tilde{\alpha}_z \beta_*^\top \tilde{\mathbf{Z}} - \beta_{int}^\top \tilde{\mathbf{Z}} = \left[\tilde{\alpha}_z - \alpha_z + \frac{\xi}{\gamma_1} (\alpha_z - \alpha_A) \right] \beta_*^\top \tilde{\mathbf{Z}} + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{p}_1 \tilde{\mathbf{v}}^\top,$$

959 and if $c > 1$

$$\tilde{\alpha}_z \beta_*^\top \tilde{\mathbf{Z}} - \beta_{int}^\top \tilde{\mathbf{Z}} = \beta_*^\top \left[(\tilde{\alpha}_z - \alpha_z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \tilde{\mathbf{Z}} - \alpha_A \frac{\eta \|\mathbf{s}\|^2}{\gamma_2} \beta_*^\top \mathbf{h}^\top \mathbf{u}^\top \tilde{\mathbf{Z}} + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_2} \boldsymbol{\varepsilon}^\top \mathbf{p}_2 \tilde{\mathbf{v}}^\top.$$

963 The bias equals the expected squared norm of this term (divided by \tilde{n}).
 964

965 D.3.2 VARIANCE

967 Lemma 8 gives us that

$$\begin{aligned}
 \mathbb{E} \left[\frac{1}{\tilde{n}} \left\| \beta_{int}^\top \tilde{\mathbf{A}} \right\|_F^2 \right] &= \mathbb{E} \left[\frac{\tilde{\tau}^2 \alpha_z^2}{d} \beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{Z} \beta_* + \frac{\tilde{\tau}^2 \alpha_A^2}{d} \beta_*^\top \mathbf{A} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{A}^\top \beta_* \right. \\
 &\quad \left. + \frac{2\tilde{\tau}^2 \alpha_A \alpha_z}{d} \beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{A}^\top \beta_* + \frac{\tilde{\tau}^2}{d} \boldsymbol{\varepsilon}^\top (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \boldsymbol{\varepsilon} \right].
 \end{aligned}$$

972 D.3.3 DATA NOISE
973

974 The data noise term is the simplest to understand. Preliminary calculation gives us:

975
$$\tilde{n} \tilde{\alpha}_A^2 \mathbb{E}_{\tilde{A}} \left[\left\| \beta_*^\top \tilde{A} \right\|_F^2 \right] = \frac{\tilde{\alpha}_A^2}{\tilde{n}} \frac{\tilde{\rho}^2 \tilde{n}}{d} \|\beta_*\|^2 = \frac{\tilde{\alpha}_A^2 \tilde{\rho}^2}{d} \|\beta_*\|^2.$$

976
977

978 D.3.4 TARGET ALIGNMENT
979980 To understand this term, we first note that \tilde{A} is independent of everything else. Hence we replace
981 $\tilde{A}\tilde{A}^\top$ with its expectation $\frac{\tilde{\rho}^2 \tilde{n}}{d} \mathbf{I}$.

982
$$\mathbb{E}_{\tilde{A}} \left[-\frac{2}{\tilde{n}} \tilde{\alpha}_A \beta_*^\top \tilde{A} \tilde{A}^\top \beta_{int} \right] = -\frac{2}{\tilde{n}} \frac{\tilde{\rho}^2 \tilde{n}}{d} \tilde{\alpha}_A \beta_*^\top \beta_{int} = -\frac{2\tilde{\alpha}_A \tilde{\rho}^2}{d} \beta_*^\top \beta_{int}.$$

983
984

985 Since ε has mean-zero entries that are independent of everything else. We see that

986
$$\mathbb{E}_\varepsilon [\beta_*^\top \beta_{int}] = \mathbb{E}_\varepsilon \left[\beta_*^\top ((\alpha_z \beta_*^\top Z + \varepsilon^\top)(Z + A)^\dagger + \alpha_A \beta_*^\top A(Z + A)^\dagger)^\top \right] \quad (5)$$

987

988
$$= \beta_*^\top (\alpha_z \beta_*^\top Z(Z + A)^\dagger - \alpha_A \beta_*^\top A(Z + A)^\dagger)^\top \quad (6)$$

989

990
$$= \alpha_z \beta_*^\top (Z + A)^\dagger \top Z^\top \beta_* + \alpha_A \beta_*^\top (Z + A)^\dagger \top A^\top \beta_*.$$

991

992 D.3.5 HELPER LEMMAS

993 **Proposition 1** (Proposition 2 from Sonthalia & Nadakuditi (2023)). *In the setting from Section 2*

994
$$Z(Z + A)^\dagger = \begin{cases} \frac{\eta \xi}{\gamma_1} \mathbf{u} \mathbf{h} + \frac{\eta^2 \|\mathbf{t}\|^2}{\gamma_1} \mathbf{u} \mathbf{k}^\top \mathbf{A}^\dagger, & c < 1 \\ \frac{\eta \xi}{\gamma_2} \mathbf{u} \mathbf{h} + \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{u} \mathbf{s}^\top, & c > 1 \end{cases}.$$

995
996

997 **Lemma 1.** *If $\xi \neq 0$ and A has full rank, we have:*

998
$$\varepsilon^\top (Z + A)^\dagger \tilde{Z} = \begin{cases} -\frac{\tilde{\eta} \xi}{\eta \gamma_1} \varepsilon^\top \mathbf{p}_1 \tilde{\mathbf{v}}^\top & c < 1 \\ -\frac{\tilde{\eta} \xi}{\eta \gamma_2} \varepsilon^\top \mathbf{p}_2 \tilde{\mathbf{v}}^\top & c > 1 \end{cases}.$$

999
1000
1001

1002 *Proof.* After substitutions, Proposition 1 implies that for $c < 1$, $\varepsilon^\top (Z + A)^\dagger \tilde{Z}$ becomes:

1003
$$\begin{aligned} & \varepsilon^\top \left(A^\dagger + \frac{\eta}{\xi} \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger - \frac{\xi}{\gamma_1} \mathbf{p}_1 \left(-\frac{\eta \|\mathbf{t}\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger - \mathbf{h} \right) \right) \tilde{Z} \\ &= \tilde{\eta} \varepsilon^\top \left(A^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top + \frac{\eta}{\xi} \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top - \frac{\xi}{\gamma_1} \mathbf{p}_1 \left(-\frac{\eta \|\mathbf{t}\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{u} - \mathbf{h} \mathbf{u} \right) \tilde{\mathbf{v}}^\top \right) \quad \text{by } \tilde{Z} = \tilde{\eta} \mathbf{u} \tilde{\mathbf{v}}^\top. \end{aligned}$$

1004
1005
1006
1007
1008

1009 Since $\mathbf{k} = \mathbf{A}^\dagger \mathbf{u}$ and $\mathbf{h} \mathbf{u} = \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u} = \frac{\xi-1}{\eta}$, we then have that

1010
$$\begin{aligned} & \tilde{\eta} \varepsilon^\top \left(A^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top + \frac{\eta}{\xi} \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top - \frac{\xi}{\gamma_1} \mathbf{p}_1 \left(-\frac{\eta \|\mathbf{t}\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{u} - \mathbf{h} \mathbf{u} \right) \tilde{\mathbf{v}}^\top \right) \\ &= \tilde{\eta} \varepsilon^\top \left(\mathbf{k} \tilde{\mathbf{v}}^\top + \frac{\eta \|\mathbf{k}\|^2}{\xi} \mathbf{t}^\top \tilde{\mathbf{v}}^\top + \frac{\xi}{\gamma_1} \mathbf{p}_1 \left(\frac{\eta^2 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2 + \xi^2 - \xi}{\xi \eta} \right) \tilde{\mathbf{v}}^\top \right) \\ &= \tilde{\eta} \varepsilon^\top \left(\mathbf{k} \tilde{\mathbf{v}}^\top + \frac{\eta \|\mathbf{k}\|^2}{\xi} \mathbf{t}^\top \tilde{\mathbf{v}}^\top + \frac{1}{\gamma_1} \mathbf{p}_1 \left(\frac{\gamma_1 - \xi}{\eta} \right) \tilde{\mathbf{v}}^\top \right) \\ &= \tilde{\eta} \varepsilon^\top \left(\frac{1}{\eta} \left(\frac{\eta^2 \|\mathbf{k}\|^2}{\xi} \mathbf{t}^\top + \eta \mathbf{k} \right) \tilde{\mathbf{v}}^\top + \frac{1}{\eta} \mathbf{p}_1 \tilde{\mathbf{v}}^\top - \frac{\xi}{\eta \gamma_1} \mathbf{p}_1 \tilde{\mathbf{v}}^\top \right) \\ &= \varepsilon^\top \left(-\frac{\tilde{\eta}}{\eta} \mathbf{p}_1 \tilde{\mathbf{v}}^\top + \frac{\tilde{\eta}}{\eta} \mathbf{p}_1 \tilde{\mathbf{v}}^\top - \frac{\tilde{\eta} \xi}{\eta \gamma_1} \mathbf{p}_1 \tilde{\mathbf{v}}^\top \right) \\ &= -\frac{\tilde{\eta} \xi}{\eta \gamma_1} \varepsilon^\top \mathbf{p}_1 \tilde{\mathbf{v}}^\top. \end{aligned}$$

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

1025 For $c > 1$, we note that the calculation is exactly the same. An example of such a calculation can be
seen in the proof of Lemma 4. \square

1026 **Lemma 2.** *In the setting of Section 2, we have:*

$$1028 \quad \mathbf{A}(\mathbf{Z} + \mathbf{A})^\dagger = \begin{cases} \mathbf{I} - \frac{\eta\xi}{\gamma_1} \mathbf{u}\mathbf{h} + \frac{\eta^2\|\mathbf{t}\|^2}{\gamma_1} \mathbf{u}\mathbf{k}^\top \mathbf{A}^\dagger, & c < 1 \\ 1029 \quad \mathbf{A}\mathbf{A}^\dagger + \frac{\eta\xi}{\gamma_2} \mathbf{h}^\top \mathbf{s}^\top - \frac{\eta^2\|\mathbf{s}\|^2}{\gamma_2} \mathbf{h}^\top \mathbf{h} - \frac{\eta^2\|\mathbf{h}\|^2}{\gamma_2} \mathbf{A}\mathbf{A}^\dagger \mathbf{u}\mathbf{s}^\top - \frac{\eta\xi}{\gamma_2} \mathbf{A}\mathbf{A}^\dagger \mathbf{u}\mathbf{h}, & c > 1 \end{cases} \\ 1030$$

1031 *Proof.* For $c < 1$, \mathbf{Z}, \mathbf{A} are $d \times n$ with $d < n$. Since \mathbf{A} is assumed to have full rank, $\mathbf{Z} + \mathbf{A}$ has full
1032 rank with probability 1, and hence
1033

$$1034 \quad (\mathbf{Z} + \mathbf{A})(\mathbf{Z} + \mathbf{A})^\dagger = \mathbf{I}.$$

1035 Thus, from Proposition 1,
1036

$$1037 \quad \mathbf{A}(\mathbf{Z} + \mathbf{A})^\dagger = (\mathbf{Z} + \mathbf{A})(\mathbf{Z} + \mathbf{A})^\dagger - \mathbf{Z}(\mathbf{Z} + \mathbf{A})^\dagger = \mathbf{I} - \frac{\eta\xi}{\gamma_1} \mathbf{u}\mathbf{h} - \frac{\eta^2\|\mathbf{t}\|^2}{\gamma_1} \mathbf{u}\mathbf{k}^\top \mathbf{A}^\dagger.$$

1039 For $c > 1$, since $(\mathbf{Z} + \mathbf{A})(\mathbf{Z} + \mathbf{A})^\dagger$ is no longer the identity matrix, we directly expand using
1040 Theorem 6:
1041

$$1042 \quad \mathbf{A}(\mathbf{Z} + \mathbf{A})^\dagger = \mathbf{A} \left(\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top - \frac{\xi}{\gamma_2} \left(\frac{\eta^2\|\mathbf{s}\|^2}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top + \eta \mathbf{k} \right) \left(\frac{\eta\|\mathbf{h}\|^2}{\xi} \mathbf{s}^\top + \mathbf{h} \right) \right) \\ 1043 \\ 1044 \quad = \mathbf{A}\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{A}\mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top - \frac{\xi}{\gamma_2} \left(\frac{\eta^2\|\mathbf{s}\|^2}{\xi} \mathbf{A}\mathbf{A}^\dagger \mathbf{h}^\top + \eta \mathbf{A}\mathbf{A}^\dagger \mathbf{u} \right) \left(\frac{\eta\|\mathbf{h}\|^2}{\xi} \mathbf{s}^\top + \mathbf{h} \right).$$

1047 Noting that $\mathbf{A}\mathbf{A}^\dagger \mathbf{h}^\top = \mathbf{A}\mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{v} = \mathbf{A}^{\dagger\top} \mathbf{v} = \mathbf{h}^\top$, we have

$$1048 \quad \mathbf{A}(\mathbf{Z} + \mathbf{A})^\dagger = \mathbf{A}\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{h}^\top \mathbf{s}^\top - \frac{\xi}{\gamma_2} \left(\frac{\eta^2\|\mathbf{s}\|^2}{\xi} \mathbf{h}^\top + \eta \mathbf{A}\mathbf{A}^\dagger \mathbf{u} \right) \left(\frac{\eta\|\mathbf{h}\|^2}{\xi} \mathbf{s}^\top + \mathbf{h} \right) \\ 1049 \\ 1050 \quad = \mathbf{A}\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{h}^\top \mathbf{s}^\top - \frac{\eta^3\|\mathbf{s}\|^2\|\mathbf{h}\|^2}{\xi\gamma_2} \mathbf{h}^\top \mathbf{s}^\top - \frac{\eta^2\|\mathbf{s}\|^2}{\gamma_2} \mathbf{h}^\top \mathbf{h} - \frac{\eta^2\|\mathbf{h}\|^2}{\gamma_2} \mathbf{A}\mathbf{A}^\dagger \mathbf{u}\mathbf{s}^\top - \frac{\eta\xi}{\gamma_2} \mathbf{A}\mathbf{A}^\dagger \mathbf{u}\mathbf{h}.$$

1053 We can combine the coefficients in front of $\mathbf{h}^\top \mathbf{s}^\top$ to get
1054

$$1055 \quad \frac{\eta}{\xi} - \frac{\eta^3\|\mathbf{s}\|^2\|\mathbf{h}\|^2}{\xi\gamma_2} = \frac{\eta(\eta^2\|\mathbf{s}\|^2\|\mathbf{h}\|^2 + \xi^2) - \eta^3\|\mathbf{s}\|^2\|\mathbf{h}\|^2}{\xi\gamma_2} = \frac{\eta\xi}{\gamma_2}.$$

1057 The statement follows from here. \square
1058

1059 **Lemma 3.** *If $\xi \neq 0$ and \mathbf{A} has full rank, we have:*

$$1060 \quad \beta_*^\top \mathbf{Z}(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} = \begin{cases} \left(1 - \frac{\xi}{\gamma_1}\right) \beta_*^\top \tilde{\mathbf{Z}} & c < 1 \\ 1061 \quad \left(1 - \frac{\xi}{\gamma_2}\right) \beta_*^\top \tilde{\mathbf{Z}} & c > 1 \end{cases} \\ 1062 \\ 1063$$

1064 *Proof.* Using Proposition 1 for $c < 1$ and $\tilde{\mathbf{Z}} = \tilde{\eta} \mathbf{u} \tilde{\mathbf{v}}^\top$, we have that
1065

$$1066 \quad \beta_*^\top \mathbf{Z}(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} = \beta_*^\top \left(\frac{\eta\xi}{\gamma_1} \mathbf{u}\mathbf{h} + \frac{\eta^2\|\mathbf{t}\|^2}{\gamma_1} \mathbf{u}\mathbf{k}^\top \mathbf{A}^\dagger \right) \tilde{\mathbf{Z}} \\ 1067 \\ 1068 \quad = \tilde{\eta} \beta_*^\top \left(\frac{\eta\xi}{\gamma_1} \mathbf{u}\mathbf{h} \mathbf{u} \tilde{\mathbf{v}}^\top + \frac{\eta^2\|\mathbf{t}\|^2}{\gamma_1} \mathbf{u}\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top \right) \\ 1069 \\ 1070 \quad = \tilde{\eta} \beta_*^\top \left(\frac{\eta\xi}{\gamma_1} \mathbf{u} \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top + \frac{\eta^2\|\mathbf{t}\|^2}{\gamma_1} \mathbf{u}\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top \right). \\ 1071 \\ 1072$$

1073 Note $\xi - 1 = \eta \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u}$, $\mathbf{k} \mathbf{A}^\dagger \mathbf{u} = \mathbf{k}^\top \mathbf{k} = \|\mathbf{k}\|^2$. The above equation becomes
1074

$$1075 \quad \tilde{\eta} \beta_*^\top \left(\frac{\xi(\xi - 1)}{\gamma_1} + \frac{\eta^2\|\mathbf{t}\|^2\|\mathbf{k}\|^2}{\gamma_1} \right) \mathbf{u} \tilde{\mathbf{v}}^\top = \beta_*^\top \left(\frac{\xi(\xi - 1)}{\gamma_1} + \frac{\eta^2\|\mathbf{t}\|^2\|\mathbf{k}\|^2}{\gamma_1} \right) \tilde{\mathbf{Z}}^\top.$$

1077 Using $\gamma_1 = \eta^2\|\mathbf{t}\|^2\|\mathbf{k}\|^2 + \xi^2$ to combine the coefficients, we have that
1078

$$1079 \quad \frac{\xi(\xi - 1)}{\gamma_1} + \frac{\eta^2\|\mathbf{t}\|^2\|\mathbf{k}\|^2}{\gamma_1} = \frac{-\xi + \xi^2 + \eta^2\|\mathbf{t}\|^2\|\mathbf{k}\|^2}{\gamma_1} = \frac{-\xi + \gamma_1}{\gamma_1} = 1 - \frac{\xi}{\gamma_1}.$$

1080 This completes the proof for $c < 1$. Similarly, for $c > 1$, we obtain
 1081

$$\begin{aligned} 1082 \beta_*^\top \mathbf{Z}(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} &= \beta_*^\top \left(\frac{\eta\xi}{\gamma_2} \mathbf{u} \mathbf{h} + \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{u} \mathbf{s}^\top \right) \tilde{\mathbf{Z}} \\ 1083 &= \tilde{\eta} \beta_*^\top \left(\frac{\eta\xi}{\gamma_2} \mathbf{u} \mathbf{h} \mathbf{u} \tilde{\mathbf{v}}^\top + \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{u} \mathbf{s}^\top \mathbf{u} \tilde{\mathbf{v}}^\top \right) \\ 1084 &= \tilde{\eta} \beta_*^\top \left(\frac{\eta\xi}{\gamma_2} \mathbf{u} \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u} \tilde{\mathbf{v}}^\top + \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{u} \mathbf{s}^\top \mathbf{u} \tilde{\mathbf{v}}^\top \right). \\ 1085 \end{aligned}$$

1086 Note $\xi - 1 = \eta \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u}$, $\mathbf{s}^\top \mathbf{u} = \|\mathbf{s}\|^2$. The above equation becomes
 1087

$$1088 \tilde{\eta} \beta_*^\top \left(\frac{\xi(\xi-1)}{\gamma_2} + \frac{\eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2}{\gamma_2} \right) \mathbf{u} \tilde{\mathbf{v}}^\top = \beta_*^\top \left(\frac{\xi(\xi-1)}{\gamma_2} + \frac{\eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2}{\gamma_2} \right) \tilde{\mathbf{Z}}^\top.$$

1089 Using $\gamma_2 = \eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2 + \xi^2$ to combine the coefficients, we have that
 1090

$$\frac{\xi(\xi-1)}{\gamma_2} + \frac{\eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2}{\gamma_2} = \frac{-\xi + \xi^2 + \eta^2 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2}{\gamma_2} = \frac{-\xi + \gamma_2}{\gamma_2} = 1 - \frac{\xi}{\gamma_2}.$$

1091 The target expression follows. \square
 1092

1093 **Lemma 4.** *If $\xi \neq 0$ and \mathbf{A} has full rank, we have:*

$$1094 \beta_*^\top \mathbf{A}(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} = \begin{cases} \frac{\xi}{\gamma_1} \beta_*^\top \tilde{\mathbf{Z}} & c < 1 \\ \frac{\eta \|\mathbf{s}\|^2}{\gamma_2} \beta_*^\top \mathbf{h}^\top \mathbf{u}^\top \tilde{\mathbf{Z}} + \frac{\xi}{\gamma_2} \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \tilde{\mathbf{Z}} & c > 1 \end{cases}$$

1095 *Proof.* We begin with $c < 1$. Since \mathbf{A} is assumed to have full rank, $\mathbf{Z} + \mathbf{A}$ has full column rank with
 1096 probability 1, and hence
 1097

$$1098 (\mathbf{Z} + \mathbf{A})(\mathbf{Z} + \mathbf{A})^\dagger = \mathbf{I}.$$

1099 It follows from Lemma 3 that
 1100

$$\begin{aligned} 1101 \beta_*^\top \mathbf{A}(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} &= \beta_*^\top (\mathbf{Z} + \mathbf{A})(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} - \beta_*^\top \mathbf{Z}(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} \\ 1102 &= \beta_*^\top \tilde{\mathbf{Z}} - \left(1 - \frac{\xi}{\gamma_1} \right) \beta_*^\top \tilde{\mathbf{Z}} = \frac{\xi}{\gamma_1} \beta_*^\top \tilde{\mathbf{Z}}. \end{aligned}$$

1103 For $c > 1$, $\mathbf{Z} + \mathbf{A}$ now has full row rank instead of full column rank. Hence, we do not have
 1104 $(\mathbf{Z} + \mathbf{A})(\mathbf{Z} + \mathbf{A})^\dagger = \mathbf{I}$ and need to directly expand it using Theorem 6 and its helper variables:
 1105

$$\begin{aligned} 1106 \beta_*^\top \mathbf{A}(\mathbf{Z} + \mathbf{A})^\dagger \tilde{\mathbf{Z}} &= \beta_*^\top \mathbf{A} \left(\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top - \frac{\xi}{\gamma_2} \mathbf{p}_2 \mathbf{q}_2^\top \right) \tilde{\mathbf{Z}} \\ 1107 &= \tilde{\eta} \beta_*^\top \mathbf{A} \left(\mathbf{k} \tilde{\mathbf{v}}^\top + \frac{\eta \|\mathbf{s}\|^2}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top \tilde{\mathbf{v}}^\top - \frac{\xi}{\gamma_2} \mathbf{p}_2 \mathbf{q}_2^\top \mathbf{u} \tilde{\mathbf{v}}^\top \right) \\ 1108 &= \tilde{\eta} \beta_*^\top \mathbf{A} \left(-\frac{1}{\eta} \mathbf{p}_2 \tilde{\mathbf{v}}^\top - \frac{\xi}{\gamma_2} \mathbf{p}_2 \left(-\frac{\eta \|\mathbf{h}\|^2}{\xi} \mathbf{s}^\top - \mathbf{h} \right) \mathbf{u} \tilde{\mathbf{v}}^\top \right) \\ 1109 &= \tilde{\eta} \beta_*^\top \mathbf{A} \left(-\frac{1}{\eta} \mathbf{p}_2 \tilde{\mathbf{v}}^\top + \frac{\xi}{\gamma_2} \mathbf{p}_2 \left(\frac{\eta \|\mathbf{s}\|^2 \|\mathbf{h}\|^2}{\xi} + \frac{\xi-1}{\eta} \right) \tilde{\mathbf{v}}^\top \right) \\ 1110 &= \tilde{\eta} \beta_*^\top \mathbf{A} \left(-\frac{1}{\eta} \mathbf{p}_2 \tilde{\mathbf{v}}^\top + \frac{\xi}{\gamma_2} \mathbf{p}_2 \left(\frac{\eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2 + \xi^2 - \xi}{\xi \eta} \right) \tilde{\mathbf{v}}^\top \right) \\ 1111 &= \tilde{\eta} \beta_*^\top \mathbf{A} \left(-\frac{1}{\eta} \mathbf{p}_2 \tilde{\mathbf{v}}^\top + \frac{\xi}{\gamma_2} \mathbf{p}_2 \left(\frac{\gamma_2 - \xi}{\xi \eta} \right) \tilde{\mathbf{v}}^\top \right) \\ 1112 &= \tilde{\eta} \beta_*^\top \mathbf{A} \left(-\frac{1}{\eta} \mathbf{p}_2 \tilde{\mathbf{v}}^\top + \frac{1}{\eta} \mathbf{p}_2 \tilde{\mathbf{v}}^\top - \frac{\xi}{\eta \gamma_2} \mathbf{p}_2 \tilde{\mathbf{v}}^\top \right) \\ 1113 &= -\frac{\tilde{\eta} \xi}{\eta \gamma_2} \beta_*^\top \mathbf{A} \mathbf{p}_2 \tilde{\mathbf{v}}^\top \\ 1114 &= \frac{\tilde{\eta} \xi}{\eta \gamma_2} \beta_*^\top \left(\frac{\eta^2 \|\mathbf{s}\|^2}{\xi} \mathbf{h}^\top + \eta \mathbf{A} \mathbf{k} \right) \tilde{\mathbf{v}}^\top \quad \text{by plugging in the expression of } \mathbf{p}_2 \\ 1115 &= \frac{\tilde{\eta} \eta \|\mathbf{s}\|^2}{\gamma_2} \beta_*^\top \mathbf{h}^\top \tilde{\mathbf{v}}^\top + \frac{\xi}{\gamma_2} \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \tilde{\mathbf{Z}} \quad \text{by } \tilde{\eta} \mathbf{k} \tilde{\mathbf{v}}^\top = \mathbf{A}^\dagger \tilde{\eta} \mathbf{u} \tilde{\mathbf{v}}^\top = \mathbf{A}^\dagger \tilde{\mathbf{Z}}. \end{aligned}$$

Noting that $\beta_*^\top h^\top$ is a scalar, we then introduce $1 = u^\top u$ and get that

$$\frac{\tilde{\eta}\eta\|s\|^2}{\gamma_2}\beta_*^\top h^\top u^\top u\tilde{v}^\top = \frac{\eta\|s\|^2}{\gamma_2}\beta_*^\top h^\top u^\top \tilde{Z} \quad \text{since } \tilde{\eta}u\tilde{v}^\top = \tilde{Z}.$$

Thus, the final expression is

$$\frac{\eta\|s\|^2}{\gamma_2}\beta_*^\top h^\top u^\top \tilde{Z} + \frac{\xi}{\gamma_2}\beta_*^\top AA^\dagger \tilde{Z}.$$

□

Lemma 5 (Bias Term). *In the setting of Section 2, we have that if $c < 1$,*

$$\tilde{\alpha}_z\beta_*^\top \tilde{Z} - \beta_{int}^\top \tilde{Z} = \left[\tilde{\alpha}_Z - \alpha_Z + \frac{\xi}{\gamma_1}(\alpha_Z - \alpha_A) \right] \beta_*^\top \tilde{Z} + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_1} \varepsilon^\top p_1 \tilde{v}^\top,$$

and if $c > 1$,

$$\tilde{\alpha}_z\beta_*^\top \tilde{Z} - \beta_{int}^\top \tilde{Z} = \beta_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z)\mathbf{I} + \frac{\xi}{\gamma_2}(\alpha_Z \mathbf{I} - \alpha_A AA^\dagger) \right] \tilde{Z} - \alpha_A \frac{\eta\|s\|^2}{\gamma_2} \beta_*^\top h^\top u^\top \tilde{Z} + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_2} \varepsilon^\top p_2 \tilde{v}^\top.$$

Proof. To simplify the bias term, we first need the following expansion:

$$\begin{aligned} \tilde{\alpha}_z\beta_*^\top \tilde{Z} - \beta_{int}^\top \tilde{Z} &= \tilde{\alpha}_z\beta_*^\top \tilde{Z} - (\beta_*^\top (\alpha_z Z + \alpha_A A) + \varepsilon^\top)(Z + A)^\dagger \tilde{Z} \\ &= \tilde{\alpha}_z\beta_*^\top \tilde{Z} - \alpha_z\beta_*^\top Z(Z + A)^\dagger - \alpha_A\beta_*^\top A(Z + A)^\dagger \tilde{Z} - \varepsilon^\top(Z + A)^\dagger \tilde{Z}. \end{aligned}$$

From Lemmas 1, 3, 4, we get simplified expressions for $\varepsilon^\top(Z + A)^\dagger \tilde{Z}$, $\beta_*^\top A(Z + A)^\dagger \tilde{Z}$, $\beta_*^\top Z(Z + A)^\dagger$ and plug them in. For $c < 1$, we get

$$\begin{aligned} \tilde{\alpha}_z\beta_*^\top \tilde{Z} - \alpha_z \left(1 - \frac{\xi}{\gamma_1} \right) \beta_*^\top \tilde{Z} - \alpha_A \frac{\xi}{\gamma_1} \beta_*^\top \tilde{Z} + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_1} \varepsilon^\top p_1 \tilde{v}^\top \\ = \left[\tilde{\alpha}_Z - \alpha_Z + \frac{\xi}{\gamma_1}(\alpha_Z - \alpha_A) \right] \beta_*^\top \tilde{Z} + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_1} \varepsilon^\top p_1 \tilde{v}^\top. \end{aligned}$$

On the other hand, for $c > 1$, we have

$$\begin{aligned} \tilde{\alpha}_z\beta_*^\top \tilde{Z} - \alpha_z \left(1 - \frac{\xi}{\gamma_2} \right) \beta_*^\top \tilde{Z} - \alpha_A \left[\frac{\eta\|s\|^2}{\gamma_2} \beta_*^\top h^\top u^\top \tilde{Z} + \frac{\xi}{\gamma_2} \beta_*^\top AA^\dagger \tilde{Z} \right] + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_2} \varepsilon^\top p_2 \tilde{v}^\top \\ = \beta_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z)\mathbf{I} + \frac{\xi}{\gamma_2}(\alpha_Z \mathbf{I} - \alpha_A AA^\dagger) \right] \tilde{Z} - \alpha_A \frac{\eta\|s\|^2}{\gamma_2} \beta_*^\top h^\top u^\top \tilde{Z} + \frac{\tilde{\eta}}{\eta} \frac{\xi}{\gamma_2} \varepsilon^\top p_2 \tilde{v}^\top. \end{aligned}$$

□

Lemma 6 (Squared Norms of p_1 and p_2). *Recall $p_1 = -\frac{\eta^2\|k\|^2}{\xi}t^\top - \eta k$ and $p_2 = -\frac{\eta^2\|s\|^2}{\xi}A^\dagger h - \eta k$.*

$$1. \quad \|p_1\|^2 = \frac{\eta^2\|k\|^2}{\xi^2} \gamma_1.$$

$$2. \quad \|p_2\|^2 = \frac{\eta^4\|s\|^4}{\xi^2} h A^\dagger \top A^\dagger h^\top + \frac{2\eta^3\|s\|^2}{\xi} k^\top A^\dagger h^\top + \eta^2\|k\|^2.$$

Proof. For p_1 , we have

$$\|p_1\|^2 = \left(-\frac{\eta^2\|k\|^2}{\xi}t - \eta k \right) \left(-\frac{\eta^2\|k\|^2}{\xi}t^\top - \eta k^\top \right) = \left(\frac{\eta^2\|k\|^2}{\xi} \right)^2 \|t\|^2 + 2\frac{\eta^3\|k\|^2}{\xi} tk + \eta^2\|k\|^2.$$

Using $tk = 0$ yields the first result, which we can further simplify as

$$\frac{\eta^2\|k\|^2}{\xi^2} (\eta^2\|k\|^2\|t\|^2 + \xi^2) = \frac{\eta^2\|k\|^2}{\xi^2} \gamma_1.$$

1188 For p_2 , similarly, we have
1189

$$\begin{aligned} 1190 \|\mathbf{p}_2\|^2 &= \left(-\frac{\eta^2\|\mathbf{s}\|^2}{\xi} \mathbf{h} \mathbf{A}^{\dagger\top} - \eta \mathbf{k}^{\top} \right) \left(-\frac{\eta^2\|\mathbf{s}\|^2}{\xi} \mathbf{A}^{\dagger} \mathbf{h}^{\top} - \eta \mathbf{k} \right) \\ 1191 &= \frac{\eta^4\|\mathbf{s}\|^4}{\xi^2} \mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} + \frac{2\eta^3\|\mathbf{s}\|^2}{\xi} \mathbf{k}^{\top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} + \eta^2\|\mathbf{k}\|^2. \\ 1192 \\ 1193 \\ 1194 \end{aligned}$$

□

1195
1196 **Lemma 7** (Squared Norms of \mathbf{q}_1 and \mathbf{q}_2). Let $\mathbf{q}_1^{\top} = -\frac{\eta\|\mathbf{t}\|^2}{\xi} \mathbf{k}^{\top} \mathbf{A}^{\dagger} - \mathbf{h}$ and $\mathbf{q}_2^{\top} = -\frac{\eta\|\mathbf{h}\|^2}{\xi} \mathbf{s}^{\top} - \mathbf{h}$.
1197

$$\begin{aligned} 1198 1. \|\mathbf{q}_1\|^2 &= \frac{\eta^2\|\mathbf{t}\|^4}{\xi^2} \mathbf{k}^{\top} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger\top} \mathbf{k} + \frac{2\eta\|\mathbf{t}\|^2}{\xi} \mathbf{k}^{\top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} + \|\mathbf{h}\|^2. \\ 1199 \\ 1200 2. \|\mathbf{q}_2\|^2 &= \frac{\|\mathbf{h}\|^2}{\xi^2} \gamma_2. \\ 1201 \\ 1202 \end{aligned}$$

1203 *Proof.* Similar to Lemma 6, we directly expand the two terms:
1204

$$\begin{aligned} 1205 \|\mathbf{q}_1\|^2 &= \left(-\frac{\eta\|\mathbf{t}\|^2}{\xi} \mathbf{k}^{\top} \mathbf{A}^{\dagger} - \mathbf{h} \right) \left(-\frac{\eta\|\mathbf{t}\|^2}{\xi} \mathbf{A}^{\dagger\top} \mathbf{k} - \mathbf{h}^{\top} \right) = \frac{\eta^2\|\mathbf{t}\|^4}{\xi^2} \mathbf{k}^{\top} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger\top} \mathbf{k} + \frac{2\eta\|\mathbf{t}\|^2}{\xi} \mathbf{k}^{\top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} + \|\mathbf{h}\|^2. \\ 1206 \\ 1207 \|\mathbf{q}_2\|^2 &= \left(-\frac{\eta\|\mathbf{h}\|^2}{\xi} \mathbf{s}^{\top} - \mathbf{h} \right) \left(-\frac{\eta\|\mathbf{h}\|^2}{\xi} \mathbf{s} - \mathbf{h}^{\top} \right) = \frac{\eta^2\|\mathbf{h}\|^4\|\mathbf{s}\|^2}{\xi^2} + \|\mathbf{h}\|^2 \quad \text{since } \mathbf{h}\mathbf{s} = \mathbf{0} \\ 1208 \\ 1209 &= \frac{\|\mathbf{h}\|^2(\eta^2\|\mathbf{h}\|^2\|\mathbf{s}\|^2 + \xi^2)}{\xi^2} \\ 1210 \\ 1211 &= \frac{\|\mathbf{h}\|^2}{\xi^2} \gamma_2. \\ 1212 \\ 1213 \\ 1214 \\ 1215 \end{aligned}$$

□

1216
1217 **Lemma 8** (Preliminary Expansion of Variance). *In the setting of Section 2, we have*
1218

$$\begin{aligned} 1219 \mathbb{E} \left[\frac{1}{\tilde{n}} \left\| \boldsymbol{\beta}_{int}^{\top} \tilde{\mathbf{A}} \right\|_F^2 \right] &= \mathbb{E} \left[\frac{\tilde{\tau}^2 \alpha_z^2}{d} \boldsymbol{\beta}_*^{\top} \mathbf{Z} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{Z} \boldsymbol{\beta}_* + \frac{\tilde{\tau}^2 \alpha_A^2}{d} \boldsymbol{\beta}_*^{\top} \mathbf{A} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{A}^{\top} \boldsymbol{\beta}_* \right. \\ 1220 &\quad \left. + \frac{2\tilde{\tau}^2 \alpha_A \alpha_z}{d} \boldsymbol{\beta}_*^{\top} \mathbf{Z} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{A}^{\top} \boldsymbol{\beta}_* + \frac{\tilde{\tau}^2}{d} \boldsymbol{\varepsilon}^{\top} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \boldsymbol{\varepsilon} \right]. \\ 1221 \\ 1222 \\ 1223 \end{aligned}$$

1224 *Proof.* Since $\tilde{\mathbf{A}}$ is independent of the other terms, we replace $\tilde{\mathbf{A}}\tilde{\mathbf{A}}^{\top}$ with its expectation $\frac{\tilde{\tau}^2 \tilde{n}}{d} \mathbf{I}$.
1225

$$\begin{aligned} 1226 \mathbb{E} \left[\frac{1}{\tilde{n}} \left\| \boldsymbol{\beta}_{int}^{\top} \tilde{\mathbf{A}} \right\|_F^2 \right] &= \mathbb{E} \left[\frac{1}{\tilde{n}} \boldsymbol{\beta}_{int}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{A}}^{\top} \boldsymbol{\beta}_{int} \right] = \frac{1}{\tilde{n}} \frac{\tilde{\tau}^2 \tilde{n}}{d} \mathbb{E} [\boldsymbol{\beta}_{int}^{\top} \boldsymbol{\beta}_{int}] = \frac{\tilde{\tau}^2}{d} \mathbb{E} [\|\boldsymbol{\beta}_{int}\|^2]. \\ 1227 \\ 1228 \end{aligned}$$

1229 We now plug in the expression for $\boldsymbol{\beta}_{int}$. Since $\boldsymbol{\varepsilon}$ is a zero-mean vector and independent from other
1230 random variables, terms with only one $\boldsymbol{\varepsilon}$ have zero expectation. A straightforward expansion gives:
1231

$$\begin{aligned} 1232 \frac{\tilde{\tau}^2}{d} \|\boldsymbol{\beta}_{int}\|_F^2 &= \frac{\tilde{\tau}^2}{d} (\boldsymbol{\beta}_*^{\top} (\alpha_z \mathbf{Z} + \alpha_A \mathbf{A}) + \boldsymbol{\varepsilon}^{\top}) (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} (\boldsymbol{\beta}_*^{\top} (\alpha_z \mathbf{Z} + \alpha_A \mathbf{A}) + \boldsymbol{\varepsilon}^{\top})^{\top}. \\ 1233 \\ 1234 \end{aligned}$$

1235 After eliminating zero expectations as above, the expectation becomes:
1236

$$\begin{aligned} 1237 \mathbb{E} \left[\frac{\tilde{\tau}^2}{d} \|\boldsymbol{\beta}_{int}\|_F^2 \right] &= \mathbb{E} \left[\frac{\tilde{\tau}^2 \alpha_z^2}{d} \boldsymbol{\beta}_*^{\top} \mathbf{Z} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{Z} \boldsymbol{\beta}_* + \frac{\tilde{\tau}^2 \alpha_A^2}{d} \boldsymbol{\beta}_*^{\top} \mathbf{A} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{A}^{\top} \boldsymbol{\beta}_* \right. \\ 1238 &\quad \left. + \frac{2\tilde{\tau}^2 \alpha_A \alpha_z}{d} \boldsymbol{\beta}_*^{\top} \mathbf{Z} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{A}^{\top} \boldsymbol{\beta}_* + \frac{\tilde{\tau}^2}{d} \boldsymbol{\varepsilon}^{\top} (\mathbf{Z} + \mathbf{A})^{\dagger} (\mathbf{Z} + \mathbf{A})^{\dagger\top} \boldsymbol{\varepsilon} \right]. \\ 1239 \\ 1240 \\ 1241 \end{aligned}$$

□

1242 D.4 STEP 3: RANDOM MATRIX THEORY ESTIMATES
12431244 To do the estimates we recall the set up. In particular, we have that
1245

1246
$$Z = \eta \mathbf{u} \mathbf{v}^\top, \quad \text{where } \theta = \frac{\eta}{\sqrt{n}} \text{ and } \|\mathbf{v}\| = 1,$$

1247

1248 and the entries of
1249

1250
$$A_{ij} = \mathcal{N} \left(0, \frac{\rho^2}{d} \right)$$

1251 Recall the following definition $\mathbf{h} = \mathbf{v}^\top \mathbf{A}^\dagger$, $\mathbf{k} = \mathbf{A}^\dagger \mathbf{u}$, $\mathbf{t} = \mathbf{v}^\top (\mathbf{I} - \mathbf{A}^\dagger \mathbf{A})$, $\xi = 1 + \eta \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u}$,
1252 $\mathbf{s} = (\mathbf{I} - \mathbf{A} \mathbf{A}^\dagger) \mathbf{u}$, $\gamma_1 = \eta^2 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2 + \xi^2$, $\gamma_2 = \eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2 + \xi^2$ and
1253

1254
$$\begin{aligned} p_1 &= -\frac{\eta^2 \|\mathbf{k}\|^2}{\xi} \mathbf{t}^\top - \eta \mathbf{k}, & q_1^\top &= -\frac{\eta \|\mathbf{t}\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger - \mathbf{h}. \\ p_2 &= -\frac{\eta^2 \|\mathbf{s}\|^2}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top - \eta \mathbf{k}, & q_2^\top &= -\frac{\eta \|\mathbf{h}\|^2}{\xi} \mathbf{s}^\top - \mathbf{h}, \end{aligned}$$

1258

1259 To show that each of the four terms, bias, variance, data noise, and target alignment concentrate in
1260 the limit, we do this in two steps.
12611262 (a) First, we compute the mean and variance for basic building blocks such as $\|\mathbf{h}\|^2$ and other
1263 variables. Section D.4.1.
1264 (b) Second, we provide bounds on the higher moments. Section D.4.2.
1265 (c) Next, we prove bounds on the moments of γ_i . Section D.4.3.
12661267 D.4.1 STEP 3(A): SHOWING THAT BASIC BUILDING BLOCKS CONCENTRATE
12681269 We begin by bounding the mean and variance.
12701271 **Lemma 9** (Generalized version of Lemma 7 from Sonthalia & Nadakuditi (2023)). *Suppose A_{ij} have
1272 mean 0 and variance ρ^2/d , the entries are uncorrelated, have finite fourth moment, the distribution is
1273 invariant under left and right orthogonal transformation and the empirical spectral distribution of
1274 $\frac{1}{\rho^2} \mathbf{A} \mathbf{A}^\top$ converges to the Marchenko-Pastur law. Additionally, if \mathbf{u} and \mathbf{v} are fixed unit norm vectors.
1275 Then we have that*1276 1. $\mathbb{E}[\|\mathbf{h}\|^2] = \begin{cases} \frac{1}{\rho^2} \frac{c^2}{1-c} & c < 1 \\ \frac{1}{\rho^2} \frac{c}{c-1} & c > 1 \end{cases} + o\left(\frac{1}{\rho^2}\right)$ and $\text{Var}(\|\mathbf{h}\|^2) = O\left(\frac{1}{\rho^4 n}\right)$.
1277
1278 2. $\mathbb{E}[\|\mathbf{k}\|^2] = \frac{1}{\rho^2} \frac{c}{1-c} + o\left(\frac{1}{\rho^2}\right)$ and $\text{Var}(\|\mathbf{k}\|^2) = O\left(\frac{1}{\rho^4 n}\right)$.
1279
1280 3. $\mathbb{E}[\|\mathbf{s}\|^2] = 1 - \frac{1}{c}$ and $\text{Var}(\|\mathbf{s}\|^2) = O\left(\frac{1}{d}\right)$.
1281
1282 4. $\mathbb{E}[\|\mathbf{t}\|^2] = 1 - c$ and $\text{Var}(\|\mathbf{t}\|^2) = O\left(\frac{1}{n}\right)$.
1283
1284 5. $\mathbb{E}\left[\frac{\xi}{\eta}\right] = \frac{1}{\eta}$ and $\text{Var}\left(\frac{\xi}{\eta}\right) = O\left(\frac{1}{\max(n, d)} \frac{1}{\rho^2}\right)$.
1285
1286 6. $\mathbb{E}\left[\frac{\xi^2}{\eta^2}\right] = \frac{1}{\eta^2} + \frac{1}{\max(n, d)} \frac{c}{\rho^2 |1-c|} + o\left(\frac{1}{\max(n, d) \rho^2}\right) = \frac{1}{\eta^2} + O\left(\frac{1}{\max(n, d) \rho^2}\right)$
1287
1288 and $\text{Var}\left(\frac{\xi^2}{\eta^2}\right) = O\left(\frac{1}{\max(d, n) \rho^4}\right)$.
12891290 Note that here $\max(d, n)$, d, n are interchangeable in the variance big-Oh terms since they only
1291 differ by an absolute constant c . We include the details for completion.
1292
1293

1296 *Proof.* Items 1 – 5 come from the original statement, which assumes unit variance.
 1297 Here our variance parameter ρ simply induces a multiplicative change. We now focus on item 6.
 1298

1299 Let $\zeta = \xi/\eta = 1/\eta + \mathbf{v}^\top \mathbf{A}^\dagger \mathbf{u}$. With $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^\top$ (SVD), $\mathbf{A} \in \mathbb{R}^{d \times n}$ having i.i.d. $\mathcal{N}(0, \rho^2/d)$
 1300 entries, and \mathbf{u}, \mathbf{v} fixed unit vectors, we have $\zeta = \frac{1}{\eta} + \sum_{i=1}^r \frac{1}{\sigma_i} b_i a_i$, where $r = \min(d, n)$, $\mathbf{a} = \mathbf{V}^\top \mathbf{v}$,
 1301 $\mathbf{b} = \mathbf{U}^\top \mathbf{u}$ are uniformly random on S^{n-1} and S^{d-1} respectively since \mathbf{U}, \mathbf{V} are random rotations.

1302 Since \mathbf{A} has zero-mean entries, only the non-cross terms remain in the expectation, and the fourth
 1303 moment is

$$1304 \mathbb{E}[\zeta^4] = \frac{1}{\eta^4} + \frac{6}{\eta^2} \sum_{i,j} \mathbb{E}\left[\frac{1}{\sigma_i \sigma_j}\right] \mathbb{E}[b_i b_j] \mathbb{E}[a_i a_j] + \sum_{i,j,k,l} \mathbb{E}\left[\frac{1}{\sigma_i \sigma_j \sigma_k \sigma_l}\right] \mathbb{E}[b_i b_j b_k b_l] \mathbb{E}[a_i a_j a_k a_l].$$

1307 Furthermore, non-zero expectation terms require paired indices (since odd moments of the uniformly
 1308 random vector on the sphere equals 0). In particular, using exact spherical moments, we have $\mathbb{E}[a_i^4] = \frac{3}{n(n+2)}$,
 1309 $\mathbb{E}[a_i^2] = \frac{1}{n}$, $\mathbb{E}[a_i^2 a_j^2] = \frac{1}{n(n+2)}$ ($i \neq j$), $\mathbb{E}[b_i^4] = \frac{3}{d(d+2)}$, $\mathbb{E}[b_i^2] = \frac{1}{d}$, $\mathbb{E}[b_i^2 b_j^2] = \frac{1}{d(d+2)}$
 1310 ($i \neq j$):

$$1312 \mathbb{E}[\zeta^4] = \frac{1}{\eta^4} + \frac{6}{\eta^2} \sum_{i=1}^r \mathbb{E}\left[\frac{1}{\sigma_i^2}\right] \frac{1}{dn} + \sum_{i=1}^r \mathbb{E}\left[\frac{1}{\sigma_i^4}\right] \frac{9}{d(d+2)n(n+2)} + 3 \sum_{i \neq k} \mathbb{E}\left[\frac{1}{\sigma_i^2 \sigma_k^2}\right] \frac{1}{d(d+2)n(n+2)} \\ 1313 = \frac{1}{\eta^4} + \underbrace{\frac{9 \sum_{i=1}^r \mathbb{E}[1/\sigma_i^4]}{d(d+2)n(n+2)}}_{I_1} + \underbrace{\frac{3 \sum_{i \neq k} \mathbb{E}[1/(\sigma_i^2 \sigma_k^2)]}{d(d+2)n(n+2)}}_{I_2} + \underbrace{\frac{6 \sum_{i=1}^r \mathbb{E}[1/\sigma_i^2]}{dn}}_{I_3}.$$

1319 **Leading Order Scaling and Mean.** Let $N = \max(d, n)$, assume $n, d \rightarrow \infty$ with $d/n \rightarrow c \neq 1$.
 1320 Lemma 5 from Sonthalia & Nadakuditi (2023) implies that if \mathbf{A} has unit variance entries, the moments
 1321 of its inverse eigenvalue are expressions of c and are hence $O(1)$. In our case, it will just scale with ρ
 1322 instead:

$$1323 \mathbb{E}[1/\sigma_i^4] = O(1/\rho^4), \quad \mathbb{E}[1/(\sigma_i^2 \sigma_k^2)] = O(1/\rho^4), \quad \text{and} \quad \mathbb{E}[1/\sigma_i^8] = O(1/\rho^8) \quad \text{etc.}$$

1325 In particular, we also need the following exact expectation from the same lemma:

$$1326 \mathbb{E}\left[\frac{1}{\sigma_i^2}\right] = \frac{c}{\rho^2|1-c|} + o\left(\frac{1}{\rho^2}\right) = O\left(\frac{1}{\rho^2}\right). \quad (8)$$

1328 Since the above I_1, I_3 have $r = \min(d, n)$ summands, this implies

$$1330 I_1 = O\left(\frac{r}{N^4 \rho^4}\right) = O\left(\frac{1}{N^3 \rho^4}\right), \quad I_3 = O\left(\frac{r}{\eta^2 N^2 \rho^2}\right) = O\left(\frac{1}{N \rho^4}\right).$$

1332 Similarly, I_2 has $r(r-1) \approx r^2$ summands, and

$$1334 I_2 = O\left(\frac{r^2}{N^4 \rho^4}\right) = O\left(\frac{1}{N^2 \rho^4}\right)$$

$$1336 \implies \mathbb{E}[\zeta^4] = \frac{1}{\eta^4} + I_1 + I_2 + I_3 = \frac{1}{\eta^4} + O\left(\frac{1}{\max(d, n) \rho^4}\right) \quad \text{since } I_3 \text{ dominates.} \quad (9)$$

1339 With a similar expansion for the second moment and taking spherical moments, we get that

$$1340 \mathbb{E}[\zeta^2] = \frac{1}{\eta^2} + \sum_{i,j} \mathbb{E}\left[\frac{1}{\sigma_i \sigma_j}\right] \mathbb{E}[b_i b_j] \mathbb{E}[a_i a_j] = \frac{1}{\eta^2} + \frac{\sum_{i=1}^r \mathbb{E}[1/\sigma_i^2]}{dn} \\ 1341 = \frac{1}{\eta^2} + \frac{\min(d, n)}{dn} \left(\frac{c}{\rho^2|1-c|} + o\left(\frac{1}{\rho^2}\right) \right) \quad \text{by Equation 8} \\ 1342 = \frac{1}{\eta^2} + \frac{1}{\max(d, n)} \frac{c}{\rho^2|1-c|} + o\left(\frac{1}{\max(d, n) \rho^2}\right).$$

1347 This gives us the mean. Furthermore,

$$1349 (\mathbb{E}[\zeta^2])^2 = \frac{1}{\eta^4} + \frac{2}{\eta^2} \frac{\sum_{i=1}^r \mathbb{E}[1/\sigma_i^2]}{dn} + \frac{(\sum_{i=1}^r \mathbb{E}[1/\sigma_i^2])^2}{d^2 n^2} = \frac{1}{\eta^4} + O\left(\frac{1}{\max(d, n) \rho^4}\right). \quad (10)$$

1350 **Variance.** $\text{Var}(\zeta^2) = \mathbb{E}[\zeta^4] - (\mathbb{E}[\zeta^2])^2$. From Equations 9, 10, the overall scaling is determined by
 1351 the dominant term:

$$1352 \quad 1353 \quad \text{Var} \left(\left(\frac{\xi}{\eta} \right)^2 \right) = O \left(\frac{1}{\max(d, n) \rho^4} \right).$$

1355 \square

1356 **Lemma 10** (General Terms). *In the setting of Section 2 we have the following expectations:*

- 1359 1. For $c < 1$, $\mathbb{E}[\beta_*^\top \mathbf{u} \mathbf{k}^\top \mathbf{A}^\dagger \beta_*] = \frac{c}{\rho^2(1-c)} (\beta_*^\top \mathbf{u})^2 + o\left(\frac{1}{\rho^2}\right)$ and the variance is $O(1/(\rho^4 d))$.
- 1360 2. For $c < 1$, $\mathbb{E}[\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}] = \frac{c^2}{\rho^4(1-c)^3} + o\left(\frac{1}{\rho^4}\right)$ and the variance is $O(1/(\rho^8 d))$.
- 1361 3. For $c > 1$, $\mathbb{E}[\beta_*^\top \mathbf{s} \mathbf{u}^\top \beta_*] = \frac{c-1}{c} (\beta_*^\top \mathbf{u})^2$ and the variance is $O(1/d)$.
- 1362 4. For $c > 1$, $\mathbb{E}[\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \beta_*] = \frac{c-1}{c^2} (\beta_*^\top \mathbf{u})^2 + o(1)$ and the variance is $O(1/d)$.
- 1363 5. For $c > 1$, $\mathbb{E}[\beta_*^\top \mathbf{h}^\top \mathbf{h} \beta_*] = \frac{\|\beta_*\|^2}{d} \frac{c}{\rho^2(c-1)} + o\left(\frac{1}{\rho^2 d}\right)$ and the variance is $O(1/(\rho^4 d^2))$.
- 1364 6. For $c > 1$, $\mathbb{E}[\mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top] = \frac{1}{\rho^4} \frac{c^3}{(c-1)^3} + o\left(\frac{1}{\rho^4}\right)$ and the variance is $O(1/(\rho^8 d))$.
- 1365 7. For $c > 1$, $\mathbb{E}[\|\mathbf{k}\|^2] = \frac{1}{\rho^2} \frac{1}{c-1} + o\left(\frac{1}{\rho^2}\right)$ and the variance is $O(1/(\rho^4 n))$

1370 *Proof.* For all these terms, we evaluate the expectation using the SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$, with $\mathbf{A}^\dagger =$
 1371 $\mathbf{V} \mathbf{\Sigma}^{\dagger\top} \mathbf{U}^\top$, and important expectations from Lemma 5 of Sonthalia & Nadakuditi (2023) regarding the
 1372 spectrum of \mathbf{A} : suppose $\tilde{\mathbf{A}}$ has unit variance (general ρ^2 is a multiplicative change), and let $\sigma_i(\tilde{\mathbf{A}})$
 1373 denote the i -th singular value. We have

$$1374 \quad \mathbb{E} \left[\frac{1}{\sigma_i^2(\tilde{\mathbf{A}})} \right] = \begin{cases} \frac{c}{1-c} + o(1) & c < 1 \\ \frac{c}{c-1} + o(1) & c > 1 \end{cases}, \quad \mathbb{E} \left[\frac{1}{\sigma_i^4(\tilde{\mathbf{A}})} \right] = \begin{cases} \frac{c^2}{(1-c)^3} + o(1) & c < 1 \\ \frac{c^3}{(c-1)^3} + o(1) & c > 1 \end{cases}.$$

$$1375 \quad \mathbb{E} \left[\frac{1}{\sigma_i^2(\mathbf{A})} \right] = \begin{cases} \frac{1}{\rho^2} \frac{c}{1-c} + o\left(\frac{1}{\rho^2}\right) & c < 1 \\ \frac{1}{\rho^2} \frac{c}{c-1} + o\left(\frac{1}{\rho^2}\right) & c > 1 \end{cases}, \quad \mathbb{E} \left[\frac{1}{\sigma_i^4(\mathbf{A})} \right] = \begin{cases} \frac{1}{\rho^4} \frac{c^2}{(1-c)^3} + o\left(\frac{1}{\rho^4}\right) & c < 1 \\ \frac{1}{\rho^4} \frac{c^3}{(c-1)^3} + o\left(\frac{1}{\rho^4}\right) & c > 1 \end{cases}. \quad (11)$$

1376 **For the first term**, we note that

$$1377 \quad \begin{aligned} \beta_*^\top \mathbf{u} \mathbf{k}^\top \mathbf{A}^\dagger \beta_* &= (\beta_*^\top \mathbf{u}) \mathbf{u}^\top \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \beta_* \\ 1378 &= (\beta_*^\top \mathbf{u}) \mathbf{u}^\top \mathbf{U} \mathbf{\Sigma}^{\dagger\top} \mathbf{\Sigma}^\dagger \mathbf{U}^\top \beta_* \\ 1379 &= (\beta_*^\top \mathbf{u}) \sum_{i=1}^d (\mathbf{u}^\top \mathbf{U})_i (\mathbf{U}^\top \beta_*)_i \frac{1}{\sigma_i^2(\mathbf{A})} \\ 1380 &= (\beta_*^\top \mathbf{u}) \sum_{i=1}^d (\mathbf{u}^\top \mathbf{u}_i) (\beta_*^\top \mathbf{u}_i) \frac{1}{\sigma_i^2(\mathbf{A})}, \end{aligned}$$

1381 where \mathbf{u}_i denotes the i -th column of \mathbf{U} . We further note that $\mathbf{u}^\top \beta_* = \mathbf{u}^\top \mathbf{U} \mathbf{U}^\top \beta_*$. Since permuting
 1382 columns of an orthogonal matrix does not break orthogonality and \mathbf{U} is uniformly random, we have
 1383 that the marginals \mathbf{u}_i are identical. Thus, we have that

$$1384 \quad \mathbb{E}[\mathbf{u}^\top \mathbf{u}_1 \beta_*^\top \mathbf{u}_1] = \dots = \mathbb{E}[\mathbf{u}^\top \mathbf{u}_d \beta_*^\top \mathbf{u}_d] = \frac{1}{d} (\mathbf{u}^\top \beta_*) \quad \text{since } \mathbb{E}[\mathbf{u}_i \mathbf{u}_i^\top] = \frac{1}{d} \mathbf{I}.$$

1404 It follows from here that
 1405

$$\begin{aligned}
 \mathbb{E}[\beta_*^\top \mathbf{u} \mathbf{k}^\top \mathbf{A}^\dagger \beta_*] &= (\beta_*^\top \mathbf{u}) \sum_{i=1}^d \mathbb{E}[\mathbf{u}^\top \mathbf{u}_i \beta_*^\top \mathbf{u}_i] \mathbb{E}\left[\frac{1}{\sigma_i^2(\mathbf{A})}\right] \\
 &= \frac{1}{\rho^2} (\beta_*^\top \mathbf{u})^2 \sum_{i=1}^d \frac{1}{d} \left(\frac{c}{1-c} + o(1) \right) \quad \text{by Equation 11} \\
 &= \frac{1}{\rho^2} \frac{c}{1-c} (\beta_*^\top \mathbf{u})^2 + o\left(\frac{1}{\rho^2}\right).
 \end{aligned}$$

1414 Since \mathbf{A} is isotropic Gaussian, we have that \mathbf{U}, \mathbf{V} are uniformly random orthogonal matrices. Thus,
 1415 $\mathbf{u}^\top \mathbf{U}$ and $\mathbf{U}^\top \beta_*$ are uniformly random vectors on the spheres of radius $\|\mathbf{u}\|$ and $\|\beta_*\|$ respectively.
 1416

1417 Hence, when we consider the squared terms to compute the variance, the term from the two uniform
 1418 vectors will contribute $O(1/d^2)$. Together with the singular value term (now squared to have $O(1/\rho^4)$)
 1419 and the summation, the variance is of order $O(1/(\rho^4 d))$.
 1420

For the second term, we have that by Equation 11,

$$\begin{aligned}
 \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger \top} \mathbf{k} &= \mathbf{u}^\top ((\mathbf{A} \mathbf{A}^\top)^\dagger)^2 \mathbf{u} = \mathbf{u}^\top \mathbf{U} ((\Sigma \Sigma^\top)^\dagger)^2 \mathbf{U}^\top \mathbf{u} = \sum_{i=1}^d (\mathbf{u}^\top \mathbf{u}_i)^2 \frac{1}{\sigma_i^4(\mathbf{A})}, \\
 \mathbb{E}[\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger \top} \mathbf{k}] &= \sum_{i=1}^d \mathbb{E}[(\mathbf{u}^\top \mathbf{u}_i)^2] \mathbb{E}\left[\frac{1}{\sigma_i^4(\mathbf{A})}\right] = \sum_{i=1}^d \frac{1}{\rho^4} \frac{1}{d} \left(\frac{c^2}{(1-c)^3} + o(1) \right) = \frac{1}{\rho^4} \frac{c^2}{(1-c)^3} + o\left(\frac{1}{\rho^4}\right),
 \end{aligned}$$

1428 where we again use $\mathbb{E}[(\mathbf{u}^\top \mathbf{u}_i)^2] = 1/d$ since it is the entry of a uniformly random vector of length
 1429 $\|\mathbf{u}\| = 1$.
 1430

Similarly, the variance is $O(1/(\rho^8 d))$ from the summation of d independent variances each of
 1431 $O(1/(\rho^8 d^2))$.
 1432

For the third term, we have that

$$\beta_*^\top \mathbf{s} \mathbf{u}^\top \beta_* = \beta_*^\top (\mathbf{I} - \mathbf{A} \mathbf{A}^\dagger) \mathbf{u} (\mathbf{u}^\top \beta_*) = (\beta_*^\top \mathbf{u})^2 - (\beta_*^\top \mathbf{u}) \sum_{i=1}^n (\beta_*^\top \mathbf{u}_i) (\mathbf{u}^\top \mathbf{u}_i).$$

1438 Similarly, we take the expectation (in particular, $\mathbb{E}[(\beta_*^\top \mathbf{u}_i)(\mathbf{u}^\top \mathbf{u}_i)] = 1/d(\beta_*^\top \mathbf{u})$) and have
 1439

$$(\beta_*^\top \mathbf{u})^2 \left[1 - \sum_{i=1}^n \frac{1}{d} \right] = \left(1 - \frac{1}{c} \right) (\beta_*^\top \mathbf{u})^2.$$

1443 The variance for this term is $O(1/d)$ from summation of $n = d/c$ terms of $O(1/d^2)$.
 1444

For the fourth term, we plug in $\mathbf{s} = (\mathbf{I} - \mathbf{A} \mathbf{A}^\dagger) \mathbf{u}$ and have

$$\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \beta_* = (\beta_*^\top \mathbf{u}) \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} - (\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u})^2.$$

1448 From previous calculations, we have that

$$\mathbb{E}[\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u}] = \mathbb{E} \left[\sum_{i=1}^n (\beta_*^\top \mathbf{u}_i) (\mathbf{u}^\top \mathbf{u}_i) \right] = \frac{1}{c} (\beta_*^\top \mathbf{u}).$$

1452 Using Proposition 2 and this result, we can then show
 1453

$$\mathbb{E}[(\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u})^2] = \frac{1}{c^2} (\beta_*^\top \mathbf{u})^2 + o(1).$$

1456 It follows that
 1457

$$\mathbb{E}[\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \beta_*] = \frac{c-1}{c^2} (\beta_*^\top \mathbf{u})^2 + o(1).$$

1458 The variance for this term is $O(1/d)$, where the dominant term is a summation of $n = d/c$ terms of
 1459 $O(1/d^2)$.
 1460

1461 **For the fifth term**, we have

1462

$$1463 \beta_*^\top \mathbf{h}^\top \mathbf{h} \beta_* = (\beta_*^\top \mathbf{A}^\dagger \mathbf{v})^2 = \sum_{i,j}^n (\beta_*^\top \mathbf{U})_i (\beta_*^\top \mathbf{U})_j \frac{1}{\sigma_i(\mathbf{A}) \sigma_j(\mathbf{A})} (\mathbf{V}^\top \mathbf{v})_i (\mathbf{V}^\top \mathbf{v})_j.$$

1464

1465 Since $\beta_*^\top \mathbf{U}$ (and $\mathbf{V}^\top \mathbf{v}$) are uniformly random and independent of everything else, we only have the
 1466 diagonal terms when we take the expectation. By Equation 11,
 1467

1468

$$1469 \mathbb{E}[\beta_*^\top \mathbf{h}^\top \mathbf{h} \beta_*] = \sum_{i=1}^n \frac{\|\beta_*\|^2}{d} \frac{1}{n} \frac{1}{\rho^2} \left(\frac{c}{c-1} + o(1) \right) = \frac{\|\beta_*\|^2}{d} \frac{1}{\rho^2} \frac{c}{c-1} + o\left(\frac{1}{\rho^2 d}\right)$$

1470

1471 The variance for this term is $O(1/(\rho^4 d^2))$ from $O(d^2)$ terms of individual variances of $O(1/(\rho^4 d^4))$.
 1472

1473 **For the sixth term**, by expansion and Equation 11, similar to above,

1474

$$1475 \mathbb{E}[\mathbf{h} \mathbf{A}^\dagger \mathbf{A}^\dagger \mathbf{h}^\top] = \sum_{i=1}^n \mathbb{E}[(\mathbf{V}^\top \mathbf{v})_i^2] \mathbb{E}\left[\frac{1}{\sigma_i^4(\mathbf{A})}\right] = \sum_{i=1}^n \frac{1}{n} \mathbb{E}\left[\frac{1}{\sigma_i^4(\mathbf{A})}\right] = \frac{1}{\rho^4} \frac{c^3}{(c-1)^3} + o\left(\frac{1}{\rho^4}\right).$$

1476

1477 The variance is $O(1/(\rho^8 d))$.
 1478

1479 **For the final term**, by expansion and Equation 11,

1480

$$1481 \mathbb{E}[\|\mathbf{k}\|^2] = \sum_{i=1}^n \mathbb{E}[(\mathbf{u}^\top \mathbf{U})_i^2] \mathbb{E}\left[\frac{1}{\sigma_i^2(\mathbf{A})}\right] = \frac{1}{\rho^2} \frac{n}{d} \frac{c}{c-1} + o\left(\frac{1}{\rho^2}\right) = \frac{1}{\rho^2} \frac{1}{c-1} + o\left(\frac{1}{\rho^2}\right)$$

1482

1483 The variance is $O(1/(\rho^4 n))$. □
 1484

1485 **Lemma 11** (Zero Expectation). *In the setting of Section 2, we have the following expectations for*

1486

- 1487 1. *For all c , $\mathbb{E}[\beta_*^\top \mathbf{u} \mathbf{h} \beta_*] = 0$ and $\text{Var}(\beta_*^\top \mathbf{u} \mathbf{h} \beta_*) = O(1/(\rho^2 d))$*
- 1488 2. *If $c > 1$, $\mathbb{E}[\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*] = 0$ and $\text{Var}(\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*) = O(1/(\rho^2 d^2))$*
- 1489 3. *If $c > 1$, $\mathbb{E}[\beta_*^\top \mathbf{s} \mathbf{h} \beta_*] = 0$ and $\text{Var}(\beta_*^\top \mathbf{s} \mathbf{h} \beta_*) = O(1/(\rho^2 d))$*
- 1490 4. *For all c , $\mathbb{E}[\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top] = 0$ and $\text{Var}(\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top) = O(1/(\rho^6 d))$*
- 1491 5. *If $c > 1$, $\mathbb{E}[\mathbf{h} \mathbf{A} \mathbf{A}^\dagger \beta_*] = 0$ and $\text{Var}(\mathbf{h} \mathbf{A} \mathbf{A}^\dagger \beta_*) = O(1/(\rho^2 d))$*

1492

1493 *Proof.* Similar to Lemma 10, for all these terms, we evaluate the expectation using the SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top$, with $\mathbf{A}^\dagger = \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}^\top$.
 1494

1495 **For the first term**, we note that
 1496

1497

$$\beta_*^\top \mathbf{u} \mathbf{h} \beta_*^\top = (\beta_*^\top \mathbf{u}) \mathbf{v}^\top \mathbf{A}^\dagger \beta_* = (\beta_*^\top \mathbf{u}) \mathbf{v}^\top \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}^\top \beta_* = (\beta_*^\top \mathbf{u}) \sum_{i=1}^{\min(n,d)} (\mathbf{v}^\top \mathbf{V})_i (\mathbf{U}^\top \beta_*)_i \frac{1}{\sigma_i(\mathbf{A})}.$$

1500

1501 Since \mathbf{A} is isotropic Gaussian, again we have that \mathbf{U}, \mathbf{V} are uniformly random orthogonal matrices. Thus, $\mathbf{v}^\top \mathbf{V}$ and $\mathbf{U}^\top \beta_*$ are uniformly random vectors on a spheres of radius $\|\mathbf{v}\|$ and $\|\beta_*\|$ respectively. In particular, they are independent and have mean zero, which implies
 1502

1503

$$\mathbb{E}[\beta_*^\top \mathbf{u} \mathbf{h} \beta_*^\top] = 0.$$

1504

1505 The variance will be $O(1/(\rho^2 d))$ as a summation of $O(d)$ terms of $O(1/(\rho^2 d^2))$.
 1506

1507 **For the second term**, we note that
 1508

1509

$$\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} = \sum_{i=1}^{\min(n,d)} (\beta_*^\top \mathbf{U})_i (\mathbf{U}^\top \mathbf{u})_i \quad \text{and} \quad \mathbf{h} \beta_* = \sum_{i=1}^{\min(n,d)} (\mathbf{v}^\top \mathbf{V})_i (\mathbf{U}^\top \beta_*)_i \frac{1}{\sigma_i(\mathbf{A})}$$

1510

1512 Multiplying the two together yields
 1513

$$1514 \quad \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_* = \sum_{i,j}^{\min(n,d)} (\beta_*^\top \mathbf{U})_i (\mathbf{U}^\top \mathbf{u})_i (\mathbf{v}^\top \mathbf{V})_j (\mathbf{U}^\top \beta_*)_j \frac{1}{\sigma_i(\mathbf{A})}.$$

$$1515$$

$$1516$$

1517 We note that $\mathbf{v}^\top \mathbf{V}$ is a uniformly random mean zero vector independent of everything else in the
 1518 summation. Hence, the expectation is equal to zero, and similar to Lemma ??, the variance of this
 1519 term is $O(1/(\rho^2 d^2))$ (a summation of $O(d^2)$ terms of $O(1/(\rho^2 d^4))$).
 1520

1521 **For the third term**, we have that
 1522

$$\beta_*^\top \mathbf{s} \mathbf{h} \beta_* = \beta_*^\top (\mathbf{I} - \mathbf{A} \mathbf{A}^\dagger) \mathbf{u} \mathbf{h} \beta_* = \beta_*^\top \mathbf{u} \mathbf{h} \beta_* - \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*.$$

$$1523$$

1524 Then using the previous two parts, we get that each term has mean zero. Thus, we get the needed
 1525 result. Using Lemma 34 and the first two terms, the variance of this term is $O(1/(\rho^2 d))$.
 1526

1527 **For the fourth term**, we have that:
 1528

$$k^\top \mathbf{A}^\dagger \mathbf{h}^\top = \mathbf{u} \mathbf{U} \Sigma^{\dagger \top} \Sigma^\dagger \Sigma^{\dagger \top} \mathbf{V}^\top \mathbf{v} = \sum_{i=1}^{\min(n,d)} (\mathbf{u}^\top \mathbf{U})_i (\mathbf{V}^\top \mathbf{v})_i \frac{1}{\sigma_i(\mathbf{A})^3}.$$

$$1529$$

$$1530$$

1531 Similarly, using the independence of \mathbf{U} , Σ , \mathbf{V} and uniformly random entries, we get mean zero and
 1532 variance $O(1/(\rho^6 d))$.
 1533

1534 **For the last term**, we have that:
 1535

$$\mathbf{h} \mathbf{A} \mathbf{A}^\dagger \beta_* = \sum_{i=\min(n,d)}^r (\mathbf{V}^\top \mathbf{v})_i (\mathbf{U}^\top \beta_*)_i \frac{1}{\sigma_i(\mathbf{A})}.$$

$$1536$$

$$1537$$

1538 Using the independence of \mathbf{U} , Σ , \mathbf{V} and uniformly random entries, we get mean zero and variance
 1539 $O(1/(\rho^2 d))$. \square
 1540

D.4.2 STEP 3(B): BOUNDING THE HIGHER MOMENTS

1541 To bound the higher moments, we will the following Gaussian hypercontractivity lemma.
 1542

1543 **Lemma 12** (Gaussian Hypercontractivity Inequality). *Let $G \sim \mathcal{N}(0, 1)$ be a standard Gaussian
 1544 random variable. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a degree k polynomial. Then, for any $q \geq 2$, the L_q norm of
 1545 $f(G)$ is bounded by its L_2 norm as follows:*

$$1546 \quad \|f(G)\|_{L_q} \leq (q-1)^{k/2} \|f(G)\|_{L_2},$$

$$1547$$

1548 where the L_p norm of a random variable X is defined as $\|X\|_{L_p} = (\mathbb{E}[|X|^p])^{1/p}$.
 1549

1550 *Proof.* Follows directly from Mei et al. (2022, Lemma 20). \square
 1551

1552 **Lemma 13** (Multivariate Gaussian Hypercontractivity). *Let $G = (G_1, \dots, G_M) \sim \mathcal{N}(0, I_M)$ and
 1553 let $P : \mathbb{R}^M \rightarrow \mathbb{R}$ be a polynomial of total degree r . Consider the Hermite expansion of P*

$$1554 \quad P(x) = \sum_{\alpha \in \mathbb{N}^M, |\alpha| \leq r} c_\alpha \mathbf{H}_\alpha(x).$$

$$1555$$

$$1556$$

1557 with coefficient random and independent of G . Then there exists a constant C that is only dependent
 1558 on M, r such that for any $q \geq 2$,
 1559

$$1560 \quad \|P(G)\|_{L_q} \leq C(q-1)^{r/2} \left(\sum_{|\alpha| \leq r} \|c_\alpha\|_{L_q}^2 \alpha! \right)^{1/2}$$

$$1561$$

$$1562$$

1563 Further, if for all $|\alpha| \leq r$, we have that $\|c_\alpha\|_{L_q}^2 \leq C_q^2 \|c_\alpha\|_{L_2}^2$, then
 1564

$$1565 \quad \|P(G)\|_{L_q} \leq C(q-1)^{r/2} \|P(G)\|_{L_2}$$

1566 Where the L_p norm is over all of the randomness. Furthermore,
 1567

1566 *Proof.* Let $H_k : \mathbb{R} \rightarrow \mathbb{R}$ be the probabilist Hermite polynomial. Given $\alpha \in \mathbb{N}^M$, define

$$1568 \quad \mathbf{H}_\alpha(x) := \prod_{j=1}^M H_{\alpha_j}(x_j)$$

1571 Then since P is degree r , then we can decompose

$$1572 \quad P(x) = \sum_{\alpha \in \mathbb{N}^M, |\alpha| \leq r} c_\alpha \mathbf{H}_\alpha(x).$$

1575 Here $|\alpha| = \sum_j \alpha_j$. Since the Hermite polynomials are orthogonal, we can see that

$$1577 \quad \int_{\mathbb{R}^M} \mathbf{H}_\alpha(x) \mathbf{H}_{\tilde{\alpha}}(x) \gamma_M(x) dx = \delta_{\alpha \tilde{\alpha}} \prod_{j=1}^M \alpha_j!,$$

1579 where γ_M is the density for an M -dimensional standard normal distribution.

$$\begin{aligned} 1581 \quad \|P(x)\|_{L_2}^2 &= \mathbb{E}_\Sigma \left[\int_{\mathbb{R}^M} |P(x)|^2 \gamma_M(x) dx \right] \\ 1582 &= \sum_{|\alpha| \leq r} \sum_{|\tilde{\alpha}| \leq r} \mathbb{E}_\Sigma [c_\alpha c_{\tilde{\alpha}}] \int \mathbf{H}_\alpha(x) \mathbf{H}_{\tilde{\alpha}}(x) \gamma_M(x) dx \\ 1583 &= \sum_{|\alpha| \leq r} \|c_\alpha\|_{L_2}^2 \alpha! \end{aligned}$$

1588 where $\alpha! := \prod_{j=1}^M \alpha_j!$.

1592 Then using the 1D Gaussian Hypercontractivity (Lemma 12, we see that

$$\begin{aligned} 1593 \quad \|\mathbf{H}_\alpha(x)\|_{L_q} &= \prod_{j=1}^M \|H_{\alpha_j}(x_j)\|_{L_q} \\ 1594 &\leq \prod_{j=1}^M (q-1)^{\alpha_j/2} \|H_{\alpha_j}(x_j)\|_{L_2} \\ 1595 &= (q-1)^{|\alpha|/2} \prod_{j=1}^M \sqrt{\alpha_j!} \\ 1596 &= (q-1)^{|\alpha|/2} \sqrt{\alpha!} \end{aligned}$$

1603 Thus, using the triangle inequality we get that

$$1605 \quad \|P(x)\|_{L_q} \leq \sum_{|\alpha| \leq r} \|c_\alpha \mathbf{H}_\alpha(x)\|_{L_q} = \sum_{|\alpha| \leq r} \|c_\alpha\|_{L_q} \|\mathbf{H}_\alpha(x)\|_{L_q}$$

1607 Thus

$$1609 \quad \|P(x)\|_{L_q} \leq \sum_{|\alpha| \leq r} \|c_\alpha \mathbf{H}_\alpha(x)\|_{L_q} \leq \sum_{|\alpha| \leq r} \|c_\alpha\|_{L_q} (q-1)^{|\alpha|/2} \sqrt{\alpha!} \leq (q-1)^{r/2} \sum_{|\alpha| \leq r} \|c_\alpha\|_{L_q} \sqrt{\alpha!}$$

1611 Then using Cauchy-Schwartz, we get that

$$1613 \quad \sum_{|\alpha| \leq r} \|c_\alpha\|_{L_q} \sqrt{\alpha!} \leq \left(\sum_{|\alpha| \leq r} \|c_\alpha\|_{L_q}^2 \alpha! \right)^{1/2} \left(\sum_{|\alpha| \leq r} 1 \right)^{1/2}.$$

1617 Finally, we note that

$$1618 \quad C_{M,r} := \left(\sum_{|\alpha| \leq r} 1 \right)^{1/2}$$

1620 is some universal constant that only depends on M, r . Thus, we get that
 1621

$$1622 \quad \|P(x)\|_{L_q} \leq C_{M,r} (q-1)^{r/2} \left(\sum_{|\alpha| \leq r} \|c_\alpha\|_{L_q}^2 \alpha! \right)^{1/2}$$

$$1623$$

$$1624$$

$$1625$$

1626 Using the assumption
 1627

$$\|c_\alpha\|_{L_q}^2 \leq C_q^2 \|c_\alpha\|_{L_2}^2$$

1628 Then we get
 1629

$$\|P(x)\|_{L_q} \leq C_{M,r} C_q (q-1)^{r/2} \|P(x)\|_{L_2}$$

1630 \square

1631 **Lemma 14** (Product Spherical Hypercontractivity). *Let $l_1, l_2, l_3 \geq 0$, let $\Theta_1 \sim \text{Unif}(S^{l_1})$, $\Theta_2 \sim$
 1632 $\text{Unif}(S^{l_2})$, $\Theta_3 \sim \text{Unif}(S^{l_3})$ be independent, and let $H : \mathbb{R}^{l_1+1} \times \mathbb{R}^{l_2+1} \times \mathbb{R}^{l_3+1} \rightarrow \mathbb{R}$ be a
 1633 multi-homogeneous polynomial of total degree r . Then for every $q \geq 2$,*

$$1635 \quad \|H(\Theta_1, \Theta_2, \Theta_3)\|_{L_q} \leq C_{r,q} (q-1)^{r/2} \|H(\Theta_1, \Theta_2, \Theta_3)\|_{L_2},$$

1636 where the norms are with respect to the product measure. For homogeneous polynomials, the constant
 1637 is independent of the dimension.

1639 *Proof.* H is multi-homogeneous of degrees r_1, r_2, r_3 with $r_1 + r_2 + r_3 = r$. Let $G_1 \sim \mathcal{N}(0, I_{l_1+1})$,
 1640 $G_2 \sim \mathcal{N}(0, I_{l_2+1})$, $G_3 \sim \mathcal{N}(0, I_{l_3+1})$ be independent with polar decompositions $G_i = R_i \Theta_i$, where
 1641 the R_i 's are independent of each other and of the Θ_i 's. Then

$$1642 \quad H(G_1, G_2, G_3) = R_1^{r_1} R_2^{r_2} R_3^{r_3} H(\Theta_1, \Theta_2, \Theta_3),$$

1643 so for any $p > 0$,

$$1645 \quad \mathbb{E} [|H(G_1, G_2, G_3)|^p] = \left(\prod_{i=1}^3 \mathbb{E} [R_i^{p r_i}] \right) \mathbb{E} [|H(\Theta_1, \Theta_2, \Theta_3)|^p]$$

$$1646$$

$$1647$$

1648 Then we have that

$$1649 \quad \|H(G_1, G_2, G_3)\|_{L_p} = \left(\prod_i (\mathbb{E} [R_i^{p r_i}])^{1/p} \right) \|H(\Theta_1, \Theta_2, \Theta_3)\|_{L_p}. \quad (12)$$

$$1650$$

$$1651$$

1652 Apply Gaussian hypercontractivity (Lemma 12) to $H(G_1, G_2, G_3)$ (total degree r):

$$1653 \quad \|H(G_1, G_2, G_3)\|_{L_q} \leq C (q-1)^{r/2} \|H(G_1, G_2, G_3)\|_{L_2}, \quad q \geq 2.$$

$$1654$$

1655 Using Equation 12 with $p = q$ and $p = 2$ yields

$$1656 \quad \|H(\Theta_1, \Theta_2, \Theta_3)\|_{L_q} \leq C (q-1)^{r/2} \left(\prod_i \frac{(\mathbb{E} [R_i^{2 r_i}])^{1/2}}{(\mathbb{E} [R_i^{q r_i}])^{1/q}} \right) \|H(\Theta_1, \Theta_2, \Theta_3)\|_{L_2}.$$

$$1657$$

$$1658$$

1659 For each i , since $q \geq 2$ and $R_i \geq 0$, monotonicity of L_p norms implies $(\mathbb{E} [R_i^{q r_i}])^{1/(q r_i)} \geq$
 1660 $(\mathbb{E} [R_i^{2 r_i}])^{1/(2 r_i)}$, hence

$$1661 \quad \frac{(\mathbb{E} [R_i^{2 r_i}])^{1/2}}{(\mathbb{E} [R_i^{q r_i}])^{1/q}} \leq 1.$$

$$1662$$

$$1663$$

1664 Thus the product is less than 1, so

$$1665 \quad \|H(\Theta_1, \Theta_2, \Theta_3)\|_{L_q} \leq C (q-1)^{r/2} \|H(\Theta_1, \Theta_2, \Theta_3)\|_{L_2}.$$

$$1666$$

1667 \square

1668 **Lemma 15** (Product spherical hypercontractivity with random coefficients). *Let $l_1, l_2, l_3 \geq 0$ and
 1669 let $\Theta_i \sim \text{Unif}(S^{l_i})$ be independent. Let $r \in \mathbb{N}$ and let $H : \mathbb{R}^{l_1+1} \times \mathbb{R}^{l_2+1} \times \mathbb{R}^{l_3+1} \rightarrow \mathbb{R}$ be a
 1670 multi-homogeneous polynomial of total degree at most r . Suppose the coefficients of P are random
 1671 on an auxiliary probability space and are independent of $(\Theta_1, \Theta_2, \Theta_3)$. If the random coefficients
 1672 satisfy $\|c_\alpha\|_{L_q} \leq K_q \|c_\alpha\|_{L_2}$ in the Hermite basis expansion, then for all $q \geq 2$:*

$$1673 \quad \|H\|_{L_q} \leq C_{r,q} (q-1)^{r/2} \|H\|_{L_2}.$$

1674 *Proof.* The proof is identical to that of Lemma 14, except we begin with the version of Gaussian
 1675 hypercontractivity that handles random coefficients satisfying the stated assumption.
 1676

□

1677 Recall
 1678
 1679

$$1680 \mathbf{a} := \mathbf{V}^\top \mathbf{v} \in \mathbb{R}^n \quad \mathbf{b} := \mathbf{U}^\top \mathbf{u} \in \mathbb{R}^d, \quad \text{and} \quad \mathbf{u}_\beta = \mathbf{U}^\top \boldsymbol{\beta}_*$$

1681 Then, since \mathbf{u}, \mathbf{v} are fixed, and \mathbf{U}, \mathbf{V} are independent Haar orthogonal matrices, we have that \mathbf{a}, \mathbf{b}
 1682 are all uniformly random vectors on their respective spheres. Additionally, using the assumption that
 1683 $\boldsymbol{\beta}_*$ is uniformly random such that $\boldsymbol{\beta}_*^\top \mathbf{u}$ is constant. \mathbf{u}_β is uniformly random on a sphere \mathbb{S}^{d-2} .
 1684

1685 Consider the following centered versions and polynomial representations.

- 1686 1. $Y_h := \|\mathbf{h}\|^2 - \mathbb{E} [\|\mathbf{h}\|^2] = \mathbf{a}^\top (\boldsymbol{\Sigma}^{\dagger\top} - \mu_h) \mathbf{a}$
- 1687 2. $Y_k := \|\mathbf{k}\|^2 - \mathbb{E} [\|\mathbf{k}\|^2] = \mathbf{b}^\top (\boldsymbol{\Sigma}^{\dagger\top} \boldsymbol{\Sigma}^\dagger - \mu_k) \mathbf{b}$
- 1688 3. $Y_t := \|\mathbf{t}\|^2 - \mathbb{E} [\|\mathbf{t}\|^2] = \mathbf{a}^\top ((I - \boldsymbol{\Sigma}^\dagger \boldsymbol{\Sigma}) - \mu_t) \mathbf{a}$
- 1689 4. $Y_s := \|\mathbf{s}\|^2 - \mathbb{E} [\|\mathbf{s}\|^2] = \mathbf{b}^\top ((I - \boldsymbol{\Sigma} \boldsymbol{\Sigma}^\dagger) - \mu_t) \mathbf{b}$
- 1690 5. $Y_\xi := \frac{\xi}{\eta} - \mathbb{E} \left[\frac{\xi}{\eta} \right] = \mathbf{a}^\top \boldsymbol{\Sigma} \mathbf{b} = \mathbf{a}^\top \boldsymbol{\Sigma}^\dagger \mathbf{b}$
- 1691 6. $\tilde{T}_1 := \boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{k}^\top \mathbf{A}^\dagger \boldsymbol{\beta}_* - \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{k}^\top \mathbf{A}^\dagger \boldsymbol{\beta}_*] = (\boldsymbol{\beta}_*^\top \mathbf{u}) \mathbf{b}^\top (\boldsymbol{\Sigma}^{\dagger\top} \boldsymbol{\Sigma}^\dagger) \mathbf{u}_\beta - \mu_{\tilde{T}_1} (\mathbf{b}^\top \mathbf{b})$
- 1692 7. $\tilde{T}_2 := \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} - \mathbb{E} [\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}] = \mathbf{b}^\top \left((\boldsymbol{\Sigma}^{\dagger\top} \boldsymbol{\Sigma}^\dagger)^2 - \mu_{\tilde{T}_2} \right) \mathbf{b}$
- 1693 8. $\tilde{T}_3 := \boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{u}^\top \boldsymbol{\beta}_* - \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{u}^\top \boldsymbol{\beta}_*] = (\boldsymbol{\beta}_*^\top \mathbf{u}) \mathbf{u}_\beta^\top (I - \boldsymbol{\Sigma} \boldsymbol{\Sigma}^\dagger) \mathbf{b} - \mu_{\tilde{T}_3} (\mathbf{u}_\beta^\top \mathbf{u}_\beta)$
- 1694 9. $\tilde{T}_4 := \boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \boldsymbol{\beta}_* - \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \boldsymbol{\beta}_*] = \mathbf{u}_\beta^\top \boldsymbol{\Sigma} \boldsymbol{\Sigma}^\dagger \mathbf{b} \mathbf{b}^\top (I - \boldsymbol{\Sigma} \boldsymbol{\Sigma}^\dagger) \mathbf{u}_\beta - \mu_{\tilde{T}_4} (\mathbf{b}^\top \mathbf{b}) (\mathbf{u}_\beta^\top \mathbf{u}_\beta)$
- 1695 10. $\tilde{T}_5 := \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{h} \boldsymbol{\beta}_* - \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{h} \boldsymbol{\beta}_*] = (\mathbf{u}_\beta \boldsymbol{\Sigma}^{\dagger\top} \mathbf{a})^2 - \mu_{\tilde{T}_5} (\mathbf{a}^\top \mathbf{a}) (\mathbf{u}_\beta^\top \mathbf{u}_\beta)$
- 1696 11. $\tilde{T}_6 := \mathbf{h} (\mathbf{A}^\dagger)^\top \mathbf{A}^\dagger \mathbf{h}^\top - \mathbb{E} [\mathbf{h} (\mathbf{A}^\dagger)^\top \mathbf{A}^\dagger \mathbf{h}^\top] = \mathbf{a}^\top \left((\boldsymbol{\Sigma}^{\dagger\top} \boldsymbol{\Sigma}^\dagger)^2 - \mu_{\tilde{T}_6} \right) \mathbf{a}$
- 1697 12. $\tilde{S}_1 := \boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{h} \boldsymbol{\beta}_* - \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{h} \boldsymbol{\beta}_*] = (\boldsymbol{\beta}_*^\top \mathbf{u}) \mathbf{a}^\top \boldsymbol{\Sigma}^\dagger \mathbf{u}_\beta$
- 1698 13. $\tilde{S}_2 := \boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \boldsymbol{\beta}_* - \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \boldsymbol{\beta}_*] = \mathbf{u}_\beta^\top \boldsymbol{\Sigma} \boldsymbol{\Sigma}^\dagger \mathbf{b} \mathbf{a}^\top \boldsymbol{\Sigma}^\dagger \mathbf{u}_\beta$
- 1699 14. $\tilde{S}_3 := \boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{h} \boldsymbol{\beta}_* - \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{h} \boldsymbol{\beta}_*] = \mathbf{u}_\beta^\top (I - \boldsymbol{\Sigma} \boldsymbol{\Sigma}^\dagger) \mathbf{b} \mathbf{a}^\top \boldsymbol{\Sigma}^\dagger \mathbf{u}_\beta$
- 1700 15. $\tilde{S}_4 := \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top - \mathbb{E} [\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top] = \mathbf{b}^\top \boldsymbol{\Sigma}^{\dagger\top} \boldsymbol{\Sigma}^\dagger \boldsymbol{\Sigma}^{\dagger\top} \mathbf{a}$

1711 Hence we see that these are all homogeneous polynomials in uniformly random spherical variables.
 1712 Thus, we can use Lemma 14, we get bounds on the higher moments. In particular, since the coefficients
 1713 are only dependent on constants and $\boldsymbol{\Sigma}$, we see that the coefficients are independent of $\mathbf{a}, \mathbf{b}, \mathbf{u}_\beta$.
 1714 Then using a change of basis we see that that coefficients of the decomposition are also random and
 1715 independent of the input variables. Finally, since the spectrum converges to the Marchenko-Pastur,
 1716 we have that the coefficients have bounded moments. Hence the second assumption is satisfied.
 1717

1718 D.4.3 STEP 3(C): BOUNDING γ_i MOMENTS.

1719 **Lemma 16** (Moments of γ_i/η^2). *We have:*

1720 1721 (i) For γ_1/η^2 ,

$$1722 \mathbb{E} \left[\frac{\gamma_1}{\eta^2} \right] = \frac{c}{\rho^2} + \frac{1}{\eta^2} + o \left(\frac{1}{\rho^2} \right), \quad \text{Var} \left(\frac{\gamma_1}{\eta^2} \right) = O \left(\frac{1}{\rho^4 n} \right).$$

1723 (ii) For γ_2/η^2 ,

$$1724 \mathbb{E} \left[\frac{\gamma_2}{\eta^2} \right] = \frac{1}{\rho^2} + \frac{1}{\eta^2} + o \left(\frac{1}{\rho^2} \right), \quad \text{Var} \left(\frac{\gamma_2}{\eta^2} \right) = O \left(\frac{1}{\rho^4 n} \right).$$

1728 *Proof.* We decompose
 1729

$$1730 \quad \frac{\gamma_i}{\eta^2} = \zeta_i + \frac{\xi^2}{\eta^2}, \quad i = 1, 2, \quad \text{where } \zeta_1 = \|\mathbf{t}\|^2 \|\mathbf{k}\|^2, \quad \zeta_2 = \|\mathbf{s}\|^2 \|\mathbf{h}\|^2.$$

1733 **Expectation Estimates:** We begin by noting that $\|\mathbf{t}\|^2$ depends only on \mathbf{V} and is independent of
 1734 \mathbf{U}, Σ . $\|\mathbf{s}\|^2$ depends only on \mathbf{U} and is independent of \mathbf{V}, Σ . Additionally, $\|\mathbf{k}\|^2$ depends on \mathbf{U} and
 1735 Σ , hence is independent of \mathbf{V} . Also $\|\mathbf{h}\|^2$ depends on \mathbf{V} and Σ and is independent of \mathbf{U} , hence is
 1736 independent of \mathbf{U} .
 1737

1738 Thus, we have have that $\|\mathbf{t}\|^2$ and $\|\mathbf{k}\|^2$ are independent and $\|\mathbf{s}\|^2$ and $\|\mathbf{h}\|^2$ are independent. Thus,
 1739 we see that

$$1741 \quad \mathbb{E}[\zeta_1] = \mathbb{E}[\|\mathbf{t}\|^2 \|\mathbf{k}\|^2] = \mathbb{E}[\|\mathbf{t}\|^2] \mathbb{E}[\|\mathbf{k}\|^2].$$

1742 Using Lemma 9 again,
 1743

$$1744 \quad \mathbb{E}[\|\mathbf{t}\|^2] = 1 - c, \quad \mathbb{E}[\|\mathbf{k}\|^2] = \frac{1}{\rho^2} \frac{c}{1 - c} + o\left(\frac{1}{\rho^2}\right).$$

1747 We plug them into the expectation and get:

$$1748 \quad \mathbb{E}[\zeta_1] = (1 - c) \left[\left(\frac{1}{\rho^2} \frac{c}{1 - c} \right) + o\left(\frac{1}{\rho^2}\right) \right] = \frac{c}{\rho^2} + o\left(\frac{1}{\rho^2}\right).$$

1751 Finally, we also have that from Lemma 9,

$$1752 \quad \mathbb{E}\left[\frac{\xi^2}{\eta^2}\right] = \frac{1}{\eta^2} + O\left(\frac{1}{\rho^2 n}\right), \quad \text{Var}\left(\frac{\xi^2}{\eta^2}\right) = O\left(\frac{1}{\rho^4 n}\right),$$

1755 Hence,

$$1756 \quad \mathbb{E}\left[\frac{\gamma_1}{\eta^2}\right] = \mathbb{E}[\zeta_1] + \mathbb{E}\left[\frac{\xi^2}{\eta^2}\right] = \frac{c}{\rho^2} + \frac{1}{\eta^2} + o\left(\frac{1}{\rho^2}\right).$$

1758 A similar argument applies for γ_2/η^2 , using the corresponding results for $\|\mathbf{s}\|^2, \|\mathbf{h}\|^2$.
 1759

1760 Variance Estimates:

1761 Again using independence, we have that
 1762

$$1763 \quad \text{Var}(\|\mathbf{t}\|^2 \|\mathbf{k}\|^2) = \text{Var}(\|\mathbf{t}\|^2) \text{Var}(\|\mathbf{k}\|^2) + \mathbb{E}[\|\mathbf{t}\|^2]^2 \text{Var}(\|\mathbf{k}\|^2) + \mathbb{E}[\|\mathbf{k}\|^2]^2 \text{Var}(\|\mathbf{t}\|^2) \\ 1764 \quad = O\left(\frac{1}{n}\right) O\left(\frac{1}{\rho^4 n}\right) + (1 - c)^2 O\left(\frac{1}{\rho^4 n}\right) + \frac{1}{\rho^4} \frac{c^2}{(1 - c)^2} O\left(\frac{1}{n}\right) \\ 1766 \quad = O\left(\frac{1}{\rho^4 n}\right).$$

1769 We then use Lemma 34 to compute the variance of the sum:

$$1771 \quad \text{Var}\left(\zeta_1 + \frac{\xi^2}{\eta^2}\right) \leq \left(\sqrt{\text{Var}(\zeta_1)} + \sqrt{\text{Var}\left(\frac{\xi^2}{\eta^2}\right)} \right)^2 \\ 1772 \quad = \left(\sqrt{O\left(\frac{1}{\rho^4 n}\right)} + \sqrt{O\left(\frac{1}{\rho^4 n}\right)} \right)^2 \\ 1773 \quad = O\left(\frac{1}{\rho^4 n}\right).$$

1780 This proof is similar to the other case. □
 1781

Lemma 17 (Moments of $(\gamma_i/\eta^2)^2$). *We have, as $n, d \rightarrow \infty$ with $d/n \rightarrow c \neq 1$,*

1782 (i) For γ_1/η^2 ,

$$1784 \mathbb{E}\left[\left(\frac{\gamma_1}{\eta^2}\right)^2\right] = \left(\frac{c}{\rho^2} + \frac{1}{\eta^2}\right)^2 + O\left(\frac{1}{\rho^4}\right), \quad \text{Var}\left(\left(\frac{\gamma_1}{\eta^2}\right)^2\right) = O\left(\frac{1}{\rho^4 n}\right).$$

1787 (ii) For γ_2/η^2 ,

$$1789 \mathbb{E}\left[\left(\frac{\gamma_2}{\eta^2}\right)^2\right] = \left(\frac{1}{\rho^2} + \frac{1}{\eta^2}\right)^2 + O\left(\frac{1}{\rho^4}\right), \quad \text{Var}\left(\left(\frac{\gamma_2}{\eta^2}\right)^2\right) = O\left(\frac{1}{\rho^4 n}\right).$$

1793 *Proof.* Write, for $i \in \{1, 2\}$,

$$1795 \frac{\gamma_i}{\eta^2} = \zeta_i + \frac{\xi^2}{\eta^2}, \quad \zeta_1 := \|\mathbf{t}\|^2 \|\mathbf{k}\|^2, \quad \zeta_2 := \|\mathbf{s}\|^2 \|\mathbf{h}\|^2.$$

1797 **Means.** Using Lemma 16 and the fact that for any random variable

$$1799 \mathbb{E}[Y^2] = \mathbb{E}[Y]^2 + \text{Var}(Y)$$

1800 we get the means.

1802 **Variances.** Using

$$1803 Y^2 = \mathbb{E}[Y]^2 + 2(\mathbb{E}[Y])(Y - \mathbb{E}[Y]) + (Y - \mathbb{E}[Y])^2,$$

1805 Thus, using Lemma 34 we have that

$$1807 \text{Var}(Y^2) \leq \left(\sqrt{4(\mathbb{E}[X])^2 \text{Var}(X_i)} + \sqrt{\text{Var}((Y - \mathbb{E}[Y])^2)} \right)^2.$$

1810 By spherical hypercontractivity for degree-4 polynomials,

$$1812 \mathbb{E}\left[\left(\frac{\gamma_i^2}{\eta^4} - \mathbb{E}\left[\frac{\gamma_i^2}{\eta^4}\right]\right)^4\right] \lesssim \text{Var}\left(\frac{\gamma_i^2}{\eta^4}\right)^2,$$

1814 hence

$$1816 \text{Var}\left(\left(\frac{\gamma_i^2}{\eta^4} - \mathbb{E}\left[\frac{\gamma_i^2}{\eta^4}\right]\right)^2\right) \mathbb{E}\left[\left(\frac{\gamma_i^2}{\eta^4} - \mathbb{E}\left[\frac{\gamma_i^2}{\eta^4}\right]\right)^4\right] \lesssim \text{Var}\left(\frac{\gamma_i^2}{\eta^4}\right)^2.$$

1818 Using $\mathbb{E}\left[\frac{\gamma_i^2}{\eta^2}\right]^2 = O(1)$ and $\text{Var}\left(\frac{\gamma_i^2}{\eta^2}\right) = O(\rho^{-4}n^{-1})$ gives

$$1821 \text{Var}\left(\frac{\gamma_i^2}{\eta^4}\right) = O\left(\frac{1}{\rho^4 n}\right),$$

1823 as claimed. \square

1825 **Lemma 18** (Finite Negative Moments of γ_i). *Fix $p > 0$. There exists an $N(p)$ such that for all*

1826 $n, d \geq N(p)$, *we have that for $c < 1$*

$$1828 \mathbb{E}[\gamma_1^{-p}] \leq \eta^{-2p} \mathbb{E}[\sigma_1^{2p}] \mathbb{E}[T^{-p}] \leq \frac{\rho^{2p}}{\eta^{2p}} M^p$$

1830 and for $c > 1$, we have that

$$1832 \mathbb{E}[\gamma_2^{-p}] \leq \eta^{-2p} \mathbb{E}[\sigma_1^{2p}] \mathbb{E}[S^{-p}] \leq \frac{\rho^{2p}}{\eta^{2p}} M^p$$

1834 where σ_1 is the largest singular value of A , $T := \|\mathbf{t}\|^2 \sim \text{Beta}(\frac{n-d}{2}, \frac{d}{2})$, and $S := \|\mathbf{s}\|^2 \sim$

1835 $\text{Beta}(\frac{d-n}{2}, \frac{n}{2})$.

1836 *Proof.* Recall our SVD $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^\top$ and that
 1837

$$1838 \quad \gamma_1 = \eta^2 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2 + \xi^2 \quad \text{and} \quad \gamma_2 = \eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2 + \xi^2.$$

1839 Then we have that
 1840

$$1841 \quad \|\mathbf{k}\|^2 = \sum_{i=1}^d \frac{\mathbf{b}_i^2}{\sigma_i^2} \geq \frac{1}{\sigma_1^2} \|\mathbf{b}\|^2 = \frac{1}{\sigma_1^2}$$

1843 Similarly,
 1844

$$1845 \quad \|\mathbf{h}\|^2 = \sum_{i=1}^n \frac{\mathbf{a}_i^2}{\sigma_i^2} \geq \frac{1}{\sigma_1^2} \|\mathbf{a}\|^2 = \frac{1}{\sigma_1^2}$$

1847 Thus, we see that
 1848

$$1849 \quad \gamma_1 \geq \eta^2 \|\mathbf{t}\|^2 \frac{1}{\sigma_1^2} \quad \text{and} \quad \gamma_2 \geq \eta^2 \|\mathbf{s}\|^2 \frac{1}{\sigma_1^2}.$$

1850 $\|\mathbf{t}\|^2$ depends only on \mathbf{V} and is independent of \mathbf{U}, Σ . $\|\mathbf{s}\|^2$ depends only on \mathbf{U} and is independent of
 1851 \mathbf{V}, Σ . σ_1 depends only on Σ and is independent of \mathbf{U}, \mathbf{V} . Therefore, σ_1 is independent of $T := \|\mathbf{t}\|^2$
 1852 and of $S := \|\mathbf{s}\|^2$.
 1853

1854 Thus, we get that
 1855

$$1856 \quad \frac{1}{\gamma_1^p} \leq \frac{1}{\eta^{2p}} \frac{\sigma_1^{2p}}{\|\mathbf{t}\|^{2p}} \quad \text{and} \quad \frac{1}{\gamma_2^p} \leq \frac{1}{\eta^{2p}} \frac{\sigma_1^{2p}}{\|\mathbf{s}\|^{2p}}$$

1857 Then taking the expectation and using the independence, we get that
 1858

$$1859 \quad \mathbb{E} \left[\frac{1}{\gamma_1^p} \right] \leq \frac{1}{\eta^{2p}} \mathbb{E} \left[\frac{1}{\|\mathbf{t}\|^{2p}} \right] \mathbb{E} \left[\sigma_1^{2p} \right] \quad \text{and} \quad \mathbb{E} \left[\frac{1}{\gamma_2^p} \right] \leq \frac{1}{\eta^{2p}} \mathbb{E} \left[\frac{1}{\|\mathbf{s}\|^{2p}} \right] \mathbb{E} \left[\sigma_1^{2p} \right]$$

1862 For $c < 1$ (where $d < n$), the right null space of \mathbf{A} (dimension $n - d$) is a uniformly random
 1863 $(n - d)$ -dimensional subspace of \mathbb{R}^n . The squared norm $\|\mathbf{t}\|^2$ represents the squared length of the
 1864 projection of the fixed unit vector $\mathbf{v} \in \mathbb{R}^n$ onto this random subspace. The distribution of such a
 1865 squared projection norm is Beta $(\frac{n-d}{2}, \frac{d}{2})$, as it can be represented as the ratio of two independent
 1866 chi-squared random variables: $\sum_{i=1}^{n-d} G_i^2 / \sum_{i=1}^n G_i^2$, where $G_i \sim N(0, 1)$ IID, which follows the
 1867 desired Beta distribution. Similarly for $c > 1$.
 1868

1869 Since the eigenvalue distribution converges to the compactly supported distribution. We can see that
 1870 for sufficiently large n, d , we have that there exists an $M \geq 1$ such that $\sigma_1 \leq \rho M$ almost surely.
 1871

For $Y \sim \text{Beta}(\alpha, \beta)$ and $p < \alpha$,

$$1872 \quad \mathbb{E}[Y^{-p}] = \frac{\Gamma(\alpha - p) \Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\alpha + \beta - p)}.$$

1875 Moreover, using Stirling on the Γ ratio,
 1876

$$1877 \quad \mathbb{E}[T^{-p}] \rightarrow_{n,d \rightarrow \infty} \left(\frac{\alpha_1 + \beta_1}{\alpha_1} \right)^p = \left(\frac{1}{1-c} \right)^p \quad (c < 1),$$

1879 and

$$1881 \quad \mathbb{E}[S^{-p}] \rightarrow_{n,d \rightarrow \infty} \left(\frac{\alpha_2 + \beta_2}{\alpha_2} \right)^p = \left(\frac{c}{c-1} \right)^p \quad (c > 1).$$

1883 Thus, there is an M such that
 1884

$$1885 \quad \mathbb{E} \left[\frac{1}{\gamma_1^p} \right] \leq \left(\frac{\rho}{\eta} \right)^{2p} M^p \quad \text{and} \quad \mathbb{E} \left[\frac{1}{\gamma_2^p} \right] \leq \left(\frac{\rho}{\eta} \right)^{2p} M^p$$

1888 \square
 1889

Lemma 19 (Moments of η^2 / γ_i). *We have:*

1890 (i) For η^2/γ_1 ,

$$\mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] = \frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o \left(\frac{1}{\rho^2} \right), \quad \text{Var} \left(\frac{\eta^2}{\gamma_1} \right) = O \left(\frac{1}{n} \right).$$

1894 (ii) For η^2/γ_2 ,

$$\mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] = \frac{\rho^2 \eta^2}{\eta^2 + \rho^2} + o \left(\frac{1}{\rho^2} \right), \quad \text{Var} \left(\frac{\eta^2}{\gamma_2} \right) = O \left(\frac{1}{n} \right).$$

1898 *Proof.* By Lemmas 32 and 16, the expectation of η^2/γ_1 can be computed by:

$$\mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] = \frac{1}{\mathbb{E}[\gamma_1/\eta^2]} 1 + o \left(\frac{1}{\rho^2 d} \right) = \frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o \left(\frac{1}{\rho^2} \right).$$

1902 By Lemmas 33 and 16, the variance of η^2/γ_1 can be computed by:

$$\begin{aligned} \text{Var} \left(\frac{\eta^2}{\gamma_1} \right) &= \frac{1}{\mathbb{E}[\gamma_1/\eta^2]^4} O \left(\text{Var} \left(\frac{\gamma_1}{\eta^2} \right) \right) + o \left(\text{Var} \left(\frac{\gamma_1}{\eta^2} \right) \right) \\ &= \frac{\rho^8 \eta^8}{(\eta^2 c + \rho^2)^4} O \left(\frac{1}{n} \right) + o \left(\frac{1}{n} \right) \\ &= O \left(\frac{1}{n} \right) \quad \text{by the scalings of } \eta \text{ and } \rho. \end{aligned}$$

1910 The proof is similar for the other term. \square

1911 **Lemma 20** (Moments of η^4/γ_i^2). *We have:*

1913 (i) For η^4/γ_1^2 ,

$$\mathbb{E} \left[\frac{\eta^4}{\gamma_1^2} \right] = \frac{\rho^4 \eta^4}{(\eta^2 c + \rho^2)^2} + o(1), \quad \text{Var} \left(\frac{\eta^4}{\gamma_1^2} \right) = O \left(\frac{1}{n} \right).$$

1917 (ii) For η^4/γ_2^2 ,

$$\mathbb{E} \left[\frac{\eta^4}{\gamma_2^2} \right] = \frac{\rho^4 \eta^4}{(\eta^2 + \rho^2)^2} + o(1), \quad \text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) = O \left(\frac{1}{n} \right).$$

1921 *Proof.* The expectation of η^4/γ_1^2 can be computed by Lemma 19. By definition we have that

$$\mathbb{E} \left[\frac{\eta^4}{\gamma_1^2} \right] = \left(\mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] \right)^2 + \text{Var} \left(\frac{\eta^2}{\gamma_1} \right) = \left(\frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o \left(\frac{1}{\rho^2} \right) \right)^2 + O \left(\frac{1}{n} \right).$$

1925 The variance follows Lemma 33 and Lemma 17:

$$\text{Var} \left(\frac{\eta^4}{\gamma_1^2} \right) = O \left(\frac{1}{n} \right),$$

1928 since the mean is $O(1)$.

1929 The proof is similar for the other term. \square

1931 **Lemma 21.** *Suppose $\varepsilon \in \mathbb{R}^n$ whose entries have mean 0, variance τ_ε , and follow our noise assumptions. Then for any independent random matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$, we have*

$$\mathbb{E}_{\varepsilon, \mathbf{Q}} [\varepsilon^\top \mathbf{Q} \varepsilon] = \tau_\varepsilon^2 \mathbb{E} [\text{Tr}(\mathbf{Q})].$$

1935 *Proof.* We have that

$$\varepsilon^\top \mathbf{Q} \varepsilon = \sum_{i=1}^n \sum_{j=1}^n \varepsilon_i \varepsilon_j Q_{ij}.$$

1939 We take the expectation of this sum. By the independence assumption and assumption $\mathbb{E}[\varepsilon_i \varepsilon_j] = 0$ when $i \neq j$, we then have

$$\mathbb{E}_{\varepsilon, \mathbf{Q}} [\varepsilon^\top \mathbf{Q} \varepsilon] = \sum_{i=1}^n \mathbb{E} [\varepsilon_i^2] \mathbb{E} [Q_{ii}] = \tau_\varepsilon^2 \mathbb{E} \left[\sum_{i=1}^n Q_{ii} \right] = \tau_\varepsilon^2 \mathbb{E} [\text{Tr}(\mathbf{Q})].$$

\square

1944
1945

D.5 STEP 4: BOUNDING THE EXPECTATION OF PRODUCTS OF DEPENDENT TERMS

1946
1947
1948
1949
1950
1951

In Section D.2 we decomposed the error into four terms – Bias, Variance, Data Noise and Target alignment. In Section D.3, we wrote each of these terms as the sum and product of various “elementary building blocks”. In Section D.4, we showed that these elementary building blocks concentrate. In this section, since we have tight concentration (i.e., the higher moment bounds). We can use Lemma 36 and Lemma 37, which shows that the expectation of the product can be approximated by the product of the expectations. In this section, we do that calculation for our different terms.

1952
1953

D.5.1 STEP 4: BIAS

1954
1955

We begin with the bias term. Recall that for $c < 1$, the expected bias by Lemma 5 is equal to

1956
1957

$$\mathbb{E}[\mathbf{Bias}] = \mathbb{E} \left[\left[\tilde{\alpha}_Z - \alpha_Z + \frac{\xi}{\gamma_1} (\alpha_Z - \alpha_A) \right]^2 \tilde{\eta}^2 (\beta_*^\top \mathbf{u})^2 + \frac{\tilde{\eta}^2}{\eta^2} \frac{\xi^2}{\gamma_1^2} \tau_\varepsilon^2 \|\mathbf{p}_1\|^2 \right],$$

1958
1959

where the cross term equals 0 due to ε having mean zero entries. These two remaining expectations are given by Lemmas 22, 23, informally via:

1960
1961
1962

$$\text{Lemma 22} + \tau_\varepsilon^2 \frac{\tilde{\eta}^2}{\eta^2} \times \text{Lemma 23}.$$

1963
1964

For $c < 1$, we can plug in the value to get that the expected first term is given by

1965
1966

$$\tilde{\eta}^2 (\beta_*^\top \mathbf{u})^2 \left[\left(\tilde{\alpha}_Z - \alpha_Z \right) + \frac{\rho^2}{\eta^2 c + \rho^2} (\alpha_Z - \alpha_A) \right]^2 + o(1) + O\left(\frac{\eta}{n}\right)$$

and the second is given by

1967
1968
1969

$$\tau_\varepsilon^2 \frac{\tilde{\eta}^2}{\eta^2} \left(\frac{c}{c-1} \frac{\eta^2}{\eta^2 c + \rho^2} + o(1) + O\left(\frac{1}{\rho^2 n}\right) \right).$$

1970

Adding them, we then have the desired result:

1971
1972
1973

$$\frac{\tilde{\eta}^2}{\tilde{n}} \left[\left(\tilde{\alpha}_Z - \alpha_Z \right) + \frac{\rho^2}{\eta^2 c + \rho^2} (\alpha_Z - \alpha_A) \right]^2 (\beta_*^\top \mathbf{u})^2 + \tau_\varepsilon^2 \frac{c}{1-c} \frac{1}{\eta^2 c + \rho^2} + o\left(\frac{1}{\tilde{n}}\right) + O\left(\frac{\eta}{n^2}\right).$$

1974

For $c > 1$, we instead have the following expansion:

1975
1976
1977
1978

$$\underbrace{\beta_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \tilde{\mathbf{Z}}}_{t_1} - \underbrace{\alpha_A \frac{\eta \|\mathbf{s}\|^2}{\gamma_2} \beta_*^\top \mathbf{h}^\top \mathbf{u}^\top \tilde{\mathbf{Z}}}_{t_2} + \underbrace{\frac{\tilde{\eta} \xi}{\eta \gamma_2} \varepsilon^\top \mathbf{p}_2 \tilde{\mathbf{v}}^\top}_{t_3}$$

1979
1980
1981

The bias equals the expectation of the norm of this vector. Taking the Frobenius norm, we have the six terms. Among the cross-terms, $\langle t_1, t_3 \rangle$ and $\langle t_2, t_3 \rangle$ have zero mean since t_3 contains ε whose entries have mean 0. We now look at the other terms

1982
1983

$$\mathbb{E}[\|t_3\|^2] = \mathbb{E} \left[\left\| \frac{\tilde{\eta} \xi}{\eta \gamma_2} \varepsilon^\top \mathbf{p}_2 \tilde{\mathbf{v}}^\top \right\|^2 \right] = \tau_\varepsilon^2 \frac{\tilde{\eta}^2}{\eta^2} \mathbb{E} \left[\frac{\xi^2}{\gamma_2^2} \|\mathbf{p}_2\|^2 \right] \quad \text{by Lemma 21}$$

1984
1985
1986

The expectation is given by Lemma 23. Subsequently, Lemmas 22, 24, 25 give $\mathbb{E}[\|t_1\|^2]$, $\mathbb{E}[\|t_2\|^2]$, $\mathbb{E}[\langle t_1, t_3 \rangle]$ respectively. Informally, we can compute the bias via:

1987
1988
1989
1990
1991
1992

$$\begin{aligned} \mathbb{E}[\mathbf{Bias}] &= \mathbb{E} \left[\left\| \beta_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \tilde{\mathbf{Z}} - \alpha_A \frac{\eta \|\mathbf{s}\|^2}{\gamma_2} \beta_*^\top \mathbf{h}^\top \mathbf{u}^\top \tilde{\mathbf{Z}} + \frac{\tilde{\eta} \xi}{\eta \gamma_2} \varepsilon^\top \mathbf{p}_2 \tilde{\mathbf{v}}^\top \right\|^2 \right] \\ &= \mathbb{E}[\|t_1\|^2] + \mathbb{E}[\|t_2\|^2] + \mathbb{E}[\|t_3\|^2] - 2\mathbb{E}[\langle t_1, t_3 \rangle] \\ &= \text{Lemma 22} + \tau_\varepsilon^2 \frac{\tilde{\eta}^2}{\eta^2} \text{Lemma 23} + \text{Lemma 24} - 2 \times \text{Lemma 25}. \end{aligned}$$

1993

Similar to $c < 1$, adding them together and dividing by \tilde{n} , we get

1994
1995
1996
1997

$$\begin{aligned} \frac{\tilde{\eta}^2}{\tilde{n}} &\left[(\beta_*^\top \mathbf{u})^2 \left((\tilde{\alpha}_Z - \alpha_Z)^2 + \frac{\rho^2}{\eta^2 + \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right) \right)^2 + \alpha_A^2 \frac{\|\beta_*\|^2}{d} \left(\frac{c-1}{c} \right) \frac{\eta^2 \rho^2}{(\eta^2 + \rho^2)^2} + \frac{\tau_\varepsilon^2}{c-1} \frac{\eta^2 c + \rho^2}{(\eta^2 + \rho^2)^2} \right] \\ &+ o\left(\frac{1}{\tilde{n}}\right) + O\left(\frac{\eta}{n^2}\right). \end{aligned}$$

1998
1999

D.5.2 STEP 4: VARIANCE

2000
2001

Recall that for the variance, we have the following expression (Section D.3.2).

2002

$$\mathbb{E} \left[\frac{1}{\tilde{n}} \left\| \beta_{int}^\top \tilde{A} \right\|_F^2 \right] = \mathbb{E} \left[\frac{\tilde{\tau}^2 \alpha_z^2}{d} \beta_*^\top Z (Z + A)^\dagger (Z + A)^{\dagger\top} Z \beta_* + \frac{\tilde{\tau}^2 \alpha_A^2}{d} \beta_*^\top A (Z + A)^\dagger (Z + A)^{\dagger\top} A^\top \beta_* \right. \\ \left. + \frac{2\tilde{\tau}^2 \alpha_A \alpha_z}{d} \beta_*^\top Z (Z + A)^\dagger (Z + A)^{\dagger\top} A^\top \beta_* + \frac{\tilde{\tau}^2}{d} \varepsilon^\top (Z + A)^\dagger (Z + A)^{\dagger\top} \varepsilon \right].$$

2005
2006
2007
2008
2009

In particular that the expectation will be the weighted sum of the expressions from Lemmas 26, 27, 28, 29. Informally,

2010
2011

$$\frac{\tilde{\rho}^2}{d} (\alpha_z^2 \times \text{Lemma 26} + 2\alpha_Z \alpha_A \times \text{Lemma 28} + \alpha_A^2 \times \text{Lemma 27} + \text{Lemma 29}).$$

2012

This yields that for $c < 1$, after simplification, the variance is

2013

$$\frac{\tilde{\rho}^2}{d} \left[\alpha_A^2 \|\beta_*\|^2 + (\beta_*^\top u)^2 \left[(\alpha_Z - \alpha_A)^2 \frac{\eta^2(\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} + 2\alpha_A(\alpha_Z - \alpha_A) \frac{\eta^2 c}{\eta^2 c + \rho^2} \right] \right. \\ \left. + \tau_\varepsilon^2 \left(\frac{c}{1-c} \frac{d}{\rho^2} - \frac{\eta^2}{\rho^2(\eta^2 c + \rho^2)} \frac{c^2}{1-c} \right) \right] + o(1) + O\left(\frac{1}{n}\right).$$

2015
2016
2017For $c > 1$, we similarly simplify it to:2018
2019
2020
2021
2022
2023

$$\frac{\tilde{\rho}^2}{d} \left[\|\beta_*\|^2 \left(\frac{\alpha_A^2}{c} - \frac{\alpha_A^2}{d} \frac{\eta^2}{\eta^2 + \rho^2} \right) + (\beta_*^\top u)^2 \frac{c}{c-1} \frac{\eta^2}{\eta^2 + \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right)^2 \right. \\ \left. + \tau_\varepsilon^2 \left(\frac{d}{\rho^2 c - 1} - \frac{\eta^2}{\rho^2(\eta^2 + \rho^2)} \frac{c}{c-1} \right) \right] + o(1) + O\left(\frac{1}{n}\right).$$

2024
2025

D.5.3 STEP 4: DATA NOISE

2026

Recall that for the data noise, we have the following expression

2027
2028

$$\frac{\tilde{\alpha}_A^2 \tilde{\rho}^2}{d} \|\beta_*\|^2$$

2029
2030Noting that $\|\beta_*\|^2 = \Theta(1)$, we see that this term has no more randomness and we do not need to estimate anything.

2031

D.5.4 STEP 4: TARGET ALIGNMENT

2032
2033

Recall from Section D.3.4 that the alignment is given by

2034

$$-\frac{2\tilde{\alpha}_A \tilde{\rho}^2}{d} \mathbb{E} [\alpha_z \beta_*^\top (Z + A)^\dagger Z^\top \beta_* + \alpha_A \beta_*^\top (Z + A)^\dagger A^\top \beta_*]$$

2035
2036
2037

From Lemma 30, we have that

2038
2039
2040
2041

$$\mathbb{E} [\beta_*^\top (Z + A)^\dagger Z^\top \beta_*] = \begin{cases} \frac{\eta^2 c}{\rho^2 + \eta^2 c} (\beta_*^\top u)^2 + o(1) + O\left(\frac{1}{n}\right) & c < 1 \\ \frac{\eta^2}{\eta^2 + \rho^2} (\beta_*^\top u)^2 + o(1) + O\left(\frac{1}{n}\right) & c > 1 \end{cases}.$$

2042

and from Lemma 31, we have that

2043
2044
2045

$$\mathbb{E} [\beta_*^\top (Z + A)^\dagger A^\top \beta_*] = \begin{cases} \|\beta_*\|^2 - \frac{\eta^2 c}{\rho^2 + \eta^2 c} (\beta_*^\top u)^2 + o\left(\frac{1}{\rho^2}\right) + O\left(\frac{1}{n}\right), & c < 1 \\ \frac{1}{c} \|\beta_*\|^2 - \frac{\eta^2}{\eta^2 + \rho^2} \left(\frac{\|\beta_*\|^2}{d} + \frac{1}{c} (\beta_*^\top u)^2 \right) + o(1) + O\left(\frac{1}{n}\right), & c > 1 \end{cases}.$$

2046

Thus for $c < 1$, the entire interaction term now becomes2047
2048
2049

$$-\frac{2\tilde{\alpha}_A \tilde{\rho}^2}{d} \left(\alpha_A \|\beta_*\|^2 + (\alpha_Z - \alpha_A) (\beta_*^\top u)^2 \frac{\eta^2 c}{\rho^2 + \eta^2 c} + o(1) \right).$$

2050

For $c > 1$, instead we have

2051

$$-\frac{2\tilde{\alpha}_A \tilde{\rho}^2}{d} \left(\frac{\alpha_A}{c} \|\beta_*\|^2 - \frac{\alpha_A}{d} \frac{\eta^2}{\eta^2 + \rho^2} \|\beta_*\|^2 + \left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{\eta^2}{\eta^2 + \rho^2} (\beta_*^\top u)^2 + o(1) \right).$$

2052 D.5.5 BIAS: HELPER LEMMAS
20532054 **Lemma 22.** *In the same setting as Section 2, we have that for $c < 1$,*
2055

2056
$$\mathbb{E} \left[\left(\tilde{\alpha}_Z - \alpha_Z + \frac{\xi}{\gamma_1} (\alpha_Z - \alpha_A) \right)^2 \tilde{\eta}^2 (\beta_*^\top \mathbf{u})^2 \right]$$

2057
2058
2059
$$= \tilde{\eta}^2 (\beta_*^\top \mathbf{u})^2 \left[(\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\eta^2 c + \rho^2} (\alpha_Z - \alpha_A) \right]^2 + o(1) + O \left(\frac{\eta}{n} \right).$$

2060
2061

2062 For $c > 1$,

2063
2064
$$\mathbb{E} \left[\left\| \beta_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \tilde{\mathbf{Z}} \right\|^2 \right]$$

2065
2066
2067
$$= \tilde{\eta}^2 (\beta_*^\top \mathbf{u})^2 \left[(\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\eta^2 + \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right) \right]^2 + o(1) + O \left(\frac{\eta}{n} \right).$$

2068
2069
2070

2071 *Proof.* For $c < 1$, we first expand the square and get:

2072
$$\left(\tilde{\alpha}_Z - \alpha_Z + \frac{\xi}{\gamma_1} (\alpha_Z - \alpha_A) \right)^2 = (\tilde{\alpha}_Z - \alpha_Z)^2 + \frac{1}{\eta^2} \frac{\eta^2 \xi^2}{\gamma_1^2} (\alpha_Z - \alpha_A)^2 + \frac{2}{\eta} \frac{\eta \xi}{\gamma_1} (\alpha_Z - \alpha_A) (\tilde{\alpha}_Z - \alpha_Z).$$

2073
2074
2075

2076 By Lemmas 9 and 20, then we see that, using the square root of the covariance to bound the difference
2077 between the expectation of the product and the product of the expectation.

2078
2079
$$\mathbb{E} \left[\frac{\eta^2 \xi^2}{\gamma_1^2} \right] = \mathbb{E} \left[\frac{\eta^4}{\gamma_1^2} \right] \mathbb{E} \left[\frac{\xi^2}{\eta^2} \right] + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_1^2} \right) \text{Var} \left(\frac{\xi^2}{\eta^2} \right)}$$

2080
2081
$$= \left(\frac{\rho^4 \eta^4}{(\eta^2 c + \rho^2)^2} + o(1) \right) \left(\frac{1}{\eta^2} + O \left(\frac{1}{\rho^2 n} \right) \right) + O \left(\frac{1}{n} \right)$$

2082
2083
2084
$$= \frac{\rho^4 \eta^2}{(\eta^2 c + \rho^2)^2} + o \left(\frac{1}{\eta^2} \right) + O \left(\frac{1}{n} \right).$$

2085
2086
2087
$$\mathbb{E} \left[\frac{\eta \xi}{\gamma_1} \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] \mathbb{E} \left[\frac{\xi}{\eta} \right] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_1} \right) \text{Var} \left(\frac{\xi}{\eta} \right)}$$

2088
2089
2090
$$= \left(\frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o(1) \right) \left(\frac{1}{\eta} \right) + O \left(\frac{1}{n} \right)$$

2091
2092
2093
$$= \frac{\rho^2 \eta}{\eta^2 c + \rho^2} + o \left(\frac{1}{\eta} \right) + O \left(\frac{1}{n} \right).$$

2094 Combining these terms together, we have that
2095

2096
$$\mathbb{E} \left[\left(\tilde{\alpha}_Z - \alpha_Z + \frac{\xi}{\gamma_1} (\alpha_Z - \alpha_A) \right)^2 \tilde{\eta}^2 (\beta_*^\top \mathbf{u})^2 \right]$$

2097
2098
2099
$$= (\beta_*^\top \mathbf{u})^2 \left[\tilde{\eta}^2 (\tilde{\alpha}_Z - \alpha_Z)^2 + \frac{\tilde{\eta}^2}{\eta^2} \left(\frac{\rho^4 \eta^2}{(\eta^2 c + \rho^2)^2} + o \left(\frac{1}{\eta^2} \right) + O \left(\frac{1}{n} \right) \right) (\alpha_Z - \alpha_A)^2 \right.$$

2100
2101
2102
$$\left. + \frac{2\tilde{\eta}^2}{\eta} \left(\frac{\rho^2 \eta}{\eta^2 c + \rho^2} + o \left(\frac{1}{\eta} \right) + O \left(\frac{1}{n} \right) \right) (\alpha_Z - \alpha_A) (\tilde{\alpha}_Z - \alpha_Z) \right]$$

2103
2104
2105
$$= \tilde{\eta}^2 (\beta_*^\top \mathbf{u})^2 \left(\left[(\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\eta^2 c + \rho^2} (\alpha_Z - \alpha_A) \right]^2 + o \left(\frac{1}{\eta^2} \right) + O \left(\frac{1}{\eta n} \right) \right).$$

2106 We now consider $c > 1$. Recalling that $\tilde{\mathbf{Z}} = \tilde{\eta} \mathbf{u} \tilde{\mathbf{v}}^\top$, we let $c_1 = \tilde{\alpha}_Z - \alpha_Z$ and expand:
2107

$$\begin{aligned}
2108 & \left\| \boldsymbol{\beta}_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \tilde{\mathbf{Z}} \right\|^2 \\
2109 &= \boldsymbol{\beta}_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \tilde{\mathbf{Z}} \tilde{\mathbf{Z}}^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right]^\top \boldsymbol{\beta}_* \\
2110 &= \tilde{\eta}^2 \boldsymbol{\beta}_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \mathbf{u} \mathbf{u}^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right]^\top \boldsymbol{\beta}_* \\
2111 &= c_1^2 \tilde{\eta}^2 (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + \tilde{\eta}^2 \frac{\xi^2}{\gamma_2^2} \boldsymbol{\beta}_*^\top (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \mathbf{u} \mathbf{u}^\top ((\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger)^\top \boldsymbol{\beta}_* + 2c_1 \tilde{\eta}^2 \frac{\xi}{\gamma_2} \boldsymbol{\beta}_*^\top (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \mathbf{u} \mathbf{u}^\top \boldsymbol{\beta}_*).
\end{aligned}$$

2112 Not that for the second and third terms, we have that ξ, γ_2 only depend on the singular values of \mathbf{A}
2113 and the rest only depend on the singular vectors. Hence, these terms are independent.

2114 First note that when $d > n$, the number of singular values equals n , which is less than the dimension
2115 d . As a result,

$$2116 \mathbf{A} \mathbf{A}^\dagger = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^\top \mathbf{V} \boldsymbol{\Sigma}^\dagger \mathbf{U}^\top = \mathbf{U} \begin{bmatrix} \mathbf{I}_{n \times n} & \mathbf{0}_{n \times (d-n)} \\ \mathbf{0}_{(d-n) \times n} & \mathbf{0}_{(d-n) \times (d-n)} \end{bmatrix} \mathbf{U}^\top.$$

2117 Then we have that

$$2118 \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \boldsymbol{\beta}_*] = \sum_{i=1}^n \mathbb{E} [(\boldsymbol{\beta}_*^\top \mathbf{U})_i^2] = \frac{n}{d} \|\boldsymbol{\beta}_*\|^2 = \frac{1}{c} \|\boldsymbol{\beta}_*\|^2, \quad (13)$$

2119 since $\boldsymbol{\beta}_*^\top \mathbf{U}$ is a uniformly random vector of length $\|\boldsymbol{\beta}_*\|$ in \mathbb{R}^d after the rotation \mathbf{U} .

2120 For the middle term, by Proposition 2 and the above Equation 13, we have

$$\begin{aligned}
2121 & \mathbb{E} [\boldsymbol{\beta}_*^\top (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \mathbf{u} \mathbf{u}^\top ((\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \boldsymbol{\beta}_*)] \\
2122 &= \alpha_Z^2 (\boldsymbol{\beta}_*^\top \mathbf{u})^2 - 2\alpha_A \alpha_Z \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{u}^\top \boldsymbol{\beta}_*] + \alpha_A^2 \mathbb{E} [(\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u})^2] \\
2123 &= \left(\alpha_Z - \frac{\alpha_A}{c} \right)^2 (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + o(1).
\end{aligned}$$

2124 Similarly, for the last term, we have

$$2125 \mathbb{E} [\boldsymbol{\beta}_*^\top (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \mathbf{u} \mathbf{u}^\top \boldsymbol{\beta}_*] = \left(\alpha_Z - \frac{\alpha_A}{c} \right) (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + o(1).$$

2126 Thus putting these expectations together, we get

$$2127 \mathbb{E} \left[\tilde{\eta}^2 (\boldsymbol{\beta}_*^\top \mathbf{u})^2 \left[c_1^2 + \frac{\xi^2}{\gamma_2^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right)^2 + 2c_1 \frac{\xi}{\gamma_2} \left(\alpha_Z - \frac{\alpha_A}{c} \right) \right] \right] = \mathbb{E} \left[\tilde{\eta}^2 (\boldsymbol{\beta}_*^\top \mathbf{u})^2 \left[c_1 + \frac{\xi}{\gamma_2} \left(\alpha_Z - \frac{\alpha_A}{c} \right) \right]^2 \right].$$

2128 Similar to the $c < 1$ case, we take the expectation for terms involving $\frac{\xi}{\gamma_2}$ and get:
2129

$$2130 \tilde{\eta}^2 (\boldsymbol{\beta}_*^\top \mathbf{u})^2 \left[\left((\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\eta^2 + \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right) \right)^2 + o\left(\frac{1}{\eta^2}\right) + O\left(\frac{1}{\eta n}\right) \right].$$

2131 \square

2132 **Lemma 23** (Expectations involving p_1 and p_2). *In the setting of Section 2, we have that*

2133 1. For $c = d/n < 1$:

$$2134 \mathbb{E} \left[\frac{\xi^2}{\gamma_1^2} \|\mathbf{p}_1\|^2 \right] = \frac{c}{1-c} \frac{\eta^2}{\eta^2 c + \rho^2} + o(1) + O\left(\frac{1}{\rho^2 n}\right).$$

2135 2. For $c = d/n > 1$:

$$2136 \mathbb{E} \left[\frac{\xi^2}{\gamma_2^2} \|\mathbf{p}_2\|^2 \right] = \frac{\eta^2}{c-1} \frac{\eta^2 c + \rho^2}{(\eta^2 + \rho^2)^2} + o(1) + O\left(\frac{1}{\rho^2 n}\right).$$

2160 *Proof.* First, Lemma 6 tells us that

$$2161 \quad \frac{\xi^2}{\gamma_1^2} \|\mathbf{p}_1\|^2 = \frac{\eta^2 \|\mathbf{k}\|^2}{\gamma_1}.$$

2164 Then recall from Lemma 9 that

$$2165 \quad \mathbb{E}[\|\mathbf{k}\|^2] = \frac{1}{\rho^2} \frac{c}{1-c} + o\left(\frac{1}{\rho^2}\right) \quad \text{and} \quad \text{Var}(\|\mathbf{k}\|^2) = O\left(\frac{1}{\rho^4 n}\right)$$

2167 and Lemma 19 tells us

$$2168 \quad \mathbb{E}\left[\frac{\eta^2}{\gamma_1}\right] = \frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o\left(\frac{1}{\rho^2}\right) \quad \text{and} \quad \text{Var}\left(\frac{\eta^2}{\gamma_1}\right) = O\left(\frac{1}{n}\right)$$

2170 Again Section D.4.2 tell us that the assumption of Lemma 37 is satisfied and that

$$\begin{aligned} 2171 \quad \mathbb{E}\left[\frac{\xi^2}{\gamma_1^2} \|\mathbf{p}_1\|^2\right] &= \mathbb{E}\left[\frac{\eta^2 \|\mathbf{k}\|^2}{\gamma_1}\right] = \mathbb{E}\left[\frac{\eta^2}{\gamma_1}\right] \mathbb{E}[\|\mathbf{k}\|^2] + \sqrt{\text{Var}\left(\frac{\eta^2}{\gamma_1}\right) \text{Var}(\|\mathbf{k}\|^2)} \\ 2172 \quad &= \left(\frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o\left(\frac{1}{\rho^2}\right)\right) \left(\frac{1}{\rho^2} \frac{c}{1-c} + o\left(\frac{1}{\rho^2}\right)\right) + O\left(\frac{1}{\rho^2 n}\right) \\ 2173 \quad &= \frac{c}{1-c} \frac{\eta^2}{\eta^2 c + \rho^2} + o(1) + O\left(\frac{1}{\rho^2 n}\right). \end{aligned}$$

2179 Using Lemma 6 for \mathbf{p}_2 ,

$$2180 \quad \frac{\xi^2}{\gamma_2^2} \|\mathbf{p}_2\|^2 = \frac{1}{\gamma_2^2} (\eta^4 \|\mathbf{s}\|^4 \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} + 2\eta^3 \xi \|\mathbf{s}\|^2 \mathbf{k}^{\top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} + \eta^2 \xi^2 \|\mathbf{k}\|^2).$$

2182 Similarly, we use Lemma 37 to evaluate each expectation: To begin, we start estimating

$$2184 \quad \mathbb{E}\left[\frac{\eta^4 \|\mathbf{s}\|^4}{\gamma_2^2} \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}\right].$$

2186 Using our Spherical Hypercontractivity, we have that $\|\mathbf{s}\|^2$ and $\mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}$ satisfy the assumptions
2187 for Lemma 36. Then using Lemmas 9 and 10 we first have that

$$2188 \quad \mathbb{E}[\|\mathbf{s}\|^2] = 1 - \frac{1}{c} \quad \text{and} \quad \text{Var}(\|\mathbf{s}\|^2) = O\left(\frac{1}{d}\right)$$

$$2190 \quad \mathbb{E}[\mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}] = \frac{1}{\rho^4} \frac{c^3}{(c-1)^3} + o\left(\frac{1}{\rho^4}\right) \quad \text{and} \quad \text{Var}(\boldsymbol{\beta}_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \boldsymbol{\beta}_*) = O\left(\frac{1}{\rho^8 d}\right).$$

2192 Thus, using Lemma 37, we have that

$$\begin{aligned} 2194 \quad \mathbb{E}[\|\mathbf{s}\|^4 \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}] &= (\mathbb{E}[\|\mathbf{s}\|^2])^2 \mathbb{E}[\mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}] + O\left(\max\left(\frac{1}{d}, \frac{1}{\rho^8 d}\right)\right) \\ 2195 \quad &= \left(1 - \frac{1}{c}\right)^2 \left(\frac{1}{\rho^4} \frac{c^3}{(c-1)^3} + o\left(\frac{1}{\rho^4}\right)\right) + O\left(\frac{1}{n}\right) \\ 2196 \quad &= \frac{1}{\rho^4} \frac{c}{c-1} + o\left(\frac{1}{\rho^4}\right) + O\left(\frac{1}{n}\right). \end{aligned}$$

2200 and using Lemma 36, since all the means are $O(1)$, we have that

$$2202 \quad \text{Var}(\|\mathbf{s}\|^4 \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}) = O(\max(\text{Var}(\|\mathbf{s}\|^2), \text{Var}(\mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}))) = O\left(\frac{1}{n}\right).$$

2204 Then Lemma 20 gives mean and variance of $\frac{\eta^4}{\gamma_2^2}$. Since $\frac{\eta^4}{\gamma_2^2}$ does not satisfy the higher moment bound,
2205 and cannot be directly included in the product, we can include it via the classical bound:

$$2207 \quad \mathbb{E}\left[\frac{\eta^4 \|\mathbf{s}\|^4}{\gamma_2^2} \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}\right] = \mathbb{E}\left[\frac{\eta^4}{\gamma_2^2}\right] \mathbb{E}[\|\mathbf{s}\|^4 \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}] + \sqrt{\text{Var}(\|\mathbf{s}\|^4 \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top}) \text{Var}\left(\frac{\eta^4}{\gamma_2^2}\right)} \quad (14)$$

$$2210 \quad = \left(\frac{\rho^4 \eta^4}{(\eta^2 + \rho^2)^2} + o(1)\right) \left(\frac{1}{\rho^4} \frac{c}{c-1} + o\left(\frac{1}{\rho^4}\right)\right) + O\left(\frac{1}{n}\right) \quad (15)$$

$$2212 \quad = \frac{c}{c-1} \frac{\eta^4}{(\eta^2 + \rho^2)^2} + o(1) + O\left(\frac{1}{n}\right). \quad (16)$$

2214 Similarly, we can do the same thing for the other term. For the middle term we note that from
 2215 Lemma 11

$$2216 \quad \mathbb{E} [\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top] = 0 \quad \text{and} \quad \text{Var} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top) = O \left(\frac{1}{\rho^6 d} \right)$$

2217 and Lemma 9 tells us
 2218

$$2219 \quad \mathbb{E} [\|\mathbf{s}\|^2] = 1 - \frac{1}{c} \quad \text{and} \quad \text{Var} (\|\mathbf{s}\|^2) = O \left(\frac{1}{d} \right)$$

2220 and
 2221

$$2222 \quad \mathbb{E} \left[\frac{\xi}{\eta} \right] = \frac{1}{\eta} \quad \text{and} \quad \text{Var} \left(\frac{\xi}{\eta} \right) = O \left(\frac{1}{\rho^2 n} \right)$$

2223 Thus using Lemma 37, we have that
 2224

$$2225 \quad \mathbb{E} \left[\frac{\xi}{\eta} \|\mathbf{s}\|^2 \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top \right] = 0 + O \left(\frac{1}{d} \right)$$

2226 Thus using the standard covariance bound for the expectation of product versus product of expectation,
 2227 we have that
 2228

$$2229 \quad \mathbb{E} \left[\frac{\eta^3 \xi \|\mathbf{s}\|^2}{\gamma_2^2} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top \right] = 0 + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) O \left(\frac{1}{n} \right)} = O \left(\frac{1}{n} \right).$$

2230 For the last term, we have that, using Lemma 37
 2231

$$2232 \quad \mathbb{E} \left[\frac{\xi^2}{\eta^2} \|\mathbf{k}\|^2 \right] = \frac{1}{\eta^2} \cdot \left(\frac{1}{\rho^2} \frac{1}{c-1} + o \left(\frac{1}{\rho^2} \right) \right) + O \left(\frac{1}{\rho^4 n} \right)$$

$$2233 \quad = \frac{1}{\eta^2 \rho^2} \frac{1}{c-1} + o \left(\frac{1}{\eta^2 \rho^2} \right) + O \left(\frac{1}{\rho^4 n} \right)$$

2234 and from Lemma 36
 2235

$$2236 \quad \text{Var} \left(\frac{\xi^2}{\eta^2} \|\mathbf{k}\|^2 \right) = O \left(\frac{1}{\rho^4 n} \right)$$

2237 Then using the standard bound, we have that
 2238

$$2239 \quad \mathbb{E} \left[\frac{\eta^2 \xi^2 \|\mathbf{k}\|^2}{\gamma_2^2} \right] = \mathbb{E} \left[\frac{\eta^4}{\gamma_2^2} \right] \mathbb{E} \left[\frac{\xi^2}{\eta^2} \|\mathbf{k}\|^2 \right] + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) O \left(\frac{1}{\rho^4 n} \right)}$$

$$2240 \quad = \left(\frac{\rho^4 \eta^4}{(\eta^2 + \rho^2)^2} + o(1) \right) \left(\frac{1}{\eta^2 \rho^2} \frac{1}{c-1} + o \left(\frac{1}{\eta^2 \rho^2} \right) + O \left(\frac{1}{\rho^4 n} \right) \right) + O \left(\frac{1}{\rho^2 n} \right)$$

$$2241 \quad = \frac{1}{c-1} \frac{\eta^2 \rho^2}{(\eta^2 + \rho^2)^2} + o \left(\frac{1}{\eta^2 \rho^2} \right) + O \left(\frac{1}{\rho^2 n} \right).$$

2242 Finally, putting all three terms together we get
 2243

$$2244 \quad \mathbb{E} \left[\frac{\xi^2}{\gamma_2^2} \|\mathbf{p}_2\|^2 \right] = \frac{c}{c-1} \frac{\eta^4}{(\eta^2 + \rho^2)^2} + o(1) + \frac{1}{c-1} \frac{\eta^2 \rho^2}{(\eta^2 + \rho^2)^2} + o \left(\frac{1}{\rho^2 \eta^2} \right) + O \left(\frac{1}{\rho^2 n} \right)$$

$$2245 \quad = \frac{\eta^2}{c-1} \frac{\eta^2 c + \rho^2}{(\eta^2 + \rho^2)^2} + o(1) + O \left(\frac{1}{\rho^2 n} \right).$$

2246 \square
 2247

2248 From the above proofs, we make an important observation that the individual terms from Lemmas
 2249 9, 10, 11, 16 all have means $O(1)$ and variances $O(1/n)$. Hence, by Lemma 36, we can bound the
 2250 variance of a product of terms by $O(1/n)$, given that these terms satisfy the lemma assumptions.
 2251 Essentially, only η^2/γ_i and η^4/γ_i^2 fail the assumption on higher moment bound, so we deal with them
 2252 via the classical bound after carrying out the product. This simplification ensures proper concentration
 2253 and will be used at times in the following proofs without reference.
 2254

2268 D.5.6 VARIANCE: HELPER LEMMAS
2269

2270 **Lemma 24.** *In the setting of Section 2, we have that for $c > 1$:*

$$2271 \mathbb{E} \left[\left\| \alpha_A \frac{\eta\|\mathbf{s}\|^2}{\gamma_2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{u}^\top \tilde{\mathbf{Z}} \right\|^2 \right] = \tilde{\eta}^2 \alpha_A^2 \frac{\|\boldsymbol{\beta}_*\|^2}{d} \left(\frac{c-1}{c} \right) \frac{\eta^2 \rho^2}{(\eta^2 + \rho^2)^2} + O \left(\frac{1}{n} \right).$$

2274 *Proof.* Since $\tilde{\mathbf{Z}} = \tilde{\eta} \mathbf{u} \tilde{\mathbf{v}}^\top$, we have that

$$2276 \mathbb{E} \left[\left\| \alpha_A \frac{\eta\|\mathbf{s}\|^2}{\gamma_2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{u}^\top \tilde{\mathbf{Z}} \right\|^2 \right] = \tilde{\eta}^2 \alpha_A^2 \frac{\eta^2 \|\mathbf{s}\|^4}{\gamma_2^2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{h} \boldsymbol{\beta}_* = \alpha_A^2 \frac{\tilde{\eta}^2}{\eta^2} \frac{\eta^4 \|\mathbf{s}\|^4}{\gamma_2^2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{h} \boldsymbol{\beta}_*.$$

2278 Similar to last lemma, using Lemmas 37, 9, 10, 20, we get

$$2279 \begin{aligned} \mathbb{E} \left[\frac{\eta^4 \|\mathbf{s}\|^4}{\gamma_2^2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{h} \boldsymbol{\beta}_* \right] &= \mathbb{E} \left[\frac{\eta^4}{\gamma_2^2} \right] (\mathbb{E} [\|\mathbf{s}\|^2])^2 \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{h} \boldsymbol{\beta}_*] + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) O \left(\frac{1}{n} \right)} \\ 2280 &= \left(\frac{\rho^4 \eta^4}{(\rho^2 + \eta^2)^2} + o(1) \right) \left(1 - \frac{1}{c} \right)^2 \left(\frac{\|\boldsymbol{\beta}_*\|^2}{d} \frac{c}{\rho^2(c-1)} + o \left(\frac{1}{\rho^2 d} \right) \right) + O \left(\frac{1}{n} \right) \\ 2281 &= \frac{\|\boldsymbol{\beta}_*\|^2}{d} \left(\frac{c-1}{c} \right) \frac{\eta^4 \rho^2}{(\eta^2 + \rho^2)^2} + O \left(\frac{1}{n} \right). \end{aligned}$$

2282 Hence, it directly follows from here that

$$2283 \begin{aligned} \mathbb{E} \left[\left\| \alpha_A \frac{\eta\|\mathbf{s}\|^2}{\gamma_2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{u}^\top \tilde{\mathbf{Z}} \right\|^2 \right] &= \alpha_A^2 \frac{\tilde{\eta}^2}{\eta^2} \mathbb{E} \left[\frac{\eta^4 \|\mathbf{s}\|^4}{\gamma_2^2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{h} \boldsymbol{\beta}_* \right] \\ 2284 &= \tilde{\eta}^2 \alpha_A^2 \frac{\|\boldsymbol{\beta}_*\|^2}{d} \left(\frac{c-1}{c} \right) \frac{\eta^2 \rho^2}{(\eta^2 + \rho^2)^2} + O \left(\frac{1}{n} \right). \end{aligned}$$

2285 \square

2286 **Lemma 25.** *In the setting of Section 2, we have that for $c > 1$:*

$$2287 \mathbb{E} \left[\frac{\eta\|\mathbf{s}\|^2}{\gamma_2} \boldsymbol{\beta}_*^\top \left[(\tilde{\alpha}_Z - \alpha_Z) \mathbf{I} + \frac{\xi}{\gamma_2} (\alpha_Z \mathbf{I} - \alpha_A \mathbf{A} \mathbf{A}^\dagger) \right] \tilde{\mathbf{Z}} \tilde{\mathbf{Z}}^\top \mathbf{u} \mathbf{h} \boldsymbol{\beta}_* \right] = O \left(\frac{\eta}{n} \right).$$

2288 *Proof.* Using $\tilde{\mathbf{Z}} = \tilde{\eta} \mathbf{u} \tilde{\mathbf{v}}^\top$, we can expand this into three terms. We can take expectations in a similar way via Lemmas 37, 9, 10, 11: Let $c_1 = \tilde{\alpha}_Z - \alpha_Z$. Each term contains a zero expectation:

$$2289 \begin{aligned} \mathbb{E} \left[\tilde{\eta}^2 c_1 \frac{\eta\|\mathbf{s}\|^2}{\gamma_2} \boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{h} \boldsymbol{\beta}_* \right] &= \frac{\tilde{\eta}^2}{\eta} c_1 \left(\mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] \mathbb{E} [\|\mathbf{s}\|^2] \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{h} \boldsymbol{\beta}_*] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_2} \right) O \left(\frac{1}{n} \right)} \right) \\ 2290 &= \frac{\tilde{\eta}^2}{\eta} c_1 \left(\sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_2} \right) O \left(\frac{1}{n} \right)} \right) = O \left(\frac{\eta}{n} \right). \end{aligned}$$

$$2291 \begin{aligned} \mathbb{E} \left[\tilde{\eta}^2 \alpha_Z \frac{\eta \xi \|\mathbf{s}\|^2}{\gamma_2^2} \boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{h} \boldsymbol{\beta}_* \right] &= \frac{\alpha_Z \tilde{\eta}^2}{\eta^2} \left(\mathbb{E} \left[\frac{\eta^4}{\gamma_2^2} \right] \mathbb{E} \left[\frac{\xi}{\eta} \right] \mathbb{E} [\|\mathbf{s}\|^2] \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{u} \mathbf{h} \boldsymbol{\beta}_*] + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) O \left(\frac{1}{n} \right)} \right) \\ 2292 &= \frac{\alpha_Z \tilde{\eta}^2}{\eta^2} \left(\sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) O \left(\frac{1}{n} \right)} \right) = O \left(\frac{1}{n} \right). \end{aligned}$$

$$2293 \begin{aligned} \mathbb{E} \left[\tilde{\eta}^2 \alpha_A \frac{\eta \xi \|\mathbf{s}\|^2}{\gamma_2^2} \boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \boldsymbol{\beta}_* \right] &= \frac{\alpha_Z \tilde{\eta}^2}{\eta^2} \left(\mathbb{E} \left[\frac{\eta^4}{\gamma_2^2} \right] \mathbb{E} \left[\frac{\xi}{\eta} \right] \mathbb{E} [\|\mathbf{s}\|^2] \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \boldsymbol{\beta}_*] + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) O \left(\frac{1}{n} \right)} \right) \\ 2294 &= \frac{\alpha_Z \tilde{\eta}^2}{\eta^2} \left(\sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_2^2} \right) O \left(\frac{1}{n} \right)} \right) = O \left(\frac{1}{n} \right). \end{aligned}$$

2295 Thus the cross term concentrates around zero at a rate of $O(\eta/n)$. \square

2322 **Lemma 26.** *In the same setting as Section 2, we have that*

$$2324 \quad 2325 \quad \mathbb{E} [\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{Z} \beta_*] = \begin{cases} \frac{\eta^2(\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} (\beta_*^\top \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right) & c < 1 \\ \frac{\eta^2}{\eta^2 + \rho^2} \frac{c}{c-1} (\beta_*^\top \mathbf{u})^2 + o\left(\frac{1}{\rho^2}\right) + O\left(\frac{1}{\rho^2 n}\right) & c > 1 \end{cases}.$$

2328 *Proof.* We start with $c < 1$ and expand this term using Proposition 1:

$$2330 \quad \mathbb{E} [\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{Z} \beta_*] = \frac{\eta^2 \|\mathbf{h}\|^2 \xi^2}{\gamma_1^2} (\beta_*^\top \mathbf{u})^2 + \frac{\eta^4 \|\mathbf{t}\|^4}{\gamma_1^2} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}) (\beta_*^\top \mathbf{u})^2 + \frac{2\eta^3 \|\mathbf{t}\|^2 \xi}{\gamma_1^2} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top (\beta_*^\top \mathbf{u})^2.$$

2332 We then start plugging in the expectations of these three terms and the “cumulative” variance of the
2333 sum according to Lemma 37.

$$2335 \quad \mathbb{E} \left[\frac{\eta^2 \|\mathbf{h}\|^2 \xi^2}{\gamma_1^2} (\beta_*^\top \mathbf{u})^2 \right] = (\beta_*^\top \mathbf{u})^2 \mathbb{E} \left[\frac{\eta^4}{\gamma_1^2} \right] \mathbb{E} [\|\mathbf{h}\|^2] + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_1^2} \right) O\left(\frac{1}{n}\right)} \\ 2336 \quad = (\beta_*^\top \mathbf{u})^2 \left(\frac{\rho^4 \eta^4}{(\eta^2 c + \rho^2)^2} + o(1) \right) \left(\frac{1}{\eta^2} + O\left(\frac{1}{\rho^2 n}\right) \right) \left(\frac{1}{\rho^2} \frac{c^2}{1-c} + o\left(\frac{1}{\rho^2}\right) \right) + O\left(\frac{1}{n}\right) \\ 2337 \quad = \frac{\eta^2 \rho^2}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} (\beta_*^\top \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right).$$

$$2344 \quad \mathbb{E} \left[\frac{\eta^4 \|\mathbf{t}\|^4}{\gamma_1^2} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}) (\beta_*^\top \mathbf{u})^2 \right] = (\beta_*^\top \mathbf{u})^2 \mathbb{E} \left[\frac{\eta^4}{\gamma_1^2} \right] (\mathbb{E} [\|\mathbf{t}\|^2])^2 \mathbb{E} [\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}] + \sqrt{\text{Var} \left(\frac{\eta^4}{\gamma_1^2} \right) O\left(\frac{1}{n}\right)} \\ 2345 \quad = (\beta_*^\top \mathbf{u})^2 \left(\frac{\rho^4 \eta^4}{(\eta^2 c + \rho^2)^2} + o(1) \right) (1-c)^2 \left(\frac{1}{\rho^4} \frac{c^2}{(1-c)^3} + o\left(\frac{1}{\rho^4}\right) \right) + O\left(\frac{1}{n}\right) \\ 2346 \quad = \frac{\eta^4}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} (\beta_*^\top \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right).$$

$$2353 \quad \mathbb{E} \left[\frac{\eta^3 \|\mathbf{t}\|^2 \xi}{\gamma_1^2} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top (\beta_*^\top \mathbf{u})^2 \right] = (\beta_*^\top \mathbf{u})^2 \left(\mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] \right)^2 \mathbb{E} \left[\frac{\xi}{\eta} \right] \mathbb{E} [\|\mathbf{t}\|^2] \mathbb{E} [\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top] + O\left(\frac{1}{n}\right) = O\left(\frac{1}{n}\right).$$

2355 Now we have the expectations and errors for the three terms. Combining them yields the Lemma
2356 statement.

2358 For $c > 1$, we recall that $\mathbf{h}\mathbf{s} = \mathbf{0}$, and Proposition 1 implies

$$2359 \quad \mathbb{E} [\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{Z} \beta_*] = \frac{\eta^2 \|\mathbf{h}\|^2 \xi^2}{\gamma_2^2} (\beta_*^\top \mathbf{u})^2 + \frac{\eta^4 \|\mathbf{h}\|^4 \|\mathbf{s}\|^2}{\gamma_2^2} (\beta_*^\top \mathbf{u})^2 + \frac{2\eta^3 \|\mathbf{h}\|^2 \xi}{\gamma_2^2} \beta_*^\top \mathbf{u} \mathbf{h} \mathbf{s} \mathbf{u}^\top \beta_* \\ 2360 \quad = \left(\frac{\eta^2 \|\mathbf{h}\|^2 (\xi^2 + \eta^2 \|\mathbf{h}\|^2 \|\mathbf{s}\|^2)}{\gamma_2^2} \right) (\beta_*^\top \mathbf{u})^2 \\ 2361 \quad = \left(\frac{\eta^2 \|\mathbf{h}\|^2 \gamma_2}{\gamma_2^2} \right) (\beta_*^\top \mathbf{u})^2 \\ 2362 \quad = \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} (\beta_*^\top \mathbf{u})^2.$$

2369 Hence, we can take expectation:

$$2371 \quad \mathbb{E} [\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{Z} \beta_*] = \mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] \mathbb{E} [\|\mathbf{h}\|^2] (\beta_*^\top \mathbf{u})^2 + O\left(\frac{1}{n}\right) \\ 2372 \quad = \frac{\eta^2}{\eta^2 + \rho^2} \frac{c}{c-1} (\beta_*^\top \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right).$$

2373 \square

2376 **Lemma 27.** *In the same setting as Section 2, we have that,*

$$2378 \mathbb{E} [\beta_*^\top A(Z + A)^\dagger (Z + A)^{\dagger\top} A \beta_*] = \begin{cases} \|\beta_*\|^2 + \frac{\eta^2(\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} (\beta_*^\top u)^2 - \frac{2\eta^2 c}{\eta^2 c + \rho^2} (\beta_*^\top u)^2 + o(1) + O\left(\frac{1}{n}\right) & c < 1 \\ \frac{\|\beta_*\|^2}{c} - \frac{\eta^2}{\eta^2 + \rho^2} \left(\frac{\|\beta_*\|^2}{d} - \frac{(\beta_*^\top u)^2}{c(c-1)} \right) + o(1) + O\left(\frac{1}{n}\right) & c > 1 \end{cases}$$

2381 *Proof.* We use similar expansions that follow from Lemma 2.

$$2383 \beta_*^\top A(Z + A)^\dagger (Z + A)^{\dagger\top} A \beta_* = \|\beta_*\|^2 + \frac{\eta^2 \|h\|^2 \xi^2}{\gamma_1^2} (\beta_*^\top u)^2 + \frac{\eta^4 \|t\|^4}{\gamma_1^2} (k^\top A^\dagger A^{\dagger\top} k) (\beta_*^\top u)^2 \\ 2384 + \frac{2\eta^3 \|t\|^2 \xi}{\gamma_1^2} (\beta_*^\top u)^2 k^\top A^\dagger h^\top - \frac{2\eta^2 \|t\|^2}{\gamma_1} \beta_*^\top u k^\top A^\dagger \beta_* - \frac{2\eta \xi}{\gamma_1} \beta_*^\top u h \beta_*.$$

2388 Lemma 26 gives the expectation of the first four terms:

$$2389 \mathbb{E} [\beta_*^2] + \frac{\eta^2(\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} (\beta_*^\top u)^2 + o(1) + O\left(\frac{1}{n}\right).$$

2392 We have done the following expectations in Equations 18, 19:

$$2394 \mathbb{E} \left[\frac{\eta \xi}{\gamma_1} \beta_*^\top u h \beta_* \right] = O\left(\frac{1}{n}\right), \quad \mathbb{E} \left[\frac{\eta^2 \|t\|^2}{\gamma_1} \beta_*^\top u k^\top A^\dagger \beta_* \right] = \frac{\eta^2 c}{\eta^2 c + \rho^2} + o(1) + O\left(\frac{1}{n}\right).$$

2396 Combining these results yields the lemma statement.

2397 For $c > 1$, with $hs = 0$, $s^\top AA^\dagger = 0$, $hAA^\dagger = h$, we have the following expansion by Lemma 2:

$$2399 \beta_*^\top A(Z + A)^\dagger (Z + A)^{\dagger\top} A \beta_* = \beta_*^\top A A^\dagger \beta_* + \frac{\eta^2 \|s\|^2 \xi^2}{\gamma_2^2} \beta_*^\top h^\top h \beta_* + \frac{\eta^4 \|s\|^4 \|h\|^2}{\gamma_2^2} \beta_*^\top h^\top h \beta_* \\ 2400 + \frac{\eta^4 \|h\|^4 \|s\|^2}{\gamma_2^2} \beta_*^\top A A^\dagger u u^\top A A^\dagger \beta_* + \frac{\eta^2 \|h\|^2 \xi^2}{\gamma_2^2} \beta_*^\top A A^\dagger u u^\top A A^\dagger \beta_* \\ 2401 - \frac{2\eta^2 \|s\|^2}{\gamma_2} \beta_*^\top h^\top h \beta_* - \frac{2\eta \xi}{\gamma_2} \beta_*^\top A A^\dagger u h \beta_* \\ 2402 - \frac{2\eta^3 \|s\|^2 \|h\|^2 \xi}{\gamma_2^2} \beta_*^\top A A^\dagger u h \beta_* + \frac{2\eta^3 \|s\|^2 \|h\|^2 \xi}{\gamma_2^2} \beta_*^\top A A^\dagger u h \beta_*.$$

2408 We can combine the coefficients as:

$$2410 \frac{\eta^2 \|s\|^2 \xi^2}{\gamma_2^2} + \frac{\eta^4 \|s\|^4 \|h\|^2}{\gamma_2^2} - \frac{2\eta^2 \|s\|^2}{\gamma_2} = \frac{\eta^2 \|s\|^2 (\eta^2 \|s\|^2 \|h\|^2 + \xi^2) - 2\eta^2 \|s\|^2 \gamma_2}{\gamma_2^2} = -\frac{\eta^2 \|s\|^2}{\gamma_2},$$

$$2413 \frac{\eta^4 \|h\|^4 \|s\|^2}{\gamma_2^2} + \frac{\eta^2 \|h\|^2 \xi^2}{\gamma_2^2} = \frac{\eta^2 \|h\|^2 (\eta^2 \|s\|^2 \|h\|^2 + \xi^2)}{\gamma_2^2} = \frac{\eta^2 \|h\|^2 \gamma_2}{\gamma_2^2} = \frac{\eta^2 \|h\|^2}{\gamma_2}.$$

2416 Then we have that:

$$2417 \beta_*^\top A(Z + A)^\dagger (Z + A)^{\dagger\top} A \beta_* \\ 2418 = \beta_*^\top A A^\dagger \beta_* - \frac{\eta^2 \|s\|^2}{\gamma_2} \beta_*^\top h^\top h \beta_* + \frac{\eta^2 \|h\|^2}{\gamma_2} \beta_*^\top A A^\dagger u u^\top A A^\dagger \beta_* - \frac{2\eta \xi}{\gamma_2} \beta_*^\top A A^\dagger u h \beta_*.$$

2421 Recall from Equation 13 that $\mathbb{E}[\beta_*^\top A A^\dagger \beta_*] = \|\beta_*\|^2/c$. We then proceed similarly with the other 2422 expectations using Lemmas 9, 10, 11, 19:

$$2423 \mathbb{E} \left[\frac{\eta^2 \|s\|^2}{\gamma_2} \beta_*^\top h^\top h \beta_* \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] \mathbb{E} [\|s\|^2] \mathbb{E} [\beta_*^\top h^\top h \beta_*] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_2} \right) O\left(\frac{1}{n}\right)} \\ 2424 = \left(\frac{\rho^2 \eta^2}{\eta^2 + \rho^2} + o\left(\frac{1}{\rho^2}\right) \right) \left(1 - \frac{1}{c} \right) \left(\frac{\|\beta_*\|^2}{d} \frac{c}{\rho^2(c-1)} + o\left(\frac{1}{d\rho^2}\right) \right) + O\left(\frac{1}{n}\right) \\ 2425 = \frac{\|\beta_*\|^2}{d} \frac{\eta^2}{\eta^2 + \rho^2} + o\left(\frac{1}{d}\right) + O\left(\frac{1}{n}\right).$$

$$\begin{aligned}
& \mathbb{E} \left[\frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} (\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u})^2 \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] \mathbb{E} [\|\mathbf{h}\|^2] \mathbb{E} [(\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u})^2] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_2} \right) O \left(\frac{1}{n} \right)} \\
& = \left(\frac{\rho^2 \eta^2}{\eta^2 + \rho^2} + o \left(\frac{1}{\rho^2} \right) \right) \left(\frac{1}{\rho^2} \frac{c}{c-1} + o \left(\frac{1}{\rho^2} \right) \right) \left(\frac{1}{c^2} (\beta_*^\top \mathbf{u})^2 + o(1) \right) + O \left(\frac{1}{n} \right) \\
& = \frac{\eta^2}{\eta^2 + \rho^2} \frac{(\beta_*^\top \mathbf{u})^2}{c(c-1)} + o(1) + O \left(\frac{1}{n} \right). \\
& \mathbb{E} \left[\frac{\eta \xi}{\gamma_2} \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_* \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] \mathbb{E} \left[\frac{\xi}{\eta} \right] \mathbb{E} [\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_2} \right) O \left(\frac{1}{n} \right)} \\
& = 0 + O \left(\frac{1}{n} \right). \tag{17}
\end{aligned}$$

We combine these results to produce the lemma statement. \square

Lemma 28. *In the same setting as Section 2, we have that*

$$\mathbb{E} [\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A} \beta_*] = \begin{cases} - \left(\frac{\eta^2 (\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} - \frac{\eta^2 c}{\eta^2 c + \rho^2} \right) (\beta_*^\top \mathbf{u})^2 + o(1) + O \left(\frac{1}{n} \right), & c < 1 \\ - \frac{\eta^2}{\eta^2 + \rho^2} \frac{1}{c-1} (\beta_*^\top \mathbf{u})^2 + o(1) + O \left(\frac{1}{n} \right), & c > 1 \end{cases}$$

Proof. For $c < 1$, we expand it using Proposition 1, Lemma 2. Note that all of the relevant expectations have been evaluated in the proofs of Lemmas 26, 27,

$$\begin{aligned}
\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A} \beta_* &= \frac{\eta \xi}{\gamma_1} \beta_*^\top \mathbf{u} \mathbf{h} \beta_* + \frac{\eta^2 \|\mathbf{t}\|^2}{\gamma_1} \beta_*^\top \mathbf{u} \mathbf{k}^\top \mathbf{A}^\dagger \beta_* - \frac{2\eta^3 \|\mathbf{t}\|^2 \xi}{\gamma_1^2} (\beta_*^\top \mathbf{u})^2 \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{k} \\
&\quad - \frac{\eta^4 \|\mathbf{t}\|^4}{\gamma_1^2} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger \top} \mathbf{k}) (\beta_*^\top \mathbf{u})^2 - \frac{\eta^2 \|\mathbf{h}\|^2 \xi^2}{\gamma_1^2} (\beta_*^\top \mathbf{u})^2.
\end{aligned}$$

The expectation of the last three terms is given by Lemma 26. The first two expectations come from Equations 18, 19 respectively. We can plug them in and compute the expectation:

$$\mathbb{E} [\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A} \beta_*] = - \left(\frac{\eta^2 (\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} - \frac{\eta^2 c}{\eta^2 c + \rho^2} \right) (\beta_*^\top \mathbf{u})^2 + o(1) + O \left(\frac{1}{n} \right).$$

For $c > 1$, again with $\mathbf{h} \mathbf{s} = \mathbf{0}$ and $\mathbf{s}^\top \mathbf{A} = \mathbf{0}$, $\beta_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A} \beta_*$ becomes:

$$\begin{aligned}
& \beta_*^\top \frac{\eta \xi}{\gamma_2} \mathbf{u} \mathbf{h} \left(\mathbf{A} \mathbf{A}^\dagger + \frac{\eta \xi}{\gamma_2} \mathbf{s} \mathbf{h} - \frac{\eta^2 \|\mathbf{s}\|^2}{\gamma_2} \mathbf{h}^\top \mathbf{h} - \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{s} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger - \frac{\eta \xi}{\gamma_2} \mathbf{h}^\top \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \right) \beta_* \\
& + \beta_*^\top \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{u} \mathbf{s}^\top \left(\mathbf{A} \mathbf{A}^\dagger + \frac{\eta \xi}{\gamma_2} \mathbf{s} \mathbf{h} - \frac{\eta^2 \|\mathbf{s}\|^2}{\gamma_2} \mathbf{h}^\top \mathbf{h} - \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{s} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger - \frac{\eta \xi}{\gamma_2} \mathbf{h}^\top \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \right) \beta_* \\
& = \beta_*^\top \left[\frac{\eta \xi}{\gamma_2} \mathbf{u} \mathbf{h} \mathbf{A} \mathbf{A}^\dagger - \frac{\eta^3 \xi \|\mathbf{s}\|^2 \|\mathbf{h}\|^2}{\gamma_2^2} \mathbf{u} \mathbf{h} - \frac{\eta^2 \|\mathbf{h}\|^2 \xi^2}{\gamma_2^2} \mathbf{u} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \right] \beta_* \\
& + \beta_*^\top \left[\frac{\eta^3 \|\mathbf{h}\|^2 \|\mathbf{s}\|^2 \xi}{\gamma_2^2} \mathbf{u} \mathbf{h} - \frac{\eta^4 \|\mathbf{h}\|^4 \|\mathbf{s}\|^2}{\gamma_2^2} \mathbf{u} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \right] \beta_* \\
& = \beta_*^\top \left[\frac{\eta \xi}{\gamma_2} \mathbf{u} \mathbf{h} \mathbf{A} \mathbf{A}^\dagger - \frac{\eta^2 \|\mathbf{h}\|^2 \xi^2}{\gamma_2^2} \mathbf{u} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger - \frac{\eta^4 \|\mathbf{h}\|^4 \|\mathbf{s}\|^2}{\gamma_2^2} \mathbf{u} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \right] \beta_* \\
& = (\beta_*^\top \mathbf{u}) \left(\frac{\eta \xi}{\gamma_2} \mathbf{h} \mathbf{A} \mathbf{A}^\dagger \beta_* - \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \beta_* \right) \quad \text{since } \gamma_2 = \eta^2 \|\mathbf{s}\|^2 \|\mathbf{h}\|^2 + \xi^2.
\end{aligned}$$

We need to evaluate two following expectations. Similar to $c < 1$,

$$\mathbb{E} \left[\frac{\eta \xi}{\gamma_2} \mathbf{h} \mathbf{A} \mathbf{A}^\dagger \beta_* \right] = O \left(\frac{1}{n} \right).$$

$$\begin{aligned}
\mathbb{E} \left[\frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \boldsymbol{\beta}_* \right] &= \mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] \mathbb{E} [\|\mathbf{h}\|^2] \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u}] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_2} \right) O \left(\frac{1}{n} \right)} \\
&= \left(\frac{\rho^2 \eta^2}{\eta^2 + \rho^2} + o \left(\frac{1}{\rho^2} \right) \right) \left(\frac{1}{\rho^2} \frac{c}{c-1} + o \left(\frac{1}{\rho^2} \right) \right) \left(\frac{1}{c} (\boldsymbol{\beta}_*^\top \mathbf{u}) \right) + O \left(\frac{1}{n} \right) \\
&= \frac{\eta^2}{\eta^2 + \rho^2} \frac{(\boldsymbol{\beta}_*^\top \mathbf{u})}{c-1} + o(1) + O \left(\frac{1}{n} \right).
\end{aligned}$$

Finally, we have that:

$$\mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{Z} (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \mathbf{A} \boldsymbol{\beta}_*] = -\frac{\eta^2}{\eta^2 + \rho^2} \frac{1}{c-1} (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + o(1) + O \left(\frac{1}{n} \right).$$

□

Lemma 29. *In the same setting as Section 2, we have that,*

$$\mathbb{E} [\boldsymbol{\varepsilon}^\top (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \boldsymbol{\varepsilon}] = \begin{cases} \tau_\varepsilon^2 \left(\frac{cd}{\rho^2(1-c)} - \frac{\eta^2}{\rho^2(\eta^2 c + \rho^2)} \frac{c^2}{1-c} \right) + o \left(\frac{n}{\rho^2} \right) + O \left(\frac{1}{\rho^2 n} \right), & c < 1 \\ \tau_\varepsilon^2 \left(\frac{d}{\rho^2(c-1)} - \frac{\eta^2}{\rho^2(\eta^2 + \rho^2)} \frac{c}{c-1} \right) + o \left(\frac{n}{\rho^2} \right) + O \left(\frac{1}{\rho^2 n} \right), & c > 1 \end{cases}$$

Proof. For $c < 1$, we first expand this term using Theorem 6:

$$\begin{aligned}
\boldsymbol{\varepsilon}^\top (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \boldsymbol{\varepsilon} &= \boldsymbol{\varepsilon}^\top \left(\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger - \frac{\xi}{\gamma_1} \mathbf{p}_1 \mathbf{q}_1^\top \right) \left(\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger - \frac{\xi}{\gamma_1} \mathbf{p}_1 \mathbf{q}_1^\top \right)^\top \boldsymbol{\varepsilon} \\
&= \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \boldsymbol{\varepsilon} + \frac{2\eta}{\xi} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} \mathbf{t} \boldsymbol{\varepsilon} - \frac{2\xi}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{q}_1 \mathbf{p}_1^\top \boldsymbol{\varepsilon} \\
&\quad + \frac{\eta^2}{\xi^2} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}) \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{t} \boldsymbol{\varepsilon} - \frac{2\eta}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{q}_1 \mathbf{p}_1^\top \boldsymbol{\varepsilon} + \frac{\xi^2}{\gamma_1^2} \boldsymbol{\varepsilon}^\top \mathbf{p}_1 \mathbf{q}_1^\top \mathbf{q}_1 \mathbf{p}_1^\top \boldsymbol{\varepsilon}
\end{aligned}$$

Note that Lemma 21 and the fact that $\mathbf{t} \mathbf{A}^\dagger = \mathbf{0}$ imply that the second term has zero expectation:

$$\mathbb{E}_\varepsilon \left[\frac{2\eta}{\xi} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} \mathbf{t} \boldsymbol{\varepsilon} \right] = \frac{2\eta \tau_\varepsilon^2}{\xi} \mathbf{t} \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} = 0.$$

Simiarly, we will later use:

$$\mathbb{E}_\varepsilon [\boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{t} \boldsymbol{\varepsilon}] = \tau_\varepsilon^2 \mathbf{t} \mathbf{A}^\dagger \mathbf{h}^\top = 0, \quad \mathbb{E}_\varepsilon [\boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{k}^\top \boldsymbol{\varepsilon}] = \tau_\varepsilon^2 \text{Tr}(\mathbf{t}^\top \mathbf{k}^\top) = \tau_\varepsilon^2 \text{Tr}(\mathbf{k} \mathbf{t}) = 0.$$

Note that these equalities are exact without taking the expectation over other sources of randomness besides $\boldsymbol{\varepsilon}$.

We now expand the other terms one by one and compute their expectations along the way. We start by eliminating zero expectations and taking expectations w.r.t. $\boldsymbol{\varepsilon}$ using Lemma 21.

2538

2539

$$2540 \mathbb{E} \left[\frac{\eta^2}{\xi^2} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}) \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{t} \boldsymbol{\varepsilon} \right] = \mathbb{E} \left[\frac{\eta^2 \|\mathbf{t}\|^2 \tau_\varepsilon^2}{\xi^2} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} \right].$$

2542

2543

$$2544 \mathbb{E} \left[-\frac{2\xi}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{q}_1 \mathbf{p}_1^\top \boldsymbol{\varepsilon} \right] = \mathbb{E} \left[-\frac{2\xi}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \left(\frac{\eta \|\mathbf{t}\|^2}{\xi} \mathbf{A}^{\dagger\top} \mathbf{k} + \mathbf{h}^\top \right) \left(\frac{\eta^2 \|\mathbf{k}\|^2}{\xi} \mathbf{t} + \eta \mathbf{k}^\top \right) \boldsymbol{\varepsilon} \right] \\ 2545 = \mathbb{E} \left[-\frac{2\eta^3 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2}{\gamma_1 \xi} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} \mathbf{t} \boldsymbol{\varepsilon} - \frac{2\eta^2 \|\mathbf{t}\|^2}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} \mathbf{k}^\top \boldsymbol{\varepsilon} \right. \\ 2546 \left. - \frac{2\eta^2 \|\mathbf{k}\|^2}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{t} \boldsymbol{\varepsilon} - \frac{2\eta \xi}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{k}^\top \boldsymbol{\varepsilon} \right] \\ 2547 = \mathbb{E} \left[-\frac{2\eta^2 \|\mathbf{t}\|^2 \tau_\varepsilon^2}{\gamma_1} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} - \frac{2\eta \xi \tau_\varepsilon^2}{\gamma_1} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top \right].$$

2553

$$2554 \mathbb{E} \left[-\frac{2\eta}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{q}_1 \mathbf{p}_1^\top \boldsymbol{\varepsilon} \right] = \mathbb{E} \left[-\frac{2\eta}{\gamma_1} \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{k}^\top \mathbf{A}^\dagger \left(\frac{\eta \|\mathbf{t}\|^2}{\xi} \mathbf{A}^{\dagger\top} \mathbf{k} + \mathbf{h}^\top \right) \left(\frac{\eta^2 \|\mathbf{k}\|^2}{\xi} \mathbf{t} + \eta \mathbf{k}^\top \right) \boldsymbol{\varepsilon} \right] \\ 2555 = \mathbb{E} \left[-\frac{2\eta^4 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2}{\gamma_1 \xi^2} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}) \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{t} \boldsymbol{\varepsilon} - \frac{2\eta^3 \|\mathbf{k}\|^2}{\gamma_1 \xi} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top) \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{t} \boldsymbol{\varepsilon} \right. \\ 2556 \left. - \frac{2\eta^3 \|\mathbf{t}\|^2}{\gamma_1 \xi} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}) \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{k}^\top \boldsymbol{\varepsilon} - \frac{2\eta^2}{\gamma_1} (\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top) \boldsymbol{\varepsilon}^\top \mathbf{t}^\top \mathbf{k}^\top \boldsymbol{\varepsilon} \right] \\ 2557 = \mathbb{E} \left[-\frac{2\eta^4 \|\mathbf{t}\|^4 \|\mathbf{k}\|^2 \tau_\varepsilon^2}{\gamma_1 \xi^2} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} - \frac{2\eta^3 \|\mathbf{k}\|^2 \|\mathbf{t}\|^2 \tau_\varepsilon^2}{\gamma_1 \xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top \right].$$

2563

2564

By the squared norms in Lemmas 6, 7, and Lemma 21,

$$2565 \mathbb{E} \left[\frac{\xi^2}{\gamma_1^2} \boldsymbol{\varepsilon}^\top \mathbf{p}_1 \mathbf{q}_1^\top \mathbf{q}_1 \mathbf{p}_1^\top \boldsymbol{\varepsilon} \right] = \frac{\xi^2 \tau_\varepsilon^2}{\gamma_1^2} \|\mathbf{p}_1\|^2 \|\mathbf{q}_1\|^2 \\ 2566 = \frac{\xi^2 \tau_\varepsilon^2}{\gamma_1^2} \left(\frac{\eta^2 \|\mathbf{k}\|^2}{\xi^2} \gamma_1 \right) \left(\frac{\eta^2 \|\mathbf{t}\|^4}{\xi^2} \mathbf{k} \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} + \frac{2\eta \|\mathbf{t}\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top + \|\mathbf{h}\|^2 \right) \\ 2567 = \frac{\tau_\varepsilon^2}{\gamma_1} (\eta^2 \|\mathbf{k}\|^2) \left(\frac{\eta^2 \|\mathbf{t}\|^4}{\xi^2} \mathbf{k} \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} + \frac{2\eta \|\mathbf{t}\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top + \|\mathbf{h}\|^2 \right) \\ 2568 = \tau_\varepsilon^2 \left(\frac{\eta^4 \|\mathbf{t}\|^4 \|\mathbf{k}\|^2}{\gamma_1 \xi^2} \mathbf{k} \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} + \frac{2\eta^3 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2}{\gamma_1 \xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top + \frac{\eta^2 \|\mathbf{k}\|^2 \|\mathbf{h}\|^2}{\gamma_1} \right)$$

2576

We combine like terms and simplify the coefficients, which can seem quite complicated at first:

2577

2578

For the term $\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}$,

$$2579 \tau_\varepsilon^2 \left(\frac{\eta^4 \|\mathbf{t}\|^4 \|\mathbf{k}\|^2}{\gamma_1 \xi^2} - \frac{2\eta^4 \|\mathbf{t}\|^4 \|\mathbf{k}\|^2}{\gamma_1 \xi^2} - \frac{2\eta^2 \|\mathbf{t}\|^2}{\gamma_1} + \frac{\eta^2 \|\mathbf{t}\|^2}{\xi^2} \right) = \tau_\varepsilon^2 \eta^2 \|\mathbf{t}\|^2 \left(\frac{\eta^2 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2}{\gamma_1 \xi^2} - \frac{2\eta^2 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2}{\gamma_1 \xi^2} - \frac{2}{\gamma_1} + \frac{1}{\xi^2} \right) \\ 2580 = \tau_\varepsilon^2 \eta^2 \|\mathbf{t}\|^2 \left(-\frac{\gamma_1 - \xi^2}{\gamma_1 \xi^2} - \frac{2}{\gamma_1} + \frac{1}{\xi^2} \right) \\ 2581 = \tau_\varepsilon^2 \eta^2 \|\mathbf{t}\|^2 \left(-\frac{\gamma_1 - \xi^2}{\gamma_1 \xi^2} - \frac{2\xi^2}{\gamma_1 \xi^2} + \frac{\gamma_1}{\gamma_1 \xi^2} \right) \\ 2582 = -\tau_\varepsilon^2 \frac{\eta^2 \|\mathbf{t}\|^2}{\gamma_1}.$$

2588

For the term $\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top$,

2589

2590

2591

$$\tau_\varepsilon^2 \left(\frac{2\eta^3 \|\mathbf{t}\|^2 \|\mathbf{k}\|^2}{\gamma_1 \xi} - \frac{2\eta^3 \|\mathbf{k}\|^2 \|\mathbf{t}\|^2}{\gamma_1 \xi} - \frac{2\eta \xi}{\gamma_1} \right) = -\tau_\varepsilon^2 \frac{2\eta \xi}{\gamma_1}.$$

2592 Combining these terms together, we have:
 2593

2594

$$2595 \mathbb{E} [\boldsymbol{\varepsilon}^\top (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \boldsymbol{\varepsilon}] = \mathbb{E} \left[\boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \boldsymbol{\varepsilon} - \frac{\eta^2 \|\mathbf{t}\|^2 \tau_\varepsilon^2}{\gamma_1} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} - \frac{2\eta\xi\tau_\varepsilon^2}{\gamma_1} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top + \frac{\eta^2 \|\mathbf{k}\|^2 \|\mathbf{h}\|^2}{\gamma_1} \right].$$

2596

2597

2598

2599 Similarly, using Lemmas 9, 10, 11, 19, 21, we have the following:
 2600

2601

$$2602 \mathbb{E} [\boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \boldsymbol{\varepsilon}] = \tau_\varepsilon^2 \mathbb{E} [Tr(\mathbf{A}^\dagger \mathbf{A}^{\dagger\top})] = \tau_\varepsilon^2 n \mathbb{E} \left[\frac{1}{\lambda} \right] = \tau_\varepsilon^2 \frac{cd}{\rho^2(1-c)} + o\left(\frac{d}{\rho^2}\right) \quad \text{by Equation 11.}$$

2603

2604

2605

2606

2607

2608

$$2609 \mathbb{E} \left[\frac{\eta^2 \|\mathbf{t}\|^2}{\gamma_1} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k} \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] \mathbb{E} [\|\mathbf{t}\|^2] \mathbb{E} [\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \mathbf{k}] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_1} \right) O \left(\frac{1}{n} \right)} \\ 2610 \\ 2611 = \left(\frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o\left(\frac{1}{\rho^2}\right) \right) (1-c) \left(\frac{1}{\rho^4} \frac{c^2}{(1-c)^3} + o\left(\frac{1}{\rho^4}\right) \right) + O\left(\frac{1}{n}\right) \\ 2612 \\ 2613 = \frac{\eta^2}{\eta^2 c + \rho^2} \frac{c^2}{\rho^2(1-c)^2} (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right).$$

2614

2615

2616

2617

2618

2619

$$2620 \mathbb{E} \left[\frac{\eta\xi}{\gamma_1} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] \mathbb{E} \left[\frac{\xi}{\eta} \right] \mathbb{E} [\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_1} \right) O \left(\frac{1}{n} \right)} = O\left(\frac{1}{n}\right).$$

2621

2622

2623

2624

2625

2626

$$2627 \mathbb{E} \left[\frac{\eta^2 \|\mathbf{k}\|^2 \|\mathbf{h}\|^2}{\gamma_1} \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] \mathbb{E} [\|\mathbf{k}\|^2] \mathbb{E} [\|\mathbf{h}\|] + \sqrt{\text{Var} \left(\frac{\eta^2}{\gamma_1} \right) O \left(\frac{1}{n} \right)} \\ 2628 \\ 2629 = \left(\frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o\left(\frac{1}{\rho^2}\right) \right) \left(\frac{1}{\rho^2} \frac{c^2}{1-c} + o\left(\frac{1}{\rho^2}\right) \right) \left(\frac{1}{\rho^2} \frac{c}{1-c} + o\left(\frac{1}{\rho^2}\right) \right) + O\left(\frac{1}{n}\right) \\ 2630 \\ 2631 = \frac{\eta^2}{\eta^2 c + \rho^2} \frac{c^3}{\rho^2(1-c)^2} + o(1) + O\left(\frac{1}{n}\right).$$

2632

2633

2634

2635

After simple algebra, the result follows from here.

2636

For $c > 1$, we can expand similarly using Theorem 6,

2637

2638

2639

$$2640 \boldsymbol{\varepsilon}^\top (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^\top \left(\mathbf{A}^\dagger + \frac{\eta}{\xi} \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top - \frac{\xi}{\gamma_2} \mathbf{p}_2 \mathbf{q}_2^\top \right) \left(\mathbf{A}^{\dagger\top} + \frac{\eta}{\xi} \mathbf{s} \mathbf{h} \mathbf{A}^{\dagger\top} - \frac{\xi}{\gamma_2} \mathbf{q}_2 \mathbf{p}_2^\top \right) \boldsymbol{\varepsilon} \\ 2641 \\ 2642 = \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \boldsymbol{\varepsilon} + \frac{2\eta}{\xi} \boldsymbol{\varepsilon}^\top \underbrace{\mathbf{A}^\dagger \mathbf{s}}_0 \mathbf{h} \mathbf{A}^{\dagger\top} \boldsymbol{\varepsilon} - \frac{2\xi}{\gamma_2} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{q}_2 \mathbf{p}_2^\top \boldsymbol{\varepsilon} \\ 2643 \\ 2644 + \frac{\eta^2 \|\mathbf{s}\|^2}{\xi^2} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{h} \mathbf{A}^{\dagger\top} \boldsymbol{\varepsilon} - \frac{2\eta}{\gamma_2} \boldsymbol{\varepsilon}^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top \mathbf{q}_2 \mathbf{p}_2^\top \boldsymbol{\varepsilon} + \frac{\xi^2}{\gamma_2^2} \boldsymbol{\varepsilon}^\top \mathbf{p}_2 \mathbf{q}_2^\top \mathbf{q}_2 \mathbf{p}_2^\top \boldsymbol{\varepsilon}.$$

2645

2646 We expand the other terms one by one, marking those with zero expectations:
2647

$$\begin{aligned}
2648 \mathbb{E} \left[\frac{\eta^2 \|s\|^2}{\xi^2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{h} \mathbf{A}^{\dagger\top} \varepsilon \right] &= \mathbb{E} \left[\frac{\eta^2 \|s\|^2 \tau_\varepsilon^2}{\xi^2} \mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top \right]. \\
2649 \mathbb{E} \left[-\frac{2\xi}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{q}_2 \mathbf{p}_2^\top \varepsilon \right] &= \mathbb{E} \left[-\frac{2\xi}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \left(\frac{\eta \|\mathbf{h}\|^2}{\xi} \mathbf{s} + \mathbf{h}^\top \right) \left(\frac{\eta^2 \|s\|^2}{\xi} \mathbf{h} \mathbf{A}^{\dagger\top} + \eta \mathbf{k}^\top \right) \varepsilon \right] \\
2650 &= \mathbb{E} \left[-\frac{2\xi}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \left(\frac{\eta^2 \|s\|^2}{\xi} \mathbf{h} \mathbf{A}^{\dagger\top} + \eta \mathbf{k}^\top \right) \varepsilon \right] \\
2651 &= \mathbb{E} \left[-\frac{2\eta^2 \|s\|^2}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{h} \mathbf{A}^{\dagger\top} \varepsilon - \frac{2\eta\xi}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{k}^\top \varepsilon \right] \\
2652 &= \mathbb{E} \left[-\frac{2\eta^2 \|s\|^2 \tau_\varepsilon^2}{\gamma_2} \mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top - \frac{2\eta\xi \tau_\varepsilon^2}{\gamma_2} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top \right]. \\
2653 \mathbb{E} \left[-\frac{2\eta}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top \mathbf{q}_2 \mathbf{p}_2^\top \varepsilon \right] &= \mathbb{E} \left[-\frac{2\eta}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{s}^\top \left(\frac{\eta \|\mathbf{h}\|^2}{\xi} \mathbf{s} + \mathbf{h}^\top \right) \left(\frac{\eta^2 \|s\|^2}{\xi} \mathbf{h} \mathbf{A}^{\dagger\top} + \eta \mathbf{k}^\top \right) \varepsilon \right] \\
2654 &= \mathbb{E} \left[-\frac{2\eta}{\gamma_2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \left(\frac{\eta \|\mathbf{h}\|^2 \|s\|^2}{\xi} \right) \left(\frac{\eta^2 \|s\|^2}{\xi} \mathbf{h} \mathbf{A}^{\dagger\top} + \eta \mathbf{k}^\top \right) \varepsilon \right] \\
2655 &= \mathbb{E} \left[-\frac{2\eta^4 \|s\|^4 \|\mathbf{h}\|^2}{\gamma_2 \xi^2} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{h} \mathbf{A}^{\dagger\top} \varepsilon - \frac{2\eta^3 \|s\|^2 \|\mathbf{h}\|^2}{\gamma_2 \xi} \varepsilon^\top \mathbf{A}^\dagger \mathbf{h}^\top \mathbf{k}^\top \varepsilon \right] \\
2656 &= \mathbb{E} \left[-\frac{2\eta^4 \|s\|^4 \|\mathbf{h}\|^2 \tau_\varepsilon^2}{\gamma_2 \xi^2} \mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top - \frac{2\eta^3 \|s\|^2 \|\mathbf{h}\|^2 \tau_\varepsilon^2}{\gamma_2 \xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top \right]. \\
2657 \end{aligned}$$

2658 Using the squared norms from Lemmas 6, 7,
2659

$$\begin{aligned}
2660 \mathbb{E} \left[\frac{\xi^2}{\gamma_2^2} \varepsilon^\top \mathbf{p}_2 \mathbf{q}_2^\top \mathbf{q}_2 \mathbf{p}_2^\top \varepsilon \right] &= \mathbb{E} \left[\frac{\xi^2}{\gamma_2^2} \tau_\varepsilon^2 \|\mathbf{p}_2\|^2 \|\mathbf{q}_2\|^2 \right] \\
2661 &= \mathbb{E} \left[\frac{\xi^2 \tau_\varepsilon^2}{\gamma_2^2} \left(\frac{\|\mathbf{h}\|^2}{\xi^2} \gamma_2 \right) \left(\frac{\eta^4 \|s\|^4}{\xi^2} \mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top + \frac{2\eta^3 \|s\|^2}{\xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top + \eta^2 \|\mathbf{k}\|^2 \right) \right] \\
2662 &= \mathbb{E} \left[\tau_\varepsilon^2 \left(\frac{\eta^4 \|\mathbf{h}\|^2 \|s\|^4}{\gamma_2 \xi^2} \mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top + \frac{2\eta^3 \|\mathbf{h}\|^2 \|s\|^2}{\gamma_2 \xi} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top + \frac{\eta^2 \|\mathbf{h}\|^2 \|\mathbf{k}\|^2}{\gamma_2} \right) \right]. \\
2663 \end{aligned}$$

2664 Similarly, we combine the coefficients: For the term $\mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top$,
2665

$$\begin{aligned}
2666 \tau_\varepsilon^2 \left(\frac{\eta^4 \|s\|^4 \|\mathbf{h}\|^2}{\gamma_2 \xi^2} - \frac{2\eta^4 \|s\|^4 \|\mathbf{h}\|^2}{\gamma_2 \xi^2} - \frac{2\eta^2 \|s\|^2}{\gamma_2} + \frac{\eta^2 \|s\|^2}{\xi^2} \right) &= \tau_\varepsilon^2 \eta^2 \|s\|^2 \left(\frac{\eta^2 \|s\|^2 \|\mathbf{h}\|^2}{\gamma_2 \xi^2} - \frac{2\eta^2 \|s\|^2 \|\mathbf{h}\|^2}{\gamma_2 \xi^2} - \frac{2}{\gamma_2} + \frac{1}{\xi^2} \right) \\
2667 &= \tau_\varepsilon^2 \eta^2 \|s\|^2 \left(-\frac{\gamma_2 - \xi^2}{\gamma_2 \xi^2} - \frac{2}{\gamma_2} + \frac{1}{\xi^2} \right) \\
2668 &= \tau_\varepsilon^2 \eta^2 \|s\|^2 \left(-\frac{\gamma_2 - \xi^2}{\gamma_2 \xi^2} - \frac{2\xi^2}{\gamma_2 \xi^2} + \frac{\gamma_2}{\gamma_2 \xi^2} \right) \\
2669 &= -\tau_\varepsilon^2 \frac{\eta^2 \|s\|^2}{\gamma_2}. \\
2670 \end{aligned}$$

2671 For the term $\mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top$,
2672

$$\tau_\varepsilon^2 \left(\frac{2\eta^3 \|s\|^2 \|\mathbf{h}\|^2}{\gamma_2 \xi} - \frac{2\eta^3 \|s\|^2 \|\mathbf{h}\|^2}{\gamma_2 \xi} - \frac{2\eta \xi}{\gamma_2} \right) = -\tau_\varepsilon^2 \frac{2\eta \xi}{\gamma_2}.$$

2673 Combining these terms together, we have:
2674

$$\mathbb{E} [\varepsilon^\top (\mathbf{Z} + \mathbf{A})^\dagger (\mathbf{Z} + \mathbf{A})^{\dagger\top} \varepsilon] = \mathbb{E} \left[\varepsilon^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \varepsilon - \frac{\eta^2 \|s\|^2 \tau_\varepsilon^2}{\gamma_2} \mathbf{h} \mathbf{A}^{\dagger\top} \mathbf{A}^\dagger \mathbf{h}^\top - \frac{2\eta \xi \tau_\varepsilon^2}{\gamma_2} \mathbf{k}^\top \mathbf{A}^\dagger \mathbf{h}^\top + \frac{\eta^2 \|\mathbf{k}\|^2 \|\mathbf{h}\|^2}{\gamma_2} \right].$$

2675 Similarly, replicating the proof with the $c > 1$ counterparts, we have the following:
2676

$$\mathbb{E} [\varepsilon^\top \mathbf{A}^\dagger \mathbf{A}^{\dagger\top} \varepsilon] = \tau_\varepsilon^2 \mathbb{E} [Tr(\mathbf{A}^\dagger \mathbf{A}^{\dagger\top})] = \tau_\varepsilon^2 n \mathbb{E} \left[\frac{1}{\lambda} \right] = \tau_\varepsilon^2 \frac{d}{\rho^2(c-1)} + o\left(\frac{d}{\rho^2}\right).$$

$$\mathbb{E} \left[\frac{\eta^2 \|s\|^2}{\gamma_2} \mathbf{h} \mathbf{A}^{\dagger \top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} \right] = \frac{\eta^2}{\eta^2 + \rho^2} \frac{c^2}{\rho^2(c-1)^2} + o(1) + O\left(\frac{1}{n}\right).$$

$$\mathbb{E} \left[\frac{\eta \xi}{\gamma_2} \mathbf{k}^{\top} \mathbf{A}^{\dagger} \mathbf{h}^{\top} \right] = O\left(\frac{1}{n}\right).$$

$$\mathbb{E} \left[\frac{\eta^2 \|\mathbf{k}\|^2 \|\mathbf{h}\|^2}{\gamma_2} \right] = \frac{\eta^2}{\eta^2 + \rho^2} \frac{c}{\rho^2(c-1)^2} + o(1) + O\left(\frac{1}{n}\right).$$

After simple algebra, the result follows. \square

D.5.7 TARGET ALIGNMENT: HELPER LEMMAS

Lemma 30. *In the same setting as Section 2, we have that*

$$\mathbb{E} [\beta_*^{\top} (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{Z}^{\top} \beta_*] = \begin{cases} \frac{\eta^2 c}{\rho^2 + \eta^2 c} (\beta_*^{\top} \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right) & c < 1 \\ \frac{\eta^2}{\eta^2 + \rho^2} (\beta_*^{\top} \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right) & c > 1 \end{cases}.$$

Proof. For $c < 1$, from Proposition 1, we get that

$$\beta_*^{\top} (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{Z}^{\top} \beta_* = \frac{\eta \xi}{\gamma_1} \beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_* + \frac{\eta^2 \|\mathbf{t}\|^2}{\gamma_1} \beta_*^{\top} \mathbf{A}^{\dagger \top} \mathbf{k} \mathbf{u}^{\top} \beta_*.$$

To begin, we start estimating

$$\mathbb{E} \left[\frac{\xi}{\eta} \beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_* \right].$$

Using our Spherical Hypercontractivity, we have that $\frac{\xi}{\eta}$ and $\beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_*$ satisfy the assumptions for Lemma 36. Then using Lemma 9 we have that

$$\mathbb{E} \left[\frac{\xi}{\eta} \right] = \frac{1}{\eta} \quad \text{and} \quad \text{Var} \left(\frac{1}{\eta} \right) = O \left(\frac{1}{\rho^2 d} \right)$$

and Lemma 11, we have that

$$\mathbb{E} [\beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_*] = 0 \quad \text{and} \quad \text{Var} (\beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_*) = O \left(\frac{1}{\rho^2 d} \right)$$

Thus, using Lemma 37, we have that

$$\mathbb{E} \left[\frac{\xi}{\eta} \beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_* \right] = 0 + O \left(\frac{1}{\rho^2 d} \right)$$

and using Lemma 36, since all the means are $O(1)$, we have that

$$\text{Var} \left(\frac{\xi}{\eta} \beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_* \right) = O \left(\max \left(\text{Var} \left(\frac{\xi}{\eta} \right), \text{Var} (\beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_*) \right) \right) = O \left(\frac{1}{\rho^2 n} \right).$$

Then Lemma 19 gives mean and variance of $\frac{\eta^2}{\gamma_i}$. Since $\frac{\eta^2}{\gamma_i}$ does not satisfy the higher moment bound, and cannot be directly included in the product, we can include it via the classical bound:

$$\mathbb{E} \left[\frac{\eta \xi}{\gamma_1} \beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_* \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_1} \right] \mathbb{E} \left[\frac{\xi}{\eta} \beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_* \right] + \sqrt{\text{Var} \left(\frac{\xi}{\eta} \beta_*^{\top} \mathbf{h}^{\top} \mathbf{u}^{\top} \beta_* \right) \text{Var} \left(\frac{\eta^2}{\gamma_1} \right)} = O \left(\frac{1}{n} \right). \quad (18)$$

For the second term, we begin with

$$\mathbb{E} [\|\mathbf{t}\|^2 \beta_*^{\top} \mathbf{A}^{\dagger \top} \mathbf{k} \mathbf{u}^{\top} \beta_*].$$

2754 Lemma 9 tells us that
 2755

$$\mathbb{E}[\|t\|^2] = 1 - c \quad \text{and} \quad \text{Var}(\|t\|^2) = O\left(\frac{1}{n}\right)$$

2758 and Lemma 10 tells us
 2759

$$\mathbb{E}[\beta_*^\top A^{\dagger\top} k u^\top \beta_*] = \frac{1}{\rho^2} \frac{c}{1-c} (\beta_*^\top u)^2 + o\left(\frac{1}{\rho^2}\right) \quad \text{and} \quad \text{Var}(\beta_*^\top A^{\dagger\top} k u^\top \beta_*) = O\left(\frac{1}{\rho^4 d}\right).$$

2762 Thus using Lemmas 37 and Lemma 36, we get that
 2763

$$\mathbb{E}[\|t\|^2 \beta_*^\top A^{\dagger\top} k u^\top \beta_*] = (\beta_*^\top u)^2 \frac{c}{\rho^2} + o\left(\frac{1}{\rho^2}\right) + O\left(\frac{1}{n}\right) \quad \text{and} \quad \text{Var}(\|t\|^2 \beta_*^\top A^{\dagger\top} k u^\top \beta_*) = O\left(\frac{1}{n}\right)$$

2767 Recalling the mean and variance for $\frac{\eta^2}{\gamma_1}$ from 19, we have that
 2768

$$\begin{aligned} \mathbb{E}\left[\frac{\eta^2 \|t\|^2}{\gamma_1} \beta_*^\top A^{\dagger\top} k u^\top \beta_*\right] &= \mathbb{E}\left[\frac{\eta^2}{\gamma_1}\right] \mathbb{E}[\|t\|^2 \beta_*^\top A^{\dagger\top} k u^\top \beta_*] + \sqrt{O\left(\frac{1}{n}\right) \text{Var}\left(\frac{\eta^2}{\gamma_1}\right)} \\ &= \left(\frac{\rho^2 \eta^2}{\eta^2 c + \rho^2} + o\left(\frac{1}{\rho^2}\right)\right) \left((\beta_*^\top u)^2 \frac{c}{\rho^2} + o\left(\frac{1}{\rho^2}\right) + O\left(\frac{1}{n}\right)\right) + O\left(\frac{1}{n}\right) \\ &= (\beta_*^\top u)^2 \frac{\eta^2 c}{\eta^2 c + \rho^2} + o(1) + O\left(\frac{1}{n}\right). \end{aligned} \quad (19)$$

2777 Combining these two terms yields the first result.
 2778

2779 Similarly, for $c > 1$, Proposition 1 gives the expansion:
 2780

$$\beta_*^\top (Z + A)^{\dagger\top} Z^\top \beta_* = \beta_*^\top \left(\frac{\eta \xi}{\gamma_2} u h + \frac{\eta^2 \|h\|^2}{\gamma_2} u s^\top\right)^\top \beta_* = \frac{\eta \xi}{\gamma_2} \beta_*^\top h^\top u^\top \beta_* + \frac{\eta^2 \|h\|^2}{\gamma_2} \beta_*^\top s u^\top \beta_*.$$

2782 For the first term, we begin with
 2783

$$\mathbb{E}\left[\frac{\xi}{\eta} \beta_*^\top h^\top u^\top \beta_*\right].$$

2786 Recalling from Lemma 11, we see that
 2787

$$\mathbb{E}[\beta_*^\top h^\top u^\top \beta_*] = 0 \quad \text{and} \quad \text{Var}(\beta_*^\top h^\top u^\top \beta_*) = O\left(\frac{1}{\rho^2 d}\right).$$

2790 Thus again using Lemma 36 and Lemma 37, we see that
 2791

$$\mathbb{E}\left[\frac{\xi}{\eta} \beta_*^\top h^\top u^\top \beta_*\right] = 0 + O\left(\frac{1}{\rho^2 d}\right) \quad \text{and} \quad \text{Var}\left(\frac{\xi}{\eta} \beta_*^\top h^\top u^\top \beta_*\right) = O\left(\frac{1}{\rho^2 d}\right).$$

2794 Next using the standard covariance bound on the expectation of the product. We see that
 2795

$$\mathbb{E}\left[\frac{\eta \xi}{\gamma_1} \beta_*^\top h^\top u^\top \beta_*\right] = 0 + O\left(\frac{1}{\rho^2 d}\right) + O\left(\frac{1}{n}\right) = O\left(\frac{1}{n}\right).$$

2798 For the second term, we begin with
 2799

$$\mathbb{E}[\|h\|^2 \beta_*^\top s u^\top \beta_*].$$

2801 Recall from Lemma 9 we have that
 2802

$$\mathbb{E}[\|h\|^2] = \frac{1}{\rho^2} \frac{c}{c-1} + o\left(\frac{1}{\rho^2}\right) \quad \text{and} \quad \text{Var}(\|h\|^2) = O\left(\frac{1}{\rho^4 n}\right)$$

2805 and from Lemma 10
 2806

$$\mathbb{E}[\beta_*^\top s u^\top \beta_*] = \left(1 - \frac{1}{c}\right) (\beta_*^\top u)^2 \quad \text{and} \quad \text{Var}(\beta_*^\top s u^\top \beta_*) = O\left(\frac{1}{d}\right).$$

2808 Thus using Lemma 36 and Lemma 37, we get that
 2809

$$2810 \mathbb{E} [\|\mathbf{h}\|^2 \boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{u} \boldsymbol{\beta}_*] = \frac{(\boldsymbol{\beta}_*^\top \mathbf{u})^2}{\rho^2} + o\left(\frac{1}{\rho^2}\right) + O\left(\frac{1}{d}\right) \quad \text{and} \quad \text{Var}(\|\mathbf{h}\|^2 \boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{u} \boldsymbol{\beta}_*) = O\left(\frac{1}{d}\right).$$

2812 Recalling the mean and variance for $\frac{\eta^2}{\gamma_2}$ from Lemma 19 and using the classical covariance bound for
 2813 the expectation of the product, we get that
 2814

$$2815 \mathbb{E} \left[\frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{u}^\top \boldsymbol{\beta}_* \right] = \mathbb{E} \left[\frac{\eta^2}{\gamma_2} \right] \mathbb{E} [\|\mathbf{h}\|^2 \boldsymbol{\beta}_*^\top \mathbf{s} \mathbf{u}^\top \boldsymbol{\beta}_*] + \sqrt{O\left(\frac{1}{n}\right) \text{Var}\left(\frac{\eta^2}{\gamma_2}\right)} \\ 2816 = \left(\frac{\rho^2 \eta^2}{\eta^2 + \rho^2} + o\left(\frac{1}{\rho^2}\right) \right) \left(\frac{(\boldsymbol{\beta}_*^\top \mathbf{u})^2}{\rho^2} + o\left(\frac{1}{\rho^2}\right) + O\left(\frac{1}{d}\right) \right) + O\left(\frac{1}{n}\right) \\ 2817 = \frac{\eta^2}{\eta^2 + \rho^2} (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right).$$

2822 Then adding the two together, we get the result for $c > 1$ as well. \square
 2823

2824 **Lemma 31.** *In the same setting as Section 2, we have that, for $c < 1$*

$$2825 \mathbb{E} [\boldsymbol{\beta}_*^\top (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A}^\top \boldsymbol{\beta}_*] = \|\boldsymbol{\beta}_*\|^2 - \frac{\eta^2 c}{\rho^2 + \eta^2 c} (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + o\left(\frac{1}{\rho^2}\right) + O\left(\frac{1}{n}\right).$$

2826 and for $c > 1$

$$2827 \mathbb{E} [\boldsymbol{\beta}_*^\top (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A}^\top \boldsymbol{\beta}_*] = \frac{1}{c} \|\boldsymbol{\beta}_*\|^2 - \frac{\eta^2}{\eta^2 + \rho^2} \left(\frac{\|\boldsymbol{\beta}_*\|^2}{d} + \frac{1}{c} (\boldsymbol{\beta}_*^\top \mathbf{u})^2 \right) + o(1) + O\left(\frac{1}{n}\right).$$

2832 *Proof.* For $c < 1$, using the expectation from Lemma 30, we get

$$2833 \mathbb{E} [\boldsymbol{\beta}_*^\top (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A}^\top \boldsymbol{\beta}_*] = \mathbb{E} [\boldsymbol{\beta}_*^\top (\mathbf{I} - \mathbf{Z}(\mathbf{Z} + \mathbf{A})^\dagger)^\top \boldsymbol{\beta}_*] \\ 2834 = \|\boldsymbol{\beta}_*\|^2 - \frac{\eta^2 c}{\rho^2 + \eta^2 c} (\boldsymbol{\beta}_*^\top \mathbf{u})^2 + o(1) + O\left(\frac{1}{n}\right).$$

2838 For $c > 1$, using Lemma 2, we get

$$2839 \boldsymbol{\beta}_*^\top (\mathbf{Z} + \mathbf{A})^{\dagger \top} \mathbf{A}^\top \boldsymbol{\beta}_* = \boldsymbol{\beta}_*^\top \left(\mathbf{A} \mathbf{A}^\dagger + \frac{\eta \xi}{\gamma_2} \mathbf{h}^\top \mathbf{s}^\top - \frac{\eta^2 \|\mathbf{s}\|^2}{\gamma_2} \mathbf{h}^\top \mathbf{h} - \frac{\eta^2 \|\mathbf{h}\|^2}{\gamma_2} \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top - \frac{\eta \xi}{\gamma_2} \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \right)^\top \boldsymbol{\beta}_*.$$

2842 We then compute the expectation of each term above.

2843 To begin, we have that

$$2844 \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \boldsymbol{\beta}_*] = \frac{1}{c} \|\boldsymbol{\beta}_*\|^2 \quad \text{by Equation 13.}$$

2847 Next, we recall from Lemma 11 that

$$2848 \mathbb{E} [\boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{s}^\top \boldsymbol{\beta}_*] = 0 \text{ and } \text{Var}(\boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{s}^\top \boldsymbol{\beta}_*) = O\left(\frac{1}{\rho^2 d}\right).$$

2851 and from Lemma 9 that

$$2852 \mathbb{E} \left[\frac{\xi}{\eta} \right] = \frac{1}{\eta} + o\left(\frac{1}{\rho^2}\right) \quad \text{and} \quad \text{Var}\left(\frac{\xi}{\eta}\right) = O\left(\frac{1}{\rho^2 n}\right)$$

2854 Thus, using Lemmas 36 and Lemma 37, we have that

$$2855 \mathbb{E} \left[\frac{\xi}{\eta} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{s}^\top \boldsymbol{\beta}_* \right] = O\left(\frac{1}{\rho^2 n}\right) \quad \text{and} \quad \text{Var}\left(\frac{\xi}{\eta} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{s}^\top \boldsymbol{\beta}_*\right) = O\left(\frac{1}{\rho^2 n}\right).$$

2858 Then recalling the mean and variance of η^2 / γ_2 from 19, using the standard covariance bound on the
 2859 difference between the product of the expectation and the expectation of the product, we get that
 2860

$$2861 \mathbb{E} \left[\frac{\eta \xi}{\gamma_2} \boldsymbol{\beta}_*^\top \mathbf{h}^\top \mathbf{s}^\top \boldsymbol{\beta}_* \right] = O\left(\frac{1}{n}\right) \text{ and } \mathbb{E} \left[\frac{\eta \xi}{\gamma_2} \boldsymbol{\beta}_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \boldsymbol{\beta}_* \right] = O\left(\frac{1}{n}\right).$$

Furthermore, for the next three terms, recall from Lemma 10 that

$$\mathbb{E}[\beta_*^\top \mathbf{h}^\top \mathbf{h} \beta_*] = \frac{\|\beta_*\|^2}{d} \frac{c}{\rho^2(c-1)} + o\left(\frac{1}{\rho^2 d}\right) \quad \text{and} \quad \text{Var}(\beta_*^\top \mathbf{h}^\top \mathbf{h} \beta_*) = O\left(\frac{1}{\rho^2 d^2}\right)$$

and

$$\mathbb{E}[\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \beta_*] = \frac{c-1}{c^2} (\beta_*^\top \mathbf{u})^2 + o(1) \quad \text{and} \quad \text{Var}(\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \beta_*) = O\left(\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top \beta_* \frac{1}{d}\right)$$

and from Lemma 11

$$\mathbb{E}[\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*] = 0 \quad \text{and} \quad \text{Var}(\beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*) = O\left(\frac{1}{\rho^2 d^2}\right).$$

Then recalling from Lemma 9, we have that

$$\mathbb{E}[\|\mathbf{s}\|^2] = 1 - \frac{1}{c} \quad \text{and} \quad \text{Var}(\|\mathbf{s}\|^2) = O\left(\frac{1}{d}\right).$$

Then using Lemma 36 and Lemma 37, we have that for third term

$$\mathbb{E}[\|\mathbf{s}\|^2 \beta_*^\top \mathbf{h}^\top \mathbf{h} \beta_*] = \frac{1}{\rho^2 d} \|\beta_*\|^2 + o\left(\frac{1}{\rho^2 d}\right) + O\left(\frac{1}{d}\right) \quad \text{and} \quad \text{Var}(\|\mathbf{s}\|^2 \beta_*^\top \mathbf{h}^\top \mathbf{h} \beta_*) = O\left(\frac{1}{d}\right)$$

for the fourth term

$$\begin{aligned} \mathbb{E}[\|\mathbf{h}\|^2 \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top] &= \left(\frac{1}{\rho^2} \frac{c}{c-1} + o\left(\frac{1}{\rho^2}\right)\right) \left(\frac{c-1}{c^2} (\beta_*^\top \mathbf{u})^2 + o(1)\right) + O\left(\frac{1}{\rho^2 d}\right) \\ &= \frac{(\beta_*^\top \mathbf{u})^2}{\rho^2 c} + o(1) + O\left(\frac{1}{\rho^2 d}\right) \end{aligned}$$

with variance

$$\text{Var}(\|\mathbf{h}\|^2 \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top) = O\left(\frac{1}{\rho^2 d}\right).$$

For the first term, we have that

$$\mathbb{E}\left[\frac{\xi}{\eta} \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*\right] = 0 + O\left(\frac{1}{\rho^2 d}\right) \quad \text{and} \quad \text{Var}\left(\frac{\xi}{\eta} \beta_*^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h} \beta_*\right) = O\left(\frac{1}{\rho^2 d}\right)$$

Adding the last three terms and using Lemma 34 twice, we get that

$$\mathbb{E}\left[\beta_*^\top \left(\|\mathbf{s}\|^2 \mathbf{h}^\top \mathbf{h} + \|\mathbf{h}\|^2 \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top + \frac{\xi}{\eta} \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h}\right) \beta_*\right] = \frac{1}{\rho^2 d} \|\beta_*\|^2 + \frac{(\beta_*^\top \mathbf{u})^2}{\rho^2 c} + 0 + o(1) + O\left(\frac{1}{d}\right)$$

With variance

$$\text{Var}\left(\beta_*^\top \left(\|\mathbf{s}\|^2 \mathbf{h}^\top \mathbf{h} + \|\mathbf{h}\|^2 \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top + \frac{\xi}{\eta} \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h}\right) \beta_*\right) = O\left(\frac{1}{d}\right)$$

Then recalling the mean and variance of η^2/γ_2 from Lemma 19, and using the covariance bound for the expectation of products, we get that

$$\mathbb{E}\left[\frac{\eta^2}{\gamma_2} \beta_*^\top \left(\|\mathbf{s}\|^2 \mathbf{h}^\top \mathbf{h} + \|\mathbf{h}\|^2 \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{s}^\top + \frac{\xi}{\eta} \mathbf{A} \mathbf{A}^\dagger \mathbf{u} \mathbf{h}\right) \beta_*\right] = \frac{\eta^2}{\eta^2 + \rho^2} \left(\frac{\|\beta_*\|^2}{d} + \frac{1}{c} (\beta_*^\top \mathbf{u})^2\right) + o(1) + O\left(\frac{1}{n}\right).$$

Adding all five terms, we get that

$$\mathbb{E}[\beta_*^\top (\mathbf{Z} + \mathbf{A})^\dagger \mathbf{A}^\top \beta_*] = \frac{1}{c} \|\beta_*\|^2 - \frac{\eta^2}{\eta^2 + \rho^2} \left(\frac{\|\beta_*\|^2}{d} + \frac{1}{c} (\beta_*^\top \mathbf{u})^2\right) + o(1) + O\left(\frac{1}{n}\right).$$

□

D.6 STEP 5: UPSCALING AND ASYMPTOTIC RISK FORMULAS

In the previous step we derived downscaled expressions for the four constituent terms of the risk: **Bias**, **Variance**, **Data Noise**, and **Target Alignment**. We stop our abuse of notation and are explicit again about downscaled vs. upscaled.

2916 **Bias (downscaled).** For $c < 1$, the bias term is
 2917

$$2918 \quad \tilde{n}^2 \left(\left[(\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\eta^2 c + \rho^2} (\alpha_Z - \alpha_A) \right]^2 (\beta_*^\top \mathbf{u})^2 + \tau_{\varepsilon, r}^2 \frac{c}{1-c} \frac{1}{\eta^2 c + \rho^2} \right) + o\left(\frac{1}{\tilde{n}}\right) + o\left(\frac{1}{n}\right).$$

2920 For $c > 1$, the bias term is
 2921

$$2922 \quad \frac{\tilde{n}^2}{\tilde{n}} \left[(\beta_*^\top \mathbf{u})^2 \left((\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\eta^2 + \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right) \right)^2 + \alpha_A^2 \frac{\|\beta_*\|^2}{d} \left(\frac{c-1}{c} \right) \frac{\eta^2 \rho^2}{(\eta^2 + \rho^2)^2} \right. \\ 2923 \quad \left. + \frac{\tau_{\varepsilon, r}^2}{c-1} \frac{\eta^2 c + \rho^2}{(\eta^2 + \rho^2)^2} \right] + o\left(\frac{1}{\tilde{n}}\right) + o\left(\frac{1}{n}\right)$$

2928 **Variance (downscaled).** For $c < 1$, the variance term is
 2929

$$2930 \quad \frac{\tilde{\rho}^2}{d} \left[\alpha_A^2 \|\beta_*\|^2 + (\beta_*^\top \mathbf{u})^2 \left((\alpha_Z - \alpha_A)^2 \frac{\eta^2(\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1-c} + 2\alpha_A(\alpha_Z - \alpha_A) \frac{\eta^2 c}{\eta^2 c + \rho^2} \right) \right. \\ 2931 \quad \left. + \tau_{\varepsilon, r}^2 \left(\frac{c}{1-c} \frac{d}{\rho^2} - \frac{\eta^2}{\rho^2(\eta^2 c + \rho^2)} \frac{c^2}{1-c} \right) \right].$$

2935 For $c > 1$, the variance term is
 2936

$$2937 \quad \frac{\tilde{\rho}^2}{d} \left[\|\beta_*\|^2 \left(\frac{\alpha_A^2}{c} - \frac{\alpha_A^2}{d} \frac{\eta^2}{\eta^2 + \rho^2} \right) + (\beta_*^\top \mathbf{u})^2 \frac{c}{c-1} \frac{\eta^2}{\eta^2 + \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right)^2 + \tau_{\varepsilon, r}^2 \left(\frac{d}{\rho^2} \frac{1}{c-1} - \frac{\eta^2}{\rho^2(\eta^2 + \rho^2)} \frac{c}{c-1} \right) \right].$$

2940 **Data noise (downscaled).** The data noise term is
 2941

$$2942 \quad \frac{\tilde{\alpha}_A^2 \tilde{\rho}^2}{d} \|\beta_*\|^2.$$

2944 **Target alignment (downscaled).** For $c < 1$, the alignment term is
 2945

$$2946 \quad -\frac{2\tilde{\alpha}_A \tilde{\rho}^2}{d} \left(\alpha_A \|\beta_*\|^2 + (\alpha_Z - \alpha_A) (\beta_*^\top \mathbf{u})^2 \frac{\eta^2 c}{\rho^2 + \eta^2 c} \right).$$

2949 For $c > 1$, the alignment term is
 2950

$$2951 \quad -\frac{2\tilde{\alpha}_A \tilde{\rho}^2}{d} \left(\frac{\alpha_A}{c} \|\beta_*\|^2 - \frac{\alpha_A}{d} \frac{\eta^2}{\eta^2 + \rho^2} \|\beta_*\|^2 + \left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{\eta^2}{\eta^2 + \rho^2} (\beta_*^\top \mathbf{u})^2 \right).$$

2954 These formulas are expressed in terms of the concentrated building blocks, but still at the “microscopic”
 2955 scale in which η is $O(\sqrt{d})$, $\rho = \Theta(1)$, and $\tau_{\varepsilon, r}^2 = O(1/d)$.
 2956

2957 In this section we return to the macroscopic, or upscaled, version of the problem. Specifically, we
 2958 multiply each term by d and reparametrize according to
 2959

$$2960 \quad \theta^2 = \frac{d}{n} \eta^2, \quad \tilde{\theta}^2 = \frac{d}{\tilde{n}} \tilde{\eta}^2, \quad \tau_{\varepsilon}^2 = d \tau_{\varepsilon, r}^2,$$

2961 while keeping $\rho, \tilde{\rho}$ fixed. This normalization ensures that the effective spike strength θ , isotropic
 2962 noise level ρ , and label noise $\tau_{\varepsilon, r}$ are all of order one. In this scaling, the risk is d times larger than in
 2963 the downscaled representation, and the resulting formulas cleanly separate the contributions of the
 2964 four terms.
 2965

2966 The terms change as follows
 2967

2968 **Front factors (after multiplying by d).**
 2969

$$\frac{\tilde{\eta}^2}{\tilde{n}} \xrightarrow{\times d} \tilde{\theta}^2, \quad \frac{\tilde{\rho}^2}{d} \xrightarrow{\times d} \tilde{\rho}^2, \quad \frac{\tilde{\alpha}_A^2 \tilde{\rho}^2}{d} \xrightarrow{\times d} \tilde{\alpha}_A^2 \tilde{\rho}^2, \quad d \tau_{\varepsilon, r}^2 \rightarrow \tau_{\varepsilon}^2. \quad (20)$$

2970 **Denominator identities.**

2971

$$2972 \quad \eta^2 c + \rho^2 = \theta^2 + \rho^2, \quad \eta^2 + \rho^2 = \frac{\theta^2 + c \rho^2}{c}. \quad (21)$$

2973

2974 **Frequently used ratios and their upscaled forms.**

2975

$$2976 \quad \frac{\rho^2}{\eta^2 c + \rho^2} = \frac{\rho^2}{\theta^2 + \rho^2}, \quad (22)$$

2977

2978

$$2979 \quad \frac{\eta^2 c}{\eta^2 c + \rho^2} = \frac{\theta^2}{\theta^2 + \rho^2}, \quad (23)$$

2980

2981

$$2982 \quad \frac{\eta^2}{\eta^2 + \rho^2} = \frac{\theta^2}{\theta^2 + c \rho^2}, \quad (24)$$

2983

2984

$$2985 \quad \frac{\rho^2}{\eta^2 + \rho^2} = \frac{c \rho^2}{\theta^2 + c \rho^2}, \quad (25)$$

2986

2987

$$2988 \quad \frac{\eta^2 \rho^2}{(\eta^2 + \rho^2)^2} = \frac{\theta^2 \rho^2}{(\theta^2 + c \rho^2)^2} c, \quad (26)$$

2989

2990

$$\frac{\eta^2 (\eta^2 + \rho^2)}{(\eta^2 c + \rho^2)^2} \frac{c^2}{1 - c} = \frac{\theta^2 (\theta^2 + c \rho^2)}{(\theta^2 + \rho^2)^2} \frac{1}{1 - c}. \quad (27)$$

2991 **Noise terms with aspect-ratio factors.** After multiplying by d and substituting $\tau_\varepsilon^2 = d \tau_{\varepsilon,r}^2$:

2992

2993

$$2994 \quad \tau_{\varepsilon,r}^2 \left(\frac{c}{1 - c} \frac{d}{\rho^2} - \frac{\eta^2}{\rho^2 (\eta^2 c + \rho^2)} \frac{c^2}{1 - c} \right) \rightarrow \tau_\varepsilon^2 \left(\frac{1}{\rho^2} \frac{c}{1 - c} - \frac{\theta^2}{\rho^2 (\theta^2 + \rho^2)} \frac{c}{1 - c} \right), \quad (28)$$

2995

2996

$$2997 \quad \tau_{\varepsilon,r}^2 \left(\frac{d}{\rho^2} \frac{1}{c - 1} - \frac{\eta^2}{\rho^2 (\eta^2 + \rho^2)} \frac{c}{c - 1} \right) \rightarrow \tau_\varepsilon^2 \left(\frac{1}{\rho^2} \frac{1}{c - 1} - \frac{\theta^2}{\rho^2 (\theta^2 + c \rho^2)} \frac{c}{c - 1} \right). \quad (29)$$

2998

2999 **Alignment-specific identities.**

3000

$$3001 \quad \frac{\eta^2 c}{\rho^2 + \eta^2 c} = \frac{\theta^2}{\rho^2 + \theta^2}, \quad \frac{\eta^2}{\eta^2 + \rho^2} = \frac{\theta^2}{\theta^2 + c \rho^2}. \quad (30)$$

3002

3003 We now state the explicit upscaled limits for each component. As before, we present results separately
3004 in the underparametrized regime ($c < 1$) and the overparametrized regime ($c > 1$). Each term has a
3005 little $o(1)$ error term.

3006 **Bias.** For $c < 1$, the bias contribution is

3007

$$3008 \quad \tilde{\theta}^2 \left(\left[(\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\theta^2 + \rho^2} (\alpha_Z - \alpha_A) \right]^2 (\beta_*^\top \mathbf{u})^2 + \frac{\tau_\varepsilon^2}{d} \frac{c}{1 - c} \frac{1}{\theta^2 + \rho^2} \right).$$

3009

3010 For $c > 1$, the bias is

3011

$$3012 \quad \tilde{\theta}^2 \left[(\beta_*^\top \mathbf{u})^2 \left((\tilde{\alpha}_Z - \alpha_Z) + \frac{\rho^2}{\frac{\theta^2}{c} + \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right) \right)^2 + \alpha_A^2 \frac{\|\beta_*\|^2}{d} \left(\frac{c - 1}{c} \right) \frac{\frac{\theta^2}{c} \rho^2}{\left(\frac{\theta^2}{c} + \rho^2 \right)^2} + \frac{\tau_\varepsilon^2}{d} \frac{1}{c - 1} \frac{\theta^2 + \rho^2}{\left(\frac{\theta^2}{c} + \rho^2 \right)^2} \right].$$

3013

3014 **Variance.** For $c < 1$, the variance contribution is

3015

$$3016 \quad \tilde{\rho}^2 \left[\alpha_A^2 \|\beta_*\|^2 + (\beta_*^\top \mathbf{u})^2 \left((\alpha_Z - \alpha_A)^2 \frac{\theta^2 (\theta^2 + c \rho^2)}{(\theta^2 + \rho^2)^2} \frac{1}{1 - c} + 2\alpha_A (\alpha_Z - \alpha_A) \frac{\theta^2}{\theta^2 + \rho^2} \right) \right. \\ 3017 \quad \left. + \tau_\varepsilon^2 \left(\frac{1}{\rho^2} \frac{c}{1 - c} - \frac{1}{d} \frac{\theta^2}{\rho^2 (\theta^2 + \rho^2)} \cdot \frac{c}{1 - c} \right) \right].$$

3018

3019 For $c > 1$, the variance is

3020

3021

$$3022 \quad \tilde{\rho}^2 \left[\|\beta_*\|^2 \left(\frac{\alpha_A^2}{c} - \frac{\alpha_A^2}{d} \frac{\theta^2}{\theta^2 + c \rho^2} \right) + (\beta_*^\top \mathbf{u})^2 \frac{c}{c - 1} \frac{\theta^2}{\theta^2 + c \rho^2} \left(\alpha_Z - \frac{\alpha_A}{c} \right)^2 + \tau_\varepsilon^2 \left(\frac{1}{\rho^2} \frac{1}{c - 1} - \frac{1}{d} \frac{\theta^2}{\rho^2 (\theta^2 + c \rho^2)} \cdot \frac{c}{c - 1} \right) \right].$$

3023

3024 **Data Noise.** The data noise term is independent of c :

$$\tilde{\alpha}_A^2 \tilde{\rho}^2 \|\beta_*\|^2.$$

3025 **Target Alignment.** For $c < 1$, the target alignment contribution is

$$-2\tilde{\alpha}_A \tilde{\rho}^2 \left(\alpha_A \|\beta_*\|^2 + (\alpha_Z - \alpha_A) (\beta_*^\top \mathbf{u})^2 \frac{\theta^2}{\rho^2 + \theta^2} \right).$$

3032 For $c > 1$, the alignment term is

$$-2\tilde{\alpha}_A \tilde{\rho}^2 \left(\frac{\alpha_A}{c} \|\beta_*\|^2 - \frac{\alpha_A}{d} \frac{\theta^2}{\theta^2 + c\rho^2} \|\beta_*\|^2 + \left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{\theta^2}{\theta^2 + c\rho^2} (\beta_*^\top \mathbf{u})^2 \right).$$

3037 Lastly, replacing $\tilde{\rho}$, ρ with $\tilde{\tau}$, τ and using $d/n \rightarrow c$ yield the detailed expressions in Theorem 5, up to
3038 simple algebra (rearranging terms and simplifying the fractions).

E PROBABILITY LEMMAS

3043 **Proposition 2.** If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$ are fixed unit norm vector and $\mathbf{A} \in \mathbb{R}^{d \times n}$ is a Gaussian matrix with
3044 i.i.d. $\mathcal{N}(0, 1)$ entries. If $d > n$, then we have that

$$3045 \mathbb{E}[(\mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{v})^2] = \frac{n}{d(d+2)} \left[(\mathbf{u}^\top \mathbf{v})^2 (n+2) + \frac{(1 - (\mathbf{u}^\top \mathbf{v})^2)(d-n)}{d-1} \right] = \frac{1}{c^2} (\mathbf{u}^\top \mathbf{v})^2 + o(1),$$

$$3048 \text{Var}(\mathbf{u}^\top \mathbf{A} \mathbf{A}^\dagger \mathbf{v})^2 = O\left(\frac{1}{d}\right).$$

3051 *Proof.* Let $\mathbf{P} := \mathbf{A} \mathbf{A}^\dagger$. This is the orthogonal projection matrix onto the column space of \mathbf{A} , denoted
3052 $C(\mathbf{A}) = \text{Range}(\mathbf{A})$. The subspace $C(\mathbf{A})$ is an n -dimensional subspace of \mathbb{R}^d . Because the entries
3053 A_{ij} are i.i.d. $\mathcal{N}(0, 1)$, the distribution of the random subspace $C(\mathbf{A})$ is isotropic (or rotationally
3054 invariant). Consequently, the distribution of the random projection matrix \mathbf{P} is also rotationally
3055 invariant. That is, for any fixed $d \times d$ orthogonal matrix \mathbf{Q} , the distribution of $\mathbf{Q} \mathbf{P} \mathbf{Q}^\top$ is the same as
3056 the distribution of \mathbf{P} .

3057 We are interested in $\mathbb{E}[(\mathbf{u}^\top \mathbf{P} \mathbf{v})^2]$. Let θ be the angle between \mathbf{u} and \mathbf{v} , such that $\cos(\theta) = \mathbf{u}^\top \mathbf{v}$
3058 (since they are unit vectors). Due to the rotational invariance of the distribution of \mathbf{P} , we can
3059 choose an orthonormal basis without loss of generality. Let \mathbf{Q} be an orthogonal matrix such that
3060 $\mathbf{u}' = \mathbf{Q} \mathbf{u} = \mathbf{e}_1 = (1, 0, \dots, 0)^\top$ and $\mathbf{v}' = \mathbf{Q} \mathbf{v}$ lies in the span of \mathbf{e}_1 and \mathbf{e}_2 . Specifically,
3061 $\mathbf{v}' = \cos(\theta) \mathbf{e}_1 + \sin(\theta) \mathbf{e}_2$. Let $\mathbf{P}' = \mathbf{Q} \mathbf{P} \mathbf{Q}^\top$. \mathbf{P}' has the same distribution as \mathbf{P} . Then,

$$3062 \mathbf{u}^\top \mathbf{P} \mathbf{v} = (\mathbf{Q}^\top \mathbf{u}')^\top \mathbf{P} (\mathbf{Q}^\top \mathbf{v}') = (\mathbf{u}')^\top (\mathbf{Q} \mathbf{P} \mathbf{Q}^\top) \mathbf{v}' = (\mathbf{u}')^\top \mathbf{P}' \mathbf{v}'$$

3064 Substituting $\mathbf{u}' = \mathbf{e}_1$ and $\mathbf{v}' = \cos(\theta) \mathbf{e}_1 + \sin(\theta) \mathbf{e}_2$:

$$3065 \mathbf{u}^\top \mathbf{P} \mathbf{v} = \mathbf{e}_1^\top \mathbf{P}' (\cos(\theta) \mathbf{e}_1 + \sin(\theta) \mathbf{e}_2) \\ 3066 = \cos(\theta) (\mathbf{e}_1^\top \mathbf{P}' \mathbf{e}_1) + \sin(\theta) (\mathbf{e}_1^\top \mathbf{P}' \mathbf{e}_2) \\ 3067 = \cos(\theta) P'_{11} + \sin(\theta) P'_{12}$$

3070 where P'_{ij} are the elements of \mathbf{P}' . Since \mathbf{P}' has the same distribution as \mathbf{P} , we can drop the prime
3071 for calculating expectations involving the elements. Let $\mathbf{X} = \mathbf{u}^\top \mathbf{P} \mathbf{v}$. We then need $\mathbb{E}[\mathbf{X}^2]$.

$$3072 \mathbb{E}[\mathbf{X}^2] = \mathbb{E}[(\cos(\theta) P_{11} + \sin(\theta) P_{12})^2] \\ 3073 = \mathbb{E}[\cos^2(\theta) P_{11}^2 + \sin^2(\theta) P_{12}^2 + 2 \cos(\theta) \sin(\theta) P_{11} P_{12}] \\ 3074 = \cos^2(\theta) \mathbb{E}[P_{11}^2] + \sin^2(\theta) \mathbb{E}[P_{12}^2] + 2 \cos(\theta) \sin(\theta) \mathbb{E}[P_{11} P_{12}]$$

3077 **Calculation of Moments.** We need to compute $\mathbb{E}[P_{11}^2]$, $\mathbb{E}[P_{12}^2]$, and $\mathbb{E}[P_{11} P_{12}]$.

3078 Consider a reflection matrix \mathbf{R} that maps \mathbf{e}_2 to $-\mathbf{e}_2$ and leaves other basis vectors unchanged (i.e.,
 3079 $\mathbf{R} = \text{diag}(1, -1, 1, \dots, 1)$). Since the distribution of \mathbf{P} is isotropic, it is invariant under reflection.
 3080 Let $\mathbf{P}^* = \mathbf{R}\mathbf{P}\mathbf{R}^\top = \mathbf{R}\mathbf{P}\mathbf{R}$. \mathbf{P}^* has the same distribution as \mathbf{P} . The components are related:

$$3082 \quad P_{11}^* = (\mathbf{R}\mathbf{P}\mathbf{R})_{11} = R_{11}P_{11}R_{11} = P_{11}$$

3083 and

$$3084 \quad P_{12}^* = (\mathbf{R}\mathbf{P}\mathbf{R})_{12} = R_{11}P_{12}R_{22} = (1)P_{12}(-1) = -P_{12}.$$

3085 Therefore,

$$3086 \quad \mathbb{E}[P_{11}P_{12}] = \mathbb{E}[P_{11}^*P_{12}^*] = \mathbb{E}[P_{11}(-P_{12})] = -\mathbb{E}[P_{11}P_{12}].$$

3088 This implies $2\mathbb{E}[P_{11}P_{12}] = 0$, so $\mathbb{E}[P_{11}P_{12}] = 0$.

3089 The diagonal element $P_{11} = \mathbf{e}_1^\top \mathbf{P} \mathbf{e}_1 = \|\mathbf{P} \mathbf{e}_1\|_2^2$ represents the squared norm of the projection of the
 3090 fixed unit vector \mathbf{e}_1 onto the random n -dimensional subspace $C(\mathbf{A})$. This variable follows a Beta
 3091 distribution:

$$3092 \quad P_{11} \sim \text{Beta}\left(\frac{n}{2}, \frac{d-n}{2}\right)$$

3094 The mean and variance of a Beta(α, β) distribution are $\frac{\alpha}{\alpha+\beta}$ and $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$, respectively. Here,
 3095 $\alpha = n/2$ and $\beta = (d-n)/2$, so $\alpha + \beta = d/2$.

$$3097 \quad \mathbb{E}[P_{11}] = \frac{n/2}{d/2} = \frac{n}{d}$$

3099 Next

$$3101 \quad \text{Var}(P_{11}) = \frac{(n/2)((d-n)/2)}{(d/2)^2(d/2+1)} = \frac{n(d-n)/4}{(d^2/4)((d+2)/2)} = \frac{n(d-n) \cdot 8}{4d^2(d+2)} = \frac{2n(d-n)}{d^2(d+2)}$$

3103 Now we find $\mathbb{E}[P_{11}^2]$ using $\mathbb{E}[P_{11}^2] = \text{Var}(P_{11}) + (\mathbb{E}[P_{11}])^2$:

$$\begin{aligned} 3105 \quad \mathbb{E}[P_{11}^2] &= \frac{2n(d-n)}{d^2(d+2)} + \left(\frac{n}{d}\right)^2 \\ 3106 &= \frac{2n(d-n) + n^2(d+2)}{d^2(d+2)} \\ 3107 &= \frac{2nd - 2n^2 + n^2d + 2n^2}{d^2(d+2)} \\ 3108 &= \frac{2nd + n^2d}{d^2(d+2)} \\ 3109 &= \frac{n(n+2)}{d(d+2)}. \end{aligned}$$

3117 We use the property that \mathbf{P} is a projection matrix, so $\mathbf{P}^2 = \mathbf{P}$. The trace is $\text{Tr}(\mathbf{P}) = n$. Also
 3118 $\text{Tr}(\mathbf{P}^2) = \text{Tr}(\mathbf{P}) = n$. We can write $\text{Tr}(\mathbf{P}^2) = \text{Tr}(\mathbf{P}\mathbf{P}^\top)$ since \mathbf{P} is symmetric.

$$3120 \quad \text{Tr}(\mathbf{P}^2) = \sum_{i=1}^d \sum_{j=1}^d (P_{ij})^2$$

3123 Taking the expectation:

$$3125 \quad \mathbb{E}[\text{Tr}(\mathbf{P}^2)] = \mathbb{E}\left[\sum_{i,j} P_{ij}^2\right] = \sum_{i,j} \mathbb{E}[P_{ij}^2] = n$$

3128 By rotational symmetry, $\mathbb{E}[P_{ii}^2]$ is the same for all i , and $\mathbb{E}[P_{ij}^2]$ is the same for all $i \neq j$.

$$3130 \quad \sum_{i=1}^d \mathbb{E}[P_{ii}^2] + \sum_{i \neq j} \mathbb{E}[P_{ij}^2] = n.$$

3132 There are d diagonal terms and $d(d - 1)$ off-diagonal terms.
 3133

$$3134 d \mathbb{E}[P_{11}^2] + d(d - 1) \mathbb{E}[P_{12}^2] = n$$

3135 Substitute the value for $\mathbb{E}[P_{11}^2]$ (assuming $d > 1$):
 3136

$$3137 d \left(\frac{n(n+2)}{d(d+2)} \right) + d(d-1) \mathbb{E}[P_{12}^2] = n$$

$$3139 \frac{n(n+2)}{d+2} + d(d-1) \mathbb{E}[P_{12}^2] = n$$

$$3141 d(d-1) \mathbb{E}[P_{12}^2] = n - \frac{n(n+2)}{d+2} = \frac{n(d+2) - n(n+2)}{d+2} = \frac{nd + 2n - n^2 - 2n}{d+2} = \frac{n(d-n)}{d+2}$$

$$3144 \mathbb{E}[P_{12}^2] = \frac{n(d-n)}{d(d-1)(d+2)}$$

3146 Substitute the moments back into the expression for $\mathbb{E}[X^2]$:
 3147

$$3148 \mathbb{E}[X^2] = \cos^2(\theta) \mathbb{E}[P_{11}^2] + \sin^2(\theta) \mathbb{E}[P_{12}^2] + 2 \cos(\theta) \sin(\theta) \cdot 0$$

3149 Using $\cos(\theta) = \mathbf{u}^\top \mathbf{v}$, $\cos^2(\theta) = (\mathbf{u}^\top \mathbf{v})^2$, and $\sin^2(\theta) = 1 - \cos^2(\theta) = 1 - (\mathbf{u}^\top \mathbf{v})^2$:
 3150

$$3151 \mathbb{E}[(\mathbf{u}^\top A A^\dagger \mathbf{v})^2] = (\mathbf{u}^\top \mathbf{v})^2 \left(\frac{n(n+2)}{d(d+2)} \right) + (1 - (\mathbf{u}^\top \mathbf{v})^2) \left(\frac{n(d-n)}{d(d-1)(d+2)} \right) \\ 3153 = \frac{n}{d(d+2)} \left[(\mathbf{u}^\top \mathbf{v})^2 (n+2) + \frac{(1 - (\mathbf{u}^\top \mathbf{v})^2)(d-n)}{d-1} \right] \\ 3155 = \frac{1}{c^2} (\mathbf{u}^\top \mathbf{v})^2 + O\left(\frac{1}{d}\right).$$

3158 **Calculation of Variance.** Recall that reflection $\mathbf{R} = \text{diag}(1, -1, 1, \dots, 1)$ implies $\mathbf{P} \stackrel{d}{=} \mathbf{R} \mathbf{P} \mathbf{R}$
 3159 (equal in distribution) and thus $\mathbb{E}[P_{11} P_{12}] = 0$, and in general any mixed moment with an odd power
 3160 of P_{12} vanishes. Therefore, we have the following expansion:
 3161

$$3162 \mathbb{E}[X^4] = \cos^4 \theta \mathbb{E}[P_{11}^4] + 6 \cos^2 \theta \sin^2 \theta \mathbb{E}[P_{11}^2 P_{12}^2] + \sin^4 \theta \mathbb{E}[P_{12}^4]. \quad (31)$$

3163 We start with $\mathbb{E}[P_{11}^4]$. Since $P_{11} \sim \text{Beta}(\alpha, \beta)$ with $\alpha = \frac{n}{2}$, $\beta = \frac{d-n}{2}$. We need the higher moments
 3164 for the Beta distribution: for $m \geq 1$,
 3165

$$3166 \mathbb{E}[P_{11}^m] = \frac{\alpha^{(m)}}{(\alpha + \beta)^{(m)}} = \frac{(\frac{n}{2})^{(m)}}{(\frac{d}{2})^{(m)}}, \quad x^{(m)} := x(x+1) \cdots (x+m-1).$$

3168 In particular, we have the following third and fourth moments:
 3169

$$3170 \mathbb{E}[P_{11}^3] = \frac{(\frac{n}{2})^{(3)}}{(\frac{d}{2})^{(3)}} = \frac{1}{c^3} + O\left(\frac{1}{d}\right), \quad \mathbb{E}[P_{11}^4] = \frac{(\frac{n}{2})^{(4)}}{(\frac{d}{2})^{(4)}} = \frac{1}{c^4} + O\left(\frac{1}{d}\right).$$

3172 We now move on to $\mathbb{E}[P_{11}^2 P_{12}^2]$. From idempotency, $(P^2)_{11} = P_{11}$ gives the row identity $P_{11} =$
 3173 $\sum_{k=1}^d P_{1k}^2$. Multiplying by P_{11}^2 and taking expectations, we have that
 3174

$$3176 \mathbb{E}[P_{11}^3] = \mathbb{E}[P_{11}^4] + \sum_{k=2}^d \mathbb{E}[P_{11}^2 P_{1k}^2] = \mathbb{E}[P_{11}^4] + (d-1) \mathbb{E}[P_{11}^2 P_{12}^2].$$

$$3178 \mathbb{E}[P_{11}^2 P_{12}^2] = \frac{\mathbb{E}[P_{11}^3] - \mathbb{E}[P_{11}^4]}{d-1} = \frac{1}{d-1} \left(\frac{(\frac{n}{2})^{(3)}}{(\frac{d}{2})^{(3)}} - \frac{(\frac{n}{2})^{(4)}}{(\frac{d}{2})^{(4)}} \right) = \frac{1}{d-1} \left(\frac{1}{c^3} - \frac{1}{c^4} + O\left(\frac{1}{d}\right) \right) = O\left(\frac{1}{d}\right).$$

3181 We still need to evaluate or upper bound $\mathbb{E}[P_{12}^4]$. From $P_{11} = \sum_{k=1}^d P_{1k}^2$ we have $\sum_{k=2}^d P_{1k}^2 =$
 3182 $P_{11} - P_{11}^2$. By Cauchy-Schwarz,
 3183

$$3185 \sum_{k=2}^d P_{1k}^4 = \left(\sum_{k=2}^d P_{1k}^2 \right)^2 = (P_{11} - P_{11}^2)^2.$$

3186 Taking expectations, we get:
 3187

$$(d-1)\mathbb{E}[P_{12}^4] \leq \mathbb{E}[(P_{11} - P_{11}^2)^2] = \mathbb{E}[P_{11}^2] - 2\mathbb{E}[P_{11}^3] + \mathbb{E}[P_{11}^4].$$

$$\mathbb{E}[P_{12}^4] \leq \frac{1}{d-1} \left(\frac{1}{c^2} - \frac{2}{c^3} + \frac{1}{c^4} \right) + O\left(\frac{1}{d^2}\right) = O\left(\frac{1}{d}\right).$$

3191 We can now plug these expectation bounds into Equation 31:
 3192

$$\begin{aligned} \mathbb{E}[X^4] &= \cos^4 \theta \frac{\left(\frac{n}{2}\right)^{(4)}}{\left(\frac{d}{2}\right)^{(4)}} + O\left(\frac{1}{d}\right) 6 \cos^2 \theta \sin^2 \theta + O\left(\frac{1}{d}\right) \sin^4 \theta \\ &= \frac{1}{c^4} (\mathbf{u}^\top \mathbf{v})^4 + O\left(\frac{1}{d}\right). \end{aligned}$$

3198 Recall from the prior proof that:
 3199

$$\mathbb{E}[X^2] = \cos^2 \theta \frac{n(n+2)}{d(d+2)} + \sin^2 \theta \frac{n(d-n)}{d(d-1)(d+2)} = \frac{1}{c^2} (\mathbf{u}^\top \mathbf{v})^2 + O\left(\frac{1}{d}\right).$$

3202 Finally, we have that the variance is of order:
 3203

$$\text{Var}(X^2) = \mathbb{E}[X^4] - (\mathbb{E}[X^2])^2 = O\left(\frac{1}{d}\right).$$

3206 \square

3207 **Lemma 32.** Let $a \neq 0$ be a constant and suppose that $\zeta = a + o(f(n))$ as $n \rightarrow \infty$. Then,
 3208

$$\frac{1}{\zeta} = \frac{1}{a} + o(f(n)).$$

3212 *Proof.* Write $\zeta = a + r_n$ with $r_n = o(f(n))$. Then

$$\frac{1}{\zeta} = \frac{1}{a + r_n} = \frac{1}{a} \cdot \frac{1}{1 + \frac{r_n}{a}}.$$

3215 Using the expansion

$$\frac{1}{1+u} = 1 - u + O(u^2) \quad \text{as } u \rightarrow 0,$$

3218 with $u = r_n/a$, we obtain

$$\frac{1}{\zeta} = \frac{1}{a} \left(1 - \frac{r_n}{a} + O\left(\left(r_n/a\right)^2\right) \right) = \frac{1}{a} - \frac{r_n}{a^2} + O(r_n^2).$$

3222 Since $r_n = o(f(n))$ and $f(n) \rightarrow 0$, we have $r_n^2 = o(f(n))$. Therefore
 3223

$$\frac{1}{\zeta} = \frac{1}{a} + o(f(n)),$$

3226 which is the desired expansion. \square

3227 **Lemma 33** (Variance of a reciprocal). Let X be a random variable satisfying

$$\mathbb{E}[X] = a > 0 \quad \text{and} \quad \text{Var}(X) = \sigma^2 = o(1),$$

3230 and assume that X is bounded away from zero with high probability. That is, there exists $C \in (0, a)$
 3231 such that

$$\Pr[X \geq C] = 1 - o(1)$$

3233 If there exists an M such that

$$\mathbb{E}[X^{-8}] \leq M \quad \text{and} \quad \mathbb{E}[(X - \mathbb{E}[X])^4] = O(\sigma^4)$$

3237 Then

$$\text{Var}\left(\frac{1}{X}\right) = \frac{1}{a^4} \text{Var}(X) + o(\text{Var}(X)),$$

3238 so in particular, $\text{Var}(1/X) = o(1)$.
 3239

3240 *Proof.* Let $Y := X - a$. Then

$$3242 \quad \mathbb{E}[Y] = 0, \quad \mathbb{E}[Y^2] = \sigma^2, \quad \mathbb{E}[Y^4] = O(\sigma^4).$$

3243 By Taylor's theorem with Lagrange remainder for $f(x) = 1/x$, there exists $\theta = \theta(X) \in (0, 1)$ such
3244 that

$$3245 \quad \frac{1}{X} = \frac{1}{a} - \frac{Y}{a^2} + Z, \quad Z := \frac{Y^2}{(a + \theta Y)^3} \geq 0.$$

3246 Write $\Delta := \frac{1}{X} - \frac{1}{a} = -\frac{Y}{a^2} + Z$. Then

$$3249 \quad \text{Var}\left(\frac{1}{X}\right) = \mathbb{E}[\Delta^2] - (\mathbb{E}[\Delta])^2.$$

3250 We will show

$$3253 \quad \mathbb{E}[\Delta^2] = \frac{\sigma^2}{a^4} + o(\sigma^2) \quad \text{and} \quad (\mathbb{E}[\Delta])^2 = o(\sigma^2).$$

3254 Let $G := \{X \geq C\}$ and $B := \{X < C\}$. Since $C < a$ and $\mathbb{E}[Y^2] = \sigma^2$, Chebyshev gives the
3255 quantitative bound

$$3258 \quad \Pr[B] = \Pr[|Y| \geq a - C] \leq \frac{\mathbb{E}[Y^2]}{(a - C)^2} = \frac{\sigma^2}{(a - C)^2} = O(\sigma^2) = o(1).$$

3261 **Second moment $\mathbb{E}[\Delta^2]$.** We split over G and B .

3263 *On G .* Since $a + \theta Y = \theta X + (1 - \theta)a \geq C$, we have

$$3265 \quad |Z| \leq \frac{Y^2}{C^3}, \quad Z^2 \leq \frac{Y^4}{C^6}.$$

3268 Therefore

$$3269 \quad \mathbb{E}\left[\left(-\frac{Y}{a^2} + Z\right)^2 \mathbf{1}_G\right] = \frac{1}{a^4} \mathbb{E}[Y^2 \mathbf{1}_G] - \frac{2}{a^2} \mathbb{E}[YZ \mathbf{1}_G] + \mathbb{E}[Z^2 \mathbf{1}_G].$$

3272 We bound each term as follows.

$$3273 \quad \mathbb{E}[Z^2 \mathbf{1}_G] \leq \frac{1}{C^6} \mathbb{E}[Y^4] = O(\sigma^4),$$

3275 and, using $\mathbf{1}_G \leq 1$ and Lyapunov/monotonicity of L^p norms,

$$3277 \quad \mathbb{E}[|YZ| \mathbf{1}_G] \leq \frac{1}{C^3} \mathbb{E}[|Y|^3] \leq \frac{1}{C^3} (\mathbb{E}[Y^4])^{3/4} = O(\sigma^3) = o(\sigma^2).$$

3279 Moreover,

$$3281 \quad \mathbb{E}[Y^2 \mathbf{1}_G] = \sigma^2 - \mathbb{E}[Y^2 \mathbf{1}_B], \quad \mathbb{E}[Y^2 \mathbf{1}_B] \leq (\mathbb{E}[Y^4])^{1/2} \Pr[B]^{1/2} = O(\sigma^2) \Pr[B]^{1/2} = o(\sigma^2).$$

3283 Hence

$$3284 \quad \mathbb{E}\left[\left(-\frac{Y}{a^2} + Z\right)^2 \mathbf{1}_G\right] = \frac{\sigma^2}{a^4} + o(\sigma^2).$$

3287 *On B .* Using the algebraic identity

$$3289 \quad \left(\frac{1}{X} - \frac{1}{a}\right)^2 = \frac{Y^2}{a^2 X^2},$$

3291 Cauchy-Schwarz and Hölder (with exponents 2, 2) give

$$3293 \quad \mathbb{E}[\Delta^2 \mathbf{1}_B] = \frac{1}{a^2} \mathbb{E}\left[\frac{Y^2}{X^2} \mathbf{1}_B\right] \leq \frac{1}{a^2} (\mathbb{E}[Y^4])^{1/2} (\mathbb{E}[X^{-4} \mathbf{1}_B])^{1/2} \leq \frac{1}{a^2} O(\sigma^2) (\mathbb{E}[X^{-8}])^{1/4} \Pr[B]^{1/4}.$$

3294 Under the lemma's assumption $\mathbb{E}[X^{-8}] \leq M$, we get
 3295

$$\mathbb{E}[\Delta^2 \mathbf{1}_B] = O(\sigma^2) \Pr[B]^{1/4} = o(\sigma^2).$$

3296 Combining the G and B parts,
 3297

$$\mathbb{E}[\Delta^2] = \frac{\sigma^2}{a^4} + o(\sigma^2).$$

3300

3301 **Mean correction** $(\mathbb{E}[\Delta])^2$. Since $\mathbb{E}[Y] = 0$, we have
 3302

$$\mathbb{E}[\Delta] = \mathbb{E}[Z] = \mathbb{E}[Z \mathbf{1}_G] + \mathbb{E}[Z \mathbf{1}_B].$$

3303 On G , $Z \leq Y^2/C^3$, so
 3304

$$\mathbb{E}[Z \mathbf{1}_G] \leq \frac{1}{C^3} \mathbb{E}[Y^2 \mathbf{1}_G] \leq \frac{1}{C^3} \sigma^2.$$

3305 On B , The inequality
 3306

$$Z = \frac{Y^2}{a + \theta Y} \leq \frac{X^2}{Y^3}$$

3307 holds on set B because on this set as $X < a$, meaning the point $a + \theta Y$ lies between X and a , so
 3308 $a + \theta Y > X$. Thus, using Cauchy–Schwarz and Hölder,
 3309

$$\mathbb{E}[Z \mathbf{1}_B] \leq \mathbb{E}\left[\frac{Y^2}{X^3} \mathbf{1}_B\right] \leq (\mathbb{E}[Y^4])^{1/2} (\mathbb{E}[X^{-6} \mathbf{1}_B])^{1/2} \leq O(\sigma^2) (\mathbb{E}[X^{-12}])^{1/4} \Pr[B]^{1/4} = o(\sigma^2).$$

3310 Thus $|\mathbb{E}[\Delta]| = O(\sigma^2)$ and therefore
 3311

$$(\mathbb{E}[\Delta])^2 = O(\sigma^4) = o(\sigma^2).$$

3312 Putting the two steps together,
 3313

$$\text{Var}\left(\frac{1}{X}\right) = \mathbb{E}[\Delta^2] - (\mathbb{E}[\Delta])^2 = \frac{\sigma^2}{a^4} + o(\sigma^2) = \frac{1}{a^4} \text{Var}(X) + o(\text{Var}(X)).$$

3314 \square

3315 **Lemma 34** (Variance of a sum). *Let A and B be any random variables with finite variances
 3316 $V(A) = \text{Var}(A)$ and $V(B) = \text{Var}(B)$. Then,*

$$\text{Var}(A + B) \leq \left(\sqrt{V(A)} + \sqrt{V(B)}\right)^2.$$

3317 *Proof.* Recall that
 3318

$$\text{Var}(A + B) = \text{Var}(A) + \text{Var}(B) + 2 \text{Cov}(A, B).$$

3319 By the Cauchy–Schwarz inequality, we have
 3320

$$|\text{Cov}(A, B)| \leq \sqrt{V(A)V(B)}.$$

3321 Thus,
 3322

$$\text{Var}(A + B) \leq V(A) + V(B) + 2\sqrt{V(A)V(B)} = \left(\sqrt{V(A)} + \sqrt{V(B)}\right)^2.$$

3323 \square

3324 **Lemma 35** (Variance of one product). *Let A, B be real random variables with means $a = \mathbb{E}[A]$,
 3325 $b = \mathbb{E}[B]$ and finite variances. Assume*

$$\mathbb{E}[(A - a)^4] \leq K_A \text{Var}(A)^2, \quad \mathbb{E}[(B - b)^4] \leq K_B \text{Var}(B)^2.$$

3326 Then, with $C_4 := (K_A K_B)^{1/4}$,

$$\sqrt{\text{Var}(AB)} \leq |a| \sqrt{\text{Var}(B)} + |b| \sqrt{\text{Var}(A)} + C_4 \sqrt{\text{Var}(A)\text{Var}(B)}.$$

3327 Moreover, as $\text{Var}(A), \text{Var}(B) \rightarrow 0$,

$$\text{Var}(AB) = O(a^2 \text{Var}(B)) + O(b^2 \text{Var}(A)) + o(\text{Var}(A) + \text{Var}(B)).$$

3328 It directly follows that if all the means are $O(1)$,

$$\text{Var}(AB) = O(\text{Var}(B)) + O(\text{Var}(A)).$$

3329 $\text{Var}(ABC) = O(\text{Var}(C)) + O(\text{Var}(B)) + O(\text{Var}(A))$ and so on by induction.

3348 *Proof.* Write

$$3349 AB - ab = a \tilde{B} + b \tilde{A} + \tilde{A} \tilde{B}.$$

3350 Using $\text{Var}(U + V) = \text{Var}(U) + \text{Var}(V) + 2 \text{Cov}(U, V)$ and $|\text{Cov}(U, V)| \leq \sqrt{\text{Var}(U)\text{Var}(V)}$, we
3351 get
3352

$$3353 \text{Var}(AB) = \text{Var}(a \tilde{B} + b \tilde{A} + \tilde{A} \tilde{B}) \\ 3354 \leq \left(|a| \sqrt{\text{Var}(\tilde{B})} + |b| \sqrt{\text{Var}(\tilde{A})} + \sqrt{\text{Var}(\tilde{A} \tilde{B})} \right)^2. \\ 3355 \\ 3356 \\ 3357$$

3358 Since $\text{Var}(\tilde{A}) = \text{Var}(A)$ and $\text{Var}(\tilde{B}) = \text{Var}(B)$, it remains to bound $\text{Var}(\tilde{A} \tilde{B})$. By
3359 Cauchy–Schwarz (Hölder with $p = q = 2$),
3360

$$3361 \text{Var}(\tilde{A} \tilde{B}) \leq \mathbb{E}[\tilde{A}^2 \tilde{B}^2] \leq (\mathbb{E}[\tilde{A}^4])^{1/2} (\mathbb{E}[\tilde{B}^4])^{1/2}.$$

3363 Since we assume fourth–moment control $\mathbb{E}[\tilde{A}^4] \leq K_A \text{Var}(A)^2$ and $\mathbb{E}[\tilde{B}^4] \leq K_B \text{Var}(B)^2$, then
3364

$$3365 \sqrt{\text{Var}(\tilde{A} \tilde{B})} \leq (K_A K_B)^{1/4} \sqrt{\text{Var}(A)\text{Var}(B)}.$$

3367 Hence

$$3368 \text{Var}(AB) \leq \left(|a| \sqrt{\text{Var}(B)} + |b| \sqrt{\text{Var}(A)} + C_4 \sqrt{\text{Var}(A)\text{Var}(B)} \right)^2, \quad C_4 := (K_A K_B)^{1/4}.$$

3371 For the moreover part, using the exact variance–covariance expansion,
3372

$$3373 \text{Var}(AB) = a^2 \text{Var}(B) + b^2 \text{Var}(A) + 2ab \text{Cov}(A, B) + \text{Var}(\tilde{A} \tilde{B}) + 2a \text{Cov}(\tilde{B}, \tilde{A} \tilde{B}) + 2b \text{Cov}(\tilde{A}, \tilde{A} \tilde{B}),$$

3375 we bound the three remainder terms using Cauchy–Schwarz and the fourth–moment control:

$$3376 \text{Var}(\tilde{A} \tilde{B}) \leq \mathbb{E}[\tilde{A}^2 \tilde{B}^2] \leq (\mathbb{E}[\tilde{A}^4])^{1/2} (\mathbb{E}[\tilde{B}^4])^{1/2} \leq C_4^2 \text{Var}(A) \text{Var}(B), \\ 3377 \\ 3378 \left| \text{Cov}(\tilde{B}, \tilde{A} \tilde{B}) \right| \leq \sqrt{\text{Var}(\tilde{B})} \sqrt{\text{Var}(\tilde{A} \tilde{B})} \leq C_4 \text{Var}(B) \sqrt{\text{Var}(A)}, \\ 3379 \\ 3380 \left| \text{Cov}(\tilde{A}, \tilde{A} \tilde{B}) \right| \leq \sqrt{\text{Var}(\tilde{A})} \sqrt{\text{Var}(\tilde{A} \tilde{B})} \leq C_4 \text{Var}(A) \sqrt{\text{Var}(B)}.$$

3383 As $\text{Var}(A), \text{Var}(B) \rightarrow 0$, each of these is $o(\text{Var}(A) + \text{Var}(B))$.

3384 For the covariance term, Cauchy–Schwarz and the inequality $2uv \leq \varepsilon u^2 + \varepsilon^{-1} v^2$ (for any $\varepsilon > 0$)
3385 with $u := |a| \sqrt{\text{Var}(B)}, v := |b| \sqrt{\text{Var}(A)}$ give
3386

$$3387 |2ab \text{Cov}(A, B)| \leq 2|ab| \sqrt{\text{Var}(A)\text{Var}(B)} \leq \varepsilon a^2 \text{Var}(B) + \varepsilon^{-1} b^2 \text{Var}(A).$$

3388 Therefore,

$$3389 \text{Var}(AB) \leq (1 + \varepsilon) a^2 \text{Var}(B) + (1 + \varepsilon^{-1}) b^2 \text{Var}(A) + o(\text{Var}(A) + \text{Var}(B)).$$

3390 Choosing, e.g., $\varepsilon = 1$ yields

$$3391 \text{Var}(AB) = O(a^2 \text{Var}(B)) + O(b^2 \text{Var}(A)) + o(\text{Var}(A) + \text{Var}(B)),$$

3392 which proves the moreover statement. \square

3393 **Lemma 36** (Variance of general product). *Let $m \geq 2$ and let X_1, \dots, X_m be real random variables
3394 with nonzero means $\mu_i := \mathbb{E}[X_i] \neq 0$ and variances $f_i(n) := \text{Var}(X_i) \rightarrow 0$ as $n \rightarrow \infty$. Assume
3395 that for some integer $M \geq m$ (it is enough to take $M = m$),*

$$3396 \mathbb{E}[|X_i - \mu_i|^{2M}] = O(\text{Var}(X_i)^M) \quad \text{for each } i = 1, \dots, m. \quad (32)$$

3397 Then

$$3398 \text{Var}\left(\prod_{i=1}^m X_i\right) = O\left(\left(\sum_{i=1}^m \sqrt{f_i(n)}\right)^2\right) = O\left(\max_{1 \leq i \leq m} f_i(n)\right).$$

3402 *Proof.* Write $\Delta_i := X_i - \mu_i$ so that $\mathbb{E}[\Delta_i] = 0$ and $\|\Delta_i\|_{L_2} = \sigma_i$. By assumption Equation 32 with
 3403 $M \geq m$ and monotonicity of L_p norms,
 3404

$$3405 \quad \|\Delta_i\|_{L_{2k}} = O\left(\sqrt{f_i(n)}\right) \quad \text{for every } 1 \leq k \leq m, i = 1, \dots, m.$$

3407 Expand the product multilinearly:

$$3408 \quad \prod_{i=1}^m X_i - \prod_{i=1}^m \mu_i = \sum_{\emptyset \neq S \subseteq [m]} \left(\prod_{j \in S^c} \mu_j \right) \left(\prod_{i \in S} \Delta_i \right).$$

3412 Taking L_2 norms and using the triangle inequality,

$$3413 \quad \left\| \prod_{i=1}^m X_i - \prod_{i=1}^m \mu_i \right\|_{L_2} \leq \sum_{\emptyset \neq S \subseteq [m]} \left(\prod_{j \in S^c} |\mu_j| \right) \left\| \prod_{i \in S} \Delta_i \right\|_{L_2}.$$

3417 For a fixed nonempty S with $|S| = k$, apply Hölder with exponents all equal to $2k$:

$$3418 \quad \left\| \prod_{i \in S} \Delta_i \right\|_{L_2} \leq \prod_{i \in S} \|\Delta_i\|_{L_{2k}} = O\left(\prod_{i \in S} \sqrt{f_i}\right),$$

3422 where we used $\|\Delta_i\|_{L_{2k}} = O(\sqrt{f_i})$ for $k \leq m$.

3423 Let $c_i := \sqrt{f_i(n)}$. Summing over subsets S shows

$$3424 \quad \left\| \prod_{i=1}^m X_i - \prod_{i=1}^m \mu_i \right\|_{L_2} \leq A \left(\prod_{i=1}^m (1 + c_i) - 1 \right) \leq A (e^\Xi - 1),$$

3425 where $\Xi := \sum_{i=1}^m c_i$ and A is a constant depending only on m , $\{\mu_i\}$, and the moment constants (not
 3426 on n). Hence

$$3427 \quad \text{Var}\left(\prod_{i=1}^m X_i\right) \leq \left\| \prod_{i=1}^m X_i - \prod_{i=1}^m \mu_i \right\|_{L_2}^2 = O(\Xi^2) = O\left(\left(\sum_{i=1}^m \sqrt{f_i(n)}\right)^2\right).$$

3434 Since m is fixed, $(\sum_{i=1}^m \sqrt{f_i})^2 \leq m^2 \max_i f_i$, giving the claimed bound.

3436 \square

3437 **Corollary 1** (Higher moments of the centered product). *Fix $p \geq 1$. Under the hypotheses of
 3438 Lemma 36, then*

$$3439 \quad \left\| \prod_{i=1}^m X_i - \prod_{i=1}^m \mathbb{E}[X_i] \right\|_{L_{2p}} \leq C_{p,m} \sum_{\emptyset \neq S \subseteq [m]} \left(\prod_{j \in S^c} |\mathbb{E}[X_j]| \right) \prod_{i \in S} \sqrt{f_i} = o(1),$$

3443 and hence $\mathbb{E}|\prod_{i=1}^m X_i - \mathbb{E}\prod_{i=1}^m X_i|^{2p} = o(1)$.

3445
 3446 **Lemma 37** (Expectation of Product vs. Product of Expectations). *Fix $k \geq 2$. Let X_1, \dots, X_k be
 3447 random variables. Assume:*

- 3449 1. *Uniformly bounded means: $\sup_{n,i} |\mathbb{E}[X_i]| \leq M < \infty$.*
- 3450 2. *Vanishing variances: $\text{Var}(X_i) = f_i(n)$ with $f_i(n) \rightarrow 0$ as $n \rightarrow \infty$ for each i .*
- 3452 3. *Moment control up to order k : For each i and every $p \in \{2, \dots, k\}$,*

$$3454 \quad \mathbb{E} [|X_i - \mathbb{E}[X_i]|^p] \leq C_p \text{Var}(X_i)^{p/2},$$

3455 with constants C_p .

3456 Then for finite k , we have:

3457

$$3458 \left| \mathbb{E} \left[\prod_{i=1}^k X_i \right] - \prod_{i=1}^k \mathbb{E} X_i \right| = O \left(\left(\sum_{i=1}^k \sqrt{f_i(n)} \right)^2 \right) = O \left(\max_{1 \leq i \leq k} f_i(n) \right).$$

3461 *Proof.* Set $\Delta_i := X_i - \mathbb{E}[X_i]$, so $\mathbb{E}\Delta_i = 0$, $\text{Var}(X_i) = \text{Var}(\Delta_i) = f_i(n)$, and by assumption

3462

$$3463 \|\Delta_i\|_{L_p} := (\mathbb{E}[|\Delta_i|^p])^{1/p} \leq C_p^{1/p} f_i(n)^{1/2}, \quad p = 2, \dots, k.$$

3464 Using the multilinearity of expectation,

3465

$$3466 \prod_{i=1}^k X_i = \prod_{i=1}^k (\mathbb{E}[X_i] + \Delta_i) = \sum_{S \subseteq [k]} \left(\prod_{i \in S} \Delta_i \right) \left(\prod_{j \notin S} \mathbb{E}[X_j] \right),$$

3467 Thus,

3468

$$3469 \prod_{i=1}^k X_i - \prod_{i=1}^k \mathbb{E}[X_i] = \sum_{\emptyset \neq S \subseteq [k]} \left[\prod_{i \in S} \Delta_i \right] \prod_{j \notin S} \mathbb{E}[X_j].$$

3470 Then taking the expectation and noting that $\prod_{j \notin S} \mathbb{E}[X_j]$ is a constant, we get

3471

$$3472 \mathbb{E} \left[\prod_{i=1}^k X_i \right] - \prod_{i=1}^k \mathbb{E}[X_i] = \sum_{\emptyset \neq S \subseteq [k]} \mathbb{E} \left[\prod_{i \in S} \Delta_i \right] \prod_{j \notin S} \mathbb{E}[X_j].$$

3473 If $S = \{\ell\}$ then $\mathbb{E}[\prod_{i \in S} \Delta_i] = \mathbb{E}[\Delta_\ell] = 0$. Hence every singleton term vanishes exactly, and the sum begins at $|S| = 2$. From the bounded means assumption,

3474

$$3475 \left| \prod_{j \notin S} \mathbb{E}[X_j] \right| \leq M^{k-|S|}, \quad \forall S \subseteq [k].$$

3476 Fix a nonempty subset S with $|S| = m \geq 2$. By generalized Hölder with all exponents equal to m (so $\sum_{i \in S} \frac{1}{m} = 1$),

3477

$$3478 \left| \mathbb{E} \left[\prod_{i \in S} \Delta_i \right] \right| \leq \prod_{i \in S} \|\Delta_i\|_{L_m} \leq \prod_{i \in S} \left(C_m^{1/m} f_i(n)^{1/2} \right) = C_m \prod_{i \in S} \sqrt{f_i(n)}.$$

3479 Therefore, for every S with $|S| = m \geq 2$,

3480

$$3481 \left| \mathbb{E} \left[\prod_{i \in S} \Delta_i \right] \prod_{j \notin S} \mathbb{E}[X_j] \right| \leq M^{k-m} C_m \prod_{i \in S} \sqrt{f_i(n)}.$$

3482 Let $c_i := \sqrt{f_i(n)} \geq 0$. Denote by

3483

$$3484 e_m(c_1, \dots, c_k) := \sum_{\substack{S \subseteq [k] \\ |S|=m}} \prod_{i \in S} c_i$$

3485 the m -th elementary symmetric polynomial. Summing the bound from, we get

3486

$$3487 \left| \mathbb{E} \left[\prod_{i=1}^k X_i \right] - \prod_{i=1}^k \mathbb{E} X_i \right| \leq \sum_{m=2}^k M^{k-m} C_m e_m(c_1, \dots, c_k).$$

3488 Let $M_\star := \max_{2 \leq m \leq k} M^{k-m} C_m$. Since $e_m \geq 0$ for $c_i \geq 0$,

3489

$$3490 \sum_{m=2}^k M^{k-m} C_m e_m \leq M_\star \sum_{m=2}^k e_m(c_1, \dots, c_k).$$

3510 Recall the identity
 3511

$$3512 \prod_{i=1}^k (1 + c_i) = \sum_{m=0}^k e_m(c_1, \dots, c_k) = 1 + \sum_{m=1}^k e_m(c_1, \dots, c_k),$$

3513 so that $\sum_{m=2}^k e_m = \prod_{i=1}^k (1 + c_i) - 1 - \sum_{i=1}^k c_i$. Hence
 3514

$$3515 \left| \mathbb{E} \left[\prod_{i=1}^k X_i \right] - \prod_{i=1}^k \mathbb{E} X_i \right| \leq M_\star \left(\prod_{i=1}^k (1 + c_i) - 1 - \sum_{i=1}^k c_i \right).$$

3516 Let $\Xi := \sum_{i=1}^k c_i \rightarrow 0$ as $n \rightarrow \infty$. Since $\log(1 + u) \leq u$ for $u \geq 0$,
 3517

$$3518 \prod_{i=1}^k (1 + c_i) = \exp \left(\sum_{i=1}^k \log(1 + c_i) \right) \leq \exp(\Xi).$$

3519 Thus, the difference is at most $M_\star(e^\Xi - 1 - \Xi)$. By Taylor's theorem, $e^\Xi = 1 + \Xi + \frac{1}{2}\Xi^2 e^\xi$ for some
 3520 $\xi \in [0, \Xi]$, so $e^\Xi - 1 - \Xi = \frac{1}{2}\Xi^2 e^\xi \leq \frac{1}{2}\Xi^2 e^\Xi$ (since $\xi \leq \Xi$ and $e^\xi \leq e^\Xi$). Therefore,
 3521

$$3522 \left| \mathbb{E} \left[\prod_{i=1}^k X_i \right] - \prod_{i=1}^k \mathbb{E} X_i \right| \leq \frac{M_\star}{2} \Xi^2 e^\Xi = O(\Xi^2),$$

3523 as $\Xi \rightarrow 0$ and $e^\Xi \rightarrow 1$. Since $\Xi = O\left(\sum_{i=1}^k \sqrt{f_i(n)}\right)$, we get the result. \square
 3524

3525 **Lemma 38** (Moment preservation under monomial \leftrightarrow Hermite change of basis). *Fix $M \in \mathbb{N}$ and
 3526 degree $r \in \mathbb{N}$. Let*

$$3527 \mathcal{M} := \{x^\gamma : \gamma \in \mathbb{N}^M, |\gamma| \leq r\}, \quad \mathcal{H} := \{\mathbf{H}_\alpha : \alpha \in \mathbb{N}^M, |\alpha| \leq r\},$$

3528 with $\mathbf{H}_\alpha(x) = \prod_{j=1}^M H_{\alpha_j}(x_j)$ the probabilists' Hermite basis. For any (random) coefficients
 3529 $\{a_\gamma\}_{|\gamma| \leq r}$ define the random polynomial $P(x) = \sum_{|\gamma| \leq r} a_\gamma x^\gamma$. Then there is a deterministic,
 3530 invertible matrix $T = T(M, r)$ such that the Hermite coefficients $c = \{c_\alpha\}_{|\alpha| \leq r}$ in $P(x) =$
 3531 $\sum_{|\alpha| \leq r} c_\alpha \mathbf{H}_\alpha(x)$ satisfy

$$3532 c = T a.$$

3533 Consequently, for any $p \geq 1$,

$$3534 \|c_\alpha\|_{L_p} \leq \sum_{|\gamma| \leq r} |T_{\alpha\gamma}| \|a_\gamma\|_{L_p} \quad \text{for all } \alpha,$$

3535 so if each $a_\gamma \in L_p$ then each $c_\alpha \in L_p$. Moreover, since T is invertible, the converse also holds: if
 3536 each $c_\alpha \in L_p$ then each $a_\gamma \in L_p$.
 3537

3538 *Proof.* In one dimension, each monomial admits a finite Hermite expansion $x^m =$
 3539 $\sum_{j=0}^{\lfloor m/2 \rfloor} t_{m,j} H_{m-2j}(x)$ with deterministic coefficients $t_{m,j}$; in several dimensions, take tensor
 3540 products to obtain $x^\gamma = \sum_{|\alpha| \leq |\gamma|} T_{\alpha\gamma} \mathbf{H}_\alpha(x)$. Ordering multi-indices by total degree yields a block
 3541 upper-triangular, deterministic, invertible matrix $T = T(M, r)$. Linearity gives $c = T a$. For $p \geq 1$,
 3542 Minkowski's inequality yields $\|c_\alpha\|_{L_p} = \left\| \sum_\gamma T_{\alpha\gamma} a_\gamma \right\|_{L_p} \leq \sum_\gamma |T_{\alpha\gamma}| \|a_\gamma\|_{L_p}$, so finiteness of all
 3543 $\|a_\gamma\|_{L_p}$ implies finiteness of all $\|c_\alpha\|_{L_p}$. Invertibility gives the converse using $a = T^{-1}c$ and the
 3544 same argument with T^{-1} . \square
 3545

3546 F PROOF OF SPECIFIC CASES AND OVERFITTING

3547 F.1 PROOF OF THEOREM 1.

3548 *Proof.* We set $\alpha_Z = \alpha_A = \tilde{\alpha}_Z = \tilde{\alpha}_A = \alpha$, $\tilde{\theta} = \theta$, $\tilde{\tau} = \tau$ in the above Theorem 5 and note that it
 3549 greatly simplifies each term. Algebra shows that for $c < 1$

$$3550 \text{Bias} = \tau_\varepsilon^2 \frac{c}{1-c} \frac{\theta^2}{d(\theta^2 + \tau^2)}, \quad \text{Variance} = \alpha^2 \tau^2 \|\beta_*\|^2 + \tau_\varepsilon^2 \frac{c}{1-c} \left[1 - \frac{\theta^2}{d(\theta^2 + \tau^2)} \right],$$

3564 Data Noise = $\alpha^2 \tau^2 \|\beta_*\|^2$, Target Alignment = $-2\alpha^2 \tau^2 \|\beta_*\|^2$,

3565
3566 While for $c > 1$, we can first send $d, n \rightarrow \infty$ and many terms become asymptotically 0. In the end,
3567 we get that:

3568 Bias = $\alpha^2 \theta^2 (\beta_*^\top \mathbf{u})^2 \left(1 - \frac{1}{c}\right)^2 \left(\frac{\tau^2 c}{\theta^2 + \tau^2 c}\right)^2$, Data Noise = $\alpha^2 \tau^2 \|\beta_*\|^2$,

3571 Variance = $\alpha^2 \tau^2 \|\beta_*\|^2 \frac{1}{c} + \alpha^2 \tau^2 (\beta_*^\top \mathbf{u})^2 \frac{\theta^2}{\theta^2 + \tau^2 c} \left(1 - \frac{1}{c}\right) + \tau_\varepsilon^2 \frac{1}{c-1}$.

3574 Target Alignment = $-2\alpha^2 \tau^2 \left(\left(1 - \frac{1}{c}\right) \frac{\theta^2}{\theta^2 + \tau^2 c} (\beta_*^\top \mathbf{u})^2 + \|\beta_*\|^2 \frac{1}{c}\right)$,

3576 Adding these terms together, we see with simple algebra that many terms cancel or can be combined,
3577 establishing the stated formula. \square

3579 F.2 PROOF OF THEOREM 2.

3581 *Proof.* We set $\alpha_Z = \tilde{\alpha}_Z$, $\alpha_A = \tilde{\alpha}_A$, $\tilde{\theta} = \theta$, $\tilde{\tau} = \tau$, and send $d, n \rightarrow \infty$ in Theorem 5. Recall that
3582 $\Delta_c = \alpha_Z - \frac{\alpha_A}{c}$ and $\Delta_1 = \alpha_Z - \alpha_A$. Then some algebra shows that for $c < 1$,

3584 Bias = $\theta^2 (\beta_*^\top \mathbf{u})^2 \Delta_1^2 \left(\frac{\tau^2}{\theta^2 + \tau^2}\right)^2$, Data Noise = $\alpha_A^2 \tau^2 \|\beta_*\|^2$,

3587 Target Alignment = $-2\alpha_A^2 \tau^2 \|\beta_*\|^2 - 2\alpha_A \tau^2 (\beta_*^\top \mathbf{u})^2 \Delta_1 \frac{\theta^2}{\theta^2 + \tau^2}$,

3589 Variance = $\alpha_A^2 \tau^2 \|\beta_*\|^2 + \tau_\varepsilon^2 \frac{c}{1-c} + \tau^2 (\beta_*^\top \mathbf{u})^2 \left[\frac{1}{1-c} \frac{\theta^4 + \theta^2 \tau^2 c}{(\theta^2 + \tau^2)^2} \Delta_1^2 + 2\alpha_A \Delta_1 \frac{\theta^2}{\theta^2 + \tau^2}\right]$.

3592 For $c > 1$, we have that

3593 Bias = $\theta^2 (\beta_*^\top \mathbf{u})^2 \Delta_c^2 \left(\frac{\tau^2 c}{\theta^2 + \tau^2 c}\right)^2$, Data Noise = $\alpha_A^2 \tau^2 \|\beta_*\|^2$,

3596 Target Alignment = $-2\alpha_A^2 \tau^2 \frac{\|\beta_*\|^2}{c} - 2\alpha_A \tau^2 (\beta_*^\top \mathbf{u})^2 \Delta_c \frac{\theta^2}{\theta^2 + \tau^2 c}$,

3599 Variance = $\alpha_A^2 \tau^2 \frac{\|\beta_*\|^2}{c} + \tau_\varepsilon^2 \frac{1}{c-1} + \tau^2 (\beta_*^\top \mathbf{u})^2 \frac{c}{1-c} \frac{\theta^2}{\theta^2 + \tau^2 c} \Delta_c^2$.

3601 We proceed by adding these terms together and the results follow from algebra. \square

3603 F.3 PROOF OF THEOREM 3.

3605 *Proof.* We set $\tilde{\theta} = \theta$ and $\tilde{\tau} = \tau$ in Theorem 5 and have the regime of equal operator norm $\theta^2 = \gamma \tau^2$.
3606 Since we are interested in the limit $c \rightarrow \infty$, we only consider the overparameterized case $c > 1$. We
3607 first take the limit $d, n \rightarrow \infty$ and have that:

3608 Bias = $\tau^2 (\beta_*^\top \mathbf{u})^2 \left(\sqrt{\gamma}(\tilde{\alpha}_Z - \alpha_Z) + \left(\alpha_Z - \frac{\alpha_A}{c}\right) \frac{c\sqrt{\gamma}}{\gamma+c}\right)^2$, Data Noise = $\tilde{\alpha}_A^2 \tau^2 \|\beta_*\|^2$,

3611 Target Alignment = $-2\tilde{\alpha}_A \tau^2 \left(\left(\alpha_Z - \frac{\alpha_A}{c}\right) \frac{\gamma}{\gamma+c} (\beta_*^\top \mathbf{u})^2 + \alpha_A \frac{\|\beta_*\|^2}{c}\right)$,

3614 Variance = $\tau^2 \alpha_A^2 \frac{\|\beta_*\|^2}{c} + \tau^2 (\beta_*^\top \mathbf{u})^2 \frac{c}{(c-1)} \frac{\gamma}{\gamma+c} \left(\alpha_Z - \frac{\alpha_A}{c}\right)^2 + \tau_\varepsilon^2 \left(\frac{1}{c-1}\right)$.

3617 The rest follows from simple calculus: if $\tilde{\alpha}_Z \neq \alpha_Z$, $\gamma = \omega_c(1)$, and $\beta_*^\top \mathbf{u} \neq 0$, the bias will
diverge and other terms are controlled, yielding catastrophic. If $\tilde{\alpha}_Z = \alpha_Z$, $\omega_c(1) \leq \gamma \leq o_c(c^2)$, and

3618 $\beta_*^\top \mathbf{u} \neq 0$, a similar thing happens. In other cases, all of these terms are controlled and become finite
3619 values in the limit $\lim_{c \rightarrow \infty} \mathcal{R}_c - \tau_\varepsilon^2$, giving us tempered overfitting.
3620

$$\lim_{c \rightarrow \infty} \mathcal{R}_c = \begin{cases} \tilde{\alpha}_A^2 \tau^2 \|\beta_*\|^2 & \beta \perp u \\ \tau^2 [\gamma \tilde{\alpha}_Z^2 (\beta_*^\top \mathbf{u})^2 + \tilde{\alpha}_A^2 \|\beta_*\|^2] & \beta \not\perp u, \gamma = \Theta_c(1) \\ \infty & \alpha_Z \neq \tilde{\alpha}_Z, \beta_* \not\perp u, \gamma = \omega(1) \\ \infty & \alpha_Z = \tilde{\alpha}_Z, \beta_* \not\perp u, \omega(1) \leq \gamma \leq o(c^2) \\ \tau^2 \left[\left(\frac{\phi}{(\phi+1)^2} \alpha_Z^2 - 2\tilde{\alpha}_A \alpha_Z \right) (\beta_*^\top \mathbf{u})^2 + \alpha_A^2 \|\beta_*\|^2 \right] & \alpha_Z = \tilde{\alpha}_Z, \beta_* \not\perp u, \gamma = \phi c^2 \\ \tau^2 [(\alpha_Z^2 - 2\tilde{\alpha}_A \alpha_Z) (\beta_*^\top \mathbf{u})^2 + \alpha_A^2 \|\beta_*\|^2] & \alpha_Z = \tilde{\alpha}_Z, \beta_* \not\perp u, \gamma = \omega(c^2) \end{cases}$$

□

F.4 PROOF OF THEOREM 4.

3633 *Proof.* We start with the first part and assume that $\alpha_Z \neq \tilde{\alpha}_Z$. Similarly, we have that $\tilde{\theta} = \theta$ and
3634 $\tilde{\tau} = \tau$ in Theorem 5. To achieve equal Frobenius norm, we set $\theta^2 = d\tau^2$ and send $d, n \rightarrow \infty$ so
3635 several terms would vanish.

3636 In particular, for $c < 1$, we have that

$$3638 \text{Bias} = \theta^2 (\beta_*^\top \mathbf{u})^2 \left(\tilde{\alpha}_Z - \alpha_Z + (\alpha_Z - \alpha_A) \frac{\tau^2}{\theta^2 + \tau^2} \right)^2 = \tau^2 (\beta_*^\top \mathbf{u})^2 \left(\sqrt{d} (\tilde{\alpha}_Z - \alpha_Z) + (\alpha_Z - \alpha_A) \frac{\sqrt{d}}{d+1} \right)^2,$$

3640 It is clear that this term becomes ∞ since the term inside the parentheses scales with d . Note that the
3641 variance and data noise are non-negative, and target alignment is controlled. We have that $\mathcal{R}_c = \infty$
3642 for $c \in (0, 1)$.

3644 For $c > 1$, the same logic follows, and we also note that:

$$3645 \text{Bias} = \theta^2 (\beta_*^\top \mathbf{u})^2 \left(\tilde{\alpha}_Z - \alpha_Z + \left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{\tau^2 c}{\theta^2 + \tau^2 c} \right)^2 = \tau^2 (\beta_*^\top \mathbf{u})^2 \left(\sqrt{d} (\tilde{\alpha}_Z - \alpha_Z) + \left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{\sqrt{dc}}{d+c} \right)^2,$$

3648 which scales with d with other terms controlled. Hence, $\mathcal{R}_c = \infty$ for all $c \neq 1$.

3649 Now assume that $\alpha_Z = \tilde{\alpha}_Z$. Since we are interested in $c \rightarrow \infty$, we only consider $c > 1$. First, from
3650 algebra and taking the limit for d, n , we have that:

$$3652 \text{Bias} = \tau^2 (\beta_*^\top \mathbf{u})^2 \left(\left(\alpha_Z - \frac{\alpha_A}{c} \right) \frac{c\sqrt{d}}{d+c} \right)^2 \rightarrow 0, \quad \text{Data Noise} = \tilde{\alpha}_A^2 \tau^2 \|\beta_*\|^2,$$

$$3655 \text{Target Alignment} = -2\tilde{\alpha}_A \tau^2 \left(\left(\alpha_Z - \frac{\alpha_A}{c} \right) (\beta_*^\top \mathbf{u})^2 + \alpha_A \frac{\|\beta_*\|^2}{c} \right),$$

$$3657 \text{Variance} = \tau^2 \alpha_A^2 \frac{\|\beta_*\|^2}{c} + \tau^2 (\beta_*^\top \mathbf{u})^2 \frac{c}{(c-1)} \left(\alpha_Z - \frac{\alpha_A}{c} \right)^2 + \tau_\varepsilon^2 \left(\frac{1}{c-1} \right).$$

3659 We now take $c \rightarrow \infty$ and many terms vanish in this limit, yielding:

$$3660 \lim_{c \rightarrow \infty} \mathcal{R}_c = -2\tilde{\alpha}_A \alpha_Z \tau^2 (\beta_*^\top \mathbf{u})^2 + \tau^2 (\beta_*^\top \mathbf{u})^2 \alpha_Z^2 + \tilde{\alpha}_A^2 \tau^2 \|\beta_*\|^2 = \tau^2 [(\beta_*^\top \mathbf{u})^2 (\alpha_Z^2 - 2\tilde{\alpha}_A \alpha_Z) + \|\beta_*\|^2 \tilde{\alpha}_A^2].$$

□

3663 **Proposition 3** (Non-existence of a canceling scale parameter). *Let $\alpha_A, \alpha_Z > 0$ be fixed scalars, let
3664 $\mathbf{u}, \beta_* \in \mathbb{R}^d$ be fixed vectors, and set*

$$3665 a := \|\beta_*\|^2 > 0, \quad b := (\beta_*^\top \mathbf{u})^2 \in [0, a].$$

3666 For every positive real number ϕ define

$$3668 f(\phi) = \alpha_A^2 a + \left(\alpha_Z^2 \left(1 + \frac{1}{\phi} \right) - 2\alpha_Z \alpha_A \right) b.$$

3669 Then

$$3670 f(\phi) > 0 \quad \text{for all } \phi > 0.$$

3671 Consequently the equation $f(\phi) = 0$ has no solution with $\phi \in (0, \infty)$.

3672 *Proof.* If $b = 0$ (i.e. β_* is orthogonal to u) we have $f(\phi) = \alpha_A^2 a > 0$, so no positive ϕ can cancel
 3673 the expression. Hence assume $b > 0$.

3674 Writing $r := b/a \in (0, 1]$ we obtain

3676
$$f(\phi) = a \left[\alpha_A^2 + \alpha_Z(\alpha_Z - 2\alpha_A) r + \frac{\alpha_Z^2 r}{\phi} \right]. \quad (*)$$

3677

3678 Since $r \leq 1$,

3681
$$\alpha_A^2 + \alpha_Z(\alpha_Z - 2\alpha_A) r \geq \alpha_A^2 + \alpha_Z(\alpha_Z - 2\alpha_A) = (\alpha_A - \alpha_Z)^2 \geq 0.$$

3682 Thus the square bracket in $(*)$ is the sum of a non-negative term and a strictly positive term.

3684 \square

3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725