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ABSTRACT

This paper analyzes the generalization error of minimum-norm interpolating so-
lutions in linear regression using spiked covariance data models. The paper char-
acterizes how varying spike strengths and target-spike alignments can affect risk,
especially in overparameterized settings. The study presents an exact expression
for the generalization error, leading to a comprehensive classification of benign,
tempered, and catastrophic overfitting regimes based on spike strength, the as-
pect ratio c = d/n (particularly as c → ∞), and target alignment. Notably, in
well-specified aligned problems, increasing spike strength can surprisingly induce
catastrophic overfitting before achieving benign overfitting. The paper also reveals
that target-spike alignment is not always advantageous, identifying specific, some-
times counterintuitive, conditions for its benefit or detriment. Alignment with the
spike being detrimental is empirically demonstrated to persist in nonlinear models.

1 INTRODUCTION

Understanding the generalization error of overparameterized models is a central challenge in modern
machine learning. Phenomena such as double descent (Belkin et al., 2019; Hastie et al., 2022)
and benign overfitting Bartlett et al. (2020); Mallinar et al. (2022); Tsigler & Bartlett (2023) have
spurred research underscoring the critical role of the data’s spectral structure Bartlett et al. (2020);
Dobriban & Wager (2018); Hastie et al. (2022); Kausik et al. (2024); Mei et al. (2022); Sonthalia &
Nadakuditi (2023); Tsigler & Bartlett (2023); Wang et al. (2024a). The spiked covariance model is
one commonly considered spectral structure Couillet & Liao (2022). In this model, the data matrix
X = Z + A ∈ Rd×n, comprising n data points in Rd , is decomposed into a rank-one signal
component (“spike”) Z and an isotropic noise component (“bulk”) A. Spiked covariance models
emerge naturally in practice, for instance, in the features learned by neural networks during training
Sonthalia et al. (2025); Ba et al. (2022; 2023); Damian et al. (2022); Dandi et al. (2024); Martin &
Mahoney (2021); Moniri et al. (2023); Wang et al. (2024b). While recent studies have examined
benign overfitting in spiked models (Ba et al., 2023; Kausik et al., 2024), they lack a systematic
taxonomy spanning spike strength, target–spike alignment, model misspecification, and train–test
covariate shift. This paper closes the gap for linear regression.

This work explores how general spike sizes and target alignments affect generalization error in least
squares linear regression. We consider targets y generated by:

y = αZβ
⊤
∗ z + αAβ

⊤
∗ a+ ε

Here, z ∈ Rd represents the signal component, a ∈ Rd corresponds to the bulk component, ε is
observation noise, and β∗ ∈ Rd. The coefficients αZ and αA model the target’s dependence on the
spike and bulk components, respectively. Notably, if αA ̸= αZ , the targets are non-linear functions
of x = z + a, introducing model mis-specification. We address two fundamental questions:

• Q1: For a fixed aspect ratio c = d/n, in asympototic proportional regime under what conditions
does alignment of the target signal with the data spike improve or impair generalization?

• Q2: In the high-dimensional limit where c → ∞, when do we observe benign, tempered, or
catastrophic overfitting regimes?
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Contributions We present precise characterization of the generalization performance of minimum-
norm interpolating solutions in linear regression. Our exact risk decomposition pinpoints conditions
for transitions between benign and catastrophic overfitting. This reveals alignment-dependent phe-
nomena obscured by isotropic theories, clarifying how signal structure, data scaling, and overparame-
terization shape generalization. Our primary contributions are as follows:

• Precise Risk Characterization: We derive an exact generalization error decomposition (Theo-
rem 5) into interpretable bias, variance, data noise, and alignment terms.

• Comprehensive Categorization of Overfitting Regimes: We precisely classify benign, tempered,
or catastrophic overfitting regimes based on spike strength, overparameterization (c = d/n), and
target alignment (Table 1). Surprisingly, for well-specified aligned problems, increasing spike
strength can induce catastrophic overfitting before achieving benign overfitting. Misspecified
problems show distinct transitions, often precluding benign overfitting.

• Conditions for Beneficial Alignment: Challenging conventional wisdom, we show spike align-
ment is not always beneficial and depends on spike strength meeting critical thresholds (Table 2).
For misspecified problems, beneficial alignment requires αZ/αA in a specific, non-trivial range.
Counterintuitively, very strong spike dependence (αZ/αA) can render alignment detrimental.

• Empirical Validation: 1 Empirical validation confirms our theoretical phenomena, including
surprising negative alignment impacts, persist in nonlinear models, underscoring broader relevance.

Benign Overfitting in Linear Regression. Significant research has explored benign overfitting in
linear regression Bartlett et al. (2020); Cao et al. (2021); Chatterji & Long (2021); Karhadkar et al.
(2024); Koehler et al. (2021); Liang & Rakhlin (2020); Mallinar et al. (2022); Muthukumar et al.
(2020); Shamir (2022); Tsigler & Bartlett (2023); Wu & Xu (2020). Many studies assume a uniformly
bounded largest covariance eigenvalue or lack precise characterizations of its interplay with target
alignment and generalization. Our work allows this eigenvalue to grow, offering precise performance
characterizations based on this growth and alignment. While Kausik et al. (2024) considers spiked
models, their focus is on noiseless, well-specified scenarios with specific spike scaling. Our analysis
is broader, encompassing observation noise, misspecification, and general spike scaling.

Many prior works(Karhadkar et al., 2024; Shamir, 2022; Tsigler & Bartlett, 2023) on benign overfit-
ting with low-rank signals plus isotropic noise require near-orthogonality between signal and noise,
sometimes imposing strong conditions like d = Ω(n2 log n). We instead consider the proportional
regime d/n → c = Θ(1), subsequently examining c → ∞. This setting is morally similar to allowing
d = ω(n) and aligns with approaches like (Karhadkar et al., 2024) which, for classification, shows
misclassification probability can be upper bounded by Ce−d/n, vanishing as d/n → ∞.

Generalization Error with Spiked Covariance. While recovering spike properties Sonthalia &
Nadakuditi (2023); Kausik et al. (2024); Nadakuditi (2014); Benaych-Georges & Nadakuditi (2011;
2012) and analyzing generalization error in spiked models Ba et al. (2022; 2023); Mousavi-Hosseini
et al. (2023); Moniri et al. (2023) are active research areas, existing analyses often characterize gener-
alization implicitly (e.g., via fixed-point equations) or focus on specific spike strengths/alignments.
In contrast, we provide explicit, generic formulae for generalization error, enabling precise catego-
rization of overfitting regimes and conditions for beneficial spike alignment.

Notation The subscript on o,O, ω,Ω,Θ will denote which quantity is being sent to infinity.

2 PROBLEM SETTING

We study the generalization of minimum-norm interpolators in high-dimensional linear regression.
Using a spiked covariance data model, we quantify how spike strength and alignment influence
generalization and the emergence of benign, tempered, or catastrophic overfitting.

Data Model. We consider a data matrix X = Z+A ∈ Rd×n with signal component Z and isotropic
noise component A that satisfy the following assumptions. Specifically, we shall that the population
feature covariance is Σ = θ2uu⊤ + τ2Id, modeling a rank-one perturbation of isotropic noise.
Assumption 1 (Signal). Let u ∈ Rd be a fixed unit vector representing the spike direction. Then

Z = θuv⊤, (1)
1Our code is available at the anonymous GitHub repository: link
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Table 1: Asymptotic Generalization Regimes. This table summarizes conditions for when over-
fitting is benign, tempered, or catastrophic in the limit where d/n → c and subsequently c → ∞.
The behavior depends on the spike scaling relative to the bulk, target alignment (β∗ relative to spike
direction u), and target specifications αA, αZ (train) and α̃A, α̃Z (test). Here, θ2 quantifies the scaled
spike strength and τ2 the scaled bulk variance; the two primary scaling regimes are operator norm
based (θ2 = γτ2) and Frobenius norm based (θ2 = dτ2). The ω, o,O,Θ are all as we send c → ∞.

Scaling Benign Tempered Catastrophic
Well-Specified, No Covariate Shift: αA = α̃A = αZ = α̃Z = α > 0

θ2 = γτ2 γ = ωc(c
2), β∗ ∥ u All other cases oc(c

2) ≥ γ ≥ ωc(1), β∗ ̸⊥ u

θ2 = dτ2 β∗ ∥ u β∗ ∦ u Never

Misspecified, No Covariate Shift: αA = α̃A, αZ = α̃Z , αA ̸= αZ

θ2 = γτ2 Never All other cases oc(c
2) ≥ γ ≥ ωc(1), β∗ ̸⊥ u

θ2 = dτ2 Never Always Never

Misspecified with Covariate Shift: αA ̸= α̃A or αZ ̸= α̃Z

θ2 = γτ2 Never All other cases

αZ ̸= α̃Z ,β∗ ̸⊥ u, γ = ωc(1)
or

αZ = α̃Z ,β∗ ̸⊥ u,
ωc(1) ≤ γ ≤ oc(c

2)

θ2 = dτ2 αZ = α̃Z = α̃A,
β∗ ∥ u

All other cases αZ ̸= α̃Z and β∗ ̸⊥ u

Spike Recovery: αA = α̃A = 0, αZ = α̃Z (Appendix C)

θ2 = γτ2 γτ2 = oc(1) γτ2 = Θc(1) γτ2 = ωc(1)

θ2 = dτ2 τ2 = oc(1) τ2 = Θc(1) Never

Table 2: Conditions for Beneficial Spike Alignment at Finite Aspect Ratios (c = d/n). This
table outlines the specific regions where alignment of the target signal with the data’s principal spike
direction improves generalization. Conditions depend on the problem setting (well-specified vs.
mis-specified), the spike scaling regime (operator or frobenius norm based), the overparameterization
level c = d/n, and the relative dependence of the targets y on the spike versus the bulk αZ/αA.

Setting Alignment Beneficial Region

Well-Specified, Operator Norm γ > c(c− 2)
Well-Specified, Frobenius Norm c > 1

Misspecified, No Covariate Shift, Operator Norm 1
c ≤ αZ

αA
≤ 1

c

(
3c2−γ+2cγ−2c

(c2+γ)

)
Misspecified, No Covariate Shift, Frobenius Norm 1

c < αZ

αA
< 2− 1

c

where θ > 0 controls the spike strength, and the vector v ∈ Rn has i.i.d. standard normal entries.

Assumption 2 (Noise). The entries of A have zero mean and variance τ2. The matrix A satisfies:

• Its entries are uncorrelated and possess finite fourth moments.
• Its distribution is invariant under left and right orthogonal transformations.
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• The empirical spectral distribution of 1
τ2dAA⊤ converges to the Marchenko–Pastur law as n, d →

∞ with d/n → c ∈ (0,∞).

Spike Strength Normalizations. We consider two key scaling regimes for the spike strength relative
to the bulk noise. These lead to distinct generalization behaviors.

1) Operator Norm Scaling (θ2 = γτ2): Here γ tunes the spike strength θ2 relative to the noise
variance τ2. When γ = (1 +

√
c)2, the spectral norm of the signal component Z is comparable

to that of the noise component A. If γ > (1 +
√
c)2, the spike emerges as an isolated eigenvalue

beyond the bulk spectrum established by A, a phenomenon known as the Baik–Ben Arous–Péché
(BBP) transition (Baik et al., 2005). This scaling reflects spikes in learned neural network features
(Ba et al., 2022; Moniri et al., 2023).

2) Frobenius Norm Scaling (θ2 = dτ2): Here θ2 = dτ2 matches expected signal and noise
Frobenius norms (E[∥Z∥2F ] = E[∥A∥2F ]) and the spike has macroscopic proportion of the energy.
Such strong signals can lead to improved sample complexity, potentially overcoming limitations
observed in purely isotropic models (Ba et al., 2023; Mei et al., 2022).

Target Model. Given xi = zi + ai, the targets y are obtained as follows:

yi = αZz
⊤
i β∗ + αAa

⊤
i β∗ + εi, (2)

where β∗ ∈ Rd in uniformly distributed in the subspace {β ∈ Sd−1 : β⊤u = fixed constant} is the
true underlying parameter vector. The terms zi and ai are the i-th columns of Z and A respectively.
The observation noise εi are i.i.d. with E[εi] = 0, E[ε2i ] = τ2ε . The coefficients αZ , αA ∈ R control
the target’s dependence on the signal and noise components. If αZ ̸= αA, the true data generating
process for y differentially weights components of xi, causing model misspecification.

Generalization Risk. We study the minimum-norm interpolating ordinary least squares estimator:

βint = X†y, with ŷ = (z̃ + ã)βint (3)

where X† denotes the pseudoinverse. Given a new test data point (x̃, ỹ), where x̃ = z̃ + ã and
targets ỹ = α̃Z z̃

⊤β∗ + α̃Aã
⊤β∗ + ε̃ with potentially with different coefficients α̃Z , α̃A and model

parameters τ̃ , τ̃ε, the generalization risk is defined as the expected squared prediction error:

R(βint) = EX,ε,{x̃,ε̃}
[
(ỹ − ŷ)2

]
= EX,ε,{x̃,ε̃}

[
(ỹ − x̃Tβint)

2
]
. (4)

The expectation is over the training data (X, ε) and the test data realization ({x̃, ε̃}). We shall
denote the asymptotic excess risk in the proportional regime as follows:

Rc = lim
n,d→∞, d/n→c

R(βint)− τ̃2ε .

Remark 1 (Generalizing Prior Work). This problem formulation encompasses several existing
models as special cases. For instance, isotropic regression settings studied in Hastie et al. (2022)
are recovered by setting θ = 0 (no spike) and αZ = 0. Spike recovery models, such as in Sonthalia
& Nadakuditi (2023), correspond to specific choices like τ2 = 1/d, τ2ε = 0, and αA = 0. Our
generalized setup allows for a nuanced investigation of the interplay between signal structure, target
alignment, and overparameterization.

Quantifying the Benefit of Alignment. A key aspect of our investigation is to determine when the
alignment of the true parameter vector β∗ with the data’s principal spike direction u is beneficial
for generalization. We define alignment as beneficial if the generalization risk R(βint) (or Rc), is
monotonically decreasing as a function of (β⊤

∗ u)
2 ∈ [0, 1]. Conversely, alignment is detrimental if

the risk is a monotonically increasing function of (β⊤
∗ u)

2.

Characterizing Overfitting Regimes. Following Bartlett et al. (2020); Mallinar et al. (2022), we
classify the asymptotic behavior of the excess risk, Rc as c → ∞ as benign, tempered or catastrophic.
We say the overfitting is benign if limc→∞ Rc is zero, tempered if this limit is positive and finite,
catastrophic if this limit is infinite.

3 THEORETICAL RESULTS

Our core theoretical contribution is a precise analytical formula for excess risk in the spiked covariance
model. This result relies on Assumption 3, which encompasses both the operator norm scaling

4
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(a) Operator norm scaling (θ2 = cτ2). Alignment ini-
tially improves generalization, but have catastrophic
risk as c → ∞. Anti-alignment yields tempered risk.

(b) Equal Frobenius norm scaling (θ2 = dτ2). Align-
ment leads to benign overfitting, while anti-alignment
results in tempered risk.

Figure 1: Excess error vs. overparameterization ratio c = d/n in the well-specified case. Each plot
shows the risk for aligned and anti-aligned targets under different spike scaling regimes. The scatter
plots are empirically obtained and the lines are theory.

(θ2 = γτ2) and Frobenius norm scaling (θ2 = dτ2) regimes. We develop our general risk theorem by
analyzing progressively complex scenarios. Specifically, our forthcoming theorems provide specific
conditions for benign, tempered, or catastrophic overfitting (as c → ∞), and determine when, for
finite c, alignment of β∗ with spike u is beneficial or detrimental.
Assumption 3 (Scaling). As n, d → ∞ with d/n → c ∈ (0,∞), we assume that θ2 and τ2 satisfy
Ω(τ2) ≤ θ2 ≤ O(dτ2) and τ2 = Θ(1).

3.1 WELL SPECIFIED PROBLEM

We begin by analyzing the well-specified case, where the target y is a direct linear function of the
observed covariates X = Z +A. This scenario is realized by setting:

αZ = αA = α̃Z = α̃A = α > 0.

Consequently, yi = αx⊤
i β∗ + εi, and the model is properly specified.

Theorem 1 (Well-Specified Risk). Given data (X,y) and (X̃, ỹ) generated according to As-
sumptions 1 (Signal), 2 (Noise), Equation 2 (Target Model), and Assumption 3 (Scaling). If the
well-specification condition αZ = αA = α̃Z = α̃A = α > 0 holds, the asymptotic excess risk Rc is:

Rc =

{
τ2ε

c
1−c if c < 1

τ2ε
1

c−1 + α2τ2
(
1− 1

c

) [
∥β∗∥2 + (β⊤

∗ u)
2 θ2τ2c2−2θ2τ2c−θ4

(θ2+τ2c)2

]
if c > 1

where u is the unit vector defining the spike direction.
Remark 2. If θ2 = γτ2 with γ = o(1) (a regime not allowed by Assumption 3 but useful for sanity
checks), the coefficient of (β⊤

∗ u)
2 vanishes, the risk expression aligns with that of isotropic models,

such as in (Hastie et al., 2022, Theorem 1).

Operator Norm Scaling (θ2 = γτ2). In this regime, the excess risk for c > 1 becomes:

Rc = α2τ2
(
1− 1

c

)(
∥β∗∥2 +

γc2 − 2γc− γ2

(γ + c)2
(β⊤

∗ u)
2

)
+ τ2ε

1

c− 1
.

The formula shows that alignment with the spike direction u is beneficial if and only if the coefficient
of (β⊤

∗ u)
2 is negative, which occurs when γ > c(c− 2). We consider different scalings for γ.

Case 1: γ = Θc(1) (constant with respect to c). The condition for beneficial alignment, γ > c(c− 2),
interacts intricately with the BBP phase transition condition, γ > (1 +

√
c)2. Let c∗ ≈ 4.212 be the

unique solution to c(c− 2) = (1 +
√
c)2 for c > 1.

5
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• For 1 < c < c∗: Here, c(c−2) < (1+
√
c)2. If c(c−2) < γ < (1+

√
c)2, alignment is beneficial

even though the BBP transition has not occurred (the spike is not resolved from the bulk).
• For c > c∗: Here, c(c − 2) > (1 +

√
c)2. For alignment to be beneficial (γ > c(c − 2)), the

BBP transition must have occurred (as γ > c(c− 2) =⇒ γ > (1 +
√
c)2). However, the BBP

transition occurring is not sufficient for beneficial alignment. If (1 +
√
c)2 < γ < c(c− 2), the

BBP transition occurs, yet alignment is detrimental.

Regarding the type of overfitting as c → ∞ (while γ remains constant):

lim
c→∞

Rc = α2 τ2
(
∥β∗∥2 + γ(β⊤

∗ u)
2
)
.

Since this limit is a positive constant, we consistently observe tempered overfitting when γ = Θc(1).

Case 2: γ = ωc(1) (γ grows with c). The behavior depends on the growth rate of γ relative to c. The
limit of the excess risk for β⊤

∗ u ̸= 0 as c → ∞ is:

lim
c→∞

Rc = α2τ2 ·


∞ if ωc(1) ≤ γ ≤ oc(c

2)

∥β∗∥2 + ( 1ϕ − 1)(β⊤
∗ u)

2 if γ = ϕc2 for const. ϕ > 0

∥β∗∥2 − (β⊤
∗ u)

2 if γ = ωc(c
2)

Surprisingly, while γ = Θc(1) gives tempered overfitting, increasing spike strength to ωc(1) ≤ γ ≤
oc(c

2) results in catastrophic overfitting, even though morally, this version of the problem has less
noise. Additionally, we see that this catastrophic overfitting is not present in the anti-aligned (β⊤

∗ u)
case. More, aligned with intuition, we see that further increasing the size of the spike improves
the generalization performance. Specifically, we get tempered overfitting if γ = ϕc2 and benign
overfitting if γ = ωc(c

2), β∗ ∥ u and ∥β∗∥ = 1.

For γ = c, the (β⊤
∗ u)

2 coefficient is (c− 3)/4. Thus, for 1 < c < 3, alignment is beneficial and for
c > 3, alignment becomes detrimental. As c → ∞, if β∗ ∥ u, the excess risk grows approximately
as α2τ2 c

4 (β
⊤
∗ u)

2, indicating catastrophic overfitting. In contrast, if β∗ ⊥ u, the excess risk grows
like α2τ2(1− 1/c)∥β∗∥2, leading to tempered overfitting. This transition is illustrated in Figure 1a.

Frobenius Norm Scaling (θ2 = dτ2). The excess risk for c > 1 simplifies to:

Rc>1 = α2τ2
(
1− 1

c

)(
∥β∗∥2 − (β⊤

∗ u)
2
)
+ τ2ε

1

c− 1
.

We have a few observations. First, if β∗ ∥ u and ∥β∗∥ = 1, the excess risk Rc tends to 0 as c → ∞
(benign overfitting). Second, if β∗ is not perfectly aligned with u, Rc → α2τ2(∥β∗∥2−(β⊤

∗ u)
2) > 0

as c → ∞ (tempered overfitting). Finally, the coefficient of (β⊤
∗ u)

2 in the risk formula is negative.
Hence, in contrast with the operator norm regime, alignment is always beneficial in this regime for
c > 1, and we visualize these behaviors in Figure 1b.

Takeaways for the Well-Specified Case. Spike scaling profoundly impacts overfitting, especially
with target alignment. For aligned targets, increasing spike strength can drive transitions from
tempered → catastrophic → tempered → benign overfitting, while anti-alignment (β∗ ⊥ u) can
mitigate catastrophic overfitting. Additionally, alignment with the spike is not always beneficial.

3.2 MISSPECIFIED CASE AND NO COVARIATE SHIFT

We next consider misspecified targets y with differing dependence on spike Z and noise A feature
components. Specifically, we assume αZ ̸= αA but introduce no covariate shift between training
and test distributions, i.e., α̃Z = αZ and α̃A = αA. This scenario models situations where intrinsic
feature properties lead to differential correlations with the target, a common occurrence in practice.
For notational convenience, we define ∆c := αZ − αA

c with ∆1 := αZ − αA.

Theorem 2 (Misspecified). Let Z, Z̃ satisfy Assumption 1, A, Ã satisfy Assumption 2 and y, ỹ
according to Equation (2). If Assumption 3 holds with αZ = α̃Z , αA = α̃A, then

Rc =


τ2ε

c
1−c + τ2 (β⊤

∗ u)
2 ∆2

1

1−c
θ2

θ2+τ2 c < 1

τ2ε
1

c−1 + α2
Aτ

2∥β∗∥2
(
1− 1

c

)
+ τ2 (β⊤

∗ u)
2 ∆2

c
θ2

θ2+τ2c

[
c

c−1
θ2+τ2c2

θ2+τ2c − 2αA

∆c

]
c > 1

6
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(a) Under operator norm scaling (θ2 = cτ2) with
αZ = 1, αA = 2, alignment initially improves gener-
alization for small c, but becomes harmful beyond a
critical point, leading to catastrophic overfitting.

(b) Under Frobenius norm scaling (θ =
√
dτ ) with

αA = 1 and αZ = 1.1, alignment remains better than
anti-alignment across all c, but benign overfitting is
not achieved unless αZ = αA.

Figure 2: Transition from beneficial to harmful alignment under mild misspecification. The scatter
plots are empirically obtained and the lines are theory.

A key observation is that misspecification (αZ ̸= αA) can itself induce double descent, even if τ2ε = 0.
This contrasts with the well-specified case where, if τ2ε = 0, double descent is absent. However, in
the misspecified case, we do not observe double descent if there is no alignment β⊤

∗ u = 0.

Equal Operator Norm Case. For θ2 = γτ2, the excess risk is

R =

τ2(β⊤
∗ u)

2 ∆2
1

1−c
γ

γ+1 + τ2ε
c

1−c c < 1

τ2 γ
γ+c (β

⊤
∗ u)

2∆2
c

[(
c2+γ
γ+c

c
c−1

)
− 2αA

∆c

]
+ α2

Aτ
2∥β∗∥2

(
1− 1

c

)
+ τ2ε

1
c−1 c > 1

For c < 1, the spike is detrimental. For c > 1, the behavior depends on αZ/αA. In particular, if
1

c
≤ αZ

αA
≤ 1

c

(
3c2 − γ + 2cγ − 2c

(c2 + γ)

)
,

then we have that the coefficient in front of (β⊤
∗ u)

2 is negative. Thus, when αZ/αA lies between
these thresholds, the spike helps, but the spike is harmful outside this range. As c → ∞, if γ = oc(c

2),
the beneficial region shrinks and alignment increasingly harms generalization. On the other hand,
if the spike is big enough (γ = ωc(c

2)), we have that the beneficial region limits to 0 ≤ αZ

αA
≤ 2.

Figures 3a and 3b plot the coefficient of (β⊤
∗ u)

2 for c = 2 and c = 20 for γ = c.

The upper bound on beneficial αZ/αA is surprising, as stronger target dependence on the spike might
be expected to always favor alignment. Additionally, the dependence on the level of overparame-
terization c also offers new insights. Consider the example of γ = c, and αZ/αA = 2. Then when
c < 2 or c > (9 +

√
57)/2, we have that the ratio is outside the beneficial region. Figure 2a shows

that in the beneficial region, the aligned risk is lower than the anti-aligned risk. However, outside the
beneficial region, the aligned risk becomes strictly larger than the anti-aligned counterpart.

Next, in terms of benign vs. tempered vs. catastrophic overfitting, we have that

lim
c→∞

Rc =



τ2
[
γα2

Z(β
⊤
∗ u)

2 + α2
A∥β∗∥2

]
β∗ ̸⊥ u, γ = Θc(1)

∞ β∗ ̸⊥ u, ωc(1) ≤ γ ≤ oc(c
2)

τ2
[
α2
A∥β∗∥2 +

(
α2
Z

(
1 + 1

ϕ

)
− 2αZαA

)
(β⊤

∗ u)
2
]

β∗ ̸⊥ u, γ = ϕc2

τ2(α2
A∥β∗∥2 + (α2

Z − 2αZαA)(β
⊤
∗ u)

2) β∗ ̸⊥ u, γ = ωc(c
2)

α2
Aτ

2∥β∗∥2 β∗ ⊥ u

.

For β∗ ̸⊥ u, if ωc(1) ≤ γ ≤ oc(c
2) we have catastrophic overfitting. If γ = Θc(c

2), overfitting is
tempered, with benign overfitting precluded (Appendix Proposition 3). If γ = ωc(c

2), overfitting is
again tempered with benign requiring returning to the well-specified case (αA = αZ).
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(a) Operator norm scaling, c = 2.
Large beneficial region.

(b) Operator norm scaling, c =
20. Smaller beneficial region

(c) Frobenius norm scaling, c =
1000. The beneficial region persists
at extreme overparameterization.

Figure 3: Phase boundaries for spike alignment impact. Coefficient of (β⊤
∗ u)

2 as a function of
αZ/αA, indicating whether alignment improves or harms generalization.

Equal Frobenius Norm Case. For θ2 = dτ2, the excess risk becomes:

Rc>1 = α2
A∥β∗∥2

(
1− 1

c

)
+ (β⊤

∗ u)
2

[
c

c− 1

(
αZ − αA

c

)2
− 2αA

(
αZ − αA

c

)]
+

τ2ε
c− 1

.

For c > 1, the beneficial region for the ratio αZ/αA is defined by:
1

c
≤ αZ

αA
≤ 2− 1

c
. The beneficial

region expands with c, making alignment increasingly beneficial in extreme overparameterization
(Figure 3c). Beneficial alignment can also be seen in Figure 2b. Here αZ/αA = 1.1, which is in the
beneficial region for c > 10/9. Finally, the overfitting is tempered unless αA = αZ .

3.3 MISSPECIFIED TARGET AND COVARIATE SHIFT

Lastly, in addition to misspecifation, we also have covariate shift between train and test. Specifically,
αZ ̸= α̃Z or αA ̸= α̃A, hence we have the spike/noise importance differ between train and test. For
the equal operator norm case, we show the following.

Theorem 3. Given data Z, Z̃ that satisfy Assumption 1, A, Ã that satisfy Assumption 2 and y, ỹ
according to Equation (2). If Assumption 3 holds, catastrophic overfitting occurs if α̃Z = αZ ,
β∗ ̸⊥ u, and ωc(1) ≤ γ ≤ oc(c

2). Additionally, if α̃Z ̸= αZ with γ = ωc(1) and β∗ ̸⊥ u we get
catastrophic overfitting. Other scenarios yield tempered overfitting.

Different covariate shifts pose varying challenges. In particular, if αZ ̸= α̃Z , (target’s spike
dependence shifts), then catastrophic overfitting becomes unavoidable for sufficiently large spikes.
This contradicts the earlier theoretical intuition, as increasing the spike size in this setting actually
induces catastrophic overfitting instead of mitigating it.

Equal Frobenius Norm. In this case, we have the following theorem.

Theorem 4. Let Z, Z̃ satisfy Assumption 1, A, Ã satisfy Assumption 2 and y, ỹ according to
Equation (2). If Assumption 3 holds and αZ ̸= α̃Z then Rc = ∞ for all c ̸= 1. For αZ = α̃Z:

lim
c→∞

Rc = τ2
[
(β⊤

∗ u)
2(α2

Z − 2α̃AαZ) + ∥β∗∥2α̃2
A

]
.

If αZ ̸= α̃Z , catastrophic overfitting occurs. When β∗ and u are parallel, we have that τ2∥β∗∥2(αZ−
α̃A)

2. This is benign if and only if αZ = α̃A. Notably, if training data is misspecified (αA ̸= αZ)
but test data is well-specified and matches the training spike dependence (αZ = α̃Z = α̃A), benign
overfitting becomes achievable.

3.4 GENERAL THEOREM

Prior results are special cases of our main theorem (Theorem 5). Its full form is complex (Appendix D).
We present a high-level decomposition here.
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(a) αZ = 0.1, alignment helps. (b) αZ = 1, mixed behavior. (c) αZ = 4, alignment hurts.

Figure 4: Alignment-phase transitions persist in deep networks. Generalization error vs. angle
between spike direction u and ground-truth parameter β∗ when fitting data with a 3-layer ReLU
networks. The effect of alignment switches as αZ increases, consistent with the phase transitions
predicted by our theory. Experimental details are in AppendixB.

Theorem 5 (Generalization Risk). Suppose Assumption 1, Assumption 2, and Assumption 3 hold.

R = E

∥∥∥α̃zβ
⊤
∗ Z̃ − β⊤

intZ̃
∥∥∥2
F︸ ︷︷ ︸

Bias

+ τ2
∥∥∥β⊤

intÃ
∥∥∥2
F︸ ︷︷ ︸

Variance

+ α̃2
A

∥∥∥β⊤
∗ Ã
∥∥∥2
F︸ ︷︷ ︸

Data Noise

+
(
−2α̃Aβ

⊤
∗ ÃÃ⊤βint

)
︸ ︷︷ ︸

Target Alignment

 .

• Bias. This is the squared error between the learned predictor βint and the true parameter β∗
projected onto the spike direction u. In particular, the risk penalizes discrepancies only along the
top eigen-direction of the population covariance Σ, reflecting the anistropic influence of the spike.

• Variance. The variance is equivalent to τ2∥βint∥2. This mirrors classical isotropic regression
results (Hastie et al., 2022; Bartlett et al., 2020), but the norm ∥βint∥2 itself is dependent upon the
interaction between signal and noise, the alignment between β∗ and u, and the scaling parameters.

• Data Noise. The data noise term quantifies the contribution of the noise matrix A to the target
outputs yi through αA. Even in the absence of observation noise (τ2ε = 0), target corruption via
data noise can create an irreducible error floor.

• Target Alignment. The alignment term measures the inner product between βint and β∗ with
respect to the sample noise covariance. This cross-term captures how mismatch between βint and
β∗, especially when mediated by A, can amplify or dampen generalization error.

3.5 EXTENSION: NONLINEAR MODELS ALSO EXHIBIT ALIGNMENT PHASE TRANSITIONS

While our theoretical focus is on linear regression, key phenomena like αZ dependent non-monotonic
alignment effects appear in nonlinear models as well. We test this by training 3-layer ReLU networks
to predict y (Equation (2)) given X , where we vary the alignment angle between spike u and β∗
and record the generalization error. Figure 4, shows our results for three αZ values. For αZ = 0.1,
increasing alignment with the spike is detrimental. For αZ = 1, alignment is beneficial, while for
αZ = 10, alignment is detrimental again. This mirrors our theoretical findings that there is a region
for beneficial alignment and a nuanced phase transition for different αZ values.

4 CONCLUSION

This work provided a precise analytical characterization of the generalization error for minimum-norm
interpolators in spiked covariance models. We decomposed the risk into interpretable components
and comprehensively classified overfitting regimes based on spike strength, target alignment, and
overparameterization. We reveal surprising phenomena, such as the potential for increasing spike
strength to induce catastrophic overfitting before benign overfitting in well-specified aligned problems,
and that strong target-spike alignment is not universally beneficial, especially under model misspecifi-
cation. These alignment-dependent phase transitions, theoretically derived for linear models, were
also empirically observed in nonlinear neural networks, suggesting broader relevance. Our results
offer a more nuanced understanding of generalization in the presence of data anisotropy, challenging
conventional intuitions and providing a detailed map of risk behaviors in overparameterized settings.
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A NOTATION

Symbol Description / Role Typical scaling / range First used

d, n Data dimension and sample size d, n → ∞ with c = d/n
fixed

Sec. 2

c Aspect ratio d/n (0,∞) Sec. 2
τ2/d Noise variance in ambient bulk A τ2 = Θ(1) Sec. 2
θ2 Spike (signal) variance θ2 = γτ2 (operator-norm)

or θ2 = dτ2 (Frobenius)
Sec. 2

γ Spike-to-noise ratio γ = θ2/τ2 (effective out-
lier eigenvalue)

[0,∞); critical line γ = (1+√
c)2

Sec. 2

αZ , αA Coeffs. weighting spike vs. bulk in targets y Θ(1) Eq. (2)
α̃Z , α̃A Same coefficients for test data (covariate shift) Θ(1) Sec. 3

β∗ True parameter vector ∥β∗∥2 = 1 Sec. 2
u Spike direction in data covariance ∥u∥2 = 1 Sec. 2

A, Z Bulk noise matrix, rank-one signal matrix Aij ∼ N (0, τ2/d), Z =
θuv⊤

Sec. 2

ε, τ2
ε Label noise and its variance IID, N (0, τ2

ε ) Sec. 2

Table 3: Glossary of recurrent parameters and symbols. All Θ(1) constants are independent of n, d.

Other Notations. We use lowercase a, lowercase bold a, and uppercase bold A letters to denote
scalars, vectors, and matrices respectively. We use ∥ · ∥2 to denote the Euclidean norm if the argument
is a vector and the operator norm if the argument is a matrix. We use ∥ · ∥F to denote the Frobenius
norm. When slicing one entry from a vector or matrix, we use both ai, Aij and ai, Aij , where the
latter intends to emphasize the source of the scalar.

B NON-LINEAR EXPERIMENT

We used 500 data points in 750 dimensional space, with a hidden width of 1000. We used full batch
gradient descent for 100 epochs with a learning rate of 1e-4. Each data point is averaged over 50
trials. Equal Frobenius norm scaling was used for the size of the spike.

C SPIKE RECOVERY CASE

We consider the special case where the goal is to recover the spike direction u. In this setting, the
target y depends only on the spike component Z, with no contribution from the noise A:

αA = α̃A = 0, αZ = α̃Z = α > 0.

Thus, the target y is proportional to the signal Z plus possible observation noise ε.

Equal Operator Norm In this regime, we have that the risk is

Rc<1 =
γα2

Zτ
2

(1− c)(γ + 1)
(β⊤u)2 +

c

1− c
τ2ε , Rc>1 =

γc(c2 + γ)α2
Zτ

2

(c− 1)(γ + c)2
(β⊤u)2 +

1

c− 1
τ2ε

Here again, we see that when γ = Θc(1), we have tempered overfitting and ωc(1) ≤ γ ≤ oc(c
2), we

have catastrophic overfitting and for γ = Ωc(c
2) we get tempered overfitting again.

Equal Frobenius Norm. In this regime, we have that

Rc<1 =
α2
Zτ

2

1− c
(β⊤u)2 +

c

1− c
τ2ε Rc>1 =

cα2
Zτ

2

c− 1
(β⊤u)2 +

1

c− 1
τ2ε .

This generalizes the spike recovery setting studied in Sonthalia & Nadakuditi (2023), which assumed
noiseless targets (τε = 0) and the equal Frobenius norm scaling. Our formula allows for observation
noise and thus captures the more realistic case where the target y itself contains randomness not
aligned with the spike. Here we see that we have tempered overfitting unless τ2 = o(1), which is the
case considered in Sonthalia & Nadakuditi (2023).
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D PROOF OF THEOREM 5

Theorem 5 (Generalization Risk). Suppose Assumption 1, Assumption 2, and Assumption 3 hold.

R = E

∥∥∥α̃zβ
⊤
∗ Z̃ − β⊤

intZ̃
∥∥∥2
F︸ ︷︷ ︸

Bias

+ τ2
∥∥∥β⊤

intÃ
∥∥∥2
F︸ ︷︷ ︸

Variance

+ α̃2
A

∥∥∥β⊤
∗ Ã
∥∥∥2
F︸ ︷︷ ︸

Data Noise

+
(
−2α̃Aβ

⊤
∗ ÃÃ⊤βint

)
︸ ︷︷ ︸

Target Alignment

 .

In particular, as n, d → ∞ with d/n → c ∈ (0,∞), we have the following expressions for each term.

Bias: For c < 1, we have that the bias term is

θ̃2

[
(β⊤

∗ u)
2

(
α̃Z − αZ + (αZ − αA) +

τ2

θ2 + τ2

)2

+ τ2ε
c

1− c

1

d(θ2 + τ2)

]
.

If c > 1, we that the bias term is

θ̃2(β⊤
∗ u)

2

(
α̃Z − αZ +

(
αZ − αA

c

) τ2c

θ2 + τ2c

)2

+ θ̃2
[
α2
A

∥β∗∥2

d

c− 1

c

θ2τ2c

(θ2 + τ2c)2
+ τ2ε

c

c− 1

θ2 + τ2

n(θ2 + τ2c)2

]
.

Variance: For c < 1, we have that the variance term is

α2
Aτ̃

2∥β∗∥2 + τ̃2(β⊤
∗ u)

2

[
1

1− c

θ4 + θ2τ2c

(θ2 + τ2)2
(αZ − αA)

2
+ 2αA(αZ − αA)

θ2

θ2 + τ2

]
+ τ2ε

τ̃2

τ2

[
c

1− c
− θ2

d(θ2 + τ2)

c

1− c

]
.

For c > 1, we have that the variance term is

τ̃2∥β∗∥2
(
α2
A

c
− α2

A

d

θ2

θ2 + τ2c

)
+ τ̃2(β⊤

∗ u)
2 c

(c− 1)

θ2

θ2 + τ2c

(
αZ − αA

c

)2
+ τ2ε

τ̃2

τ2

(
1

c− 1
− θ2

d(θ2 + τ2c)

c

c− 1

)
.

Data Noise: For all c, we have that
α̃2
Aτ̃

2∥β∗∥2.

Target Alignment: For c < 1, we have that the alignment term is

−2α̃Aτ̃
2

(
(αZ − αA)

θ2

θ2 + τ2
(β⊤

∗ u)
2 + αA∥β∗∥2

)
.

For c > 1, we have that the alignment term is

−2α̃Aτ̃
2

((
αZ − αA

c

) θ2

θ2 + τ2c
(β⊤

∗ u)
2 + αA∥β∗∥2

(
1

c
− 1

d

θ2

θ2 + τ2c

))
.

Error terms: The largest error terms for all c are:

o(1) +O

(
1

n

)
= o(1).

Remark: We note that the above theorem is very general and captures all of the theorems in the main
text as special cases. It is worth noting that the theorem also incorporates different signal and bulk
strengths for test data, namely for θ̃ and τ̃ .

The proof will be broken up into roughly 6 steps

1. Rescale the problem To apply standard results we rescale the problem. Section D.1
2. Decompose the error into four terms. We shall refer to these terms as the 1) bias, 2)

variance, 3) data noise, and 4) target alignment. Section D.2
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3. Simplify the expressions. We shall then use the result from Meyer (1973) to simplify the
expression for each of the four terms. In particular, we shall express each term as the product
of dependent functions of the eigenvalues of X . Section D.3

4. Random matrix theory estimate. We then use standard results from random matrix theory
such as Marchenko & Pastur (1967); Bai & Zhou (2008); Baik & Silverstein (2006) to
obtain a closed-form formula of the building blocks for the risk. Section D.4

5. Bound Products. We then show that products of our building blocks concentrate. Step 4
(Section D.5) then collects the final terms.

6. Undo Scaling Step 5 (Section D.6) gives us back the correct scaling.

Section E has some generic probability lemmas that we need.

D.1 STEP 0: RESCALING

In order to better align with existing results and use them accordingly, we change our scalings for
now and switch back after our derivation. That is, we divide everything by

√
d. Hence, we shall use

θ√
d
uw⊤ = θ

∥w∥√
d
u
w⊤

∥w∥

as the spike. We shall let

η2 := θ2
∥w∥2

d
and v :=

w⊤

∥w∥
Here, we treat v as fixed unit norm vector and our spike is

Zr := ηuvT

The A noise after dividing by
√
d is

Ar :=
τ√
d
N

where N are mean zero variance 1 entries. Here the appendix, we shall use the letter ρ for τ . Finally
let

Xr = Zr +Ar

We can note that βint, is still the solution to∥∥∥∥ y√
d
− β⊤Xr

∥∥∥∥2 , where
y√
d
= β⊤

∗ (Zr +Ar) +
ε√
d
.

We define
ε√
d
=: εr ∼ N

(
0,

τ2ε
d

)
, τ2ε,r :=

τ2ε
d
.

Then when we want to test, we shall look at the rescaled error

1

ñ

∥∥∥β⊤
∗ (α̃ZZ̃r + α̃AÃr)− β⊤

int(Z̃r + Ãr)
∥∥∥2
F

Through Steps 1 - 4, we shall drop the subscript r.

D.2 STEP 1: DECOMPOSE ERROR

Using the fact that Ã has been zero entries and is independent of Z̃, we see that we can decompose the
error as follows. Again here we consider ñ samples of test data and take the average (in expectation,
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this is the same as one test point).

E
[
1

ñ

∥∥∥β⊤
∗ (α̃zZ̃ + α̃AÃ)− β⊤

int(Z̃ + Ã)
∥∥∥2
F

]
= E

[
1

ñ

∥∥∥α̃zβ
⊤
∗ Z̃ − β⊤

intZ̃
∥∥∥2
F

]
+ E

[
1

ñ

∥∥∥α̃Aβ
⊤
∗ Ã− β⊤

intÃ
∥∥∥2
F

]

= E

 1

ñ

∥∥∥α̃zβ
⊤
∗ Z̃ − β⊤

intZ̃
∥∥∥2
F︸ ︷︷ ︸

Bias

+
1

ñ

∥∥∥β⊤
intÃ

∥∥∥2
F︸ ︷︷ ︸

Variance

+
1

ñ
α̃2
A

∥∥∥β⊤
∗ Ã
∥∥∥2
F︸ ︷︷ ︸

Data Noise

+

(
− 2

ñ
α̃Aβ

⊤
∗ ÃÃ⊤βint

)
︸ ︷︷ ︸

Target Alignment

 .

We compute these four terms one by one in the following sections.

D.3 STEP 2: SIMPLIFYING TERMS

This section simplifies the four terms. We begin by recalling results from prior work. We state them
here for completeness.

Theorem 6 (Theorems 3, 5 of Meyer (1973)). Define the following helper functions h = v⊤A†,
k = A†u, t = v⊤(I − A†A), ξ = 1 + ηv⊤A†u, s = (I − AA†)u, γ1 = η2∥t∥2∥k∥2 + ξ2,
γ2 = η2∥s∥2∥h∥2 + ξ2 and

p1 = −η2∥k∥2

ξ
t⊤ − ηk, q⊤

1 = −η∥t∥2

ξ
k⊤A† − h.

p2 = −η2∥s∥2

ξ
A†h⊤ − ηk, q⊤

2 = −η∥h∥2

ξ
s⊤ − h,

Then we have that

(Z +A)† =

{
A† + η

ξ t
⊤k⊤A† − ξ

γ1
p1q

⊤
1 , c < 1

A† + η
ξA

†h⊤s⊤ − ξ
γ2
p2q

⊤
2 , c > 1

.

The following subsections - Bias D.3.1, Variance D.3.2, Data Noise D.3.3, and Target Alignment D.3.4
- present the linear algebraic simplifications of the results. To derive this results. We shall need some
helper results that are presented in Section D.3.5.

D.3.1 BIAS

Using Lemma 5, we have that if c < 1

α̃zβ
⊤
∗ Z̃ − β⊤

intZ̃ =

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]
β⊤
∗ Z̃ +

η̃

η

ξ

γ1
ε⊤p1ṽ

⊤,

and if c > 1

α̃zβ
⊤
∗ Z̃−β⊤

intZ̃ = β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃−αA

η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃+
η̃

η

ξ

γ2
ε⊤p2ṽ

⊤.

The bias equals the expected squared norm of this term (divided by ñ).

D.3.2 VARIANCE

Lemma 8 gives us that

E
[
1

ñ

∥∥∥β⊤
intÃ

∥∥∥2
F

]
= E

[
τ̃2α2

z

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤Zβ∗ +

τ̃2α2
A

d
β⊤
∗ A(Z +A)†(Z +A)†⊤A⊤β∗

+
2τ̃2αAαz

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤A⊤β∗ +

τ̃2

d
ε⊤(Z +A)†(Z +A)†⊤ε

]
.
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D.3.3 DATA NOISE

The data noise term is the simplest to understand. Preliminary calculation gives us:

1

ñ
α̃2
AEÃ

[∥∥∥β⊤
∗ Ã
∥∥∥2
F

]
=

α̃2
A

ñ

ρ̃2ñ

d
∥β∗∥2 =

α̃2
Aρ̃

2

d
∥β∗∥2.

D.3.4 TARGET ALIGNMENT

To understand this term, we first note that Ã is independent of everything else. Hence we replace
ÃÃ⊤ with its expectation ρ̃2ñ

d I .

EÃ

[
− 2

ñ
α̃Aβ

⊤
∗ ÃÃ⊤βint

]
= − 2

ñ

ρ̃2ñ

d
α̃Aβ

⊤
∗ βint = −2α̃Aρ̃

2

d
β⊤
∗ βint.

Since ε has mean-zero entries that are independent of everything else. We see that

Eε

[
β⊤
∗ βint

]
= Eε

[
β⊤
∗
(
(αzβ

⊤
∗ Z + ε⊤)(Z +A)† + αAβ

⊤
∗ A(Z +A)†

)⊤]
(5)

= β⊤
∗
(
αzβ

⊤
∗ Z(Z +A)† − αAβ

⊤
∗ A(Z +A)†

)⊤
(6)

= αzβ
⊤
∗ (Z +A)†⊤Z⊤β∗ + αAβ

⊤
∗ (Z +A)†⊤A⊤β∗. (7)

D.3.5 HELPER LEMMAS

Proposition 1 (Proposition 2 from Sonthalia & Nadakuditi (2023)). In the setting from Section 2

Z(Z +A)† =

{
ηξ
γ1
uh+ η2∥t∥2

γ1
uk⊤A†, c < 1

ηξ
γ2
uh+ η2∥h∥2

γ2
us⊤, c > 1

.

Lemma 1. If ξ ̸= 0 and A has full rank, we have:

ε⊤(Z +A)†Z̃ =

{
− η̃ξ

ηγ1
ε⊤p1ṽ

⊤ c < 1

− η̃ξ
ηγ2

ε⊤p2ṽ
⊤ c > 1

.

Proof. After substitutions, Proposition 1 implies that for c < 1, ε⊤(Z +A)†Z̃ becomes:

ε⊤
(
A† +

η

ξ
t⊤k⊤A† − ξ

γ1
p1

(
−η∥t∥2

ξ
k⊤A† − h

))
Z̃

= η̃ε⊤
(
A†uṽ⊤ +

η

ξ
t⊤k⊤A†uṽ⊤ − ξ

γ1
p1

(
−η∥t∥2

ξ
k⊤A†u− hu

)
ṽ⊤
)

by Z̃ = η̃uṽ⊤.

Since k = A†u and hu = v⊤A†u = ξ−1
η , we then have that

η̃ε⊤
(
A†uṽ⊤ +

η

ξ
t⊤k⊤A†uṽ⊤ − ξ

γ1
p1

(
−η∥t∥2

ξ
k⊤A†u− hu

)
ṽ⊤
)

= η̃ε⊤
(
kṽ⊤ +

η∥k∥2

ξ
t⊤ṽ⊤ +

ξ

γ1
p1

(
η2∥t∥2∥k∥2 + ξ2 − ξ

ξη

)
ṽ⊤
)

= η̃ε⊤
(
kṽ⊤ +

η∥k∥2

ξ
t⊤ṽ⊤ +

1

γ1
p1

(
γ1 − ξ

η

)
ṽ⊤
)

= η̃ε⊤
(
1

η

(
η2∥k∥2

ξ
t⊤ + ηk

)
ṽ⊤ +

1

η
p1ṽ

⊤ − ξ

ηγ1
p1ṽ

⊤
)

= ε⊤
(
− η̃

η
p1ṽ

⊤ +
η̃

η
p1ṽ

⊤ − η̃ξ

ηγ1
p1ṽ

⊤
)

= − η̃ξ

ηγ1
ε⊤p1ṽ

⊤.

For c > 1, we note that the calculation is exactly the same. An example of such a calculation can be
seen in the proof of Lemma 4.
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Lemma 2. In the setting of Section 2, we have:

A(Z +A)† =

{
I − ηξ

γ1
uh+ η2∥t∥2

γ1
uk⊤A†, c < 1

AA† + ηξ
γ2
h⊤s⊤ − η2∥s∥2

γ2
h⊤h− η2∥h∥2

γ2
AA†us⊤ − ηξ

γ2
AA†uh, c > 1

.

Proof. For c < 1, Z,A are d× n with d < n. Since A is assumed to have full rank, Z +A has full
rank with probability 1, and hence

(Z +A)(Z +A)† = I.

Thus, from Proposition 1,

A(Z +A)† = (Z +A)(Z +A)† −Z(Z +A)† = I − ηξ

γ1
uh− η2∥t∥2

γ1
uk⊤A†.

For c > 1, since (Z + A)(Z + A)† is no longer the identity matrix, we directly expand using
Theorem 6:

A(Z +A)† = A

(
A† +

η

ξ
A†h⊤s⊤ − ξ

γ2

(
η2∥s∥2

ξ
A†h⊤ + ηk

)(
η∥h∥2

ξ
s⊤ + h

))
= AA† +

η

ξ
AA†h⊤s⊤ − ξ

γ2

(
η2∥s∥2

ξ
AA†h⊤ + ηAA†u

)(
η∥h∥2

ξ
s⊤ + h

)
.

Noting that AA†h⊤ = AA†A†⊤v = A†⊤v = h⊤, we have

A(Z +A)† = AA† +
η

ξ
h⊤s⊤ − ξ

γ2

(
η2∥s∥2

ξ
h⊤ + ηAA†u

)(
η∥h∥2

ξ
s⊤ + h

)
= AA† +

η

ξ
h⊤s⊤ − η3∥s∥2∥h∥2

ξγ2
h⊤s⊤ − η2∥s∥2

γ2
h⊤h− η2∥h∥2

γ2
AA†us⊤ − ηξ

γ2
AA†uh.

We can combine the coefficients in front of h⊤s⊤ to get

η

ξ
− η3∥s∥2∥h∥2

ξγ2
=

η(η2∥s∥2∥h∥2 + ξ2)− η3∥s∥2∥h∥2

ξγ2
=

ηξ

γ2
.

The statement follows from here.

Lemma 3. If ξ ̸= 0 and A has full rank, we have:

β⊤
∗ Z(Z +A)†Z̃ =


(
1− ξ

γ1

)
β⊤
∗ Z̃ c < 1(

1− ξ
γ2

)
β⊤
∗ Z̃ c > 1

.

Proof. Using Proposition 1 for c < 1 and Z̃ = η̃uṽ⊤, we have that

β⊤
∗ Z(Z +A)†Z̃ = β⊤

∗

(
ηξ

γ1
uh+

η2∥t∥2

γ1
uk⊤A†

)
Z̃

= η̃β⊤
∗

(
ηξ

γ1
uhuṽ⊤ +

η2∥t∥2

γ1
uk⊤A†uṽ⊤

)
= η̃β⊤

∗

(
ηξ

γ1
uv⊤A†uṽ⊤ +

η2∥t∥2

γ1
uk⊤A†uṽ⊤

)
.

Note ξ − 1 = ηv⊤A†u, kA†u = k⊤k = ∥k∥2. The above equation becomes

η̃β⊤
∗

(
ξ(ξ − 1)

γ1
+

η2∥t∥2∥k∥2

γ1

)
uṽ⊤ = β⊤

∗

(
ξ(ξ − 1)

γ1
+

η2∥t∥2∥k∥2

γ1

)
Z̃⊤.

Using γ1 = η2∥t∥2∥k∥2 + ξ2 to combine the coefficients, we have that

ξ(ξ − 1)

γ1
+

η2∥t∥2∥k∥2

γ1
=

−ξ + ξ2 + η2∥t∥2∥k∥2

γ1
=

−ξ + γ1
γ1

= 1− ξ

γ1
.
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This completes the proof for c < 1. Similarly, for c > 1, we obtain

β⊤
∗ Z(Z +A)†Z̃ = β⊤

∗

(
ηξ

γ2
uh+

η2∥h∥2

γ2
us⊤

)
Z̃

= η̃β⊤
∗

(
ηξ

γ2
uhuṽ⊤ +

η2∥h∥2

γ2
us⊤uṽ⊤

)
= η̃β⊤

∗

(
ηξ

γ2
uv⊤A†uṽ⊤ +

η2∥h∥2

γ2
us⊤uṽ⊤

)
.

Note ξ − 1 = ηv⊤A†u, s⊤u = ∥s∥2. The above equation becomes

η̃β⊤
∗

(
ξ(ξ − 1)

γ2
+

η2∥s∥2∥h∥2

γ2

)
uṽ⊤ = β⊤

∗

(
ξ(ξ − 1)

γ2
+

η2∥s∥2∥h∥2

γ2

)
Z̃⊤.

Using γ2 = η2∥s∥2∥h∥2 + ξ2 to combine the coefficients, we have that
ξ(ξ − 1)

γ2
+

η2∥s∥2∥h∥2

γ2
=

−ξ + ξ2 + η2∥t∥2∥k∥2

γ2
=

−ξ + γ2
γ2

= 1− ξ

γ2
.

The target expression follows.

Lemma 4. If ξ ̸= 0 and A has full rank, we have:

β⊤
∗ A(Z +A)†Z̃ =

{
ξ
γ1
β⊤
∗ Z̃ c < 1

η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃ + ξ
γ2
β⊤
∗ AA†Z̃ c > 1

.

Proof. We begin with c < 1. Since A is assumed to have full rank, Z +A has full column rank with
probability 1, and hence

(Z +A)(Z +A)† = I.
It follows from Lemma 3 that

β⊤
∗ A(Z +A)†Z̃ = β⊤

∗ (Z +A)(Z +A)†Z̃ − β⊤
∗ Z(Z +A)†Z̃

= β⊤
∗ Z̃ −

(
1− ξ

γ1

)
β⊤
∗ Z̃ =

ξ

γ1
β⊤
∗ Z̃.

For c > 1, Z + A now has full row rank instead of full column rank. Hence, we do not have
(Z +A)(Z +A)† = I and need to directly expand it using Theorem 6 and its helper variables:

β⊤
∗ A(Z +A)†Z̃ = β⊤

∗ A

(
A† +

η

ξ
A†h⊤s⊤ − ξ

γ2
p2q

⊤
2

)
Z̃

= η̃β⊤
∗ A

(
kṽ⊤ +

η∥s∥2

ξ
A†h⊤ṽ⊤ − ξ

γ2
p2q

⊤
2 uṽ

⊤
)

= η̃β⊤
∗ A

(
−1

η
p2ṽ

⊤ − ξ

γ2
p2

(
−η∥h∥2

ξ
s⊤ − h

)
uṽ⊤

)
= η̃β⊤

∗ A

(
−1

η
p2ṽ

⊤ +
ξ

γ2
p2

(
η∥s∥2∥h∥2

ξ
+

ξ − 1

η

)
ṽ⊤
)

= η̃β⊤
∗ A

(
−1

η
p2ṽ

⊤ +
ξ

γ2
p2

(
η2∥s∥2∥h∥2 + ξ2 − ξ

ξη

)
ṽ⊤
)

= η̃β⊤
∗ A

(
−1

η
p2ṽ

⊤ +
ξ

γ2
p2

(
γ2 − ξ

ξη

)
ṽ⊤
)

= η̃β⊤
∗ A

(
−1

η
p2ṽ

⊤ +
1

η
p2ṽ

⊤ − ξ

ηγ2
p2ṽ

⊤
)

= − η̃ξ

ηγ2
β⊤
∗ Ap2ṽ

⊤

=
η̃ξ

ηγ2
β⊤
∗

(
η2∥s∥2

ξ
h⊤ + ηAk

)
ṽ⊤ by plugging in the expression of p2

=
η̃η∥s∥2

γ2
β⊤
∗ h

⊤ṽ⊤ +
ξ

γ2
β⊤
∗ AA†Z̃ by η̃kṽ⊤ = A†η̃uṽ⊤ = A†Z̃.
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Noting that β⊤
∗ h

⊤ is a scalar, we then introduce 1 = u⊤u and get that

η̃η∥s∥2

γ2
β⊤
∗ h

⊤u⊤uṽ⊤ =
η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃ since η̃uṽ⊤ = Z̃.

Thus, the final expression is

η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃ +
ξ

γ2
β⊤
∗ AA†Z̃.

Lemma 5 (Bias Term). In the setting of Section 2, we have that if c < 1,

α̃zβ
⊤
∗ Z̃ − β⊤

intZ̃ =

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]
β⊤
∗ Z̃ +

η̃

η

ξ

γ1
ε⊤p1ṽ

⊤,

and if c > 1,

α̃zβ
⊤
∗ Z̃−β⊤

intZ̃ = β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃−αA

η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃+
η̃

η

ξ

γ2
ε⊤p2ṽ

⊤.

Proof. To simplify the bias term, we first need the following expansion:

α̃zβ
⊤
∗ Z̃ − β⊤

intZ̃ = α̃zβ
⊤
∗ Z̃ − (β⊤

∗ (αzZ + αAA) + ε⊤)(Z +A)†Z̃

= α̃zβ
⊤
∗ Z̃ − αzβ

⊤
∗ Z(Z +A)† − αAβ

⊤
∗ A(Z +A)†Z̃ − ε⊤(Z +A)†Z̃.

From Lemmas 1, 3, 4, we get simplified expressions for ε⊤(Z+A)†Z̃, β⊤
∗ A(Z+A)†Z̃, β⊤

∗ Z(Z+
A)† and plug them in. For c < 1, we get

α̃Zβ
⊤
∗ Z̃ − αZ

(
1− ξ

γ1

)
β⊤
∗ Z̃ − αA

ξ

γ1
β⊤
∗ Z̃ +

η̃

η

ξ

γ1
ε⊤p1ṽ

⊤

=

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]
β⊤
∗ Z̃ +

η̃

η

ξ

γ1
ε⊤p1ṽ

⊤.

On the other hand, for c > 1, we have

α̃Zβ
⊤
∗ Z̃ − αZ

(
1− ξ

γ2

)
β⊤
∗ Z̃ − αA

[
η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃ +
ξ

γ2
β⊤
∗ AA†Z̃

]
+

η̃

η

ξ

γ2
ε⊤p2ṽ

⊤

= β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃ − αA

η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃ +
η̃

η

ξ

γ2
ε⊤p2ṽ

⊤.

Lemma 6 (Squared Norms of p1 and p2). Recall p1 = −η2∥k∥2

ξ t⊤ − ηk and p2 = −η2∥s∥2

ξ A†h−
ηk.

1. ∥p1∥2 =
η2∥k∥2

ξ2
γ1.

2. ∥p2∥2 = η4∥s∥4

ξ2 hA†⊤A†h⊤ + 2η3∥s∥2

ξ k⊤A†h⊤ + η2∥k∥2.

Proof. For p1, we have

∥p1∥2 =

(
−η2∥k∥2

ξ
t− ηk

)(
−η2∥k∥2

ξ
t⊤ − ηk⊤

)
=

(
η2∥k∥2

ξ

)2

∥t∥2 + 2
η3∥k∥2

ξ
tk + η2∥k∥2.

Using tk = 0 yields the first result, which we can further simplify as

η2∥k∥2

ξ2
(
η2∥k∥2∥t∥2 + ξ2

)
=

η2∥k∥2

ξ2
γ1.
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For p2, similarly, we have

∥p2∥2 =

(
−η2∥s∥2

ξ
hA†⊤ − ηk⊤

)(
−η2∥s∥2

ξ
A†h⊤ − ηk

)
=

η4∥s∥4

ξ2
hA†⊤A†h⊤ +

2η3∥s∥2

ξ
k⊤A†h⊤ + η2∥k∥2.

Lemma 7 (Squared Norms of q1 and q2). Let q⊤
1 = −η∥t∥2

ξ k⊤A† − h and q⊤
2 = −η∥h∥2

ξ s⊤ − h.

1. ∥q1∥2 =
η2∥t∥4

ξ2
k⊤A†A†⊤k +

2η∥t∥2

ξ
k⊤A†h⊤ + ∥h∥2.

2. ∥q2∥2 = ∥h∥2

ξ2 γ2.

Proof. Similar to Lemma 6, we directly expand the two terms:

∥q1∥2 =

(
−η∥t∥2

ξ
k⊤A† − h

)(
−η∥t∥2

ξ
A†⊤k − h⊤

)
=

η2∥t∥4

ξ2
k⊤A†A†⊤k +

2η∥t∥2

ξ
k⊤A†h⊤ + ∥h∥2.

∥q2∥2 =

(
−η∥h∥2

ξ
s⊤ − h

)(
−η∥h∥2

ξ
s− h⊤

)
=

η2∥h∥4∥s∥2

ξ2
+ ∥h∥2 since hs = 0

=
∥h∥2(η2∥h∥2∥s∥2 + ξ2)

ξ2

=
∥h∥2

ξ2
γ2.

Lemma 8 (Preliminary Expansion of Variance). In the setting of Section 2, we have

E
[
1

ñ

∥∥∥β⊤
intÃ

∥∥∥2
F

]
= E

[
τ̃2α2

z

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤Zβ∗ +

τ̃2α2
A

d
β⊤
∗ A(Z +A)†(Z +A)†⊤A⊤β∗

+
2τ̃2αAαz

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤A⊤β∗ +

τ̃2

d
ε⊤(Z +A)†(Z +A)†⊤ε

]
.

Proof. Since Ã is independent of the other terms, we replace ÃÃ⊤ with its expectation τ̃2ñ
d I .

E
[
1

ñ

∥∥∥β⊤
intÃ

∥∥∥2
F

]
= E

[
1

ñ
β⊤
intÃÃ⊤βint

]
=

1

ñ

τ̃2ñ

d
E
[
β⊤
intβint

]
=

τ̃2

d
E
[
∥βint∥2

]
.

We now plug in the expression for βint. Since ε is a zero-mean vector and independent from other
random variables, terms with only one ε have zero expectation. A straightforward expansion gives:

τ̃2

d
∥βint∥2F =

τ̃2

d
(β⊤

∗ (αzZ + αAA) + ε⊤)(Z +A)†(Z +A)†⊤(β⊤
∗ (αzZ + αAA) + ε⊤)⊤.

After eliminating zero expectations as above, the expectation becomes:

E
[
τ̃2

d
∥βint∥2F

]
= E

[
τ̃2α2

z

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤Zβ∗ +

τ̃2α2
A

d
β⊤
∗ A(Z +A)†(Z +A)†⊤A⊤β∗

+
2τ̃2αAαz

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤A⊤β∗ +

τ̃2

d
ε⊤(Z +A)†(Z +A)†⊤ε

]
.
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D.4 STEP 3: RANDOM MATRIX THEORY ESTIMATES

To do the estimates we recall the set up. In particular, we have that

Z = ηuv⊤, where θ =
η√
n

and ∥v∥ = 1,

and the entries of

Aij = N
(
0,

ρ2

d

)
Recall the following definition h = v⊤A†, k = A†u, t = v⊤(I − A†A), ξ = 1 + ηv⊤A†u,
s = (I −AA†)u, γ1 = η2∥t∥2∥k∥2 + ξ2, γ2 = η2∥s∥2∥h∥2 + ξ2 and

p1 = −η2∥k∥2

ξ
t⊤ − ηk, q⊤

1 = −η∥t∥2

ξ
k⊤A† − h.

p2 = −η2∥s∥2

ξ
A†h⊤ − ηk, q⊤

2 = −η∥h∥2

ξ
s⊤ − h,

To show that each of the four terms, bias, variance, data noise, and target alignment concentrate in
the limit, we do this in two steps.

(a) First, we compute the mean and variance for basic building blocks such as ∥h∥2 and other
variables. Section D.4.1.

(b) Second, we provide bounds on the higher moments. Section D.4.2.

(c) Next, we prove bounds on the moments of γi. Section D.4.3.

D.4.1 STEP 3(A): SHOWING THAT BASIC BUILDING BLOCKS CONCENTRATE

We begin by bounding the mean and variance.

Lemma 9 (Generalized version of Lemma 7 from Sonthalia & Nadakuditi (2023)). Suppose Aij have
mean 0 and variance ρ2/d, the entries are uncorrelated, have finite fourth moment, the distribution is
invariant under left and right orthogonal transformation and the empirical spectral distribution of
1
ρ2AA⊤ converges to the Marchenko-Pastur law. Additionally, if u and v are fixed unit norm vectors.
Then we have that

1. E[∥h∥2] =

{
1
ρ2

c2

1−c c < 1
1
ρ2

c
c−1 c > 1

+ o

(
1

ρ2

)
and Var(∥h∥2) = O

(
1

ρ4n

)
.

2. E[∥k∥2] = 1

ρ2
c

1− c
+ o

(
1

ρ2

)
and Var(∥k∥2) = O

(
1

ρ4n

)
.

3. E[∥s∥2] = 1− 1

c
and Var(∥s∥2) = O

(
1

d

)
.

4. E[∥t∥2] = 1− c and Var(∥t∥2) = O

(
1

n

)
.

5. E
[
ξ

η

]
=

1

η
and Var

(
ξ

η

)
= O

(
1

max(n, d)

1

ρ2

)
.

6. E
[
ξ2

η2

]
=

1

η2
+

1

max(n, d)

c

ρ2|1− c|
+ o

(
1

max(n, d)ρ2

)
=

1

η2
+ O

(
1

max(n, d)ρ2

)
and Var

(
ξ2

η2

)
= O

(
1

max(d, n)ρ4

)
.

Note that here max(d, n), d, n are interchangeable in the variance big-Oh terms since they only
differ by an absolute constant c. We include the details for completion.
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Proof. Items 1−5 come from the original statement, which assumes unit variance. Here our variance
parameter ρ simply induces a multiplicative change. We now focus on item 6.

Let ζ = ξ/η = 1/η + v⊤A†u. With A = UΣV ⊤ (SVD), A ∈ Rd×n having i.i.d. N (0, ρ2/d)
entries, and u,v fixed unit vectors, we have ζ = 1

η +
∑r

i=1
1
σi
biai, where r = min(d, n), a = V ⊤v,

b = U⊤u are uniformly random on Sn−1 and Sd−1 respectively since U , V are random rotations.

Since A has zero-mean entries, only the non-cross terms remain in the expectation, and the fourth
moment is

E[ζ4] =
1

η4
+

6

η2

∑
i,j

E
[

1

σiσj

]
E[bibj ]E[aiaj ] +

∑
i,j,k,l

E
[

1

σiσjσkσl

]
E[bibjbkbl]E[aiajakal].

Furthermore, non-zero expectation terms require paired indices (since odd moments of the uniformly
random vector on the sphere equals 0). In particular, using exact spherical moments, we have E[a4i ] =

3
n(n+2) , E[a2i ] = 1

n , E[a2i a2j ] = 1
n(n+2) (i ̸= j), E[b4i ] = 3

d(d+2) , E[b2i ] = 1
d , E[b2i b2j ] = 1

d(d+2)

(i ̸= j):

E[ζ4] =
1

η4
+

6

η2

r∑
i=1

E
[
1

σ2
i

]
1

dn
+

r∑
i=1

E
[
1

σ4
i

]
9

d(d+ 2)n(n+ 2)
+ 3

∑
i̸=k

E
[

1

σ2
i σ

2
k

]
1

d(d+ 2)n(n+ 2)

=
1

η4
+

9
∑r

i=1 E[1/σ4
i ]

d(d+ 2)n(n+ 2)︸ ︷︷ ︸
I1

+
3
∑

i ̸=k E[1/(σ2
i σ

2
k)]

d(d+ 2)n(n+ 2)︸ ︷︷ ︸
I2

+
6

η2

∑r
i=1 E[1/σ2

i ]

dn︸ ︷︷ ︸
I3

.

Leading Order Scaling and Mean. Let N = max(d, n), assume n, d → ∞ with d/n → c ̸= 1.
Lemma 5 from Sonthalia & Nadakuditi (2023) implies that if A has unit variance entries, the moments
of its inverse eigenvalue are expressions of c and are hence O(1). In our case, it will just scale with ρ
instead:

E[1/σ4
i ] = O(1/ρ4), E[1/(σ2

i σ
2
k)] = O(1/ρ4), and E[1/σ8

i ] = O(1/ρ8) etc.

In particular, we also need the following exact expectation from the same lemma:

E
[
1

σ2
i

]
=

c

ρ2|1− c|
+ o

(
1

ρ2

)
= O

(
1

ρ2

)
. (8)

Since the above I1, I3 have r = min(d, n) summands, this implies

I1 = O

(
r

N4ρ4

)
= O

(
1

N3ρ4

)
, I3 = O

(
r

η2N2ρ2

)
= O

(
1

Nρ4

)
.

Similarly, I2 has r(r − 1) ≈ r2 summands, and

I2 = O

(
r2

N4ρ4

)
= O

(
1

N2ρ4

)
=⇒ E[ζ4] =

1

η4
+ I1 + I2 + I3 =

1

η4
+O

(
1

max(d, n)ρ4

)
since I3 dominates. (9)

With a similar expansion for the second moment and taking spherical moments, we get that

E[ζ2] =
1

η2
+
∑
i,j

E
[

1

σiσj

]
E[bibj ]E[aiaj ] =

1

η2
+

∑r
i=1 E[1/σ2

i ]

dn

=
1

η2
+

min(d, n)

dn

(
c

ρ2|1− c|
+ o

(
1

ρ2

))
by Equation 8

=
1

η2
+

1

max(d, n)

c

ρ2|1− c|
+ o

(
1

max(d, n)ρ2

)
.

This gives us the mean. Furthermore,

(E[ζ2])2 =
1

η4
+

2

η2

∑r
i=1 E[1/σ2

i ]

dn
+

(
∑r

i=1 E[1/σ2
i ])

2

d2n2
=

1

η4
+O

(
1

max(d, n)ρ4

)
. (10)
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Variance. Var(ζ2) = E[ζ4]− (E[ζ2])2. From Equations 9, 10, the overall scaling is determined by
the dominant term:

Var

((
ξ

η

)2
)

= O

(
1

max(d, n)ρ4

)
.

Lemma 10 (General Terms). In the setting of Section 2 we have the following expectations:

1. For c < 1, E[β⊤
∗ uk

⊤A†β∗] =
c

ρ2(1−c) (β
⊤
∗ u)

2 + o
(

1
ρ2

)
and the variance is O(1/(ρ4d)).

2. For c < 1, E[k⊤A†A†⊤k] = c2

ρ4(1−c)3 + o
(

1
ρ4

)
and the variance is O(1/(ρ8d)).

3. For c > 1, E[β⊤
∗ su

⊤β∗] =
c−1
c (β⊤

∗ u)
2 and the variance is O(1/d).

4. For c > 1, E[β⊤
∗ AA†us⊤β∗] =

c−1
c2 (β⊤

∗ u)
2 + o(1) and the variance is O(1/d).

5. For c > 1, E[β⊤
∗ h

⊤hβ∗] =
∥β∗∥2

d
c

ρ2(c−1) + o
(

1
ρ2d

)
and the variance is O(1/(ρ4d2)).

6. For c > 1, E[hA†⊤A†h⊤] = 1
ρ4

c3

(c−1)3 + o
(

1
ρ4

)
and the variance is O(1/(ρ8d)).

7. For c > 1, E[∥k∥2] = 1
ρ2

1
c−1 + o

(
1
ρ2

)
and the variance is O(1/(ρ4n))

Proof. For all these terms, we evaluate the expectation using the SVD A = UΣV ⊤, with A† =
V Σ†U⊤, and important expectations from Lemma 5 of Sonthalia & Nadakuditi (2023) regarding the
spectrum of A: suppose Ã has unit variance (general ρ2 is a multiplicative change), and let σi(Ã)
denote the i-th singular value. We have

E

[
1

σ2
i (Ã)

]
=

{
c

1−c + o(1) c < 1
c

c−1 + o(1) c > 1
, E

[
1

σ4
i (Ã)

]
=

{
c2

(1−c)3 + o(1) c < 1
c3

(c−1)3 + o(1) c > 1
.

E
[

1

σ2
i (A)

]
=


1
ρ2

c
1−c + o

(
1
ρ2

)
c < 1

1
ρ2

c
c−1 + o

(
1
ρ2

)
c > 1

, E
[

1

σ4
i (A)

]
=


1
ρ4

c2

(1−c)3 + o
(

1
ρ4

)
c < 1

1
ρ4

c3

(c−1)3 + o
(

1
ρ4

)
c > 1

.

(11)

For the first term, we note that

β⊤
∗ uk

⊤A†β∗ = (β⊤
∗ u)u

⊤A†⊤A†β∗

= (β⊤
∗ u)u

⊤UΣ†⊤Σ†U⊤β∗

= (β⊤
∗ u)

d∑
i=1

(u⊤U)i(U
⊤β∗)i

1

σ2
i (A)

= (β⊤
∗ u)

d∑
i=1

(u⊤ui)(β
⊤
∗ ui)

1

σ2
i (A)

,

where ui denotes the i-th column of U . We further note that u⊤β∗ = u⊤UU⊤β∗. Since permuting
columns of an orthogonal matrix does not break orthogonality and U is uniformly random, we have
that the marginals ui are identical. Thus, we have that

E[u⊤u1β
⊤
∗ u1] = . . . = E[u⊤udβ

⊤
∗ ud] =

1

d
(u⊤β∗) since E[uiu

⊤
i ] =

1

d
I.
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It follows from here that

E
[
β⊤
∗ uk

⊤A†β∗
]
= (β⊤

∗ u)

d∑
i=1

E[u⊤uiβ
⊤
∗ ui]E

[
1

σ2
i (A)

]

=
1

ρ2
(β⊤

∗ u)
2

d∑
i=1

1

d

(
c

1− c
+ o(1)

)
by Equation 11

=
1

ρ2
c

1− c
(β⊤

∗ u)
2 + o

(
1

ρ2

)
.

Since A is isotropic Gaussian, we have that U ,V are uniformly random orthogonal matrices. Thus,
u⊤U and U⊤β∗ are uniformly random vectors on the spheres of radius ∥u∥ and ∥β∗∥ respectively.

Hence, when we consider the squared terms to compute the variance, the term from the two uniform
vectors will contribute O(1/d2). Together with the singular value term (now squared to have O(1/ρ4))
and the summation, the variance is of order O(1/(ρ4d)).

For the second term, we have that by Equation 11,

k⊤A†A†⊤k = u⊤((AA⊤)†)2u = u⊤U((ΣΣ⊤)†)2U⊤u =

d∑
i=1

(u⊤ui)
2 1

σ4
i (A)

,

E[k⊤A†A†⊤k] =

d∑
i=1

E[(u⊤ui)
2]E
[

1

σ4
i (A)

]
=

d∑
i=1

1

ρ4
1

d

(
c2

(1− c)3
+ o(1)

)
=

1

ρ4
c2

(1− c)3
+o

(
1

ρ4

)
,

where we again use E[(u⊤ui)
2] = 1/d since it is the entry of a uniformly random vector of length

∥u∥ = 1.

Similarly, the variance is O(1/(ρ8d)) from the summation of d independent variances each of
O(1/(ρ8d2)).

For the third term, we have that

β⊤
∗ su

⊤β∗ = β⊤
∗ (I −AA†)u(u⊤β∗) = (β⊤

∗ u)
2 − (β⊤

∗ u)

n∑
i=1

(β⊤
∗ ui)(u

⊤ui).

Similarly, we take the expectation (in particular, E[(β⊤
∗ ui)(u

⊤ui)] = 1/d(β⊤
∗ u)) and have

(β⊤
∗ u)

2

[
1−

n∑
i=1

1

d

]
=

(
1− 1

c

)
(β⊤

∗ u)
2.

The variance for this term is O(1/d) from summation of n = d/c terms of O(1/d2).

For the fourth term, we plug in s = (I −AA†)u and have

β⊤
∗ AA†us⊤β∗ = (β⊤

∗ u)β
⊤
∗ AA†u− (β⊤

∗ AA†u)2.

From previous calculations, we have that

E[β⊤
∗ AA†u] = E

[
n∑

i=1

(β⊤
∗ ui)(u

⊤ui)

]
=

1

c
(β⊤

∗ u).

Using Proposition 2 and this result, we can then show

E[(β⊤
∗ AA†u)2] =

1

c2
(β⊤

∗ u)
2 + o(1).

It follows that
E[β⊤

∗ AA†us⊤β∗] =
c− 1

c2
(β⊤

∗ u)
2 + o(1).
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The variance for this term is O(1/d), where the dominant term is a summation of n = d/c terms of
O(1/d2).

For the fifth term, we have

β⊤
∗ h

⊤hβ∗ = (β⊤
∗ A

†v)2 =

n∑
i,j

(β⊤
∗ U)i(β

⊤
∗ U)j

1

σi(A)σj(A)
(V ⊤v)i(V

⊤v)j .

Since β⊤
∗ U (and V ⊤v) are uniformly random and independent of everything else, we only have the

diagonal terms when we take the expectation. By Equation 11,

E[β⊤
∗ h

⊤hβ∗] =

n∑
i=1

∥β∗∥2

d

1

n

1

ρ2

(
c

c− 1
+ o(1)

)
=

∥β∗∥2

d

1

ρ2
c

c− 1
+ o

(
1

ρ2d

)
The variance for this term is O(1/(ρ4d2)) from O(d2) terms of individual variances of O(1/(ρ4d4)).

For the sixth term, by expansion and Equation 11, similar to above,

E
[
hA†⊤A†h⊤] = n∑

i=1

E
[
(V ⊤v)2i

]
E
[

1

σ4
i (A)

]
=

n∑
i=1

1

n
E
[

1

σ4
i (A)

]
=

1

ρ4
c3

(c− 1)3
+ o

(
1

ρ4

)
.

The variance is O
(
1/(ρ8d)

)
.

For the final term, by expansion and Equation 11,

E
[
∥k∥2

]
=

n∑
i=1

E
[
(u⊤U)2i

]
E
[

1

σ2
i (A)

]
=

1

ρ2
n

d

c

c− 1
+ o

(
1

ρ2

)
=

1

ρ2
1

c− 1
+ o

(
1

ρ2

)
The variance is O

(
1/(ρ4n)

)
.

Lemma 11 (Zero Expectation). In the setting of Section 2, we have the following expectations for

1. ∀c, E[β⊤
∗ uhβ∗] = 0 and Var(β⊤

∗ uhβ∗) = O(1/(ρ2d))

2. If c > 1, E[β⊤
∗ AA†uhβ∗] = 0 and Var(β⊤

∗ AA†uhβ∗) = O(1/(ρ2d2))

3. If c > 1, E[β⊤
∗ shβ∗] = 0 and Var(β⊤

∗ shβ∗) = O(1/(ρ2d))

4. ∀c, E[k⊤A†h⊤] = 0 and Var(k⊤A†h⊤) = O(1/(ρ6d))

5. If c > 1, E[hAA†β∗] = 0 and Var(hAA†β∗) = O(1/(ρ2d))

Proof. Similar to Lemma 10, for all these terms, we evaluate the expectation using the SVD A =
UΣV ⊤, with A† = V Σ†U⊤.

For the first term, we note that

β⊤
∗ uhβ

⊤
∗ = (β⊤

∗ u)v
⊤A†β∗ = (β⊤

∗ u)v
⊤V Σ†U⊤β∗ = (β⊤

∗ u)

min(n,d)∑
i=1

(v⊤V )i(U
⊤β∗)i

1

σi(A)
.

Since A is isotropic Gaussian, again we have that U ,V are uniformly random orthogonal matri-
ces. Thus, v⊤V and U⊤β∗ are uniformly random vectors on a spheres of radius ∥v∥ and ∥β∗∥
respectively. In particular, they are independent and have mean zero, which implies

E
[
β⊤
∗ uhβ

⊤
∗
]
= 0.

The variance will be O(1/(ρ2d)) as a summation of O(d) terms of O(1/(ρ2d2)).

For the second term, we note that

β⊤
∗ AA†u =

min(n,d)∑
i=1

(β⊤
∗ U)i(U

⊤u)i and hβ∗ =

min(n,d)∑
i=1

(v⊤V )i(U
⊤β∗)i

1

σi(A)
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Multiplying the two together yields

β⊤
∗ AA†uhβ∗ =

min(n,d)∑
i,j

(β⊤
∗ U)i(U

⊤u)i(v
⊤V )j(U

⊤β∗)j
1

σi(A)
.

We note that v⊤V is a uniformly random mean zero vector independent of everything else in the
summation. Hence, the expectation is equal to zero, and similar to Lemma ??, the variance of this
term is O(1/(ρ2d2)) (a summation of O(d2) terms of O(1/(ρ2d4))).

For the third term, we have that

β⊤
∗ shβ∗ = β⊤

∗ (I −AA†)uhβ∗ = β⊤
∗ uhβ∗ − β⊤

∗ AA†uhβ∗.

Then using the previous two parts, we get that each term has mean zero. Thus, we get the needed
result. Using Lemma 34 and the first two terms, the variance of this term is O(1/(ρ2d)).

For the fourth term, we have that:

k⊤A†h⊤ = uUΣ†⊤Σ†Σ†⊤V ⊤v =

min(n,d)∑
i=1

(u⊤U)i (V
⊤v)i

1

σi(A)3
.

Similarly, using the independence of U ,Σ,V and uniformly random entries, we get mean zero and
variance O(1/(ρ6d)).

For the last term, we have that:

hAA†β∗ =

r∑
i=min(n,d)

(V ⊤v)i (U
⊤β∗)i

1

σi(A)
.

Using the independence of U ,Σ,V and uniformly random entries, we get mean zero and variance
O(1/(ρ2d)).

D.4.2 STEP 3(B): BOUNDING THE HIGHER MOMENTS

To bound the higher moments, we will the following Gaussian hypercontractivity lemma.
Lemma 12 (Gaussian Hypercontractivity Inequality). Let G ∼ N (0, 1) be a standard Gaussian
random variable. Let f : R → R be a degree k polynomial. Then, for any q ≥ 2, the Lq norm of
f(G) is bounded by its L2 norm as follows:

∥f(G)∥Lq
≤ (q − 1)k/2∥f(G)∥L2

,

where the Lp norm of a random variable X is defined as ∥X∥Lp
= (E[|X|p])1/p.

Proof. Follows directly from Mei et al. (2022, Lemma 20).

Lemma 13 (Multivariate Gaussian Hypercontractivity). Let G = (G1, . . . , GM ) ∼ N (0, IM ) and
let P : RM → R be a polynomial of total degree r. Consider the Hermite expansion of P

P (x) =
∑

α∈Nm,|α|≤r

cαHα(x).

with coefficient random and independent of G. Then there exists a constant C that is only dependent
on M, r such that for any q ≥ 2,

∥P (G)∥Lq
≤ C(q − 1)r/2

∑
|α|≤r

∥cα∥2Lq
α!

1/2

Further, if for all |α| ≤ r, we have that ∥cα∥2Lq
≤ C2

q ∥cα∥2L2
, then

∥P (G)∥Lq
≤ C(q − 1)r/2∥P (G)∥L2

Where the Lp norm is over all of the randomness. Furthermore,
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Proof. Let Hk : R → R be the probabilist Hermite polynomial. Given α ∈ NM , define

Hα(x) :=

M∏
j=1

Hαj (xj)

Then since P is degree r, then we can decompose

P (x) =
∑

α∈Nm,|α|≤r

cαHα(x).

Here |α| =
∑

j αj . Since the Hermite polynomials are orthogonal, we can see that∫
RM

Hα(x)Hα̃(x)γM (x) = δαα̃

M∏
j=1

αj !,

where γM is the density for an M -dimensional standard normal distribution.

∥P (x)∥2L2
= EΣ

[∫
RM

|P (x)|2γM (x)dx

]
=
∑
|α|≤r

∑
|α̃|≤r

EΣ [cαcα̃]

∫
Hα(x)Hα̃(x)γM (x)dx

=
∑
|α|≤r

∥cα∥2L2
α!

where α! :=

M∏
j=1

αj !.

Then using the 1D Gaussian Hypercontractivity (Lemma 12, we see that

∥Hα(x)∥Lq
=

M∏
j=1

∥Hαj
(xj)∥Lq

≤
M∏
j=1

(q − 1)αj/2∥Hαj
(xj)∥L2

= (q − 1)|α|/2
M∏
j=1

√
αj !

= (q − 1)|α|/2
√
α!

Thus, using the triangle inequality we get that

∥P (x)∥Lq
≤
∑
|α|≤r

∥cαHα(x)∥Lq
=
∑
|α|≤r

∥cα∥Lq
∥Hα(x)∥Lq

Thus

∥P (x)∥Lq
≤
∑
|α|≤r

∥cαHα(x)∥Lq
≤
∑
|α|≤r

∥cα∥Lq
(q − 1)|α|/2

√
α! ≤ (q − 1)r/2

∑
|α|≤r

∥cα∥Lq

√
α!

Then using Cauchy-Schwartz, we get that

∑
|α|≤r

∥cα∥Lq

√
α! ≤

∑
|α|≤r

∥cα∥2Lq
α!

1/2∑
|α|≤r

1

1/2

.

Finally, we note that

CM,r :=

∑
|α|≤r

1

1/2
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is some universal constant that only depends on M, r. Thus, we get that

∥P (x)∥Lq
≤ CM,r (q − 1)r/2

∑
|α|≤r

∥cα∥2Lq
α!

1/2

Using the assumption
∥cα∥2Lq

≤ C2
q ∥cα∥2L2

Then we get
∥P (x)∥Lq ≤ CM,rCq (q − 1)r/2 ∥P (x)∥L2

Lemma 14 (Product Spherical Hypercontractivity). Let l1, l2, l3 ≥ 0, let Θ1 ∼ Unif(Sl1), Θ2 ∼
Unif(Sl2), Θ3 ∼ Unif(Sl3) be independent, and let H : Rl1+1 × Rl2+1 × Rl3+1 → R be a
multi-homogeneous polynomial of total degree r. Then for every q ≥ 2,

∥H(Θ1,Θ2,Θ3)∥Lq
≤ Cr,q(q − 1)r/2 ∥H(Θ1,Θ2,Θ3)∥L2

,

where the norms are with respect to the product measure. For homogeneous polynomials, the constant
is independent of the dimension.

Proof. H is multi-homogeneous of degrees r1, r2, r3 with r1 + r2 + r3 = r. Let G1 ∼ N (0, Il1+1),
G2 ∼ N (0, Il2+1), G3 ∼ N (0, Il3+1) be independent with polar decompositions Gi = RiΘi, where
the Ri’s are independent of each other and of the Θi’s. Then

H(G1, G2, G3) = Rr1
1 Rr2

2 Rr3
3 H(Θ1,Θ2,Θ3),

so for any p > 0,

E [|H(G1, G2, G3)|p] =

(
3∏

i=1

E [Rpri
i ]

)
E [|H(Θ1,Θ2,Θ3)|p]

Then we have that

∥H(G1, G2, G3)∥Lp
=

(∏
i

(E [Rpri
i ])1/p

)
∥H(Θ1,Θ2,Θ3)∥Lp

. (12)

Apply Gaussian hypercontractivity (Lemma 12) to H(G1, G2, G3) (total degree r):

∥H(G1, G2, G3)∥Lq
≤ C(q − 1)r/2 ∥H(G1, G2, G3)∥L2

, q ≥ 2.

Using Equation 12 with p = q and p = 2 yields

∥H(Θ1,Θ2,Θ3)∥Lq ≤ C(q − 1)r/2

(∏
i

(E
[
R2ri

i

]
)1/2

(E [Rqri
i ])1/q

)
∥H(Θ1,Θ2,Θ3)∥L2

.

For each i, since q ≥ 2 and Ri ≥ 0, monotonicity of Lp norms implies (E [Rqri
i ])1/(qri) ≥

(E
[
R2ri

i

]
)1/(2ri), hence

(E
[
R2ri

i

]
)1/2

(E [Rqri
i ])1/q

≤ 1.

Thus the product is less than 1, so

∥H(Θ1,Θ2,Θ3)∥Lq
≤ C(q − 1)r/2 ∥H(Θ1,Θ2,Θ3)∥L2

.

Lemma 15 (Product spherical hypercontractivity with random coefficients). Let l1, l2, l3 ≥ 0 and
let Θi ∼ Unif(Sli) be independent. Let r ∈ N and let H : Rl1+1 × Rl2+1 × Rl3+1 → R be a
multi-homogeneous polynomial of total degree at most r. Suppose the coefficients of P are random
on an auxiliary probability space and are independent of (Θ1,Θ2,Θ3). If the random coefficients
satisfy ∥cα∥Lq ≤ Kq∥cα∥L2 in the Hermite basis expansion, then for all q ≥ 2:

∥H∥Lq ≤ Cr,q (q − 1)r/2 ∥H∥L2 .
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Proof. The proof is identical to that of Lemma 14, except we begin with the version of Gaussian
hypercontractivity that handles random coefficients satisfying the stated assumption.

Recall
a := V ⊤v ∈ Rn b := U⊤u ∈ Rd, and uβ = U⊤β∗

Then, since u,u are fixed, and U ,V are independent Haar orthogonal matrices, we have that a, b
are all uniformly random vectors on their respective spheres. Additionally, using the assumption that
β∗ is uniformly random such that β⊤

∗ u is constant. uβ is uniformly random on a sphere Sd−2.

Consider the following centered versions and polynomial representations.

1. Yh := ∥h∥2 − E
[
∥h∥2

]
= a⊤ (Σ†Σ†⊤ − µh

)
a

2. Yk := ∥k∥2 − E
[
∥k∥2

]
= b⊤

(
Σ†⊤Σ† − µk

)
b

3. Yt := ∥t∥2 − E
[
∥t∥2

]
= a⊤ ((I −Σ†Σ)− µt

)
4. Ys := ∥s∥2 − E

[
∥s∥2

]
= b⊤

(
(I −ΣΣ†)− µt

)
b

5. Yξ :=
ξ

η
− E

[
ξ

η

]
= a⊤Σb = a⊤Σ†b

6. T̃1 := β⊤
∗ uk

⊤A†β∗ − E
[
β⊤
∗ uk

⊤A†β∗
]
= (β⊤

∗ u) b
⊤(Σ†⊤Σ†)uβ − µT̃1

(b⊤b)

7. T̃2 := k⊤A†A†⊤k − E
[
k⊤A†A†⊤k

]
= b⊤

((
Σ†⊤Σ†)2 − µT̃2

)
b

8. T̃3 := β⊤
∗ su

⊤β∗ − E
[
β⊤
∗ su

⊤β∗
]
= (β⊤

∗ u)u
⊤
β (I −ΣΣ†)b− µT̃3

(u⊤
β uβ)

9. T̃4 := β⊤
∗ AA†us⊤β∗ − E

[
β⊤
∗ AA†us⊤β∗

]
= u⊤

β ΣΣ†bb⊤(I − ΣΣ†)uβ −
µT̃4

(b⊤b)(u⊤
β uβ)

10. T̃5 := β⊤
∗ h

⊤hβ∗ − E
[
β⊤
∗ h

⊤hβ∗
]
=
(
uβΣ

†⊤a
)2 − µT̃5

(a⊤a)(u⊤
β uβ)

11. T̃6 := h(A†)⊤A†h⊤ − E
[
h(A†)⊤A†h⊤] = a⊤

((
Σ†Σ†⊤)2 − µT̃6

)
a

12. S̃1 := β⊤
∗ uhβ∗ − E

[
β⊤
∗ uhβ∗

]
= (β⊤

∗ u)a
⊤Σ†uβ

13. S̃2 := β⊤
∗ AA†uhβ∗ − E

[
β⊤
∗ AA†uhβ∗

]
= u⊤

β ΣΣ†ba⊤Σ†uβ

14. S̃3 := β⊤
∗ shβ∗ − E

[
β⊤
∗ shβ∗

]
= uβ(I −ΣΣ†)ba⊤Σ†uβ

15. S̃4 := k⊤A†h⊤ − E
[
k⊤A†h⊤] = b⊤Σ†⊤Σ†Σ†⊤a

Hence we see that these are all homogeneous polynomials in uniformly random spherical variables.
Thus, we can use Lemma 14, we get bounds on the higher moments. In particular, since the coefficients
are only dependent on constants and Σ, we see that the coefficients are independent of a, b,uβ .
Then using a change of basis we see that that coefficients of the decomposition are also random and
independent of the input variables. Finally, since the spectrum converges to the Marchenko-Pastur,
we have that the coefficients have bounded moments. Hence the second assumption is satisfied.

D.4.3 STEP 3(C): BOUNDING γi MOMENTS.

Lemma 16 (Moments of γi/η2). We have:

(i) For γ1/η2,

E
[
γ1
η2

]
=

c

ρ2
+

1

η2
+ o

(
1

ρ2

)
, Var

(
γ1
η2

)
= O

(
1

ρ4n

)
.

(ii) For γ2/η2,

E
[
γ2
η2

]
=

1

ρ2
+

1

η2
+ o

(
1

ρ2

)
, Var

(
γ2
η2

)
= O

(
1

ρ4n

)
.
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Proof. We decompose

γi
η2

= ζi +
ξ2

η2
, i = 1, 2, where ζ1 = ∥t∥2 ∥k∥2, ζ2 = ∥s∥2 ∥h∥2.

Expectation Estimates: We begin by noting that ∥t∥2 depends only on V and is independent of
U ,Σ. ∥s∥2 depends only on U and is independent of V ,Σ. Additionally, ∥k∥2 depends on U and
Σ, hence is independent of V . Also ∥h∥2 depends on V and Σ and is independent of U , hence is
independent of U .

Thus, we have have that ∥t∥2 and ∥k∥2 are independent and ∥s∥2 and ∥h∥2 are independent. Thus,
we see that

E[ζ1] = E[∥t∥2 ∥k∥2] = E[∥t∥2] E[∥k∥2].

Using Lemma 9 again,

E[∥t∥2] = 1− c, E[∥k∥2] = 1

ρ2
c

1− c
+ o

(
1

ρ2

)
.

We plug them into the expectation and get:

E[ζ1] = (1− c)

[(
1

ρ2
c

1− c

)
+ o

(
1

ρ2

)]
=

c

ρ2
+ o

(
1

ρ2

)
.

Finally, we also have that from Lemma 9,

E
[
ξ2

η2

]
=

1

η2
+O

(
1

ρ2n

)
, Var

(
ξ2

η2

)
= O

(
1

ρ4n

)
,

Hence,

E
[
γ1
η2

]
= E[ζ1] + E

[
ξ2

η2

]
=

c

ρ2
+

1

η2
+ o

(
1

ρ2

)
.

A similar argument applies for γ2/η2, using the corresponding results for ∥s∥2, ∥h∥2.

Variance Estimates:

Again using independence, we have that

Var(∥t∥2∥k∥2) = Var(∥t∥2)Var(∥k∥2) + E[∥t∥2]2Var(∥k∥2) + E[∥k∥2]2Var(∥t∥2)

= O

(
1

n

)
O

(
1

ρ4n

)
+ (1− c)2 O

(
1

ρ4n

)
+

1

ρ4
c2

(1− c)2
O

(
1

n

)
= O

(
1

ρ4n

)
.

We then use Lemma 34 to compute the variance of the sum:

Var

(
ζ1 +

ξ2

η2

)
≤

(√
Var(ζ1) +

√
Var

(
ξ2

η2

))2

=

(√
O

(
1

ρ4n

)
+

√
O

(
1

ρ4n

))2

= O

(
1

ρ4n

)
.

This proof is similar to the other case.

Lemma 17 (Moments of (γi/η2)2). We have, as n, d → ∞ with d/n → c ̸= 1,
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(i) For γ1/η2,

E

[(
γ1
η2

)2]
=

(
c

ρ2
+

1

η2

)2
+ O

(
1

ρ4

)
, Var

((
γ1
η2

)2)
= O

(
1

ρ4 n

)
.

(ii) For γ2/η2,

E

[(
γ2
η2

)2]
=

(
1

ρ2
+

1

η2

)2
+ O

(
1

ρ4

)
, Var

((
γ2
η2

)2)
= O

(
1

ρ4 n

)
.

Proof. Write, for i ∈ {1, 2},

γi
η2

= ζi +
ξ2

η2
, ζ1 := ∥t∥2 ∥k∥2, ζ2 := ∥s∥2 ∥h∥2.

Means. Using Lemma 16 and the fact that for any random variable

E
[
Y 2
]
= E[Y ]2 +Var(Y )

we get the means.

Variances. Using

Y 2 = E [Y ]
2
+ 2(E [Y ]) (Y − E [Y ]) + (Y − E [Y ])

2
,

Thus, using Lemma 34 we have that

Var(Y 2) ≤

(√
4 (E [X])

2
Var(Xi) +

√
Var
(
(Y − E [Y ])

2
))2

.

By spherical hypercontractivity for degree-4 polynomials,

E

[(
γ2
i

η4
− E

[
γ2
i

η4

])4
]
≲ Var

(
γ2
i

η4

)2

,

hence

Var

((
γ2
i

η4
− E

[
γ2
i

η4

])2
)
E

[(
γ2
i

η4
− E

[
γ2
i

η4

])4
]
≲ Var

(
γ2
i

η4

)2

.

Using E
[
γi

η2

]2
= O(1) and Var

(
γi

η2

)
= O(ρ−4n−1) gives

Var

(
γ2
i

η4

)
= O

(
1

ρ4n

)
,

as claimed.

Lemma 18 (Finite Negative Moments of γi). Fix p > 0. There exists an N(p) such that for all
n, d ≥ N(p), we have that for c < 1

E
[
γ−p
1

]
≤ η−2pE

[
σ2p
1

]
E
[
T−p

]
≤ ρ2p

η2p
Mp

and for c > 1, we have that

E
[
γ−p
2

]
≤ η−2pE

[
σ2p
1

]
E
[
S−p

]
≤ ρ2p

η2p
,Mp

where σ1 is the largest singular value of A, T := ∥t∥2 ∼ Beta
(
n−d
2 , d

2

)
, and S := ∥s∥2 ∼

Beta
(
d−n
2 , n

2

)
.
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Proof. Recall our SVD A = UΣV ⊤ and that

γ1 = η2∥t∥2∥k∥2 + ξ2 and γ2 = η2∥s∥2∥h∥2 + ξ2.

Then we have that

∥k∥2 =

d∑
i=1

b2i
σ2
i

≥ 1

σ2
1

∥b∥2 =
1

σ2
1

Similarly,

∥h∥2 =

n∑
i=1

a2
i

σ2
i

≥ 1

σ2
1

∥a∥2 =
1

σ2
1

Thus, we see that

γ1 ≥ η2∥t∥2 1

σ2
1

and γ2 ≥ η2∥s∥2 1

σ2
1

.

∥t∥2 depends only on V and is independent of U ,Σ. ∥s∥2 depends only on U and is independent of
V ,Σ. σ1 depends only on Σ and is independent of U ,V . Therefore, σ1 is independent of T := ∥t∥2
and of S := ∥s∥2.

Thus, we get that
1

γp
1

≤ 1

η2p
σ2p
1

∥t∥2p
and

1

γp
2

≤ 1

η2p
σ2p
1

∥s∥2p

Then taking the expectation and using the independence, we get that

E
[
1

γp
1

]
≤ 1

η2p
E
[

1

∥t∥2p

]
E
[
σ2p
1

]
and E

[
1

γp
2

]
≤ 1

η2p
E
[

1

∥s∥2p

]
E
[
σ2p
1

]
For c < 1 (where d < n), the right null space of A (dimension n − d) is a uniformly random
(n− d)-dimensional subspace of Rn. The squared norm ∥t∥2 represents the squared length of the
projection of the fixed unit vector v ∈ Rn onto this random subspace. The distribution of such a
squared projection norm is Beta

(
n−d
2 , d

2

)
, as it can be represented as the ratio of two independent

chi-squared random variables:
∑n−d

i=1 G2
i /
∑n

i=1 G
2
i , where Gi∼N(0, 1) IID, which follows the

desired Beta distribution. Similarly for c > 1.

Since the eigenvalue distribution converges to the compactly supported distribution. We can see that
for sufficiently large n, d, we have that there exists an M ≥ 1 such that σ1 ≤ ρM almost surely.

For Y ∼ Beta(α, β) and p < α,

E[Y −p] =
Γ(α− p) Γ(α+ β)

Γ(α) Γ(α+ β − p)
.

Moreover, using Stirling on the Γ ratio,

E[T−p] →n,d→∞

(
α1 + β1

α1

)p

=

(
1

1− c

)p

(c < 1),

and

E[S−p] →n,d→∞

(
α2 + β2

α2

)p

=

(
c

c− 1

)p

(c > 1).

Thus, there is an M such that

E
[
1

γp
1

]
≤
(
ρ

η

)2p

Mp and E
[
1

γp
2

]
≤
(
ρ

η

)2p

Mp

Lemma 19 (Moments of η2/γi). We have:
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(i) For η2/γ1,

E
[
η2

γ1

]
=

ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

)
, Var

(
η2

γ1

)
= O

(
1

n

)
.

(ii) For η2/γ2,

E
[
η2

γ2

]
=

ρ2η2

η2 + ρ2
+ o

(
1

ρ2

)
, Var

(
η2

γ2

)
= O

(
1

n

)
.

Proof. By Lemmas 32 and 16, the expectation of η2/γ1 can be computed by:

E
[
η2

γ1

]
=

1

E[γ1/η2]
1 + o

(
1

ρ2d

)
=

ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

)
.

By Lemmas 33 and 16, the variance of η2/γ1 can be computed by:

Var

(
η2

γ1

)
=

1

E[γ1/η2]4
O

(
Var

(
γ1
η2

))
+ o

(
Var

(
γ1
η2

))
=

ρ8η8

(η2c+ ρ2)4
O

(
1

n

)
+ o

(
1

n

)
= O

(
1

n

)
by the scalings of η and ρ.

The proof is similar for the other term.

Lemma 20 (Moments of η4/γ2
i ). We have:

(i) For η4/γ2
1 ,

E
[
η4

γ2
1

]
=

ρ4η4

(η2c+ ρ2)2
+ o(1), Var

(
η4

γ2
1

)
= O

(
1

n

)
.

(ii) For η4/γ2
2 ,

E
[
η4

γ2
2

]
=

ρ4η4

(η2 + ρ2)2
+ o (1) , Var

(
η4

γ2
2

)
= O

(
1

n

)
.

Proof. The expectation of η4/γ2
1 can be computed by Lemma 19. By definition we have that

E
[
η4

γ2
1

]
=

(
E
[
η2

γ1

])2

+Var

(
η2

γ1

)
=

(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))2

+O

(
1

n

)
.

The variance follows Lemma 33 and Lemma 17:

Var

(
η4

γ2
1

)
= O

(
1

n

)
,

since the mean is O(1).

The proof is similar for the other term.

Lemma 21. Suppose ε ∈ Rn whose entries have mean 0, variance τε, and follow our noise
assumptions. Then for any indepedent random matrix Q ∈ Rn×n, we have

Eε,Q

[
ε⊤Qε

]
= τ2εE [Tr(Q)] .

Proof. We have that

ε⊤Qε =

n∑
i=1

n∑
j=1

εiεjQij .

We take the expectation of this sum. By the independence assumption and assumption E[εiεj ] =
0 when i ̸= j, we then have

Eε,Q

[
ε⊤Qε

]
=

n∑
i=1

E
[
ε2i
]
E [Qii] = τ2εE

[
n∑

i=1

Qii

]
= τ2εE [Tr(Q)] .
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D.5 STEP 4: BOUNDING THE EXPECTATION OF PRODUCTS OF DEPENDENT TERMS

In Section D.2 we decomposed the error into four terms – Bias, Variance, Data Noise and Target
alignment. In Section D.3, we wrote each of these terms as the sum and product of various “elementary
building blocks”. In Section D.4, we should that these elementary building blocks concentrate. In this
section, since we have tight concentration (i.e., the higher moment bounds). We can use Lemma 36
and Lemma 37, which shows that the expectation of the product can be approximated by the product
of the expectations. In this section, we do that calculation for our different terms.

D.5.1 STEP 4: BIAS

We begin with the bias term. Recall that for c < 1, the expected bias by Lemma 5 is equal to

E[Bias] = E

[[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]2
η̃2(β⊤

∗ u)
2 +

η̃2

η2
ξ2

γ2
1

τ2ε ∥p1∥2
]
,

where the cross term equals 0 due to ε having mean zero entries. These two remaining expectations
are given by Lemmas 22, 23, informally via:

Lemma 22 + τ2ε
η̃2

η2
× Lemma 23.

For c < 1, we can plug in the value to get that the expected first term is given by

η̃2(β⊤
∗ u)

2

[
(α̃Z − αZ) +

ρ2

η2c+ ρ2
(αZ − αA)

]2
+ o(1) +O

( η
n

)
and the second is given by

τ2ε
η̃2

η2

(
c

c− 1

η2

η2c+ ρ2
+ o(1) +O

(
1

ρ2n

))
.

Adding them, we then have the desired result:

η̃2

ñ

([
(α̃Z − αZ) +

ρ2

η2c+ ρ2
(αZ − αA)

]2
(β⊤

∗ u)
2 + τ2ε

c

1− c

1

η2c+ ρ2

)
+o

(
1

ñ

)
+O

( η

n2

)
.

For c > 1, we instead have the following expanson:

β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃︸ ︷︷ ︸

t1

−αA
η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃︸ ︷︷ ︸
t2

+
η̃

η

ξ

γ2
ε⊤p2ṽ

⊤︸ ︷︷ ︸
t3

The bias equals the expectation of the norm of this vector. Taking the Frobenius norm, we have the
six terms. Among the cross-terms, ⟨t1, t3⟩ and ⟨t2, t3⟩ have zero mean since t3 contains ε whose
entries have mean 0. We now look at the other terms

E
[
∥t3∥2

]
= E

[∥∥∥∥ η̃η ξ

γ2
ε⊤p2ṽ

⊤
∥∥∥∥2
]
= τ2ε

η̃2

η2
E
[
ξ2

γ2
2

∥p2∥2
]

by Lemma 21

The expectation is given by Lemma 23. Subsequently, Lemmas 22, 24, 25 give E[∥t1∥|2], E[∥t2∥|2],
E[⟨t1, t3⟩] respectively. Informally, we can compute the bias via:

E[Bias] = E

[∥∥∥∥β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃ − αA

η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃ +
η̃

η

ξ

γ2
ε⊤p2ṽ

⊤
∥∥∥∥2
]

= E[∥t1∥|2] + E[∥t2∥|2] + E[∥t3∥|2]− 2E[⟨t1, t3⟩2]

= Lemma 22 + τ2ε
η̃2

η2
Lemma 23 + Lemma 24 − 2× Lemma 25.

Similar to c < 1, adding them together and dividing by ñ, we get

η̃2

ñ

[
(β⊤

∗ u)
2

(
(α̃Z − αZ)

2 +
ρ2

η2 + ρ2

(
αZ − αA

c

))2

+ α2
A

∥β∗∥2

d

(
c− 1

c

)
η2ρ2

(η2 + ρ2)2
+

τ2ε
c− 1

η2c+ ρ2

(η2 + ρ2)2

]

+ o

(
1

ñ

)
+O

( η

n2

)
.
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D.5.2 STEP 4: VARIANCE

Recall that for the variance, we have the following expression (Section D.3.2).

E
[
1

ñ

∥∥∥β⊤
intÃ

∥∥∥2
F

]
= E

[
τ̃2α2

z

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤Zβ∗ +

τ̃2α2
A

d
β⊤
∗ A(Z +A)†(Z +A)†⊤A⊤β∗

+
2τ̃2αAαz

d
β⊤
∗ Z(Z +A)†(Z +A)†⊤A⊤β∗ +

τ̃2

d
ε⊤(Z +A)†(Z +A)†⊤ε

]
.

In particular that the expectation will be the weighted sum of the expressions from Lemmas 26, 27,
28, 29. Informally,

ρ̃2

d

(
α2
Z × Lemma 26 + 2αZαA × Lemma 28 + α2

A × Lemma 27 + Lemma 29
)
.

This yields that for c < 1, after simplification, the variance is
ρ̃2

d

[
α2
A∥β∗∥2 + (β⊤

∗ u)
2

[
(αZ − αA)

2 η
2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
+ 2αA(αZ − αA)

η2c

η2c+ ρ2

]
+τ2ε

(
c

1− c

d

ρ2
− η2

ρ2(η2c+ ρ2)

c2

1− c

)]
+ o(1) +O

(
1

n

)
.

For c > 1, we similarly simplify it to:
ρ̃2

d

[
∥β∗∥2

(
α2
A

c
− α2

A

d

η2

η2 + ρ2

)
+ (β⊤

∗ u)
2 c

c− 1

η2

η2 + ρ2

(
αZ − αA

c

)2
+τ2ε

(
d

ρ2
1

c− 1
− η2

ρ2(η2 + ρ2)

c

c− 1

)]
+ o(1) +O

(
1

n

)
.

D.5.3 STEP 4: DATA NOISE

Recall that for the data noise, we have the following expression
α̃2
Aρ̃

2

d
∥β∗∥2

Noting that ∥β∗∥2 = Θ(1), we see that this term has no more randomness and we do not need to
estimate anything.

D.5.4 STEP 4: TARGET ALIGNMENT

Recall from Section D.3.4 that the alignment is given by

−2α̃Aρ̃
2

d
E
[
αzβ

⊤
∗ (Z +A)†⊤Z⊤β∗ + αAβ

⊤
∗ (Z +A)†⊤A⊤β∗

]
From Lemma 30, we have that

E
[
β⊤
∗ (Z +A)†⊤Z⊤β∗

]
=

{
η2c

ρ2+η2c (β
⊤
∗ u)

2 + o(1) +O
(
1
n

)
c < 1

η2

η2+ρ2 (β
⊤
∗ u)

2 + o(1) +O
(
1
n

)
c > 1

.

and from Lemma 31, we have that

E
[
β⊤
∗ (Z +A)†⊤A⊤β∗

]
=

∥β∗∥2 − η2c
ρ2+η2c (β

⊤
∗ u)

2 + o
(

1
ρ2

)
+O

(
1
n

)
, c < 1

1
c∥β∗∥2 − η2

η2+ρ2

(
∥β∗∥2

d + 1
c (β

⊤
∗ u)

2
)
+ o(1) +O

(
1
n

)
, c > 1

.

Thus for c < 1, the entire interaction term now becomes

−2α̃Aρ̃
2

d

(
αA∥β∗∥2 + (αZ − αA) (β

⊤
∗ u)

2 η2c

ρ2 + η2c
+ o(1)

)
.

For c > 1, instead we have

−2α̃Aρ̃
2

d

(
αA

c
∥β∗∥2 −

αA

d

η2

η2 + ρ2
∥β∗∥2 +

(
αZ − αA

c

) η2

η2 + ρ2
(β⊤

∗ u)
2 + o(1)

)
.
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D.5.5 BIAS: HELPER LEMMAS

Lemma 22. In the same setting as Section 2, we have that for c < 1,

E

[(
α̃Z − αZ +

ξ

γ1
(αZ − αA)

)2

η̃2(β⊤
∗ u)

2

]

= η̃2(β⊤
∗ u)

2

[
(α̃Z − αZ) +

ρ2

η2c+ ρ2
(αZ − αA)

]2
+ o(1) +O

( η
n

)
.

For c > 1,

E

[∥∥∥∥β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃

∥∥∥∥2
]

= η̃2(β⊤
∗ u)

2

[
(α̃Z − αZ) +

ρ2

η2 + ρ2

(
αZ − αA

c

)]2
+ o(1) +O

( η
n

)
.

Proof. For c < 1, we first expand the square and get:(
α̃Z − αZ +

ξ

γ1
(αZ − αA)

)2

= (α̃Z−αZ)
2+

1

η2
η2ξ2

γ2
1

(αZ−αA)
2+

2

η

ηξ

γ1
(αZ−αA)(α̃Z−αZ).

By Lemmas 9 and 20, then we see that, using the square root of the covariance to bound the difference
between the expectation of the product and the product of the expectation.

E
[
η2ξ2

γ2
1

]
= E

[
η4

γ2
1

]
E
[
ξ2

η2

]
+

√
Var

(
η4

γ2
1

)
Var

(
ξ2

η2

)
=

(
ρ4η4

(η2c+ ρ2)2
+ o(1)

)(
1

η2
+O

(
1

ρ2n

))
+O

(
1

n

)
=

ρ4η2

(η2c+ ρ2)2
+ o

(
1

η2

)
+O

(
1

n

)
.

E
[
ηξ

γ1

]
= E

[
η2

γ1

]
E
[
ξ

η

]
+

√
Var

(
η2

γ1

)
Var

(
ξ

η

)
=

(
ρ2η2

η2c+ ρ2
+ o(1)

)(
1

η

)
+O

(
1

n

)
=

ρ2η

η2c+ ρ2
+ o

(
1

η

)
+O

(
1

n

)
.

Combining these terms together, we have that

E

[(
α̃Z − αZ +

ξ

γ1
(αZ − αA)

)2

η̃2(β⊤
∗ u)

2

]

= (β⊤
∗ u)

2

[
η̃2(α̃Z − αZ)

2 +
η̃2

η2

(
ρ4η2

(η2c+ ρ2)2
+ o

(
1

η2

)
+O

(
1

n
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(αZ − αA)

2

+
2η̃2

η

(
ρ2η

η2c+ ρ2
+ o

(
1

η

)
+O

(
1

n
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(αZ − αA)(α̃Z − αZ)

]
= η̃2(β⊤

∗ u)
2

([
(α̃Z − αZ) +

ρ2

η2c+ ρ2
(αZ − αA)

]2
+ o

(
1

η2

)
+O

(
1
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.
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We now consider c > 1. Recalling that Z̃ = η̃uṽ⊤, we let c1 = α̃Z − αZ and expand:∥∥∥∥β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃

∥∥∥∥2
= β⊤

∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃Z̃⊤

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]⊤
β∗

= η̃2β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
uu⊤

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]⊤
β∗

= c21η̃
2(β⊤

∗ u)
2 + η̃2

ξ2

γ2
2

β⊤
∗ (αZI − αAAA†)uu⊤((αZI − αAAA†)⊤β∗ + 2c1η̃

2 ξ

γ2
β⊤
∗ (αZI − αAAA†)uu⊤β∗.

Not that for the second and third terms, we have that ξ, γ2 only depend on the singular values of A
and the rest only depend on the singular vectors. Hence, these terms are independent.

First note that when d > n, the number of singular values equals n, which is less than the dimension
d. As a result,

AA† = UΣV ⊤V Σ†U⊤ = U

[
In×n 0n×(d−n)

0(d−n)×n 0(d−n)×(d−n)

]
U⊤.

Then we have that

E
[
β⊤
∗ AA†β⊤

∗
]
=

n∑
i=1

E
[
(β⊤

∗ U)2i
]
=

n

d
∥β∗∥2 =

1

c
∥β∗∥2, (13)

since β⊤
∗ U is a uniformly random vector of length ∥β∗∥ in Rd after the rotation U .

For the middle term, by Proposition 2 and the above Equation 13, we have

E
[
β⊤
∗ (αZI − αAAA†)uu⊤((αZI − αAAA†)β∗

]
= α2

Z(β
⊤
∗ u)

2 − 2αAαZE
[
β⊤
∗ AA†uu⊤β∗

]
+ α2

AE
[
(β⊤

∗ AA†u)2
]

=
(
αZ − αA

c

)2
(β⊤

∗ u)
2 + o(1).

Similarly, for the last term, we have

E
[
β⊤
∗ (αZI − αAAA†)uu⊤β∗

]
=
(
αZ − αA

c

)
(β⊤

∗ u)
2 + o(1).

Thus putting these expectations together, we get

E
[
η̃2(β⊤

∗ u)
2

[
c21 +

ξ2

γ2
2

(
αZ − αA

c

)2
+ 2c1

ξ

γ2

(
αZ − αA

c

)]]
= E

[
η̃2(β⊤

∗ u)
2

[
c1 +

ξ

γ2

(
αZ − αA

c

)]2]
.

Similar to the c < 1 case, we take the expectation for terms involving ξ
γ2

and get:

η̃2(β⊤
∗ u)

2

[(
(α̃Z − αZ) +

ρ2

η2 + ρ2

(
αZ − αA

c

))2
+ o

(
1

η2

)
+O

(
1

ηn

)]
.

Lemma 23 (Expectations involving p1 and p2). In the setting of Section 2, we have that

1. For c = d/n < 1:

E
[
ξ2

γ2
1

∥p1∥2
]
=

c

1− c

η2

η2c+ ρ2
+ o(1) +O

(
1

ρ2n

)
.

2. For c = d/n > 1:

E
[
ξ2

γ2
2

∥p2∥2
]
=

η2

c− 1

η2c+ ρ2

(η2 + ρ2)2
+ o(1) +O

(
1

ρ2n

)
.
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Proof. First, Lemma 6 tells us that
ξ2

γ2
1

∥p1∥2 =
η2∥k∥2

γ1
.

Then recall from Lemma 9 that

E[∥k∥2] = 1

ρ2
c

1− c
+ o

(
1

ρ2

)
and Var(∥k∥2) = O

(
1

ρ4n

)
and Lemma 19 tells us

E
[
η2

γ1

]
=

ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

)
and Var

(
η2

γi

)
= O

(
1

n

)
Again Section D.4.2 tell us that the assumption of Lemma 37 is satisfied and that

E
[
ξ2

γ2
1

∥p1∥2
]
= E

[
η2∥k∥2

γ1

]
= E

[
η2

γ1

]
E
[
∥k∥2

]
+

√
Var

(
η2

γ1

)
Var (∥k∥2)

=

(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))(
1

ρ2
c
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+ o

(
1

ρ2

))
+O

(
1

ρ2n

)
=

c

1− c

η2

η2c+ ρ2
+ o(1) +O

(
1

ρ2n

)
.

Using Lemma 6 for p2,
ξ2

γ2
2

∥p2∥2 =
1

γ2
2

(
η4∥s∥4hA†⊤A†h⊤ + 2η3ξ∥s∥2k⊤A†h⊤ + η2ξ2∥k∥2

)
.

Similarly, we use Lemma 37 to evaluate each expectation: To begin, we start estimating

E
[
η4∥s∥4

γ2
2

hA†⊤A†h⊤
]
.

Using our Spherical Hypercontractivity, we have that ∥s∥2 and hA†⊤A†h⊤ satisfy the assumptions
for Lemma 36. Then using Lemmas 9 and 10 we first have that

E
[
∥s∥2

]
= 1− 1

c
and Var

(
∥s∥2

)
= O

(
1

d

)
E
[
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ρ4
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(
1
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)
and Var

(
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)
= O

(
1

ρ8d

)
.

Thus, using Lemma 37, we have that

E
[
∥s∥4hA†⊤A†h⊤] = (E [∥s∥2])2 E [hA†⊤A†h⊤]+O

(
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(
1

d
,

1

ρ8d

))
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(
1− 1

c

)2(
1

ρ4
c3

(c− 1)3
+ o

(
1

ρ4

))
+O

(
1

n

)
=

1

ρ4
c

c− 1
+ o

(
1

ρ4

)
+O

(
1

n

)
.

and using Lemma 36, since all the means are O(1), we have that

Var
(
∥s∥4hA†⊤A†h⊤) = O

(
max

(
Var

(
∥s∥2

)
,Var

(
hA†⊤A†h⊤))) = O

(
1

n

)
.

Then Lemma 20 gives mean and variance of η4

γ2
i

. Since η4

γ2
i

does not satisfy the higher moment bound,
and cannot be directly included in the product, we can include it via the classical bound:

E
[
η4∥s∥4

γ2
2

hA†⊤A†h⊤
]
= E

[
η4

γ2
2

]
E
[
∥s∥4hA†⊤A†h⊤]+√Var (∥s∥4hA†⊤A†h⊤)Var

(
η4
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2

)
(14)

=

(
ρ4η4

(η2 + ρ2)2
+ o(1)

)(
1

ρ4
c
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+ o

(
1

ρ4

))
+O

(
1

n

)
(15)

=
c

c− 1

η4

(η2 + ρ2)2
+ o(1) +O

(
1

n

)
. (16)
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Similarly, we can do the same thing for the other term. For the middle term we note that from
Lemma 11

E
[
k⊤A†h⊤] = 0 and Var

(
k⊤A†h⊤) = O

(
1

ρ6d

)
and Lemma 9 tells us

E
[
∥s∥2

]
= 1− 1

c
and Var

(
∥s∥2

)
= O

(
1

d

)
and

E
[
ξ

η

]
=

1

η
and Var

(
ξ

η

)
= O

(
1

ρ2n

)
Thus using Lemma 37, we have that

E
[
ξ

η
∥s∥2k⊤A†h⊤

]
= 0 +O

(
1

d

)
Thus using the standard covariance bound for the expectation of product versus product of expectation,
we have that

E
[
η3ξ∥s∥2

γ2
2

k⊤A†h⊤
]
= 0 +

√
Var

(
η4

γ2
2

)
O

(
1

n

)
= O

(
1

n

)
.

For the last term, we have that, using Lemma 37

E
[
ξ2

η2
∥k∥2

]
=

1

η2
·
(

1

ρ2
1

c− 1
+ o

(
1

ρ2

))
+O

(
1

ρ4n

)
=

1

η2ρ2
1

c− 1
+ o

(
1

η2ρ2

)
+O

(
1

ρ4n

)
and from Lemma 36

Var

(
ξ2

η2
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)
= O

(
1

ρ4n

)
Then using the standard bound, we have that

E
[
η2ξ2∥k∥2

γ2
2

]
= E

[
η4

γ2
2

]
E
[
ξ2
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]
+

√
Var

(
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γ2
2

)
O

(
1

ρ4n

)
=

(
ρ4η4

(η2 + ρ2)2
+ o(1)

)(
1

η2ρ2
1

c− 1
+ o

(
1

η2ρ2

)
+O

(
1

ρ4n

))
+O

(
1

ρ2n

)
=

1
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η2ρ2

(η2 + ρ2)2
+ o

(
1

η2ρ2

)
+O

(
1
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)
.

Finally, putting all three terms together we get

E
[
ξ2

γ2
2

∥p2∥2
]
=

c

c− 1

η4

(η2 + ρ2)2
+ o(1) +

1

c− 1

η2ρ2

(η2 + ρ2)2
+ o

(
1

ρ2η2

)
+O

(
1

ρ2n

)
=

η2

c− 1

η2c+ ρ2

(η2 + ρ2)2
+ o(1) +O

(
1

ρ2n

)
.

From the above proofs, we make an important observation that the individual terms from Lemmas
9, 10, 11, 16 all have means O(1) and variances O(1/n). Hence, by Lemma 36, we can bound the
variance of a product of terms by O(1/n), given that these terms satisfy the lemma assumptions.
Essentially, only η2/γi and η4/γ2

i fail the assumption on higher moment bound, so we deal with them
via the classical bound after carrying out the product. This simplification ensures proper concentration
and will be used at times in the following proofs without reference.
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D.5.6 VARIANCE: HELPER LEMMAS

Lemma 24. In the setting of Section 2, we have that for c > 1:

E

[∥∥∥∥αA
η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃

∥∥∥∥2
]
= η̃2α2

A

∥β∗∥2

d

(
c− 1

c

)
η2ρ2

(η2 + ρ2)2
+O

(
1

n

)
.

Proof. Since Z̃ = η̃uṽ⊤, we have that∥∥∥∥αA
η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃

∥∥∥∥2 = η̃2α2
A
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2

β⊤
∗ h

⊤hβ∗ = α2
A

η̃2

η2
η4∥s∥4

γ2
2

β⊤
∗ h

⊤hβ∗.

Similar to last lemma, using Lemmas 37, 9, 10, 20, we get

E
[
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√
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(
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2

)
O

(
1

n

)
=

(
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c
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d

c
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+ o

(
1

ρ2d

))
+O

(
1

n

)
=

∥β∗∥2

d

(
c− 1

c

)
η4ρ2

(η2 + ρ2)2
+O

(
1

n

)
.

Hence, it directly follows from here that

E

[∥∥∥∥αA
η∥s∥2

γ2
β⊤
∗ h

⊤u⊤Z̃

∥∥∥∥2
]
= α2

A

η̃2

η2
E
[
η4∥s∥4

γ2
2

β⊤
∗ h

⊤hβ∗

]
= η̃2α2

A

∥β∗∥2

d

(
c− 1

c

)
η2ρ2

(η2 + ρ2)2
+O

(
1

n

)
.

Lemma 25. In the setting of Section 2, we have that for c > 1:

E
[
η∥s∥2

γ2
β⊤
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA†)

]
Z̃Z̃⊤uhβ∗

]
= O

( η
n

)
.

Proof. Using Z̃ = η̃uṽ⊤, we can expand this into three terms. We can take expectations in a similar
way via Lemmas 37, 9, 10, 11: Let c1 = α̃Z − αZ . Each term contains a zero expectation:

E
[
η̃2c1

η∥s∥2

γ2
β⊤
∗ uhβ∗

]
=

η̃2

η
c1

(
E
[
η2

γ2

]
E
[
∥s∥2

]
E
[
β⊤
∗ uhβ∗

]
+

√
Var

(
η2

γ2

)
O

(
1

n

))

=
η̃2

η
c1

(√
Var

(
η2

γ2

)
O

(
1

n

))
= O

( η
n

)
.

E
[
η̃2αZ

ηξ∥s∥2

γ2
2

β⊤
∗ uhβ∗

]
=

αZ η̃
2

η2

(
E
[
η4

γ2
2

]
E
[
ξ

η

]
E
[
∥s∥2

]
E
[
β⊤
∗ uhβ∗

]
+

√
Var

(
η4

γ2
2

)
O

(
1

n

))

=
αZ η̃

2

η2

(√
Var

(
η4

γ2
2

)
O

(
1

n

))
= O

(
1

n

)
.

E
[
η̃2αA

ηξ∥s∥2

γ2
2

β⊤
∗ AA†uhβ∗

]
= =

αZ η̃
2

η2

(
E
[
η4

γ2
2

]
E
[
ξ

η

]
E
[
∥s∥2

]
E
[
β⊤
∗ AA†uhβ∗

]
+

√
Var

(
η4

γ2
2

)
O

(
1

n

))

=
αZ η̃

2

η2

(√
Var

(
η4

γ2
2

)
O

(
1

n

))
= O

(
1

n

)
.

Thus the cross term concentrates around zero at a rate of O(η/n).
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Lemma 26. In the same setting as Section 2, we have that

E
[
β⊤
∗ Z(Z +A)†(Z +A)†⊤Zβ∗

]
=


η2(η2+ρ2)
(η2c+ρ2)2

c2

1−c (β
⊤
∗ u)

2 + o(1) +O
(
1
n

)
c < 1

η2

η2+ρ2
c

c−1 (β
⊤
∗ u)

2 + o
(

1
ρ2

)
+O

(
1

ρ2n

)
c > 1

.

Proof. We start with c < 1 and expand this term using Proposition 1:

β⊤
∗ Z(Z+A)†(Z+A)†⊤Zβ∗ =

η2∥h∥2ξ2

γ2
1

(β⊤
∗ u)

2+
η4∥t∥4

γ2
1

(k⊤A†A†⊤k)(β⊤
∗ u)

2+
2η3∥t∥2ξ

γ2
1

k⊤A†h⊤(β⊤
∗ u)

2.

We then start plugging in the expectations of these three terms and the “cumulative" variance of the
sum according to Lemma 37.

E
[
η2∥h∥2ξ2

γ2
1

(β⊤
∗ u)

2

]
= (β⊤

∗ u)
2E
[
η4

γ2
1

]
E
[
ξ2

η2

]
E
[
∥h∥2

]
+

√
Var

(
η4

γ2
1

)
O

(
1

n

)
= (β⊤

∗ u)
2

(
ρ4η4

(η2c+ ρ2)2
+ o(1)

)(
1

η2
+O

(
1

ρ2n

))(
1

ρ2
c2

1− c
+ o

(
1

ρ2

))
+O

(
1

n

)
=

η2ρ2

(η2c+ ρ2)2
c2

1− c
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.

E
[
η4∥t∥4

γ2
1

(k⊤A†A†⊤k)(β⊤
∗ u)

2

]
= (β⊤

∗ u)
2E
[
η4

γ2
1

] (
E
[
∥t∥2

])2 E [k⊤A†A†⊤k
]
+

√
Var

(
η4

γ2
1

)
O

(
1

n

)
= (β⊤

∗ u)
2

(
ρ4η4

(η2c+ ρ2)2
+ o(1)

)
(1− c)2

(
1

ρ4
c2

(1− c)3
+ o

(
1

ρ4

))
+O

(
1

n

)
=

η4

(η2c+ ρ2)2
c2

1− c
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.

E
[
η3∥t∥2ξ

γ2
1

k⊤A†h⊤(β⊤
∗ u)

2

]
= (β⊤

∗ u)
2

(
E
[
η2

γ1

])2

E
[
ξ

η

]
E
[
∥t∥2

]
E
[
k⊤A†h⊤]+O

(
1

n

)
= O

(
1

n

)
.

Now we have the expectations and errors for the three terms. Combining them yields the Lemma
statement.

For c > 1, we recall that hs = 0, and Proposition 1 implies

β⊤
∗ Z(Z +A)†(Z +A)†⊤Zβ∗ =

η2∥h∥2ξ2

γ2
2

(β⊤
∗ u)

2 +
η4∥h∥4∥s∥2

γ2
2

(β⊤
∗ u)

2 +
2η3∥h∥2ξ

γ2
2

β⊤
∗ uhsu

⊤β∗

=

(
η2∥h∥2(ξ2 + η2∥h∥2∥s∥2)

γ2
2

)
(β⊤

∗ u)
2

=

(
η2∥h∥2γ2

γ2
2

)
(β⊤

∗ u)
2

=
η2∥h∥2

γ2
(β⊤

∗ u)
2.

Hence, we can take expectation:

E[β⊤
∗ Z(Z +A)†(Z +A)†⊤Zβ∗] = E

[
η2

γ2

]
E
[
∥h∥2

]
(β⊤

∗ u)
2 +O

(
1

n

)
=

η2

η2 + ρ2
c

c− 1
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.
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Lemma 27. In the same setting as Section 2, we have that,

E
[
β⊤
∗ A(Z +A)†(Z +A)†⊤Aβ∗

]
=

∥β∗∥2 + η2(η2+ρ2)
(η2c+ρ2)2

c2

1−c (β
⊤
∗ u)

2 − 2η2c
η2c+ρ2 (β

⊤
∗ u)

2 + o(1) +O
(
1
n

)
c < 1

∥β∗∥2

c − η2

η2+ρ2

(
∥β∗∥2

d − (β⊤
∗ u)2

c(c−1)

)
+ o(1) +O

(
1
n

)
c > 1

.

Proof. We use similar expansions that follow from Lemma 2.

β⊤
∗ A(Z +A)†(Z +A)†⊤Aβ∗ = ∥β∗∥2 +

η2∥h∥2ξ2

γ2
1

(β⊤
∗ u)

2 +
η4∥t∥4

γ2
1

(k⊤A†A†⊤k)(β⊤
∗ u)

2

+
2η3∥t∥2ξ

γ2
1

(β⊤
∗ u)

2k⊤A†h⊤ − 2η2∥t∥2

γ1
β⊤
∗ uk

⊤A†β∗ −
2ηξ

γ1
β⊤
∗ uhβ∗.

Lemma 26 gives the expectation of the first four terms:

∥β2
∗∥2 +

η2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.

We have done the following expectations in Equations 18, 19:

E
[
ηξ

γ1
β⊤
∗ uhβ∗

]
= O

(
1

n

)
, E

[
η2∥t∥2

γ1
β⊤
∗ uk

⊤A†β∗

]
=

η2c

η2c+ ρ2
+ o(1) +O

(
1

n

)
.

Combining these results yields the lemma statement.

For c > 1, with hs = 0, s⊤AA† = 0, hAA† = h, we have the following expansion by Lemma 2:

β⊤
∗ A(Z +A)†(Z +A)†⊤Aβ∗ = β⊤

∗ AA†β∗ +
η2∥s∥2ξ2

γ2
2

β⊤
∗ h

⊤hβ∗ +
η4∥s∥4∥h∥2

γ2
2

β⊤
∗ h

⊤hβ∗

+
η4∥h∥4∥s∥2

γ2
2

β⊤
∗ AA†uu⊤AA†β∗ +

η2∥h∥2ξ2

γ2
2

β⊤
∗ AA†uu⊤AA†β∗

− 2η2∥s∥2

γ2
β⊤
∗ h

⊤hβ∗ −
2ηξ

γ2
β⊤
∗ AA†uhβ∗

− 2η3∥s∥2∥h∥2ξ
γ2
2

β⊤
∗ AA†uhβ∗ +

2η3∥s∥2∥h∥2ξ
γ2
2

β⊤
∗ AA†uhβ∗.

We can combine the coefficients as:

η2∥s∥2ξ2

γ2
2

+
η4∥s∥4∥h∥2

γ2
2

− 2η2∥s∥2

γ2
=

η2∥s∥2(η2∥s∥2∥h∥2 + ξ2)− 2η2∥s∥2γ2
γ2
2

= −η2∥s∥2

γ2
,

η4∥h∥4∥s∥2

γ2
2

+
η2∥h∥2ξ2

γ2
2

=
η2∥h∥2(η2∥s∥2∥h∥2 + ξ2)

γ2
2

=
η2∥h∥2γ2

γ2
2

=
η2∥h∥2

γ2
.

Then we have that:

β⊤
∗ A(Z +A)†(Z +A)†⊤Aβ∗

= β⊤
∗ AA†β∗ −

η2∥s∥2

γ2
β⊤
∗ h

⊤hβ∗ +
η2∥h∥2

γ2
β⊤
∗ AA†uu⊤AA†β∗ −

2ηξ

γ2
β⊤
∗ AA†uhβ∗.

Recall from Equation 13 that E[β⊤
∗ AA†β∗] = ∥β∗∥2/c. We then proceed similarly with the other

expectations using Lemmas 9, 10, 11, 19:

E
[
η2∥s∥2

γ2
β⊤
∗ h

⊤hβ∗

]
= E

[
η2

γ2

]
E
[
∥s∥2

]
E
[
β⊤
∗ h

⊤hβ∗
]
+

√
Var

(
η2

γ2

)
O

(
1

n

)
=

(
ρ2η2

η2 + ρ2
+ o

(
1

ρ2

))(
1− 1

c

)(
∥β∗∥2

d

c

ρ2(c− 1)
+ o

(
1

dρ2

))
+O

(
1

n

)
=

∥β∗∥2

d

η2

η2 + ρ2
+ o

(
1

d

)
+O

(
1

n

)
.
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E
[
η2∥h∥2

γ2
(β⊤

∗ AA†u)2
]
= E

[
η2

γ2

]
E
[
∥h∥2

]
E
[
(β⊤

∗ AA†u)2
]
+

√
Var

(
η2

γ2

)
O

(
1

n

)
=

(
ρ2η2

η2 + ρ2
+ o

(
1

ρ2

))(
1

ρ2
c

c− 1
+ o

(
1

ρ2

))(
1

c2
(β⊤

∗ u)
2 + o (1)

)
+O

(
1

n

)
=

η2

η2 + ρ2
(β⊤

∗ u)
2

c(c− 1)
+ o(1) +O

(
1

n

)
.

E
[
ηξ

γ2
β⊤
∗ AA†uhβ∗

]
= E

[
η2

γ2

]
E
[
ξ

η

]
E
[
β⊤
∗ AA†uhβ∗

]
+

√
Var

(
η2

γ2

)
O

(
1

n

)
= 0 +O

(
1

n

)
. (17)

We combine these results to produce the lemma statement.

Lemma 28. In the same setting as Section 2, we have that

E
[
β⊤
∗ Z(Z +A)†(Z +A)†⊤Aβ∗

]
=

−
(

η2(η2+ρ2)
(η2c+ρ2)2

c2

1−c −
η2c

η2c+ρ2

)
(β⊤

∗ u)
2 + o(1) +O

(
1
n

)
, c < 1

− η2

η2+ρ2
1

c−1 (β
⊤
∗ u)

2 + o(1) +O
(
1
n

)
, c > 1

Proof. For c < 1, we expand it using Proposition 1, Lemma 2. Note that all of the relevant
expectations have been evaluated in the proofs of Lemmas 26, 27,

β⊤
∗ Z(Z +A)†(Z +A)†⊤Aβ∗ =

ηξ

γ1
β⊤
∗ uhβ∗ +

η2∥t∥2

γ1
β⊤
∗ uk

⊤A†β∗ −
2η3∥t∥2ξ

γ2
1

(β⊤
∗ u)

2hA†⊤k

− η4∥t∥4

γ2
1

(k⊤A†A†⊤k)(β⊤
∗ u)

2 − η2∥h∥2ξ2

γ2
1

(β⊤
∗ u)

2.

The expectation of the last three terms is given by Lemma 26. The first two expectations come from
Equations 18, 19 respectively. We can plug them in and compute the expectation:

E
[
β⊤
∗ Z(Z +A)†(Z +A)†⊤Aβ∗

]
= −

(
η2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
− η2c

η2c+ ρ2

)
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.

For c > 1, again with hs = 0 and s⊤A = 0, β⊤
∗ Z(Z +A)†(Z +A)†⊤Aβ∗ becomes:

β⊤
∗
ηξ

γ2
uh

(
AA† +

ηξ

γ2
sh− η2∥s∥2

γ2
h⊤h− η2∥h∥2

γ2
su⊤AA† − ηξ

γ2
h⊤u⊤AA†

)
β∗

+ β⊤
∗
η2∥h∥2

γ2
us⊤

(
AA† +

ηξ

γ2
sh− η2∥s∥2

γ2
h⊤h− η2∥h∥2

γ2
su⊤AA† − ηξ

γ2
h⊤u⊤AA†

)
β∗

= β⊤
∗

[
ηξ

γ2
uhAA† − η3ξ∥s∥2∥h∥2

γ2
2

uh− η2∥h∥2ξ2

γ2
2

uu⊤AA†
]
β∗

+ β⊤
∗

[
η3∥h∥2∥s∥2ξ

γ2
2

uh− η4∥h∥4∥s∥2

γ2
2

uu⊤AA†
]
β∗

= β⊤
∗

[
ηξ

γ2
uhAA† − η2∥h∥2ξ2

γ2
2

uu⊤AA† − η4∥h∥4∥s∥2

γ2
2

uu⊤AA†
]
β∗

= (β⊤
∗ u)

(
ηξ

γ2
hAA†β∗ −

η2∥h∥2

γ2
u⊤AA†β∗

)
since γ2 = η2∥s∥2∥h∥2 + ξ2.

We need to evaluate two following expectations. Similar to c < 1,

E
[
ηξ

γ2
hAA†β∗

]
= O

(
1

n

)
.
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E
[
η2∥h∥2

γ2
u⊤AA†β∗

]
= E

[
η2

γ2

]
E
[
∥h∥2

]
E
[
β⊤
∗ AA†u

]
+

√
Var

(
η2

γ2

)
O

(
1

n

)
=

(
ρ2η2

η2 + ρ2
+ o

(
1

ρ2

))(
1

ρ2
c

c− 1
+ o

(
1

ρ2

))(
1

c
(β⊤

∗ u)

)
+O

(
1

n

)
=

η2

η2 + ρ2
(β⊤

∗ u)

c− 1
+ o(1) +O

(
1

n

)
.

Finally, we have that:

E
[
β⊤
∗ Z(Z +A)†(Z +A)†⊤Aβ∗

]
= − η2

η2 + ρ2
1

c− 1
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.

Lemma 29. In the same setting as Section 2, we have that,

E
[
ε⊤(Z +A)†(Z +A)†⊤ε

]
=

τ2ε

(
cd

ρ2(1−c) −
η2

ρ2(η2c+ρ2)
c2

1−c

)
+ o

(
n
ρ2

)
+O

(
1

ρ2n

)
, c < 1

τ2ε

(
d

ρ2(c−1) −
η2

ρ2(η2+ρ2)
c

c−1

)
+ o

(
n
ρ2

)
+O

(
1

ρ2n

)
, c > 1

Proof. For c < 1, we first expand this term using Theorem 6:

ε⊤(Z +A)†(Z +A)†⊤ε = ε⊤
(
A† +

η

ξ
t⊤k⊤A† − ξ

γ1
p1q

⊤
1

)(
A† +

η

ξ
t⊤k⊤A† − ξ

γ1
p1q

⊤
1

)⊤

ε

= ε⊤A†A†⊤ε+
2η

ξ
ε⊤A†A†⊤ktε− 2ξ

γ1
ε⊤A†q1p

⊤
1 ε

+
η2

ξ2
(
k⊤A†A†⊤k

)
ε⊤t⊤tε− 2η

γ1
ε⊤t⊤k⊤A†q1p

⊤
1 ε+

ξ2

γ2
1

ε⊤p1q
⊤
1 q1p

⊤
1 ε

Note that Lemma 21 and the fact that tA† = 0 imply that the second term has zero expectation:

Eε

[
2η

ξ
ε⊤A†A†⊤ktε

]
=

2ητ2ε
ξ

tA†A†⊤k = 0.

Simiarly, we will later use:

Eε

[
ε⊤A†h⊤tε

]
= τ2ε tA

†h⊤ = 0, Eε

[
ε⊤t⊤k⊤ε

]
= τ2ε Tr(t

⊤k⊤) = τ2ε Tr(kt) = 0.

Note that these equalities are exact without taking the expectation over other sources of randomness
besides ε.

We now expand the other terms one by one and compute their expectations along the way. We start
by eliminating zero expectations and taking expectations w.r.t. ε using Lemma 21.
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E
[
η2

ξ2
(
k⊤A†A†⊤k

)
ε⊤t⊤tε

]
= E

[
η2∥t∥2τ2ε

ξ2
k⊤A†A†⊤k

]
.

E
[
−2ξ

γ1
ε⊤A†q1p

⊤
1 ε

]
= E

[
−2ξ

γ1
ε⊤A†

(
η∥t∥2

ξ
A†⊤k + h⊤

)(
η2∥k∥2

ξ
t+ ηk⊤

)
ε

]
= E

[
−2η3∥t∥2∥k∥2

γ1ξ
ε⊤A†A†⊤ktε− 2η2∥t∥2

γ1
ε⊤A†A†⊤kk⊤ε

−2η2∥k∥2

γ1
ε⊤A†h⊤tε− 2ηξ

γ1
ε⊤A†h⊤k⊤ε

]
= E

[
−2η2∥t∥2τ2ε

γ1
k⊤A†A†⊤k − 2ηξτ2ε

γ1
k⊤A†h⊤

]
.

E
[
−2η

γ1
ε⊤t⊤k⊤A†q1p

⊤
1 ε

]
= E

[
−2η

γ1
ε⊤t⊤k⊤A†

(
η∥t∥2

ξ
A†⊤k + h⊤

)(
η2∥k∥2

ξ
t+ ηk⊤

)
ε

]
= E

[
−2η4∥t∥2∥k∥2

γ1ξ2
(
k⊤A†A†⊤k

)
ε⊤t⊤tε− 2η3∥k∥2

γ1ξ
(k⊤A†h⊤)ε⊤t⊤tε

−2η3∥t∥2

γ1ξ

(
k⊤A†A†⊤k

)
ε⊤t⊤k⊤ε− 2η2

γ1
(k⊤A†h⊤)ε⊤t⊤k⊤ε

]
= E

[
−2η4∥t∥4∥k∥2τ2ε

γ1ξ2
k⊤A†A†⊤k − 2η3∥k∥2∥t∥2τ2ε

γ1ξ
k⊤A†h⊤

]
.

By the squared norms in Lemmas 6, 7, and Lemma 21,

E
[
ξ2

γ2
1

ε⊤p1q
⊤
1 q1p

⊤
1 ε

]
=

ξ2τ2ε
γ2
1

∥p1∥2∥q1∥2

=
ξ2τ2ε
γ2
1

(
η2∥k∥2

ξ2
γ1

)(
η2∥t∥4

ξ2
kA†A†⊤k +

2η∥t∥2

ξ
k⊤A†h⊤ + ∥h∥2

)
=

τ2ε
γ1

(
η2∥k∥2

)(η2∥t∥4

ξ2
kA†A†⊤k +

2η∥t∥2

ξ
k⊤A†h⊤ + ∥h∥2

)
= τ2ε

(
η4∥t∥4∥k∥2

γ1ξ2
kA†A†⊤k +

2η3∥t∥2∥k∥2

γ1ξ
k⊤A†h⊤ +

η2∥k∥2∥h∥2

γ1

)
We combine like terms and simplify the coefficients, which can seem quite complicated at first:

For the term k⊤A†A†⊤k,

τ2ε

(
η4∥t∥4∥k∥2

γ1ξ2
− 2η4∥t∥4∥k∥2

γ1ξ2
− 2η2∥t∥2

γ1
+

η2∥t∥2

ξ2

)
= τ2ε η

2∥t∥2
(
η2∥t∥2∥k∥2

γ1ξ2
− 2η2∥t∥2∥k∥2

γ1ξ2
− 2

γ1
+

1

ξ2

)
= τ2ε η

2∥t∥2
(
−γ1 − ξ2

γ1ξ2
− 2

γ1
+

1

ξ2

)
= τ2ε η

2∥t∥2
(
−γ1 − ξ2

γ1ξ2
− 2ξ2

γ1ξ2
+

γ1
γ1ξ2

)
= −τ2ε

η2∥t∥2

γ1
.

For the term k⊤A†h⊤,

τ2ε

(
2η3∥t∥2∥k∥2

γ1ξ
− 2η3∥k∥2∥t∥2

γ1ξ
− 2ηξ

γ1

)
= −τ2ε

2ηξ

γ1
.
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Combining these terms together, we have:

E
[
ε⊤(Z +A)†(Z +A)†⊤ε

]
= E

[
ε⊤A†A†⊤ε− η2∥t∥2τ2ε

γ1
k⊤A†A†⊤k − 2ηξτ2ε

γ1
k⊤A†h⊤ +

η2∥k∥2∥h∥2

γ1

]
.

Similarly, using Lemmas 9, 10, 11, 19, 21, we have the following:

E
[
ε⊤A†A†⊤ε

]
= τ2εE

[
Tr(A†A†⊤)

]
= τ2ε nE

[
1

λ

]
= τ2ε

cd

ρ2(1− c)
+ o

(
d

ρ2

)
by Equation 11.

E
[
η2∥t∥2

γ1
k⊤A†A†⊤k

]
= E

[
η2

γ1

]
E
[
∥t∥2

]
E
[
k⊤A†A†⊤k

]
+

√
Var

(
η2

γ1

)
O

(
1

n

)
=

(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))
(1− c)

(
1

ρ4
c2

(1− c)3
+ o

(
1

ρ4

))
+O

(
1

n

)
=

η2

η2c+ ρ2
c2

ρ2(1− c)2
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.

E
[
ηξ

γ1
k⊤A†h⊤

]
= E

[
η2

γ1

]
E
[
ξ

η

]
E
[
k⊤A†h⊤]+√Var

(
η2

γ1

)
O

(
1

n

)
= O

(
1

n

)
.

E
[
η2∥k∥2∥h∥2

γ1

]
= E

[
η2

γ1

]
E
[
∥k∥2

]
E [∥h∥] +

√
Var

(
η2

γ1

)
O

(
1

n

)
=

(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))(
1

ρ2
c2

1− c
+ o

(
1

ρ2

))(
1

ρ2
c

1− c
+ o

(
1

ρ2

))
+O

(
1

n

)
=

η2

η2c+ ρ2
c3

ρ2(1− c)2
+ o (1) +O

(
1

n

)
.

After simple algebra, the result follows from here.

For c > 1, we can expand similarly using Theorem 6,

ε⊤(Z +A)†(Z +A)†⊤ε = ε⊤
(
A† +

η

ξ
A†h⊤s⊤ − ξ

γ2
p2q

⊤
2

)(
A†⊤ +

η

ξ
shA†⊤ − ξ

γ2
q2p

⊤
2

)
ε

= ε⊤A†A†⊤ε+
2η

ξ
ε⊤ A†s︸︷︷︸

0

hA†⊤ε− 2ξ

γ2
ε⊤A†q2p

⊤
2 ε

+
η2∥s∥2

ξ2
ε⊤A†h⊤hA†⊤ε− 2η

γ2
ε⊤A†h⊤s⊤q2p

⊤
2 ε+

ξ2

γ2
2

ε⊤p2q
⊤
2 q2p

⊤
2 ε.
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We expand the other terms one by one, marking those with zero expectations:

E
[
η2∥s∥2

ξ2
ε⊤A†h⊤hA†⊤ε

]
= E

[
η2∥s∥2τ2ε

ξ2
hA†⊤A†h⊤

]
.

E
[
−2ξ

γ2
ε⊤A†q2p

⊤
2 ε

]
= E

[
−2ξ

γ2
ε⊤A†

(
η∥h∥2

ξ
s+ h⊤

)(
η2∥s∥2

ξ
hA†⊤ + ηk⊤

)
ε

]
= E

[
−2ξ

γ2
ε⊤A†h⊤

(
η2∥s∥2

ξ
hA†⊤ + ηk⊤

)
ε

]
= E

[
−2η2∥s∥2

γ2
ε⊤A†h⊤hA†⊤ε− 2ηξ

γ2
ε⊤A†h⊤k⊤ε

]
= E

[
−2η2∥s∥2τ2ε

γ2
hA†⊤A†h⊤ − 2ηξτ2ε

γ2
k⊤A†h⊤

]
.

E
[
−2η

γ2
ε⊤A†h⊤s⊤q2p

⊤
2 ε

]
= E

[
−2η

γ2
ε⊤A†h⊤s⊤

(
η∥h∥2

ξ
s+ h⊤

)(
η2∥s∥2

ξ
hA†⊤ + ηk⊤

)
ε

]
= E

[
−2η

γ2
ε⊤A†h⊤

(
η∥h∥2∥s∥2

ξ

)(
η2∥s∥2

ξ
hA†⊤ + ηk⊤

)
ε

]
= E

[
−2η4∥s∥4∥h∥2

γ2ξ2
ε⊤A†h⊤hA†⊤ε− 2η3∥s∥2∥h∥2

γ2ξ
ε⊤A†h⊤k⊤ε

]
= E

[
−2η4∥s∥4∥h∥2τ2ε

γ2ξ2
hA†⊤A†h⊤ − 2η3∥s∥2∥h∥2τ2ε

γ2ξ
k⊤A†h⊤

]
.

Using the squared norms from Lemmas 6, 7,

E
[
ξ2

γ2
2

ε⊤p2q
⊤
2 q2p

⊤
2 ε

]
= E

[
ξ2

γ2
2

τ2ε ∥p2∥2∥q2∥2
]

= E
[
ξ2τ2ε
γ2
2

(
∥h∥2

ξ2
γ2

)(
η4∥s∥4

ξ2
hA†⊤A†h⊤ +

2η3∥s∥2

ξ
k⊤A†h⊤ + η2∥k∥2

)]
= E

[
τ2ε

(
η4∥h∥2∥s∥4

γ2ξ2
hA†⊤A†h⊤ +

2η3∥h∥2∥s∥2

γ2ξ
k⊤A†h⊤ +

η2∥h∥2∥k∥2

γ2

)]
.

Similarly, we combine the coefficients: For the term hA†⊤A†h⊤,

τ2ε

(
η4∥s∥4∥h∥2

γ2ξ2
− 2η4∥s∥4∥h∥2

γ2ξ2
− 2η2∥s∥2

γ2
+

η2∥s∥2

ξ2

)
= τ2ε η

2∥s∥2
(
η2∥s∥2∥h∥2

γ2ξ2
− 2η2∥s∥2∥h∥2

γ2ξ2
− 2

γ2
+

1

ξ2

)
= τ2ε η

2∥s∥2
(
−γ2 − ξ2

γ2ξ2
− 2

γ2
+

1

ξ2

)
= τ2ε η

2∥s∥2
(
−γ2 − ξ2

γ2ξ2
− 2ξ2

γ2ξ2
+

γ2
γ2ξ2

)
= −τ2ε

η2∥s∥2

γ2
.

For the term k⊤A†h⊤,

τ2ε

(
2η3∥s∥2∥h∥2

γ2ξ
− 2η3∥s∥2∥h∥2

γ2ξ
− 2ηξ

γ2

)
= −τ2ε

2ηξ

γ2
.

Combining these terms together, we have:

E
[
ε⊤(Z +A)†(Z +A)†⊤ε

]
= E

[
ε⊤A†A†⊤ε− η2∥s∥2τ2ε

γ2
hA†⊤A†h⊤ − 2ηξτ2ε

γ2
k⊤A†h⊤ +

η2∥k∥2∥h∥2

γ2

]
.

Similarly, replicating the proof with the c > 1 counterparts, we have the following:

E
[
ε⊤A†A†⊤ε

]
= τ2εE

[
Tr(A†A†⊤)

]
= τ2ε nE

[
1

λ

]
= τ2ε

d

ρ2(c− 1)
+ o

(
d

ρ2

)
.
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E
[
η2∥s∥2

γ2
hA†⊤A†h⊤

]
=

η2

η2 + ρ2
c2

ρ2(c− 1)2
+ o (1) +O

(
1

n

)
.

E
[
ηξ

γ2
k⊤A†h⊤

]
= O

(
1

n

)
.

E
[
η2∥k∥2∥h∥2

γ2

]
=

η2

η2 + ρ2
c

ρ2(c− 1)2
+ o (1) +O

(
1

n

)
.

After simple algebra, the result follows.

D.5.7 TARGET ALIGNMENT: HELPER LEMMAS

Lemma 30. In the same setting as Section 2, we have that

E
[
β⊤
∗ (Z +A)†⊤Z⊤β∗

]
=

{
η2c

ρ2+η2c (β
⊤
∗ u)

2 + o(1) +O
(
1
n

)
c < 1

η2

η2+ρ2 (β
⊤
∗ u)

2 + o(1) +O
(
1
n

)
c > 1

.

Proof. For c < 1, from Proposition 1, we get that

β⊤
∗ (Z +A)†⊤Z⊤β∗ =

ηξ

γ1
β⊤
∗ h

⊤u⊤β∗ +
η2∥t∥2

γ1
β⊤
∗ A

†⊤ku⊤β∗.

To begin, we start estimating

E
[
ξ

η
β⊤
∗ h

⊤u⊤β∗

]
.

Using our Spherical Hypercontractivity, we have that ξ
η and β⊤

∗ h
⊤u⊤β∗ satisfy the assumptions for

Lemma 36. Then using Lemma 9 we have that

E
[
ξ

η

]
=

1

η
and Var

(
1

η

)
= O

(
1

ρ2d

)
and Lemma 11, we have that

E
[
β⊤
∗ h

⊤u⊤β∗
]
= 0 and Var

(
β⊤
∗ h

⊤u⊤β∗
)
= O

(
1

ρ2d

)
Thus, using Lemma 37, we have that

E
[
ξ

η
β⊤
∗ h

⊤u⊤β∗

]
= 0 +O

(
1

ρ2d

)
and using Lemma 36, since all the means are O(1), we have that

Var

(
ξ

η
β⊤
∗ h

⊤u⊤β∗

)
= O

(
max

(
Var

(
ξ

η

)
,Var

(
β⊤
∗ h

⊤u⊤β∗
)))

= O

(
1

ρ2n

)
.

Then Lemma 19 gives mean and variance of η2

γi
. Since η2

γi
does not satisfy the higher moment bound,

and cannot be directly included in the product, we can include it via the classical bound:

E
[
ηξ

γ1
β⊤
∗ h

⊤u⊤β∗

]
= E

[
η2

γ1

]
E
[
ξ

η
β⊤
∗ h

⊤u⊤β∗

]
+

√
Var

(
ξ

η
β⊤
∗ h

⊤u⊤β∗

)
Var

(
η2

γ1

)
= O

(
1

n

)
.

(18)

For the second term, we begin with

E
[
∥t∥2β⊤

∗ A
†⊤ku⊤β∗

]
.
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Lemma 9 tells us that

E[∥t∥2] = 1− c and Var
(
∥t∥2

)
= O

(
1

n

)
and Lemma 10 tells us

E
[
β⊤
∗ A

†⊤ku⊤β∗
]
=

1

ρ2
c

1− c
(β⊤

∗ u)
2 + o

(
1

ρ2

)
and Var

(
β⊤
∗ A

†⊤ku⊤β∗
)
= O

(
1

ρ4d

)
.

Thus using Lemmas 37 and Lemma 36, we get that

E
[
∥t∥2β⊤

∗ A
†⊤ku⊤β∗

]
= (β⊤

∗ u)
2 c

ρ2
+o

(
1

ρ2

)
+O

(
1

n

)
and Var

(
∥t∥2β⊤

∗ A
†⊤ku⊤β∗

)
= O

(
1

n

)

Recalling the mean and variance for η2

γ1
from 19, we have that

E
[
η2∥t∥2

γ1
β⊤
∗ A

†⊤ku⊤β∗

]
= E

[
η2

γ1

]
E
[
∥t∥2β⊤

∗ A
†⊤ku⊤β∗

]
+

√
O

(
1

n

)
Var

(
η2

γ1

)
=

(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))(
(β⊤

∗ u)
2 c

ρ2
+ o

(
1

ρ2

)
+O

(
1

n

))
+O

(
1

n

)
= (β⊤

∗ u)
2 η2c

η2c+ ρ2
+ o(1) +O

(
1

n

)
. (19)

Combining these two terms yields the first result.

Similarly, for c > 1, Proposition 1 gives the expansion:

β⊤
∗ (Z +A)†⊤Z⊤β∗ = β⊤

∗

(
ηξ

γ2
uh+

η2∥h∥2

γ2
us⊤

)⊤

β∗ =
ηξ

γ2
β⊤
∗ h

⊤u⊤β∗ +
η2∥h∥2

γ2
β⊤
∗ su

⊤β∗.

For the first term, we begin with

E
[
ξ

η
β⊤
∗ h

⊤u⊤β∗

]
.

Recalling form Lemma 11, we see that

E
[
β⊤
∗ h

⊤u⊤β∗
]
= 0 and Var

(
β⊤
∗ h

⊤u⊤β∗
)
= O

(
1

ρ2d

)
.

Thus again using Lemma 36 and Lemma 37, we see that

E
[
ξ

η
β⊤
∗ h

⊤u⊤β∗

]
= 0 +O

(
1

ρ2d

)
and Var

(
ξ

η
β⊤
∗ h

⊤u⊤β∗

)
= O

(
1

ρ2d

)
.

Next using the standard covariance bound on the expectation of the product. We see that

E
[
ηξ

γ1
β⊤
∗ h

⊤u⊤β∗

]
= 0 +O

(
1

ρ2d

)
+O

(
1

n

)
= O

(
1

n

)
.

For the second term, we begin with

E
[
∥h∥2β⊤

∗ suβ∗
]
.

Recall from Lemma 9 we have that

E[∥h∥2] = 1

ρ2
c

c− 1
+ o

(
1

ρ2

)
and Var(∥h∥2) = O

(
1

ρ4n

)
and from Lemma 10

E
[
β⊤
∗ suβ∗

]
=

(
1− 1

c

)
(β⊤

∗ u)
2 and Var

(
β⊤
∗ suβ∗

)
= O

(
1

d

)
.
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Thus using Lemma 36 and Lemma 37, we get that

E
[
∥h∥2β⊤

∗ suβ∗
]
=

(β⊤
∗ u)

2

ρ2
+ o

(
1

ρ2

)
+O

(
1

d

)
and Var

(
∥h∥2β⊤

∗ suβ∗
)
= O

(
1

d

)
.

Recalling the mean and variance for η2

γ2
from Lemma 19 and using the classical covariance bound for

the expectation of the product, we get that

E
[
η2∥h∥2

γ2
β⊤
∗ su

⊤β∗

]
= E

[
η2

γ2

]
E
[
∥h∥2β⊤

∗ su
⊤β∗

]
+

√
O

(
1

n

)
Var

(
η2

γ2

)
=

(
ρ2η2

η2 + ρ2
+ o

(
1

ρ2

))(
(β⊤

∗ u)
2

ρ2
+ o

(
1

ρ2

)
+O

(
1

d

))
+O

(
1

n

)
=

η2

η2 + ρ2
(β⊤

∗ u)
2 + o(1) +O

(
1

n

)
.

Then adding the two together, we get the result for c > 1 as well.

Lemma 31. In the same setting as Section 2, we have that, for c < 1

E
[
β⊤
∗ (Z +A)†⊤A⊤β∗

]
= ∥β∗∥2 −

η2c

ρ2 + η2c
(β⊤

∗ u)
2 + o

(
1

ρ2

)
+O

(
1

n

)
.

and for c > 1

E
[
β⊤
∗ (Z +A)†⊤A⊤β∗

]
=

1

c
∥β∗∥2 −

η2

η2 + ρ2

(
∥β∗∥2

d
+

1

c
(β⊤

∗ u)
2

)
+ o(1) +O

(
1

n

)
.

Proof. For c < 1, using the expectation from Lemma 30, we get

E
[
β⊤
∗ (Z +A)†⊤A⊤β∗

]
= E

[
β⊤
∗
(
I −Z(Z +A)†

)⊤
β∗

]
= ∥β∗∥2 −

η2c

ρ2 + η2c
(β⊤

∗ u)
2 + o (1) +O

(
1

n

)
.

For c > 1, using Lemma 2, we get

β⊤
∗ (Z +A)†⊤A⊤β∗ = β⊤

∗

(
AA† +

ηξ

γ2
h⊤s⊤ − η2∥s∥2

γ2
h⊤h− η2∥h∥2

γ2
AA†us⊤ − ηξ

γ2
AA†uh

)⊤

β∗.

We then compute the expectation of each term above.

To begin, we have that

E
[
β⊤
∗ AA†β∗

]
=

1

c
∥β∗∥2 by Equation 13.

Next, we recall from Lemma 11 that

E[β⊤
∗ h

⊤s⊤β∗] = 0 and Var(β⊤
∗ h

⊤s⊤β∗) = O

(
1

ρ2d

)
.

and from Lemma 9 that

E
[
ξ

η

]
=

1

η
+ o

(
1

ρ2

)
and Var

(
ξ

η

)
= O

(
1

ρ2n

)
Thus, using Lemmas 36 and Lemma 37, we have that

E
[
ξ

η
β⊤
∗ h

⊤s⊤β∗

]
= O

(
1

ρ2n

)
and Var

(
ξ

η
β⊤
∗ h

⊤s⊤β∗

)
= O

(
1

ρ2n

)
.

Then recalling the mean and variance of η2/γ2 from 19, using the standard covariance bound on the
difference between the product of the expectation and the expectation of the product, we get that

E
[
ηξ

γ2
β⊤
∗ h

⊤s⊤β∗

]
= O

(
1

n

)
and E

[
ηξ

γ2
β⊤
∗ AA†uhβ∗

]
= O

(
1

n

)
.
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Furthermore, for the next three terms, recall from Lemma 10 that

E[β⊤
∗ h

⊤hβ∗] =
∥β∗∥2

d

c

ρ2(c− 1)
+ o

(
1

ρ2d

)
and Var

(
β⊤
∗ h

⊤hβ∗
)
= O

(
1

ρ2d2

)
and

E
[
β⊤
∗ AA†us⊤β∗

]
=

c− 1

c2
(β⊤

∗ u)
2+o(1) and Var

(
β⊤
∗ AA†us⊤β∗

)
= O

(
β⊤
∗ AA†us⊤β∗

1

d

)
and from Lemma 11

E[β⊤
∗ AA†uhβ∗] = 0 and Var

(
β⊤
∗ AA†uhβ∗

)
= O

(
1

ρ2d2

)
.

Then recalling from Lemma 9, we have that

E[∥s∥2] = 1− 1

c
and Var(∥s∥2) = O

(
1

d

)
.

Then using Lemma 36 and Lemma 37, we have that for third term

E[∥s∥2β⊤
∗ h

⊤hβ∗] =
1

ρ2d
∥β∗∥2+o

(
1

ρ2d

)
+O

(
1

d

)
and Var

(
∥s∥2β⊤

∗ h
⊤hβ∗

)
= O

(
1

d

)
for the fourth term

E[∥h∥2β⊤
∗ AA†us⊤] =

(
1

ρ2
c

c− 1
+ o

(
1

ρ2

))(
c− 1

c2
(β⊤

∗ u)
2 + o(1)

)
+O

(
1

ρ2d

)
=

(β⊤
∗ u)

2

ρ2c
+ o(1) +O

(
1

ρ2d

)
with variance

Var(∥h∥2β⊤
∗ AA†us⊤) = O

(
1

ρ2d

)
.

For the first term, we have that

E
[
ξ

η
β⊤
∗ AA†uhβ∗

]
= 0 +O

(
1

ρ2d

)
and Var

(
ξ

η
β⊤
∗ AA†uhβ∗

)
= O

(
1

ρ2d

)
Adding the last three terms and using Lemma 34 twice, we get that

E
[
β⊤
∗

(
∥s∥2h⊤h+ |h∥2⊤AA†us⊤ +

ξ

η
AA†uh

)
β∗

]
=

1

ρ2d
∥β∗∥2 +

(β⊤
∗ u)

2

ρ2c
+ 0 + o(1) +O

(
1

d

)
With variance

Var

(
β⊤
∗

(
∥s∥2h⊤h+ |h∥2⊤AA†us⊤ +

ξ

η
AA†uh

)
β∗

)
= O

(
1

d

)
Then recalling the mean and variance of η2/γ2 from Lemma 19, and using the covariance bound for
the expectation of products, we get that

E
[
η2

γ2
β⊤
∗

(
∥s∥2h⊤h+ |h∥2⊤AA†us⊤ +

ξ

η
AA†uh

)
β∗

]
=

η2

η2 + ρ2

(
∥β∗∥2

d
+

1

c
(β⊤

∗ u)
2

)
+o(1)+O

(
1

n

)
.

Adding all five terms, we get that

E
[
β⊤
∗ (Z +A)†⊤A⊤β∗

]
=

1

c
∥β∗∥2 −

η2

η2 + ρ2

(
∥β∗∥2

d
+

1

c
(β⊤

∗ u)
2

)
+ o(1) +O

(
1

n

)
.

D.6 STEP 5: UPSCALING AND ASYMPTOTIC RISK FORMULAS

In the previous step we derived downscaled expressions for the four constituent terms of the risk:
Bias, Variance, Data Noise, and Target Alignment. We stop our abuse of notation and are explicit
again about douwnscaled vs. upscaled.
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Bias (downscaled). For c < 1, the bias term is

η̃2

ñ

([
(α̃Z − αZ) +

ρ2

η2c+ ρ2
(αZ − αA)

]2
(β⊤

∗ u)
2 + τ2ε,r

c

1− c

1

η2c+ ρ2

)
+ o

(
1

ñ

)
+ o

(
1

n

)
.

For c > 1, the bias term is

η̃2

ñ

[
(β⊤

∗ u)
2

(
(α̃Z − αZ) +

ρ2

η2 + ρ2

(
αZ − αA

c

))2
+ α2

A

∥β∗∥2

d

(
c−1
c

) η2ρ2

(η2 + ρ2)2

+
τ2ε,r
c− 1

η2c+ ρ2

(η2 + ρ2)2

]
.+ o

(
1

ñ

)
+ o

(
1

n

)

Variance (downscaled). For c < 1, the variance term is

ρ̃2

d

[
α2
A∥β∗∥2 + (β⊤

∗ u)
2

(
(αZ − αA)

2 η
2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
+ 2αA(αZ − αA)

η2c

η2c+ ρ2

)
+τ2ε,r

(
c

1− c

d

ρ2
− η2

ρ2(η2c+ ρ2)

c2

1− c

)]
.

For c > 1, the variance term is

ρ̃2

d

[
∥β∗∥2

(
α2
A

c
− α2

A

d

η2

η2 + ρ2

)
+ (β⊤

∗ u)
2 c

c− 1

η2

η2 + ρ2

(
αZ − αA

c

)2
+ τ2ε,r

(
d

ρ2
1

c− 1
− η2

ρ2(η2 + ρ2)

c

c− 1

)]
.

Data noise (downscaled). The data noise term is

α̃2
A ρ̃2

d
∥β∗∥2.

Target alignment (downscaled). For c < 1, the alignment term is

−2α̃Aρ̃
2

d

(
αA∥β∗∥2 + (αZ − αA) (β

⊤
∗ u)

2 η2c

ρ2 + η2c

)
.

For c > 1, the alignment term is

−2α̃Aρ̃
2

d

(
αA

c
∥β∗∥2 −

αA

d

η2

η2 + ρ2
∥β∗∥2 +

(
αZ − αA

c

) η2

η2 + ρ2
(β⊤

∗ u)
2

)
.

These formulas are expressed in terms of the concentrated building blocks, but still at the “microscopic”
scale in which η is O(

√
d), ρ = Θ(1), and τ2ε,r = O(1/d).

In this section we return to the macroscopic, or upscaled, version of the problem. Specifically, we
multiply each term by d and reparametrize according to

θ2 =
d

n
η2, θ̃2 =

d

ñ
η̃2, τ2ε = d τ2ε,r,

while keeping ρ, ρ̃ fixed. This normalization ensures that the effective spike strength θ, isotropic
noise level ρ, and label noise τε,r are all of order one. In this scaling, the risk is d times larger than in
the downscaled representation, and the resulting formulas cleanly separate the contributions of the
four terms.

The terms change as follows

Front factors (after multiplying by d).

η̃2

ñ

×d−−−→ θ̃2,
ρ̃2

d

×d−−−→ ρ̃2,
α̃2
A ρ̃2

d

×d−−−→ α̃2
A ρ̃2, d τ2ε,r → τ2ε . (20)
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Denominator identities.

η2c+ ρ2 = θ2 + ρ2, η2 + ρ2 =
θ2 + c ρ2

c
. (21)

Frequently used ratios and their upscaled forms.
ρ2

η2c+ ρ2
=

ρ2

θ2 + ρ2
, (22)

η2c

η2c+ ρ2
=

θ2

θ2 + ρ2
, (23)

η2

η2 + ρ2
=

θ2

θ2 + c ρ2
, (24)

ρ2

η2 + ρ2
=

c ρ2

θ2 + c ρ2
, (25)

η2 ρ2

(η2 + ρ2)2
=

θ2 ρ2

(θ2 + c ρ2)2
c, (26)

η2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
=

θ2(θ2 + c ρ2)

(θ2 + ρ2)2
1

1− c
. (27)

Noise terms with aspect-ratio factors. After multiplying by d and substituting τ2ε = d τ2ε,r:

τ2ε,r

(
c

1− c

d

ρ2
− η2

ρ2(η2c+ ρ2)

c2

1− c

)
−→ τ2ε

(
1

ρ2
c

1− c
− θ2

ρ2(θ2 + ρ2)

c

1− c

)
, (28)

τ2ε,r

(
d

ρ2
1

c− 1
− η2

ρ2(η2 + ρ2)

c

c− 1

)
−→ τ2ε

(
1

ρ2
1

c− 1
− θ2

ρ2(θ2 + c ρ2)

c

c− 1

)
. (29)

Alignment-specific identities.
η2c

ρ2 + η2c
=

θ2

ρ2 + θ2
,

η2

η2 + ρ2
=

θ2

θ2 + c ρ2
. (30)

We now state the explicit upscaled limits for each component. As before, we present results separately
in the underparametrized regime (c < 1) and the overparametrized regime (c > 1). Each term has a
little o(1) error term.

Bias. For c < 1, the bias contribution is

θ̃2
([

(α̃Z − αZ) +
ρ2

θ2 + ρ2
(αZ − αA)

]2
(β⊤

∗ u)
2 +

τ2ε
d

c

1− c

1

θ2 + ρ2

)
.

For c > 1, the bias is

θ̃2

(β⊤
∗ u)

2

(
(α̃Z − αZ) +

ρ2

θ2

c + ρ2

(
αZ − αA

c

))2

+ α2
A

∥β∗∥2

d

(
c− 1

c

) θ2

c ρ
2(

θ2

c + ρ2
)2 +

τ2ε
d

1

c− 1

θ2 + ρ2(
θ2

c + ρ2
)2
 .

Variance. For c < 1, the variance contribution is

ρ̃2
[
α2
A∥β∗∥2 + (β⊤

∗ u)
2

(
(αZ − αA)

2 θ2(θ2 + cρ2)

(θ2 + ρ2)2
1

1− c
+ 2αA(αZ − αA)

θ2

θ2 + ρ2

)
+τ2ε

(
1

ρ2
c

1− c
− 1

d

θ2

ρ2(θ2 + ρ2)
· c

1− c

)]
.

For c > 1, the variance is

ρ̃2
[
∥β∗∥2

(
α2
A

c
− α2

A

d

θ2

θ2 + cρ2

)
+ (β⊤

∗ u)
2 c

c− 1

θ2

θ2 + cρ2

(
αZ − αA

c

)2
+ τ2ε

(
1

ρ2
1

c− 1
− 1

d

θ2

ρ2(θ2 + cρ2)
· c

c− 1

)]
.
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Data Noise. The data noise term is independent of c:

α̃2
A ρ̃2 ∥β∗∥2.

Target Alignment. For c < 1, the target alignment contribution is

−2α̃Aρ̃
2

(
αA∥β∗∥2 + (αZ − αA) (β

⊤
∗ u)

2 θ2

ρ2 + θ2

)
.

For c > 1, the alignment term is

−2α̃Aρ̃
2

(
αA

c
∥β∗∥2 −

αA

d

θ2

θ2 + cρ2
∥β∗∥2 +

(
αZ − αA

c

) θ2

θ2 + cρ2
(β⊤

∗ u)
2

)
.

Lastly, replacing ρ̃, ρ with τ̃ , τ and using d/n → c yield the detailed expressions in Theorem 5, up to
simple algebra (rearranging terms and simplifying the fractions).

E PROBABILITY LEMMAS

Proposition 2. If u,v ∈ Rd are fixed unit norm vector and A ∈ Rd×n is a Gaussian matrix with
i.i.d. N (0, 1) entries. If d > n, then we have that

E[(u⊤AA†v)2] =
n

d(d+ 2)

[
(u⊤v)2(n+ 2) +

(1− (u⊤v)2)(d− n)

d− 1

]
=

1

c2
(u⊤v)2 + o(1),

Var
(
u⊤AA†v)2

)
= O

(
1

d

)
.

Proof. Let P := AA†. This is the orthogonal projection matrix onto the column space of A, denoted
C(A) = Range(A). The subspace C(A) is an n-dimensional subspace of Rd. Because the entries
Aij are i.i.d. N (0, 1), the distribution of the random subspace C(A) is isotropic (or rotationally
invariant). Consequently, the distribution of the random projection matrix P is also rotationally
invariant. That is, for any fixed d× d orthogonal matrix Q, the distribution of QPQ⊤ is the same as
the distribution of P .

We are interested in E[(u⊤Pv)2]. Let θ be the angle between u and v, such that cos(θ) = u⊤v
(since they are unit vectors). Due to the rotational invariance of the distribution of P , we can
choose an orthonormal basis without loss of generality. Let Q be an orthogonal matrix such that
u′ = Qu = e1 = (1, 0, . . . , 0)⊤ and v′ = Qv lies in the span of e1 and e2. Specifically,
v′ = cos(θ)e1 + sin(θ)e2. Let P ′ = QPQ⊤. P ′ has the same distribution as P . Then,

u⊤Pv = (Q⊤u′)⊤P (Q⊤v′) = (u′)⊤(QPQ⊤)v′ = (u′)⊤P ′v′

Substituting u′ = e1 and v′ = cos(θ)e1 + sin(θ)e2:

u⊤Pv = e⊤1 P
′(cos(θ)e1 + sin(θ)e2)

= cos(θ)(e⊤1 P
′e1) + sin(θ)(e⊤1 P

′e2)

= cos(θ)P ′
11 + sin(θ)P ′

12

where P ′
ij are the elements of P ′. Since P ′ has the same distribution as P , we can drop the prime

for calculating expectations involving the elements. Let X = u⊤Pv. We then need E[X2].

E[X2] = E[(cos(θ)P11 + sin(θ)P12)
2]

= E[cos2(θ)P 2
11 + sin2(θ)P 2

12 + 2 cos(θ) sin(θ)P11P12]

= cos2(θ)E[P 2
11] + sin2(θ)E[P 2

12] + 2 cos(θ) sin(θ)E[P11P12]

Calculation of Moments. We need to compute E[P 2
11], E[P 2

12], and E[P11P12].
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Consider a reflection matrix R that maps e2 to −e2 and leaves other basis vectors unchanged (i.e.,
R = diag(1,−1, 1, . . . , 1)). Since the distribution of P is isotropic, it is invariant under reflection.
Let P ∗ = RPR⊤ = RPR. P ∗ has the same distribution as P . The components are related:

P ∗
11 = (RPR)11 = R11P11R11 = P11

and
P ∗
12 = (RPR)12 = R11P12R22 = (1)P12(−1) = −P12.

Therefore,
E[P11P12] = E[P ∗

11P
∗
12] = E[P11(−P12)] = −E[P11P12].

This implies 2E[P11P12] = 0, so E[P11P12] = 0.

The diagonal element P11 = e⊤1 Pe1 = ∥Pe1∥22 represents the squared norm of the projection of the
fixed unit vector e1 onto the random n-dimensional subspace C(A). This variable follows a Beta
distribution:

P11 ∼ Beta
(
n

2
,
d− n

2

)
The mean and variance of a Beta(α, β) distribution are α

α+β and αβ
(α+β)2(α+β+1) , respectively. Here,

α = n/2 and β = (d− n)/2, so α+ β = d/2.

E[P11] =
n/2

d/2
=

n

d

Next

Var(P11) =
(n/2)((d− n)/2)

(d/2)2(d/2 + 1)
=

n(d− n)/4

(d2/4)((d+ 2)/2)
=

n(d− n) · 8
4d2(d+ 2)

=
2n(d− n)

d2(d+ 2)

Now we find E[P 2
11] using E[P 2

11] = Var(P11) + (E[P11])
2:

E[P 2
11] =

2n(d− n)

d2(d+ 2)
+
(n
d

)2
=

2n(d− n) + n2(d+ 2)

d2(d+ 2)

=
2nd− 2n2 + n2d+ 2n2

d2(d+ 2)

=
2nd+ n2d

d2(d+ 2)

=
n(n+ 2)

d(d+ 2)
.

We use the property that P is a projection matrix, so P 2 = P . The trace is Tr(P ) = n. Also
Tr(P 2) = Tr(P ) = n. We can write Tr(P 2) = Tr(PP⊤) since P is symmetric.

Tr(P 2) =

d∑
i=1

d∑
j=1

(Pij)
2

Taking the expectation:

E[Tr(P 2)] = E

∑
i,j

P 2
ij

 =
∑
i,j

E[P 2
ij ] = n

By rotational symmetry, E[P 2
ii] is the same for all i, and E[P 2

ij ] is the same for all i ̸= j.

d∑
i=1

E[P 2
ii] +

∑
i̸=j

E[P 2
ij ] = n.
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There are d diagonal terms and d(d− 1) off-diagonal terms.

dE[P 2
11] + d(d− 1)E[P 2

12] = n

Substitute the value for E[P 2
11] (assuming d > 1):

d

(
n(n+ 2)

d(d+ 2)

)
+ d(d− 1)E[P 2

12] = n

n(n+ 2)

d+ 2
+ d(d− 1)E[P 2

12] = n

d(d− 1)E[P 2
12] = n− n(n+ 2)

d+ 2
=

n(d+ 2)− n(n+ 2)

d+ 2
=

nd+ 2n− n2 − 2n

d+ 2
=

n(d− n)

d+ 2

E[P 2
12] =

n(d− n)

d(d− 1)(d+ 2)

Substitute the moments back into the expression for E[X2]:

E[X2] = cos2(θ)E[P 2
11] + sin2(θ)E[P 2

12] + 2 cos(θ) sin(θ) · 0

Using cos(θ) = u⊤v, cos2(θ) = (u⊤v)2, and sin2(θ) = 1− cos2(θ) = 1− (u⊤v)2:

E[(u⊤AA†v)2] = (u⊤v)2
(
n(n+ 2)

d(d+ 2)

)
+ (1− (u⊤v)2)

(
n(d− n)

d(d− 1)(d+ 2)

)
=

n

d(d+ 2)

[
(u⊤v)2(n+ 2) +

(1− (u⊤v)2)(d− n)

d− 1

]
=

1

c2
(u⊤v)2 +O

(
1

d

)
.

Calculation of Variance. Recall that reflection R = diag(1,−1, 1, . . . , 1) implies P d
= RPR

(equal in distribution) and thus E[P11P12] = 0, and in general any mixed moment with an odd power
of P12 vanishes. Therefore, we have the following expansion:

E[X4] = cos4 θE[P 4
11] + 6 cos2 θ sin2 θE[P 2

11P
2
12] + sin4 θE[P 4

12]. (31)

We start with E[P 4
11]. Since P11 ∼ Beta(α, β) with α = n

2 , β = d−n
2 . We need the higher moments

for the Beta distribution: for m ≥ 1,

E[Pm
11 ] =

α(m)

(α+ β)(m)
=

(n2 )
(m)

(d2 )
(m)

, x(m) := x(x+ 1) · · · (x+m− 1).

In particular, we have the following third and fourth moments:

E[P 3
11] =

(n2 )
(3)

(d2 )
(3)

=
1

c3
+O

(
1

d

)
, E[P 4

11] =
(n2 )

(4)

(d2 )
(4)

=
1

c4
+O

(
1

d

)
.

We now move on to E[P 2
11P

2
12].From idempotency, (P 2)11 = P11 gives the row identity P11 =∑d

k=1 P
2
1k. Multiplying by P 2

11 and taking expectations, we have that

E[P 3
11] = E[P 4

11] +

d∑
k=2

E[P 2
11P

2
1k] = E[P 4

11] + (d− 1)E[P 2
11P

2
12].

E[P 2
11P

2
12] =

E[P 3
11]− E[P 4

11]

d− 1
=

1

d− 1

(
(n2 )

(3)

(d2 )
(3)

−
(n2 )

(4)

(d2 )
(4)

)
=

1

d− 1

(
1

c3
− 1

c4
+O

(
1

d

))
= O

(
1

d

)
.

We still need to evaluate or upper bound E[P 4
12]. From P11 =

∑d
k=1 P

2
1k we have

∑d
k=2 P

2
1k =

P11 − P 2
11. By Cauchy–Schwarz,

d∑
k=2

P 4
1k =

(
d∑

k=2

P 2
1k

)2

= (P11 − P 2
11)

2.
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Taking expectations, we get:

(d− 1)E[P 4
12] ≤ E[(P11 − P 2

11)
2] = E[P 2

11]− 2E[P 3
11] + E[P 4

11].

E[P 4
12] ≤

1

d− 1

(
1

c2
− 2

c3
+

1

c4

)
+O

(
1

d2

)
= O

(
1

d

)
.

We can now plug these expectation bounds into Equation 31:

E[X4] = cos4 θ
(n2 )

(4)

(d2 )
(4)

+O

(
1

d

)
6 cos2 θ sin2 θ +O

(
1

d

)
sin4 θ

=
1

c4
(u⊤v)4 +O

(
1

d

)
.

Recall from the prior proof that:

E[X2] = cos2 θ
n(n+ 2)

d(d+ 2)
+ sin2 θ

n(d− n)

d(d− 1)(d+ 2)
=

1

c2
(u⊤v)2 +O

(
1

d

)
.

Finally, we have that the variance is of order:

Var(X2) = E[X4]−
(
E[X2]

)2
= O

(
1

d

)
.

Lemma 32. Let a ̸= 0 be a constant and suppose that ζ = a+ o(f(n)) as n → ∞. Then,

1

ζ
=

1

a
+ o(f(n)).

Proof. Write ζ = a+ rn with rn = o(f(n)). Then

1

ζ
=

1

a+ rn
=

1

a
· 1

1 + rn
a

.

Using the expansion
1

1 + u
= 1− u+O(u2) as u → 0,

with u = rn/a, we obtain

1

ζ
=

1

a

(
1− rn

a
+O

(
(rn/a)

2
))

=
1

a
− rn

a2
+O(r2n).

Since rn = o(f(n)) and f(n) → 0, we have r2n = o(f(n)). Therefore

1

ζ
=

1

a
+ o
(
f(n)

)
,

which is the desired expansion.

Lemma 33 (Variance of a reciprocal). Let X be a random variable satisfying

E[X] = a > 0 and Var(X) = σ2 = o(1),

and assume that X is bounded away from zero with high probability. That is, there exists C ∈ (0, a)
such that

Pr[X ≥ C] = 1− o(1)

If there exists an M such that

E
[
X−8

]
≤ M and E

[
(X − E[X])

4
]
= O(σ4)

Then

Var

(
1

X

)
=

1

a4
Var(X) + o (Var(X)) ,

so in particular, Var(1/X) = o(1).
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Proof. Let Y := X − a. Then

E [Y ] = 0, E
[
Y 2
]
= σ2, E

[
Y 4
]
= O

(
σ4
)
.

By Taylor’s theorem with Lagrange remainder for f(x) = 1/x, there exists θ = θ(X) ∈ (0, 1) such
that

1

X
=

1

a
− Y

a2
+ Z, Z :=

Y 2

(a+ θY )
3 ≥ 0.

Write ∆ := 1
X − 1

a = − Y
a2 + Z. Then

Var

(
1

X

)
= E

[
∆2
]
− (E [∆])

2
.

We will show

E
[
∆2
]
=

σ2

a4
+ o
(
σ2
)

and (E [∆])
2
= o
(
σ2
)
.

Let G := {X ≥ C} and B := {X < C}. Since C < a and E
[
Y 2
]
= σ2, Chebyshev gives the

quantitative bound

Pr [B] = Pr [ |Y | ≥ a− C ] ≤
E
[
Y 2
]

(a− C)2
=

σ2

(a− C)2
= O

(
σ2
)
= o(1).

Second moment E
[
∆2
]
. We split over G and B.

On G. Since a+ θY = θX + (1− θ)a ≥ C, we have

|Z| ≤ Y 2

C3
, Z2 ≤ Y 4

C6
.

Therefore

E

[(
− Y

a2
+ Z

)2
1G

]
=

1

a4
E
[
Y 21G

]
− 2

a2
E [Y Z 1G] + E

[
Z21G

]
.

We bound each term as follows.

E
[
Z21G

]
≤ 1

C6
E
[
Y 4
]
= O

(
σ4
)
,

and, using 1G ≤ 1 and Lyapunov/monotonicity of Lp norms,

E [|Y Z|1G] ≤
1

C3
E
[
|Y |3

]
≤ 1

C3

(
E
[
Y 4
])3/4

= O
(
σ3
)
= o
(
σ2
)
.

Moreover,

E
[
Y 21G

]
= σ2−E

[
Y 21B

]
, E

[
Y 21B

]
≤
(
E
[
Y 4
])1/2

Pr [B]
1/2

= O
(
σ2
)
Pr [B]

1/2
= o
(
σ2
)
.

Hence

E

[(
− Y

a2
+ Z

)2
1G

]
=

σ2

a4
+ o
(
σ2
)
.

On B. Using the algebraic identity (
1

X
− 1

a

)2

=
Y 2

a2X2
,

Cauchy–Schwarz and Hölder (with exponents 2, 2) give

E
[
∆21B

]
=

1

a2
E
[
Y 2

X2
1B

]
≤ 1

a2
(
E
[
Y 4
])1/2 (E [X−41B

])1/2 ≤ 1

a2
O
(
σ2
) (

E
[
X−8

])1/4
Pr [B]

1/4
.
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Under the lemma’s assumption E
[
X−8

]
≤ M , we get

E
[
∆21B

]
= O

(
σ2
)
Pr [B]

1/4
= o
(
σ2
)
.

Combining the G and B parts,

E
[
∆2
]
=

σ2

a4
+ o
(
σ2
)
.

Mean correction (E [∆])
2. Since E [Y ] = 0, we have

E [∆] = E [Z] = E [Z 1G] + E [Z 1B ] .

On G, Z ≤ Y 2/C3, so

E [Z 1G] ≤
1

C3
E
[
Y 21G

]
≤ 1

C3
σ2.

On B, The inequality

Z =
Y 2

a+ θY )3
≤ X2

Y 3

holds on set B because on this set as X < a, meaning the point a+ θY lies between X and a, so
a+ θY > X . Thus, using Cauchy–Schwarz and Hölder,

E [Z 1B ] ≤ E
[
Y 2

X3
1B

]
≤
(
E
[
Y 4
])1/2 (E [X−61B

])1/2 ≤ O
(
σ2
) (

E
[
X−12

])1/4
Pr [B]

1/4
= o
(
σ2
)
.

Thus |E [∆]| = O
(
σ2
)

and therefore

(E [∆])
2
= O

(
σ4
)
= o
(
σ2
)
.

Putting the two steps together,

Var

(
1

X

)
= E

[
∆2
]
− (E [∆])

2
=

σ2

a4
+ o
(
σ2
)
=

1

a4
Var(X) + o(Var(X)) .

Lemma 34 (Variance of a sum). Let A and B be any random variables with finite variances
V (A) = Var(A) and V (B) = Var(B). Then,

Var(A+B) ≤
(√

V (A) +
√
V (B)

)2
.

Proof. Recall that
Var(A+B) = Var(A) + Var(B) + 2 Cov(A,B).

By the Cauchy–Schwarz inequality, we have

|Cov(A,B)| ≤
√
V (A)V (B).

Thus,

Var(A+B) ≤ V (A) + V (B) + 2
√

V (A)V (B) =
(√

V (A) +
√
V (B)

)2
.

Lemma 35 (Variance of one product). Let A,B be real random variables with means a = E [A],
b = E [B] and finite variances. Assume

E
[
(A− a)

4
]
≤ KA Var(A)

2
, E

[
(B − b)

4
]
≤ KB Var(B)

2
.

Then, with C4 := (KAKB)
1/4,√

Var(AB) ≤ |a|
√
Var(B) + |b|

√
Var(A) + C4

√
Var(A)Var(B).

Moreover, as Var(A) ,Var(B) → 0,

Var(AB) = O
(
a2Var(B)

)
+O

(
b2Var(A)

)
+ o(Var(A) + Var(B)) .

It directly follows that if all the means are O(1),
Var(AB) = O (Var(B)) +O (Var(A)) .

Var(ABC) = O (Var(C)) +O (Var(B)) +O (Var(A)) and so on by induction.
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Proof. Write
AB − ab = a B̃ + b Ã+ ÃB̃.

Using Var(U + V ) = Var(U) +Var(V ) + 2Cov(U, V ) and |Cov(U, V )| ≤
√

Var(U)Var(V ), we
get

Var(AB) = Var
(
aB̃ + bÃ+ ÃB̃

)
≤

(
|a|
√
Var
(
B̃
)

+ |b|
√
Var
(
Ã
)

+

√
Var
(
ÃB̃
))2

.

Since Var(Ã) = Var(A) and Var(B̃) = Var(B), it remains to bound Var
(
ÃB̃
)

. By
Cauchy–Schwarz (Hölder with p = q = 2),

Var
(
ÃB̃
)

≤ E
[
Ã2B̃2

]
≤
(
E
[
Ã4
])1/2 (

E
[
B̃4
])1/2

.

Since we assume fourth–moment control E
[
Ã4
]
≤ KA Var(A)2 and E

[
B̃4
]
≤ KB Var(B)2, then√

Var
(
ÃB̃
)

≤ (KAKB)
1/4
√
Var(A)Var(B).

Hence

Var(AB) ≤
(
|a|
√
Var(B) + |b|

√
Var(A) + C4

√
Var(A)Var(B)

)2
, C4 := (KAKB)

1/4.

For the moreover part, using the exact variance–covariance expansion,

Var(AB) = a2Var(B)+b2Var(A)+2abCov(A,B)+Var
(
ÃB̃
)
+2aCov

(
B̃, ÃB̃

)
+2bCov

(
Ã, ÃB̃

)
,

we bound the three remainder terms using Cauchy–Schwarz and the fourth–moment control:

Var
(
ÃB̃
)
≤ E

[
Ã2B̃2

]
≤
(
E
[
Ã4
])1/2 (

E
[
B̃4
])1/2

≤ C2
4 Var(A)Var(B) ,∣∣∣Cov(B̃, ÃB̃

)∣∣∣ ≤√Var
(
B̃
)√

Var
(
ÃB̃
)
≤ C4 Var(B)

√
Var(A),∣∣∣Cov(Ã, ÃB̃

)∣∣∣ ≤√Var
(
Ã
)√

Var
(
ÃB̃
)
≤ C4 Var(A)

√
Var(B).

As Var(A) ,Var(B) → 0, each of these is o(Var(A) + Var(B)).

For the covariance term, Cauchy–Schwarz and the inequality 2uv ≤ εu2 + ε−1v2 (for any ε > 0)
with u := |a|

√
Var(B), v := |b|

√
Var(A) give

| 2abCov(A,B)| ≤ 2|ab|
√
Var(A)Var(B) ≤ ε a2Var(B) + ε−1b2Var(A) .

Therefore,

Var(AB) ≤ (1 + ε) a2Var(B) + (1 + ε−1) b2Var(A) + o(Var(A) + Var(B)) .

Choosing, e.g., ε = 1 yields

Var(AB) = O
(
a2Var(B)

)
+O

(
b2Var(A)

)
+ o(Var(A) + Var(B)) ,

which proves the moreover statement.

Lemma 36 (Variance of general product). Let m ≥ 2 and let X1, . . . , Xm be real random variables
with nonzero means µi := E[Xi] ̸= 0 and variances fi(n) := Var(Xi) → 0 as n → ∞. Assume
that for some integer M ≥ m (it is enough to take M = m),

E
[
|Xi − µi|2M

]
= O

(
Var(Xi)

M
)

for each i = 1, . . . ,m. (32)

Then

Var

(
m∏
i=1

Xi

)
= O

(( m∑
i=1

√
fi(n)

)2)
= O

(
max

1≤i≤m
fi(n)

)
.
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Proof. Write ∆i := Xi − µi so that E[∆i] = 0 and ∥∆i∥L2
= σi. By assumption Equation 32 with

M ≥ m and monotonicity of Lp norms,

∥∆i∥L2k
= O

(√
fi(n)

)
for every 1 ≤ k ≤ m, i = 1, . . . ,m.

Expand the product multilinearly:

m∏
i=1

Xi −
m∏
i=1

µi =
∑

∅̸=S⊆[m]

∏
j∈Sc

µj

 (∏
i∈S

∆i

)
.

Taking L2 norms and using the triangle inequality,∥∥∥∥∥
m∏
i=1

Xi −
m∏
i=1

µi

∥∥∥∥∥
L2

≤
∑

∅̸=S⊆[m]

∏
j∈Sc

|µj |

 ∥∥∥∥∥∏
i∈S

∆i

∥∥∥∥∥
L2

.

For a fixed nonempty S with |S| = k, apply Hölder with exponents all equal to 2k:∥∥∥∥∥∏
i∈S

∆i

∥∥∥∥∥
L2

≤
∏
i∈S

∥∆i∥L2k
= O

(∏
i∈S

√
fi

)
,

where we used ∥∆i∥L2k
= O(

√
fi) for k ≤ m.

Let ci :=
√
fi(n). Summing over subsets S shows∥∥∥∥∥

m∏
i=1

Xi −
m∏
i=1

µi

∥∥∥∥∥
L2

≤ A
( m∏

i=1

(1 + ci)− 1
)

≤ A (eΞ − 1),

where Ξ :=
∑m

i=1 ci and A is a constant depending only on m, {µi}, and the moment constants (not
on n). Hence

Var
( m∏

i=1

Xi

)
≤

∥∥∥∥∥
m∏
i=1

Xi −
m∏
i=1

µi

∥∥∥∥∥
2

L2

= O(Ξ2) = O

(( m∑
i=1

√
fi(n)

)2)
.

Since m is fixed, (
∑m

i=1

√
fi)

2 ≤ m2 maxi fi, giving the claimed bound.

Corollary 1 (Higher moments of the centered product). Fix p ≥ 1. Under the hypotheses of
Lemma 36, then∥∥∥ m∏

i=1

Xi −
m∏
i=1

E[Xi]
∥∥∥
L2p

≤ Cp,m

∑
∅̸=S⊆[m]

( ∏
j∈Sc

|E[Xj ]|
) ∏

i∈S

√
fi = o(1),

and hence E
∣∣∏m

i=1 Xi − E
∏m

i=1 Xi

∣∣2p = o(1).

Lemma 37 (Expectation of Product vs. Product of Expectations). Fix k ≥ 2. Let X1, . . . , Xk be
random variables. Assume:

1. Uniformly bounded means: supn,i |E[Xi]| ≤ M < ∞.

2. Vanishing variances: Var(Xi) = fi(n) with fi(n) → 0 as n → ∞ for each i.

3. Moment control up to order k: For each i and every p ∈ {2, . . . , k},

E [|Xi − E[Xi]|p] ≤ Cp Var(Xi)
p/2,

with constants Cp.
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Then for finite k, we have:∣∣∣∣∣E
[

k∏
i=1

Xi

]
−

k∏
i=1

EXi

∣∣∣∣∣ = O

( k∑
i=1

√
fi(n)

)2
 = O

(
max
1≤i≤k

fi(n)

)
.

Proof. Set ∆i := Xi − E[Xi], so E∆i = 0, Var(Xi) = Var(∆i) = fi(n), and by assumption

∥∆i∥Lp
:= (E [|∆i|p])1/p ≤ C1/p

p fi(n)
1/2, p = 2, . . . , k.

Using the multilinearity of expectation,

k∏
i=1

Xi =

k∏
i=1

(E[Xi] + ∆i) =
∑
S⊆[k]

(∏
i∈S

∆i

)∏
j /∈S

E[Xj ]

 ,

Thus,
k∏

i=1

Xi −
k∏

i=1

E[Xi] =
∑

∅̸=S⊆[k]

[∏
i∈S

∆i

]∏
j /∈S

E[Xj ].

Then taking the expectation and noting that
∏

j /∈S E[Xj ] is a constant, we get

E

[
k∏

i=1

Xi

]
−

k∏
i=1

E[Xi] =
∑

∅≠S⊆[k]

E

[∏
i∈S

∆i

]∏
j /∈S

E[Xj ].

If S = {ℓ} then E
[∏

i∈S ∆i

]
= E[∆ℓ] = 0. Hence every singleton term vanishes exactly, and the

sum begins at |S| = 2. From the bounded means assumption,∣∣∣∣∣∣
∏
j /∈S

E[Xj ]

∣∣∣∣∣∣ ≤ M k−|S|, ∀S ⊆ [k].

Fix a nonempty subset S with |S| = m ≥ 2. By generalized Hölder with all exponents equal to m
(so
∑

i∈S
1
m = 1),∣∣∣∣∣E

[∏
i∈S

∆i

]∣∣∣∣∣ ≤∏
i∈S

∥∆i∥Lm
≤
∏
i∈S

(
C1/m

m fi(n)
1/2
)
= Cm

∏
i∈S

√
fi(n).

Therefore, for every S with |S| = m ≥ 2,∣∣∣∣∣∣E
[∏
i∈S

∆i

]∏
j /∈S

EXj

∣∣∣∣∣∣ ≤ M k−m Cm

∏
i∈S

√
fi(n).

Let ci :=
√
fi(n) ≥ 0. Denote by

em(c1, . . . , ck) :=
∑
S⊆[k]
|S|=m

∏
i∈S

ci

the m-th elementary symmetric polynomial. Summing the bound from, we get∣∣∣∣∣E
[

k∏
i=1

Xi

]
−

k∏
i=1

EXi

∣∣∣∣∣ ≤
k∑

m=2

M k−mCm em(c1, . . . , ck).

Let M⋆ := max2≤m≤k M
k−mCm. Since em ≥ 0 for ci ≥ 0,

k∑
m=2

M k−mCm em ≤ M⋆

k∑
m=2

em(c1, . . . , ck).
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Recall the identity
k∏

i=1

(1 + ci) =

k∑
m=0

em(c1, . . . , ck) = 1 +

k∑
m=1

em(c1, . . . , ck),

so that
∑k

m=2 em =
∏k

i=1(1 + ci)− 1−
∑k

i=1 ci. Hence∣∣∣∣∣E
[

k∏
i=1

Xi

]
−

k∏
i=1

EXi

∣∣∣∣∣ ≤ M⋆

(
k∏

i=1

(1 + ci)− 1−
k∑

i=1

ci

)
.

Let Ξ :=
∑k

i=1 ci → 0 as n → ∞. Since log(1 + u) ≤ u for u ≥ 0,
k∏

i=1

(1 + ci) = exp

(
k∑

i=1

log(1 + ci)

)
≤ exp(Ξ).

Thus, the difference is at most M⋆(e
Ξ − 1−Ξ). By Taylor’s theorem, eΞ = 1+Ξ+ 1

2Ξ
2eξ for some

ξ ∈ [0,Ξ], so eΞ − 1− Ξ = 1
2Ξ

2eξ ≤ 1
2Ξ

2eΞ (since ξ ≤ Ξ and eξ ≤ eΞ). Therefore,∣∣∣∣∣E
[

k∏
i=1

Xi

]
−

k∏
i=1

EXi

∣∣∣∣∣ ≤ M⋆

2
Ξ2eΞ = O(Ξ2),

as Ξ → 0 and eΞ → 1. Since Ξ = O
(∑k

i=1

√
fi(n)

)
, we get the result.

Lemma 38 (Moment preservation under monomial ↔ Hermite change of basis). Fix M ∈ N and
degree r ∈ N. Let

M := {xγ : γ ∈ NM , |γ| ≤ r}, H := {Hα : α ∈ NM , |α| ≤ r},

with Hα(x) =
∏M

j=1 Hαj
(xj) the probabilists’ Hermite basis. For any (random) coefficients

{aγ}|γ|≤r define the random polynomial P (x) =
∑

|γ|≤r aγ x
γ . Then there is a deterministic,

invertible matrix T = T (M, r) such that the Hermite coefficients c = {cα}|α|≤r in P (x) =∑
|α|≤r cα Hα(x) satisfy

c = T a.

Consequently, for any p ≥ 1,

∥cα∥Lp
≤

∑
|γ|≤r

|Tαγ | ∥aγ∥Lp
for all α,

so if each aγ ∈ Lp then each cα ∈ Lp. Moreover, since T is invertible, the converse also holds: if
each cα ∈ Lp then each aγ ∈ Lp.

Proof. In one dimension, each monomial admits a finite Hermite expansion xm =∑⌊m/2⌋
j=0 tm,j Hm−2j(x) with deterministic coefficients tm,j ; in several dimensions, take tensor

products to obtain xγ =
∑

|α|≤|γ| Tαγ Hα(x). Ordering multi-indices by total degree yields a block
upper-triangular, deterministic, invertible matrix T = T (M, r). Linearity gives c = Ta. For p ≥ 1,
Minkowski’s inequality yields ∥cα∥Lp

=
∥∥∑

γ Tαγaγ
∥∥
Lp

≤
∑

γ |Tαγ | ∥aγ∥Lp
, so finiteness of all

∥aγ∥Lp
implies finiteness of all ∥cα∥Lp

. Invertibility gives the converse using a = T−1c and the
same argument with T−1.

F PROOF OF SPECIFIC CASES AND OVERFITTING

F.1 PROOF OF THEOREM 1.

Proof. We set αZ = αA = α̃Z = α̃A = α, θ̃ = θ, τ̃ = τ in the above Theorem 5 and note that it
greatly simplifies each term. Algebra shows that for c < 1

Bias = τ2ε
c

1− c

θ2

d(θ2 + τ2)
, Variance = α2τ2∥β∗∥2 + τ2ε

c

1− c

[
1− θ2

d(θ2 + τ2)

]
,
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Data Noise = α2τ2∥β∗∥2, Target Alignment = −2α2τ2∥β∗∥2,
While for c > 1, we can first send d, n → ∞ and many terms become asymptotically 0. In the end,
we get that:

Bias = α2θ2(β⊤
∗ u)

2

(
1− 1

c

)2(
τ2c

θ2 + τ2c

)2

, Data Noise = α2τ2∥β∗∥2,

Variance = α2τ2∥β∗∥2
1

c
+ α2τ2(β⊤

∗ u)
2 θ2

θ2 + τ2c

(
1− 1

c

)
+ τ2ε

1

c− 1
.

Target Alignment = −2α2τ2
((

1− 1

c

)
θ2

θ2 + τ2c
(β⊤

∗ u)
2 + ∥β∗∥2

1

c

)
,

Adding these terms together, we see with simple algebra that many terms cancel or can be combined,
establishing the stated formula.

F.2 PROOF OF THEOREM 2.

Proof. We set αZ = α̃Z , αA = α̃A, θ̃ = θ, τ̃ = τ , and send d, n → ∞ in Theorem 5. Recall that
∆c = αZ − αA

c and ∆1 = αZ − αA. Then some algebra shows that for c < 1,

Bias = θ2(β⊤
∗ u)

2∆2
1

(
τ2

θ2 + τ2

)2

, Data Noise = α2
Aτ

2∥β∗∥2,

Target Alignment = −2α2
Aτ

2∥β∗∥2 − 2αAτ
2(β⊤

∗ u)
2∆1

θ2

θ2 + τ2
,

Variance = α2
Aτ

2∥β∗∥2 + τ2ε
c

1− c
+ τ2(β⊤

∗ u)
2

[
1

1− c

θ4 + θ2τ2c

(θ2 + τ2)2
∆2

1 + 2αA∆1
θ2

θ2 + τ2

]
.

For c > 1, we have that

Bias = θ2(β⊤
∗ u)

2∆2
c

(
τ2c

θ2 + τ2c

)2

, Data Noise = α2
Aτ

2∥β∗∥2,

Target Alignment = −2α2
Aτ

2 ∥β∗∥2

c
− 2αAτ

2(β⊤
∗ u)

2∆c
θ2

θ2 + τ2c
,

Variance = α2
Aτ

2 ∥β∗∥2

c
+ τ2ε

1

c− 1
+ τ2(β⊤

∗ u)
2 c

1− c

θ2

θ2 + τ2c
∆2

c .

We proceed by adding these terms together and the results follow from algebra.

F.3 PROOF OF THEOREM 3.

Proof. We set θ̃ = θ and τ̃ = τ in Theorem 5 and have the regime of equal operator norm θ2 = γτ2.
Since we are interested in the limit c → ∞, we only consider the overparameterized case c > 1. We
first take the limit d, n → ∞ and have that:

Bias = τ2(β⊤
∗ u)

2

(
√
γ(α̃Z − αZ) +

(
αZ − αA

c

) c
√
γ

γ + c

)2

, Data Noise = α̃2
Aτ

2∥β∗∥2,

Target Alignment = −2α̃Aτ
2

((
αZ − αA

c

) γ

γ + c
(β⊤

∗ u)
2 + αA

∥β∗∥2

c

)
,

Variance = τ2α2
A

∥β∗∥2

c
+ τ2(β⊤

∗ u)
2 c

(c− 1)

γ

γ + c

(
αZ − αA

c

)2
+ τ2ε

(
1

c− 1

)
.

The rest follows from simple calculus: if α̃Z ̸= αZ , γ = ωc(1), and β⊤
∗ u ̸= 0, the bias will

diverge and other terms are controlled, yielding catastrophic. If α̃Z = αZ , ωc(1) ≤ γ ≤ oc(c
2), and
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β⊤
∗ u ̸= 0, a similar thing happens. In other cases, all of these terms are controlled and become finite

values in the limit limc→∞ Rc − τ2ε , giving us tempered overfitting.

lim
c→∞

Rc =



α̃2
Aτ

2∥β∗∥2 β ⊥ u

τ2
[
γα̃2

Z(β
⊤
∗ u)

2 + α̃2
A∥β∗∥2

]
β ̸⊥ u, γ = Θc(1)

∞ αZ ̸= α̃Z ,β∗ ̸⊥ u, γ = ω(1)

∞ αZ = α̃Z ,β∗ ̸⊥ u, ω(1) ≤ γ ≤ o(c2)

τ2
[(

ϕ
(ϕ+1)2 α

2
Z − 2α̃AαZ

)
(β⊤

∗ u)
2 + α2

A∥β∗∥2
]

αZ = α̃Z ,β∗ ̸⊥ u, γ = ϕc2

τ2
[
(α2

Z − 2α̃AαZ)(β
⊤
∗ u)

2 + α2
A∥β∗∥2

]
αZ = α̃Z ,β∗ ̸⊥ u, γ = ω(c2)

F.4 PROOF OF THEOREM 4.

Proof. We start with the first part and assume that αZ ̸= α̃Z . Similarly, we have that θ̃ = θ and
τ̃ = τ in Theorem 5. To achieve equal Frobenius norm, we set θ2 = dτ2 and send d, n → ∞ so
several terms would vanish.

In particular, for c < 1, we have that

Bias = θ2(β⊤
∗ u)

2

(
α̃Z − αZ + (αZ − αA)

τ2

θ2 + τ2

)2

= τ2(β⊤
∗ u)

2

(
√
d(α̃Z − αZ) + (αZ − αA)

√
d

d+ 1

)2

,

It is clear that this term becomes ∞ since the term inside the parentheses scales with d. Note that the
variance and data noise are non-negative, and target alignment is controlled. We have that Rc = ∞
for c ∈ (0, 1).

For c > 1, the same logic follows, and we also note that:

Bias = θ2(β⊤
∗ u)

2

(
α̃Z − αZ +

(
αZ − αA

c

) τ2c

θ2 + τ2c

)2

= τ2(β⊤
∗ u)

2

(
√
d(α̃Z − αZ) +

(
αZ − αA

c

) √
dc

d+ c

)2

,

which scales with d with other terms controlled. Hence, Rc = ∞ for all c ̸= 1.

Now assume that αZ = α̃Z . Since we are interested in c → ∞, we only consider c > 1. First, from
algebra and taking the limit for d, n, we have that:

Bias = τ2(β⊤
∗ u)

2

((
αZ − αA

c

) c
√
d

d+ c

)2

→ 0, Data Noise = α̃2
Aτ

2∥β∗∥2,

Target Alignment = −2α̃Aτ
2

((
αZ − αA

c

)
(β⊤

∗ u)
2 + αA

∥β∗∥2

c

)
,

Variance = τ2α2
A

∥β∗∥2

c
+ τ2(β⊤

∗ u)
2 c

(c− 1)

(
αZ − αA

c

)2
+ τ2ε

(
1

c− 1

)
.

We now take c → ∞ and many terms vanish in this limit, yielding:

lim
c→∞

Rc = −2α̃AαZτ
2(β⊤

∗ u)
2+τ2(β⊤

∗ u)
2α2

Z+α̃2
Aτ

2∥β∗∥2 = τ2
[
(β⊤

∗ u)
2(α2

Z − 2α̃AαZ) + ∥β∗∥2α̃2
A

]
.

Proposition 3 (Non–existence of a canceling scale parameter). Let αA, αZ > 0 be fixed scalars, let
u,β∗ ∈ Rd be fixed vectors, and set

a := ∥β∗∥2 > 0, b :=
(
β⊤∗u

)2 ∈ [0, a].

For every positive real number ϕ define

f(ϕ) = α2
A a +

(
α2
Z

(
1 +

1

ϕ

)
− 2αZαA

)
b.

Then
f(ϕ) > 0 for all ϕ > 0.

Consequently the equation f(ϕ) = 0 has no solution with ϕ ∈ (0,∞).
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Proof. If b = 0 (i.e. β∗ is orthogonal to u) we have f(ϕ) = α2
Aa > 0, so no positive ϕ can cancel

the expression. Hence assume b > 0.

Writing r := b/a ∈ (0, 1] we obtain

f(ϕ) = a
[
α2
A + αZ(αZ − 2αA) r +

α2
Zr

ϕ

]
. (∗)

Since r ≤ 1,

α2
A + αZ(αZ − 2αA) r ≥ α2

A + αZ(αZ − 2αA) =
(
αA − αZ

)2 ≥ 0.

Thus the square bracket in (∗) is the sum of a non–negative term and a strictly positive term.
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