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ABSTRACT

This paper analyzes the generalization error of minimum-norm interpolating so-
lutions in linear regression using spiked covariance data models. The paper char-
acterizes how varying spike strengths and target-spike alignments can affect risk,
especially in overparameterized settings. The study presents an exact expression
for the generalization error, leading to a comprehensive classification of benign,
tempered, and catastrophic overfitting regimes based on spike strength, the as-
pect ratio ¢ = d/n (particularly as ¢ — ©0), and target alignment. Notably, in
well-specified aligned problems, increasing spike strength can surprisingly induce
catastrophic overfitting before achieving benign overfitting. The paper also reveals
that target-spike alignment is not always advantageous, identifying specific, some-
times counterintuitive, conditions for its benefit or detriment. Alignment with the
spike being detrimental is empirically demonstrated to persist in nonlinear models.

1 INTRODUCTION

Understanding the generalization error of overparameterized models is a central challenge in modern
machine learning. Phenomena such as double descent (Belkin et al.l 2019; Hastie et al.| [2022)
and benign overfitting Bartlett et al.| (2020); Mallinar et al.| (2022); Tsigler & Bartlett| (2023)) have
spurred research underscoring the critical role of the data’s spectral structure Bartlett et al.| (2020);
Dobriban & Wager (2018); |[Hastie et al.| (2022); Kausik et al.| (2024); Mei et al.| (2022); |Sonthalia &
Nadakuditi| (2023)); Tsigler & Bartlett| (2023); 'Wang et al.|(2024a). The spiked covariance model is
one commonly considered spectral structure |Couillet & Liao|(2022). In this model, the data matrix
X = Z + A € R¥*", comprising n data points in R? , is decomposed into a rank-one signal
component (“spike”) Z and an isotropic noise component (“bulk”) A. Spiked covariance models
emerge naturally in practice, for instance, in the features learned by neural networks during training
Sonthalia et al.| (2025)); [Ba et al.| (20225 2023)); IDamian et al.| (2022)); [Dandi et al.| (2024); Martin &
Mahoney| (2021)); Moniri et al.| (2023)); |[Wang et al.| (2024b). While recent studies have examined
benign overfitting in spiked models (Ba et al., 2023} |[Kausik et al., 2024), they lack a systematic
taxonomy spanning spike strength, target—spike alignment, model misspecification, and train—test
covariate shift. This paper closes the gap for linear regression.

This work explores how general spike sizes and target alignments affect generalization error in least
squares linear regression. We consider targets y generated by:

y=azBz+asBla+e

Here, z € R? represents the signal component, a € R corresponds to the bulk component, ¢ is
observation noise, and 8, € R, The coefficients oy and a4 model the target’s dependence on the
spike and bulk components, respectively. Notably, if «s4 # a7, the targets are non-linear functions
of x = z + a, introducing model mis-specification. We address two fundamental questions:

* Q1: For a fixed aspect ratio ¢ = d/n, in asympototic proportional regime under what conditions
does alignment of the target signal with the data spike improve or impair generalization?

* Q2: In the high-dimensional limit where ¢ — oo, when do we observe benign, tempered, or
catastrophic overfitting regimes?
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Contributions We present precise characterization of the generalization performance of minimum-
norm interpolating solutions in linear regression. Our exact risk decomposition pinpoints conditions
for transitions between benign and catastrophic overfitting. This reveals alignment-dependent phe-
nomena obscured by isotropic theories, clarifying how signal structure, data scaling, and overparame-
terization shape generalization. Our primary contributions are as follows:

* Precise Risk Characterization: We derive an exact generalization error decomposition (Theo-
rem E]) into interpretable bias, variance, data noise, and alignment terms.

* Comprehensive Categorization of Overfitting Regimes: We precisely classify benign, tempered,
or catastrophic overfitting regimes based on spike strength, overparameterization (¢ = d/n), and
target alignment (Table[I). Surprisingly, for well-specified aligned problems, increasing spike
strength can induce catastrophic overfitting before achieving benign overfitting. Misspecified
problems show distinct transitions, often precluding benign overfitting.

* Conditions for Beneficial Alignment: Challenging conventional wisdom, we show spike align-
ment is not always beneficial and depends on spike strength meeting critical thresholds (Table 2)).
For misspecified problems, beneficial alignment requires a7 /v 4 in a specific, non-trivial range.
Counterintuitively, very strong spike dependence (a7 /c4) can render alignment detrimental.

* Empirical Validation: E] Empirical validation confirms our theoretical phenomena, including
surprising negative alignment impacts, persist in nonlinear models, underscoring broader relevance.

Benign Overfitting in Linear Regression. Significant research has explored benign overfitting in
linear regression Bartlett et al.|(2020); (Cao et al.|(2021); (Chatterj1 & Long (2021); |Karhadkar et al.
(2024)); [Koehler et al.|(2021)); Liang & Rakhlin| (2020); [Mallinar et al.| (2022); Muthukumar et al.
(2020); Shamir| (2022)); [Tsigler & Bartlett|(2023); Wu & Xu|(2020). Many studies assume a uniformly
bounded largest covariance eigenvalue or lack precise characterizations of its interplay with target
alignment and generalization. Our work allows this eigenvalue to grow, offering precise performance
characterizations based on this growth and alignment. While |Kausik et al.| (2024) considers spiked
models, their focus is on noiseless, well-specified scenarios with specific spike scaling. Our analysis
is broader, encompassing observation noise, misspecification, and general spike scaling.

Many prior works(Karhadkar et al., 2024; Shamir, 2022; Tsigler & Bartlett, [2023) on benign overfit-
ting with low-rank signals plus isotropic noise require near-orthogonality between signal and noise,
sometimes imposing strong conditions like d = Q(n? log n). We instead consider the proportional
regime d/n — ¢ = ©(1), subsequently examining ¢ — oo. This setting is morally similar to allowing
d = w(n) and aligns with approaches like (Karhadkar et al.,[2024) which, for classification, shows
misclassification probability can be upper bounded by C'e=%™, vanishing as d /n — oo.

Generalization Error with Spiked Covariance. While recovering spike properties Sonthalia &
Nadakuditi| (2023)); [Kausik et al.| (2024); Nadakuditi| (2014); |Benaych-Georges & Nadakuditi| (2011}
2012) and analyzing generalization error in spiked models Ba et al.| (2022;|2023); Mousavi-Hosseini
et al.| (2023)); [Moniri et al.[(2023) are active research areas, existing analyses often characterize gener-
alization implicitly (e.g., via fixed-point equations) or focus on specific spike strengths/alignments.
In contrast, we provide explicit, generic formulae for generalization error, enabling precise catego-
rization of overfitting regimes and conditions for beneficial spike alignment.

Notation The subscript on o, O, w, €2, © will denote which quantity is being sent to infinity.

2 PROBLEM SETTING

We study the generalization of minimum-norm interpolators in high-dimensional linear regression.
Using a spiked covariance data model, we quantify how spike strength and alignment influence
generalization and the emergence of benign, tempered, or catastrophic overfitting.

Data Model. We consider a data matrix X = Z + A € RY*™ with signal component Z and isotropic
noise component A that satisfy the following assumptions. Specifically, we shall that the population
feature covariance is ¥ = #?uwu ' + 721, modeling a rank-one perturbation of isotropic noise.

Assumption 1 (Signal). Let u € R be a fixed unit vector representing the spike direction. Then

Z =6buv', (D

'Our code is available at the anonymous GitHub repository: [link
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Table 1: Asymptotic Generalization Regimes. This table summarizes conditions for when over-
fitting is benign, tempered, or catastrophic in the limit where d/n — ¢ and subsequently ¢ — oco.
The behavior depends on the spike scaling relative to the bulk, target alignment (3, relative to spike
direction w), and target specifications o 4, az (train) and & 4, &z (test). Here, 62 quantifies the scaled
spike strength and 72 the scaled bulk variance; the two primary scaling regimes are operator norm
based (92 = y72) and Frobenius norm based (§? = d72). The w, 0, O, © are all as we send ¢ — o0.

Scaling Benign Tempered Catastrophic
Well-Specified, No Covariate Shift: «y = a4 =az =az=a >0

0? = 72 v =we(c?), Bs || w All other cases 0c(c?) >y >w.(1), B L u
0% = dr? Bi |l u B u Never
Misspecified, No Covariate Shift: 4 = a4, a7 = az,a4 # oz

6% = 72 Never All other cases 0c(c?) >y >w.(1), B L u
0% = dr? Never Always Never

Misspecified with Covariate Shift: «4 # G4 or oy # az

az 7& dZa/G* ,K’U,,’y :Wc(l)

2 _ .2 or
0° =1 Never All other cases ay =z, 6. L u,
we(1) < v < ou(c?)
0% = dr? ay =Gz = &, All other cases az #agand B, L u
Spike Recovery: vy = a4 =0, az = dz (Appendix C)
0 = y7? 7% = oc(1) V7% = O(1) 7% = we(1)
0? = dr? 2 = 0.(1) 2 =0.01) Never

Table 2: Conditions for Beneficial Spike Alignment at Finite Aspect Ratios (c = d/n). This
table outlines the specific regions where alignment of the target signal with the data’s principal spike
direction improves generalization. Conditions depend on the problem setting (well-specified vs.
mis-specified), the spike scaling regime (operator or frobenius norm based), the overparameterization
level ¢ = d/n, and the relative dependence of the targets y on the spike versus the bulk vz /v 4.

Setting Alignment Beneficial Region
Well-Specified, Operator Norm v > c(e—2)
Well-Specified, Frobenius Norm c>1
Misspecified, No Covariate Shift, Operator Norm % < gi < % (%)

Misspecified, No Covariate Shift, Frobenius Norm

o=

oz _ 1
<aA<2 -

where 0 > 0 controls the spike strength, and the vector v € R" has i.i.d. standard normal entries.
Assumption 2 (Noise). The entries of A have zero mean and variance T2. The matrix A satisfies:

o Its entries are uncorrelated and possess finite fourth moments.
* [Its distribution is invariant under left and right orthogonal transformations.
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o The empirical spectral distribution of ﬁAA—r converges to the Marchenko—Pastur law as n,d —
oo with d/n — ¢ € (0, 00).

Spike Strength Normalizations. We consider two key scaling regimes for the spike strength relative
to the bulk noise. These lead to distinct generalization behaviors.

1) Operator Norm Scaling (%> = 72): Here + tunes the spike strength 62 relative to the noise
variance 72. When v = (1 + /¢)?, the spectral norm of the signal component Z is comparable
to that of the noise component A. If v > (1 + /c)?, the spike emerges as an isolated eigenvalue
beyond the bulk spectrum established by A, a phenomenon known as the Baik—Ben Arous—Péché
(BBP) transition (Baik et al., [2005)). This scaling reflects spikes in learned neural network features
(Ba et al.| 2022; Moniri et al., [2023)).

2) Frobenius Norm Scaling (> = dr?): Here 62 = dr? matches expected signal and noise
Frobenius norms (E[|| Z||%] = E[||A||%]) and the spike has macroscopic proportion of the energy.
Such strong signals can lead to improved sample complexity, potentially overcoming limitations
observed in purely isotropic models (Ba et al.,[2023; Mei et al.| 2022).

Target Model. Given x; = z; + a;, the targets y are obtained as follows:
yi = azz; B+ aaa; B + ¢, 2

where 3, € R? in uniformly distributed in the subspace {3 € S¥~! : 3Tu = fixed constant} is the
true underlying parameter vector. The terms z; and a; are the i-th columns of Z and A respectively.
The observation noise ¢; are i.i.d. with E[g;] = 0, E[e?] = 72. The coefficients a7z, a4 € R control
the target’s dependence on the signal and noise components. If az # a4, the true data generating
process for y differentially weights components of x;, causing model misspecification.

Generalization Risk. We study the minimum-norm interpolating ordinary least squares estimator:

Bint = X'y, with g = (24 a)Bins )

where Xt denotes the pseudoinverse. Given a new test data point (&, 4), where € = Z + @ and
targets § = iz 2! By + Gaa ' B, + € with potentially with different coefficients &, &4 and model
parameters 7, 7., the generalization risk is defined as the expected squared prediction error:

R(Bint) =Ex e (3.6 [0 — 9)°] =Exciaer [(¥— & Bint)’] - 4)

The expectation is over the training data (X, e) and the test data realization ({&,€}). We shall
denote the asymptotic excess risk in the proportional regime as follows:
Re = li R(Bint) — 72
© n,d—)oér,lrli/n—m (ﬁznt) Te

Remark 1 (Generalizing Prior Work). This problem formulation encompasses several existing
models as special cases. For instance, isotropic regression settings studied in |Hastie et al.| (2022)
are recovered by setting 0 = 0 (no spike) and oz = 0. Spike recovery models, such as in|Sonthalia
& Nadakuditi| (2023), correspond to specific choices like 7> = 1/d, 72 = 0, and ax = 0. Our
generalized setup allows for a nuanced investigation of the interplay between signal structure, target
alignment, and overparameterization.

Quantifying the Benefit of Alignment. A key aspect of our investigation is to determine when the
alignment of the true parameter vector 3, with the data’s principal spike direction w is beneficial
for generalization. We define alignment as beneficial if the generalization risk R(B;,:) (or R.), is
monotonically decreasing as a function of (3] u)? € [0, 1]. Conversely, alignment is detrimental if
the risk is a monotonically increasing function of (3, u)2.

Characterizing Overfitting Regimes. Following |Bartlett et al.| (2020); [Mallinar et al.|(2022), we
classify the asymptotic behavior of the excess risk, R . as ¢ — oo as benign, tempered or catastrophic.
We say the overfitting is benign if lim._, ., R, is zero, tempered if this limit is positive and finite,
catastrophic if this limit is infinite.

3 THEORETICAL RESULTS

Our core theoretical contribution is a precise analytical formula for excess risk in the spiked covariance
model. This result relies on Assumption [3] which encompasses both the operator norm scaling
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risk as ¢ — co. Anti-alignment yields tempered risk. results in tempered risk.

Figure 1: Excess error vs. overparameterization ratio ¢ = d/n in the well-specified case. Each plot
shows the risk for aligned and anti-aligned targets under different spike scaling regimes. The scatter
plots are empirically obtained and the lines are theory.

(6% = y72) and Frobenius norm scaling (62 = d7?) regimes. We develop our general risk theorem by
analyzing progressively complex scenarios. Specifically, our forthcoming theorems provide specific
conditions for benign, tempered, or catastrophic overfitting (as ¢ — o), and determine when, for
finite ¢, alignment of 3, with spike u is beneficial or detrimental.

Assumption 3 (Scaling). As n,d — co with d/n — ¢ € (0,00), we assume that 6> and 72 satisfy
Q(7?) < 6?2 <O0(dr?) and 7° = O(1).

3.1 WELL SPECIFIED PROBLEM

We begin by analyzing the well-specified case, where the target y is a direct linear function of the
observed covariates X = Z + A. This scenario is realized by setting:

az =ag =0z =0as =a > 0.
Consequently, y; = ax, B« + €;, and the model is properly specified.

Theorem 1 (Well-Specified Risk). Given data (X ,y) and (X ,4) generated according to As-
sumptions [I| (Signal), 2] (Noise), Equation 2| (Target Model), and Assumption [3] (Scaling). If the
well-specification condition ay = g = &z = &g = a > 0 holds, the asymptotic excess risk R is:

215 ife<1
Re = 9 1 9 9 1 9 T \2 02r2:2 292,20 g4 .
Te o1 + ot (1 - g) {Hﬁ*” + (ﬁ* u) W} ifc>1

where w is the unit vector defining the spike direction.

Remark 2. If 0% = y72 with v = o(1) (a regime not allowed by Assumptionbut useful for sanity
checks), the coefficient of (B3] w)? vanishes, the risk expression aligns with that of isotropic models,
such as in (Hastie et al., (2022 Theorem 1).

Operator Norm Scaling (02 = ~72). In this regime, the excess risk for ¢ > 1 becomes:

1 e — 2ve — 2 1
R, =a2r2(1- = 12 T,\2 2 .
= (1 2) (I 25 T ) e

1

The formula shows that alignment with the spike direction w is beneficial if and only if the coefficient
of (3] u)? is negative, which occurs when v > ¢(c — 2). We consider different scalings for .

Case 1: v = ©.(1) (constant with respect to c). The condition for beneficial alignment, v > ¢(c —2),
interacts intricately with the BBP phase transition condition, v > (1 + 1/c)2. Let ¢, ~ 4.212 be the
unique solution to c¢(c — 2) = (1 + /¢)? for ¢ > 1.
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e Forl < ¢ < c,: Here, c(c—2) < (1++/c)% If c(c—2) < v < (14 +/c)?, alignment is beneficial
even though the BBP transition has not occurred (the spike is not resolved from the bulk).

e For ¢ > c,: Here, c(c — 2) > (1 + +/c)?. For alignment to be beneficial (y > c(c — 2)), the
BBP transition must have occurred (as v > c¢(c —2) == 7 > (1 + /c)?). However, the BBP
transition occurring is not sufficient for beneficial alignment. If (1 + \/¢)? < v < c¢(c — 2), the
BBP transition occurs, yet alignment is detrimental.

Regarding the type of overfitting as ¢ — oo (while y remains constant):
lim R, = o? 7 (Hﬁ*HQ +'7(ﬁ;ru)2) .
c—00
Since this limit is a positive constant, we consistently observe tempered overfitting when v = 0.(1).

Case 2: v = w.(1) (~ grows with c). The behavior depends on the growth rate of 7 relative to c. The
limit of the excess risk for 3] u # 0 as ¢ — oo is:

00 if we.(1) < v < o0.(c?)
lim R. = a?7%- S [|B:]]” + (5 — (B u)* if v = ¢c? for const. ¢ > 0
c—o0 )

181 = (8] u)? if ¥ = we(c?)

Surprisingly, while v = ©.(1) gives tempered overfitting, increasing spike strength to w.(1) < v <
0c(c?) results in catastrophic overfitting, even though morally, this version of the problem has less
noise. Additionally, we see that this catastrophic overfitting is not present in the anti-aligned (3, u)
case. More, aligned with intuition, we see that further increasing the size of the spike improves
the generalization performance. Specifically, we get tempered overfitting if v = ¢c? and benign
overfitting if v = w.(c?), By || wand || B.|| = 1.

For v = ¢, the (B, u)? coefficient is (¢ — 3) /4. Thus, for 1 < ¢ < 3, alignment is beneficial and for

¢ > 3, alignment becomes detrimental. As ¢ — oo, if B, || u, the excess risk grows approximately
as 72 ¢(B, u)?, indicating catastrophic overfitting. In contrast, if 3, L w, the excess risk grows
like a272(1 — 1/c)||B.||?, leading to tempered overfitting. This transition is illustrated in Figure[la]

Frobenius Norm Scaling (0> = dr2). The excess risk for ¢ > 1 simplifies to:

Reon = r? (1= 1) (1817 - (8Twp?) + 72

c—1

We have a few observations. First, if 3, || w and || B«| = 1, the excess risk R.. tends to 0 as ¢ — oo
(benign overfitting). Second, if 3, is not perfectly aligned with u, R. — o272(||B.||>— (B} u)?) > 0
as ¢ — 0o (tempered overfitting). Finally, the coefficient of (3, u)? in the risk formula is negative.
Hence, in contrast with the operator norm regime, alignment is always beneficial in this regime for
¢ > 1, and we visualize these behaviors in Figure@

Takeaways for the Well-Specified Case. Spike scaling profoundly impacts overfitting, especially
with target alignment. For aligned targets, increasing spike strength can drive transitions from
tempered — catastrophic — tempered — benign overfitting, while anti-alignment (3, L u) can
mitigate catastrophic overfitting. Additionally, alignment with the spike is not always beneficial.

3.2  MISSPECIFIED CASE AND NO COVARIATE SHIFT

We next consider misspecified targets y with differing dependence on spike Z and noise A feature

components. Specifically, we assume az # a4 but introduce no covariate shift between training

and test distributions, i.e., &z = az and &4 = 4. This scenario models situations where intrinsic

feature properties lead to differential correlations with the target, a common occurrence in practice.
[e]

For notational convenience, we define A, := az — 4 with A1 := az — aa.

Theorem 2 (Misspecified). Let Z, Z satisfy Assumption|l| A, A satisfy Assumption |2|and y,y
according to Equation Q). If Assumption[3lholds with az = Gz, as = G4, then

2 ¢ 23T, \2 A7 02
Te l—c+T ('8* ’LL) 1—1c 02+72 c<l1

R =

2 2 2 2
2kt + A B2 (L - 1) + 72 (BT u)? A2 ot [ 5 Gm —2%2] o> 1
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(a) Under operator norm scaling (§> = ¢7?) with  (b) Under Frobenius norm scaling (§ = V/dr) with
az =1, aa = 2, alignment initially improves gener- a4 = 1 and az = 1.1, alignment remains better than
alization for small ¢, but becomes harmful beyond a  anti-alignment across all ¢, but benign overfitting is
critical point, leading to catastrophic overfitting. not achieved unless az = aa.

Figure 2: Transition from beneficial to harmful alignment under mild misspecification. The scatter
plots are empirically obtained and the lines are theory.

A key observation is that misspecification (a7 # a:4) can itself induce double descent, even if 72 = 0.
This contrasts with the well-specified case where, if 7'52 = 0, double descent is absent. However, in
the misspecified case, we do not observe double descent if there is no alignment 3, u = 0.

Equal Operator Norm Case. For §2 = y72, the excess risk is

A2
n_ 72(8,) u)? o ﬁ +2752 T c<1
72 (Bl u)?A? [(gjg j) - 2%] +3 B (1) + 2L e>1

For ¢ < 1, the spike is detrimental. For ¢ > 1, the behavior depends on «vz /a 4. In particular, if
1_oaz 1 <302'y+2072c>’
(¢ +7)
then we have that the coefficient in front of (3, u)? is negative. Thus, when a7 /a4 lies between
these thresholds, the spike helps, but the spike is harmful outside this range. As ¢ — 0o, if ¥ = 0.(c?),

the beneficial region shrinks and alignment increasingly harms generalization. On the other hand,
if the spike is big enough (7 = w.(c?)), we have that the beneficial region limits to 0 < g—i <2

Figuresandplot the coefficient of (3, u)? for ¢ = 2 and ¢ = 20 for y = c.

The upper bound on beneficial a7 /cv4 is surprising, as stronger target dependence on the spike might
be expected to always favor alignment. Additionally, the dependence on the level of overparame-
terization c also offers new insights. Consider the example of v = ¢, and az /a4 = 2. Then when
c < 2orc> (94 /57)/2, we have that the ratio is outside the beneficial region. Figure shows
that in the beneficial region, the aligned risk is lower than the anti-aligned risk. However, outside the
beneficial region, the aligned risk becomes strictly larger than the anti-aligned counterpart.

c T agp c

Next, in terms of benign vs. tempered vs. catastrophic overfitting, we have that

7 [yaZ (Bl w)® + a1 B:I°] B L,y =6c(1)

o B L (1) <7 < 0,(c?)
Jim Re =72 (3812 + (f (14 1) = 20z04) (BTw?| 8. L,y =oc

T2 (04 1B:? + (0F — 2az04) (B, u)?) B L,y = we(c?)

a5 72 Bx|? B, Lu

For B. [ u, if w.(1) <~ < o.(c?) we have catastrophic overfitting. If v = ©.(c?), overfitting is
tempered, with benign overfitting precluded (Appendix Proposition . If v = w.(c?), overfitting is
again tempered with benign requiring returning to the well-specified case (avgy = az).
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Figure 3: Phase boundaries for spike alignment impact. Coefficient of (3, u)? as a function of
a7 [, indicating whether alignment improves or harms generalization.

Equal Frobenius Norm Case. For 62 = dr?, the excess risk becomes:
2

1 c a2 QA 7
_ 2 2(1_12 Tu)2 Eacih R - —= <
Res1 = a8 (1 c) + (B, u) L_l (az c ) 204 (az c )} teoT

1 1
For ¢ > 1, the beneficial region for the ratio cvy /4 is defined by: — < &z < 2 — —. The beneficial
c T agp c

region expands with ¢, making alignment increasingly beneficial in extreme overparameterization
(Figure 3c). Beneficial alignment can also be seen in Figure[2b] Here /s = 1.1, which is in the
beneficial region for ¢ > 10/9. Finally, the overfitting is tempered unless a4 = .

3.3 MISSPECIFIED TARGET AND COVARIATE SHIFT

Lastly, in addition to misspecifation, we also have covariate shift between train and test. Specifically,
oy # Gz or ay # &g, hence we have the spike/noise importance differ between train and test. For
the equal operator norm case, we show the following.

Theorem 3. Given data Z, Z that satisfy Assumption|l} A, A that satisfy AssumptionEland Y,y
according to Equation (2). If Assumption [3| holds, catastrophic overfitting occurs if &z = az,
B Y u, and w.(1) < v < o.(c?). Additionally, if 6z # az withy = w.(1) and B, L u we get
catastrophic overfitting. Other scenarios yield tempered overfitting.

Different covariate shifts pose varying challenges. In particular, if ay # &z, (target’s spike
dependence shifts), then catastrophic overfitting becomes unavoidable for sufficiently large spikes.
This contradicts the earlier theoretical intuition, as increasing the spike size in this setting actually
induces catastrophic overfitting instead of mitigating it.

Equal Frobenius Norm. In this case, we have the following theorem.
Theorem 4. Let Z,Z satisfy Assumption |l| A, A satisfy Assumption El and y,y according to
Equation @). If Assumption[3|holds and auz # ¢z then R. = oo forall ¢ # 1. For az = éiz:

lim R. =72 [(8, u)*(ag — 2aaaz) + ||B: %63 ] .
c— 00

If ay # dz, catastrophic overfitting occurs. When 3, and u are parallel, we have that 72 || B, ||? (a7 —
& 4)2. This is benign if and only if a7 = & 4. Notably, if training data is misspecified (aa # az)
but test data is well-specified and matches the training spike dependence (avz = az = & 4), benign
overfitting becomes achievable.

3.4 GENERAL THEOREM

Prior results are special cases of our main theorem (Theorem[3). Its full form is complex (Appendix D).
We present a high-level decomposition here.
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(a) az = 0.1, alignment helps. (b) az = 1, mixed behavior. (¢) az = 4, alignment hurts.

Figure 4: Alignment-phase transitions persist in deep networks. Generalization error vs. angle
between spike direction u and ground-truth parameter 3, when fitting data with a 3-layer ReLU
networks. The effect of alignment switches as oz increases, consistent with the phase transitions
predicted by our theory. Experimental details are in Appendix@

Theorem 5 (Generalization Risk). Suppose Assumption[l} Assumption[2] and Assumption 3| hold.

- ~ 12 ~ 12 ~ 112 -~
R=FE H&Zﬁjz _ ﬁ;nZHF+72 HﬁiT,LtAHF rad ‘ 5IAHF n (—2&AﬁjAATﬁm)

Bias Variance Data Noise Target Alignment

* Bias. This is the squared error between the learned predictor 3;,; and the true parameter 3,
projected onto the spike direction u. In particular, the risk penalizes discrepancies only along the
top eigen-direction of the population covariance ¥, reflecting the anistropic influence of the spike.

e Variance. The variance is equivalent to 72||B;,¢||2. This mirrors classical isotropic regression
results (Hastie et al.,2022; Bartlett et al., 2020), but the norm || 3;,,¢ ||? itself is dependent upon the
interaction between signal and noise, the alignment between 3, and u, and the scaling parameters.

» Data Noise. The data noise term quantifies the contribution of the noise matrix A to the target
outputs y; through a 4. Even in the absence of observation noise (72 = 0), target corruption via
data noise can create an irreducible error floor.

» Target Alignment. The alignment term measures the inner product between 3;,: and 3, with
respect to the sample noise covariance. This cross-term captures how mismatch between 3;,; and
B, especially when mediated by A, can amplify or dampen generalization error.

3.5 EXTENSION: NONLINEAR MODELS ALSO EXHIBIT ALIGNMENT PHASE TRANSITIONS

While our theoretical focus is on linear regression, key phenomena like vz dependent non-monotonic
alignment effects appear in nonlinear models as well. We test this by training 3-layer ReLU networks
to predict y (Equation (2)) given X, where we vary the alignment angle between spike w and 3,
and record the generalization error. Figure [, shows our results for three a7 values. For az = 0.1,
increasing alignment with the spike is detrimental. For oz = 1, alignment is beneficial, while for
az = 10, alignment is detrimental again. This mirrors our theoretical findings that there is a region
for beneficial alignment and a nuanced phase transition for different o values.

4 CONCLUSION

This work provided a precise analytical characterization of the generalization error for minimum-norm
interpolators in spiked covariance models. We decomposed the risk into interpretable components
and comprehensively classified overfitting regimes based on spike strength, target alignment, and
overparameterization. We reveal surprising phenomena, such as the potential for increasing spike
strength to induce catastrophic overfitting before benign overfitting in well-specified aligned problems,
and that strong target-spike alignment is not universally beneficial, especially under model misspecifi-
cation. These alignment-dependent phase transitions, theoretically derived for linear models, were
also empirically observed in nonlinear neural networks, suggesting broader relevance. Our results
offer a more nuanced understanding of generalization in the presence of data anisotropy, challenging
conventional intuitions and providing a detailed map of risk behaviors in overparameterized settings.
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A NOTATION

Symbol Description / Role Typical scaling / range First used
d, n Data dimension and sample size d,n — oo with ¢ = d/n  Sec.2
fixed
c Aspect ratio d/n (0, 00) Sec. 2
72/d  Noise variance in ambient bulk A ™ =0(1) Sec. 2
0? Spike (signal) variance 6% = ~v72 (operator-norm) Sec. 2
or 02 = dr? (Frobenius)
v Spike-to-noise ratio v = 6 /77 (effective out- [0, 00); critical liney = (14  Sec. 2
lier eigenvalue) Ve)?
az,aa  Coeffs. weighting spike vs. bulk in targets y o(1) Eq. (2)
Gz, &a  Same coefficients for zest data (covariate shift) ©O(1) Sec. 3
B True parameter vector IB«]l2 =1 Sec. 2
u Spike direction in data covariance lulla =1 Sec.2
A, Z  Bulk noise matrix, rank-one signal matrix Ay ~ N(0,72/d), Z = Sec.2
fuv’
e, 12 Label noise and its variance D, NV (0, 72) Sec. 2

Table 3: Glossary of recurrent parameters and symbols. All ©(1) constants are independent of 7, d.

Other Notations. We use lowercase a, lowercase bold a, and uppercase bold A letters to denote
scalars, vectors, and matrices respectively. We use || - ||2 to denote the Euclidean norm if the argument
is a vector and the operator norm if the argument is a matrix. We use || - || 7 to denote the Frobenius
norm. When slicing one entry from a vector or matrix, we use both a;, A;; and a;, A;;, where the
latter intends to emphasize the source of the scalar.

B NON-LINEAR EXPERIMENT

We used 500 data points in 750 dimensional space, with a hidden width of 1000. We used full batch
gradient descent for 100 epochs with a learning rate of le-4. Each data point is averaged over 50
trials. Equal Frobenius norm scaling was used for the size of the spike.

C SPIKE RECOVERY CASE

We consider the special case where the goal is to recover the spike direction u. In this setting, the
target y depends only on the spike component Z, with no contribution from the noise A:

ap=as =0, ay =az =a>0.
Thus, the target y is proportional to the signal Z plus possible observation noise €.

Equal Operator Norm In this regime, we have that the risk is

a2 c clce +v)ar, T
Recr = 1927 (g7 y)? 2 Ry = 2T T2

= + T;
(1-0¢)(v+1) 1—c¢ (c—1D)(v+¢)? c—1°
Here again, we see that when v = ©.(1), we have tempered overfitting and w.(1) < v < oc(c2), we
have catastrophic overfitting and for v = Q.(c?) we get tempered overfitting again.

Equal Frobenius Norm. In this regime, we have that

alr? c ca?t? 1
Reci = 2 (BTup + =52 Rewy = 2 (BTu) + ——12,
This generalizes the spike recovery setting studied in [Sonthalia & Nadakuditi| (2023)), which assumed
noiseless targets (7. = 0) and the equal Frobenius norm scaling. Our formula allows for observation
noise and thus captures the more realistic case where the target y itself contains randomness not
aligned with the spike. Here we see that we have tempered overfitting unless 72 = o(1), which is the
case considered in|Sonthalia & Nadakuditi (2023)).
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D PROOF OF THEOREM

Theorem 5 (Generalization Risk). Suppose Assumption[l| Assumption 2} and Assumption 3| hold.

- ~ 112 ~ 112 ~ 12 ~ o~
R=E ||a.8]2 - Bl 2|, +*||Bl.A| +a% |8l A| +(-2048T AATB,.)

Bias Variance Data Noise Target Alignment

In particular, as n, d — oo with d/n — ¢ € (0, 00), we have the following expressions for each term.

Bias: For ¢ < 1, we have that the bias term is

2 2
- 1
2 8Tw? (6, — _ T 2_¢
[(5* u) az —az+ (aZ O‘A) + 02 + 72 +72 1—c d(92 + 7-2)
If ¢ > 1, we that the bias term is
2 2 2 2. 2 2 2
5 ~ -1 6°r°c c 0°+7
287w (&, — ( _ aA) TC 02 | a2 [18:]]° ¢ 2
Bru)™ |6z —az+(az c/ 02+ 12¢ + YAy ¢ (024 72¢)? R c—1n(0%+ 72¢)?

Variance: For ¢ < 1, we have that the variance term is
1 6*+ 6%
2 ~2 2 | ~2/9T,\2
QT |BsI” + 77(B, ) L P
, 72 [ ¢ 62 c
t7e 5 g2 2 :
2 |l—c d#?*+71%)1-c
For ¢ > 1, we have that the variance term is
2 2 2 2 2
g2 (@ _ Qa7 N\ sagr e Gi( _%)
sl ( c d 92+72c> + 78w (c—1)62+72¢ @z
072 1 62 c
+7E 5 T o2 2 :
T2 \c—1 d(0?>+72%2¢)c—1

Data Noise: For all ¢, we have that

92
(az — aA)2 + 2a4(ay — aA)W}

aA7?18.1%.
Target Alignment: For ¢ < 1, we have that the alignment term is
2
For ¢ > 1, we have that the alignment term is

~ =2 QA 9* T,\2 2 (1 1 0°
27 (00 =) gz BT+ alB (L~ G o))

—2a,72 ((az — ) (B)u)® + OéA||ﬂ*|2) :

Error terms: The largest error terms for all ¢ are:

o(1)+ O (;) = o(1).

Remark: We note that the above theorem is very general and captures all of the theorems in the main
text as special cases. It is worth noting that the theorem also incorporates different signal and bulk

strengths for test data, namely for 6 and 7.

The proof will be broken up into roughly 6 steps

1. Rescale the problem To apply standard results we rescale the problem. Section

2. Decompose the error into four terms. We shall refer to these terms as the 1) bias, 2)
variance, 3) data noise, and 4) target alignment. Section
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3. Simplify the expressions. We shall then use the result from |Meyer| (1973) to simplify the
expression for each of the four terms. In particular, we shall express each term as the product
of dependent functions of the eigenvalues of X . Section

4. Random matrix theory estimate. We then use standard results from random matrix theory
such as Marchenko & Pastur| (1967); Bai & Zhou! (2008); Baik & Silverstein| (2006) to
obtain a closed-form formula of the building blocks for the risk. Section[D.4]

5. Bound Products. We then show that products of our building blocks concentrate. Step 4
(Section[D.3) then collects the final terms.

6. Undo Scaling Step 5 (Section[D.6) gives us back the correct scaling.

Section [E] has some generic probability lemmas that we need.

D.1 STEP 0: RESCALING

In order to better align with existing results and use them accordingly, we change our scalings for
now and switch back after our derivation. That is, we divide everything by v/d. Hence, we shall use

0wl w
Vd Vd w]
as the spike. We shall let
2 o lwll w’
n =40 and v:=-—
d [[w]

Here, we treat v as fixed unit norm vector and our spike is

Z, = nuv?’
The A noise after dividing by v/d is
-
A, = —N
Vd

where N are mean zero variance 1 entries. Here the appendix, we shall use the letter p for 7. Finally
let
X, =Z .+ A,

We can note that 3;,,¢, is still the solution to

2

Hf/ja —BTX,|| , where % =8/(Z.+A,)+ %.
We define
%— Er N(O,:‘f), T2 —%2
Then when we want to test, we shall look at the rescaled error
267022+ asAn) - BLu2+ A

Through Steps 1 - 4, we shall drop the subscript r.

D.2 STEP 1: DECOMPOSE ERROR

Using the fact that A has been zero entries and is independent of Z, we see that we can decompose the
error as follows. Again here we consider 7 samples of test data and take the average (in expectation,
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this is the same as one test point).

1 . ~ ~ 2
B\ |67(a.2 +aad) - 61,2 + A)HF]
' )
=s[3en72- 0.2, +5 7 |uar -4l
1 =12 1 A
=E % azBIZ - IB;tZHF—’_ 7 ‘ zntAH + = CVA Hﬁ:AH <_ax4ﬂ* AATB"“)
I Bias Variance Data Noise Target Alignment

We compute these four terms one by one in the following sections.

D.3 STEP 2: SIMPLIFYING TERMS

This section simplifies the four terms. We begin by recalling results from prior work. We state them
here for completeness.

Theorem 6 (Theorems 3, 5 of Meyer (1973)). Define the following helper functions h = v AT,
k=Alut=v"(I-ATA), {=1+nwTAMu, s = (I — AANu, 1 = n?|t|?|k|? + &%
v2 = 0?(|s|*[|h]|* + & and

2| k12 tl12
IR S RS
§ £
2 2 hll2
p2:777 |£3|| AThT*T]k), q;n|£” STih7

Then we have that
T 04T T AT _ £ T
(Z+A)T: A—l—gtkA ~Pid; c<1
AT—i—gAThTsT—f—ngq;, c>1

The following subsections - Bias[D.3.1] Variance[D.3.2} Data Noise[D.3.3] and Target Alignment
- present the linear algebraic simplifications of the results. To derive this results. We shall need some
helper results that are presented in Section[D.3.3]

D.3.1 BIAS

Using Lemma[5] we have that if ¢ < 1
T 5 7—la, — < _ T, N8 T T
6.8 Z - BuZ = |az —az+ =(az —aa)| B/ Z+ e p1v
M nmn
andifc > 1

2 ~
- ~ S ~ -
aZﬂTZ ﬂmt = ,6';'— [(az —az) I+ é(ozZI — aAAAT)} Z—aAnHWl ﬂ:hTuTZ—&—%%sTpgvT.

Y2

The bias equals the expected squared norm of this term (divided by n).

D.3.2 VARIANCE

Lemma 8] gives us that

1
E[‘
n

?20@ T f T T2d gt i T AT
mtAH =Bl Z2(Z+ ANz + AT ZB. + —ABIA(Z + A)(Z + A)TATB,

— i8] z(z+ AN (Z+A)TTATB, + %QJ(Z + A (Z+A) e

272 ozAaz
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D.3.3 DATA NOISE

The data noise term is the simplest to understand. Preliminary calculation gives us:
1 2 5[2 ﬁ2ﬁ d2 52
T~ E; H TAH :TAi *2:147 *2'
Loy 0T = A e = AT s
D.3.4 TARGET ALIGNMENT

To understand this term, we first note that A is independent of everything else. Hence we replace
~ o~ ~2 ~
AAT with its expectation 21

B [-2au8] A4 S| = 2000401 B = -4 5 B
Since € has mean-zero entries that are independent of everything else. We see that
E. [B] 8] =E.[B] (0812 +eN)(Z+ A +auplAZ+ AN )
=B (B Z(Z + A) —auB] AZ + A)') ©)
=Bl (Z+A)TZTB. +aspl(Z+A)TATB.. ™

D.3.5 HELPER LEMMAS
Proposition 1 (Proposition 2 from [Sonthalia & Nadakuditi| (2023)). In the setting from Section 2]

775uh_|_ n HtH k:TAT c<1
né h_|_77|\h|\ us ' e>1

Z(Z+ A = {

Lemma 1. If¢ # 0 and A has full rank, we have:

~ K eTpo! c<1
eT(z+A)Z={ m= P .
— e P >

Proof. After substitutions, Propositionlimplies that for ¢ < 1, €' (Z + A)' Z becomes:

2 ~
T (AT+2tTkTAT_ fpl( 77||§|| ET AT )) VA

71

— e’ (ATufF T gtTkTATufz £ ( ””z” kT Al u> fﬁ) by Z = fjud .
"

Since k = Atuwand hu = v Aty = &1 1 , we then have that
t 2
7T (Afufﬁ n gtTkTATuf;T - §p1 (—77|§|kTATu - hu) fF)
1

2 QHI1211 1112 1 £2
eT (ko™ + 77||"3H MEN e fpl (77 £ %] + € f) f)T>
" &n

k: 2 1 -
el (k,bT 77|| I TR 75T 4+ “m (’Yl f) ,BT)
71 n
k 2 1
ET( (77 %]l tT+nk> 6T+np1,5T_nfplﬁT>

T( ﬂ10v + 1pio —ngplvT)
7 n my

Il
Al

_ Lgs'rplf,f

nm

For ¢ > 1, we note that the calculation is exactly the same. An example of such a calculation can be
seen in the proof of Lemma] O
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Lemma 2. In the setting of Section |2} we have:
I 2uh Ty T AT, c<1

T
AZ+4) = {AAT 4 2EpTsT — sl pTh — IRIE g AtyysT — 2 AATuh, > 1
V2 V2 Y2 Y2 ’

Proof. Forc < 1, Z, A are d x n with d < n. Since A is assumed to have full rank, Z + A has full
rank with probability 1, and hence

(Z+A)(Z+A) =1
Thus, from Proposition|[T]

2 2
AZ+A) = (Z+ A Z+ A —2(Z+A) =1 "uh - ’7L“”ukTAT.
a! 1

For ¢ > 1, since (Z 4+ A)(Z + A)' is no longer the identity matrix, we directly expand using
Theorem [6F

AZ+A)f=A (ATJrnAThTsT (” Vs 4o k> (””h”2 +h>>
& V2 3 §

2 2 2
— AAT ¢+ gAAThTsT _ L (77 |!£s” AATRT + nAATu) (”'?” sT+ h) .
Y2

Noting that AAThT = AATATTv = ATTv = hT, we have

2 2 2
Y2

_oaat g Dt - ISPIRIE v o Pl ’72||hH2AATusT ~ " A Atuh.
3 £2 72 V2 V2
We can combine the coefficients in front of b " s T to get
n _ wllslPlRI® _ n@m?[Is|PllRl® + &%) — n*IsI?hl® _ g
§ §72 §72 Y2
The statement follows from here. O]

Lemma 3. If¢ # 0 and A has full rank, we have:

_£\3T7
-2 B.Z c<l1

1Z2(Z+A)Z = B .
B 2 ) BlZ c>1

Proof. Using Propositionfor c<land Z = flud ", we have that

BIZ(Z+A)Z=p] (”5 hy TIHE kTAT)

g1
2 t 2
Nﬁ* (775 ~T+77 2] ukTATu,ET)
"
2 t 2
=708 (nguvTAT Tt 77uk:TATuf)T> .
!

Note ¢ — 1 =nv' ATu, kATu = k" k = ||k||>. The above equation becomes
-1 2 t 2 k 2 -1 2 t 2 k 2 B
ﬁﬂ;r(ﬁ(f ) IEIEIE )uﬁT:ﬂj(g(f I Ul L] )ZT

Al Al ga! Al

Using 71 = n?||t||?||k||? + &2 to combine the coefficients, we have that

§€-1) n PPkl =€+ +n?ItPlIkI? - —€+n &
Al Al it 71 71
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This completes the proof for ¢ < 1. Similarly, for ¢ > 1, we obtain

BIZ(Z+ A Z =] (’75 WusT)Z
2

_ g7 <n€uhu L ’lh
72

2 h 2
~ﬂT (775 vl Atus T + n° |kl usTu,BT>.
V2
Note £ — 1 =nv " ATu, s"u = ||s||2. The above equation becomes
_ -1 2sIPIR)2Y -1 2IsIPIR)*N 4
nﬁf(g(g ) nlslZllA] )uszﬂ;r(f(f ) lslllA] )ZT
Y2 Y2 Y2 Y2
Using 72 = 1?||s|?||h||? + &2 to combine the coefficients, we have that

2
H —Uus ’U/UT>

§e=1)  wlslPIpl® _ £+ & +?ItPIkI® _ €+ €&
Y2 Y2 Y2 Y2 72
The target expression follows. O
Lemma 4. If€ # 0 and A has full rank, we have:
ﬂ* c < 1

T A
B.AZ+A)Z= {77|3| BIRTuTZ + £ ,BIAATZ e>1"

Proof. We begin with ¢ < 1. Since A is assumed to have full rank, Z + A has full column rank with
probability 1, and hence
(Z+A)(Z+A) =1
It follows from Lemma[3] that
BIAZ+AZ=B](Z+A)(Z+A)'Z-8]2z+A)Z

iz (1-2)prz=2plz
a1 st

For ¢ > 1, Z + A now has full row rank instead of full column rank. Hence, we do not have
(Z + A)(Z + A)! = I and need to directly expand it using Theorem@and its helper variables:

TA(Z+A)Z=p8]A (AT + gAThTsT — 52192(1;) Z
2
=B A (kf;T + ’MSHAThTﬁT - gpquuf:T)
Y
2
£ py (HBE - h) )
2
<n|s|| 2 | €= 1) )
n
h 2 2
(77 (Bl || +¢ 5) {;)
.

=iB] A -

=iB] A -

!

=iB] A -

G

/\/—\/—\/—\

=768 A

3
N
Q
+

£ (259)9)

1
= ﬂﬁIA <—p21f + —p2v — ip UT)
n n Y2
/S

=——B] Ap>v
2

2
= U3 ﬁ* <77 Hf sl h' + Ak:) by plugging in the expression of po
72

= mg;jhﬁf + S BTAATZ byiko! = Aljus’ = Al Z.
Y2 2

r—'dM—‘dM—‘dM—‘dM—‘
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T

Noting that 3 hT is a scalar, we then introduce 1 = u "u and get that

~ 2 2
1777”3” ,B;rhTuT’u,f)T — TIHS” ,G*ThT'U/TZ Since ﬁ’u,’f)T - Z.
Y2 V2
Thus, the final expression is

nlls* 3

V2

2 BhTu"Z + 5TAATZ

Lemma 5 (Bias Term). In the setting of Section |2} we have that if ¢ < 1,
T > _ A & _ T, N8 T T
azﬁ Z /ant - OéZ OéZ + (O‘Z O[A) 5* Z + S plv k)
! nmn
and ifc > 1,

~ 2
éh(ozZI—cuAAAT)} Z—aAnlzl ,BThT TZ—&-n 3 sTpgfiT.

azﬁ* Z 61ntz = /8;'— |:(dZ - aZ)I+ Yo

Proof. To simplify the bias term, we first need the following expansion:
0.0, Z ~ Bl Z = 6.8/ Z — (B (= Z + auA) +eT)(Z + A)'Z
=a.B]Z 0.8/ Z(Z+A) —auB]AZ+A)Z-"(Z2+A)Z.

From Lemmas' I l we get simplified expressions fore ' (Z+A)1Z, 8] A(Z+A)'Z, 8] Z(Z +
A)T and plug them in. For ¢ < 1, we get

azBl Z — az (1 - 5) Bz Aéﬂjz + Q,YEETPWT
1
= {&Z —ag + £(az - aA)} ﬁTZ—f— 7 5 e'pio.
§a! nmn
On the other hand, for ¢ > 1, we have
2 B B ~
azBlZ — oy < 5) BlZ —ay [77”8”ﬂ;rhTuTZ + £ﬁjAATZ + Qieszfﬁ
72 Y2 n72

a7 ia, _ Eor O 11 % e P L e
=03, |(az aZ)I+fy(aZI QpAAY) | Z —ay B.h' u Z+n7€p2v.
2 2

Y2
O]
Lemma 6 (Squared Norms of p; and ps). Recall p1 = —"2”57’““25 —nk and py = —@ATh —
nk.
21112
n’| k|
1. ||Pl||2 = T

4 s 4 3 s 2
2. ||p2||2 _n !2H hATTATRT + 2n ! I ETATRT +772Hk||2'

Proof. For p;, we have
2 2 2 2 2 2 2
n-lk n-lk n-lk n’|k
Hp1||2 — (_ ||§ H t _nk> (_ ||§ H tT _ nkT) _ < ||§ H ) ||t||2 4yt NI E || tk+772||kH2.

Using tk = 0 yields the first result, which we can further simplify as

n*[k]* il L

e (* [k l1£l1* + €%) = e
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For po, similarly, we have

2 s 2 S 2

4 4 3 2
sy a4 4t 200l
=g hATlATR 4 =

kTATRT + % (|K|%
Lemma 7 (Squared Norms of q; and q»). Let q] = —"“54”2I<:TAT —hand q] = —”‘ELHQST —h.

20|t

o Pt s e T At T 2
1 el :Tk ATAT R+ 20T ATRT 4 )2,

2. |lgolf? = 25,

Proof. Similar to Lemma[6] we directly expand the two terms:

2 4
gu|l® = (_U”g” kT Al —h) ( 77||§|| AR hT) n gt” ETATATTE + 77|| |12 2T T ATRT 4 |12,

h|? h|? h 2
lgal? = (_77|||3T _ h) (_77| [ hT) Il +|R|? sincehs =0

€ € €
_ PR ]s)? + €%)
52
_ A
e

Lemma 8 (Preliminary Expansion of Variance). In the setting of Section[2] we have

1
E[’
n

~2 2
T Oy

BIA(Z+ A (Z+A)TATS,

~2a2
mtAH } { T%pl2(Z+A)(Z+A) 28, +

272 ozAaZ

~2
+ LAY BT 22+ AN Z+ A)TTATS, + %ET(Z+A)T(Z+A)”€

Proof. Since Ais independent of the other terms, we replace AAT with its expectation %ZT&I .

1
E { ’

n
We now plug in the expression for 3;,,;. Since € is a zero-mean vector and independent from other
random variables, terms with only one € have zero expectation. A straightforward expansion gives:

1727

~2
Rl | =B | 28R AAT B | = £ 7B [BLu80] = TE (181l

%W* (:Z + anA) + e )(Z + A (Z+A)T(B] (0.2 + asA) +e7)".

~2
T 12
d ||/61’nt||F
After eliminating zero expectations as above, the expectation becomes:
72 2 72l or T 1T 72l o1 1 TT AT
E| —lBintllp| =E|—=B. Z(Z+A)(Z + A)" ZB. + —=P, A(Z+ A)(Z+A) A B,
272 oonzZ

~2
4L A BT 2 (2 + AN Z+ A)TTATS, + %ET(Z+A)T(Z+A)”5

O
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D.4 STEP 3: RANDOM MATRIX THEORY ESTIMATES
To do the estimates we recall the set up. In particular, we have that

Z =nuv', wheref = L and lv|| =1,

N

2
Aij=N (07 pd>

Recall the following definition h = v AT, k = Afu, t = v" (I — ATA), ¢ = 1 +nv' Afu,
s=(I—AAu, v = ?[[t]?||k]|* + &%, 72 = n?[|s?[| R[> + £ and

and the entries of

2 k 2 t 2
-, o7 = I e

2 2 h 2
o= 00 i g af =1L,

To show that each of the four terms, bias, variance, data noise, and target alignment concentrate in
the limit, we do this in two steps.

(a) First, we compute the mean and variance for basic building blocks such as ||k and other
variables. Section[D.4.1]

(b) Second, we provide bounds on the higher moments. Section
(c) Next, we prove bounds on the moments of 7;. Section[D.4.3]

D.4.1 STEP 3(A): SHOWING THAT BASIC BUILDING BLOCKS CONCENTRATE

We begin by bounding the mean and variance.

Lemma 9 (Generalized version of Lemma 7 from[Sonthalia & Nadakuditi| (2023)). Suppose A;; have
mean 0 and variance p2 /d, the entries are uncorrelated, have finite fourth moment, the distribution is
invariant under left and right orthogonal transformation and the empirical spectral distribution of
p%AAT converges to the Marchenko-Pastur law. Additionally, if w and v are fixed unit norm vectors.

c<1 1 9 1
e 1 +o (,02) and Var(||h]|*) = O (p‘%) .

Then we have that

E[]|hI*) {

m"" m"—‘

2. E[||k|?] = ;121 ° 4o (pl ) and Var(||k|)?) = (pin) .

3 E[ls|?) = 1- % and Var(||s]?) = O (;) .

4 E[Jt)2] = 1 — ¢ and Var(|¢]?) = O (;) .

[ oo () o)

o " ﬁ SRRy e R (maxalz,d)p?) =5t (M)

andVar( > 0 (o)

Note that here max(d,n), d, n are interchangeable in the variance big-Oh terms since they only
differ by an absolute constant c. We include the details for completion.
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Proof. Items 1 — 5 come from the original statement, which assumes unit variance. Here our variance
parameter p simply induces a multiplicative change. We now focus on item 6.

Let( =¢/n=1/n+v" Afu. With A = UEVT (SVD) A € R™™ having i.i.d. N(0,p 4d
entries, and u, v fixed unit vectors, we have { = = +Zl 19 b ;a;, where r = min(d, n), a =
b = U " are uniformly random on S"~! and S i1 respectlvely since U, V are random rotations.

Since A has zero-mean entries, only the non-cross terms remain in the expectation, and the fourth
moment is

E[¢Y] = = + —ZE [O_Z } [bibj|Elaia;] + Y E {1} E[bib;bibi]Elaiajara).

0,0;0L0
ikt LOTOITRAL

1,

Furthermore, non-zero expectation terms require paired indices (since odd moments of the uniformly
random vector on the sphere equals 0). In particular, using exact spherical moments, we have E[a}] =

(71(;12).4_23 Elaf] = ;. Elaja}] = ;g (0 # s EBf] = gy BB = 4. EB7YY] = gy
i % j):

BI¢*) = 5% 22: { ]dn+§: [ } d+2 n+2) +3§: [ } d+%lm+2)

_ 1 9 I Ell/of] | 32 B/ (o5 7o) Ezizl ]E[l/ai]
ot d(d+2)n(n+2) d(d +2)n(n + 2) n? dn '

I Iy I3

Leading Order Scaling and Mean. Let N = max(d,n), assume n,d — oo with d/n — ¢ # 1.
Lemma 5 from|Sonthalia & Nadakuditil (2023) implies that if A has unit variance entries, the moments
of its inverse eigenvalue are expressions of ¢ and are hence O(1). In our case, it will just scale with p
instead:

E[1/of] = 0(1/p"), E[/(6?03)] = O(1/p"), and E[1/o}] = O(1/4") etc.
In particular, we also need the following exact expectation from the same lemma:

1 c 1 1
EH :p21c+0(p2)20<p2>' ®

Since the above I, I3 have r = min(d, n) summands, this implies

T 1 r 1
n=0(55) =0 (w) . =0 () = (1)

Similarly, I5 has r(r — 1) =~ r2 summands, and
1
=0 <sz4 )

r?
=0 ()
1 1

1
= E[(=S5+h+L+I3=—+0 <4> since I3 dominates.  (9)
U U max(d, n)

d,n)p
With a similar expansion for the second moment and taking spherical moments, we get that

E[¢?] = % + ZIE [ 1 } Elbib,|Elaia;] = = + 2= E[1/07]

0i0; 772 dn

1 min(d,n) c 1 .
= o + ™ <p2|1—c| +0(p2)> by Equation|[§]

1 c
o max(don) - ° <max<d, n>p2) '

This gives us the mean. Furthermore,

(EKQ])Q _ 1 + 323,;1 E[1/07] (Zz 1E[1/U ])? _ 1 L0 ( 1 ) . 30)

7t n? dn d?n? ot max(d, n)p*
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Variance. Var(¢?) = E[¢*] — (E[¢?])?. From Equations[9} [10] the overall scaling is determined by

the dominant term:
) _ L
Var((n =0\ ax@ )

Lemma 10 (General Terms). In the setting of Section[2|we have the following expectations:
1. Forc< 1, E[B]ukT A1B,] = m(ﬁju)z +o (p%) and the variance is O(1/(p*d)).
2. Forc< 1,EkTATATTEk] = /)4(1672_0)3 +o (p%) and the variance is O(1/(pd)).

3. Forc> 1, E[B] su'B.] = <L(B/] u)? and the variance is O(1/d).

[

4. Forc > 1, E[B] AATus3,] = <

(&

(B]u)? + o(1) and the variance is O(1/d).

5. Forc>1,E[B]hThB.] = ”:32|\2 ey o (p%d) and the variance is O(1/(p*d?)).

6. Forc > 1, ElhATTAThT] = p%ﬁ +o (i) and the variance is O(1/(p%d)).

kg

7. Forc> 1, E[|k|%] = p%.cil +o (p%) and the variance is O(1/(p*n))

Proof. For all these terms, we evaluate the expectation using the SVD A = UXVT, with AT =
VETUT, and important expectations from Lemma 5 of [Sonthalia & Nadakuditi/ (2023) regarding the
spectrum of A: suppose A has unit variance (general p? is a multiplicative change), and let Ui(A)
denote the ¢-th singular value. We have

gl 1 ] s +o) e<t ]E' 1] [aSs o) c<1
o2 (A) <o to(l) e>1’ HA) | | o) e>1]
IE{ 1 } p—lglfCJrop% c<1 ]E_ 1] p%uczc)ﬁoﬂi“ c<1
o7 (A) p—l%fl—&—o p% c>1’ Lo (A) ] p%(ccsl)g. +o p% e>1

For the first term, we note that
Bluk"ATB. = (B]u)u' ATTATB,
=BlwuUSTSUT S8,
d
1
_ (AT Trmy (77T 3 .
= (B, u) Z(u U):(U 5*)202(A)

i=1 i

d
1
= (B ) ;(UTUi)(ﬁ:Ui)U?(Ay

where u; denotes the i-th column of U. We further note that w ' 3, = w' UU ' B3,. Since permuting
columns of an orthogonal matrix does not break orthogonality and U is uniformly random, we have
that the marginals w; are identical. Thus, we have that

1 1
Elu w8 ui]=... = Eu'usB, ug) = E(uTﬂ*) since E[uu, | = EI'
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It follows from here that

d
B (BT ukTA'5.] = (67w Y EluT wipTwlE | |

i=1

d
= %(ﬁfuf Z% (1 ic + 0(1)> by Equation [TT]

i=1

c T \2 1
el o).

x

3 =

Since A is isotropic Gaussian, we have that U, V' are uniformly random orthogonal matrices. Thus,
u'U and U T 3, are uniformly random vectors on the spheres of radius ||u|| and ||3.|| respectively.

Hence, when we consider the squared terms to compute the variance, the term from the two uniform
vectors will contribute O(1/d?). Together with the singular value term (now squared to have O(1/p%))
and the summation, the variance is of order O(1/(p*d)).

For the second term, we have that by Equation

d
ETATAT k=0 (AAT) N u=4"U(ZZ"))2U "u = Z(uTui)QT

i=1 (

s -t ] S ) b5

i=1

where we again use E[(u " u;)?] = 1/d since it is the entry of a uniformly random vector of length
[[u] = 1.

Similarly, the variance is O(1/(p®d)) from the summation of d independent variances each of

O(1/(pd?)).

For the third term, we have that

n

Blsu'B. =B](I - AANu(uB.) = (B]w)* — (B]w) Y (8] u:)(u"u,).

i=1
Similarly, we take the expectation (in particular, E[(3, u;)(u"u;)] = 1/d(8, u)) and have

n 1 1
T,12 T,32
1-S -] =(1=-= .
(8 w) l ;d] (1-7) 6T
The variance for this term is O(1/d) from summation of n = d/c terms of O(1/d?).
For the fourth term, we plug in s = (I — AA")u and have
BT AAtus™B. = (BTw)B] AATu — (B] AATw).
From previous calculations, we have that
- 1
E[3] AATu] =E [Z(Bjui)(uTui)] = E(B;ru).
i=1
Using Proposition 2] and this result, we can then show
1
E[(8.) AATw)’] = 5 (B]w)* + o1).
It follows that
c—1
2

E[3] AATus'3,] = (B]u)? +o(1).

c
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The variance for this term is O(1/d), where the dominant term is a summation of n = d/c terms of
O(1/d?).

For the fifth term, we have

BIRThA. = (B] Alv)® = (B]U):(B]U),

.3

1

—————(V0);(V T v);.
7(A)a,(a) Y Y

Since B3] U (and V' Tv) are uniformly random and independent of everything else, we only have the
diagonal terms when we take the expectation. By Equation [T}

n » 21 1 ; 2 1 1
E[B,h"h3,] = Z ”ﬂd” "2 ( c +0(1)) = Hﬁd” pﬁcf T +o <p2d)
=1

c—1
The variance for this term is O(1/(p*d?)) from O(d?) terms of individual variances of O(1/(p*d*)).

For the sixth term, by expansion and Equation |11} similar to above,

=1 g

The variance is O (1/(p®d)).

For the final term, by expansion and Equation [T}
- 1 In c 1 11 1
Ef|k2] =S E[(w U2 E || =25 == =
[H ” ] Z [(u U)z] 0'-2(A) p2 dC—1+O pQ pQC—lJrO p2
i=1 g

The variance is O (1/(p*n)). O

Lemma 11 (Zero Expectation). In the setting of Section[2] we have the following expectations for
1. Ve, B[BT uhB.] = 0 and Var(BTuhf.) = O(1/(*d))
2. Ife > 1, E[B] AAtuhB,] = 0 and Var(B] AATuhB.) = O(1/(p*d?))
3. Ifc> 1, E[B/ shB.] = 0 and Var(B, shB3.) = O(1/(p%*d))
4. Ve, EkTAThT] =0and Var(kT ATh ") = O(1/(p%d))
5. Ife>1,E[RAATB,] = 0and Var(hAATB,) = O(1/(p?d))

Proof. Similar to Lemma for all these terms, we evaluate the expectation using the SVD A =
UV, with AT = VXU,

For the first term, we note that

min(n,d)

BluhB] = (B[u)v ATB, = (Blupp VEIUTB. = (B]u) Y (TV)i(U'B.);

=1

1

Since A is isotropic Gaussian, again we have that U, V' are uniformly random orthogonal matri-
ces. Thus, vV and U " 3, are uniformly random vectors on a spheres of radius ||v|| and ||B.||
respectively. In particular, they are independent and have mean zero, which implies

E [, uhB]] = 0.
The variance will be O(1/(pd)) as a summation of O(d) terms of O(1/(p?d?)).

For the second term, we note that

min(n,d) min(n,d)

BlAAw= 3  (BIU)(U w); and hB.= ) (0'V)i(U'B.)

i=1 i=1

1
oi(A)
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Multiplying the two together yields

min(n,d)
BIAATuRB. = > (B]U)i(U w)(v'V),;(U Tﬁ*ha,(l Ay
%7 !

We note that v "V is a uniformly random mean zero vector independent of everything else in the
summation. Hence, the expectation is equal to zero, and similar to Lemma ??, the variance of this
term is O(1/(p?d?)) (a summation of O(d?) terms of O(1/(p?d*))).
For the third term, we have that

B.shB. = B (I — AAT)uhB. = B[ uhp. — B] AATuhg..

Then using the previous two parts, we get that each term has mean zero. Thus, we get the needed
result. Using Lemma and the first two terms, the variance of this term is O(1/(p*d)).

For the fourth term, we have that:

min(n,d)
1
TAtpT _ Tyt Ty Ta TIY. (VT ).
ETAThT = U TEIn TV Ty = ; (w'U); (V v)lol-(A)3'

Similarly, using the independence of U, ¥, V' and uniformly random entries, we get mean zero and
variance O(1/(p%d)).

For the last term, we have that:
-

hAAB, = > (V) (U'B.)

i=min(n,d)

1

Using the independence of U, X, V' and uniformly random entries, we get mean zero and variance
O(1/(p?d): O

D.4.2 STEP 3(B): BOUNDING THE HIGHER MOMENTS

To bound the higher moments, we will the following Gaussian hypercontractivity lemma.

Lemma 12 (Gaussian Hypercontractivity Inequality). Let G ~ N(0,1) be a standard Gaussian
random variable. Let f : R — R be a degree k polynomial. Then, for any q > 2, the Lq norm of
f(G) is bounded by its Ly norm as follows:

IF (@I, < (@ = D21 (Gl La
where the L, norm of a random variable X is defined as || X ||, = (E[|X|?])!/7.

Proof. Follows directly from |[Mei et al.| (2022, Lemma 20). O

Lemma 13 (Multivariate Gaussian Hypercontractivity). Let G = (G1,...,Gpr) ~ N(0, Ipr) and
let P : RM — R be a polynomial of total degree r. Consider the Hermite expansion of P

P(z) = Z coHy(z).
aeN™ |a|<r

with coefficient random and independent of G. Then there exists a constant C' that is only dependent
on M, r such that for any q > 2,

1/2

1P, <Cla—1"7" [ D lleallz, o

lee|<r

Further, if for all || < r, we have that Hca||%q < C2|callf,, then

1P(G)llz, < Clg = 1)|IP(G)|z.

Where the Ly, norm is over all of the randomness. Furthermore,
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Proof. Let Hy, : R — R be the probabilist Hermite polynomial. Given o € N, define

M
x) = [ Hao, (z;)
j=1
Then since P is degree r, then we can decompose

Pz)= Y caHa(x).

a€eN™ |a|<r
Here || = ; ¢ Since the Hermite polynomials are orthogonal, we can see that
M
. H,(z)Hs(x) 7y (2) = baa | [ s,
j=1

where ) is the density for an M -dimensional standard normal distribution.

|P@)|2, = Es [ /. IP(a:)|27M(x)daz]
Z Z Es: [cacal /H vy (2)dx

la|<r|a|<r

= > llealz, o

o <r

M
where a! := H al.
Jj=1

Then using the 1D Gaussian Hypercontractivity (Lemmal[T2] we see that

M
1Ha(@)lz, =[] I1Ha, (),
j=1
M
H )72 Ha, (25) || 2.

M
D2 TT Vot
= (¢ - D"Vl

Thus, using the triangle inequality we get that
1P@)llz, < Y leaHa(@)lz, = Y lleallz, | Ha(2)lz,
la|<r || <7
Thus

IP@)llz, < ) llcaHa(@)llz, < Y llcallz, (4= DI2Val < (¢=1)72 37 fleallz, Vol

loe|<r lee|<r lo|<r

Then using Cauchy-Schwartz, we get that
1/2 1/2
> lleallz, Vol < | D7 lleall?, o > 1
loo|<r lo<r o] <r

Finally, we note that
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is some universal constant that only depends on M, r. Thus, we get that
1/2

1)z, < Carr (g =12 | D llealz, o

lef<r

Using the assumption
lealZ, < ChlleallZ,
Then we get
1P(@)lz, < CrrrCq (g —1)"2 | P(@)| L,
O

Lemma 14 (Product Spherical Hypercontractivity). Let Iy, ls,l3 > 0, let ©; ~ Unif(Sh), O, ~
Unif (S!2), ©3 ~ Unif(S%) be independent, and let H : R+l x RizF1 x Rlstl 5 R pe a
multi-homogeneous polynomial of total degree r. Then for every q > 2,

1H(©1,02,03)llz, < Crgla—1)""?|H(O1,02,03)|L,,

where the norms are with respect to the product measure. For homogeneous polynomials, the constant
is independent of the dimension.

Proof. H is multi-homogeneous of degrees 71,2, 73 with 7y + 79 + 173 = 7. Let Gq ~ N (0, I}, 11),
Gs ~ N(0,11,1+1), Gg ~ N (0, I, 1) be independent with polar decompositions G; = R;0;, where
the R;’s are independent of each other and of the ©;’s. Then

H(G1,G2,G3) = R{*R3?R H(©4,04,03),

so for any p > 0,

3
E[|H(G1,G2,G3)["] = <H]E[Rfr}) E[|H(01,02,03)["]
i=1
Then we have that

||H(G17G2aG3)HLp = (H(E [Rf"'z])l/P> ||H(®17@27e3)||[,p . (12)

Apply Gaussian hypercontractivity (Lemma[12)) to H(G1, G2, Gs) (total degree 7):
1H(G1,G2,Gs)llz, < Cla—1)"?|H(G1, G2, Cs)l|1ae a2 2.

Using Equation[I2]with p = ¢ and p = 2 yields
(E [R}"])1/?

7

|H(©1,02,03)[r, < C(q_l)r/2 <HW

) 1H(©1,02,03)]|L,.
For each 4, since ¢ > 2 and R; > 0, monotonicity of L, norms implies (E [Rg”])l/ (qri) >
(E [Rfr] )1/ (2r4) “hence

&[]

< 1.

Thus the product is less than 1, so

|H(©1,02,03)|, < C(qg—1)"/?||H(61,02,03)|L,.

O

Lemma 15 (Product spherical hypercontractivity with random coefficients). Let l1,l2,13 > 0 and
let ©; ~ Unif(S') be independent. Let r € N and let H : Rhi+! x Rl2tl x Rlstl — R be a
multi-homogeneous polynomial of total degree at most r. Suppose the coefficients of P are random
on an auxiliary probability space and are independent of (01, ©2, ©3). If the random coefficients
satisfy ||callL, < KqllcallL, in the Hermite basis expansion, then for all q > 2:

15|z, < Crq(a—1)"|1H]|L,.
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Proof. The proof is identical to that of Lemma [I4] except we begin with the version of Gaussian
hypercontractivity that handles random coefficients satisfying the stated assumption.

O

Recall

a:=VveR" b:=U'ucR? and usg=U'gB.
Then, since u, u are fixed, and U, V' are independent Haar orthogonal matrices, we have that a, b
are all uniformly random vectors on their respective spheres. Additionally, using the assumption that
3. is uniformly random such that 3, u is constant. ug is uniformly random on a sphere Sé-2.

Consider the following centered versions and polynomial representations.
L Yy = [R]2 —E R[] = o (S'S1T — ) a

2. Y= |k[P—E[|k|’] =b" (=TT — i) b

3. = 1) —E[It?] =a” (I - =tD) - )

4 Yy = sl —E [|ls?] = b7 (1 - =) — ) b

o+

5. Y= f_g H =a'Xb=a'X'b

U U
6. Ty :==Buk” A3, —E [B]ukTATB,] = (B]u)b" (XS )us — pz (b7)
7. Ty i= kT ATATTE—E [KTATATTK] = b7 ((27%1)" - g, ) b

o]

Ty = Blsu B —E[B]su’ B.] = (B uw)uf (I - Z=Nb — pg (ujug)
9.7y = B]AATus'B, — E[B]AATus'B,] = ujE=bb' (I — T=Nuy —
pr, (b70) (ufup)

10. Tg, = ﬁ;rhTh,B* —E [ﬁ:hThﬁ*] = (ugETTa)2 — W, (aTa)(ugug)

1. Ty = h(A)TATRT —E [R(A)TATRT] = a7 ((Z1517)" ~ g, )

12. Sy == B]uhB, —E[B]uhp.] = (B]u)a"TTuy

13. S :=B]AATuhB, —E[B3] AATuhB,] = u[EXTba Ziug

14. S5 := B shB. —E [B] shB.] = us(I — T=ba Zluy

15. Sy :=kTATRT —E[kTATRT] =b"21TEIxTq
Hence we see that these are all homogeneous polynomials in uniformly random spherical variables.
Thus, we can use Lemma[T4] we get bounds on the higher moments. In particular, since the coefficients
are only dependent on constants and 3, we see that the coefficients are independent of a, b, ug.
Then using a change of basis we see that that coefficients of the decomposition are also random and

independent of the input variables. Finally, since the spectrum converges to the Marchenko-Pastur,
we have that the coefficients have bounded moments. Hence the second assumption is satisfied.

D.4.3 STEP 3(C): BOUNDING ; MOMENTS.

Lemma 16 (Moments of +; /n?). We have:

(i) Foryi/n?
(] e 1 1 ge! 1
2B = mro(m) w(B)=0(m):

-’)/2- 1 1 1 ’}/2 1
E|2| ==+ = Var (2 ) =0(—).
] p? - n? o (/ﬁ) S (772> (p4n

(ii) For~y2/n?,
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Proof. We decompose
i S
S =G+, =12 where (i = [[t]* k] G = sl [|IR]*.
n n
Expectation Estimates: We begin by noting that ||| depends only on V" and is independent of
U,X. ||s||? depends only on U and is independent of V', 3. Additionally, || k||? depends on U and
3, hence is independent of V. Also ||h||? depends on V' and X and is independent of U, hence is
independent of U.

Thus, we have have that ||¢||? and ||k||? are independent and ||s||? and ||h||? are independent. Thus,
we see that

E[G1] = E[[l¢l* [16lI7] = E[I£]1*] Elllk]l).

Using Lemma 9] again,

1 ¢ 1
E[[t|?)]=1-¢, E[|E|*] == —
eI =1~ c, E[IkP) ﬁl—c+0<ﬁ>
We plug them into the expectation and get:
1 ¢ 1 c 1
E[¢i] = (1 — — === — .
S C)[(pzl—C)ﬂ(pQ)] p2+0<p2>

Finally, we also have that from Lemma 9]
21 1 1 ¢2 1
E |:"72 = ? + O p27 s Var ? = O pT s

Y1 £ c 1 1
) =mene e [f] = oo ().
A similar argument applies for v /1?, using the corresponding results for ||s||?, || h||2.

Hence,

Variance Estimates:
Again using independence, we have that

Var([[¢]%|k[|?) = Var(|[¢]|*) Var(|[k[|?) + E[|[¢]|*)*Var(|[k[|) + E[||Fl|*]* Var(||]*)
_0101)(1 )ZOL iCZOl
N n pin Tl pin +p4(1—c)2 n
1
().
We then use Lemma[34]to compute the variance of the sum:
£ & i
Var (Cl + n2> < [ v/Var(¢1) + 4/ Var (172)
2
1 1
:<%%MJ+VOQ%»
1
(7).

This proof is similar to the other case. O

Lemma 17 (Moments of (v;/1?)?). We have, as n,d — oo with d/n — ¢ # 1,

33
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(i) Foryi/n?,

]G o) () -o)

(ii) For~y2/n?,

-72 2]
B Qﬂ) -

Proof. Write, fori € {1,2},

Vi 'S 12 11Kl — sl IIAl2
?fC1:+?7 Cu= It]7 1k]7, G2 = |Is]|” |[R]|".

Means. Using Lemma[I6|and the fact that for any random variable
E [Y?] =E[Y]? + Var(Y)
we get the means.
Variances. Using
Y?=EY] +2E[]) (Y -E[Y]) + (Y -E[Y]),

Thus, using Lemma@ we have that

Var(Y?) < <\/4 (E[X))? Var(X;) + \/Var((Y—E[Y])2)> .

By spherical hypercontractivity for degree-4 polynomials,

2 2
< Var <,),1) ,
n

2 27\ 4
e (-2 )
n n
hence , A ,
2 2 2 2 2
v (G- ) ) |Gl | = ()
n n n n n
2
Using E [3—2} = O(1) and Var (%) = O(p~*n~1) gives
2
i\ 1
var(35) =0 (i)
as claimed. O

Lemma 18 (Finite Negative Moments of ;). Fix p > 0. There exists an N(p) such that for all
n,d > N(p), we have that for ¢ < 1
2 2 p*P
—p - P -
E[47%] <0 *E [o?| E [T7] < o M

and for ¢ > 1, we have that
p*P
E "] <n¥E |0} |E[s7] < Zo, mv
Ui

where o is the largest singular value of A, T := |[t||* ~ Beta (25%,4), and S = |s||* ~

Beta (452 3).
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Proof. Recall our SVD A = UXV T and that
n =12 tPkP + € and 4 = 0?|s|?|R]* + €2

Then we have that
d

b2 1 1
K[> =) = > =lblI* = =
2512 7l =
Similarly,
no 9
a; 1 1
|RI? =) =% > =lal*= =
252 gl = o

Thus, we see that

1 1
7>t and oy >n?s|® .
0y 01

||t||?> depends only on V" and is independent of U, X. ||s||* depends only on U and is independent of
V', X. 01 depends only on X and is independent of U, V. Therefore, o is independent of T" := ||¢]|?
and of S := ||s||%.

Thus, we get that

1<1of1’ g L 1 o2
w0t v sl

Then taking the expectation and using the independence, we get that
1 1 1 1 1 1
E [p} < +E [2} E [gfp} and E [p} < E [2] E {gfp]
nwl TP LI Y2l T o Lls]?P

For ¢ < 1 (where d < n), the right null space of A (dimension n — d) is a uniformly random
(n — d)-dimensional subspace of R™. The squared norm ||t||? represents the squared length of the
projection of the fixed unit vector v € R™ onto this random subspace. The distribution of such a

n—d d ) , as it can be represented as the ratio of two independent

squared projection norm is Beta (7, 5
chi-squared random variables: 7" G2/ 3" G2, where G;~N (0, 1) IID, which follows the
desired Beta distribution. Similarly for ¢ > 1.

Since the eigenvalue distribution converges to the compactly supported distribution. We can see that
for sufficiently large n, d, we have that there exists an M > 1 such that o7 < pM almost surely.

For Y ~ Beta(a, ) and p < a,

[(a—p)T(a+p5)
L(a)D(a+B—p)

(1ic>p (c<1),

E[S™P] —n.d—00 <0‘2;52)p _ (cf 1)p (c>1).

Thus, there is an M such that
2p 2p
1 1 ,
E {p] < ('0) MP and E [p] < (p> M?
71 n V2 n

Lemma 19 (Moments of 72 /~;). We have:

E[y 7] =

Moreover, using Stirling on the I" ratio,

E[T7] —masne (al +/31)10

aq

and
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(i) Forn? /1,

2 2,2 1 2 1
E[n}:;)n 2+0<2>, Var<n>:O<>.
71 n“c+p P 71 n

2 2, 2 1 2
E[n}: 2'07724—0(2), Var<n>:0< )
Y2 n°+p P Y2

Proof. By Lemmas|[32|and (16} the expectation of 7% /; can be computed by:

2 2,2
n 1 1 ) PN ( 1 )
El-|l=—""—140—)|=—-""1—+0 )
[71] E[v1/m?] <p2d n%c + p? 02

By Lemmas and the variance of 7%/~ can be computed by:

oo (2) - st (5 () (v (3)
o () o (3)

1
=0 () by the scalings of 1 and p.
n

(ii) Forn? /e,

S|

The proof is similar for the other term. O

Lemma 20 (Moments of n*/y2). We have:

(i) Forn*/~3,
4 4,4 4
7 PN 7 1
E|lL|= " ), Var(—=)=0/(=).
[V%] (nc+ p?)? oll), Var (ﬁ) <N>

4 4,4 4
1 p°n 7 1
E |:2:| = ( 2 + 0(1), Var (/}/) 0] (n) .
Proof. The expectation of i* /4% can be computed by Lemma By definition we have that

3 n? + p?) 3
4 27\ 2 2 2 2 2
1 1
2[5 = (e 5]) v (D) - (e () +o ()
71 71 71 nc+p P n

The variance follows Lemma[33]and Lemma[I7}
4 1
T-ot)
M n

The proof is similar for the other term. O

(ii) Forn*/~3,

since the mean is O(1).

Lemma 21. Suppose € € R™ whose entries have mean 0, variance T, and follow our noise
assumptions. Then for any indepedent random matrix Q € R™*™, we have

E.q [¢'Qe] = 77E[Tx(Q)].

Proof. We have that
n n
ETQE? = Z Z 61'8]‘@1]‘.
i=1 j=1

We take the expectation of this sum. By the independence assumption and assumption E[e;e;] =
0 when ¢ # j, we then have
n

Eeq[e"Qe] = E[]]E[Qu] = 7°E

=1

Z Qii] = 7'52]E Tr(Q)] -

i=1
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D.5 STEP 4: BOUNDING THE EXPECTATION OF PRODUCTS OF DEPENDENT TERMS

In Section we decomposed the error into four terms — Bias, Variance, Data Noise and Target
alignment. In Section[D.3] we wrote each of these terms as the sum and product of various “elementary
building blocks”. In Section[D.4] we should that these elementary building blocks concentrate. In this
section, since we have tight concentration (i.e., the higher moment bounds). We can use Lemma
and Lemma [37] which shows that the expectation of the product can be approximated by the product
of the expectations. In this section, we do that calculation for our different terms.

D.5.1 STEP4: BIAS

We begin with the bias term. Recall that for ¢ < 1, the expected bias by Lemma [3]is equal to

E[Bias| = E

2
Fz—az+§mz—mn ﬁw3>-+”5ﬂmwy
Y1 77 71

where the cross term equals 0 due to € having mean zero entries. These two remaining expectations
are given by Lemmas 22] 23] informally via:

7

Lemmal2 + 7'2 x Lemma[23]
"7

For ¢ < 1, we can plug in the value to get that the expected first term is given by

(B8] u)? {(dz—az)—k i (az—aA)r—ko(l)—f—O(Z)

and the second is given by

~2 2

27 c n 1

L S — nN+o(——)).
e (0—1n20+p2+0( )+ (p2n>>

Adding them, we then have the desired result:

P ([6z - a)+ 2z —an)] @0+ = 2o (L) 10(2)
— 0y —« ———(agz —« _ ol = — ).
n z Z n%c + p? Z A E1—c77c—|—p n n2

For ¢ > 1, we instead have the following expanson:

ﬁj |:(ONLZ — Oéz)I +

n2c + p2

9 -
i(aZI — OzAAAT):| Z — aAMﬁIhTUTZ + QEETPQ’TJT
V2 72 72

t to ts
The bias equals the expectation of the norm of this vector. Taking the Frobenius norm, we have the
six terms. Among the cross-terms, (¢1,t3) and (t2, t3) have zero mean since ¢3 contains € whose
entries have mean 0. We now look at the other terms

t 77 5 T ? 277 2 2
E [|[ts]|”] P | | =1 77 ﬁllpzll by Lemma[21]

The expectation is given by Lemman Subsequently, Lemmas [22] n R4 23] give E[||1]]|2], E[||t2]|*].
E[(t1, t3)] respectively. Informally, we can compute the bias via:

2 ~
§ (azI — aAAAT)} aAMﬁIhTuTZ + QésTpgﬁT
V2 "2 72

t3]|°] — 2E[(t1, t5)?]

=2
= Lemma[22] + 72 n—QLemma + Lemmal4]— 2 x Lemma
n

E[Bias] = Mg 6z —anr+* ]

= E[|t2[II”] + Eflt2/l*] + E[

Similar to ¢ < 1, adding them together and dividing by 7, we get

=2 2 2 2 2 2 2 2 2
D atove (i~ 2, P gy o [1B:l® [c—1 n°p T2 mctp
ﬁ bﬂ”” (6 e+ 55 (o= 2) ) + a0 (50) 2 + s
+0( >+O(n2>
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D.5.2 STEP 4: VARIANCE

Recall that for the variance, we have the following expression (Section [D.3.2).

1
E[‘
n

112 7:2062 72a2
. AH } " {Zﬂjz(z +ANZ+ )T 2B, + TAﬁ*TA(Z +A)(Z+A4)ITATB,
F

int

2 ~2
- TR 2(Z+ A) (2 + ATATB + ST

e (Z+ AN Z + AT e

In particular that the expectation will be the weighted sum of the expressions from Lemmas 26] 27}
281 29] Informally,
P
d
This yields that for ¢ < 1, after simplification, the variance is

~2

2 2 2
P o 2 T, N2 21 (" +p7) ¢ ne
T a6 [l - an P R S aasten - e

of ¢ d_ 7 ¢ 1
+T5(1—0p2 02(n26+p2)1—0>}+0(1)+0(n ‘

For ¢ > 1, we similarly simplify it to:

(aQZ x Lemmal28+ 2aza 4 x Lemmal8+ o x Lemmal7+ Lemmam) )

2

9 2 2 2 9
r e O S Ta)2_C 777( ,OLA)
d [”ﬂ*| < c d 772—1—,02) + (8. v c—1n2+p2 4z

d 1 n? c 1
2 (@ . -
M (p%—l pz(n2+p2)c—1>}+0(1)+O(n>'

D.5.3 STEP 4: DATA NOISE

Recall that for the data noise, we have the following expression

O~[2 ﬁ2
AL |16, |

Noting that ||3.]|?> = ©(1), we see that this term has no more randomness and we do not need to
estimate anything.

D.5.4 STEP 4: TARGET ALIGNMENT

Recall from Section that the alignment is given by
26.4p°

E[0.B](Z+A)TZ78, +aaB](Z + A)TATA.]

From Lemma 30} we have that

E[BI(Z+A)TTZTﬁ*]={”+’”(ﬂT) o) +0(3) e<1

2 .
PR (,B;ru) +O(%) c>1

and from Lemma[3T} we have that

T TT AT Hﬂ*HQ 2+77 C(ﬁ* ) (p%) + 0 (%) ) c<1
B[ (z+A)TAB] = " ¢ 18- 2 1 :

1812 = o (12 4 L(8Tw?) +0(1) + 0 (1), c>1
Thus for ¢ < 1, the entire interaction term now becomes
24 ) oo e
- " - —_— 1) ).
47 (aallB? + (az - aa) (BT W 2 4 ol1)

For ¢ > 1, instead we have

2004 ° aaN T
2 (- T+ (az - O) (BT o).
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D.5.5 BIAS: HELPER LEMMAS

Lemma 22. In the same seiting as Section[2] we have that for ¢ < 1,

E

2
(dz —ay + é(Ozz - aA)) 772(133“)2]
Al
2

+ ﬂchTP?(aZ —aA)r +o(1)+0O (%) )

— (BT w)? [(az ~az)

YH—

=7 (B, w)” [(dz ~an)+ g (en O‘A)r +o(1)+0(2).

Forc>1,

2

B [(dz —ay)I+ Wé(aZI - aAAAT)] z
2

Proof. For ¢ < 1, we first expand the square and get:

2 242
- - 1 2 B
(az —agz+ £(ozz - aA)) = (az—az)2+—2n g (az—aA)z—i—f@(aZ—aA)(az—az).
ga! oM nmn

By Lemmas[9]and[20] then we see that, using the square root of the covariance to bound the difference
between the expectation of the product and the product of the expectation.

5]l 5] e () 5)
(o o0) (320 3) o)
i e+(3)0(2)

5]-+[2] [ e (D) )

? 1
— o vo(5)+0
nc+p n

=T [ 0+ I (et o () +0 () tox -
A (1Y 0 (1)) e ante o)

2

el ([(ar - en o -an] ()40 (1)),
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We now consider ¢ > 1. Recalling that Z= fuv ', we let ¢; = a7 — oz and expand:

2

Hﬁj |:(5£Z — OéZ)I+ ryé(azI — OZAAAT):| Z
2

-
=7 {(dz —az)I+ ,yé(aZI — aAAAT)] ZZ" {(az —az) I+ ,yi(azr — aAAAT)] B.
2 2

-
=i?8] [(dz —az) I+ Vé(azI - aAAAT)} uu ! [(dz —az) I+ Wé(ozzI - aAAAT)} B
2 2

2

=3Bl u)? + ﬁ2%ﬁj(aZI —a, AANuu ((azd — agAAY) B, + 2clﬁ2$,8;r(o¢ZI —a AANuu ' B,
2 2

Not that for the second and third terms, we have that £, 7y, only depend on the singular values of A

and the rest only depend on the singular vectors. Hence, these terms are independent.

First note that when d > n, the number of singular values equals n, which is less than the dimension

d. As aresult,

AAT — UEVTVETUT — U ITLXTL Onx(d,n) UT.
O—n)yxn O(d—n)x(d=n)

Then we have that

n

B8] AAl8]) = Y E((B1U)] = 51817 = L8P, (13)

i=1
since 3, U is a uniformly random vector of length || 3. in R after the rotation U.
For the middle term, by Proposition[2]and the above Equation[I3] we have
E [,BI(QZI —a, AANuu " ((agI — aAAAT)B*]

= a% (B u)? — 20402E [8] AATuu' B,] + o4E [(B] AATu)?]

= (oz — %4)" (BTu)? + o1).
Similarly, for the last term, we have

E [ﬁ:(aZI — aAAAT)uuT,B*] = (az - %4) (B u)? +o(1).

Thus putting these expectations together, we get

E {772(5;”)2 [C% + jz (062 - %)2 +201£ (Oéz - OécA)” =E

2 c V2

(8] w)? {cl + 5 (o - ‘“)} 2] |

72 c

Similar to the ¢ < 1 case, we take the expectation for terms involving % and get:
2 2
7287 )2 &y — P ( _ aA) ) 0 1
n° (B8, u) l((az ozz)+n2+p2 az — - ) 4—0(772 + o) |

Lemma 23 (Expectations involving p; and po). In the setting of Section 2} we have that

1. Forc=d/n<1:
2

2 c n 1
E |2 |p?] = — o) +0 (.
Lf”pl} 1—67720+p2+0( )+ ( 2 )

2. Forc=d/n > 1:

2 2 2 2

n- o nctp 1

E |25 2 = +01+O(>.
[,@Hiﬁ} c—1 (n? + p?)? (1)

40



Under review as a conference paper at ICLR 2026

Proof. First, Lemma0]tells us that

52
=
o6

2 2
n°||k
p1||2 _ ” ” )

Then recall from Lemma[9] that

1 ¢ 1 1
E[|k|%] = — = d k) =0 —
1617 = 55 v (55) e Va0 ()

and Lemma[19tells us

2 2.2 1 2 1
E {77] = 2P7772 +o <2> and Var <n> =0 ()
m n<c+p P i n

Again Section tell us that the assumption of Lemma[37]is satisfied and that

B [Sipul?] =& L) <5 [ g (a2 +  vr (1) var (g
’712 71 Y1 st
2,2
_(_ V(L ¢ 1 L
_(n26+p2+0(/ﬂ>> <0210+0<02)>+O<02”>
2
c n 1
- _T Lo — ).
1cn20+p2+0<)+0<p2n)

Using Lemmal6] for po,
2
1
> llp2ll* = o (n*lsI*hATT ATRT + 20°¢||s*kT ATRT +0?¢?|[K?) .
2 2
Similarly, we use Lemma [37]to evaluate each expectation: To begin, we start estimating

E [Tl Is[|* hATTAThT:|
73

Using our Spherical Hypercontractivity, we have that ||s||> and hATT ATh T satisfy the assumptions

for Lemma[36] Then using Lemmas [9]and [I0] we first have that

E [s]?] :1—% and Var(s||2)=O<cli)

3
BInATANT] = g re () e Var(eTHTT) <0 (g )

Thus, using Lemma we have that
E[|s|*hAiTATRT] = (E[|s]?])’E [nATT ATRT] + O (max <; 1))

() G () o)
pc—l () (>

and using Lemmam since all the means are O(1), we have that

Var (|[s|*RATT ATRT) = O (max (Var (||s[|*) , Var (RATTATRT))) = O (711> .

Then Lemmagglves mean and variance of Z Since Z does not satisfy the higher moment bound,
and cannot be directly included in the product, we can include it via the classical bound:

4 . n
E ["‘j'hA”AThT} =E {”Q} E[|s|*hATTATRT] + \/Var(|s||4hATTAThT)Var ( )
V2

72 73
(14)
_ pint 1 ¢ 1 1
= o0) Geesire(a) o (G) oo
4 1
= Cf CEYOE sz)Q +0o(1)+ 0 (n> . (16)
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Similarly, we can do the same thing for the other term. For the middle term we note that from
Lemma[IT]

1
EkTATAT] =0 and Var(k"A'ThRT)=0 (de)

and Lemmal[9] tells us

E [||s||2] =1- % and Var (Hs||2) =0 <;)

EF}zlam wﬂc):o(§>
n n n pen

Thus using Lemma[37] we have that
1
5 [Slewratn| <010 ()
N d

Thus using the standard covariance bound for the expectation of product versus product of expectation,

we have that
nE|sl? + T n* 1 1
]E[Qk: Afh}:o+ Var<2>0<>:0<>.
Y2 ) n n

For the last term, we have that, using Lemma [37]

and

2 1 11 1 1
E|=|kl? == - (= = O|—
[772” | } n? <p2c—1+0<p2>)+ <p4n>
1 1 1 1
= o —
wpe—1° (772/72) " <p4n)
2 5 1
var (Galet®) =0 (1)
Then using the standard bound, we have that
262 ||k |2 4 2 4
E [’7 ¢ ! ” ] —E [’72] E [2|k||2] + Var(
72 72 n 72
Pt ) (S +o())+o(2
=|—5—>53 +to0 o — —
(n* + p?)? n?p*c—1 % p? ptn p*n
1 n?p? 1 1
= o —
1w+ ) TR
Finally, putting all three terms together we get

2 c nt 1 n?p? 1 1
E | 25]p2? —————+o(1) + +o( >+O<)
{’V% 12| } P Y e R S e pon? p*n
2

2 2

n nc+p 1
= IR 1 — .
e e+ ()

and from Lemma[36]

‘3

[\v}
N~

Q

7N
b.u

H3H
N~

From the above proofs, we make an important observation that the individual terms from Lemmas
ol [16]all have means O(1) and variances O(1/n). Hence, by Lemma[36] we can bound the
variance of a product of terms by O(1/n), given that these terms satisfy the lemma assumptions.
Essentially, only 1? /v; and n* /~2 fail the assumption on higher moment bound, so we deal with them
via the classical bound after carrying out the product. This simplification ensures proper concentration
and will be used at times in the following proofs without reference.
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D.5.6 VARIANCE: HELPER LEMMAS

Lemma 24. In the setting of Section |2} we have that for ¢ > 1:

2
77||3||2 TpT,.T5 ~2 2 ||ﬂ*||2 c—1 772/)2 1

E h Z = of—-].
U““ sy PR L N AU IR\

Proof. Since Z = ﬁuf)T, we have that

s||? ~ ~ 0’ s
Ha“‘n”w” ﬂ:hTuTZH =2 27 || [s T 8ThThE, = o %77 ||2|| B hThB,.
72

Similar to last lemma, using Lemmas[37] [0} [T0} [20] we get

4|1 gll4 ! ; :
. [nV?ﬁIhThﬂ*] ~E [Z;] (B [Hs||2])21[*3 (8] hThA.] + \/Vaf (Zg) © (n)

(o) () (% () o ()

B [e—1 n'p? 1
= ( : )<n2+p2>2+0<n)'

Hence, it directly follows from here that

Is|? |°
E U‘aﬂ BIhTuTZ
72

4
77 7]
2

2 2 ||5*||2 (Cl> P’ +0 (1)
(n? +p) n

Lemma 25. In the setting of Section[2] we have that for ¢ > 1:

E {Wﬂj {(&Z —az)I + é(OéZI - QAAAT)] ZZTUhﬂ*] =0 (E> )
Yo 72 "

Proof. Using Z = fjud |, we can expand this into three terms. We can take expectations in a similar
way via Lemmas[37, 0] [T0] [[T} Let ¢; = &z — «z. Each term contains a zero expectation:

E [ﬁ%lns”zﬁjuhﬁ*} = ;261 <]E {”2] E [|s|*| E [, uhB.] + \/Var (772> O (1>)
Y2 n Y2 V2 n

3

E[ﬁza welsl? g, hﬂ*] :aif <E [Zg]ﬁmﬁ[qwmﬁj uhﬂ*]+\/Var (Z)o(jl)
= (v ()0 (2)) =0 ()

2 =9 4
E [ﬁ%AngHjHﬁIAATuhﬁ*} — -z <E [772} E H E [|s|I’] E [8, AATuhB.] + \/Var (
72 n 72 n
I 4 1 1
- ({be(5)0(3) -o(2)
n V3 n n
Thus the cross term concentrates around zero at a rate of O(n/n). O

43



Under review as a conference paper at ICLR 2026

Lemma 26. In the same setting as Section[2] we have that

7’ (P +p°) ¢
E[8I2(Z+A)N(Z+A)Tzp.] = "7 (7 (,3* ) ( (;HO(( )) Zi
n?+p2 c—1 Zn

Proof. We start with ¢ < 1 and expand this term using Propositionm

Bl Z(z+A)1(Z2+A)TZ3, =
’71 71 71

ETATRT (8] u)?

We then start plugging in the expectations of these three terms and the “cumulative” variance of the
sum according to Lemma 37}

B [T oruy?] - oTwie [ L] & [S] e i) + \/VG)OCL)
o ) (oo ) () ol

2 2 2
. np c T \2 1
= (7]20+p2)21—c('6* u) +0(1)+O<n).

B [T o7 At AT k(8T )]:(ﬂI u)’E m (E[tﬂ)QE[kTA*A”’““\/V” (77)0(1)

7 M "
i (o) oo (o (4) 0 )

E ng;;%kTAThT(ﬁ*Tu)?} = (B u)? (E [’72D2E [i] E(|t|I’] E[k"ATRT] + O (i) =0 (1) .

1 4t n

Now we have the expectations and errors for the three terms. Combining them yields the Lemma
statement.

For ¢ > 1, we recall that hs = 0, and Proposition[I]implies

U RS L R s L thl 3

BlZ(Z+ A (Z+ A28, = ————(B/u)’+ (B u)® + Bl uhsu' B,
2 ’Yz ’72
2 2(¢2 2 2 2
_ (77 [P + o7 [P >) (BT u)?
)
2 2
_ (17 ] 72) (BT)?
Y2
_ IR o
o AR

Hence, we can take expectation:

BBT2(2+ 4)(Z+4) 728, ~E| L] £ [InP] (87w + 0 1)
2

1
= ﬁﬁ%(,@juf +o(1)+ 0O <n) .
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Lemma 27. In the same setting as Section[2] we have that,

(Pc+p?)? 1 c n2c+p

1812 + ) (BT w)? — 20 (BT w)? +o(1) + O (L) e<1
E [ﬁjA(Z + A (Z + A)TTAﬂ*] =318 2772 i (Hﬁduz (BT w)? ) +o(1)+0 (7) PR

1
n

c n%+p c(c—1)

Proof. We use similar expansions that follow from Lemma 2]

a7 A<Z+A>*<Z+A>”Am=||ﬁ*||2 M((ﬂ Y ”ﬂt” (kT AT AT k) (8] u)?
1
1

Lemma [26] gives the expectation of the first four terms:
22 4 2) 2
sy2 , o° +p°) ¢ T, \2 1
H+O(-—|.
||/6*|| + (7)20+p2)21_c(ﬂ* u) +0( )+ (n
We have done the following expectations in Equations

n€ o7 1 Ut o1 T At nc 1
e[ Sarme-o(3). [Slbaruats] - g oo (5).

Combining these results yields the lemma statement.

Forc > 1, withhs =0, s" AAt =0, hAA' = h, we have the following expansion by Lemma

,BTA(Z+A)T(Z+A)TTAﬁ :ﬁTAATIB + 772”8”252ﬁThThB + n ” ” ”hHZﬁThTh,B
* * * * ’7% * * 2
h, 2 2 h 2¢2 )
’YQ 72
2 2
2 3 2 h 2 2 h, 2
2 72
We can combine the coefficients as:
n*||s||*€? L0 HsItRN? — 20lsl? _ nPllslP(m?lIs ]2l + &%) — 2% [sl*ve _ w?lsl?
7 7 V2 7 Y2

713 1S 1 e S 1 e P L o

73 B V3 I
Then we have that:
BlA(Z+A)(Z+ AT AB,

2 2 2 2
—praatg, — IS grprpg o IR g7 4 gty ™ aat, — 2587 AAtubg..
Y2 Y2 Y2

Recall from Equation [13|that E[3, AATB.] = ||8.||*/c. We then proceed similarly with the other
expectations using Lemmas [0} [I0] [TT] [T9}

B[ g rnmhg. | <& [ & 1517 [o7nThs.] + \/V<n)0(1>
. Y2 n
e . N (182 e ! !
(o () (-0 (= (52)) +o (7)
N L .
T d n2+p2+0<d>+0<”>.
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”7’:”2(5TAAT } {} [IRI?) E[(8] AATw) +\/Var :L)
(2 0o(2) (oo 1) (Bt o) o ()
~ e w0 (1),
g |76 §

72 n

:0+O<1>. a7
n

We combine these results to produce the lemma statement.

ﬁTAAT“hﬁ*] = [u E [g] E [ AATuhp,] + \/Var (7’ >0 <1)

Lemma 28. In the same setting as Section[2] we have that

n-\n"+p-) 1
E[8]Z(Z+A)(Z+A)TAB.] = e i—e i )(ﬂ uf o) +0(7), e<1

T Cil(ﬁ;r ) +O( )+O(ﬁ)’

c>1
Proof. For ¢ < 1, we expand it using Proposition [l Lemma Note that all of the relevant
expectations have been evaluated in the proofs of Lemmas [26]
t 2n°||t
BI2(2+ A)(Z+ A)'T AB, —’ﬁﬂ* ung. + I kT atg, - llllﬁws w?hA'Tk
7

7
’71 7

1

The expectation of the last three terms is given by Lemma[26] The first two expectations come from
Equations[T8] [T9]respectively. We can plug them in and compute the expectation

20,02 1 2y 2 2
+p%) ¢ n°c 1
E[8]2(Z + A)(Z + A)TAp.] = — (T = Tu)?+o(1)+0(=).
8.2(Z+ A)(Z+ A)' T AB.] (Pt 2Pl perpp) B o) +0( ]
For ¢ > 1, againwithhs =0and s' A =0,3] Z(Z + A)"(Z + A)""T AB, becomes:
2/ ¢ 12
In—guh (AAT + 77fgsh _ sl

2 h 2
h'h— MsuTAAT 77th TAAT) B
Y2 Y2 Y2 V2
2 2 2 2
+/@T77 ||h|| (AAT + ﬁsh _n Is] hTh — MS’U,TAAT _ ngh—ruTAAT> 8.
V2 Y2 Y2 Y2 Y2
r 3 2 2 2 242
o7 [unar - CLIL y PINE v ]
L7V2 Y2 V3
2
a7 {n 1R IISII Euh sl uTAAT:| 3.
V3 3
- 2||pl12£2 411 Rl4s1?
=37 " uhAAT - %uuTAAT — MUUTAAT } B
L 72 Y2 Y2

—(ﬂT nthAT |k TAAT : — n2|IslI2lhl2 2
= (B, u) B = Bi | sinceyy =n7||s|7||h[" + &

We need to evaluate two following expectations. Similar to ¢ < 1

[Saans] -o(t)
V2 n
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S O =i
V2 : '

3 b ) (2

~r (Blu) 1
Pt e—1 O(IHO(n)'

Finally, we have that:

1
A pte—1

B[812(2+ 4)/(Z +4) A8 = - @Tw?+om+0(1).

Lemma 29. In the same setting as Section[2} we have that,

(it ) (3 v )
Ele™(Z+A)(Z+A)Te] = TZ P9 p(nnCer)l(.C to ” +0 ) c<l1
Te \P?e=1) ~ P27 +0?) o= )+O<?)+O(W , c>1

Proof. For ¢ < 1, we first expand this term using Theorem [6}

.
T (Z+A) (Z+A) Te—el (AT LT TET AT £p1q1T) (AT L TTRT AT 5p1q;) .
3 Y1 3 ga!
2 2
—e T ATATTe ¢ ?nsTATATTkte — %sTAquplTs
1

) 2
(k:TATATTk) et te %sTtTkTAqupIs + %eTplqqumlTe
1

Note that Lemma and the fact that t AT = 0 imply that the second term has zero expectation:
2 2012
E. ?nsTATATTkte — %tATATTk —0.

Simiarly, we will later use:
cle"ATh te] =72tATh" =0, E.[e't'k'e] =72Tr(t"k")=12Tr(kt) =0.
Note that these equalities are exact without taking the expectation over other sources of randomness

besides €.

We now expand the other terms one by one and compute their expectations along the way. We start
by eliminating zero expectations and taking expectations w.r.t. € using Lemma
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[5 (kTATATTE)eTtT¢ }:IE Tl”g!EkTATATTk}

r 2 2
E {—%eTAquplTe} _E |- Al (77”;”A”k+hT) (77 ”;7” t+ kT> }

71 "
- 9 3 t 2 k 2 2 2 2
_p |2 IEIRIE gt qrT g 20N T At 41T g
L 7€ 7
2n?| k|| 2
_MgTAThTte - %ETATthTe]
T !
2
o [ 2 i 2]
L ge! n

2 2
E —%eTtTkTAT(hplTe} _E |2 TR A (77”§”A”k:+hT) (’7 (L] t+ k:T> }

04! " §
41412111112 31112
-F _w (kTATATTk) et te — M(kTAThT)sTtTts
I 1&? 7€
23 |t||? 2n?
_ n H H (kTATATTk) ETtTkTE _ n(kTAThT)ETtTkT€:|
7é M
[ 2 g gy 2P ],
11&2 7né

By the squared norms in Lemmas [6] [7] and Lemma 21]

52 527-2
E|=5e " pigf qipi €| = > p1)* a1
Y 7

1
2,2 2| kl|2 2|1¢]|14 2
_¢ 72‘ (77 1% 71) (77 1% At ATT R 77” [§ kTAThT+|h||2>

I

’Y1 &2 £?

s ( 2” ” )(77 HtH kATATTk_’_ 277”;;” kTAThT-i- ||h||2>

t k2 23t2k2 2k2h2
:Tg<n Rl L ROl L. ||)
7€ 7€ M

We combine like terms and simplify the coefficients, which can seem quite complicated at first:

For the term kT ATATT k,

2 <774||t||4|k?||2 2 + 772||t||2> 20282 U] ||t|| ||’<3||2 207 (|t?] k> 2 +1)
} 1&? 1&2 7 &2 1&? no &

1
(2202
2

& 262
= et %7 2 pe * 7152)

Forthe term kT AThT,

2 (2773||t||2||k||2 2P|k 2775) _ _g%
‘ 71 1€ 7 m
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Combining these terms together, we have:

2(14(12.-2 2
14 T AT AT g — 2néTz ETATRT 4

Ele"(Z+A)NZ+A)Te] =E {JATAT%
" 71

Similarly, using Lemmas [0] [I0] [TT] [I9] 21} we have the following:

d
E[eTATATTe] = 72E [Tr(ATATT)] = 72nE [ =rl———+o <p2> by Equation [T T}

2 2 2 :
E77tanA“%]:E[Z}E[tQMEMWMA“kT*¢““<n)O(l)
1

" ! n
_ P*n? 1 1 2 1 .
(et (@) -0 o+ () +o (7)
n c? T,,)2 1
" e+ p? pA(1 - c)? (B u)” +0(1) + O <n) .

[ s [Z]a[fawran+ oa (2] () -0 2).

S|

][] et o () )
(e (3) (% (3) (e () o

2 3

n c 1
— 1 —.
n*c+p? p*(1—c¢)? ol )+O<n>

After simple algebra, the result follows from here.

For ¢ > 1, we can expand similarly using Theorem [6]

e (Z+ANZ+A)Te=¢T (AT + gAThTsT —~ ip2q§> (ATT + gshATT - équl) €

2 2
= ATATTe + “TeT AfshAlTe — £€TATQ2P2TE
E \\Of/ 72
2 2 2
nel\s 2n £
Pl o gt p TR AT - & AhTsTapie+ 25 Tpag; gopse.
2

+
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We expand the other terms one by one, marking those with zero expectations:

20 |12
E {”g' sTAThThATTs} —E 77”§|2|5hATTAThT}
% ¢ o 2 o (alkl? ) (s, e T
E [e Afgyp) s} =E|-=eT Af <S+h ) (hAJr +nk >e}
V2 L 72 § §
r 2 2 2
_E |- 2T ART <77”5|hATT + n/J) s}
L 72 §
[ 2n? 2 2
g |2 T gty T AT - ngsTATthTe}
L Y2 Y2
2 2
—F %hATTAThT U k:TAThT}
L V2 Y2
2 r 2 h 2 2 2
E ——nsTAThTqugp;s —E |- T ATRT ST (77||||s + hT> (77|S||h,ATT + nkT> 5}
V2 L 72 § §
T 9 2 ol12 2 12
- F _ﬁETAThT <77||h|| E ) (77 IEll hAtT —i—nkz—r) e]
L 72 § 13
T ontllsli4l Al 213 1sl12 ] A l|2
—E|_ n*[ls]| 2HhH cTATRThA T — sl Rl ETATthTE]
725 725
L 72§ 72§

Using the squared norms from Lemmas [6] [7}
E ﬁ T T T —E -i 2 2 2
7€ P2g2 @2p2 €| = E | =577 paf7[l g2
72 L72

e[S (B (Bl harmamr o« 2EEE 4T
¢

V2
L 72 &2 &2
—F |2 (77 |h]1%[|s ||4hA1-TAThT + 2n3||h||2Hs||2kTAThT + 772||h2||k2)] )
L © Y2€? 72§ V2

Similarly, we combine the coefficients: For the term hATT ATRT,
22 (n“llé’ll“llhll2 2t IstRIP 20?8 772||8||2) 22| s|?
2 =

+

Y2£2 72&2 Yo &2 Yo §2 Y282 v o &2

(
—#ﬁnw( s ;)
"

i1 1 2 2+1>

Y2 — 52 252 + >
1 pE? 7252
211 wllsl*
72
For the term kT ATh T,
.2 (2173|S|2||h||2 _2P°|Is|PlIR)* 2776) _ 228
V2§ V2§ V2 " 7
Combining these terms together, we have:

2 2 2
Ele"(Z+A)(Z+A) e =E {ETATATT _USIPTE ) go7 ptp T 20ETE T pip T PIRIPIRI
Y2 Y2 Y2

Similarly, replicating the proof with the ¢ > 1 counterparts, we have the following:

1 d d
Ele"ATATTe] = 22E [Tr(ATATT)| = 720K | < | = 12— 2.
e e] = 72E [Tr( )] =12n X T€p2(6—1)+0 P
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2 2 2 2

ualEll AT AR T n c 1

E|——hA"" " A'h' | = 1 — .
{ V2 n2+p2p2(c—1)2+0()+0 n

7 n
2 2 2 2
LI U c 1
E = H+0(-).
{ 72 772+p2p2(c—1)2+0()+ n

After simple algebra, the result follows.

E[”fkR@hT]:<>(1).

D.5.7 TARGET ALIGNMENT: HELPER LEMMAS

Lemma 30. In the same setting as Section[2] we have that

277262 (/G;ru)2+0(1)+o(l) c<l
T tTZT3,] = ritnte k '
E[8)(Z+A)" 2 B.] {221;72 (BIu) +o(1)+0(3) c>1

Proof. For ¢ < 1, from Proposition[I] we get that
T 1T T 7@ TypT, T It T tT 0, T
Bl(Z+A) 278, = LplnTuTp, + T BT ATk,
ga! ga!
To begin, we start estimating
E Fﬁj hTuTﬁ*} )
n
Using our Spherical Hypercontractivity, we have that % and B8] hTu' B, satisfy the assumptions for
Lemma[36] Then using Lemma [ we have that

1 1 1
E F} =— and Var () =0 <2)
n n n pd
and Lemma|[T1] we have that
1
E[B/h'u'B.] =0 and Var(8/h'u'B.) =0 (2d>
p
Thus, using Lemma[37] we have that
Sarntun] —oso (L
E|2B,h u B.|=0+0
n p*d
and using Lemma since all the means are O(1), we have that

Var (%thuTﬂ*) =0 (max (Var (5) , Var (ﬁthuTﬂ*)» =0 (;) )
n 7 p°n

2 2
Then Lemma gives mean and variance of -, Since Z— does not satisfy the higher moment bound,
and cannot be directly included in the product, we can include it via the classical bound:

E {’ﬁﬁthuT,@*] =E [’72} E [%thuT,@*] + \/Var (%JhTuTﬁ*) Var ("2> =0 <1> )
4! At n n 71 n
(13)

For the second term, we begin with

E[lt)*8) AT ku' B.] .
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Lemmal[Q]tells us that

E[[t]*)=1—¢ and var(||t||2):o<1>

and Lemma [I0l tells us

E[B] AT kuTB,] = pizi(gT uw)?+ (;) and Var (8] A" "ku'3,) = O <p1d> :

Thus using Lemmas [37)and Lemma [36] we get that

E[tI*°8] AT ku'B.] = (5Iu)2p£2+o (;)+0 <i) and Var (||t]*8] AT ku"B.) =0 (1>

2
Recalling the mean and variance for Z—l frorn we have that

E TﬂIATTkuTB*]: [ﬂ [Itl*B AT ku ' B.] + \/O( )V (nQ)

1
n
2,2
o°n 1 1 1
=|(—=—— — — 0]
(Ferm (i )) (< wrels) o) o)
2
_(pT,N2_ €
= (B, u) m < ) (19)
Combining these two terms yields the first result.

Similarly, for ¢ > 1, Proposition [I] gives the expansion:

2|12 T hll2
ﬁI(ZﬂLA)TTZT,B*:B*T (%thrn”'usT) 8, = ﬁfﬁThT T3, Jr n*||h|| TR g7 TsuT 3.
V2 V2 "2
For the first term, we begin with
E FBIhTuTﬁ*} )
n

Recalling form Lemma|[IT} we see that

E[B/h"u'B.] =0 and Var (8 /h'u'B.)=0 (pid) :

Thus again using Lemma [36|and Lemma[37] we see that

E F/@IhTUTﬁ*} =0+0 ( L ) and Var (gﬁ:hTuTﬂ*> -0 (1> )

Next using the standard covariance bound on the expectation of the product. We see that

o] -ovo(3) o) -o(2)

For the second term, we begin with

E [[Ih]*8) suB.] .

Recall from Lemma [0 we have that

1 ¢ 1 1
21 _ 2\ _
E[||h]—pzcl+o(p2> and Var<||h||>—0(p4n)
and from Lemmal[l0

E 8] suB.] = (1 - > (BJu)® and Var (B, suB.) =0 (clz) :
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Thus using Lemma [36|and Lemma[37] we get that

T 2
E [||hl28T suB.] = (ﬂ;;”) o (pﬂ) ‘o (;) and  Var (|28 suB.) = O (;) |

2
Recalling the mean and variance for Z—Q from Lemma and using the classical covariance bound for
the expectation of the product, we get that

e [T prous] < [L e (sl a0 + \/ o) v (%)
- + n Y2
2,2 1 Blu)? 1 L .
( ffp2+o(p2>) (5o () +0 (@) +o 3)

— BT o) 40 (1),

Then adding the two together, we get the result for ¢ > 1 as well. O

Lemma 31. In the same setting as Section[2] we have that, for ¢ < 1
1 1
E[B/(Z+A)TTATB.] =B.* - . = ]+0(=).
812+ AT ATB] = [8.17 - (BT +o (5 ) +0 (£
and forc > 1

1 (1B, 1
B[6(z +a)aT8] = o P - s (2R Larup) o o ().

Proof. For ¢ < 1, using the expectation from Lemma[30} we get

BBl (Z+ ) AT8] =E[B] (1-2(Z+4)) 5.]

=8:1* - i(ﬁ;ru)2 +0(1)+0 <1> .
p?+nc n

For ¢ > 1, using Lemma[2] we get

né n?|Is|? n?|Ih]? né !
Bl (Z+A)TTATB, =] (AAT +LhTsT — h™h— AATus™ — AATuh> B..
V2 Y2 Y2 72

We then compute the expectation of each term above.

To begin, we have that

1
E[8)AATB,] = E||,6*||2 by Equation [[3]

Next, we recall from Lemma[TT]that

E[B[h"s B, = 0and Var(8] h's"B.) = O (pld) -

and from Lemma[9] that

2 o) (D)0 ()

Thus, using Lemmas [36|and Lemma [37] we have that

E [SﬂIhTSTﬁ*] =0 <21) and Var <§,8;rhTsTﬁ*> =0 (i) )
n p°n n p’n

Then recalling the mean and variance of 7)? /v, from|19] using the standard covariance bound on the
difference between the product of the expectation and the expectation of the product, we get that

[ngﬁThT Tﬂ*] - (i) and E ["%TAAT hﬂ*] - (i)

53



Under review as a conference paper at ICLR 2026

Furthermore, for the next three terms, recall from Lemmal[I0] that

E[3,h"hB,] = 1B e +o <1) and Var (8] h"hB.) =0 <1>
* : d p*c—1) p2d : " p2d?
and
E 8] AATus'B.] = C;l(ﬁj u)’+o(1) and Var (8] AATus'B,) =0 (ﬂj AATusTﬁ*Cll>

and from Lemma/[T]]

E[3] AATuhB,] =0 and Var (8] AATuhg,) :O< 21d2>‘
P

Then recalling from Lemma[9] we have that
1 1
E[||s]|?] =1 - p and  Var(||s||*) =0 (d) .
Then using Lemma [36]and Lemma 37} we have that for third term
1 1 1 1
22Ty T _ 2 22T T _
Blls|?AI o] = .10 (g )40 () ana Ve (IsiBTnThs.) =0 ()

for the fourth term

Bllnl6T AdtusT = (55 o)) (SSH@Twr o) +o ()

- (6521:)2 +o(1) +0 (pid>

with variance 1
Var(||h|?8, AATus") =0 — | .
(8] AaTusT) = 0 (5
For the first term, we have that
1 1
E F JAATuh,@*] =0+0 <2> and  Var <§BIAATuhﬁ*> =0 <2>
n p*d n p*d
Adding the last three terms and using Lemma [34]twice, we get that

£
1

1 Ju)? 1
E {,@j <||s||2hTh + |h|?PTAA usT + AATuh,) ,3*] = %Hﬁ*\lz + (’8;2”6) +0+40(1)+0 (d

With variance

1
Var (ﬁj (||s|2hTh + |h|*TAATus™ + €AAMh) 5*) =0 <d)
n
Then recalling the mean and variance of 7% /v, from Lemma 19| and using the covariance bound for
the expectation of products, we get that
2

§
U

2
Y 2p T 2 foaT
E|—8, (|s]|*h h+|h|" TAA us' + -
Lﬁ (n H i e (s
Adding all five terms, we get that

T 1T AT _1 2 772 ||16*||2 1 T,,)\2 l
B (6 (z + a1 A8 = 218 - s (2R Larup) o o ().

O

D.6 STEP 5: UPSCALING AND ASYMPTOTIC RISK FORMULAS
In the previous step we derived downscaled expressions for the four constituent terms of the risk:

Bias, Variance, Data Noise, and Target Alignment. We stop our abuse of notation and are explicit
again about douwnscaled vs. upscaled.

54
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Bias (downscaled). For ¢ < 1, the bias term is
=9 2

1 o P 2 T2 2 C 1 1 1
ﬁq(“”””n%w@raﬂ] (B, ) +Tsyr1_cnzc+p2>+°<ﬁ toln)

For ¢ > 1, the bias term is

2 2.2

i ax Bell” (o=
%l(ﬁju)2((az_a2)+7ﬂip2<az_ e )) +a3] dH ( cl>ﬁ

2. e+ p? to (}) ‘o (1>
n n
Variance (downscaled). For ¢ < 1, the variance term is
2P 407 nc )

~2

v [azﬂ*n? T (BTw? ((az o)

1 G T P
2 — =
(nPc+p?)? 1—-c *+2aa(az —aa) n*c+ p?

9 c d n? 2
+Ter 2T 32 2 :
"\l—cp® p*(nPc+p’) 1-c
For ¢ > 1, the variance term is
2 2

~9 2 2 9
Plig (% @ _n Tup S (g 2a) 42 d 1
B (22 - 2 ) T S S (a2 2

Data noise (downscaled). The data noise term is
~2

~2
Qg P 2

Target alignment (downscaled). For ¢ < 1, the alignment term is

204
d

2
(a2 + (07 — ) (8Tw)? 2.

For ¢ > 1, the alignment term is

204p (a2 2 @A N 2 ( aA) T aT.e
d c ||/8*|| d 772+P2 ||ﬁ*” + oz ¢ ( *u) .

These formulas are expressed in terms of the concentrated building blocks, but still at the “microscopic”
scale in which 77 is O(V/d), p = ©(1), and 2, = 0(1/d).

In this section we return to the macroscopic, or upscaled, version of the problem. Specifically, we
multiply each term by d and reparametrize according to

d 2 0 d 2

02 = -n, 92 = fﬁ27 Te = d7_52r7
n n ’

while keeping p, p fixed. This normalization ensures that the effective spike strength 6, isotropic
noise level p, and label noise 7. , are all of order one. In this scaling, the risk is d times larger than in
the downscaled representation, and the resulting formulas cleanly separate the contributions of the
four terms.

The terms change as follows
Front factors (after multiplying by d).

=9 ~2 2
- &

Ll =2 d 92, % SaLN d ﬁQ , 7‘2p LN d a 24 ,52 , d 7'52 . = 7'52 . (20)

n ’
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Denominator identities.

wetpt = 00 +p% e = —

Frequently used ratios and their upscaled forms.

A
7]26+ p2 62 + p2’
,,720 B 02
n2c+p2_92+p2’
772 92

2 + p? :92+cp2’

2 cp?

MP+p2 02 +cp?

02 p? _ 92 p? .
P+~ @ e

> +p?) (0 +cp?) 1

(Pe+p?)? 1—c  (02+p?)? 1-c

Noise terms with aspect-ratio factors. ~After multiplying by d and substituting 72 = d 72,.:

92+Cp2

9 c d n? c? o1 ¢ 62
Ter \ T =022~ 2(n2 1 _ T T\ 2T . T e 21 —
1—cp? p*(nPc+p?)l-c Pl—c p2(024+p2)1-c

o (d 1 n? c 2 1 1 62
T, T, - -
er fA\pPe—1 p2(02+cp?)c—1

pPPe—1 pm2+p2)c—1

Alignment-specific identities.

n?c 62 n? 62

2 +n2c  p2+ 02 772-&-/)2:924-6,02'

2D

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

We now state the explicit upscaled limits for each component. As before, we present results separately
in the underparametrized regime (¢ < 1) and the overparametrized regime (c > 1). Each term has a

little o(1) error term.

Bias. For ¢ < 1, the bias contribution is
2

é2<[(dz —az)+ 9217&(@2 _O‘A)r(ﬁ:“)Q N 2

- c

For ¢ > 1, the bias is

2

d1—c0+p?

N 2 2 4 02
92 (Ig;l'u)2<(dzaz)+92p+p2(azac)> +a?4||/6;|| <Ccl> (72

C
Variance. For ¢ < 1, the variance contribution is

3 02(62 +cp®) 1
7l + T w2tz - a2 S ) L

- +20a(az —aa)

1 c 1
+T€2 (

Pl—c dp@+p?) 1-c

For ¢ > 1, the variance is

. a%  a? 62 c 62 2
7162 - 2 )+ BTy (a7 - 22)

d 6%+ cp? c—1 62+ cp?
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Data Noise. The data noise term is independent of c:
~2 ~2 2
ay p” |IB:II"
Target Alignment. For ¢ < 1, the target alignment contribution is

92
< T
—2d4p° (aA||ﬂ*|2 + (az —aa) (B u)? P2+92> :

For ¢ > 1, the alignment term is

L o « e 0
2 (218,17 - S B+ (a2 = 22) s (BTw)?).

Lastly, replacing g, p with 7, 7 and using d/n — c¢ yield the detailed expressions in Theorem up to
simple algebra (rearranging terms and simplifying the fractions).

E PROBABILITY LEMMAS

Proposition 2. If u,v € R? are fixed unit norm vector and A € R4*" is a Gaussian matrix with
ii.d. N(0,1) entries. If d > n, then we have that

(1—(u'v)*)(d—n)

E[(u’ AATv)?] = — " |(uTv)?(n +2) + .

d(d+2)

| = o o),

Var (u' AATv)?) =0 (;) :

Proof. Let P := AAT. This is the orthogonal projection matrix onto the column space of A, denoted
C(A) = Range(A). The subspace C'(A) is an n-dimensional subspace of R?. Because the entries
A;j are iid. N(0,1), the distribution of the random subspace C'(A) is isotropic (or rotationally
invariant). Consequently, the distribution of the random projection matrix P is also rotationally
invariant. That is, for any fixed d x d orthogonal matrix @, the distribution of Q PQ T is the same as
the distribution of P.

We are interested in E[(u " Pv)?]. Let 0 be the angle between u and v, such that cos(f) = u ' v
(since they are unit vectors). Due to the rotational invariance of the distribution of P, we can
choose an orthonormal basis without loss of generality. Let @ be an orthogonal matrix such that

"= Qu = e; = (1,0,...,0)T and v' = Qu lies in the span of e; and e,. Specifically,
v’ = cos(f)e; +sin(f)ey. Let P’ = QPQT. P’ has the same distribution as P. Then,

’U,TP’U —_ (QT’U/)TP(QT’U,) — (u/)T(QPQT)v/ — (UI)TPI’U/
Substituting u’ = e; and v’ = cos(f)e; + sin(f)es:
u' Pv = e] P'(cos(f)e; + sin(f)ey)
= cos(f)(e] P'e;) +sin(h)(e] P'ey)

cos(0) P, + sin(0) P{y

where P are the elements of P’. Since P’ has the same distribution as P, we can drop the prime
for calculatmg expectations involving the elements. Let X = u " Pv. We then need E[X?].

E[X?] = E[(cos(0) P11 + sin(0) P12)?]
= E[cos?(0) P2, + sin?(0) PZ, + 2 cos(6) sin(#) P11 Pyo)
= cos?(0)E[PZ] + sin?(0)E[PE] + 2 cos(0) sin(0)E[ Py Pyo]

Calculation of Moments. We need to compute E[PZ ], E[PZ,], and E[P;; Py5).
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Consider a reflection matrix R that maps e to —e5 and leaves other basis vectors unchanged (i.e.,
R = diag(1,-1,1,...,1)). Since the distribution of P is isotropic, it is invariant under reflection.
Let P* = RPR" = RPR. P* has the same distribution as P. The components are related:

Pl = (RPR)11 = Ri1 PRy = Py
and
Ply = (RPR)12 = Ri1P1aRos = (1) Pia(—1) = —Pis.

Therefore,
E[P11 Pia] = E[P]} Ply] = E[P11(—P12)] = —E[P11 Pr2].

This 1mphes 2]E[P11P12] = O, SO ]EI:PllPlQ} =0.

The diagonal element Py; = e] Pe; = || Pe;||3 represents the squared norm of the projection of the
fixed unit vector e; onto the random n-dimensional subspace C'(A). This variable follows a Beta

distribution: p
P 11~ Beta E, ;n
2 2

The mean and variance of a Beta(«, 3) distribution are + and W, respectively. Here,
a=n/2and f=(d—n)/2,s0a+ B =d/2.
n/2 n
(Pl = 32 =
Next
Var(Pry) = (n/2)((d—n)/2) _ n(d—n)/4 _ n(d—mn)-8 2n(d—n)
(d/2)%2(d/2 + 1) (d?/4)((d+2)/2) 4d2(d+2)  d%(d+2)

Now we find E[P? ] using E[PZ] = Var(Py1) + (E[P11])*:
9 n(d
ElPA] = Ed+ 2)) ( )
2n(d —n) +n?(d+2)
d?(d +2)
2nd — 2n? + n?d + 2n?
d*(d +2)
2nd + n%d
d?(d +2)
n(n + 2)
dd+2)

We use the property that P is a projection matrix, so P?> = P. The trace is Tr(P) = n. Also
Tr(P?) = Tr(P) = n. We can write Tr(P?) = Tr(PP") since P is symmetric.

d d
=D > (P
i=1 j=1

Taking the expectation:

BTGP = & |30 5| = YEIPS) -

By rotational symmetry, E[P?2] is the same for all 4, and E[Pfj] is the same for all ¢ # j.

é 2+ > E[P]

i#]
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There are d diagonal terms and d(d — 1) off-diagonal terms.
dE[P})] +d(d —1)E[P}] =n
Substitute the value for E[P? ] (assuming d > 1):
n(n + 2) 21
n(n+2)
d+2
B 5, nn+2) nd+2)—nn+2) nd+2n—n*—2n _ n(d—n)
dld =D E[Pp] =n - =75~ = d+2 - d+2 d+2
n(d —n)
d(d—1)(d+2)

+d(d—1)E[PL] =n

E[sz] =

Substitute the moments back into the expression for E[X2]:
E[X?] = cos?()E[PZ] + sin?(0)E[PL)] 4 2 cos(6) sin(#) - 0
Using cos(f) = u v, cos?(0) = (u' v)?, and sin®(f) = 1 — cos?(f) = 1 — (u"v)%:
2] _ 2 (n(n+2) 2 n(d—n)
mleTadt) = o () + 0= 070" (i)
(1 (u'v)*)(d - n)}

= [(u—r'u)z(n +2)+

dd+2)
_ ClQ(uva +0 (;) .

Calculation of Variance. Recall that reflection R = diag(1,—1,1,...,1) implies P % RPR
(equal in distribution) and thus E[Py; Pi3] = 0, and in general any mixed moment with an odd power
of P;5 vanishes. Therefore, we have the following expansion:

E[X*] = cos OE[P}] + 6 cos® sin? O E[PE PE] + sin® A E[PL]. (31)

d—1

We start with E[P}4]. Since Pj; ~ Beta(a, 8) with a = 2, 3 = 9=, We need the higher moments
for the Beta distribution: for m > 1,

alm ()
@+t ~ (&)

In particular, we have the following third and fourth moments:
n(3) n\(4)
5 (5)Y 1 1 s (301 1
IE[I)ll]_ (%)(3) _C3+O(d)7 IE[Pll]_ (%)(4) _C4+O d)’

We now move on to E[P? P2].From idempotency, (P?);; = Pi; gives the row identity Pj; =

E[P] = ™ =gz +1)- (x+m—1).

ZZ=1 Plzk. Multiplying by P? and taking expectations, we have that

d
E[P}] = E[Py] + ZE[P121P1219] = E[P}}] + (d — 1) E[P}, PLy].
k=2
E[P}] — E[P{y] L (3% W 1 /1 1 1 1
E{PE PL] = d—1 d—l((zi)(B)(‘2)(4)>d—1<c3c4+0<d>)0<d)'

We still need to evaluate or upper bound E[P]. From Py, = Y¢_ P2 we have Y¢_, P2 =
Py1 — P?. By Cauchy-Schwarz,

d d 2
> Pl = <ZP12k> = (Pu - P})*.
k=2 k=2
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Taking expectations, we get:
(d — DE[PY] < E[(Pu — P})?] = E[P]] - 2E[P})] + E[PY].

1 1 2 1 1 1
EPL<— (5 -5+ )+0(=)=0(=).
[ 12]d—1<02 c3+c4>+ <d2> <d)
We can now plug these expectation bounds into Equation [31}

(ﬂ)(4) 1 1
+ 0 (d) 6cosZfsin?6 + O (d) sin* 0

2
(5)®

1, + 4 1
Recall from the prior proof that:

2 g nn+2) n(d —n) 1 9 1
E[X?] = cos Qm—ksm?Gm_?(uTU) +O(d).

Finally, we have that the variance is of order:

E[X*] = cos* 0

Var(X?) = E[X*] — (E[X?])* = 0<1> .

d
O
Lemma 32. Let a # 0 be a constant and suppose that { = a + o(f(n)) as n — oo. Then,
1 1
(3 +o(f(n)).
Proof. Write ¢ = a + r,, with r,, = o(f(n)). Then
11 11
¢ a+r, a 1427
Using the expansion
1
=1-u+0®? asu—0,
1+u
with u = r,, /a, we obtain
1 1 r 1 r
e = (=T Oen?) =5 - 5+ 06
Since 7, = o(f(n)) and f(n) — 0, we have r2 = o(f(n)). Therefore
1 1
(=3 + o f(n)),
which is the desired expansion. O

Lemma 33 (Variance of a reciprocal). Let X be a random variable satisfying
E[X]=a>0 and Var(X)=0%=o0(1),

and assume that X is bounded away from zero with high probability. That is, there exists C € (0, a)
such that
PriX>C]=1-0(1)

If there exists an M such that
E[X ¥ <M and E [(X —E[X])ﬂ = 0(c%)

Then

Var (;) . %Var(X) + o (Var(X))

so in particular, Var(1/X) = o(1).
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Proof. LetY := X — a. Then
EY]=0, E[Y?]=0% E[Y']=0(s").

By Taylor’s theorem with Lagrange remainder for f(z) = 1/x, there exists § = 8(X) € (0, 1) such

that

1 1 Y Y?
— =4z Zi=—_ >0
X a (12—1—7

(a+6Y)* ~
Write A == + — 1 = — 2% 4 Z Then
Var()l(> =E[A?] - (E[A)°.

‘We will show

E[A’] =% +o(0?) and (E[A)) =o(o?).

Let G := {X > C} and B := {X < C}. Since C' < a and E [Y?] = o2, Chebyshev gives the

quantitative bound

_ E[YQ} _ o’ _ 2\ _
Pr[B] =Pr[|Y|>a—-C] < @ 0P —(a_Cp =0(0”) =o(1).

Second moment E [A?]. We split over G and B.
On G. Since a + 0Y = 0X + (1 — 0)a > C, we have
Y2 Y4

2

Therefore
Y 2 1 5 2 )
E —¥+Z 1c| = gIE [V21¢] — EE[YZM]HE[Z 1] .
We bound each term as follows.
E[Z°1¢] < %E [Y*] =0(c"),
and, using 15 < 1 and Lyapunov/monotonicity of LP norms,
1 1
E[YZ|16) < HE |IVF] < 55 E[Y'])* = 0(0) = o(e?).

Moreover,

E[Y?1g] = *-E[Y215],  E[Y?15] < (E[Y*])"*Pr[B]? = 0(¢?) Pr[B]"* = 0(0?) .

Hence )
Y o? 9
El(—aerZ) lc] = +o(o%).

On B. Using the algebraic identity

1 1\ v?
X a) a2X?

Cauchy—-Schwarz and Holder (with exponents 2, 2) give

1 _[Yy? 1

E[A%1p] = SE [ 14 < S EN) R < 5 00?) © X)) (B

a? X2 a
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Under the lemma’s assumption E [ X ~8] < M, we get
E[A%15] = O(0®) Pr[B]Y* = o(0?).

Combining the G and B parts,
2

E [AQ] = 2—4 + 0(02) .

Mean correction (E [A])%. Since E [Y] = 0, we have
E[A] =E[Z] = E[Z10] +E[Z14].
OnG,Z <Y?/C3, s0

1 1
E[Z1c] < E [Y?15] < §02.

On B, The inequality
Y?2 X2
= — < —
a+0Y)3 — Y3
holds on set B because on this set as X < a, meaning the point a + 6Y lies between X and a, so
a + 0Y > X. Thus, using Cauchy—Schwarz and Holder,

E[Z1p] <E {Xz B} < (E [y4])1/2 (E [XﬂslB])l/2 <0(s%) (E [X*12])1/4 Pr[B]Y* = 0(c?).

Thus |E [A]| = O(0?) and therefore
(E[A])? = O0(c*) = o(c?).

Putting the two steps together,

Var ) =B (8% = @A) = T3 +0(0?) = 27 Var(X) + o{Var(X)).
0

Lemma 34 (Variance of a sum). Let A and B be any random variables with finite variances
V(A) = Var(A) and V(B) = Var(B). Then,

Var(A + B) < (ﬁjuﬁ)

Proof. Recall that
Var(A 4+ B) = Var(A) + Var(B) + 2 Cov(4, B).

By the Cauchy-Schwarz inequality, we have

|Cov(4, B)| < /V(A)V(B).

Thus,

Var(A+ B) < V(A) + V(B) + 2V AV(B) = (VV(A) + VV(B)) .
O

Lemma 35 (Variance of one product). Let A, B be real random variables with means a = E [A],
b = E [B] and finite variances. Assume

E [(A - a)ﬂ < KaVar(4)?, E [(B - b)4] < Kp Var(B)?.
Then, with Cy := (K4 Kp)'/4,
V/Var(AB) < |a|\/Var(B) + |b|/Var(4) + C4+/Var(A) Var(B).
Moreover, as Var(A) , Var(B) — 0,
Var(AB) = O (a®Var(B)) + O (b*Var(A)) + o(Var(A) + Var(B)).
It directly follows that if all the means are O(1),
Var(AB) = O (Var(B)) + O (Var(4)).
Var(ABC) = O (Var(C)) + O (Var(B)) + O (Var(A)) and so on by induction.
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Proof. Write 3 o

AB—-ab=aB+bA+ AB.
Using Var(U + V) = Var(U) + Var(V) + 2 Cov(U, V) and |Cov(U, V)| < /Var(U)Var(V), we
get

Var(AB) = Var(aB +bA + AB)

< <|a Var(é) + |b\/Var7(A) + \/@f.

Since Var(A) = Var(A) and Var(B) = Var(B), it remains to bound Var(le). By
Cauchy—Schwarz (Holder with p = ¢ = 2),

var(45) =[5 < (2[4)" (e[5])"
Since we assume fourth-moment control E {1214} < KaVar(A)? and E [B‘*} < Kp Var(B)?, then
Var (AB) < (KaKp)'*\/Var(A)Var(B).

Hence

Var(AB) < (\a|\/Var(B)+\b|\/Var(A)+C4 Var(A)Var(B))Q, Cy = (KaKp)'/*.

For the moreover part, using the exact variance—covariance expansion,
Var(AB) = a*Var(B)4b*Var(A)42ab Cov(A, B)+Var (AB) +2a Cov (B, AB) +2b Cov (121, ~B) ,
we bound the three remainder terms using Cauchy—Schwarz and the fourth—-moment control:

Var(AB) <E [/121%2} < (E [A‘*Dm (E [B‘*Dm < 02 Var(A) Var(B),

‘COV(B,AB)‘ < \/Var(é) \/Var(flé) < C4Var(B) 4/ Var(A),

cov(4.4B)| < \/vaur (4) \/var (AB) < € Vax(4) /Var(B).
As Var(A), Var(B) — 0, each of these is o(Var(A) + Var(B)).

For the covariance term, Cauchy—Schwarz and the inequality 2uv < eu? 4+ e~ 102 (for any £ > 0)

with u := |a|/Var(B), v := |b|4/Var(A) give
| 2ab Cov (A, B)| < 2|ab|+/Var(A) Var(B) < e a*Var(B) 4+ e 'b*Var(A).

Therefore,
Var(AB) < (14 ¢)a*Var(B) + (1 +&7 1) b*Var(A) + o(Var(A) + Var(B)) .
Choosing, e.g., ¢ = 1 yields
Var(AB) = O(a*Var(B)) + O(b*Var(A)) + o(Var(A) + Var(B)),
which proves the moreover statement. O

Lemma 36 (Variance of general product). Let m > 2 and let X4, ..., X,, be real random variables
with nonzero means p; = E[X;] # 0 and variances f;(n) := Var(X;) — 0 as n — oo. Assume
that for some integer M > m (it is enough to take M = m),

E[|1X; — wil®™] = O(Var(X;))™)  foreachi=1,...,m. (32)
Then
m m 2
Var(HXi> = O((Z fz(”)) ) = O(fg@%ﬁ(”))
i=1 i=1 -
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Proof. Write A; := X; — p; so that E[A;] = 0 and ||A;]|, = o;. By assumption Equation [32] with
M > m and monotonicity of L,, norms,

1AL, = O( fz(n)> forevery l <k<m,i=1,...,m.
Expand the product multilinearly:

- ¥ (1w) (I8

i=1 0#SC[m] \j€ES© i€S

Taking Lo norms and using the triangle inequality,

< > IT 1esl

Lo 0#£SC[m] \jeSe

m

H X — H i
=1 i=1

For a fixed nonempty S with | S| = k, apply Holder with exponents all equal to 2k:

[Tal =< Iiad., - O<H ﬁ)

ies g,  ies i€s
where we used ||A; ||z, = OV f;) for k < m.
Let ¢; := 4/ fi(n). Summing over subsets S shows

H X — H fhi
i1 i=1

where = := :’;1 ¢; and A is a constant depending only on m, {y;}, and the moment constants (not
on 7). Hence

Var(f[Xi) < ﬁXi_f[”i — 0@ = O((i«/ﬂ(n)f).

Since m is fixed, (Y-, v/fi)?> < m? max; f;, giving the claimed bound.

I

€S

Lo

m

< A(H(1+ci)—1) < A(E 1),

Lo i=1

2
Lo
O

Corollary 1 (Higher moments of the centered product). Fix p > 1. Under the hypotheses of
Lemmal36] then

H ﬁXi - ﬁE[Xv]

and hence E|T[" | X; —EJ[", Xi|2p =o(1).

b < G > (T EX) [IVE = o),

0#£SC[m] jES*© €S

Lemma 37 (Expectation of Product vs. Product of Expectations). Fix k > 2. Let X1, ..., X} be
random variables. Assume:

1. Uniformly bounded means: sup,, ; |[E[X;]| < M < oc.
2. Vanishing variances: Var(X;) = f;(n) with f;(n) — 0 as n — oo for each i.
3. Moment control up to order k: For each i and everyp € {2,...,k},

E[1X; — E[X;]]") < C, Var(X;)*/?,

with constants C.
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Then for finite k, we have:

k k
H Xi] - H EX;
=1 =1

E =0 (zz\/mf O(max fi(n)>.

1<i<k

Proof. Set A; := X, —E[X;], so EA; =0, Var(X;) = Var(4;) = f;(n), and by assumption
1AL, = E[APD” < 7 fin)'? p=2,... k.

Using the multilinearity of expectation,

[[x=T[EXx]+a)=>" (HAi> [1EX].

i=1 i=1 SC[k] \i€sS j¢s
Thus,
k k
[Mx-TIExI= > |TTa []EX.
i=1 i=1 0£SC[k] Lies j¢s

Then taking the expectation and noting that [ ] ¢ E[X;] is a constant, we get

k k
HXi]—HE[Xi}z > E|[TA [TEX]

0£SClk]  Lies j¢s

E

If S = {¢} then E [[],.5 Ai] = E[A/] = 0. Hence every singleton term vanishes exactly, and the
sum begins at |S| = 2. From the bounded means assumption,

[[EX;]| < M*181 vs C (k).

j¢s
Fix a nonempty subset S with |S| = m > 2. By generalized Holder with all exponents equal to m
(50 Yies 7 = D

2]

i€S

< [T1aile., < TT (calm i 2) = Cu TT VG,

€S i€S i€S

Therefore, for every S with |S| =m > 2,

E|[]a:| []EX,| <P Co [T V().
ieS j¢s €S
Let ¢; := 4/ fi(n) > 0. Denote by
em(c1y. .. ) = Z H I
SClk] i€S
|S|=m

the m-th elementary symmetric polynomial. Summing the bound from, we get

k k
H XZ-] — H EX;
=1

i=1

k
S Z Mk_mCm em(cl, .. .7Ck).

m=2

E

Let M, := maxo<,;<x M *~™C,,. Since e,, > 0 for ¢; > 0,

k k
Z MF"™C, em < M, Z em(Cly ... cL).
m=2 m=2
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Recall the identity
k k k

H(lJrci) = Zem(cl,...,ck) =1+ Zem(cl,...,ck),

i=1 m=0 m=1
sothat YF e =I5, (1+¢) —1— 3% | ¢;. Hence
k k k
=1

i=1 i=1 i=1
Let 2 := Zle ¢i — 0asn — oo. Since log(1 + u) < u for u > 0,

k k
H(l + ¢;i) = exp (Z log(1 + cl)> < exp(E).

i=1

€€0,5],s0e% —1—==1=25 < 1526= (since ¢ < Zand e < e%). Therefore,
k k M
E HXZl - []Ex:| < 5 =2e5 = 0(22),
i=1 i=1
as Z — 0 and €= — 1. Since = = O (Zf:l Vi (n)), we get the result. O

Lemma 38 (Moment preservation under monomial <+ Hermite change of basis). Fix M € N and
degree r € N. Let

M::{xV:'yENM, |v] < r}, 7’-[::{HO¢:046NM7 la] <71},

with H,(z) = ij:l Hy,(x;) the probabilists’ Hermite basis. For any (random) coefficients
{ay}y < define the random polynomial P(x) = 3, <, aya”. Then there is a deterministic,
invertible matrix T = T(M,r) such that the Hermite coefficients ¢ = {cq}|a|<r in P(z) =
2ol <r Ca Ho(z) satisfy

c = Ta.
Consequently, for any p > 1,

lealle, < Y |Taslllasllz, foralla,

lyI<r

so if each a, € Ly, then each c,, € Ly. Moreover, since T is invertible, the converse also holds: if
each c,, € Ly, then each a, € Ly,

Proof. In one dimension, each monomial admits a finite Hermite expansion z™™ =
Z;Zézj tim,; Hm—2j(z) with deterministic coefficients t,,_ ;; in several dimensions, take tensor
products to obtain 27 =}, < |,| Tay Ha(z). Ordering multi-indices by total degree yields a block
upper-triangular, deterministic, invertible matrix 7' = T'(M, r). Linearity gives ¢ = T'a. Forp > 1,
Minkowski’s inequality yields [cq ||z, = || >y Tanay ||Lp <>, [Taq|llay]l L, so finiteness of all
lay||z, implies finiteness of all ||c4||z,. Invertibility gives the converse using a = T~ 'c and the
same argument with 71, O

F PROOF OF SPECIFIC CASES AND OVERFITTING

F.1 PROOF OF THEOREMIIl

Proof. Wesetayz = ap =ayz =as = q, 0 = 0, 7 = 7 in the above Theoremand note that it
greatly simplifies each term. Algebra shows that for ¢ < 1

2 € 0° : 2,2 2 2
Variance = o“7°||B.]|° + T,

c 62
Bias = 1—
1as T, 51*0 |: d(92+7'2):| )

€1 —cd(62+12)’
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Data Noise = o?72||3, >, Target Alignment = —2a272||3, ||,

While for ¢ > 1, we can first send d, n — oo and many terms become asymptotically 0. In the end,
we get that:

1 2 2 2
Bias = o20%(3, u)? (1 — ) ( re ) ,  Data Noise = o*72||8.||°,

c 0% + t2¢

1 62 1 1
Variance = 0627'2”[7'*“22 + QZTQ(QIU)Qm (1 — c) + 7'820 — 1

P (aTu+ 8.2
02 + 2¢ U e )

Adding these terms together, we see with simple algebra that many terms cancel or can be combined,
establishing the stated formula. O

1
Target Alignment = —2a%72 <<1 - >
c

F.2 PROOF OF THEOREM[2]

Proof. Wesetayz = az, aa = Qg, 0 = 0,7 = 7,and send d,n — oo in Theorem Recall that
A.=az — %4 and A; = az — aa. Then some algebra shows that for ¢ < 1,

2

2
) T )
Bias = 0%(8] a7 (57— ) DuaNoise = o1
Target Alignment = —202%72||8.|]* — 2a47%(8,] u)?A, A ,
* 02 4 72
. _ 2.2 2, 2 C s aT 2| 1 01 +6*%c 9°
Varlance = QAT ||ﬁ*|| + TE 17_0 + 7 (,8* U) |:1 — cmAl + QOCAA]m

For ¢ > 1, we have that

7'26

foe — 02(ATAV2A2
Bias = 6 (,6* 'LL) Ac <M

2
) ,  DataNoise = o728, |%,
6‘2
€02 + 2¢’
1 c 62
2 203T,,\2 2
—AZ
+T€c—1 7B 1—cO2+712¢ ¢
We proceed by adding these terms together and the results follow from algebra. O

2
Target Alignment = —2a?472Hﬁ7*” —2047%(B,) u)?A
c

Variance = o7

A
Cc

F.3 PROOF OF THEOREM[3]

Proof. We set 6 = 0 and 7 = 7 in Theorem |5|and have the regime of equal operator norm 6% = 72,
Since we are interested in the limit ¢ — oo, we only consider the overparameterized case ¢ > 1. We
first take the limit d, n — oo and have that:

2
C
Bias = (87w (VAtaz —az)+ (az = ) 2L0) . DuaNoise = a1

2
Target Alignment = —2G47° ((az - a—A) (BT w)? +aa 18] ) ,
v+c c

2 2 1
Vari _ 2 o 1Bl 203T, 2__ ¢ v ( _04A> 2 .
ariance = 7°0 — +7(8, u) T az = + 77 1

The rest follows from simple calculus: if &z # az, v = w.(1), and Blu # 0, the bias will
diverge and other terms are controlled, yielding catastrophic. If &z = az, w.(1) < v < 0.(c?), and
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B u # 0, a similar thing happens. In other cases, all of these terms are controlled and become finite
values in the limit lim,_, oo R, — 782, giving us tempered overfitting.

a4 72| B? BLu
? [vaz (B u)? + 6% |18.] B L,y =6.(1)
00 az #az, B L u,y=w(l)
lim R. =
c—00 00 Qy = 5427/3* 71/— u,w(l) S ’7 ( 2)
7 (e 0% — 2aa02) (BTw)? + aAlIBI] oz =az,8. L uy = o
72 [(a} — 2d402) (B u)? + o2 |B.]%] az =agz, B L u,y=w(c?)
L]

F.4 PROOF OF THEOREM [4]

Proof. We start with the first part and assume that az # @ yz. Similarly, we have that 6 = 0 and
T = 7in Theorem To achieve equal Frobenius norm, we set #? = dr? and send d,n — 00 SO
several terms would vanish.

In particular, for ¢ < 1, we have that
2

2 2
M) =78, u)? (ﬁ(@z—az)ﬂaz—m) ﬁ) :

It is clear that this term becomes oo since the term inside the parentheses scales with d. Note that the
variance and data noise are non-negative, and target alignment is controlled. We have that R, = oo
forc € (0,1).

For ¢ > 1, the same logic follows, and we also note that:

Bias = 6°(8, u)? (dz —az+ (az - O%A) TQC>2 = 7%(8) u)? (\/g(dz —az)+ (Ocz - 7) Ve ) ;

Bias = 92(ﬁju)2 (dz —az + (az —aa)

02 + 12¢ d+c
which scales with d with other terms controlled. Hence, R = oo for all ¢ # 1.

Now assume that oz = & z. Since we are interested in ¢ — 0o, we only consider ¢ > 1. First, from
algebra and taking the limit for d, n, we have that:

2
Bias = 72(8, u)? ((az — —) ;i) — 0, Data Noise = a4 72|81,

2
Target Alignment = —2d 472 ((az — 7) (ﬂT Y +a ||ﬂ*H )
Variance = 720% ~—— H'@*” TQ(BI'U,)Q( < ( ) ( ) .
c—
We now take ¢ — oo and many terms vanish in this hmlt yielding:
lim Re = —2a40z7(8] w)*+7°(B] u)*aZ+a47°|B.|” = 7 [(B] w)* (e} — 2aaaz) + ||B.]*a%] -

c— 00

O

Proposition 3 (Non—existence of a canceling scale parameter). Let a4,z > 0 be fixed scalars, let
u, B, € R? be fixed vectors, and set

=B >0, b= (8lu)’ €0,q].

For every positive real number ¢ define

f(@) = afa + (aQZ(1+l> —2aZaA) b.

¢
f(@) >0 forall > 0.

Consequently the equation f(¢) = 0 has no solution with ¢ € (0, c0).

Then
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Proof. 1t b = 0 (i.e. B. is orthogonal to u) we have f(¢) = a%a > 0, so no positive ¢ can cancel
the expression. Hence assume b > 0.

Writing 7 := b/a € (0, 1] we obtain

2
f(¢):a[a,24+az(az—2a,4)r+ %} (%)

Sincer <1,
4 +az(ag —2ax)r > o +ag(ag —20,) = (aA—aZ)2 > 0.

Thus the square bracket in (x) is the sum of a non—negative term and a strictly positive term.
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