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Abstract

With the surge of Transformer models, many001
have investigated how attention acts on the002
learned representations. However, attention003
is still overlooked for specific tasks, such as004
Semantic Parsing. A popular approach to the005
formal representation of a sentence’s meaning006
is Abstract Meaning Representation (AMR).007
Until now, the alignment between a sentence008
and its AMR representation has been explored009
in different ways, such as through rules or010
via the Expectation Maximization (EM) algo-011
rithm. In this paper, we investigate the ability012
of Transformer-based parsing models to yield013
effective alignments without ad-hoc strategies.014
We present the first in-depth exploration of015
cross-attention for AMR by proxy of align-016
ment between the sentence spans and the se-017
mantic units in the graph. We show how cur-018
rent Transformer-based parsers implicitly en-019
code the alignment information in the cross-020
attention weights and how to leverage it to021
extract such alignment. Furthermore, we su-022
pervise and guide cross-attention using align-023
ment, dropping the need for English- and AMR-024
specific rules.025

1 Introduction026

At the core of NLU lies the task of Semantic Pars-027

ing, aiming at translating natural language text into028

machine-interpretable representations. One of the029

most popular semantic formalisms is the Abstract030

Meaning Representation (Banarescu et al., 2013,031

AMR), which embeds the semantics of a sentence032

in a directed acyclic graph, like shown in Figure 1,033

where concepts are represented with nodes, such034

as thirst; semantic relation between concepts are035

represented by edges, such as :purpose; and the036

co-references are represented with reentrant nodes,037

such as p4 representing pill. As of now, AMR has038

been widely used in Machine Translation (Song039

et al., 2019), Question Answering (Lim et al., 2020;040

Bonial et al., 2020b; Kapanipathi et al., 2021),041

Human-Robot Interaction (Bonial et al., 2020a), 042

Text Summarization (Hardy and Vlachos, 2018; 043

Liao et al., 2018) and Information Extraction (Rao 044

et al., 2017), among other areas. 045

Alignment between spans in text and semantic 046

units in graphs (see Figure 1) is a fundamental re- 047

quirement for multiple purposes, such as training 048

AMR parsers (Wang et al., 2015; Flanigan et al., 049

2016; Misra and Artzi, 2016; Damonte et al., 2017; 050

Zhou et al., 2021), cross-lingual AMR parsing 051

(Blloshmi et al., 2020), applying AMR in down- 052

stream tasks (Song et al., 2019), or the creation of 053

new semantic parsing formalisms (Navigli et al., 054

2022; Martínez Lorenzo et al., 2022), among others. 055

However, AMR does not provide such alignment 056

information. 057

Several alignment standards have been proposed 058

to mitigate this issue, such as JAMR (Flanigan 059

et al., 2014), ISI (Pourdamghani et al., 2014) or 060

LEAMR (Blodgett and Schneider, 2021), among 061

others. Following these standards, there are differ- 062

ent approaches to extract the alignments, such as 063

adopting rule-based approaches (Liu et al., 2018), 064

or by statistical strategies using Expectation Maxi- 065

mization (EM) (Pourdamghani et al., 2014; Blod- 066

gett and Schneider, 2021). 067

Current state-of-the-art AMR parsers are auto- 068

regressive neural models (Bevilacqua et al., 2021; 069

Bai et al., 2022) that do not generate or rely on 070

alignment when parsing the sentence to produce 071

the graph. Therefore to obtain both, one needs 072

to i) predict the graph and then ii) generate the 073

alignment using an aligner system. 074

Recent work has questioned considering atten- 075

tion as an explanation (Bibal et al., 2022), or 076

put it to test against other approaches such as 077

saliency methods (Bastings and Filippova, 2020). 078

We want to explore whether this holds true for 079

cross-attention in auto-regressive parsers and the 080

alignment problem in Semantic Parsing as we un- 081

cover the relation between them. This paper ex- 082
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Figure 1: A sentence (top) with its AMR graph (left) and the AMR linearization (right). Colors represent alignment.

plores how auto-regressive models implicitly en-083

code the relations between spans in the text and084

semantic units in the graph through cross-attention085

and how the alignment can be obtained directly086

while predicting the graphs.087

The main contributions of this paper are as fol-088

lows: (i) we explore the type of implicit alignment089

knowledge that Transformer-based AMR parsing090

models preserve; (ii) we extract the alignment infor-091

mation from the model; (iii) we supervise a model’s092

cross-attention for improving how it learns and (iv)093

obtain state-of-the-art results in AMR alignment,094

along with different standards.095

2 Related Work096

JAMR (Flanigan et al., 2014) aligns spans to sub-097

graphs by applying an ordered list of 14 criteria.098

One shortcoming of JAMR is that it is unable to099

resolve ambiguities. TAMR (Liu et al., 2018) ex-100

tends it with an oracle parser that selects the align-101

ment corresponding to the highest-scored candidate102

AMR graph. ISI (Pourdamghani et al., 2014) uses103

an EM algorithm to establish alignments of tokens104

with nodes and relations. The graph is first lin-105

earized, and then EM is used with a symmetrized106

scoring function where probabilities of a node or107

edge to be aligned to a word and vice versa are108

equal.109

This leads to more diversity in terms of align-110

ment patterns but fails when facing easy to recog-111

nize patterns such as dates.112

LEAMR (Blodgett and Schneider, 2021) com-113

bines rules and EM to automatically align sentence114

spans with graph’s semantic units. All semantic115

units in the graph should be aligned to at least one116

span of the sentence, which makes it the first stan-117

dard to tackle reentrant nodes.118

Throughout the last years several systems have 119

incorporated innovative methods to extract the 120

alignment, e.g., by incorporating syntactic informa- 121

tion (Chen and Palmer, 2017; Szubert et al., 2018; 122

Chu and Kurohashi, 2016), word embeddings (An- 123

chiêta and Pardo, 2020) or including graph distance 124

information (Wang and Xue, 2017). Zhou et al. 125

(2021) provide alignments while parsing with a 126

transition based approach, but rely on JAMR align- 127

ments and are not evaluated. 128

2.1 Semantic Parsing and Transformer 129

Most modern systems for AMR parsing rely on 130

Encoder-Decoder Transformers such a BART or 131

T5 (Lewis et al., 2020; Raffel et al., 2020; Lam 132

et al., 2021). Such models consist of two stacks of 133

Transformer layers, with self- and cross-attention 134

as their backbone. 135

With the surge of Transformer models, research 136

has explored how attention encodes the information 137

in text, i.e., whether it corresponds to the intuition 138

behind human attention (Vashishth et al., 2019), or 139

different definitions of explainability (Bastings and 140

Filippova, 2020; Bibal et al., 2022). Several works 141

have investigated how attention operates, relates 142

to preconceived ideas, aggregates information and 143

explains model behavior for tasks such as Natural 144

Language Inference (Stacey et al., 2021), Transla- 145

tion (Yin et al., 2021; Zhang and Feng, 2021; Chen 146

et al., 2021), Summarization (Xu et al., 2020; Man- 147

akul and Gales, 2021) or Sentiment Analysis (Wu 148

et al., 2020). There have even been attempts at guid- 149

ing attention in order to improve interpretability or 150

its performance in downstreams tasks (Deshpande 151

and Narasimhan, 2020; Sood et al., 2020). How- 152

ever, to our knowledge there has been no study on 153

attention for AMR Parsing. We fill this gap with 154

our paper. 155
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3 Foundations156

3.1 Alignment Standards157

While conceptually our approach is agnostic to dif-158

ferent standards, we rely on existing ones. Figure159

1 shows an intuition of the concept’s alignment160

between the sentence and the AMR graph.161

ISI The ISI standard aligns single spans in162

the sentence to graphs’ semantic units (nodes or163

relations). ISI aligns relations and reentrant nodes164

when they explicitly appear in the sentence.165

LEAMR The LEAMR standard differentiates166

among 4 different types of alignment: i) Subgraph167

Alignments, where all the subgraphs that explicitly168

appear in the sentence are aligned to a list of con-169

secutive spans, ii) Duplicate Subgraph, where all170

the subgraphs that represent omitted concepts in171

the sentence are aligned, iii) Relation Alignments,172

where all the relations that do not take part in a173

previous subgraph structure are aligned, and iv)174

Reentrancy Alignments, where all the reentrant175

nodes are aligned. In contrast to ISI, all the seman-176

tic units in the graph are aligned to some list of177

consecutive spans in the text.178

3.2 Cross-attention179

Originally described by Vaswani et al. (2017) as
“multi-head attention over the output of the en-
coder”, and referred to as cross-attention in Lewis
et al. (2020); it enables the Decoder to attend to
the output of the Encoder stack, conditioning the
hidden states of the autoregressive component on
the input text. We define the self-attention module
and Transformer cross-attention as:

Attention(Q,K, V ) = att(Q,K)V

att(Q,K) = softmax(
QKT

√
dk

)

CrossAtt(Q,K, V ) =

Concat(head1, ..., headH)WO

headh = Attention(QWQ
h ,KWK

h , V W V
h )

where K,V = Eℓ ∈ Rne×dkH and Q = Dℓ ∈180

Rnd×dkH are the encoder and decoder hidden states181

at layer ℓ, ne and nd are the input and output se-182

quence lengths, H the number of heads, WQ
h ,WK

h183

and W V
h ∈ RdkH×dk are learned weights that184

project the hidden states to the appropriate dimen-185

sions, dk, for each head and WO ∈ RdkH×dkH is186

a final learned linear projection. Therefore in each187

head h and layer ℓ we define the attention weights188

as attℓh = att(DℓWQ
h , EℓWK

h ) ∈ Rnd×ne .189

4 Method 190

4.1 Unsupervised Cross-Attention 191

We argue there is an intuitive connection between 192

cross-attention and alignments. Under the assump- 193

tion the decoder will attend to the parts in the input 194

that are more relevant to predict the next token, we 195

infer that when decoding the tokens for a certain 196

node in the graph, attention should focus on related 197

tokens in the input, and therefore the words that 198

align to that node. We will use the cross-attention 199

matrices (attℓh) to compute an alignment between 200

the input and the output. 201

4.2 Guided Cross-Attention 202

We want to explore whether cross-attention can be 203

guided by the alignment between the words of the 204

sentence and nodes of the semantic graph. To this 205

end, we construct a sparse matrix align ∈ Rnd×ne 206

from the automatically generated ISI or LEAMR 207

alignments: 208

align(i, j) =


1 if xi ∼ yj

0 if xi ≁ yj

where ∼ indicates an alignment between token xi 209

(part of a word) and graph-token yj (part of a node 210

or relation). 211

However this produces a sparse matrix. While 212

there are sparse versions of attention (Martins and 213

Astudillo, 2016), they did not produce successful 214

alignments in our experiments. Hence we choose 215

to alleviate the constraint of imposing sparsity by 216

employing the scalar mixing approach introduced 217

in ELMO (Peters et al., 2018). We therefore learn 218

a weighted mix of each head and obtain a single 219

attention matrix: 220

attℓ = γ

H∑
h=0

shatt
ℓ
h ∈ Rnd×ne (1) 221

where s = softmax(a) with scalar learnable pa- 222

rameters γ, a0, . . . , aH . We obtain better results 223

when using a subset of heads to compute attℓ. 224

The model is free to give more weight to certain 225

heads that naturally become more sparse, while 226

other heads are free to encode useful information 227

that may be independent from alignment. In our 228

experiments we use the implementation of Bevilac- 229

qua et al. (2021) to train our parser, but add an 230

additional Cross-Entropy loss signal: 231
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232

L = LLM −
nd∑
j∑

i align(i,j)>0

ne∑
i

log
exp

(
attℓ(i, j)

)∑nd
k exp (attℓ(i, k))

233

align(i, j)∑ne
k align(k, j)

234

4.3 Saliency Methods235

Input saliency methods represent a theoretically-236

valid alternative to our reasoning about cross-237

attention, i.e. that when decoding the tokens for a238

certain node in the graph, a higher importance will239

be given to the tokens in the input that correspond240

to that node, or at least to those that were more241

important in their prediction.242

Therefore we look at the saliency weights of the243

input at each decoding step, obtaining a weight244

matrix with the same size as the cross-attention,245

sal ∈ Rnd×ne .246

To this end we deploy Captum (Kokhlikyan247

et al., 2020), with an array of saliency methods248

such as gradient-based: Integrated Gradients (IG),249

Saliency (Simonyan et al., 2014), Input X Gradient250

(IxG); backpropagation-based: Deeplift (Shriku-251

mar et al., 2017), Guided Backpropagation (GB)252

(Springenberg et al., 2015); and finally occlusion-253

based (Zeiler and Fergus, 2014).254

5 Alignment Extraction255

The algorithm 1 to extract and to align the input-256

output spans is divided into the following steps:257

1. Alignment Score Matrix We create a matrix258

M ∈ Rnd×ne , where ne is number of tokens259

in the sentence and nd is the number of to-260

kens in the linearized graph, using the cross-261

attention or saliency weights as described in262

Section 4.263

2. Span Segmentation We sum the scores of to-264

kens that belong to the same sentence words265

column-wise in M . Then, the sentence to-266

kens are grouped into spans using the span267

segmentation procedure in LEAMR (Blodgett268

and Schneider, 2021).269

3. Graph Segmentation We sum the score of to-270

kens that belong to the same graph’s semantic271

unit row-wise in M .272

1The pseudo algorithm is described in the Appendix C

4. Sentence Graph Tokens Map We iterate over 273

all the graph’s semantic units and map them 274

to the sentence span with higher score in M . 275

5. Special Graph Structures We revise the map- 276

ping by identify subgraphs that represent lit- 277

eral or matching spans – e.g., named entities, 278

date entities, specific predicates, etc – and 279

align them accordingly. 280

6. Alignment Formatting We extract the final 281

alignments to the appropriate format using the 282

resulting mapping relating graph’s semantic 283

units to sentence spans. 284

6 Experimental Setup 285

6.1 Datasets 286

Graph inventory AMR 3.0 (LDC2020T02) con- 287

tains 59,255 manually annotated sentence-graph 288

pairs. We only use the train split for the guided 289

approach, and use the respective validation and test 290

splits from the alignment systems. 291

Alignments We evaluate our systems on two 292

gold alignments. ISI (Pourdamghani et al., 2014) 293

released two splits of 200 manually annotated align- 294

ments that we use as validation and test set. We 295

update them to the AMR 3.0 formalism. Similarly 296

LEAMR provided 150 validation and 200 test man- 297

ually annotated alignments. These include some 298

sentence-graph pairs from The Little Prince Corpus 299

(TLP) complemented with randomly sampled from 300

AMR 3.0. 301

6.2 Model 302

In all cases we use SPRING as our parsing model, 303

based on BART-large. We extract all attℓh matrices 304

from a model trained on AMR 3.0 as in Blloshmi 305

et al. (2021) in order to perform our unsupervised 306

cross-attention analysis. For the guided approach 307

we re-train using the same hyper-parameters as 308

the original implementation but with an extra loss 309

signal as described in Section 4.2 based on either 310

LEAMR or ISI. When using LEAMR alignments, 311

we restructure the training split in order to exclude 312

any pair from their test and validation sets. 313

7 Experiments 314

Layer and Head analysis To explore how cross- 315

attention correlates to alignment, we compute the 316

Pearson’s r correlation between each attℓh matrix 317

and the LEAMR alignment matrix align after we 318
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Figure 2: Unsupervised (left), saliency (center-left) and guided (center-right) alignment weights and LEAMR (right)
gold alignment for lpp_1943.1209. To interactively explore all cross-attention weights go here.

flatten them and remove special tokens not relevant319

for alignment. In Figure 3 we observe how, overall,320

there is a clear positive correlation. We noticed that321

attention is focused solely on the beginning and322

end of sentence tokens and punctuation marks in323

heads with a low correlation. While we do not have324

an intuition on why certain heads correlate more325

with it, there is a clear connection between cross-326

attention and alignment. For instance, the head 6327

in layer 3 (att36) achieves a value of 0.635, approxi-328

mately the same as the sum of the whole layer. The329

left image in Figure 2 shows the cross-attention330

values for att36 for an example of the TLP corpus.331

Notice how despite being a model that has not seen332

any alignment information, it can find the correct333

correspondence between non-trivial matches such334

as merchant and person.335

Saliency methods The two most correlated336

methods were Saliency and GB, with 0.575. De-337

spite this result, when we look at it, we notice how338

saliency methods were more prone to focus on es-339

sential parts of the sentence, such as the subject or340

predicate. These are usually aligned to more nodes341

and relations, explaining the high correlation, but it342

was less nuanced than cross-attention. The center343

image of Figure 2 portrays such conduct.344

Guided Our best result was by supervising345

layer 3 during training using the approach de-346

scribed in 4.2, on half of the heads (3, 4, 5, 6,347

7, 11, 12 and 15) selected by their correlation on348

the validation set and using Cross-Entropy Loss.349

The performance on parsing was not affecte, there350

is more information in Appendix D. When we look351

at att3 using the learned weighted mix from Equa- 352

tion 1 with LEAMR alignments, the correlation 353

reaches 0.866, much higher than any other method. 354

Figure 3 shows the impact of supervising half the 355

heads on layer 3, as well as how it even influences 356

heads in other layers. By looking at the center-right 357

Figure 2, att36 attention is more condensed, which 358

ties with the improvement in correlation. However, 359

notice how sometimes the model confidently at- 360

tends to incorrect positions, such as <pointer:0> 361

and merchant when it should be sold. 362

8 Results 363

Table 1 shows the performances of our two ap- 364

proaches on the LEAMR gold alignments com- 365

pared to previous systems. We use the same evalua- 366

tion setup as Blodgett and Schneider (2021), where 367

the partial match assigns a partial credit from Jac- 368

card indices between nodes and tokens. In both 369

guided and unsupervised methods, we extract the 370

score matrix for Algorithm 0 from the sum of the 371

cross-attention in the first four layers. We used a 372

Wilcoxon signed-rank test (Wilcoxon, 1945) on the 373

alignment matches per graph to check for signif- 374

icant differences. Both our approaches were sig- 375

nificantly different compared to LEAMR (p=0.031 376

and p=0.007 respectively). However, we found no 377

statistical difference between our unsupervised and 378

guided approaches (p=0.481). 379

Our guided attention approach performs best, im- 380

proving upon LEAMR on Subgraph (+0.5) and Re- 381

lation (+2.6). For Reentrancy, performance is rela- 382

tively low, and we will explore the reasons behind 383

5
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Figure 3: Heatmap of Pearson’s R correlation to LEAMR validation set for unsupervised (left) and guided (right)
cross-attention weights as well as saliency methods (bottom).

such scores later. Perhaps most interesting is the384

performance of the unsupervised alignment system385

using raw cross-attention weights from SPRING.386

It stays competitive against the guided model with-387

out having access to any alignment information.388

It outperforms LEAMR which, despite being un-389

supervised, relies on a set of inductive biases and390

rules based on alignments. While we also draw391

on specific rules related to the graph structure in392

post-processing, we will investigate their impact in393

an ablation study.394

Relations that are argument structures (i.e.:ARG395

and :ARG-of ) usually depend on the predictions396

for their parent or child nodes; hence their improve-397

ment is tied to the Subgraph Alignment. The results398

in Table 2 reassure this intuition. Notice how for399

Single Relations (such as :domain or :purpose in400

Figure 2) the performance by LEAMR was much401

lower, even worse than that of ISI. Blodgett and402

Schneider (2021) argued that it was due to the403

model being overeager to align to frequent prepo-404

sitions such as to and of. On the other hand, our405

unsupervised method achieves 15 points over ISI406

and 20 over LEAMR, which hints at the implicit407

knowledge on alignment that cross-attention en-408

codes. Our guided approach experiences a consid-409

erable drop for Single Relations since it was trained410

on data generated by LEAMR, replicating its faulty411

behavior albeit being slightly more robust.412

When we test our systems against the ISI align- 413

ments instead, both our models achieve state-of-the- 414

art results, surpassing those of previous systems, 415

including LEAMR. This highlights the flexibility 416

of cross-attention as an standard-agnostic aligner. 417

We provide additional information in Appendix B. 418

9 Ablation 419

To get further insights on the results we perform an 420

ablation study on: 421

Gold spans LEAMR relies on a span segmen- 422

tation phase, with a set of multiword expressions 423

as well as Stanza based named entity identification. 424

We use the same system in order to have matching 425

sentence spans, however these sometimes differ 426

from those in the gold data leading to errors. Top 427

of Table 3 shows the performance when the gold 428

spans from the test set are used instead. We see how 429

performance improves across all systems and our 430

approach shows gains over LEAMR independent 431

of correct spans. 432

Rules All modern alignment systems have a 433

certain dependency on rules. For instance, we use 434

the subgraph structure for Named Entities, certain 435

relations are matched to their parent or child nodes, 436

etc. See Appendix A for more details. But what 437

is the impact of such rules? As expected, both 438

LEAMR and our unsupervised method see a con- 439

siderable performance drop. For Relation, LEAMR 440
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Exact Alignment Partial Alignment Spans Coverage
P R F1 P R F1 F1

Subgraph ISI 71.56 68.24 69.86 78.03 74.54 76.24 86.59 78.70
Alignment JAMR 87.21 83.06 85.09 90.29 85.99 88.09 92.38 91.10
(1707) TAMR 85.68 83.38 84.51 88.62 86.24 87.41 94.64 94.90

LEAMR 93.91 94.02 93.97 95.69 95.81 95.75 96.05 100.00
LEAMR † 93.74 93.91 93.82 95.51 95.68 95.60 95.54 100.00
Ours - Unsupervised 94.11 94.49 94.30 96.03 96.42 96.26 95.94 100.00
Ours - Guided - ISI 89.87 91.97 90.91 92.11 94.27 93.18 93.69 100.00
Ours - Guided - LEAMR 94.39 94.67 94.53 96.62 96.90 96.76 96.40 100.00

Relation ISI 59.28 8.51 14.89 66.32 9.52 16.65 83.09 9.80
Alignment LEAMR 85.67 87.37 85.52 88.74 88.44 88.59 95.41 100.00
(1263) LEAMR † 84.63 84.85 84.74 87.77 87.99 87.88 91.98 100.00

Ours - Unsupervised 87.14 87.59 87.36 89.87 90.33 90.10 91.03 100.00
Ours - Guided - ISI 83.82 83.39 83.61 86.45 86.00 86.22 87.30 100.00
Ours - Guided - LEAMR 88.03 88.18 88.11 91.08 91.24 91.16 91.87 100.00

Reentrancy LEAMR 55.75 54.61 55.17 100.00
Alignment LEAMR † 54.61 54.05 54.33 100.00
(293) Ours - Unsupervised 44.75 44.59 44.67 100.00

Ours - Guided - ISI 42.09 39.35 40.77 100.00
Ours - Guided - LEAMR 56.90 57.09 57.00 100.00

Duplicate LEAMR 66.67 58.82 62.50 70.00 61.76 65.62 100.00
Subgraph LEAMR † 68.75 64.71 66.67 68.75 64.71 66.67 100.00
Alignment Ours - Unsupervised 77.78 82.35 80.00 77.78 82.35 80.00 100.00
(17) Ours - Guided - ISI 63.16 70.59 66.67 65.79 73.53 69.44 100.00

Ours - Guided - LEAMR 70.00 82.35 75.68 72.50 85.29 78.38 100.00

Table 1: LEAMR alignments results. Column blocks: models; Exact and Partial scores; Span and Coverage
measures. Row blocks: alignment types, number of instances in brackets. † indicates our re-implementation. Guided
versions using ISI/LEAMR silver alignments. Bold is best.

AMR parser P R F1

ALL ISI 59.3 08.5 14.9
LEARM † 84.6 84.9 84.7
Ours - Unsupervised 87.1 87.6 87.4
Ous - Guided - LEAMR 88.0 88.2 88.1

Single ISI 82.9 52.1 64.0
Relations LEARM † 64.8 55.7 59.9
(121) Ours - Unsupervised 79.5 79.5 79.5

Ous - Guided - LEAMR 77.5 64.8 70.5

Argument ISI 39.6 03.5 06.4
Structure LEARM † 86.6 88.2 87.4
(1042) Ours - Unsupervised 87.9 88.4 88.2

Ous - Guided - LEAMR 89.0 90.8 89.9

Table 2: LEAMR results breakdown for Relation Align-
ment. Column blocks: relation type; models; scores. †
indicates our re-implementation. Bold is best.

drops by almost 60 points, since it heavily relies on441

the predictions of parent and child nodes to provide442

candidates to the EM model. Our unsupervised443

approach also suffers from such dependency, los- 444

ing 25 points. However, our guided model is quite 445

resilient to rules removal, barely dropping by one 446

point on Subgraph and 5 on Relation. 447

Layers Figure 3 showed how alignment acts 448

differently across heads and layers. We explore 449

this information flow in the decoder by extracting 450

the alignments from the sum of layers at different 451

depths. The bottom of Table 3 shows this for both 452

our unsupervised and guided models, as well as the 453

Saliency method. [3] indicates the sum of heads 454

in the supervised layer, while [3]* is the learned 455

weighted mix. From our results early layers seem 456

to align more explicitly, with performance dropping 457

with depth. This corresponds to the idea that Trans- 458

former models encode basic semantic information 459

early (Tenney et al., 2019). While layers 7 and 8 did 460

show high correlation values, the cross-attention 461

becomes more disperse with depth, probably due to 462

each token encoding more contextual information. 463
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GOLD Without Rules Layers
Unsupervised Guided

LEAMR † Uns. Guided LEAMR † Uns. Guided Sal. [0:4] [4:8] [8:12] [0:12] [0:4] [4:8] [8:12] [0:12] [3] [3]*

Sub. 96.5 96.7 97.0 87.6 88.6 93.4 62.2 94.3 69.8 63.3 87.7 94.5 74.4 66.3 93.2 93.7 93.7
Rel. 87.1 89.2 90.3 26.6 60.1 83.4 50.0 87.7 72.7 61.6 84.5 88.1 73.8 62.5 87.9 86.2 85.9
Reen. 56.8 46.7 59.0 15.2 38.6 57.0 34.5 44.7 41.1 36.1 41.9 57.0 39.2 33.0 51.0 52.7 53.4
Dupl. 62.9 80.0 75.7 40.0 71.8 73.7 9.5 80.0 11.1 27.3 64.3 75.9 30.0 27.3 66.7 70.3 70.3

Table 3: F1 results on Exact Alignment on ablation studies. Column blocks: alignment types; using gold spans;
removing rules from the models; by layers. Guided approach using LEAMR silver alignments. † indicates our
re-implementation. [x:y] indicates sum from layer x to y. * indicates weighted head sum. Bold is best.

P R F1

JAMR 92.7 80.1 85.9
TAMR 92.1 84.5 88.1
LEAMR 85.9 92.3 89.0
Ours - Unsupervised 95.4 93.2 94.3
Ours - Guided 96.3 94.2 95.2

Table 4: ISI results. Column blocks: models, measures.

ISI Table 4 shows the performance of our464

systems and previous ones with the ISI alignment465

as reference. We omitted relations and Named466

Entities in order to focus solely on non-rule based467

alignments and have a fair comparison between sys-468

tems. Here, our aligner does not rely on any span-469

segmentation, hence nodes and spans are aligned470

solely based on which words and nodes share the471

highest cross-attention values. Still, Over the previ-472

ous systems, ours outperformed by over 5 points473

10 Error analysis474

We identify three main classes of errors that under-475

mine the extraction of alignments:476

Consecutive spans Because each subgraph477

in LEAMR is aligned to a list of successive spans,478

the standard cannot correctly deal with transitive479

phrasal verbs. For example, for the verb "take off"480

the direct object might appear in-between ("take481

your jacket off"). Because these are not consecutive482

spans, we align just to "take" or "off".483

Rules We have a few rules to recognize sub-484

graph structures, such as Named Entities, and align485

them to the same spans. However, Named Entity486

structures contain a placeholder node indicating the487

entity type and when the placeholder node appears488

explicitly in the sentence, the node should not be489

part of the Named Entity subgraph. For example,490

when aligning ‘Málaga’, the city, the placeholder491

node should be aligned to city while our model492

aligned it to Málaga.493

Reentrancy Because all graph units in 494

LEAMR must be aligned, Reentrancy performs 495

the poorest compared to the other types. For ex- 496

ample, in the sentence He wants to protect himself 497

the primary node is He and there are two reen- 498

trant nodes, one referring to who protects – this 499

is omitted in the sentence – and the other one to 500

who is protected (himself ). The LEAMR standard 501

aligns the non-omitted nodes to the sentence’s spe- 502

cific word that reflects the meaning (himself ) and 503

the omitted to the main verb (protect). However, 504

the unsupervised model fails to align the reentrant 505

nodes that is omitted in the sentence. On the other 506

hand the guided model sometimes fails to align 507

the node that appears explicitly in the sentence cor- 508

rectly. We blame this to the silver nature of the train 509

data, which propagates the LEAMR error which 510

usually just aligned these words to the verb. 511

11 Conclusion and Implications 512

In this paper we show for the first time how cross- 513

attention is closely tied to the concept of alignment 514

for Semantic Parsing in AMR. Both our unsuper- 515

vised and our guided attention systems outperform 516

previous alignment models. Moreover, our pro- 517

posed method uses the cross-attention from a state- 518

of-the-art parsing model, with no overhead com- 519

putation and without influence the performance 520

in the parsing task. The fact that our approach is 521

much more resilient to the lack of handcrafted rules 522

shows its capability as a standard-agnostic aligner, 523

opening the door to its use in other tasks such as 524

Machine Translation or Summarization. 525

In the future, with the objective of obtaining the 526

first language-agnostic AMR aligner system, we 527

aim to explore its zero-shot capabilities on cross- 528

lingual AMR parsing. Furthermore, we are inter- 529

ested in perform an analysis about what are attend- 530

ing the attention heads that are not correlate to the 531

alignment information. 532
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12 Ethical Considerations533

Regarding the ethical and social implications of our534

approach for AMR alignments, we do not believe535

it could have a negative impact. However meth-536

ods such as guiding cross-attention could introduce537

new ways to supervise a model in order to produce538

harmful or unwanted model predictions.539

References540

Rafael Anchiêta and Thiago Pardo. 2020. Semantically541
inspired AMR alignment for the Portuguese language.542
In Proceedings of the 2020 Conference on Empirical543
Methods in Natural Language Processing (EMNLP),544
pages 1595–1600, Online. Association for Computa-545
tional Linguistics.546

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.547
Graph pre-training for AMR parsing and generation.548
In Proceedings of the 60th Annual Meeting of the549
Association for Computational Linguistics (Volume550
1: Long Papers), pages 6001–6015, Dublin, Ireland.551
Association for Computational Linguistics.552

Laura Banarescu, Claire Bonial, Shu Cai, Madalina553
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin554
Knight, Philipp Koehn, Martha Palmer, and Nathan555
Schneider. 2013. Abstract Meaning Representation556
for sembanking. In Proceedings of the 7th Linguistic557
Annotation Workshop and Interoperability with Dis-558
course, pages 178–186, Sofia, Bulgaria. Association559
for Computational Linguistics.560

Jasmijn Bastings and Katja Filippova. 2020. The ele-561
phant in the interpretability room: Why use attention562
as explanation when we have saliency methods? In563
Proceedings of the Third BlackboxNLP Workshop564
on Analyzing and Interpreting Neural Networks for565
NLP, pages 149–155, Online. Association for Com-566
putational Linguistics.567

Michele Bevilacqua, Rexhina Blloshmi, and Roberto568
Navigli. 2021. One SPRING to rule them both: Sym-569
metric AMR semantic parsing and generation without570
a complex pipeline. In Proceedings of AAAI.571

Adrien Bibal, Rémi Cardon, David Alfter, Rodrigo572
Souza Wilkens, Xiaoou Wang, Thomas François, and573
Patrick Watrin. 2022. Is attention explanation? an574
introduction to the debate. In Association for Com-575
putational Linguistics. Annual Meeting. Conference576
Proceedings.577

Rexhina Blloshmi, Michele Bevilacqua, Edoardo Fabi-578
ano, Valentina Caruso, and Roberto Navigli. 2021.579
SPRING Goes Online: End-to-End AMR Parsing580
and Generation. In Proceedings of the 2021 Con-581
ference on Empirical Methods in Natural Language582
Processing: System Demonstrations, pages 134–142,583
Online and Punta Cana, Dominican Republic. Asso-584
ciation for Computational Linguistics.585

Rexhina Blloshmi, Rocco Tripodi, and Roberto Nav- 586
igli. 2020. XL-AMR: Enabling cross-lingual AMR 587
parsing with transfer learning techniques. In Proceed- 588
ings of the 2020 Conference on Empirical Methods 589
in Natural Language Processing (EMNLP), pages 590
2487–2500, Online. Association for Computational 591
Linguistics. 592

Austin Blodgett and Nathan Schneider. 2021. Prob- 593
abilistic, structure-aware algorithms for improved 594
variety, accuracy, and coverage of AMR alignments. 595
In Proceedings of the 59th Annual Meeting of the 596
Association for Computational Linguistics and the 597
11th International Joint Conference on Natural Lan- 598
guage Processing (Volume 1: Long Papers), pages 599
3310–3321, Online. Association for Computational 600
Linguistics. 601

Claire Bonial, Lucia Donatelli, Mitchell Abrams, 602
Stephanie M. Lukin, Stephen Tratz, Matthew Marge, 603
Ron Artstein, David Traum, and Clare Voss. 2020a. 604
Dialogue-AMR: Abstract Meaning Representation 605
for dialogue. In Proceedings of the 12th Language 606
Resources and Evaluation Conference, pages 684– 607
695, Marseille, France. European Language Re- 608
sources Association. 609

Claire Bonial, Stephanie M. Lukin, David Doughty, 610
Steven Hill, and Clare Voss. 2020b. InfoForager: 611
Leveraging semantic search with AMR for COVID- 612
19 research. In Proceedings of the Second Interna- 613
tional Workshop on Designing Meaning Representa- 614
tions, pages 67–77, Barcelona Spain (online). Asso- 615
ciation for Computational Linguistics. 616

Chi Chen, Maosong Sun, and Yang Liu. 2021. Mask- 617
align: Self-supervised neural word alignment. In 618
Proceedings of the 59th Annual Meeting of the Asso- 619
ciation for Computational Linguistics and the 11th 620
International Joint Conference on Natural Language 621
Processing (Volume 1: Long Papers), pages 4781– 622
4791, Online. Association for Computational Lin- 623
guistics. 624

Wei-Te Chen and Martha Palmer. 2017. Unsupervised 625
AMR-dependency parse alignment. In Proceedings 626
of the 15th Conference of the European Chapter of 627
the Association for Computational Linguistics: Vol- 628
ume 1, Long Papers, pages 558–567, Valencia, Spain. 629
Association for Computational Linguistics. 630

Chenhui Chu and Sadao Kurohashi. 2016. Supervised 631
syntax-based alignment between english sentences 632
and abstract meaning representation graphs. 633

Marco Damonte, Shay B. Cohen, and Giorgio Satta. 634
2017. An incremental parser for Abstract Meaning 635
Representation. In Proceedings of the 15th Con- 636
ference of the European Chapter of the Association 637
for Computational Linguistics: Volume 1, Long Pa- 638
pers, pages 536–546, Valencia, Spain. Association 639
for Computational Linguistics. 640

Ameet Deshpande and Karthik Narasimhan. 2020. 641
Guiding attention for self-supervised learning with 642

9

https://doi.org/10.18653/v1/2020.emnlp-main.123
https://doi.org/10.18653/v1/2020.emnlp-main.123
https://doi.org/10.18653/v1/2020.emnlp-main.123
https://aclanthology.org/2022.acl-long.415
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://ojs.aaai.org/index.php/AAAI/article/download/17489/17296
https://ojs.aaai.org/index.php/AAAI/article/download/17489/17296
https://ojs.aaai.org/index.php/AAAI/article/download/17489/17296
https://ojs.aaai.org/index.php/AAAI/article/download/17489/17296
https://ojs.aaai.org/index.php/AAAI/article/download/17489/17296
https://xiaoouwang.com/xowang/Is_Attention_Explanation.pdf
https://xiaoouwang.com/xowang/Is_Attention_Explanation.pdf
https://xiaoouwang.com/xowang/Is_Attention_Explanation.pdf
https://doi.org/10.18653/v1/2021.emnlp-demo.16
https://doi.org/10.18653/v1/2021.emnlp-demo.16
https://doi.org/10.18653/v1/2021.emnlp-demo.16
https://doi.org/10.18653/v1/2020.emnlp-main.195
https://doi.org/10.18653/v1/2020.emnlp-main.195
https://doi.org/10.18653/v1/2020.emnlp-main.195
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://doi.org/10.18653/v1/2021.acl-long.257
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.dmr-1.7
https://aclanthology.org/2020.dmr-1.7
https://aclanthology.org/2020.dmr-1.7
https://aclanthology.org/2020.dmr-1.7
https://aclanthology.org/2020.dmr-1.7
https://doi.org/10.18653/v1/2021.acl-long.369
https://doi.org/10.18653/v1/2021.acl-long.369
https://doi.org/10.18653/v1/2021.acl-long.369
https://aclanthology.org/E17-1053
https://aclanthology.org/E17-1053
https://aclanthology.org/E17-1053
https://doi.org/10.48550/ARXIV.1606.02126
https://doi.org/10.48550/ARXIV.1606.02126
https://doi.org/10.48550/ARXIV.1606.02126
https://doi.org/10.48550/ARXIV.1606.02126
https://doi.org/10.48550/ARXIV.1606.02126
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://doi.org/10.18653/v1/2020.findings-emnlp.419
https://doi.org/10.18653/v1/2020.findings-emnlp.419


transformers. In Findings of the Association for Com-643
putational Linguistics: EMNLP 2020, pages 4676–644
4686, Online. Association for Computational Lin-645
guistics.646

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime647
Carbonell. 2016. Generation from Abstract Meaning648
Representation using tree transducers. In Proceed-649
ings of the 2016 Conference of the North American650
Chapter of the Association for Computational Lin-651
guistics: Human Language Technologies, pages 731–652
739, San Diego, California. Association for Compu-653
tational Linguistics.654

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris655
Dyer, and Noah A. Smith. 2014. A discriminative656
graph-based parser for the Abstract Meaning Repre-657
sentation. In Proceedings of the 52nd Annual Meet-658
ing of the Association for Computational Linguistics659
(Volume 1: Long Papers), pages 1426–1436, Bal-660
timore, Maryland. Association for Computational661
Linguistics.662

Hardy Hardy and Andreas Vlachos. 2018. Guided neu-663
ral language generation for abstractive summariza-664
tion using Abstract Meaning Representation. In Pro-665
ceedings of the 2018 Conference on Empirical Meth-666
ods in Natural Language Processing, pages 768–773,667
Brussels, Belgium. Association for Computational668
Linguistics.669

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-670
hankar, Salim Roukos, Alexander Gray, Ramón Fer-671
nandez Astudillo, Maria Chang, Cristina Cornelio,672
Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio673
Gliozzo, Sairam Gurajada, Hima Karanam, Naweed674
Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao675
Li, Francois Luus, Ndivhuwo Makondo, Nandana676
Mihindukulasooriya, Tahira Naseem, Sumit Neelam,677
Lucian Popa, Revanth Gangi Reddy, Ryan Riegel,678
Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhar-679
gav, and Mo Yu. 2021. Leveraging Abstract Mean-680
ing Representation for knowledge base question an-681
swering. In Findings of the Association for Com-682
putational Linguistics: ACL-IJCNLP 2021, pages683
3884–3894, Online. Association for Computational684
Linguistics.685

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,686
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,687
Alexander Melnikov, Natalia Kliushkina, Carlos688
Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020.689
Captum: A unified and generic model interpretability690
library for pytorch.691

Hoang Thanh Lam, Gabriele Picco, Yufang Hou, Young-692
Suk Lee, Lam M. Nguyen, Dzung T. Phan, Vanessa693
López, and Ramon Fernandez Astudillo. 2021. En-694
sembling graph predictions for amr parsing. In Ad-695
vances in Neural Information Processing Systems 35:696
Annual Conference on Neural Information Process-697
ing Systems 2021, NeurIPS 2021, December 6-14,698
2021, virtual.699

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 700
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 701
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 702
BART: Denoising sequence-to-sequence pre-training 703
for natural language generation, translation, and com- 704
prehension. In Proceedings of the 58th Annual Meet- 705
ing of the Association for Computational Linguistics, 706
pages 7871–7880, Online. Association for Computa- 707
tional Linguistics. 708

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab- 709
stract Meaning Representation for multi-document 710
summarization. In Proceedings of the 27th Inter- 711
national Conference on Computational Linguistics, 712
pages 1178–1190, Santa Fe, New Mexico, USA. As- 713
sociation for Computational Linguistics. 714

Jungwoo Lim, Dongsuk Oh, Yoonna Jang, Kisu Yang, 715
and Heuiseok Lim. 2020. I know what you asked: 716
Graph path learning using AMR for commonsense 717
reasoning. In Proceedings of the 28th International 718
Conference on Computational Linguistics, pages 719
2459–2471, Barcelona, Spain (Online). International 720
Committee on Computational Linguistics. 721

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin, and 722
Ting Liu. 2018. An AMR aligner tuned by transition- 723
based parser. In Proceedings of the 2018 Conference 724
on Empirical Methods in Natural Language Process- 725
ing, pages 2422–2430, Brussels, Belgium. Associa- 726
tion for Computational Linguistics. 727

Potsawee Manakul and Mark Gales. 2021. Long-span 728
summarization via local attention and content se- 729
lection. In Proceedings of the 59th Annual Meet- 730
ing of the Association for Computational Linguistics 731
and the 11th International Joint Conference on Natu- 732
ral Language Processing (Volume 1: Long Papers), 733
pages 6026–6041, Online. Association for Computa- 734
tional Linguistics. 735

Abelardo Carlos Martínez Lorenzo, Marco Maru, and 736
Roberto Navigli. 2022. Fully-Semantic Parsing and 737
Generation: the BabelNet Meaning Representation. 738
In Proceedings of the 60th Annual Meeting of the 739
Association for Computational Linguistics (Volume 740
1: Long Papers), pages 1727–1741, Dublin, Ireland. 741
Association for Computational Linguistics. 742

André F. T. Martins and Ramón F. Astudillo. 2016. 743
From softmax to sparsemax: A sparse model of at- 744
tention and multi-label classification. In Proceed- 745
ings of the 33rd International Conference on Interna- 746
tional Conference on Machine Learning - Volume 48, 747
ICML’16, page 1614–1623. JMLR.org. 748

Dipendra Kumar Misra and Yoav Artzi. 2016. Neural 749
shift-reduce CCG semantic parsing. In Proceedings 750
of the 2016 Conference on Empirical Methods in Nat- 751
ural Language Processing, pages 1775–1786, Austin, 752
Texas. Association for Computational Linguistics. 753

Roberto Navigli, Rexhina Blloshmi, and Abelardo Car- 754
los Martinez Lorenzo. 2022. BabelNet Meaning Rep- 755
resentation: A Fully Semantic Formalism to Over- 756

10

https://doi.org/10.18653/v1/2020.findings-emnlp.419
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
https://papers.nips.cc/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf
https://papers.nips.cc/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf
https://papers.nips.cc/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.18653/v1/2022.acl-long.121
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
https://doi.org/10.18653/v1/D16-1183
https://doi.org/10.18653/v1/D16-1183
https://doi.org/10.18653/v1/D16-1183
https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers
https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers
https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers
https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers


come Language Barriers. Proceedings of the AAAI757
Conference on Artificial Intelligence, 36.758

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt759
Gardner, Christopher Clark, Kenton Lee, and Luke760
Zettlemoyer. 2018. Deep contextualized word repre-761
sentations. In Proceedings of the 2018 Conference of762
the North American Chapter of the Association for763
Computational Linguistics: Human Language Tech-764
nologies, Volume 1 (Long Papers), pages 2227–2237,765
New Orleans, Louisiana. Association for Computa-766
tional Linguistics.767

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and768
Kevin Knight. 2014. Aligning English strings769
with Abstract Meaning Representation graphs. In770
Proceedings of the 2014 Conference on Empirical771
Methods in Natural Language Processing (EMNLP),772
pages 425–429, Doha, Qatar. Association for Com-773
putational Linguistics.774

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-775
ine Lee, Sharan Narang, Michael Matena, Yanqi776
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the777
limits of transfer learning with a unified text-to-text778
transformer. Journal of Machine Learning Research,779
21(140):1–67.780

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal781
Daumé III. 2017. Biomedical event extraction using782
Abstract Meaning Representation. In BioNLP 2017,783
pages 126–135, Vancouver, Canada,. Association for784
Computational Linguistics.785

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-786
daje. 2017. Learning important features through787
propagating activation differences. In Proceedings788
of the 34th International Conference on Machine789
Learning - Volume 70, ICML’17, page 3145–3153.790
JMLR.org.791

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-792
serman. 2014. Deep inside convolutional networks:793
Visualising image classification models and saliency794
maps. CoRR, abs/1312.6034.795

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang,796
and Jinsong Su. 2019. Semantic neural machine797
translation using AMR. Transactions of the Associa-798
tion for Computational Linguistics, 7:19–31.799

Ekta Sood, Simon Tannert, Philipp Mueller, and An-800
dreas Bulling. 2020. Improving natural language801
processing tasks with human gaze-guided neural at-802
tention. In Advances in Neural Information Process-803
ing Systems, volume 33, pages 6327–6341. Curran804
Associates, Inc.805

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas806
Brox, and Martin A. Riedmiller. 2015. Striving for807
simplicity: The all convolutional net. In 3rd Inter-808
national Conference on Learning Representations,809
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,810
Workshop Track Proceedings.811

Joe Stacey, Yonatan Belinkov, and Marek Rei. 2021. Su- 812
pervising model attention with human explanations 813
for robust natural language inference. 814

Ida Szubert, Adam Lopez, and Nathan Schneider. 2018. 815
A structured syntax-semantics interface for English- 816
AMR alignment. In Proceedings of the 2018 Con- 817
ference of the North American Chapter of the Asso- 818
ciation for Computational Linguistics: Human Lan- 819
guage Technologies, Volume 1 (Long Papers), pages 820
1169–1180, New Orleans, Louisiana. Association for 821
Computational Linguistics. 822

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. 823
BERT rediscovers the classical NLP pipeline. In 824
Proceedings of the 57th Annual Meeting of the Asso- 825
ciation for Computational Linguistics, pages 4593– 826
4601, Florence, Italy. Association for Computational 827
Linguistics. 828

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh 829
Tomar, and Manaal Faruqui. 2019. Attention inter- 830
pretability across nlp tasks. CoRR, abs/1909.11218. 831

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 832
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 833
Kaiser, and Illia Polosukhin. 2017. Attention is all 834
you need. In Advances in Neural Information Pro- 835
cessing Systems, volume 30. Curran Associates, Inc. 836

Chuan Wang and Nianwen Xue. 2017. Getting the most 837
out of AMR parsing. In Proceedings of the 2017 838
Conference on Empirical Methods in Natural Lan- 839
guage Processing, pages 1257–1268, Copenhagen, 840
Denmark. Association for Computational Linguis- 841
tics. 842

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015. 843
A transition-based algorithm for AMR parsing. In 844
Proceedings of the 2015 Conference of the North 845
American Chapter of the Association for Computa- 846
tional Linguistics: Human Language Technologies, 847
pages 366–375, Denver, Colorado. Association for 848
Computational Linguistics. 849

Frank Wilcoxon. 1945. Individual comparisons by rank- 850
ing methods. Biometrics Bulletin, 1(6):80–83. 851

Zhengxuan Wu, Thanh-Son Nguyen, and Desmond Ong. 852
2020. Structured self-AttentionWeights encode se- 853
mantics in sentiment analysis. In Proceedings of the 854
Third BlackboxNLP Workshop on Analyzing and In- 855
terpreting Neural Networks for NLP, pages 255–264, 856
Online. Association for Computational Linguistics. 857

Song Xu, Haoran Li, Peng Yuan, Youzheng Wu, Xi- 858
aodong He, and Bowen Zhou. 2020. Self-attention 859
guided copy mechanism for abstractive summariza- 860
tion. In Proceedings of the 58th Annual Meeting of 861
the Association for Computational Linguistics, pages 862
1355–1362, Online. Association for Computational 863
Linguistics. 864

Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi 865
Chaudhary, André F. T. Martins, and Graham Neu- 866
big. 2021. Do context-aware translation models pay 867

11

https://www.researchgate.net/publication/358818124_BabelNet_Meaning_Representation_A_Fully_Semantic_Formalism_to_Overcome_Language_Barriers
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.3115/v1/D14-1048
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/W17-2315
https://doi.org/10.18653/v1/W17-2315
https://doi.org/10.18653/v1/W17-2315
http://proceedings.mlr.press/v70/shrikumar17a/shrikumar17a.pdf
http://proceedings.mlr.press/v70/shrikumar17a/shrikumar17a.pdf
http://proceedings.mlr.press/v70/shrikumar17a/shrikumar17a.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://proceedings.neurips.cc/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
https://doi.org/10.48550/ARXIV.2104.08142
https://doi.org/10.48550/ARXIV.2104.08142
https://doi.org/10.48550/ARXIV.2104.08142
https://doi.org/10.48550/ARXIV.2104.08142
https://doi.org/10.48550/ARXIV.2104.08142
https://doi.org/10.18653/v1/N18-1106
https://doi.org/10.18653/v1/N18-1106
https://doi.org/10.18653/v1/N18-1106
https://doi.org/10.18653/v1/P19-1452
http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-11218
http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-11218
http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-11218
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.3115/v1/N15-1040
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
https://doi.org/10.18653/v1/2020.blackboxnlp-1.24
https://doi.org/10.18653/v1/2020.blackboxnlp-1.24
https://doi.org/10.18653/v1/2020.blackboxnlp-1.24
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2021.acl-long.65


the right attention? In Proceedings of the 59th An-868
nual Meeting of the Association for Computational869
Linguistics and the 11th International Joint Confer-870
ence on Natural Language Processing (Volume 1:871
Long Papers), pages 788–801, Online. Association872
for Computational Linguistics.873

Matthew D. Zeiler and Rob Fergus. 2014. Visualiz-874
ing and understanding convolutional networks. In875
ECCV.876

Shaolei Zhang and Yang Feng. 2021. Modeling concen-877
trated cross-attention for neural machine translation878
with Gaussian mixture model. In Findings of the879
Association for Computational Linguistics: EMNLP880
2021, pages 1401–1411, Punta Cana, Dominican Re-881
public. Association for Computational Linguistics.882

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-883
tudillo, Young-Suk Lee, Radu Florian, and Salim884
Roukos. 2021. Structure-aware fine-tuning of885
sequence-to-sequence transformers for transition-886
based AMR parsing. In Proceedings of the 2021887
Conference on Empirical Methods in Natural Lan-888
guage Processing, pages 6279–6290, Online and889
Punta Cana, Dominican Republic. Association for890
Computational Linguistics.891

A LEAMR Alignment Rules892

The LEAMR standard has some predefined strate-893

gies for alignments that were followed during their894

annotation, as well as fixed in their alignment895

pipeline along EM. We kept a few of them when896

extracting the alignment, just those related to the897

structure of the graph, and not to token matching898

between the sentence and the graph.899

A.1 Subgraph900

• Nodes have-org-role-91 and have-rel-role-91901

follow a fixed structure related to a person ie.902

the sentence word enemy is represented as per-903

son→ have-rel-role-91→ enemy, therefore904

for such subgraphs we use the alignment from905

the child node.906

• Similarly for Named Entities, we align the907

whole subgraph structure based on its child908

nodes which indicate its surfaceform. How-909

ever this leads to some errors as described in910

Section 10.911

• We align node amr-unknown to the question912

mark if it appears in the sentence.913

A.2 Relations914

• For the relation :condition we align it to the915

word if when it appears in the sentence.916

• :purpose is aligned with to when in the sen- 917

tence. 918

• :ARGX relations are aligned to the same span 919

as the parent node, while :ARGX-of to that 920

of the child, since they share the alignment of 921

the predicate they are connected to. 922

• For :mod and :duration we use the alignment 923

from the child node. 924

• For :domain and :opX we use the alignment 925

from the parent node. 926

B Extra Results 927

B.1 LEAMR Results 928

We explore the variance with different seeds when 929

guiding cross-attention. Table 1 reports on a single 930

seed selected at random. Table 5 shows the results 931

for five different seeds as well as the average and 932

standard deviation. We observe some variance, 933

especially for those alignment types with fewer 934

elements; however, average performance is always 935

higher than previous approaches. 936

C Alignment Extraction Algorithm 937

Algorithm 0 shows the procedure for extracting the 938

alignment between spans in the sentence and the 939

semantic units in the graphs, using a matrix that 940

weights encoder tokens with the decoder tokens 941

D AMR parsing 942

Since our guided approach was trained with a dif- 943

ferent loss than the SPRING model, it could influ- 944

ence the performance in the Semantic Parsing task. 945

Therefore, we tested our model also in the AMR 946

parsing task using the test set of AMR 2.0 and 947

AMR 3.0. Table 6 shows the result, where we can 948

observe how our model preserves the performance 949

on parsing. 950

E Hardware 951

Experiments were performed using a single 952

NVIDIA 3090 GPU with 64GB of RAM and Intel® 953

Core™ i9-10900KF CPU. 954

Training the model took 13 hours, 30 min per 955

training epoch while evaluating on the validation 956

set took 20 min at the end of each one. We selected 957

the best performing epoch based on the SMATCH 958

metric on the validation set. 959
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Exact Alignment Partial Alignment Spans
P R F1 P R F1 F1

Subgraph Run 1 94.39 94.67 94.53 96.62 96.90 96.76 96.40
Alignment Run 2 93.79 93.85 93.82 96.22 96.27 96.25 96.05
(1707) Run 3 94.26 94.32 94.29 96.60 96.66 96.63 96.34

Run 4 94.20 94.26 94.23 96.47 96.53 96.50 96.22
Run 5 93.81 94.14 93.98 95.81 96.14 95.97 95.73

Average 94.09 94.25 94.17 96.34 96.50 96.42 96.15
Std 0.27 0.30 0.28 0.34 0.30 0.32 0.27

Relation Run 1 88.03 88.18 88.11 91.08 91.24 91.16 91.87
Alignment Run 2 87.90 88.36 88.13 90.71 91.18 90.95 91.87
(1263) Run 3 88.61 88.61 88.61 91.44 91.44 91.44 91.95

Run 4 88.39 88.61 88.50 91.02 91.25 91.14 91.66
Run 5 88.59 88.44 88.52 91.24 91.08 91.16 91.86

Average 88.30 88.44 88.37 91.10 91.24 91.17 91.84
Std 0.32 0.18 0.28 0.27 0.13 0.17 0.05

Reentrancy Run 1 56.90 57.09 57.00
Alignment Run 2 56.23 56.42 56.32
(293) Run 3 57.24 57.43 57.34

Run 4 55.56 55.74 55.65
Run 5 55.22 55.41 55.31

Average 56.23 56.42 56.32
Std 0.86 0.86 0.86

Duplicate Run 1 70.00 82.35 75.88 72.50 85.29 78.38
Subgraph Run 2 65.00 76.47 70.27 67.50 79.41 72.97
Alignment Run 3 70.00 82.35 75.68 70.00 82.35 75.68
(17) Run 4 73.68 82.35 77.78 76.32 85.29 80.56

Run 5 70.00 82.35 75.68 70.00 82.35 75.68

Average 69.74 81.17 75.06 71.26 82.94 76.65
Std 3.09 2.63 2.82 3.33 2.46 2.90

Table 5: Results on the LEAMR alignment for 5 seeds on the guided approach. Column blocks: runs; measures.
Row blocks: alignment types; average and standard deviation (std). Bold is best.

AMR 2.0 AMR 3.0

SPRING 84.3 83.0
Ours - Guided - ISI 84.3 83.0
Ours - Guided - Leamr 84.3 83.0

Table 6: AMR parsing ResultsBold is best.

F Data960

The AMR data used in this paper is licensed under961

the LDC User Agreement for Non-Members for962

LDC subscribers, which can be found here. The963

The Little Prince Corpus can be found here from 964

the Information Science Institute of the University 965

of Southern California. 966

G Limitations 967

Even though our method is an excellent alterna- 968

tive to the current AMR aligner system, which is 969

standard and task-agnostic, we notice some draw- 970

backs when moving to other autoregressive models 971

or languages: 972

Model In this work, we studied how Cross 973

Attention layers retain alignment information be- 974

tween input and output tokens in auto-regressive 975
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Algorithm 1 Procedure for extracting the alignment between spans in the sentence and the semantic units
in the graphs, using a matrix that weights encoder tokens with the decoder tokens.

1: function EXTRACTALIGNMENTS(encoderTokens, decoderTokens, scoreMatrix)
2: alignmentMap← dict()
3: spansList← SPANS(encoderTokens) ▷ Extract sentence spans as in LEAMR
4: spanPosMap← TOK2SPAN(encoderTokens) ▷ Map input tokens to spans
5: graphPosMap← TOK2NODE(decoderTokens) ▷ Map output tokens to graph unit
6: COMBINESUBWORDTOKENS(scoreMatrix)
7: for decoderTokenPos,GraphUnit in graphPosMap do
8: encoderTokensScores← scoreMatrix[decoderTokenPos]
9: maxScorePos← ARGMAX(encoderTokensScores)

10: alignmentMap[GraphUnit]← SELECTSPAN(spansList,maxScorePos)
11: end for
12: fixedMatches← GETFIXEDMATCHES(graphPosMap) ▷ Look for rule based matches
13: alignmentMap← APPLYFIXEDMATCHES(alignmentMap, fixedMatches)
14: alignments← FORMATALIGNMENT(alignmentMap)
15: return alignments
16: end function

models. In Section 7, we examined which layers976

in state-of-the-art AMR parser models based on977

BART-large best preserve this information. Unfor-978

tunately, we cannot guarantee that these layers are979

optimal for other auto-regressive models, and so980

on. As a result, an examination of cross-attention981

across multiple models should be required before982

developing the cross-lingual application of this ap-983

proach.984

Sentence Segmentation It is necessary to985

apply LEAMR’s Spam Segmentation technique to986

produce the alignment in LEAMR format (Section987

5). However, this segmentation method has several988

flaws: i) As stated in Section 10, this approach989

does not deal appropriately with phrasal verbs and990

consecutive segments; ii) the algorithm is English-991

specific; it is dependent on English grammar rules992

that we are unable to project to other languages.993

Therefore we cannot extract the LEAMR align-994

ments in a cross-lingual AMR parsing because we995

lack a segmentation procedure. However, although996

LEAMR alignment has this constraint, ISI align-997

ment does not require any initial sentence segmen-998

tation and may thus be utilized cross-lingually.999
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