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Abstract

An important problem in time-series analysis is modeling systems with time-
varying dynamics. Probabilistic models with joint continuous and discrete latent
states offer interpretable, efficient, and experimentally useful descriptions of such
data. Commonly used models include autoregressive hidden Markov models
(ARHMMs) and switching linear dynamical systems (SLDSs), each with its own
advantages and disadvantages. ARHMMs permit exact inference and easy param-
eter estimation, but are parameter intensive when modeling long dependencies,
and hence are prone to overfitting. In contrast, SLDSs can capture long-range
dependencies in a parameter efficient way through Markovian latent dynamics, but
present an intractable likelihood and a challenging parameter estimation task. In
this paper, we propose switching autoregressive low-rank tensor (SALT) models,
which retain the advantages of both approaches while ameliorating the weaknesses.
SALT parameterizes the tensor of an ARHMM with a low-rank factorization to
control the number of parameters and allow longer range dependencies without
overfitting. We prove theoretical and discuss practical connections between SALT,
linear dynamical systems, and SLDSs. We empirically demonstrate quantitative
advantages of SALT models on a range of simulated and real prediction tasks,
including behavioral and neural datasets. Furthermore, the learned low-rank tensor
provides novel insights into temporal dependencies within each discrete state.

1 Introduction

Many time series analysis problems involve jointly segmenting data and modeling the time-evolution
of the system within each segment. For example, a common task in computational ethology [Datta
et al., 2019] — the study of natural behavior — is segmenting videos of freely moving animals into
states that represent distinct behaviors, while also quantifying the differences in dynamics between
states [Wiltschko et al., 2015, Costacurta et al., 2022]. Similarly, discrete shifts in the dynamics of
neural activity may reflect changes in underlying brain state [Saravani et al., 2019, Recanatesi et al.,
2022]. Model-based segmentations are experimentally valuable, providing an unsupervised grouping
of neural or behavioral states together with a model of the dynamics within each state.

One common probabilistic state space model for such analyses is the autoregressive hidden Markov
model (ARHMM) [Ephraim et al., 1989]. For example, MoSeq [Wiltschko et al., 2015] uses
ARHMMs for unsupervised behavioral analysis of freely moving animals. ARHMMs learn a set
of linear autoregressive models, indexed by a discrete state, to predict the next observation as a
function of previous observations. Inference in ARHMMs then reduces to inferring which AR
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Figure 1: SALT imposes a low-rank constraint on the autoregressive tensor: (A) The probabilistic
graphical model of an ARHMM. (B) An example multi-dimensional time series generated from
an ARHMM. Background color indicates which discrete state (and hence autoregressive tensor)
was selected at each time. (C) In SALT, each autoregressive dynamics tensor of an ARHMM is
parameterized as a low-rank tensor.

process best explains the observed data at each timestep (in turn also providing the segmentation).
The simplicity of ARHMM:s allows for exact state inference via message passing, and closed-form
updates for parameter estimation using expectation-maximization (EM). However, the ARHMM
requires high order autoregressive dependencies to model long timescale dependencies, and its
parameter complexity is quadratic in the data dimension, making it prone to overfitting.

Switching linear dynamical systems (SLDS) [Ghahramani and Hinton, 2000] ameliorate some of
the drawbacks of the ARHMM by introducing a low-dimensional, continuous latent state. These
models have been used widely throughout neuroscience [Saravani et al., 2019, Petreska et al.,
2011, Linderman et al., 2019, Glaser et al., 2020, Nair et al., 2023]. Unlike the ARHMM, the
SLDS can capture long timescale dependencies through the dynamics of the continuous latent
state, while also being much more parameter efficient than ARHMMs. However, exact inference in
SLDSs is intractable due to the exponential number of potential discrete state paths governing the
time-evolution of the continuous latent variable. This intractability has led to many elaborate and
specialized approximate inference techniques [Ghahramani and Hinton, 2000, Barber, 2006, Fox,
2009, Murphy and Russell, 2001, Linderman et al., 2017, Zoltowski et al., 2020]. Thus, the SLDS
gains parameter efficiency at the expense of the computational tractability and statistical simplicity of
the ARHMM.

We propose a new class of unsupervised probabilistic models that we call switching autoregressive
low-rank tensor (SALT) models. Our novel insight is that when you marginalize over the latent
states of a linear dynamical system, you obtain an autoregressive model with full history dependence.
However, these autoregressive dependencies are not arbitrarily complex — they factor into a low-rank
tensor that can be well-approximated with a finite-history model. We formalize this connection
in Proposition 1. SALT models are constrained ARHMMs that leverage this insight. Rather than
allowing for arbitrary autoregressive dependencies, SALT models are constrained to be low-rank.
The low-rank property allows us to construct a low-dimensional continuous description of the data,
jointly with the discrete segmentation provided by the switching states. Thus, SALT models inherit
the experimentally useful representations and parsimonious parameter complexity of an SLDS, as
well as the ease of inference and estimation of ARHMMs. We demonstrate the advantages of SALT
models empirically using synthetic data as well as real neural and behavioral time series. Finally, in
addition to improving predictive performance, we show how the low-rank nature of SALT models
can offer new insights into complex systems, like biological neural networks.

2 Background

This section introduces the notation used throughout the paper and describes preliminaries on low-
rank tensor decomposition, vector autoregressive models, switching autoregressive models, linear
dynamical systems, and switching linear dynamical systems.

Notation We follow the notation of Kolda and Bader [2009]. We use lowercase letters for scalar
variables (e.g. a), uppercase letters for scalar constants (e.g. A), boldface lowercase letters for vectors
(e.g. a), boldface uppercase letters for matrices (e.g. A), and boldface Euler script for tensors of

Source code is available at https://github.com/lindermanlab/salt.
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order three or higher (e.g. A). We use A;.., A.;., and A..; to denote the horizontal, lateral, and
frontal slices respectively of a three-way tensor A. Similarly, we use a;. and a.; to denote the ;"
row and j*" column of a matrix A. a o b represents the vector outer product between vectors a
and b. The n-mode tensor-matrix (tensor-vector) product is represented as A x,, A (AX,a). We
denote the vectorization of an n-way tensor G, with dimensions D;.,,, as vec (G). This is performed
by successively flattening the last dimensions of the tensor, and results in a vector of size equal to the
product of the dimensions of the tensor. We denote the mode-n matricization of a tensor G as G,,).
This is defined as the stack of vectors resulting from vectorizing the matrix (or tensor) defined by
each slice through the n™ dimension. This results in a matrix with leading dimension D,,, and second
dimension equal to the product of the sizes of the other dimensions. We will denote a T-length time
series of N-dimensional observed data as Y € RV*T Note that we will use the shorthand y; € R
to denote the observation at time ¢, and y; ; € R to denote the j™ element in the ¢ observation. It
will be clear from context which dimension is being indexed.

Tensor Decomposition For A € RY1*N2XNs the Tucker decomposition is defined as,
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where u;, v.;, and w.j; are the columns of the factor matrices U € RM*P1 'V ¢ RN2xDz
and W € RMs*Ds | respectively, and g;;y, are the entries in the core tensor G € RP1*D2xDs,

The CANDECOMP/PARAFAC (CP) decomposition is a special case of the Tucker decomposition,
with Dy = Dy = D3 and a diagonal core tensor G.

Vector autoregressive models Let Y € RV*7T denote a multivariate time series with y; € RY for
all £. An order-L vector autoregressive (VAR) model with Gaussian innovations is defined by,
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where A € RVXNVNXL i the autoregressive tensor, whose frontal slice A...; is the dynamics matrix
forlagl, b € RY is the bias, and R € RLVOXN is a positive semi-definite covariance matrix. The
parameters @ = (A, b, R) can be estimated via ordinary least squares [Hamilton, 2020].

We note that, to our knowledge, there is no clear consensus on the best way to regularize the potentially
large parameter space of vector autoregressive (hidden Markov) models; several possibilities exist,
see, e.g., Melnyk and Banerjee [2016] or Ni and Sun [2005]. Many regularizers and priors are difficult
to work with, and so are not widely used in practice. Beyond this, even well-regularized ARHMMs
do not natively capture interpretable low-dimensional dynamics, as both SALT and SLDS models do
(see Figure 3). These low-dimensional continuous representations are as experimentally useful as the
discrete segmentation, and hence are a key desiderata for any method we consider.

Switching autoregressive models One limitation of VAR models is that they assume the time
series is stationary; i.e. that one set of parameters holds for all time steps. Time-varying autore-
gressive models allow the autoregressive process to change at various time points. One such VAR
model, referred to as a switching autoregressive model or autoregressive hidden Markov model
(ARHMM), switches the parameters over time according to a discrete latent state [Ephraim et al.,
1989]. Let z; € {1,..., H} denote the discrete state at time ¢, an ARHMM defines the following
generative model,
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where 7(") € {7 (W) ML | is the the h-th row of the discrete state transition matrix.

A switching VAR model is simply a type of hidden Markov model, and as such it is easily fit via the
expectation-maximization (EM) algorithm within the Baum-Welch algorithm. The M-step amounts
to solving a weighted least squares problem.



Linear dynamical systems The number of parameters in a VAR model grows as O(N2L). For
high-dimensional time series, this can quickly become intractable. Linear dynamical systems
(LDS) [Murphy, 2012] offer an alternative means of modeling time series via a continuous latent
state x; € R”,

Xt~ N(Axt—l + b7 Q)a Ye ~ N(Cxt + d7 R)7 (4)

where Q € R%s and R € RQ’OXN Here, the latent states follow a first-order VAR model, and
the observations are conditionally independent given the latent states. As we discuss in Section 3.3,
marginalizing over the continuous latent states renders y; dependent on the preceding observations,
just like in a high order VAR model.

Compared to the VAR model, however, the LDS has only 0(52 + NS+ N 2) parameters if R
is a full covariance matrix. This further reduces to O(S? + NS) if R is diagonal. As a result,
when S < N, the LDS has many fewer parameters than a VAR model. Thanks to the linear and
Gaussian assumptions of the model, the parameters can be easily estimated via EM, using the Kalman
smoother to compute the expected values of the latent states.

Switching linear dynamical systems A switching LDS combines the advantages of the low-
dimensional continuous latent states of an LDS, with the advantages of discrete switching from an
ARHMM. Let z; € {1,..., H} be a discrete latent state with Markovian dynamics (3), and let it
determine some or all of the parameters of the LDS (e.g. A would become A1) in (4)). We note that
SLDSs often use a single-subspace, where C, d and R are shared across states, reducing parameter
complexity and simplifying the optimization.

Unfortunately, parameter estimation is considerably harder in SLDS models. The posterior distri-
bution over all latent states, p(z1.7, X1.7 | y1.7, ©), where © denotes the parameters, is intractable
[Lerner, 2003]. Instead, these models are fit via approximate inference methods like MCMC [Fox,
2009, Linderman et al., 2017], variational EM [Ghahramani and Hinton, 2000, Zoltowski et al., 2020],
particle EM [Murphy and Russell, 2001, Doucet et al., 2001], or other approximations [Barber, 2006].
Selecting the appropriate fitting and inference methodologies is itself non-trivial hyperparameter.
Furthermore, each method also brings additional estimation hyperparameters that need to be tuned
prior to even fitting the generative model. We look to define a model that enjoys the benefits of
SLDSs, but avoids the inference and estimation difficulties.

3 SALT: Switching Autoregressive Low-rank Tensor Models

Here we formally introduce SALT models. We begin by defining the generative model (also illustrated
in Figure 1), and describing how inference and model fitting are performed. We conclude by drawing
connections between SALT and SLDS models.

3.1 Generative Model

SALT factorizes each autoregressive tensor AWM for h e {1,..., H} of an ARHMM as a product of
low-rank factors. Given the current discrete state z;, each observation y; € R" is modeled as being
normally distributed conditioned on L previous observations y;_1.+—r.,
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where u; are the columns of the factor matrices U®t) ¢ RN*D1,

V() e RN XDZ and W) € REXDs | respectively, and g( ) are the entries in the core ten-

sor G ¢ RDlXD?XDS. The vector b**) € RV and positive definite matrix £*) € RNV

are the bias and covariance for state z;. Without further restriction this decomposition is a Tucker
decomposition [Kolda and Bader, 2009]. If D1 = Dy = D3 and G, is diagonal, it corresponds to a



Table 1: Comparison of number of parameters for the methods we consider. We exclude covariance
matrix parameters, as the parameterization of the covariance matrix is independent of method.
Throughout our experiments, we find S ~ D.

Model Parameter Complexity (Example from Section 5.4)
SLDS O(NS + HS?) 2.8K
CP-SALT O(H(ND + LD)) 8.1K
Tucker-SALT O(H(ND + LD + D?)) 17.4K
Order-IL ARHMM  O(HN?L) 145.2K

CP decomposition [Kolda and Bader, 2009]. We refer to ARHMM models with these factorizations
as Tucker-SALT and CP-SALT respectively. Note that herein we will only consider models where
Dy = Dy = D3 = D, where we refer to D as the “rank” of the SALT model (for both Tucker-SALT
and CP-SALT). In practice, we find that models constrained in this way perform well, and so this
constraint is imposed simply to reduce the search space of models and could easily be relaxed.

Table 1 shows the number of parameters for order-L. ARHMMs, SLDSs, and SALT. Focusing on the
lag dependence, the number of ARHMM parameters grows as O(H N2 L), whereas SALT grows as
only O(HDL) with D < N. SALT can also make a simplifying single-subspace constraint, where
certain emission parameters are shared across discrete states.

Low-dimensional Representation Note that SALT implicitly defines a low-dimensional continu-
ous representation, analogous to the continuous latent variable in SLDS,
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The low-dimensional x; € RP1 vectors can be visualized, similar to the latent states in SLDS models,
to further interrogate the learned dynamics, as we show in Figure 3. Note the vector x; € R”1, when
multiplied by the output factors U(**), is the mean of the next observation.

3.2 Model Fitting and Inference

Since SALT models are ARHMMs, we can apply the expectation-maximization (EM) algorithm to
fit model parameters and perform state space inference. We direct the reader to Murphy [2012] for a
detailed exposition of EM and include only the key points here.

The E-step solves for the distribution over latent variables given observed data and model parameters.

For SALT, this is the distribution over z;, denoted wt(h) = E[z; = h | y1.7, 0]. This can be computed
exactly with the forward-backward algorithm, which is fast and stable. The marginal likelihood can

be evaluated exactly by taking the product across ¢ of expectations of (6) under wt(h).

The M-step then updates the parameters of the model given the distribution over latent states. For
SALT, the emission parameters are § = {U") V() W G"M ph) si(h) (WVH - We use
closed-form coordinate-wise updates to maximize the expected log likelihood evaluated in the E-step.
Each factor update amounts to solving a weighted least squares problem. We include just one update
step here for brevity, and provide all updates in full in Appendix A. Assuming here that b(") = 0 for
simplicity, the update rule for the lag factors is as follows:

-1
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where 5(@ = U(h)SE?)) (VW Ty, 1y 1 ®1p,) and wh* = vec(W M), Crucially, these coordi-
nate wise updates are exact, and so we recover the fast and monotonic convergence of EM.



3.3 Connections Between SALT and Linear Dynamical Systems

SALT is not only an intuitive regularization for ARHMMs, it is grounded in a mathematical corre-
spondence between autoregressive models and linear dynamical systems.

Proposition 1 (Low-Rank Tensor Autoregressions Approximate Stable Linear Dynamical Systems).
Consider a stable linear time-invariant Gaussian dynamical system. We define the steady-state
Kalman gain matrix as K = lim;_,. K;, and T = A(I — KC). The matrix T € R%*S has
eigenvalues A1, ..., \s. Let Amax = max; |\g|; for a stable LDS, \nax < 1 [Davis and Vinter,
1985]. Let n denote the number of real eigenvalues and m the number of complex conjugate pairs.
Let yﬁLDS) = Ely: | y1.4-1] denote the predictive mean under a steady-state LDS, and ygSALT) the
predictive mean under a SALT model. An order-L Tucker-SALT model with rank n + 2m = S, or a

CP-SALT model with rank n 4+ 3m, can approximate the predictive mean of the steady-state LDS
. ~(LDS)  ~(SALT), L
with error Hyt -y ||00 - O()‘max)'

Proof. We give a sketch of the proof here and a full proof in Appendix B. The analytic form of
E[y: | y1:4—1] is a linear function of y;_; for I = 1,...,00. For this sketch, consider the special
case where b = d = 0. Then the coefficients of the linear function are CT'K. As all eigenvalues
of I" have magnitude less than one, the coefficients decay exponentially in [. We can therefore upper
bound the approximation error introduced by truncating the linear function to L terms to O(\L, ).
To complete the proof, we show that the truncated linear function can be represented exactly by a

tensor regression with at most a specific rank. Thus, only truncated terms contribute to the error. [

This proposition shows that the steady-state predictive distribution of a stable LDS can be approx-
imated by a low-rank tensor autoregression, with a rank determined by the eigenspectrum of the
LDS. We validate this proposition experimentally in Section 5.1. Note as well that the predictive
distribution will converge to a fixed covariance, and hence can also be exactly represented by the

covariance matrices =" estimated in SALT models.

Connections with Switching Linear Dynamical Systems With this foundation, it is natural to
hypothesize that a switching low-rank tensor autoregression like SALT could approximate a switching
LDS. There are two ways this intuition could fail: first, if the dynamics in a discrete state of an
SLDS are unstable, then Proposition 1 would not hold; second, after a discrete state transition in an
SLDS, it may take some time before the dynamics reach stationarity. We empirically test how well
SALT approximates an SLDS in Section 5 and find that, across a variety of datasets, SALT obtains
commensurate performance with considerably simpler inference and estimation algorithms.

4 Related Work

Low-rank tensor decompositions of time-invariant autoregressive models Similar to this work,
Wang et al. [2021] also modeled the transition matrices as a third-order tensor A € RNXNXL where
the A.; is the [-th dynamics matrix. They then constrained the tensor to be low-rank via a Tucker
decomposition, as defined in (1). However, unlike SALT, their model was time-invariant,did not
have an ARHMM structure, or, make connections to the LDS and SLDS, as in Proposition 1.

Low-rank tensor decompositions of time-varying autoregressive models Low-rank tensor-based
approaches have also been used to model time-varying AR processes [Harris et al., 2021, Zhang
et al., 2021]. Harris et al. [2021] introduced TVART, which first splits the data into 7" contiguous
fixed-length segments, each with its own AR-1 process. TVART can be thought of as defining a
T x N x N ARHMM dynamics tensor and progressing through discrete states at fixed time points.
This tensor is parameterized using the CP decomposition and optimized using an alternating least
squares algorithm, with additional penalties such that the dynamics of adjacent windows are similar.
By contrast, SALT automatically segments, rather than windows, the time-series into learned and
re-usable discrete states.

Zhang et al. [2021] constructed a Bayesian model of higher-order AR matrices that can vary over
time. First, H VAR dynamics tensors are specified, parameterized as third-order tensors with a rank-1
CP decomposition. The dynamics at a given time are then defined as a weighted sum of the tensors,
where the weights have a prior density specified by an Ising model. Finally, inference over the weights
is performed using MCMC. This method can be interpreted as a factorial ARHMM, hence offering
substantial modeling flexibility, but sacrificing computational tractability when H is large.
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Figure 2: SALT approximates LDS: Data simulated from an LDS for which n = 1 and m = 3 (see
Proposition 1). (A-B): Average mean squared error of the autoregressive tensor corresponding to
the LDS simulation and the log-likelihood of test data, as a function of SALT rank. According to
Proposition 1, to model the LDS Tucker-SALT and CP-SALT require 7 and 10 ranks respectively
(indicated by vertical dashed lines). Note the parameter error increases above the predicted threshold
as a result of overfitting. (C-D): Mean squared error of the learned autoregressive tensor and log-
likelihood of test data as a function of training data.

Low-rank tensor decompositions of neural networks Low-rank tensor decomposition methods
have also been used to make neural networks more parameter efficient. Novikov et al. [2015] used
the tensor-train decomposition [Oseledets, 2011] on the dense weight matrices of the fully-connected
layers to reduce the number of parameters. Yu et al. [2017] and Qiu et al. [2021] applied the tensor-
train decomposition to the weight tensors for polynomial interactions between the hidden states of
recurrent neural networks (RNN5s) to efficiently capture high-order temporal dependencies. Unlike
switching models with linear dynamics, recurrent neural networks have dynamics that are hard to
interpret, their state estimates are not probabilistic, and they do not provide experimentally useful
data segmentations.

Linear dynamical systems and low-rank linear recurrent neural networks Valente et al. [2022]
recently examined the relationship between LDSs and low-rank linear RNNs. They provide the
conditions under which low-rank linear RNNs can exactly model the first-order autoregressive
distributions of LDSs, and derive the transformation to convert between model classes under those
conditions. This result has close parallels to Proposition 1. Under the conditions identified by Valente
et al. [2022], the approximation in Proposition 1 becomes exact with just one lag term. However,
when those conditions are not satisfied, we show that one still recovers an LDS approximation with a
bounded error that decays exponentially in the number of lag terms.

5 Results

We now empirically validate SALT by first validating the theoretical claims made in Section 3, and
then apply SALT to two synthetic examples to compare SALT to existing methods. We conclude by
using SALT to analyze real mouse behavioral recordings and C. elegans neural recordings.

5.1 SALT Faithfully Approximates LDS

To test the theoretical result that SALT can closely approximate a linear dynamical system, we fit
SALT models to data sampled from an LDS. The LDS has S = 7 dimensional latent states with
random rotational dynamics, where I' has n = 1 real eigenvalue and m = 3 pairs of complex
eigenvalues, and N = 20 observations with a random emission matrix.

For Figure 2, we trained CP-SALT and Tucker-SALT with L = 50 lags and varying ranks. We
first analyzed how well SALT reconstructed the parameters of the autoregressive dynamics tensor.
As predicted by Proposition 1, Figure 2A shows that the mean squared errors between the SALT
tensor and the autoregressive tensor corresponding to the simulated LDS are the lowest when the
ranks of CP-SALT and Tucker-SALT are n + 3m = 10 and n + 2m = 7 respectively. We then
computed log-likelihoods on 5,000 timesteps of held-out test data (Figure 2B). Interestingly, the
predictive performance of both CP-SALT and Tucker-SALT reach the likelihood of the ground truth
LDS model with rank n + 2m = 7, suggesting that sometimes smaller tensors than suggested by
Proposition 1 may still be able to provide good approximations to the data. We also show in Figures
2C and 2D that, as predicted, SALT models require much less data to fit than ARHMMs. We show
extended empirical results and discussion on Proposition 1 in Appendix D.1.



A Ground truth observation  Ground truth trajectory ]g Ground truth observation Ground truth Lorenz attractor

I

SLDS filtered observations SLDS

s

SALT filtered observations S/ _ SALT filtered observations ~ SALT filtered trajectory
5
é
0 Y
—_— —
nE i VW@’E
0 100 200 0 200 400
Timesteps Timesteps

Figure 3: SALT reconstructs simulated SLDS data and Lorenz attractor: (Top row) Observation
generated from a low-dimensional trajectory. (A) shows ten observations generated from a recurrent
“NASCAR” SLDS trajectory Linderman et al. [2017]. (B) 20-dimensional observations generated
from a Lorenz attractor (5 observed dimensions are shown). (Middle and bottom rows): filtered
observations and inferred low-dimensional trajectories from SLDS and SALT models. Colors indicate
discrete state for ground truth (if available) and fitted models. SLDS and SALT find comparable
filtered trajectories and observations. It is important to note that the latent spaces in both SLDS and
SALT are only identifiable up to a linear transformation. We therefore align the latent trajectories for
ease of comparison. This latent structure is reliably found by both SALT and SLDS.

5.2 Synthetic Switching LDS Examples

Proposition 1 quantifies the convergence properties of low-rank tensor regressions when approximat-
ing stable LDSs. Next we tested how well SALT can approximate the more expressive switching
LDSs. We first applied SALT to data generated from a recurrent SLDS [Linderman et al., 2017],
where the two-dimensional ground truth latent trajectory resembles a NASCAR® track (Figure 3A).
SALT accurately reconstructed the ground truth filtered trajectories and discrete state segmentation,
and yielded very similar results to an SLDS model. We also tested the ability of SALT to model
nonlinear dynamics — specifically, a Lorenz attractor — which SLDSs are capable of modeling. Again,
SALT accurately reconstructed ground truth latents and observations, and closely matched SLDS
segmentations. These results suggest that SALT models provide a good alternative to SLDS models.
Finally, in Appendix D.3, we used SLDS-generated data to compare SALT and TVART [Harris et al.,
2021], another tensor-based method for modeling autoregressive processes, and find that SALT more
accurately reconstructed autoregressive dynamics tensors than TVART.

5.3 Modeling Mouse Behavior

Next we considered a video segmentation problem commonly faced in the field of computational
neuroethology [Datta et al., 2019]. Wiltschko et al. [2015] collected videos of mice freely behaving
in a circular open field. They projected the video data onto the top 10 principal components (Figure
4A) and used an ARHMM to segment the PCA time series into distinct behavioral states. Here, we
compared ARHMMs and CP-SALT with data from three mice. We used the first 35,949 timesteps of
each recording, which were collected at 30Hz resolution. We used H = 50 discrete states and fitted
ARHMMs and CP-SALT models with varying lags and ranks.

The likelihood on a held-out validation set shows that the ARHMM overfitted quickly as the number
of lags increased, while CP-SALT was more robust to overfitting (Figure 4B). We compared log-
likelihoods of the best model (evaluated on the validation set) on a separate held-out test set and
found that CP-SALT consistently outperformed ARHMM across mice (Figure 4C).

We also investigated the quality of SALT segmentations of the behavioral data (Appendix E.3). We
found that the PCA trajectories upon transition into a discrete SALT state were highly stereotyped,
suggesting that SALT segments the data into consistent behavioral states. Furthermore, CP-SALT
used fewer discrete states than the ARHMM, suggesting that the ARHMM may have oversegmented
and that CP-SALT offers a more parsimonious description of the data.



A Example Frame B C
'-CO; —1.3
o _ ¥ - —
S -14 A1 g 0.3
_ | 3
g-15 \'\H\‘\ S 04 ,—
do—1-6] —— ARHMM £
3 =_i7 CP-SALT rank=10 08 T
[ o g CP-SALT rank=11 k) Mowd 2
= - £l CP-SALT rank=12 + 0.6 M”‘“ 5
N - < _19 —+— CP-SALT rank=13 & ouse
= E 20 —— CP-SALT rank=14 07—
30 31 32 33 34 35 36 37 38 39 40 12345678 9ﬁ0 15 20 AFHMSM CP—EAI;ST
1 ags ag=. rank=
time [s] g et

Figure 4: CP-SALT consistently outperforms ARHMM on mouse behavior videos and segments
data into distinct behavioral syllables: (A) An example frame from the MoSeq dataset. The models
were trained on the top 10 principal components of the video frames from three mice. (B) CP-SALT
and ARHMM trained with different ranks and lags. Mean and standard deviation across five seeds
evaluated on a validation set are shown. CP-SALT parameterization prevents overfitting for larger
lags. (C) Test log-likelihood, averaged across 5 model fits, computed from the best ARHMM and
CP-SALT hyperparameters in (B). CP-SALT outperforms ARHMM across all three mice.

5.4 Modeling C. elegans Neural Data

Finally, we analyzed neural recordings of an immobilized C. elegans worm from Kato et al. [2015].
SLDS have previously been used to capture the time-varying low-dimensional dynamics of the neural
activity [Linderman et al., 2019, Glaser et al., 2020]. We compared SLDS, ARHMM, and CP-SALT
with 18 minutes of neural traces (recorded at 3Hz; ~3200 timesteps) from one worm, in which 48
neurons were confidently identified. The dataset also contains 7 manually identified state labels based
on the neural activity.

We used H = 7 discrete states and fitted SLDSs, ARHMMs, and CP-SALT with varying lags and
ranks (or continuous latent dimensions for SLDSs). Following Linderman et al. [2019], we searched
for sets of hyperparameters that achieve ~90% explained variance on a held-out test dataset (see
Appendix F for more details). For ARHMMs and CP-SALT, we chose a larger lag (L = 9, equivalent
to 3 seconds) to examine the long-timescale correlations among the neurons.

We find that SALT can perform as well as SLDSs and ARHMMs in terms of held-out explained
variance ratio (a metric used by previous work [Linderman et al., 2019]). As expected, we find that
CP-SALT can achieve these results with far fewer parameters than ARHMMs, and with a parameter
count closer to SLDS than ARHMM (as more continuous latent states were required in an SLDS
to achieve ~90% explained variance; see Appendix F). Figure SA shows that SALT, SLDS and
ARHMM produce similar segmentations to the given labels, as evidenced by the confusion matrix
having high entries on the leading diagonal (Figure 5B and Appendix F).

Figure SC shows the one dimensional autoregressive filters learned by CP-SALT, defined as

ZDI Zk 1 gZ ; k pz)véj) " for neurons p and q. We see that neurons believed to be
1nvolved 1n partlcular behavioral states have high weights in the filter (e.g., SMDV during the “Ventral
Turn” state and SMDD during the “Dorsal Turn” state [Linderman et al., 2019, Kato et al., 2015, Gray
et al., 2005, Kaplan et al., 2020, Yeon et al., 2018]). This highlights how switching autoregressive
models can reveal state-dependent functional interactions between neurons (or observed states more
generally). In Appendix F, we show the autoregressive filters learned by an ARHMM, an SLDS,
and a generalized linear model (GLM), a method commonly used to model inter-neuronal interac-
tions [Pillow et al., 2008]. Interestingly, the GLM does not find many strong functional interactions
between neurons, likely because it is averaging over many unique discrete states. In addition to its
advantages in parameter efficiency and estimation, SALT thus provides a novel method for finding
changing functional interactions across neurons at multiple timescales.

6 Discussion

We introduce switching autoregressive low-rank tensor (SALT) models: a novel model class that
parameterizes the autoregressive tensors of an ARHMM with a low-rank factorization. This constraint
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Figure 5: CP-SALT provides good segmentations of C. elegans neural data, and inferred low-
rank tensors give insights into temporal dependencies among neurons in each discrete state: (A)
Example data with manually generated labels (Given), as well as segmentations generated by SALT,
SLDS and ARHMM models. Learned states are colored based on the permutation of states that best
matches given labels. All methods produce comparable segmentations, with high agreement with the
given labels. (B) Confusion matrix of SALT-generated labels. (C) One-dimensional autoregressive
filters learned in two states by SALT (identified as ventral and dorsal turns). Colors indicate the
area under curve (red is positive; blue is negative). The first four rows are neurons known to mediate
ventral turns, while the last two rows mediate dorsal turns [Kato et al., 2015, Gray et al., 2005, Yeon
et al., 2018]. These known behavior-tuned neurons generally have larger magnitude autoregressive
filters. Interestingly, AVFL and AVFR also have large filters for dorsal turns. These neurons do not have
a well-known function. However, they are associated with motor neurons, and so may simultaneously
activate due to factors that co-occur with turning. This highlights how SALT may be used for
proposing novel relationships in systems.

allows SALT to model time-series data with fewer parameters than ARHMMs and with simpler
estimation procedures than SLDSs. We also make theoretical connections between low-rank tensor
regressions and LDSs. We then demonstrate, with both synthetic and real datasets, that SALT offers
both efficiency and interpretability, striking an advantageous balance between the ARHMM and
SLDS. Moreover, SALT offers an enhanced ability to investigate the interactions across observations,
such as neurons, across different timescales in a data-efficient manner.

However, SALT is not without limitations. Foremost, SALT cannot readily handle missing obser-
vations, or share information between multiple time series with variable observation dimensions.
“Hierarchical SALT” is an interesting extension, where information is shared across time series, but
the factors of individual time series are allowed to vary. Furthermore, SALT could be extended
to handle non-Gaussian data. For example, neural spike trains are often modeled with Poisson
likelihoods instead of SALT’s Gaussian noise model. In this case, the E-step would still be exact,
but the M-step would no longer have closed-form coordinate updates. Despite these limitations,
SALT offers simple, effective and complementary means of modeling and inference methodology
for complex, time-varying dynamical systems.

Ethical Concerns We note that there are no new ethical concerns as a result of SALT.
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A SALT Optimization via Tensor Regression

Let y; € RN be the ¢-th outputs and X, € RN2*Ns be the ¢-th inputs. The regression weights are a
tensor A € RN1XN2xNs wwhich we model via a Tucker decomposition,

D1 D2 Ds

A= gijrugovowy, (11)

i=1 j=1k=1
where u;, v;, and wy, are columns of the factor matrices U € RN1xD1 v ¢ RN2xD2 gpd W e

RN3XDs regpectively, and g, are entries in the core tensor G € RP1*D2xDs,

We define xj, to be a tensor-matrix product over the j*" and k" slices of the tensor. For ex-
ample, given a three-way tensor A € RP1*P2XDs and a matrix X € RP2XPs) A x53 X =
Zf; ZkD:SI a.j,x k. This operation is depicted in Figure 6.

Consider the linear model, y; ~ N (A X2 3 X¢, Q) where A X2 3 X; is defined using the Tucker
decomposition of A as,

A X2.3 Xt = .A(l)vec(Xt) (12)
=UG1) (V' @ W )vec(X,) (13)
= UG1yvec(V' X, W) (14)

where A () € RN1xN2Ns and Sa) € RP1xP2Ds are mode-1 matricizations of the corresponding
tensors. Note that these equations assume that matricization and vectorization are performed in
row-major order, as in Python but opposite to what is typically used in Wikipedia articles.

Equation (14) can be written in multiple ways, and these equivalent forms will be useful for deriving
the updates below. We have,

A x5 X, =UG)(Ip, ® W X/ Jvec(V") (15)
=UG1(VTX, ® Ip,)vec(W) (16)
=[U® Vec(VTXtW)] vec(G). (17)

We minimize the negative log likelihood by coordinate descent.

Optimizing the output factors Let

Xt = G1yvee(VI X, W) (18)
for fixed V, W, and G. The NLL as a function of U is,
1 ~ _ -
L(U) = 3 Z(Yt - Ux)'Q (s — Uxy). (19)

t

This is a standard least squares problem with solution

-1
U* = <Z yix, ) ( X%, ) . (20)
t t

Optimizing the core tensors Let X; = U@ vec(V T X, W) € RV1*DP1D2Ds denote the coefficient
on vec(§) in eq. (17). The NLL as a function of g = vec(9G) is,

1

L(g) =35> (v~ Xig) Q' (v: — Xig). @1

The minimizer of this quadratic form is,
-1
g = (Z X/ Q1Xt> (Z X! Qlyt> (22)
t t
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Figure 6: Depiction of the X 3 tensor operator we use [Kolda and Bader, 2009] This can be thought
of as a generalization of matrix-vector products to tensor-matrix products.

Optimizing the input factors Let

X: =UG(Ip, e W'X/) (23)
for fixed U, W, and G. The NLL as a function of v = vec(V ") is,
1 - -

Lv) =5 (ye = Xv) Q7 (3 — Xv). (24)

t

The minimizer of this quadratic form is,
-1
Ve = (Z ijQ—lit> <Z XZQ—lyt> (25)
t t

Optimizing the lag factors Let

X, = UG (V' X, ®1p,) (26)
for fixed U, V, and G. The NLL as a function of w = vec(W) is,
1 . B -
Lw) =5 (e —Xew) Q7 (3 — Xyw). @7)

t
The minimizer of this quadratic form is,

—1
W* = <Z X;Q_1Xt> (Z X:Q_lyt> (28)
t

t

Multiple discrete states If we have discrete states z; € {1,..., H} and each state has its own
parameters (S(h), U, v W) Q) then letting wt(h) = E[z; = h] denote the weights from

the E-step, the summations in coordinate updates are weighted by wt(h). For example, the coordinate

update for the core tensors becomes,

—1
gw*:(zw§h>>~<§hﬁg<h>—l>~<§h>) (zwﬁh&;h”@w—lyt) )

t t
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B SALT approximates a (Switching) Linear Dynamical System

We now re-state and provide a full proof for Proposition 1.

Proposition 1 (Low-Rank Tensor Autoregressions Approximate Stable Linear Dynamical Systems).
Consider a stable linear time-invariant Gaussian dynamical system. We define the steady-state
Kalman gain matrix as K = lim;_,oo Ky, and T = A(I — KC). The matrix T € R*% has
eigenvalues Ay, ..., \s. Let Apax = max; |\s|; for a stable LDS, \pnax < 1 [Davis and Vinter,
1985]. Let n denote the number of real eigenvalues and m the number of complex conjugate pairs.
Let yﬁLDS) = Ely¢ | y1.4—1] denote the predictive mean under a steady-state LDS, and y§SALT) the
predictive mean under a SALT model. An order-L Tucker-SALT model with rank n + 2m = S, or a

CP-SALT model with rank n 4+ 3m, can approximate the predictive mean of the steady-state LDS

. ~(LDS) A (SALT
with error Hyi ) _ yE )”oo = O(Moax)-

Proof. A stationary linear dynamical system (LDS) is defined as follows:
Xt = AXt,1 + b + € (30)
yt:CXt+d+6t (31)
where y; € RY is the ¢-th observation, x; € RS is the t-th hidden state, €; N (0,Q), d; i
N(0,R),and 8 = (A,b,Q, C,d, R) are the parameters of the LDS.

Following the notation of Murphy [2012], the one-step-ahead posterior predictive distribution for the
observations of the LDS defined above can be expressed as:

p(yelyre-1) = N(Cpyp—q +d, C3;;-1C" + R) (32)
where
My =Apy,_+b (33)
By = pyppq + Kqry (34)
Ty = AZ AT+ Q (35)
3y = (I - KtC)Et|t71 (36)
p(x1) = N(x1 | p1)0, Z1)0) (37
K, = (2, , +C'RC)"'C'"R™! (38)
ry =y —Cpyyy —d. (39

We can then expand the mean Cpyj,_; + d as follows:

t—1 t—1
Cpy +d=CY T/AK, 1y, +C) Ty(b— AK; ,d) +d (40)
=1 =1
where
-1
I =][AO-K,C) for 1€{23,. .}, (41)
=1
r =1 (42)

Theorem 3.3.3 of Davis and Vinter [1985] (reproduced with our notation below) states that for a
stabilizable and detectable system, the lim;_, 34,1 = 3, where X is the unique solution of the
discrete algebraic Riccati equation

> =AZAT —AzxC?(czc? +R)"ICZAT + Q. (43)

As we are considering stable autonomous LDSs here, the system is stabilizable and detectable, as all
unobservable states are themselves stable [Davis and Vinter, 1985, Katayama, 2005]

Theorem 3.3.3 (Reproduced from Davis and Vinter [1985], updated to our notation and context).
The theorem has two parts.
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(a) If the pair (A, C) is detectable then there exists at least one non-negative solution, X, to
the discrete algebraic Riccati equation (43).

(b) If the pair (A, C) is stabilizable then this solution X is unique, and Xy, — X ast — o0,
where 3,1 is the sequence generated by (33)-(39) with arbitrary initial covariance 3.
Then, the matrixT' = A(I — KC) is stable, where K is the Kalman gain corresponding
to X ie.,

K=(Z"'4+C'RC)"!ICTR! (44)

Proof. See Davis and Vinter [1985]. Note that Davis and Vinter [1985] define the Kalman gain
as AK. O

The convergence of the Kalman gain also implies that each term in the sequence I'; converges to

-1
I =]JAO@-KC) = (A@-KC))"' =T'"", (45)
i=1
where, concretely, we define I' = A (I — KC). We can therefore make the following substitution and
approximation

t—1 t—1

Chyy 1 +d"™EFCY I'AKy, +C) T'(b - AKd) +d (46)
=1 =1

L L o)
=CY I'AKy, ;+CY I'(b—AKd)+d+ Y F (rl) 47)
=1 =1 l=L+1

L L
~C)» T'AKy, ;+C>» T'(b— AKd)+d (48)
=1 =1

The approximation is introduced as a result of truncating the sequence to consider just the “first” L
terms, and discarding the higher-order terms (indicated in blue). It is important to note that each term
in (46) is the sum of a geometric sequence multiplied elementwise with y;.

There are two components we prove from here. First, we derive an element-wise bound on the error
introduced by the truncation, and verify that under the conditions outlined that the bound decays
monotonically in L. We then show that Tucker and CP decompositions can represent the truncated
summations in (48), and derive the minimum rank required for this representation to be exact.

Bounding The Error Term We first rearrange the truncated terms in (46), where we define
x; £ AKy; ; +b — AKd

> F(r')=c Y r'AKy+C Y T'(b-AKd)+d, (49)
I=L+1 I=L+1 I=L+1
- Y crix, (50)
l=L+1
= Y CEA"'E'x, (51)
I=L+1
= Y PA'"q, (52)
I=L+1

where EAE 1! is the eigendecomposition of ', P £ CE, and a £ E—1x;. We now consider the
infinity-norm of the error, and apply the triangle and Cauchy-Schwartz inequalities. We can write the
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bound on the as

e — (i f(rl)>n . where 1 = argmax (Z f(rl))k (53)

l=L+1 I=L+1
0o S
=1 D D pashi s s (54)
I=L+1 s=1
0o S
< 0N pnsl (M sl - (55)
I=L+1 s=1

Upper bounding the absolute magnitude of ¢; ; by W provides a further upper bound, which we can
then rearrange

oo S
e<W > Ipnsl AL

l=L+1s=1

- wz|pm| > . 7)

I=L+1
The first two terms are constant, and hence the upper bound is determined by the sum of the of the
I*" power of the eigenvalues. We can again bound this sum by setting all eigenvalues equal to the
magnitude of the eigenvalue with the maximum magnitude (spectral norm), denoted A, 4:

e<w leml Z A (58)

I=L+1

(56)

where these second summation is not a function of s, and W 25:1 |pns| is constant. This summation
is a truncated geometric sequence. Invoking Theorem 3.3.3 of Davis and Vinter [1985] again, the
matrix I has only stable eigenvalues, and hence A,ax < 1. Therefore the sequence sum will converge
to

AL = o (59)
I=L+1 1 - Amax

Rearranging again, we see that the absolute error on the n'!

according to a power of the spectral norm

element of y; is therefore bounded

/\L
€ < WZ pusl 75— (60)
=0 (Aﬁm) : (61)

More specifically, for a stable linear time-invariant dynamical system, and where q — and hence y —
is bounded, then the bound on the error incurred reduces exponentially in the length of the window L.
Furthermore, this error bound will reduce faster for systems with a lower spectral norm.

Diagonalizing the System We first transform T into real modal form, defined as EAE~!, where E
and A are the eigenvectors and diagonal matrix of eigenvalues of I'. Letting I" have n real eigenvalues
and m pairs of complex eigenvalues (i.e., n + 2m = S), we can express E, A, and E~! as

E=[a; ...a, by ci ... by cp] (62)
oy -
An
A= o1 %1 (63)
—W1 01
Om Wm
- _Wm O-m -
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El=|F (64)

where a; ...a, are the right eigenvectors corresponding to n real eigenvalues A ... \,, and b;
and c; are the real and imaginary parts of the eigenvector corresponding to the complex eigenvalue
0; + jw;. Note that

I=(A(I-KC)'=EA'E! (65)

The [th power of A, Al, where [ > 0, can be expressed as:

. -
AL

l

/\n
Al — 01,0 Wi, (66)

—W1,1 01,1
Om,l Wm,l
L —Wm,l Om,l |
2 2

where 01 = 0'2-7171 — wi’lfl, Wil = 20’1'71_1(411‘,[_1 for [ > 2, 01 = 04, Wi1 = Wi, 050 = 1, and

wio = 0.

Tucker Tensor Regression Let H € RS*S*L be a three-way tensor, whose [ frontal slice
H.,=A"1 LetG e RS*5%S pe g three-way tensor, whose entry g;;; = Li—j— for 1 < k < n,
and gijr = (—1) == L)y (i— 1= — 1=k (i=j+ 1=k+ 1)V (i+1=j=k+1) TOr k € {n +1,n +
3,...,n+2m—1}. Let W € RE*S be a matrix, whose entry wy = )\fl forl <k <n,wy =
ok -1 fork € {n+1,n+3,...,n+2m—1}, and wy, = —wy ;1 fork € {n+2,n+4,...,n+2m}.
We can then decompose H into G € R¥*5*S and W € RE*9 such that H{ = G x3 W (Figure 7).
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Figure 7: Decomposition of 3 into G and W such that H = G x3 W: Given an LDS whose
A (I-KC) has n real eigenvalues and m pairs of complex eigenvalues, this decomposition illustrates
how Tucker-SALT can approximate the LDS well with rank n + 2m.

With V = (E~'AK)?, U=CE,m=CY." T'(b— AKd) +d,and X; = y; 1.1, we can
rearrange the mean to:

L L
Cpys +d=CY EA'ET'AKy, ;+C) T'(b— AKd)+d (67)
=1 =1
L
=UY HyV'y i +m (68)
=1
L
=UD (§%sw)VTyes +m (69)
=1
L
=U) (S x2 V)xsW)y: 1+ m (70)
=1
L S
=U> > girovi(wwyi—) +m (71)
=1 j=1k=1
S S
= UZZg:jk(V;th:k) +m (72)
j=1k=1
s S S
= ZZ u:igijk(V;;XtW;k) +m (73)
=1 j=1 k=1

n+2m n+2m n+2m
= Gijk Wi O Vi O Wy | X23 Xy +m (74)

CP Tensor Regression By rearranging E, A, and E~! into J, P;, and S respectively as follows:
J:[al---an by +c1 by ¢y ... by +cpy bmcm} (75)
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l
)‘n
J1,1

P, — o 76
! 81 (76)

Om,l
Qm,1

/Bm,l |

s=| 11 (77)

where J € RSX(n—&-3m)’ P, € R(n+3m)><(n+3m)’ S ¢ R(n+3m)><S, iy = Wil — Tils and 6i,l —
—wj; — 041, we can diagonalize (A (I — KC))! as JP;S.

Let V = (SAK)T, U = CJ,m = CY/, T'(b — AKd) +d, and X; = y, 1.4 1. Let
W e REX(n+3m) be a matrix, whose element in the [*" row and k" column is Pi—1,kk (.., the

element in the k%" row and k*" column of P;_;), and G € R("+3m)x(n+3m)x(n+3m) pe 3 diagonal
3-way tensor, where g;;; = 1;—;—;. We can then rearrange the mean to:

L L
Cpyyy +d~CY EA"'E'AKy, ;+C)» T'(b— AKd)+d (78)
=1 =1
L
=C) JP,_;SAKy, ;+m (79)
=1
L
=U) P Viyi+m (80)

=1
L n+3mn+3mn+3m
E § E E Gijk Wi © Vi (Pi—1,kkYi—1) +m 8D
=1 i 7 k
n+3m n+3m n+3m

Yo D gnwiovy(Xewy) +m (82)
[ i k

n+3m n+3m n+3m

D30 Y girmiovgowy| x23X, +m (83)

i=1  j=1 k=1

And so concludes the proof. O
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C Single-subspace SALT

Here we explicitly define the generative model of multi-subspace and single-subspace Tucker-SALT
and CP-SALT. Single-subspace SALT is analogous to single-subspace SLDSs (also defined below),
where certain emission parameters (e.g., C, d, and R) are shared across discrete states. This reduces
the expressivity of the model, but also reduces the number of parameters in the model. Note that both
variants of all models have the same structure on the transition dynamics of z;.

Multi-subspace SALT Note that the SALT model defined in (6) and (7) in the main text is a
multi-subspace SALT. We repeat the definition here for ease of comparison.

Dy D2 D3

yi N >N ngj}v ul o :(jzt) owi) | %23 yi—1a—r +bE)DED | (84)

=1 j=1 k=1
D; = Dy = D3 = D and § is diagonal for CP-SALT.

Single-subspace Tucker-SALT In single-subspace methods, the output factors are shared across
discrete states

2 3
ii.d. (z¢ Zt
ye ~ N m) 4 E E 8.k ) o :(k ) X23Yi—1i—r | +b,EE) | (85)
j=1 k=1

where m(*t) € RD1,

Single-subspace CP-SALT Single-subspace CP-SALT requires an extra tensor compared to
Tucker-SALT, as this tensor can no longer be absorbed in to the core tensor.

. 2 3
yi M N U [ m&) P Zzg(“ owi) | xo3yicta—r | | +b, B |
j=1k=1
(86)

where U’ € RVXD1 P(z) ¢ RP1xD1 ;=) ¢ RPY, D) = Dy = Dy = D, and G is diago-
nal.

Multi-subspace SLDS Multi-subspace SLDS is a much harder optimization problem, which we
found was often numerically unstable. We therefore do not consider multi-subspace SLDS in these
experiments, but include its definition here for completeness

x; ~ N (AGx, + b0, Q) (87)

ye ~ N (CE0x, + =), RED). (88)

Single-subspace SLDS Single-subspace SLDS was used in all of our experiments, and is typically
used in practice [Petreska et al., 2011, Linderman et al., 2017]

e (A2 1, ). "
yi ~N(Cx;+d, R). (90)
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D Synthetic Data Experiments

D.1 Extended Experiments for Proposition 1

In Section 5.1 we showed that Proposition 1 can accurately predict the required rank for CP- and
Tucker-SALT models. We showed results for a single LDS for clarity. We now extend this analysis
across multiple random LDS and SALT models. We randomly sampled LDSs with latent dimensions
ranging from 4 to 10, and observation dimensions ranging from 9 to 20. For each LDS, we fit
5 randomly initialized CP-SALT and Tucker-SALT models with L = 50 lags. We varied the
rank of our fit SALT models according to the rank predicted by Proposition 1. Specifically, we
computed the estimated number of ranks for a given LDS, denoted D*, and then fit SALT models
with {D* — 2, D* — 1, D*, D* + 1, D* + 2} ranks. According to Proposition 1, we would expect
to see the reconstruction error of the autoregressive tensor be minimized, and for prediction accuracy
to saturate, at D = D*.

To analyze these model fits, we first computed the average mean squared error of the autoregressive
tensor corresponding to the LDS simulation, as a function of SALT rank relative to the rank required
by Proposition 1. We see, as predicted by Proposition 1, that error in the autoregressive tensor is
nearly always minimized at D* (Figure 8A). Tucker-SALT was always minimized at D*. Some
CP-SALT fits have lower MSE at ranks other than predicted by Proposition 1. We believe this is
due to local minima in the optimization. We next investigated the test log-likelihood as a function of
the relative rank (Figure 8B). Interestingly, the test log-likelihood shows that Tucker-SALT strongly
requires the correct number of ranks for accurate prediction, but CP-SALT can often perform well
with fewer ranks than predicted (although still a comparable number of ranks to Tucker-SALT). As
in Figure 2, these analyses empirically confirm Proposition 1.

x107°

< 0.00
4 o
3 2
=1 < —0.05
a =
=2 g0
EaE = -0.10
= ! \ )
21 N = L
‘\ 5 —0.15 |¥ 1 Tucker-SALT
0 k- < }— CP-SALT
= —0.20 |«
-2 -1 0 1 2 -2 -1 0 1 2
D — D D — D
(a) Normalized MSE of autoregressive tensor. (b) Normalized log-likelihood on held-out test set.

Figure 8: Extended results examining Proposition 1. Results are shown for the ability of SALT to
estimate ten randomly generated LDSs, using five SALT repeats for each LDS. MSEs (in panel A)
and log-likelihoods (in panel B) are normalized by the mean MSE and mean log-likelihood of SALT
models trained with D = D*. D is the rank of the fit SALT model, and D* is the necessary rank
predicted by Proposition 1.

D.2 Quantitative Performance: Synthetic Switching LDS Experiments

We include further results and analysis for the NASCAR® and Lorenz attractor experiments presented
in Section 5.2. We compare the marginal likelihood achieved by single-subspace SALT models of
different sizes. We see that SALT outperforms ARHMMs, and can fit larger models (more lags)
without overfitting (Figure 9). Note that the SLDS does not admit exact inference, and so we cannot
readily compute the exact marginal likelihood for the SLDS.

D.3 TVART versus SALT in recovering the parameters of SLDSs

We compared SALT to TVART Harris et al. [2021], another tensor-based method for modeling
autoregressive processes. We modified TVART (as briefly described in the original paper, Harris et al.
[2021]) so that it can handle AR(p) processes, as opposed to only AR(1) processes. TVART is also
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Figure 9: Quantitative performance of different SALT models and ARHMMs (averaged over 3
different runs) on the synthetic experiments presented in Section 5.2. The test-set log likelihood is
shown as a function of lags in the SALT model, for both (A) the NASCAR® and (B) Lorenz synthetic
datasets.

not a probabilistic model (i.e., cannot compute log-likelihoods), and so we focus our comparison on
how well these methods recover the parameters of a ground-truth SLDS.

We used the same SLDS that we used to generate the NASCAR® dataset in Section 5.2. We then
used L = 7 CP-SALT and Tucker-SALT with ranks 3 and 2, respectively, and computed the MSE
between the ground truth tensor and SALT tensors. For TVART, we used L = 7, bin size of 10,
and ranks 2 and 3 to fit the model to the data. We then clustered the inferred dynamics parameters
to assign discrete states. To get the TVART parameter estimation, we computed the mean of the
dynamics parameters for each discrete state and computed the MSE against the ground truth tensor.
The MSE results are as follows:

Table 2: Results comparing SALT and TVART Harris et al. [2021] on the NASCAR example.

Model Rank Tensor Reconstruction MSE (x10~3) Number of parameters
TVART 2 0.423 1.4K
TVART 3 0.488 2.0K
Tucker-SALT 2 0.294 0.6K
CP-SALT 3 0.297 0.7K

Table 2 shows that SALT models recover the dynamics parameters of the ground truth SLDS more
accurately. Furthermore, we see that SALT models use fewer parameters than TVART models for
the dataset (as the number of parameters in TVART scales linearly with the number of windows). We
also note that TVART cannot be applied to held-out data, and, without post-hoc analysis, does not
readily have a notion of re-usable dynamics or syllables.

D.4 The effect of the number of switches on the recovery of the parameters of the
autoregressive dynamic tensors

We asked how the frequency of discrete state switches affected SALT’s ability to recover the autore-
gressive tensors. We trained SALT, the ARHMM, all with L = 5 lags, and the SLDS on data sampled
from an SLDS with varying number of discrete state switches. The ground-truth SLDS model had
H = 2 discrete states, N = 20 observations and S = 7 dimensional continuous latent states. The
matrix A ") (I — K" C®™) of each discrete state of the ground-truth SLDS had 1 real eigenvalue
and 3 pairs of complex eigenvalues. We sampled 5 batches of T' = 15, 000 timesteps of data from
the ground-truth SLDS, with s,, € {1, 10,25, 75,125} number of discrete state switches that were
evenly spaced out across the data. We then computed the mean squared error (MSE) between the
SLDS tensors and the tensors reconstructed by SALT, the ARHMM, and the SLDS. (Figure 10).
More precisely, we combined the 3rd order autoregressive tensors from each discrete state into a
4th order tensor, and calculated the MSE based on these 4th order tensors. As expected, the MSE
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Figure 10: The quality of SALT approximation of SLDSs decreases as the number of discrete
state switches increases: The data comes from an SLDS with H = 2, N = 20, and S = 7. 15,000
timesteps were generated, with varying numbers of evenly spaced discrete state switches (x-axis).
The mean squared error of reconstructing the autoregressive tensors increased as a function of the
number of discrete state switches. Note that we combined the 3rd order autoregressive tensors from
each discrete state into a 4th order tensor, and calculated the MSE based on these 4th order tensors.

increased with the number of switches in the data, indicating that the quality of SALT approximation
of SLDSs decreases as the frequency of discrete state switches increases.
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E Modeling Mouse Behavior

We include further details for the mouse experiments in Section 5.3.

E.1 Training Details

We used the first 35,949 timesteps of data from each of the three mice, which were collected at
30Hz resolution. We used H = 50 discrete states and fitted ARHMMSs and CP-SALT models with
varying lags and ranks. Similar to Wiltschko et al. [2015], we imposed stickiness on the discrete state
transition matrix via a Dirichlet prior with concentration of 1.1 on non-diagonals and 6 x 10* on
the diagonals. These prior hyperparameters were empirically chosen such that the durations of the
inferred discrete states and the given labels were comparable. We trained each model 5 times with
random initialization for each hyperparameter, using 100 iterations of EM on a single NVIDIA Tesla
P100 GPU.

E.2 Video Generation

Here we describe how the mouse behavioral videos were generated. We first determined the CP-
SALT hyperparameters as those which led to the highest log-likelihood on the validation dataset.
Then, using that CP-SALT model, we computed the most likely discrete states on the train and test
data. Given a discrete state h, we extracted slices of the data whose most likely discrete state was
h. We padded the data by 30 frames (i.e. 1 second) both at the beginning and the end of each slice
for the movie. A red dot appears on each mouse for the duration of discrete state h. We generated
such videos for all 50 discrete states (as long as there existed at least one slice for each discrete
state) on the train and test data. For a given discrete state, the mice in each video behaved very
similarly (e.g., the mice in the video for state 18 “pause"” when the red dots appear, and those in
the video for state 32 “walk" forward), suggesting that CP-SALT is capable of segmenting the data
into useful behavioral syllables. See “MoSeq_salt_videos_train" and “MoSeq_salt_videos_test"
in the supplementary material for the videos generated from the train and test data, respectively.
“salt_crowd_i.mp4" refers to the crowd video for state . We show the principal components for states
1,2,13,32,33,47 in Figure 11.

E.3 Modeling Mouse Behavior: Additional Analyses

We also investigated whether SALT qualitatively led to a good segmentation of the behavioral data
into discrete states, shown in Figure 11. Figure 11A shows a 30 second example snippet of the test
data from one mouse colored by the discrete states inferred by CP-SALT. CP-SALT used fewer
discrete states to model the data than the ARHMM (Figure 11B). Coupled with the finding that
CP-SALT improves test-set likelihoods, this suggests that the ARHMM may have oversegmented
the data and CP-SALT may be better able to capture the number of behavioral syllables. Figure 11C
shows average test data (with two standard deviations) for a short time window around the onset
of a discrete state (we also include mouse videos corresponding to that state in the supplementary
materials). The shrinking gray area around the time of state onset, along with the similar behaviors
of the mice in the video, suggests that CP-SALT is capable of segmenting the data into consistent
behavioral syllables.
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Figure 11: CP-SALT leads to qualitatively good segmentation of the mouse behavioral data
into distinct syllables.: (A) 30 seconds of test data (Mouse 1) with the discrete states inferred by
CP-SALT as the background color. (B) For one mouse, the cumulative number of frames that are
captured by each discrete state, where the discrete states are ordered according to how frequently they
occur. (C) The average test data, with two standard deviations, for six states of CP-SALT, aligned to
the time of state onset. The shrinkage of the gray region around the state onset tells us that CP-SALT
segments the test data consistently.
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F Modeling C. elegans Neural Data

We include further details and results for the C. elegans example presented in Section 5.4. This
example highlights how SALT can be used to gain scientific insight in to the system.

F.1 Training Details

We used ~3200 timesteps of data (recorded at 3Hz) from one worm, for which 48 neurons were
confidently identified. The data were manually segmented in to seven labels (reverse sustained, slow,
forward, ventral turn, dorsal turn, reversal (type 1) and reversal (type 2). We therefore used H = 7
discrete states in all models (apart from the GLM). After testing multiple lag values, we selected
L =9 for all models, as these longer lags allow us to examine longer-timescale interactions and
produced better segmentations across models, with only a small reduction in variance explained.
We trained each model 5 times with KMeans initialization, using 100 iterations of EM on a single
NVIDIA Tesla V100 GPU. Models that achieved 90% explained variance on a held-out test set were
then selected and analyzed (similar to Linderman et al. [2019]).

F.2 Additional Quantitative Results

Figure 12 shows additional results for training different models. In Figure 12A we see that models
with larger ranks (or latent dimension) achieve higher explained variance. Interestingly, longer lags
can lead to a slight reduction in the explained variance, likely due to overfitting. This effect is less
pronounced in the more constrained single-subspace SALT, but, these models achieve lower explained
variance ratios throughout. Longer lag models allow us to inspect longer-timescale dependencies,
and so are more experimentally insightful. Figure 12B shows the confusion matrix for discrete states
between learned models and the given labels. The segmentations were similar across all models that
achieved 90% explained variance.

F.3 Additional Autoregressive Filters

Figures 13 and 14 show extended versions of the autoregressive filters included in Section 5.4. Figure
13 shows the filters learned for ventral and dorsal turns (for which panel A was included in Figure

>

SS CP-SALT L=1 MS CP-SALT L=3
SS CP-SALT L=3 —$— MS CP-SALT L=6

Held-out test data
Explained variance ratio

0-800 —4— SSCPSALT L=6  —$— MS CP-SALT L=9
0.775 —$— SSCP-SALT L=9  —¢— SSSLDS
MS CP-SALT L=1
0.750
8 9 10 11 12 13 14 15 16 17 18
B SALT rank or SLDS continuous latent state dimension
95}
_, REVSUS 15
ko) SLOW 600 8
= FWD =
— VT 100 &
g DT ;
R 200 @
D) REV1 <
REV?2 g
0 Z,
2 56 7 1234567 1234567
SALT Ldbels SLDS Labels ARHMM Labels

Figure 12: SALT and SLDS perform comparably on held-out data: (A): Explained variance on
a held-out sequence. Single-subspace (SS) SALT and SLDS perform comparably. Multi-subspace
(MS) SALT achieves a higher explained variance with fewer ranks. Multi-subspace SLDS was
numerically unstable. (B): Confusion matrices between given labels and predicted labels. All
methods produce similar quality segmentations.
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5), while Figure 14 shows the filters for forward and backward locomotion. Note that the GLM
does not have multiple discrete states, and hence the same filters are used across states. We see for
ARHMM and SALT that known-behavior tuned neurons have higher magnitude filters (determined
by area under curve), whereas the SLDS and GLM do not recover such strong state-specific tuning.
Since the learned SLDS did not have stable within-state dynamics, the autoregressive filters could
not be computed using Equation (48). We thus show CA!C+ for lag [, where C* denotes the
Moore-Penrose pseudoinverse of C, as a proxy for the autoregressive filters of discrete state h of
the SLDS. Note that this is a post-hoc method and does not capture the true dependencies in the
observation space.

We see that SALT consistently assigns high autoregressive weight to neurons known to be involved
in certain behaviors (see Figures 13 and 14). In contrast, the ARHMM identifies these relationships
less reliably, and the estimate of the SLDS autoregressive filters identifies few strong relationships.
As the GLM only have one “state”, the autoregressive filters are averaged across state, and so few
strong relationships are found. This highlights how the low-rank and switching properties of SALT
can be leveraged to glean insight into the system.
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Figure 13: Autoregressive tensors learned by different models (Ventral and Dorsal Turns): (A-C)
One-dimensional autoregressive filters learned in two states by SALT, SLDS, ARHMM (identified
as ventral and dorsal turns), and (D) by a GLM. RIV and SMDV are known to mediate ventral turns,
while SMDD mediate dorsal turns [Kato et al., 2015, Gray et al., 2005, Yeon et al., 2018].
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Figure 14: Autoregressive tensors learned by different models (Forward Locomotion and
Reversal): (A-C) One-dimensional autoregressive filters learned in two states by SALT, SLDS,
ARHMM (identified as forward and reverse), and (D) by a GLM. AVB and RIB are known to mediate
forward locomotion, while AVA and AVE are involved in initiating reversals [Kato et al., 2015, Gray
et al., 2005, Chalfie et al., 1985, Piggott et al., 2011].
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G Deep Switching Autoregressive Model

Here we compare SALT to deep switching auto-regressive factorization (DSARF) models [Farnoosh
et al., 2021]. DSARF models construct a deep generative model using a set of low-rank factors,
which are then weighted according to inferred discrete states at each timestep. This combination then
defines the time evolution of an autoregressive process, which in turn defines the distribution over the
observed variables. As such, non-linear function approximators can be used to parameterize many of
the link functions, gaining expressivity, but retaining the parameter efficiency and interpretability of
conventional methods. Variational inference is used to learn the parameters and perform inference.
Unlike SALT, DSAREF can handle missing data, as autoregressive processes are defined only in the
latent space.

We compare SALT against DSARF on an example drawn from Farnoosh et al. [2021], proposed for
studying switching systems by Ghahramani and Hinton [2000] (see also Weigend and Gershenfeld
[1994]). This example studies a patient believed to have sleep apnea, typified by periods where normal
rhythmic breathing ceases, resulting in periods of low or zero respiratory rates. The data are a one-
dimensional time series of a measure of chest volume, such that oscillations in the data correspond to
rhythmic breathing (see Figure 15). Periods of constant volume correspond to apnea bouts. Disjoint

one thousand length sequences are used for train and test sets, such that y*#in ¢ R1*1000 apd
ytest c RlxlOOO.

We apply DSAREF as described in Farnoosh et al. [2021] and SALT. The SALT model we used
uses H = 2 discrete states, D = 5 ranks and L = 10 lags, and with a single latent subspace. We
use an L2 weight penalty of 10~%. As per the mouse experiments, we add a Dirichlet stickiness
prior with parameters v = 1072 and x = 103 (See Table 3). Inference results on the test set are
shown in Figure 15. SALT hyperparameters were selected through manual tuning. SALT achieves a
normalized next-step prediction RMSE of 22.57%, vs 23.86% achieved by DSARF (described by
[Farnoosh et al., 2021] as “short-term prediction”) This result highlights that SALT is competitive
with “deep” methods that provide the desired discrete-continuous representation.
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Figure 15: Comparison of DSARF and SALT-CP on the apnea example as presented in Farnoosh
et al. [2021] Shown are filtering reconstructions of the observed trace and binary discrete label. SALT
achieves a normalized RMSE of 22.57% vs 23.86% achieved by DSAREF. Right panel is a zoomed
in version of the left panel. We see that reconstructions and scores achieved by both models are
comparable.
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H Experiment Configurations

In this section we provide extended details for the experiments presented in the main text, including

the hyperparameters selected and the hyperparameter tuning process.

H.1 List of Hyperparameters

Table 3 outlines the key hyperparameters we consider when comparing and selecting models. Details

of the values for each of these hyperparameters are then specified in the sections afterwards.

Table 3: Outline of the key hyperparameters in the three main models families we consider: SALT,

SLDS and ARHMM.

Hyperparameter Description Applicable to models Permissible Values
Tensor factorization Factorization structure of autoregressive tensor SALT, ARHMM {CP, Tucker, None}
Subspace type Whether the output factors are shared across discrete states. SALT, SLDS {Single, Multi}

Dimension of the core tensor.

D, Tensor ranks Assumed throughout that D = Dy = D2 = Ds. SALT

H, Number of discrete states ~ Number of discrete states in switching models. SALT, SLDS, ARHMM
L, Number of lags Number of previous observations in autoregressive models. SALT, ARHMM

S, Latent space dimension Dimension of continuous latent state. SLDS

L2 penalty applied lag parameters at longer lags.

Temporal L2 penalty The penalty strength is defined as o - 8~ where [ is the lag. SALT, ARHMM
Stickiness Dirichlet prior that can be added to penalize discrete state switches. SALT, SLDS, ARHMM
Global L2 penalty L2 penalty applied across all parameters. (See note below) SALT, SLDS, ARHMM

VAS
Z>1
Z5,
751
o € Rzo, ﬁ S R21

Y E Rso, k € RZO
R>o

Unless otherwise specified, we performed a grid search over a range of values within the permissible
set. In certain circumstances, the hyperparameter was selected to match known properties of the data,
e.g. we used [ = 4 for the NASCAR data, because we know there are four underlying states in the
data.

During pilot experiments we experimented with a global L2 penalty applied to all parameters in the
model. We found that varying this parameter did not affect the key outcomes of each experiment. We
therefore set the L2 penalty strength to the same value for all the models for all the experiments, with
strength 0.0001, unless otherwise specified.

H.2 Experiment Specific Hyperparameters

Here we specify experiment-specific details.

H.2.1 Section 5.1: SALT Faithfully Approximates LDS

For a given LDS with latent dimension size of S and initialized with a random rotation matrix, we
computed the estimated number of CP-SALT and Tucker-SALT ranks, denoted D¢,p = n + 3m and

Tucker = T + 2m, respectively, where n is the number of real eigenvalues and m is the number
of complex conjugate pairs of I' defined in Proposition 1. We then fitted CP-SALT models with
{min(S, D¢p) — 2,...,max(S, D¢p) + 2} and Tucker-SALT models with {min(S, D%, cer) —
2,...,max(S, D}y cxer) + 2} We chose L = 50, as this was the horizon at which the autoregressive
parameters were approximately zero. The temporal L2 penalty was set to 1.0.

H.2.2 Section 5.2: Synthetic Switching LDS Examples

Synthetic NASCAR dataset All models used the true number of discrete latent states, H = 4. We
fitted single-subspace CP-SALT and Tucker-SALT models with ranks D € {1, 2, 3, 4}. For both
SALT models and ARHMMs, we used L € {1,5,6,7,8,9,10,15,20}. A temporal L2 penalty of
1.0 was used for CP-SALT and Tucker-SALT models. Single-subspace SLDSs were fitted with the
true underlying latent dimension, S = 2.

Synthetic Lorenz attractor dataset All models used the approximate number of discrete latent
states in the data, H = 2 (following Linderman et al. [2017]). We fitted single-subspace CP-SALT
and Tucker-SALT models with ranks D € {1, 2, 3,4}. For both SALT models and ARHMMs, we
used L € {1,5,10,15,20}. A temporal L2 penalty of 2.0 was used for CP-SALT and Tucker-SALT
models. Single-subspace SLDSs were fitted with the true underlying latent dimension, S = 3.
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H.2.3 Section 5.3: Modeling Mouse Behavior

We fitted multi-subspace CP-SALT models with ranks D € {10, 11, 12,13, 14}. For both CP-SALT
models and ARHMMs, we used L € {1,2,3,4,5,6,7,8,9,10, 15,20} and the number of discrete
states was set to H = 50 (51 behavioral states explained 95% of videos Wiltschko et al. [2015]).
We use a temporal L2 penalty of 1.0. Similar to Wiltschko et al. [2015], we imposed stickiness on
the discrete state transition matrix of both SALT models and ARHMMs via a Dirichlet prior. For
discrete state h, the concentration parameters v € Rgo of the Dirichlet prior is  for v;, i # h, and
7 + & for vy, For this experiment, y was set to 1.1 and « to 6 x 10%, which were empirically chosen
such that the duration of the inferred discrete states and the given labels were comparable.

H.2.4 Section 5.4: Modeling C. elegans Neural Data

Following Linderman et al. [2019], we empirically searched for sets of hyperparameters that achieve
~90% explained variance on a held-out test dataset. We fitted both single and multi-subspace
CP-SALT models with ranks D € {8,9,10,11,12,13,14, 15,16, 17, 18}. Similarly, SLDSs were
fitted with the same range of latent dimension size. For both CP-SALT models and ARHMMs, we
used L € {1,3,6,9} and the number of discrete states was set to H = 7, which is the number of
unique manual labels. After testing multiple lag values, we selected L = 9 for SALT models and
ARHMMs, as these longer lags allow us to examine longer-timescale interactions and produced better
segmentation across models, with only a small reduction in variance explained. For ARHMMs, we
set the global L2 penalty strength to 20.0 with the temporal L2 penalty set to 1.0. For SLDSs, we set
the global L2 penalty strength to 100.0. For SALT models, we set the global L2 penalty strength to
0.2 and the temporal L2 penalty to 1.1. We additionally imposed a smoothness penalty to the weights
of the lag factors of SALT models by adding n||FW/||3 to the NLL for optimizing the lag factors,
where 7 is the smoothness penalty strength and F is the first difference matrix. We set n = 0.8 for
SALT models.
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