
Under review as submission to TMLR

Distributed Hierarchical Decomposition Framework for
Multimodal Timeseries Prediction

Anonymous authors
Paper under double-blind review

Abstract

We consider a distributed time series forecasting problem where multiple distributed nodes
each observing a local time series (of potentially different modality) collaborate to make
both local and global forecasts. This problem is particularly challenging because each node
only observes time series generated from a subset of sources, making it challenging to utilize
correlations among different streams for accurate forecasting; and the data streams observed
at each node may represent different modalities, leading to heterogeneous computational
requirements among nodes. To tackle these challenges, we propose a hierarchical learning
framework, consisting of multiple local models and a global model, and provide a suite
of efficient training algorithms to achieve high local and global forecasting accuracy. We
theoretically establish the convergence of the proposed framework and demonstrate the
effectiveness of the proposed approach using several time series forecasting tasks, with the
(somewhat surprising) observation that the proposed distributed models can match, or even
outperform centralized ones.

1 INTRODUCTION

Time series forecasting has diverse applications in various scientific disciplines, such as healthcare Che et al.
(2018), astronomy Scargle (1982), finance Batres-Estrada (2015), meteorology Shi et al. (2015), and traffic
engineering Zhang et al. (2017). Historically, regression-based methods have enjoyed widespread popularity for
time series forecasting Box et al. (2015); Toda & Phillips (1994); Frigola (2015). However, the recent success
of deep learning architectures for sequence learning tasks has led to the development of deep learning-based
time series prediction algorithms that outperform the state-of-the-art regression methods Wu et al. (2020b);
Zheng et al. (2020); Lai et al. (2018); Shih et al. (2019); Beltagy et al. (2020).

Despite the success of deep learning architectures for time series forecasting, research on distributed time
series forecasting has been scarce. With the advent of distributed data collection in contemporary settings,
there is a pressing need for the development of efficient distributed implementations of time series prediction
algorithms. However, a notable gap exists in the availability of distributed forecasting modules at a large
scale, particularly for scenarios where individual nodes observe only a subset of the entire data stream. In this
work, we address a time series forecasting problem wherein multiple distributed nodes collaborate using their
local data streams to generate both local (e.g., forecasting local traffic) and global predictions (e.g., predicting
aggregated traffic). Only a handful of works have addressed the problem, with the learning algorithms
introduced being straightforward adaptations of centralized approaches Nguyen et al. (2019); Perera et al.
(2022); Wang et al. (2022). The existing distributed time series forecasting algorithms fall short of addressing
requirements, such as safeguarding data privacy, capability to handle multimodal data, and providing model
flexibility. Key challenges in developing a distributed implementation of time series forecasting systems are:
– ❶ Every node captures only a fraction of the time series data, which introduces complexity in the learning
process, as effective time series forecasting relies on harnessing the correlations within the data streams Lai
et al. (2018); Wu et al. (2020b); Zheng et al. (2020).
– ❷ The data streams observed at each node may represent a different modality, e.g., the modern Internet of
Things (IoT) Atzori et al. (2010). Making accurate predictions with multimodal data requires each node to
choose an appropriate model for its modality, and importantly demands that the information distilled from

1

Under review as submission to TMLR

these heterogeneous models be properly fused.
– ❸ Communication is a major bottleneck in distributed learning McMahan et al. (2017), therefore, there is
a need to develop algorithms that avoid high-dimensional parameter sharing and protect data privacy by
avoiding raw data sharing for privacy-sensitive applications at the same time Aouedi et al. (2022).
– ❹Current time series forecasting models lack well-established theoretical underpinnings. Analyzing distributed
time series forecasting models presents a significant challenge due to the departure from the conventional
independent and identically distributed (i.i.d.) gradient assumptions in training, resulting in biased updates
during the training process.

It is by no means clear how to design a system that addresses the above-mentioned challenges and provides
accurate predictions while being able to: – ① handle multi-modal data by leveraging current advances of the
neural network-based time series models; – ② utilize local data while sharing as little information among
the nodes as possible while protecting data privacy; – ③ establish theoretical performance guarantees. In
this work, we develop a novel framework, distributed hierarchical decomposition (DIVIDE), which addresses
the above-mentioned challenges while guaranteeing theoretical performance with non-i.i.d. data samples.
The applicability of the developed framework is much beyond time series prediction tasks and can be in fact
used to solve general distributed learning problems. Specifically, DIVIDE subsumes a number of popular
modern distributed learning systems wherein the feature space of a single data sample is distributed among
the distributed nodes, such as the so-called vertical federated learning systems Wei et al. (2022). For example,
Webank uses such models for financial risk assessment for their enterprise customers Cheng et al. (2020).
However, our work addresses a significantly more challenging problem since individual data samples (i.e.,
pieces of the time series data) are correlated, and they may originate from potentially multimodal sources.

Contributions. In this work, we develop a novel distributed time series forecasting framework named
DIVIDE. Central to our proposed framework is an innovative hierarchical structure, where several local
models are constructed to handle data streams observed at a local level, and concurrently, a global model is
created to merge the embeddings generated by these local models. Further, a suite of customized and efficient
training algorithms is also developed to ensure that the system generates high-quality forecasting solutions.
Specifically, DIVIDE has the following major benefits:
➤ Flexibility. It provides local computing nodes with the freedom to select their model architectures, i.e.,
each local node can choose from a range of available time series prediction models (such as those rooted in
RNN or CNN), taking into account factors like their local data modality, available computing resources, and
the intricacy of their specific prediction tasks.
➤ Effective information sharing. A global model (either hosted at the server or at all the local nodes) is
carefully designed to help fuse the (potentially multimodal) information generated from the local models,
to best leverage the correlations among all the data streams. Importantly, the proposed algorithms avoid
raw data sharing by exploring certain special structures of the loss function so that nodes only exchange
low-dimensional embeddings.
➤ Theoretical guarantees. We represent the sampling for time series training as a Markov chain (or series)
and demonstrate that the proposed algorithms, when applied to train the hierarchical time series forecasting
model, converge towards the set of stationary solutions for the associated training problem.

To our knowledge, this is the first time that a distributed time series training framework with the desired
properties, such as flexibility, multimodal data, and no data sharing, has been rigorously designed, analyzed,
and evaluated.

2 Preliminaries

We address a distributed learning problem with K nodes. Each node k ∈ [K], observes a (potentially
multimodal) time series xn

k ∈ Rdk , where n ∈ N signifies the time index. We define the global time series,
observed collectively across all nodes, as xn ∈ Rd, with d =

∑K
k=1 dk. The global time series xn is constructed

as xn := [(xn
1)T , . . . , (xn

K)T]T . We denote a sequence of multi-dimensional time series samples as:

x̄n := [xn+1, xn+2, . . . , xn+D] ∈ Rd×D for n ∈ N (1)

2

Under review as submission to TMLR

where D > 0 is the time window; Define the next τ samples as:

ȳn := [xn+D+1, . . . , xn+D+τ] ∈ Rd×τ for n ∈ N, (2)

where τ is the time horizon of the prediction. We note that for general prediction problems with streaming
data, the labels ȳn can represent a general classification or regression task. The global task then is to predict
a function of ȳn using x̄n, denoted as g(·) : Rd×τ → Re which transforms a vector of data points at a given
time to a summary statistics, e.g., for predicting the total traffic across all agents, we have

g(yn) :=
[K∑

k=1

dk∑
i=1

xn+D+1
k [i], · · · ,

K∑
k=1

dk∑
i=1

xn+D+τ
k [i]

]
.

Here we have utilized the notation (x̄n, ȳn) ∼ Π for n ∈ N to denote the feature label pairs and where Π is
the underlying distribution that generates the data.

Now, let’s transition to the distributed scenario, where each node can only access a subset of the dimensions
of the global time series xn

k ∈ Rdk . In this context, leveraging the local observations, we can follow (1) – (2)
to define the tuple (x̄n

k , ȳn
k) as:

x̄n
k := [xn+1

k , . . . , xn+D
k] ∈ Rdk×D, (3)

ȳn
k := [xn+D+1

k , . . . , xn+D+τ
k] ∈ Rdk×τ (4)

for n ∈ N. Furthermore, the specific objective at each local node, k ∈ [K] is to forecast the local time series
or address a local inference problem up to the time horizon of τ utilizing a time window D. As the local
forecasting targets are denoted by ȳn

k ’s, we will refer to them as “labels” accessible at node k throughout. In
addition, we note that by using the notation of the local observations above, the tuple (x̄n, ȳn) defined in
(1)-(2) can be equivalently written as:

x̄n := [(x̄n
1)T , . . . , (x̄n

K)T]T ∈ Rd×D,

ȳn := [(ȳn
1)T , . . . , (ȳn

K)T]T ∈ Rd×τ

for n ∈ N. This notation will be useful in the subsequent discussion. Overall, the goal of a forecasting
algorithm is to learn a mapping from x̄n to g(ȳn), and/or mappings from each x̄n

k to ȳn
k for all k, by utilizing

a set of training samples, so that some loss function is minimized.

3 The proposed framework

3.1 Problem formulation

In this subsection, we describe the hierarchical model adopted by the proposed DIVIDE framework, as well
as its associated training problem.

➤ Local models. We assume that each node k ∈ [K], maintains an independent local machine learning
model (e.g., LSTM Hochreiter & Schmidhuber (1997) or RNN Mikolov et al. (2010)) characterized by its
parameters θk ∈ Θk ⊆ RPk . These models play a key role in conducting local predictive tasks. They take
as input the data streams observed locally, and their output is termed the “local embedding”, denoted as
fk(θk; x̄n

k) for all n ∈ N and all nodes k ∈ [K]. Here, x̄n
k is defined as in equation (4). Importantly, it’s worth

noting that these embeddings often possess much lower dimensions compared to dk × τ for each node k in the
set [K]. Each node is granted the flexibility to select its local model, depending on its available computational
resources and the modality of its local data streams, characterized as (x̄n

k , ȳn
k). For the sake of brevity in our

notation, we will subsequently represent fk(θk; x̄n
k) as simply fk(θk).

➤ Global models. Apart from the individual local models, each node (or the server) also maintains a global
machine learning model characterized by parameters θ0 ∈ Θ0 ⊆ RP0 . This global model serves the purpose of
capturing the correlations among different time series in order to improve the prediction accuracy. The inputs
for the global model consist of the local embeddings, while its output, termed as the “global embedding”, is

3

Under review as submission to TMLR

denoted as f0(θ0; f1, . . . , fK). This global embedding shares the same dimension as the label to be predicted.
For instance, in the context of time series forecasting, the dimension of the global embedding will be d × τ
since its design is centered around predicting the d-dimensional global time series for a time horizon of τ
(as detailed in equations (1) and (2). It’s important to note that the global model is introduced to capture
interdependencies among diverse time series data and, in doing so, aggregates the local embeddings from
each node to learn and represent these correlations.

Problem. The overarching objective of the forecasting problem involves acquiring the optimal local
parameters for each node while simultaneously optimizing the global model parameters. Defining θ ∈ Θ with
θ := [θT

0 , θT
1 , . . . , θT

K]T , Θ := ∪K
i=0Θi ⊆ RP and P =

∑K
i=0 Pi. The goal of the forecasting algorithm is to

jointly learn these parameters θ ∈ Θ in a distributed manner to minimize a given loss function denoted as
L : RP → R. This is expressed as

min
θ∈Θ

{
L(θ) := E(x̄,ȳ)∼Π[L(f0(θ0; f1(θ1), .., fK(θK)); (x̄, ȳ))]

}
, (5)

Popular choices of L(·) for time series forecasting problems are the ℓ2 and ℓ1 losses Lai et al. (2018).
In the subsequent section, we will utilize the specific structure of these loss functions to design a
communication-efficient distributed time series forecasting algorithm. We also point out that problem
(5) is in general non-convex since the loss function L(·) is non-convex w.r.t. θ ∈ Θ for many problems of
practical interest, e.g., when the local and global models are neural networks Jain et al. (2017).
Remark 1. We point out that although formulation (5) is designed for time series forecasting problems, it
is general enough to model standard distributed learning problems where each node has access to only a
partial feature originating from a potentially disparate modality, i.e., when the label feature pairs do not
originate from a time series. Specifically, our formulation encompasses a majority of distributed learning
models, including vertical FL frameworks Wei et al. (2022). However, note that the presence of both the
local and the global models combined with the fact that the data streams can be of potentially disparate
modalities makes our problem significantly more challenging than the ones considered in the past.

Next, we develop the algorithms to solve problem (5). First, we discuss the vanilla algorithm that relies on
label sharing. Note that label sharing may be acceptable for some problems (like classification or regression)
since the labels, in many cases, are low-dimensional and might not lead to significant privacy leakage. However,
for the time series prediction problems, as discussed in Section 2, the labels and the features share common
support (please see (4)), and therefore, label sharing for such problems might lead to privacy concerns. For
such problems, we utilize the separability of loss functions often utilized for time-series forecasting problems.
Specifically, we make use of Assumption 1 and make use of the fact that the loss function is separable across
dimensions to develop algorithms that can be fully implemented in a distributed fashion without requiring
any label sharing.

3.2 Prototype algorithm with label sharing

Our objective is to devise a combined optimization and communication strategy to minimize the global loss
in equation (5). Specifically, each node strives to learn a local model θk, simultaneously acquiring knowledge
of a global model, θ0, which is shared across all nodes or centrally managed by the server. To commence,
let’s first calculate the stochastic gradients with respect to both the local and global models. Initially, we
sample a data point denoted as (x̄, ȳ) ∼ Π, and compute the stochastic gradients (SG) as:

Local SG: ∇θk
L(θ; (x̄, ȳ)) = ∇θk

L(θ0, θ1, . . . , θk; (x̄, ȳ))
= ∇θk

fk(θk) ∇fk
f0(θ0, f1(θ1), . . . , fK(θK))∇f0L(f0(f1(θ1), . . . , fK(θK); θ0); ȳ), (6)

which follows from the application of the chain rule and the definition of the loss function in (5). Moreover,
note that the local models implicitly depend on the local data partitions (see discussion after (5)). Similar to
Local SG, we compute the Global SG as

Global SG: ∇θ0L(θ; (x̄, ȳ)) = ∇θ0L(θ0, θ1, . . . , θK ; (x̄, ȳ))
= ∇θ0f0(f1(θ1), . . . , fK(θK); θ0)∇f0L(f0(f1(θ1), . . . , fK(θK); θ0); ȳ), (7)

4

Under review as submission to TMLR

Algorithm 1 DIVIDE with label sharing
1: Input: Rounds r = {0, 1, . . . , R − 1}, local learning rates: {ηr

k}K
k=1, server learning rate: ηr

0
2: Initialize: Parameters, {θ0

0, θ0
1, . . . , θ0

K}
3: for r = 0 to R − 1 do
4: Sample (x̄r

k, ȳr
k) ∼ Π (see (4)) ∀k ∈ [K]

5: Share fk(θr
k) and ȳr

k, ∀k with server
6: Compute ∇θ0L(θr; (x̄r, ȳr)) at server via (7)
7: Compute ∇fk

f0(θr
0, f1, .., fK), ∀k at server

8: Update: θr+1
0 =θr

0 − ηr
0∇θ0L(θr; (x̄r, ȳr))

9: Receive at each node ∇fk
f0(θr

0, f1, ., fK), ∇f0L(f0(f1, ., fK ; θr
0); ȳr) from server

10: Compute ∇θk
L(θr; (x̄r, ȳr)) at each node using (6)

11: Update: θr+1
k =θr

k −ηr
k∇θk

L(θr; (x̄r, ȳr)) ∀k ∈ [K]
12: end for

which again follows from the application of the chain rule and the definition of the loss function in (5). Next,
to implement an efficient algorithm, one would sample (x̄, ȳ) in each round of training and implement an
SG-type algorithm using the SG estimates of (6) and (7). In the following, we first present the vanilla version
of DIVIDE, which relies on label sharing among nodes.

A prototype algorithm. Algorithm 1 describes the steps of a prototype version of the proposed algorithm.
At the beginning of each training round, the local nodes share their low-dimensional embeddings as well as
their locally observed labels with the server (see Step 5). The server then utilizes the shared information from
each node to update the global model using the Global SG constructed using (7) in Step 8. To construct
the Local SG in (6), each node receives the relevant partial gradient from the server in Step 9. The local
models are then updated in Step 11. This process continues until convergence. Note that at the end of the
training process, each node has access to the model parameters θR

k while the server will have access to θR
0 .

To make the final predictions, each node forwards their local predictions to the server, which then completes
the global prediction task.
Remark 2 (Limitations). There are two major limitations of Algorithm 1: – ❶ As briefly discussed earlier,
the first limitation is that the local nodes are leaking data. As noted in the implementation of Algorithm
1, the local labels are shared between the local nodes and the server in order to update the global model
parameters θ0. This may be reasonable for some distributed learning tasks (like classification), but not for
time series forecasting. – ❷ The correlations between local nodes are not fully utilized, since the algorithm
treats each local node independently and equally. However, there are rich correlations between data streams.
For example, as observed in Nguyen et al. (2019), the mobile edge devices (nodes) placed in the vicinity of
each other may lead to correlated workload characteristics, thereby leading to correlated data streams. It is
well known in the literature that the key to accurate predictions in time series is to utilize correlation among
the data streams Nguyen et al. (2019); Lai et al. (2018); Wu et al. (2020b); Zheng et al. (2020).

Next, we propose an alternate implementation of DIVIDE that addresses the above two limitations.

3.3 Algorithm without label sharing

In this section, we slightly modify the prototype implementation of DIVIDE that allows us to avoid any label
sharing. Specifically, to tackle the first limitation, the global model is moved to the local nodes. During the
training process, both the local and the global model parameters are updated locally while the server helps
orchestrate the communication between the nodes. Note that the global parameters, even though available
locally, are still global since they are kept identical at each node throughout the training process. Moreover,
we make the following assumption on the loss function.
Assumption 1. L(θ) is decomposable across dimensions, i.e., L(· ; (x̄, ȳ)) =

∑K
k=1 L(· ; (x̄, ȳk)).

We note that the above assumption holds for many loss functions of interest, including the ℓ2- and ℓ1-losses
that are almost exclusively used for time series prediction problems Lai et al. (2018). Now, using the above
assumption, we can implement the Local SG and the Global SG without requiring label sharing. The

5

Under review as submission to TMLR

Algorithm 2 DIVIDE without label sharing
1: Input: Rounds r = {0, 1, . . . , R − 1}, local learning rates: {ηr

k}K
k=1, server learning rate: ηr

0
2: Initialize: Parameters, {θ0

0, θ0
1, . . . , θ0

K}
3: for r = 0 to R − 1 do
4: Sample (x̄r

k, ȳr
k) ∼ Π (see (4)) ∀k ∈ [K]

5: Share: Local embeddings fk(θr
k) ∀k with all nodes via the server

6: Compute: ∇Lf0(f0(θr
0; f1, . . . , fK); ȳr

k) at each node and share with all nodes via the server
7: Compute: ∇Lf0(·; ȳr) =

∑K
k=1 ∇Lf0(f0(θr

0; f1, ., fK); ȳr
k) at each node using Assumption 1

8: Compute: ∇θk
fk(θr

k), ∇fk
f0(θr

0, f1, . . . , fK), and ∇θ0f0(f1, . . . , fK ; θr
0) at each node ((6), (7)).

9: Update: θr+1
0 = θr

0 − ηr
0∇θ0L(θr; (x̄r, ȳr))

10: Update: θr+1
k = θr

k − ηr
k∇θk

L(θr; (x̄r, ȳr)) ∀k ∈ [K]
11: end for

detailed procedure for solving (5) while operating under Assumption 1 is provided in Algorithm 2. It is
noteworthy that, following the initial sharing of local embeddings among the nodes (Step 5), each local node
computes its partial gradient ∇L(·; ȳr

k) based on its locally observed data in Step 6. Subsequently, these local
partial gradients are shared among nodes to construct the complete partial gradient denoted as ∇L(·; ȳr)
using Assumption 1 in Step 7. Moving forward to Step 8, the remaining partial gradients are calculated using
the shared local embeddings to construct both the Local SG and the Global SG as defined in (6) and (7),
respectively. Ultimately, the global and local models are updated concurrently using the computed stochastic
gradients in Steps 9 and 10, respectively.

It’s important to highlight that the DIVIDE framework offers the freedom to select both the global and
local models. The local models are responsible for capturing the specifics of the individual time series data
observed locally, while the global models are designed to uncover the correlations between the distinct time
series observed across different nodes. Next, we discuss the communication required by DIVIDE.
Remark 3 (Communication). Algorithm 1 requires information sharing in two steps, namely Steps 5 and 9.
Note that in Step 5, the local embeddings and labels are shared with the server, while in Step 9, the local
(and global) intermediate partial gradients are shared. As discussed earlier in Section 3, the local embeddings
are low-dimensional mappings (with dimensions much smaller than dk × τ for each k ∈ [K]) while the global
embeddings have dimension d × τ . This implies that the total network-wide communication required by
DIVIDE in each round of communication is only 4dτ . Similarly, in Algorithm 2, the information sharing
is conducted in Steps 5 and 6. In Step 5, the local embeddings are shared (back and forth) among all the
nodes, while in Step 6, the decomposed local gradients (across dimensions) are shared among the nodes,
which are then utilized to construct the full local and global SG. In Step 5, a total of 2dτ real values are
shared (back and forth) among nodes. Similarly, in Step 6, a total of 2Kdτ real values are shared, making
the total communication of 2dτ + 2Kdτ .

Finally, compared to a standard distributed learning algorithm where, in each communication round, the
high-dimensional model parameters (or gradients w.r.t. model parameters) are shared among nodes, the
communication costs are minimal in the DIVIDE framework since we only share low-dimensional embeddings
and gradients w.r.t. these low-dimensional embeddings.

4 Convergence guarantees

In this section, we provide the convergence analysis of the proposed approach. First, we note that the training
samples (x̄n, ȳn) for n ∈ N utilized for solving (5) are non i.i.d. (see (1) and (2)). This follows from the
fact that each pair of consecutive training samples x̄i−1 and x̄i for i ∈ N share some common time series
observations, i.e. x̄i := [xi+1, . . . , xi+D] shares the first D − 1 observations with x̄i−1 := [xi, . . . , xn+D−1].
This implies that the stochastic gradients computed using these non-i.i.d. samples in Algorithms 1 and 2
will be biased and may cause the algorithms to diverge. However, note that the samples (x̄n, ȳn) follow the
Markov property, meaning that we have P[x̄i|x̄i−1, . . . , x̄0] = P[x̄i|x̄i−1], which can be directly observed from
the definition of x̄i in (1). Specifically, the Markov property follows since conditioning on x̄i−1 the only new

6

Under review as submission to TMLR

sample that is observed is xi+D while the rest of the samples have already been observed in x̄i−1. Motivated
by this observation, we make the following assumptions about the data-generating process.
Assumption 2. We assume that the data-generating process {x̄n, ȳn}n≥0 follows a Markov chain trajectory
with M states. The Markov chain is time-homogeneous, irreducible, and aperiodic. The Markov chain has a
transition matrix T ∈ RM×M and stationary distribution Π∗.

To the best of our knowledge, this is the first time the Markov property of the time series data has been
utilized to guarantee convergence of the forecasting algorithms. We also point out that Assumption 2 is
also a practical assumption for other classes of problems (classification/regression/reinforcement learning)
since for many cases it is easy to obtain samples from Markov chain trajectories rather than obtaining i.i.d.
samples Sun et al. (2018); Doan et al. (2020). Also, note that Assumption 2 assumes that the samples are
generated from a finite state space. This assumption can easily be relaxed when the data samples {x̄n, ȳn}n≥0
are generated from a Markov series rather than a Markov chain Sun et al. (2018). Next, we make some
assumptions about the loss function L(·; (x̄, ȳ)).
Assumption 3. The Local SG and the Global SG derived in (6) and (7) are bounded, i.e., we have
∥∇θk

L(θ; (x̄, ȳ))∥ ≤ G and ∥∇θ0L(θ; (x̄, ȳ))∥ ≤ G. We also assume that the loss function is L-Lipschitz
smooth, i.e., ∇θL(θ; (x̄, ȳ)) is L-Lipschitz.

Assumption 3 is a standard assumption in first-order algorithm analyses and has also been made in earlier
works Sun et al. (2018). Next, we state the convergence performance of DIVIDE.

Theorem 4.1. Suppose Assumptions 2 and 3 hold, and that the learning rates satisfy:∑
r

ηr
k = +∞,

∑
r

ln2 r · (ηr
k)2 < +∞ ∀k ∈ {0, 1, . . . , K}.

Then we have limR→∞ E∥∇θL(θ)∥ = 0, where L(θ) is defined in (5). Moreover, we have

E
[

min
1≤r≤R

{∥∇θL(θr)∥2}
]

= O

(
Ψ(T)∑R

r=1 min{ηr
k}K

k=0

)
,

where θr := [(θr
0)T , . . . , (θr

K)T]T and Ψ(T) is

Ψ(T) := max
{

1,
1

ln(1/λ(T))

}
,

where λ(T) := max{|λ2(T)|,|λM (T)|}+1
2 ∈ [0, 1) and λi(T) ∈ C is the ith largest eigenvalue of T .

We note that the above result matches the guarantees of a centralized Markov Chain Gradient Descent for
K = 1 Sun et al. (2018). Moreover, distributed Markov chain gradient descent under different settings have
been considered in the past Sun & Li (2019); Wai (2020). Specifically, the setting in Sun & Li (2019); Wai
(2020) assumes that each node has access to a complete data sample, however, in the DIVIDE framework,
each node only observes a partial time series. Also, in Sun & Li (2019); Wai (2020) each node learns the same
model, and therefore, has the same local step sizes across the network. In contrast, in DIVIDE framework
each node can flexibly choose the local model based on its local modality and learning task. Consequently,
each node can perform local learning utilizing different step sizes. In addition, the DIVIDE framework
allows each node to maintain a global model to learn the correlations among different time series. These key
distinctions make the analysis of DIVIDE significantly challenging compared to prior works. Theorem 4.1
implies the following.
Corollary 1. If we choose the learning rates ηr = O(1/rq) with q ∈ (1/2, 1), then DIVIDE achieves

E
[

min
1≤r≤R

{∥∇θL(θr)∥2}
]

= O
(

Ψ(T)
R1−q

)
.

It is important to note that the non-convexity of the loss function L(θ) (defined in (5)) suggests that we
cannot expect a gradient-based algorithm to converge to the globally optimal solution. Theorem 4.1 and
Corollary 1 establish the convergence of DIVIDE to a stationary point, in expectation.

7

Under review as submission to TMLR

5 Numerical experiments

In this section, we evaluate the performance of the proposed algorithm on real-world datasets with a number
of time-series forecasting baselines implemented in both centralized and distributed manners.

5.1 Experiment setup

We describe our numerical experiment setup below and refer the readers to Appendix B for more information
about implementation details, hyperparameter settings, training and test schemes, etc.

Datasets. Our evaluation is conducted on a number of diverse real-world datasets: [D1] Power demand
dataset (POWR) EIA (2022), which contains the hourly power demand of thirteen major electricity grid
service regions in the United States for 2022; [D2] NYC subway traffic dataset (SUBW) EDDEN (2021),
which collects the number of people entering and exiting each subway station per hour in NYC, 2017 – 2021;
[D3] Meteorological dataset (WEAT) BENIAGUEV (2017), which reports weather data from 36 regions
with different indicators from Oct. 2012 to Nov. 2017. [D4] DeepSense6G (DS6G) Charan et al. (2022),
which is a multimodal dataset containing sensory (e.g., camera, Radar, LiDAR) and radio information. Same
with the ITU 2022 challenge ITU (2022), we use four scenarios in experiments. Those datasets all inherently
handle distributed scenarios as they are collected from independent sources.

Baseline models. We adopt five widely used deep learning baselines: LSTM Hochreiter & Schmidhuber
(1997), TCN Bai et al. (2018), LSTNet Lai et al. (2018), Informer Zhou et al. (2021), and DLinear Zeng et al.
(2023). These baselines are implemented in both centralized and distributed fashions. When incorporated as
local models within our distributed framework. We denote them as "DIVIDE (local model)". For example,
DIVIDE (LSTM) adopts LSTM in the local nodes. Additionally, we also consider the Prophet Taylor &
Letham (2018b) as the baseline, which is a widely recognized statistics-based algorithm. For the multivariate
time-series forecasting task, we optimize the "multi-prophet" library Keča (2020), where independent prophet
models will model each data stream.

Evaluation metrics. For the multivariate time-series forecasting task, we utilize root mean square error
(RMSE), which gauges the disparity within Euclidean space. For the multimodal time-series prediction with
the DeepSense 6G dataset, we use the distance-based accuracy (DBA) score; see the appendix for a detailed
illustration.

5.2 Distributed time-series forecasting

Following the above experiment setups, we now demonstrate the validity of DIVIDE by comparing it with
baseline algorithms. Unless otherwise specified, we configure eight local nodes, some of which might include
multiple data streams. The results are reported in Table 1.

Comparison with multi-Prophet. We see that DIVIDE significantly outperforms Multi-Prophet, likely
because DIVIDE employs neural networks and leverages correlations among data streams, thereby enhancing
its learning capabilities in contrast to the statistical-based Prophet, which independently models each data
stream.

Comparison with centralized models. Despite each local node lacking direct access to all data streams
under the distributed implementation fashion, the results indicate that DIVIDE delivers competitive
performance. In certain cases, we even surprisingly observe DIVIDE surpasses the centralized baseline,
potentially owing to its enhanced modeling capabilities achieved through the combining of multiple local
models. Conversely, the dataset’s spatio-temporal nature amplifies the training complexity of centralized
models. For example, while a weather station in New Jersey may aid in predicting weather patterns in
New York, its usefulness for predicting weather in Califonia may be limited. In fact, this aspect has been
exemplified and has inspired certain centralized time series prediction models to integrate hierarchical or
local aggregation approaches Wang et al. (2022); Li et al. (2017).

8

Under review as submission to TMLR

Table 1: Comparison of DIVIDE with other baselines for mid/long-term forecasting. The experiments are
conducted for both centralized (i.e., LSTM, TCN, LSTNet, INFORMER, and DLinear) and distributed setups
(i.e., DIVIDE(LSTM), DIVIDE(TCN), DIVIDE(LSTNet), DIVIDE(INFORMER), and DIVIDE(DLinear)).
These methods utilize a 36-hour window to predict horizons (24h, 48h, 72h, 168h). Performance is evaluated
via RMSE, where smaller values indicate superior performance.

Models Multi-
Prophet LSTM DIVIDE

(LSTM) TCN DIVIDE
(TCN) LSTNet DIVIDE

(LSTNet) INFORMER
DIVIDE

(INFORMER) DLinear DIVIDE
(DLinear)

P
O

W
R 24h 0.0764 0.0313 0.0303 0.0349 0.0321 0.0375 0.0374 0.0245 0.0268 0.0244 0.0249

48h 0.0787 0.0403 0.0411 0.0446 0.0439 0.0449 0.0427 0.0289 0.0303 0.0287 0.0312
72h 0.0791 0.0475 0.0447 0.0498 0.0479 0.0501 0.0468 0.0315 0.0334 0.0329 0.0325

168h 0.0820 0.0574 0.0575 0.0583 0.0546 0.0608 0.0588 0.0410 0.0402 0.0425 0.0437

SU
B

W

24h 0.1242 0.0816 0.0765 0.0875 0.0941 0.0853 0.0850 0.0609 0.0613 0.0600 0.0623
48h 0.1361 0.0823 0.0804 0.0886 0.1040 0.0850 0.0856 0.0657 0.0668 0.0669 0.0689
72h 0.1440 0.0844 0.0850 0.0865 0.1203 0.0868 0.0865 0.0712 0.0720 0.0710 0.0726

168h 0.1452 0.0912 0.0892 0.0882 0.1068 0.0925 0.0919 0.0746 0.0785 0.0780 0.0799

W
E

A
T 24h 0.0204 0.0102 0.0119 0.0093 0.0118 0.0111 0.0142 0.0086 0.0092 0.0092 0.0089

48h 0.0211 0.0107 0.0103 0.0106 0.0126 0.0123 0.0164 0.0088 0.0089 0.0142 0.0137
72h 0.0215 0.0133 0.0130 0.0112 0.0113 0.0126 0.0137 0.0119 0.0108 0.0154 0.0140

168h 0.0246 0.0125 0.0136 0.0139 0.0146 0.0222 0.0264 0.0124 0.0135 0.0159 0.0153

(a) POWR. (b) SUBW. (c) WEAT.
Figure 1: Visualized forecast results of future 72-hrs using 36-hrs historical window via DIVIDE(TCN).

5.3 In-depth discussion on distributed multivariate time-series forecasting

To further examine DIVIDE, we conduct comprehensive studies under various settings and highlight results.
We provide more details and additional experiments in Appendix C, including hierarchical prediction tasks, a
complete set of ablation studies, and scalability of the proposed algorithms.

(a) Without global model. (b) With global model.

Figure 2: 24-hrs forecast of DIVIDE(LSTNet) on POWR dataset
with and without global model.

Flexibility of the local models. As
noted before, DIVIDE enables individual
nodes to independently select their local
models. Table 1 presents the performance
of DIVIDE utilizing different types of
neural networks as the local model. It
is evident that the various local models
attain differing levels of performance on
different datasets, possibly attributed to
the distinctive characteristics of the local
model and the datasets. It is also worth
noting that DIVIDE also supports the
mixed types of local models.

Impact of the global model. We evaluate the performance of DIVIDE with and without the MLP global
model. As illustrated in Fig. 2, the results clearly demonstrate that incorporating global models enhances
forecasting performance by leveraging shared local node information. The numerical results reveal that
adopting a global model can lead to about 4.4% performance improvement on average. Meanwhile, we also
find that the inclusion of a global model enhances the scalability of DIVIDE, as its performance remains
stable regardless of the number of nodes. Conversely, not having a global model results in significantly poorer
outcomes as the number of nodes increases; see Appendix C.2 for details.

9

Under review as submission to TMLR

Table 2: The performance achieved by DIVIDE with different input data modalities. Here, Sce. refers to the
different scenarios used in the ITU 2022 challenge ITU (2022). We use the DBA score as the metric, where
larger values indicate better performance. DIVIDE ranks in the top 5 among 150+ submissions based on the
overall score.

Sce. 31 Sce. 32 Sce. 33 Sce. 34 Overall
GPS-only 0.0256 0.6518 0.6332 0.6264 0.4843

Vision-only 0.1142 0.6163 0.6830 0.6619 0.5189
LiDAR-only 0.0653 0.6385 0.6120 0.5967 0.4781
DIVIDE(All) 0.0715 0.7450 0.6895 0.7385 0.5611

Hierarchical tasks. In addition to the forecasting task on each local node, the design DIVIDE also
supports global tasks. In the Appendix C.2, we introduce two global tasks and refer to them as Sum that
aims to capture an algebraic correlation (i.e., sum) among all local nodes data stream, and Spatial that
aims to predict one of the local node information based on the others. From Table 5 and Table 6, we see
that achieving good performance is challenging for both Prophet and DIVIDE without the global model. It
indicates the adaptability of DIVIDE to various tasks.

Asynchronous model updates. The local and global models in DIVIDE can be updated asynchronously;
see the results attached in Appendix C.2, where we employ different learning rates. The results illustrate that
our framework can effectively operate on various configurations and exhibits robust performance, corroborating
the earlier findings.

5.4 Multimodal time-series prediction

We now utilize DIVIDE for multimodal time-series prediction. In this context, the dataset includes not only
numerical time series but also diverse data modalities, such as RGB videos, point cloud streaming, etc. We
conduct numerical experiments on the DeepSense6G dataset from the ITU 2022 challenges Charan et al.
(2022); ITU (2022), aiming to predict the strongest signal power radio beam ID based on the environment
sensoring information. To accommodate the different data modalities, we employ distinct local models, and
the specific model architectures are outlined in Appendix B.3. We highlight results in Table 2, with more
details and discussions in Appendix C.3.

From Table 2, we observe that the global model is able to effectively fuse the information collected from
the local model and improve performance by increasing the DBA score up to 15.9% by the single modality.
What’s more, DIVIDE surprisingly ranks in the Top 5, compared with other solutions on the leaderboard,
which reports a total of 150+ submissions ITU (2022). It shows DIVIDE ’s powerful learning capability in
fusing the different modalities. It is worth noting that, since we have not targeted achieving the best result
for this specific challenge, but rather to validate the effectiveness of the proposed algorithm in fusing different
time-series data modalities, we have not applied comprehensive data preprocessing as other submissions have
done for the challenge.

6 Conclusion

In this work, we developed a distributed time series forecasting framework that decomposes the entire time
series prediction model into multiple local models, which are then composed to construct the global model.
This decomposition gives each local and global node the flexibility of the model construction so that they can
choose from a variety of existing time series prediction models depending on the local compute resources and
the modality of local data. Also, the proposed framework is communication efficient and ensures the privacy
of local data at each node. We evaluated the proposed framework on a number of time-series forecasting
problems and showed that the framework performs well on a majority of multivariate time-series forecasting
tasks.

10

Under review as submission to TMLR

References
An introduction to dynamic time warping. https://rtavenar.github.io/blog/dtw.html#:

~:text=Dynamic%20Time%20Warping%20seeks%20for,under%20all%20admissible%20temporal%
20alignments., 2021. Accessed: 2023-10-22.

Multi modal beam prediction challenge 2022: Towards generalization. https://www.deepsense6g.net/
challenge2022/, 2022. Accessed: 2023-10-14.

Ons Aouedi, Alessio Sacco, Kandaraj Piamrat, and Guido Marchetto. Handling privacy-sensitive medical
data with federated learning: Challenges and future directions. IEEE Journal of Biomedical and Health
Informatics, pp. 1–14, 2022. doi: 10.1109/JBHI.2022.3185673.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer networks, 54
(15):2787–2805, 2010.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Bilberto Batres-Estrada. Deep learning for multivariate financial time series, 2015.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

DAVID BENIAGUEV. Historical hourly weather data 2012-2017. https://www.kaggle.com/datasets/
selfishgene/historical-hourly-weather-data, 2017. Accessed: 2023-10-10.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

Gouranga Charan, Umut Demirhan, João Morais, Arash Behboodi, Hamed Pezeshki, and Ahmed Alkhateeb.
Multi-modal beam prediction challenge 2022: Towards generalization. arXiv preprint arXiv:2209.07519,
2022.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

Yong Cheng, Yang Liu, Tianjian Chen, and Qiang Yang. Federated learning for privacy-preserving ai.
Communications of the ACM, 63(12):33–36, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Thinh T Doan, Lam M Nguyen, Nhan H Pham, and Justin Romberg. Convergence rates of accelerated
markov gradient descent with applications in reinforcement learning. arXiv preprint arXiv:2002.02873,
2020.

EDDEN. Nyc subway traffic. https://www.kaggle.com/datasets/eddeng/
nyc-subway-traffic-data-20172021, 2021. Accessed: 2023-10-10.

EIA. Energy information administration electricity demand dataset. https://www.eia.gov/
electricity/gridmonitor/expanded-view/custom/pending/ElectricityRegionDemand-3, 2022. Ac-
cessed: 2023-10-10.

Roger Frigola. Bayesian time series learning with Gaussian processes. PhD thesis, University of Cambridge,
2015.

Antonio Galicia, José F Torres, Francisco Martínez-Álvarez, and A Troncoso. A novel spark-based multi-step
forecasting algorithm for big data time series. Information Sciences, 467:800–818, 2018.

Andrew C Harvey and Neil Shephard. Structural time series models. 1993.

11

https://rtavenar.github.io/blog/dtw.html#:~:text=Dynamic%20Time%20Warping%20seeks%20for,under%20all%20admissible%20temporal%20alignments.
https://rtavenar.github.io/blog/dtw.html#:~:text=Dynamic%20Time%20Warping%20seeks%20for,under%20all%20admissible%20temporal%20alignments.
https://rtavenar.github.io/blog/dtw.html#:~:text=Dynamic%20Time%20Warping%20seeks%20for,under%20all%20admissible%20temporal%20alignments.
https://www.deepsense6g.net/challenge2022/
https://www.deepsense6g.net/challenge2022/
https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/datasets/eddeng/nyc-subway-traffic-data-20172021
https://www.kaggle.com/datasets/eddeng/nyc-subway-traffic-data-20172021
https://www.eia.gov/electricity/gridmonitor/expanded-view/custom/pending/ElectricityRegionDemand-3
https://www.eia.gov/electricity/gridmonitor/expanded-view/custom/pending/ElectricityRegionDemand-3

Under review as submission to TMLR

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, nov
1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.
8.1735.

Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Foundations and
Trends® in Machine Learning, 10(3-4):142–363, 2017.

Milan Keča. Multi prophet. https://github.com/vonum/multi-prophet, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal
patterns with deep neural networks. In The 41st international ACM SIGIR conference on research &
development in information retrieval, pp. 95–104, 2018.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in
neural information processing systems, 32, 2019.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosophical Transactions
of the Royal Society A, 379(2194):20200209, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pp. 1273–1282. PMLR, 2017.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy
Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine learning in apache spark. The Journal
of Machine Learning Research, 17(1):1235–1241, 2016.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural
network based language model. In Interspeech, volume 2, pp. 1045–1048. Makuhari, 2010.

Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate lstm-based location-aware workload prediction
for edge data centers. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp. 341–350. IEEE, 2019.

Maneesha Perera, Julian De Hoog, Kasun Bandara, and Saman Halgamuge. Multi-resolution, multi-horizon
distributed solar pv power forecasting with forecast combinations. Expert Systems with Applications, 205:
117690, 2022.

Larry L Rockwood. Introduction to population ecology. John Wiley & Sons, 2015.

Jeffrey D Scargle. Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of
unevenly spaced data. Astrophysical Journal, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., 263:835–853,
1982.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional
lstm network: A machine learning approach for precipitation nowcasting. Advances in neural information
processing systems, 28, 2015.

Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. Temporal pattern attention for multivariate time series
forecasting. Machine Learning, 108(8):1421–1441, 2019.

Robert H Shumway, David S Stoffer, Robert H Shumway, and David S Stoffer. Arima models. Time Series
Analysis and Its Applications: With R Examples, pp. 75–163, 2017.

12

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/vonum/multi-prophet

Under review as submission to TMLR

Tao Sun and Dongsheng Li. Decentralized markov chain gradient descent. arXiv preprint arXiv:1909.10238,
2019.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. Advances in neural information
processing systems, 31, 2018.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45, 2018a.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45, 2018b.

Hiro Y Toda and Peter CB Phillips. Vector autoregression and causality: a theoretical overview and simulation
study. Econometric reviews, 13(2):259–285, 1994.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Hoi-To Wai. On the convergence of consensus algorithms with markovian noise and gradient bias. In 2020
59th IEEE Conference on Decision and Control (CDC), pp. 4897–4902. IEEE, 2020.

Xiaoqian Wang, Yanfei Kang, Rob J Hyndman, and Feng Li. Distributed arima models for ultra-long time
series. International Journal of Forecasting, 2022.

Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ranbaduge. Vertical
federated learning: Challenges, methodologies and experiments. arXiv preprint arXiv:2202.04309, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020a.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting the
dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 753–763, 2020b.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In
Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 11121–11128, 2023.

Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks for citywide crowd flows
prediction. In Thirty-first AAAI conference on artificial intelligence, 2017.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multi-attention network
for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
1234–1241, 2020.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer:
Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

A Related work

Centralized models. Time series forecasting has been a problem of interest for decades. Popular
statistical approaches for time series prediction include vector autoregression (VAR) Box et al. (2015), vector
auto-regressive moving average model (VARMA) Toda & Phillips (1994), and Gaussian processes (GP) Frigola
(2015). Moreover, the Prophet model developed in Taylor & Letham (2018a) proposes a modular regression
model for time series forecasting that relies on decomposing the time series into three main model components,
namely, trend, seasonality, and holidays, which are then learned through various statistical learning techniques
Harvey & Shephard (1993); Rockwood (2015). These statistical approaches learn interpretable models but
sometimes impose strong assumptions (such as stationarity, and linear dependence among variables) on the

13

Under review as submission to TMLR

multiple time series models. To circumvent these issues, recently, deep learning-based models have gained
popularity for time series forecasting Lim & Zohren (2021). There are many neural network models one can
utilize for time series forecasting, however, in practice, three types of neural network architectures, namely
Recurrent Neural Networks (RNNs) Mikolov et al. (2010), Graph neural networks (GNNs) Wu et al. (2020a),
and more recently, transformers Vaswani et al. (2017) have gained popularity for solving such problems.
The works Lai et al. (2018) and Shih et al. (2019) propose to utilize RNNs in conjunction with CNNs for
time series prediction. The idea behind utilizing such a structure is that the CNNs will capture the spatial
dependencies among variables while the RNNs will capture long-term temporal dependencies among the
variables. More recently, GNN Zheng et al. (2020); Wu et al. (2020b) and Transformers-based architectures
Beltagy et al. (2020); Li et al. (2019); Child et al. (2019); Zhou et al. (2021) have gained popularity for time
series forecasting problems. In spite of a number of works on improving the time series forecasting capabilities
of different models, there has been a lack of research on distributed implementations of time series forecasting
algorithms.

Distributed time series forecasting. In the literature, distributed time series forecasting has received
relatively less attention as compared to its centralized counterpart, and this is partially because of several
technical challenges. To conduct time series forecasting, practitioners usually have to adopt inadequate
distributed platforms Meng et al. (2016); Galicia et al. (2018) (please see discussion in (Wang et al., 2022,
Section 1)). In Nguyen et al. (2019), the authors proposed a distributed workload forecasting algorithm for
mobile edge devices wherein the authors leveraged correlation among workloads of edge devices in a close
physical distance and applied LSTM to perform the prediction. In Perera et al. (2022), the authors proposed
distributed forecasting algorithms for solar photovoltaic (PV) power generation, where a certain particle
swarm optimization-based approach is used to combine five state-of-the-art forecast models for solar PV
power generation prediction. However, a major drawback of the algorithms proposed in Nguyen et al. (2019);
Perera et al. (2022) is that they assume that the availability of the entire set of data streams is available
at a central location, which effectively defeats the purpose of distributed processing. Recently, Wang et al.
(2022) proposed a distributed ARIMA architecture for time series forecasting where the authors utilized a
map-reduce architecture to perform predictions. In contrast to our model where each node observes a time
series from a different source, in Wang et al. (2022), the authors adopt a model where each node observes the
same time series but during separate time windows which is an impractical setting compared to the general
setting considered in our work. In addition, instead of fixing a local model, our framework endows each
node with the flexibility of choosing a local model best suited for its data modality and available computing
resources, while Wang et al. (2022) constraints the individual nodes to utilize ARIMA models Shumway et al.
(2017).

B Implementation details

B.1 Datasets and tasks

Multivariate time-series forecasting. We evaluate the performance of DIVIDE on the three real-world
datasets: the Power Demand dataset (POWR) EIA (2022), the NYC Subway Traffic dataset (SUBW) EDDEN
(2021), and the Meteorological dataset (WEAT) BENIAGUEV (2017). In the following table, we provide a
brief overview of the statistical information of these datasets:

Table 3: Statistical information of the multivariate time-series forecasting datasets.
Name #Timestamps Granularity #Streams Physical meanings

POWR 8737 1 hr 13 Each stream contains the electricity demand of one of the 13 major
US regions.

SUBW 9,911 4 hrs 469 Each stream contains the number of passengers entering one subway
station in New York City.

WEAT 45,252 1 hr 36 Each stream contains the temperature information of selected
cities; 30 are in North America, and 6 are in middle Asia.

Multimodal prediction. We also use the DeepSense6G (DS6G) Charan et al. (2022) to evaluate the
performance of DIVIDE for the multimodal prediction task, where we are supposed to utilize the environment

14

Under review as submission to TMLR

information captured by sensors (e.g., camera, Radar, LiDAR) to predict the radio beam with the strongest
signal strength. Specifically, we follow the ITU 2022 AI challenge ITU (2022) and focus on scenario 31∼34 of
DeepSense6G to have a fair competition with the method on the leaderboard. Each scenario is collected at
different times and locations.

B.2 Environment setups

Softwares assets. Our codes mainly rely on the following third-party libraries and all of them can be easily
installed: Numpy1, scikit-learn2, Pytorch3, PyG4, multi-prophet5, DTAIDistance6, Pandas7, Matplotlib8.

Hardwares. Our workstation runs on the Unbuntu 18 system and is equipped with AMD Ryzen Threadripper
PRO 3995WX CPU, 1TB memory, and three Nvidia RTX A6000 GPUs (48GB memory each).

Hyperparameters Settings. For all the experiments of neural network(NN)-based models, we split the
datasets into the training, validation, and test sets with the ratio of 0.5 : 0.2 : 0.3. The min-max scaler is
applied for the data normalization. All models are trained using the Adam Kingma & Ba (2014) optimizer
with a batch size of 128. If there is no additional description, we follow the baseline model’s default settings
but set 64 hidden cells for all positions. Lastly, we ensure that the training is long enough so that the models
converge well; we repeat each of the experiments three times, and report the average results.

B.3 DIVIDE Architecture

Fig 3 highlights the design of DIVIDE, aligning with Algorithms 1 and 2 introduced in the main paper. Note
that the proposed DIVIDE is a hierarchical learning framework, comprising multiple local models and a global
model. It benefits from simple collaboration, flexible model selection, and offers efficient training algorithms
backed by theoretical guarantees to achieve superior local and global forecasting accuracy.

Server
𝒇𝒇𝜽𝜽𝟎𝟎
𝟎𝟎

Model 𝒇𝒇𝜽𝜽𝟏𝟏
𝟏𝟏

Local Dataset

Client

Model 𝒇𝒇𝜽𝜽𝒍𝒍
𝒍𝒍

Local Dataset

Client
Compute

gradients ∇
and update 𝜽𝜽𝟎𝟎

……

Server

Model 𝒇𝒇𝜽𝜽𝟏𝟏
𝟏𝟏

Local Dataset

Client

Model 𝒇𝒇𝜽𝜽𝒍𝒍
𝒍𝒍

Local Dataset

Client
Share local

embeddings
and local
gradients

……

𝒇𝒇𝜽𝜽𝟎𝟎
𝟎𝟎

𝒇𝒇𝜽𝜽𝟎𝟎
𝟎𝟎

(a) with label sharing.

Server
𝒇𝒇𝜽𝜽𝟎𝟎
𝟎𝟎

Model 𝒇𝒇𝜽𝜽𝟏𝟏
𝟏𝟏

Local Dataset

Client

Model 𝒇𝒇𝜽𝜽𝒍𝒍
𝒍𝒍

Local Dataset

Client
Compute

gradients ∇
and update 𝜽𝜽𝟎𝟎

……

Server

Model 𝒇𝒇𝜽𝜽𝟏𝟏
𝟏𝟏

Local Dataset

Client

Model 𝒇𝒇𝜽𝜽𝒍𝒍
𝒍𝒍

Local Dataset

Client
Share local

embeddings
and local
gradients

……

𝒇𝒇𝜽𝜽𝟎𝟎
𝟎𝟎

𝒇𝒇𝜽𝜽𝟎𝟎
𝟎𝟎

(b) without label sharing.
Figure 3: Overview of DIVIDE design. Refer to Algorithms 1 and 2 for step-by-step illustrations.

Additionally, we modify the DIVIDE to accommodate the multimodal prediction task, as shown in Fig. 4.
In this task, each node adopts a different type of local model based on the modalities of data streaming,
reflecting the flexibility of local model selections. It is also worth noting that our theoretical guarantees still
hold.

B.4 Training and test strategies

Neural network training and evaluation strategy. In line with common time-series forecasting
techniques, we employ a sliding window approach for training and assessing the neural networks, as illustrated

1https://numpy.org/
2https://scikit-learn.org/stable/
3https://pytorch.org/
4https://www.pyg.org/
5https://github.com/vonum/multi-prophet
6https://dtaidistance.readthedocs.io/en/latest/usage/dtw.html
7https://pandas.pydata.org/
8https://matplotlib.org/

15

https://numpy.org/
https://scikit-learn.org/stable/
https://pytorch.org/
https://www.pyg.org/
https://github.com/vonum/multi-prophet
https://dtaidistance.readthedocs.io/en/latest/usage/dtw.html
https://pandas.pydata.org/
https://matplotlib.org/

Under review as submission to TMLR

𝚯𝚯 update

Server

CNN 𝒇𝒇𝜽𝜽𝟏𝟏
𝟏𝟏

RGB videos

PointNet 𝒇𝒇𝜽𝜽𝟐𝟐
𝟐𝟐

Point cloud streaming

RNN 𝒇𝒇𝜽𝜽𝟑𝟑
𝟏𝟏

Local Dataset

Camera

LiDAR

GPS

Figure 4: Modified DIVIDE for multimodal prediction task.

in Fig. 5b. The model is initially trained on the segmented training dataset and subsequently evaluated. For
the divided training and test datasets, data points within the historical window are used to make predictions
for the future window. Additionally, we configure the learning epoch to 300, which is relatively generous,
considering the model often converges well before the initial epochs. Throughout the training phase, we
continuously save the best-performing model on the validation set to ensure convergence for all models.

Prophet training and evaluation strategies. Prophet was originally designed for the univariate time-series
forecasting task. We utilize the multi-prophet library9 to extend the Prophet for the multivariate time-series,
where each time-series data stream will be used to fit a Prophet independently. We optimize the library
via multi-processing programming for speeding up. Note that we use Prophet instead of multi-Prophet for
simplicity in the paper.

We evaluate the prophet model in three schemes, as shown in Fig. 5. We denote them as Entire, EveryIter,
and Incremental for simplicity. Specifically, the Entire scheme fits the Prophet on the whole training dataset
and evaluates the test dataset in one shot. The EveryIter only fits the model on the historical data within
the sliding window (light blue) and predicts the future (light green). Unlike the neural network, Prophet
does not utilize the split training dataset (dark blue). In other words, each sliding window entails the use of
a new Prophet model. In contrast, the Incremental scheme10 will continuously update the training set by
adding past data samples to it (dark and light blue) as the time-domain sliding window moves forward and
refit the Prophet model for prediction, instead of fitting a fixed training set once and predicting the entire
future. In this way, the prophet actually has an advantage over the neural network-based model, which is
only trained on the fixed training set. However, it should be noted that both EveryIter and Incremental
result in increased computation time compared to neural networks, since they require refitting the model over
and over again.

Train Test

Model
Hist Future

Train Test
Model

Train

Model

t

Train
Model

t+1

Train
Model

t+2

Sliding window

Hist

Hist

Hist

(a) Entire.

Train Test

Model
Hist Future

Train Test
Model

Train

Model

t

Train
Model

t+1

Train
Model

t+2

Sliding window

Hist

Hist

Hist

(b) EveryIter.

Train Test

Model
Hist Future

Train Test
Model

Train

Model

t

Train
Model

t+1

Train
Model

t+2

Sliding window

Hist

Hist

Hist

(c) Incremental.
Figure 5: Training and Evaluation Strategies.

9https://github.com/vonum/multi-prophet
10https://facebook.github.io/prophet/docs/diagnostics.html

16

https://github.com/vonum/multi-prophet
https://facebook.github.io/prophet/docs/diagnostics.html

Under review as submission to TMLR

B.5 Evaluation Metrics

Root Mean Square Error (RMSE) is a measure of the average magnitude of errors between predicted and
observed values:

RMSE =

√∑N
i=1(xi − x̂i)2

N

where xi are ground truth observations, and x̂i are predicted values of the series. The lower values indicate
better predictive performance.

Dynamic Time Warping (DTW) is a technique for measuring the similarity between two sequences while
accounting for variations in the alignment and pacing of their data points:

DTWq(x, x′) = min
π∈A(x,x′)

(∑
(i,j)∈π

d(xi, x′
j)q

) 1
q

where π is an alignment path, A(x, x′) is the set of all admissible paths, and d(xi, x′
j) is a specified distance

metric (e.g. Euclidean); see met (2021) for more details. The lower values indicate better predictive
performance.

Distance-Based Accuracy Score (DBA Score) is a metric for assessing the accuracy of a machine learning
model’s predictions by averaging the minimum differences between predicted labels and ground truth labels:
DBA-Score = 1

3 (Y1 + Y2 + Y3) where YK is defined as:

YK = 1 − 1
N

N∑
n=1

min
1≤k≤K

min
(

∥ŷn,k − yn∥
∆ , 1

)
with yn and ŷn,k are the ground truth label and the kth predicted label respectively. The kth predicted
label the kth most likely label predicted by the machine learning model. ∆ is a normalization factor, in our
experiments, we used ∆ = 5. The higher values indicate better predictive performance.

C Additional numerical results

C.1 Prophet

Table 4 shows the Prophet’s performance when adopting different schemes. We can observe that the
Incremental scheme achieves the best performance, aligning with the intuitive understanding that it is visible
to most data points. This is the scheme we selected and reported in the main paper.

Table 4: Performance of Prophet with different schemes. The lower value indicates better performance.

Prophet POWR SUBW WEAT
24h 48h 72h 168h 24h 48h 72h 168h 24h 48h 72h 168h

Entire RMSE 0.0858 0.0918 0.0949 0.1020 0.1517 0.1542 0.1734 0.1856 0.0263 0.0331 0.0398 0.0399
DTW 0.3621 0.4956 0.5564 0.8633 0.5382 0.7407 0.9251 1.4120 0.0861 0.1398 0.1458 0.2545

EveryIter RMSE 0.0765 0.0834 0.0879 0.0891 0.1322 0.1398 0.1523 0.1479 0.0249 0.0289 0.0354 0.0358
DTW 0.3339 0.4487 0.5060 0.7587 0.4982 0.7043 0.8083 1.2661 0.0803 0.1205 0.1318 0.2285

Incr. RMSE 0.0764 0.0787 0.0791 0.0820 0.1242 0.1361 0.1440 0.1452 0.0204 0.0211 0.0215 0.0246
DTW 0.3117 0.4315 0.4850 0.7017 0.4717 0.6832 0.7575 1.1922 0.0801 0.1179 0.1314 0.2210

C.2 Multivariate time-series forecasting

In this subsection, we provide additional numerical results on multivariate time-series forecasting, covering
hierarchical tasks, mixed local models, the global model’s impact, and asynchronous updates.

Hierarchical tasks: We now further introduce two global tasks referred to as Sum and Spatial for simplicity.
In the Sum task, the global prediction aims to capture data streams that possess an algebraic correlation

17

Under review as submission to TMLR

with all local nodes. For instance, it may involve predicting a country’s power demand as the sum of demands
from each region. To address this, we modify the baseline methods and present the results in Table 5. In
the case of Prophet and DIVIDE_NoG, where global models are absent and individual data streams are
considered separately, we calculate the global prediction based on the aggregation of all local results. In the
centralized model, an additional output dimension is introduced. For DIVIDE_MLP, we employ the global
prediction model.

Table 5: The study of Sum task. We examine the DIVIDE without a global model (DIVIDE_NoG) and with
MLP as the global model (DIVIDE_MLP), as well as Prophet and a centralized LSTM model. Each model
is supposed to utilize historical 36-hrs data to predict future {24,48,72,168}-hrs.

Global
Task

Model Prophet DIVIDE(LSTM)_NoG LSTM DIVIDE(LSTM)_MLP
Metrics RMSE DTW RMSE DTW RMSE DTW RMSE DTW

Su
m

P
O

W
R 24h 0.094 0.109 0.071 0.093 0.067 0.090 0.060 0.095

48h 0.131 0.252 0.079 0.196 0.076 0.171 0.070 0.152
72h 0.167 0.426 0.120 0.236 0.108 0.192 0.106 0.178

168h 0.191 0.653 0.142 0.402 0.147 0.381 0.132 0.354
Methodology Sum Sum One output dim in LSTM Global model output
Sharing info Local node predictions Local node predictions Raw data Local node hidden states

Meanwhile, we also consider the Spatial task, which is supposed to predict one of the local node information
based on the others. For example, one region may lose monitoring, and we want to use the others to predict
the missing value. We report the results in Table 6. In this task, both the Prophet and DIVIDE_NoG
have no way to do it due to the lack of a global model. From those results, the hierarchical design of
DIVIDE demonstrates its adaptability to various tasks and exhibits superior performance in global tasks.

Table 6: The study of Spatial task.

Global
Task

Model Prophet DIVIDE(LSTM)_NoG LSTM DIVIDE(LSTM)_MLP
Metrics RMSE DTW RMSE DTW RMSE DTW RMSE DTW

Sp
at

ia
l

P
O

W
R 24h X X X X 0.107 0.180 0.096 0.161

48h X X X X 0.186 0.208 0.172 0.206
72h X X X X 0.207 0.497 0.203 0.442

168h X X X X 0.274 0.669 0.297 0.583
Methodology No way to do so No way to do so One output dim in LSTM Global model output
Sharing info X X Raw data Local node hidden states

Scalability: We vary the number of nodes in the system and study the impact of the global model on the
scalability. Fig. 6 reports the results of applying DIVEIDE(LSTM) on the POWR dataset with and without
the global model. We can observe that (1) the DIVIDE with MLP consistently performs better than the no
global model’s version; (2) having MLP as the global model makes the performance insensitive to the number
of nodes, while not having it leads to significantly worse results as the number of nodes increases. These
observations are consistent when applying the other local model on different datasets.

Asynchronous model updates: We conduct experiments with different learning rates to the local and
global updates to study the impact of asynchronous model updates. The results are presented in Table 7.
The results demonstrate that (1) our framework can flexibly operate on various configurations of global and
local learning rates, and (2) it performs robustly across different learning rate choices, verifying the statement
presented in the main paper above.

C.3 Multimodal prediction

We follow the ITU Challenge setups ITU (2022) for the multimodal prediction task. In this setup, the training
dataset consists of 80% of the data from scenarios 32∼34, and evaluation is conducted on the test dataset,
which includes scenario 31 and previously unseen data from scenarios 32∼34. The DBA score is employed
as the performance metric, and the overall DBA-Score is calculated by averaging the results across these
four scenarios, serving as the metric for the final ranking. Table 8 reports the numerical results achieved by

18

Under review as submission to TMLR

10 20 30 40 50 60
Number of nodes

0.0
30

0.0
32

0.0
34

0.0
36

0.0
38

0.0
40

0.0
42

0.0
44

RM
SE

DIVIDE(LSTM)_NoG
DIVIDE(LSTM)_MLP

Figure 6: Impact of the global model on the framework scalability. The experiments are conducted on the
POWR dataset with {4,8,16,32,64} nodes running the LSTM on the local nodes. The model is supposed to
utilize a historical 36-hour window to predict the future 24 hours.

Table 7: The performance of DIVIDE(LSTM) on the POWR dataset with different global and local learning
rates using RMSE. The model is supposed to utilize a historical 36hrs window to predict future 24hrs. The
η0 in globalη0 represents the learning rate of the global model while ηk in localηk

denotes the local learning
rate of the client nodes. The bold configuration is the one we used in the rest of the paper by default.

Learning Rate Local0.001 Local0.003 Local0.01 Local0.03 Local0.1
Global0.001 0.0330 0.0339 0.0298 0.0318 0.0345
Global0.003 0.0288 0.0275 0.0293 0.0342 0.0338
Global0.01 0.0295 0.0294 0.0303 0.0307 0.0291
Global0.03 0.0315 0.0298 0.0309 0.0306 0.0326
Global0.1 0.0301 0.0290 0.0324 0.0312 0.0308

the DIVIDE. It is worth noting that DIVIDE ranks in the top 5 among the reported 150+ submissions11,
proving evidence of its capability to efficiently fuse and utilize different data modalities.

Meanwhile, we observe that DIVIDE performs worst in scenario 31 and speculate that this could be attributed
to a lack of data pre-processing. For example, the brightness has a significant impact on the video, and thus,
the superior solutions adopt comprehensive data augmentation methods to adjust and normalize the raw
datasets across all the scenarios, but it is beyond this paper’s scope as we emphasize the ability of modality
fusion and flexibility of local model selection instead of simply beating the best solution in the competition via
data pre-processing. It’s also worth noting that our model hasn’t undergone fine-tuning using the adaptation
dataset provided by ITU, which is another significant factor contributing to the poor performance in scenario
31.

Table 8: DIVIDE performance on multimodal prediction tasks evaluated on scenarios 31-34 of the DS6G
datasets. The DBA score evaluates the performance, with the higher number indicating better performance.
The last row reports the ranks based on the public leaderboard and is determined based on when all modalities
are utilized.

Scenario 31 Scenario 32 Scenario 33 Scenario 34 Overall
GPS-only 0.0256 0.6518 0.6332 0.6264 0.4843

Vision-only 0.1142 0.6163 0.6830 0.6619 0.5189
LiDAR-only 0.0653 0.6385 0.6120 0.5967 0.4781
DIVIDE(All) 0.0715 0.7450 0.6895 0.7385 0.5611

Rank 13 2 10 6 5

11https://www.deepsense6g.net/ml-task-multi-modal-beam-prediction/

19

https://www.deepsense6g.net/ml-task-multi-modal-beam-prediction/

Under review as submission to TMLR

D Proof of Theorem 4.1

Here, we restate Theorem 4.1 for convenience.
Theorem D.1. Suppose Assumptions 2 and 3 hold, and that the learning rates satisfy:∑

r

ηr
k = +∞,

∑
r

ln2 r · (ηr
k)2 < +∞ ∀k ∈ {0, 1, . . . , K}.

Then we have limR→∞ E∥∇θL(θ)∥ = 0. Moreover, we have

E
[

min
1≤r≤R

{∥∇θL(θr)∥2}
]

= O

(
Ψ(T)∑R

r=1 min{ηr
k}K

k=0

)
,

where θr := [(θr
0)T , . . . , (θr

K)T]T and Ψ(T) is

Ψ(T) := max
{

1,
1

ln(1/λ(T))

}
, with λ(T) := max{|λ2(T)|, |λM (T)|} + 1

2 ∈ [0, 1),

where λi(T) ∈ C is the ith largest eigenvalue of T .

To prove the Theorem D.1 we will utilize some intermediate results. First, let us set up some notations.
Recall, that our goal is to solve the following problem

min
θ∈Θ⊆RP

{
L(θ) := E(x̄,ȳ)∼Π[L(f0(θ0; f1(θ1), . . . , fK(θK)); (x̄, ȳ))]

}
, (8)

Let us consider the (Markov chain) SGD-based update rule to solve (8) in Algorithms 1 and 2. Note the
overall (network-wide) stochastic gradient computed at round r ∈ {0, 1, . . . , R − 1} is

∇L(θr; (x̄r, ȳr)) = [∇θ0L(θr; (x̄r, ȳr))T , ∇θ1L(θr; (x̄r, ȳr))T , . . . , ∇θK
L(θr; (x̄r, ȳr))T]T .

Moreover, the Markov chain gradient descent update rule at each node and the server is

θr+1
i = θr

i − ηr
i ∇θr

i
L(θr; (x̄r, ȳr)) for i = {0, 1, . . . , K} (9)

Next, we rewrite problem (8) in a finite-sum version. Let us suppose that the distribution Π is supported on
a set of M points ξ1, . . . , ξM , then problem (8) above can be stated equivalently as a finite-sum problem

min
θ∈Θ⊆RP

{
L(θ) := 1

M

M∑
m=1

Lm(θ)
}

, (10)

where Lm(·) is defined as

Lm(θ) := M · P[(x̄, ȳ) = ξm] · L(f0(θ0; f1(θ1), . . . , fK(θK)); ξm)

Note here that each state m ∈ [M] has uniform probability 1/M . The corresponding version of the Markov
chain gradient descent for problem (10) can be written as

θr+1
i = θr

i − ηr
i ∇θr

i
Lmr (θr) for i = {0, 1, . . . , K} (11)

where {mr}r≥0 is the trajectory of a Markov chain on {1, 2, . . . , M} that has uniform stationary distribution.
Note that the Markov chain trajectories {(x̄r, ȳr)}r≥0 and {mr}r≥0 are two different but related Markov
chains. A crucial difference in the update rules of (11) and (9) from a centralized setting is that the local
updates at each node here are heterogeneous with potentially different learning rates Sun et al. (2018). Next,
we make the following assumption on the underlying Markov chain generating the trajectory {mr}r≥0.
Assumption 4. We assume that the data-generating process {mr}r≥0 follows a Markov chain trajectory with
M states. The Markov chain is time-homogeneous, irreducible, and aperiodic. The Markov chain has a
transition matrix T ∈ RM×M and stationary distribution π∗ := [π∗

1 , . . . , π∗
M] with

∑M
m=1 π∗

m = 1.

20

Under review as submission to TMLR

Moreover, for analysis purposes, we make the following assumptions.

Assumption 5. The Local SG and the Global SG in (11) are bounded, i.e., we have ∥∇θk
Lm(θ)∥ ≤

G and ∥∇θ0Lm(θ)∥ ≤ G for each m ∈ [M]. We also assume that the loss function is L-Lipschitz smooth, i.e.,
∇θLm(θ) is L-Lipschitz.

We note that for appropriately chosen L and G Assumption 5 above and Assumption 3 in the main paper are
equivalent. We define

Tr := min
{

max
{⌈

ln
(

r

2CT G2K2 / ln
(

1
λ(T)

))⌉
, KT

}
, r

}

where CT is a constant that depends on the Jordan canonical form of T and KT is a constant that depends
on λ(T) and λ2(T). Please see (Sun et al., 2018, Lemma 1). This choice of Tr implies that we have from
(Sun et al., 2018, Lemma 1)

∣∣∣∣[T Tr]i,j − 1
M

∣∣∣∣ ≤ 1/r

2G2K2 for any i, j ∈ {1, 2, . . . , M}.

Specifically, Tr characterizes the mixing time of the Markov chain. Next, we define by Fr the sigma-algebra
generated by the sequence of iterates θr as

Fr := σ(θ1, θ2, . . . , θr, m0, m1, . . . , mr−1).

where mr are generated according to Assumption 4.

Proof. Using the Lipschitz smoothness of L(·), we have

L(θr+1) − L(θr) ≤ ⟨∇L(θr), θr+1 − θr⟩ + L

2 ∥θr+1 − θr∥2

= ⟨∇L(θr−Tr), θr+1 − θr⟩ + ⟨∇L(θr) − L(θr−Tr), θr+1 − θr⟩ + L

2 ∥θr+1 − θr∥2

≤ ⟨∇L(θr−Tr), θr+1 − θr⟩ + 1
2∥∇L(θr) − L(θr−Tr)∥2 + L + 1

2 ∥θr+1 − θr∥2

≤ ⟨∇L(θr−Tr), θr+1 − θr⟩ + L2

2 ∥θr − θr−Tr ∥2 + L + 1
2 ∥θr+1 − θr∥2

where the first inequality follows from the Schwarz inequality and the final inequality results from the
Lipschitz-smoothness of L(·). Rearranging the terms, we get

⟨∇L(θr−Tr), −(θr+1 − θr)⟩ ≤ L(θr) − L(θr+1) + L2

2 ∥θr − θr−Tr ∥2 + L + 1
2 ∥θr+1 − θr∥2

21

Under review as submission to TMLR

Next, we consider the l.h.s. of the above equation. Taking expectation w.r.t. the sigma-algebra Fr−Tr , we get

E[⟨∇L(θr−Tr), −(θr+1 − θr)⟩|Fr−Tr] = E

[〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr)
ηr

1∇θ1Lmr (θr)
...

ηr
K∇θK

Lmr (θr)


〉∣∣∣∣Fr−Tr

]

= E

[〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉∣∣∣∣Fr−Tr

]

+ E

[〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr)
ηr

1∇θ1Lmr (θr)
...

ηr
K∇θK

Lmr (θr)

−


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉∣∣∣∣Fr−Tr

]

≥ E

[〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉∣∣∣∣Fr−Tr

]

− K · G · L

K∑
i=0

ηr
i E
[
∥θr − θr−Tr ∥

∣∣∣Fr−Tr

]

Therefore, we get

E

[〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉∣∣∣∣Fr−Tr

]
≤ E

[
L(θr) − L(θr+1)

∣∣Fr−Tr
]

+ L2

2 E
[
∥θr − θr−Tr ∥2∣∣Fr−Tr

]
+ L + 1

2 E
[
∥θr+1 − θr∥2∣∣Fr−Tr

]
+ K · G · L

K∑
i=0

ηr
i E
[
∥θr − θr−Tr ∥

∣∣∣Fr−Tr

]
.

Taking expectations on both sides, we get

E

[〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉]

≤ E
[
L(θr) − L(θr+1)

]
+ L + 1

2 E
[
∥θr+1 − θr∥2]

+ K · G · L

K∑
i=0

ηr
i E
[
∥θr − θr−Tr ∥

]
+ L2

2 E
[
∥θr − θr−Tr ∥2].

22

Under review as submission to TMLR

Next, we consider the l.h.s.term

Emr

[〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉∣∣∣∣Fr−Tr

]

=
M∑

m=1

〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉

· P[mr = m
∣∣Fr−Tr]

=
M∑

m=1

〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉

· P[mr = m
∣∣mr−Tr]

=
M∑

m=1

〈
∇L(θr−Tr),


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉

· [T Tr]mr−Tr,m

=
〈

∇L(θr−Tr),
M∑

m=1
[T Tr]mr−Tr,m


ηr

0∇θ0Lmr (θr−Tr)
ηr

1∇θ1Lmr (θr−Tr)
...

ηr
K∇θK

Lmr (θr−Tr)


〉

·

≥ min{ηr
i }K

i=0 ∥∇L(θr−Tr)∥2 − max{ηr
i }K

i=0
2r

Therefore, we finally get

min{ηr
i }K

i=0 E
[
∥∇L(θr−Tr)∥2] ≤ E

[
L(θr) − L(θr+1)

]
+ L + 1

2 E
[
∥θr+1 − θr∥2]

+ K · G · L

K∑
i=0

ηr
i E
[
∥θr − θr−Tr ∥

]
+ L2

2 E
[
∥θr − θr−Tr ∥2]+ max{ηr

i }K
i=0

2r

Summing over r and using (Sun et al., 2018, Equations (6.58),(6.59), and (6.60)), we get the following∑
r

min{ηr
i }K

i=0 E
[
∥∇L(θr−Tr)∥2] ≤ O

(
max

{
1,

1
ln(1/λ(T))

})
(12)

Next, using the Lipschitz-smoothness of L(·), we have

∥∇L(θr)∥2 − ∥∇L(θr−Tr)∥2 ≤
〈

∇L(θr) − ∇L(θr−Tr), ∇L(θr) + ∇L(θr−Tr)
〉

≤ ∥∇L(θr) − ∇L(θr−Tr)∥ · ∥∇L(θr) + ∇L(θr−Tr)∥
≤ 2K · G · L · ∥θr − θr−Tr ∥

Multiplying both sides by min{ηr
i }K

i=0, we get

min{ηr
i }K

i=0·∥∇L(θr)∥2 − min{ηr
i }K

i=0 · ∥∇L(θr−Tr)∥2

≤ 2K · G · L · min{ηr
i }K

i=0 · ∥θr − θr−Tr ∥

≤ K · G · L · min{ηr
i }K

i=0 · ∥θr − θr−Tr ∥2 + K · G · L ·
(

min{ηr
i }K

i=0

)2

23

Under review as submission to TMLR

Again summing over r, taking expectation, and using the discussion in (Sun et al., 2018, Equations (6.58),(6.59),
and (6.60)), we get the

∑
r

(
min{ηr

i }K
i=0 · E∥∇L(θr)∥2 − min{ηr

i }K
i=0 · E∥∇L(θr−Tr)∥2

)
≤ C1 + C2

ln(1/λ(T)) (13)

for some constants C1, C2 > 0. Finally, summing (12) and (13), we get the∑
r

min{ηr
i }K

i=0 · E∥∇L(θr)∥2 ≤ O
(

max
{

1,
1

ln(1/λ(T))

})
,

Therefore, we have the proof of the main statement of the Theorem. Moreover, the proof of
limR→∞ E∥∇θL(θ)∥ = 0 is a straightforward extension of the proof from (Sun et al., 2018, Theorem 2,
Equation (4.4)).

Hence, the theorem is proved.

24

	INTRODUCTION
	Preliminaries
	The proposed framework
	Problem formulation
	Prototype algorithm with label sharing
	Algorithm without label sharing

	Convergence guarantees
	Numerical experiments
	Experiment setup
	Distributed time-series forecasting
	In-depth discussion on distributed multivariate time-series forecasting
	Multimodal time-series prediction

	Conclusion
	Related work
	Implementation details
	Datasets and tasks
	Environment setups
	DIVIDE Architecture
	Training and test strategies
	Evaluation Metrics

	Additional numerical results
	Prophet
	Multivariate time-series forecasting
	Multimodal prediction

	Proof of Theorem 4.1

