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Abstract

In-context learning enables Large Language001
Models (LLMs) to learn tasks from demon-002
stration examples without parameter updates.003
While this ability has been extensively studied004
in LLMs, its effectiveness in Vision-Language005
Models (VLMs) remains underexplored. Exist-006
ing research primarily focuses on a few models007
trained on interleaved image-text datasets and008
often overlooks image captioning in their anal-009
ysis. In this work, we systematically analyze010
in-context learning in VLMs, evaluating six011
models across four architectures on three image012
captioning and four visual question answering013
benchmarks. We investigate the influence of014
prompt design, demonstration selection, model015
architecture, and training strategies. We also016
extend our analysis beyond models trained on017
interleaved datasets to include those trained on018
image-text pairs, often considered incapable019
of in-context learning. Our findings show that020
VLMs still struggle to leverage contextual in-021
formation to adapt their outputs. However, de-022
tailed prompts specifying the task and structure023
of demonstrations improve performance more024
than simply concatenating examples. Addition-025
ally, while instruction-tuning enhances compre-026
hension of detailed instructions, it reduces re-027
liance on contextual examples and may hinder028
models’ in-context learning capacity. More-029
over, VLMs with advanced modality projectors030
can achieve competitive in-context learning per-031
formance even trained on image-text pairs.032

1 Introduction033

In recent years, Large Language Models (LLMs)034

have attracted significant attention for their notable035

performance across a wide range of Natural Lan-036

guage Processing tasks. As these models scale,037

in-context learning emerges as a new ability that038

allows LLMs to learn tasks given only a few exam-039

ples through demonstrations (Brown et al., 2020;040

Wei et al., 2022). In this paradigm, before being041

asked to perform a task, the model is given a set042

of demonstrations, i.e., input-output examples, il- 043

lustrating how to do it. Unlike supervised learning, 044

in-context learning does not involve further param- 045

eter updates. Instead, the model should learn from 046

analogy (Dong et al., 2024). 047

Despite the advancements, LLMs remain re- 048

stricted to processing text-based data. They cannot 049

handle other modalities such as image, audio, or 050

video directly. However, the capacity to handle 051

multimodal information contributes to knowledge 052

acquisition and interaction with the real world. To 053

bridge this gap, Vision-Language Models (VLMs) 054

arise as a proposal to extend LLMs’ capabilities to 055

process visual information. Although in-context 056

learning has been extensively studied in LLMs 057

from various perspectives (Dong et al., 2024), rel- 058

atively few works have explored this ability in 059

VLMs (Baldassini et al., 2024; Qin et al., 2024; 060

Yang et al., 2024). Moreover, they primarily eval- 061

uate a limited number of models trained on inter- 062

leaved image-text datasets and focus predominantly 063

on tasks such as Visual Question Answering (VQA) 064

and image classification, often overlooking the task 065

of image captioning. 066

In this paper, we systematically analyze in- 067

context learning in VLMs, evaluating six models 068

from four architectures across three image caption- 069

ing and four VQA benchmarks. Specifically, we in- 070

vestigate how prompt construction, demonstration 071

selection, and design decisions on model architec- 072

ture and training impact in-context learning ability. 073

Also, besides models trained on interleaved image- 074

text datasets (OpenFlamingo (Awadalla et al., 075

2023) and Idefics2 (Laurençon et al., 2024)), we 076

extend our analysis to include InstructBLIP (Dai 077

et al., 2024) and LLaVA v1.5 (Liu et al., 2023), 078

both originally designed to process a single image- 079

text pair. To do so, we adapted their modality align- 080

ment method for multiple input images. We con- 081

duct all experiments in a controlled environment 082

for fair comparisons, evaluating models under iden- 083
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tical conditions.084

Our main findings are as follows: (1) Overall,085

evaluated VLMs struggle to leverage the contex-086

tual information to adapt the output. However, us-087

ing detailed prompts that explicitly define the task088

and the structure of demonstration examples proves089

more effective than simply concatenating examples.090

Additionally, increasing the number of demonstra-091

tions does not necessarily improve performance.092

(2) While instruction-tuning enhances the model’s093

ability to comprehend detailed instructions, it may094

reduce its reliance on contextual examples. Con-095

versely, training on interleaved image-text datasets096

improves the model’s use of contextual informa-097

tion. (3) VLMs with advanced modality projectors098

achieve competitive in-context learning abilities099

even when trained on single image-text pairs, offer-100

ing a cost-efficient alternative to models trained on101

large-scale interleaved datasets. In contrast, mod-102

els with poor visual-text alignment – relying on103

long token sequences to represent images – show104

weaker in-context learning capabilities. These find-105

ings highlight crucial limitations in current VLMs106

that should be addressed to enhance their in-context107

learning ability.108

2 Related Work109

Vision-Language Models. VLMs excel in vi-110

sion-language tasks due to pre-trained visual en-111

coders and LLMs (Yin et al., 2024; Zhang et al.,112

2024). They comprise three key components: a113

visual encoder for image features, an LLM for text114

generation, and a modality projector to align visual115

and textual data, bridging the modality gap.116

Various approaches have been explored for the117

modality projector, including linear layers and118

multi-layer perceptrons (MLPs) (Koh et al., 2023;119

Liu et al., 2023; Shukor et al., 2023; Su et al., 2023;120

Lin et al., 2024; Liu et al., 2024), which, despite121

the low training costs, can lead to long sequences122

of tokens thereby increasing the inference costs.123

Pooling strategies help mitigate this issue (Cha124

et al., 2024; Sun et al., 2024; Hu et al., 2024). Ad-125

vanced methods like Q-Former (Li et al., 2023)126

improve alignment between frozen visual encoders127

and LLMs (Zhu et al., 2024a; Dai et al., 2024; Gei-128

gle et al., 2024). Another alternative is interleaved129

cross-attention layers (Alayrac et al., 2022; Lau-130

rençon et al., 2023; Xue et al., 2024), where the131

LLM directly attends to visual features but signifi-132

cantly increases the number of trainable parameters,133

as pointed out by Laurençon et al. (2024). 134

Training these models typically involves pre- 135

training the modality projector on large-scale 136

image-text datasets while keeping the visual en- 137

coder and LLM frozen for feature alignment. Sub- 138

sequently, the LLM can be fine-tuned alongside 139

the modality projector on instruction-following 140

datasets to improve zero-shot generalization. Most 141

works (Dai et al., 2024; Liu et al., 2024, 2023; 142

Zhu et al., 2024a; Hu et al., 2024) train on a 143

mixture of image captioning (Lin et al., 2014; Li 144

et al., 2022; Sharma et al., 2018), VQA (Goyal 145

et al., 2017; Schwenk et al., 2022; Marino et al., 146

2019), and instruction-following (Liu et al., 2024) 147

datasets. Some models, such as Flamingo (Alayrac 148

et al., 2022), Idefics (Laurençon et al., 2023; 149

Laurençon et al., 2024; Laurençon et al., 2024), 150

VILA (Lin et al., 2024), MMICL (Zhao et al., 151

2024), MM1 (McKinzie et al., 2025), and xGen- 152

MM (BLIP-3) (Xue et al., 2024), are trained on 153

interleaved image-text datasets (Laurençon et al., 154

2023; Zhu et al., 2024b) to further enhance multi- 155

modal reasoning capabilities. 156

In-Context Learning in VLMs. In-context 157

learning has been extensively studied in LLMs, 158

but this paradigm remains underexplored in VLMs. 159

Recent studies investigate different factors that af- 160

fect the in-context learning ability of VLMs, in- 161

cluding modality importance, recency bias, demon- 162

stration retrieval, and ordering strategies. However, 163

these studies primarily evaluate a limited number of 164

models trained on interleaved image-text datasets, 165

mainly in VQA and image classification tasks, of- 166

ten neglecting image captioning. 167

Yang et al. (2024) investigated in-context learn- 168

ing for image captioning, analyzing different 169

demonstration retrieval and caption assignment 170

methods. Their findings suggest that when demon- 171

stration images are similar to the query image, 172

VLMs may leverage in-context captions as short- 173

cuts to generate a new one rather than learning the 174

captioning task. 175

Chen et al. (2024) and Baldassini et al. (2024) 176

showed that textual information is more critical 177

than visual information in the demonstrations for 178

in-context learning in VLMs. Removing images 179

causes a minor performance drop, while corrupt- 180

ing textual descriptions leads to a significant per- 181

formance decline, indicating that VLMs heavily 182

rely on textual cues even when processing multi- 183

modal demonstrations. 184
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Beyond modality importance, Baldassini et al.185

(2024) explored recency bias in VLMs. They186

showed that models tend to replicate outputs from187

the most recent demonstrations, even when ear-188

lier demonstrations are more semantically rele-189

vant. Qin et al. (2024) further studied demonstra-190

tion retrieval and ordering, revealing that multi-191

modal retrieval methods outperform single-modal192

approaches. They showed that the order of modal-193

ities within each demonstration can significantly194

influence model performance more than the arran-195

gement of demonstrations themselves. Also, unlike196

traditional text-based in-context learning, where197

increasing the number of demonstrations improves198

performance, they found no significant perfor-199

mance gains when providing more demonstrations.200

In contrast to previous studies, we systematically201

analyze the in-context learning ability of six models202

from four distinct architectures across three image203

captioning and four VQA benchmarks. We inves-204

tigate the impact of prompt construction, demon-205

stration selection, model architecture, and training206

choices. Additionally, previous works have ex-207

plored models that support interleaved image-text208

inputs, in contrast, we modify InstructBLIP (Dai209

et al., 2024) and LLaVA v1.5 (Liu et al., 2023) to210

extend our analysis to models that originally de-211

signed for single image-text pairs.212

3 Methodology213

3.1 Experimental Setup214

Models. We analyze four distinct families of215

VLMs: InstructBLIP (Dai et al., 2024), LLaVA216

v1.5 (Liu et al., 2023), OpenFlamingo (Awadalla217

et al., 2023), and Idefics2 (Laurençon et al., 2024).218

These families were selected to systematically ex-219

plore how various design choices – such as bridging220

the modality gap and different training methods –221

affect the in-context learning capabilities of VLMs.222

We use model checkpoints with parameter sizes223

ranging from 4B to 9B for a fair comparison across224

similar scenarios. Specifically, for InstructBLIP,225

we evaluate two checkpoints with different LLMs:226

InstructBLIP FlanT5-XL and InstructBLIP Vicuna227

7B. For the other families, we assess LLaVA v1.5228

7B, OpenFlamingo 9B, and two checkpoints of229

Idefics2 – before and after the instruction-tuning230

phase – namely, Idefics2 (Base) and Idefics2 (IT)1.231

1Salesforce/instructblip-flan-t5-xl
Salesforce/instructblip-vicuna-7b
llava-hf/llava-1.5-7b-hf

Datasets & Metrics. We evaluate the models us- 232

ing different benchmarks proposed for image cap- 233

tioning and VQA. For image captioning, we use 234

MS COCO (Lin et al., 2014), Flickr30K (Young 235

et al., 2014) and NoCaps (Agrawal et al., 2019) 236

datasets. We conduct our evaluation on the valida- 237

tion sets of each dataset. In image captioning exper- 238

iments involving in-context learning, we utilize the 239

MS COCO training set as the knowledge base from 240

which we retrieve similar examples to construct the 241

context. Each demonstration example comprises 242

an image-text pair, where we randomly sample 243

one of the human-annotated captions per image. 244

We employ the CIDEr-D (Vedantam et al., 2015) 245

and CIDEr-R (dos Santos et al., 2021), which are 246

n-gram-based evaluation metrics, with CIDEr-R 247

being less sensitive to variations in caption length. 248

For the VQA task, we utilize the VizWiz (Gu- 249

rari et al., 2018), GQA (Hudson and Man- 250

ning, 2019), TextVQA (Singh et al., 2019), and 251

OKVQA (Marino et al., 2019) datasets, each de- 252

signed to evaluate different model capabilities. 253

VizWiz involves real-world images taken by vi- 254

sually impaired users with user-specific questions, 255

while GQA assesses reasoning and compositional 256

skills. TextVQA focuses on optical character recog- 257

nition; thus, models should recognize text in im- 258

ages to answer the questions. OKVQA is designed 259

to test models’ ability to answer questions about 260

images using external resources or commonsense 261

knowledge. Unlike image captioning, we use each 262

dataset’s training set as the knowledge base. Perfor- 263

mance is evaluated using the VQA accuracy met- 264

ric (Antol et al., 2015), suitable for the open-ended 265

nature of the questions. 266

3.2 Evaluation Protocol 267

Demonstrations Retrieval. Inspired by Yang 268

et al. (2023), we retrieve demonstration exam- 269

ples employing a k-Nearest Neighbor approach 270

based on the similarity distance in the visual 271

feature space. We construct a knowledge base 272

D = {(i1, t1), . . . , (in, tn)}, consisting of im- 273

ages i paired with their corresponding texts t dif- 274

ferent from those in the evaluation sets. Then, 275

for each query image I , we extract its features 276

f(I) and we retrieve the top-k most similar 277

image-text pairs based on the cosine similarity be- 278

tween visual features. Formally, the retrieved set 279

openflamingo/OpenFlamingo-9B-vitl-mpt7b
HuggingFaceM4/idefics2-8b-base
HuggingFaceM4/idefics2-8b
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Figure 1: Evaluation pipeline for assessing the in-
context learning capability of each analyzed model ar-
chitecture. We illustrate the modifications made to the
original LLaVA v1.5 and InstructBLIP pipelines to sup-
port interleaved image-text inputs.

R(I) of image-text pairs is defined as R(I) =280

{(i, t) | top-k(i,t)∈D sim(fI , fi)}2, where sim(·)281

denotes the cosine similarity. We use a ViT (Doso-282

vitskiy et al., 2021)3 to encode the images. To283

investigate the impact of including multiple demon-284

stration examples, we evaluate prompts containing285

0, 1, 3, and 5 demonstrations.286

In-Context Learning. We assess the in-context287

learning capabilities of the InstructBLIP, LLaVA,288

Idefics2, and OpenFlamingo architectures across289

various scenarios. Although in-context learning is290

straightforward for Idefics2 and OpenFlamingo, as291

they were trained with multiple interleaved image-292

text instances, implementing a similar pipeline for293

InstructBLIP and LLaVA poses some challenges.294

In Figure 1, we illustrate the pipeline adopted for295

each model architecture.296

Since InstructBLIP and LLaVA were trained on297

image-text pairs, we adapted these models to han-298

dle multiple images per sample. Regarding LLaVA,299

for each sample, comprising multiple images in-300

terleaved with texts, we pass the images through301

the visual encoder and extract the visual features,302

2For simplicity, we denote f(i) as fi and f(I) as fI .
3https://huggingface.co/google/

vit-large-patch16-224-in21k

Straightforward Prompt:
<image1> [Caption1]
<image2> [Caption2]
<image3> [Caption3]
<query image> A short image caption.

Detailed Prompt:
I am an intelligent image captioning bot.
Here are the features extracted by Q-Former
for similar images along with their captions,
following the format: [visual query tokens
for example 1] [caption of example 1] ...
[visual query tokens for example 3][caption
of example 3] [visual query tokens for
example 4]. Example 1: <image1> [Caption1], 
..., Example 3: <image3> [Caption3].

<query image> A short caption I can generate
to describe example 4 is:

Instruction-only Prompt:
<query image> A short image caption.

Figure 2: Investigated prompt templates.

which are then projected into the LLM token em- 303

bedding space using an MLP block. Similarly, to- 304

ken embeddings are extracted for the texts. The pro- 305

jected visual features f(v) and text embeddings t 306

are concatenated into a single sequence and passed 307

as input to the LLM. 308

In the case of InstructBLIP, we first extract 309

the visual features for all images in the sample. 310

However, unlike LLaVA, InstructBLIP employs an 311

instruction-aware Q-Former to bridge modalities, 312

which takes an image-text pair as input. This way, 313

for the image captioning task, we explore two dif- 314

ferent approaches: (InstructBLIP Cap.) passing 315

to the Q-Former the image-caption pairs for the 316

demonstration examples, and the query image – for 317

which we aim to generate the caption – alongside 318

an instruction; and, (InstructBLIP Instr.) feeding Q- 319

Former with image-instruction pairs for each image 320

in the sample, including the query image. The out- 321

put of the Q-Former is a set of query embeddings 322

f(v) that represent the visual information, with di- 323

mensions matching those of the LLM’s input token 324

embeddings. These query embeddings are, then, 325

inserted into the template textual embeddings and 326

fed into the LLM. For VQA, each demonstration 327

example consists of an image and a corresponding 328

question-answer pair, which are passed to the Q- 329

Former. For the query image, we provide the image 330

along with the question. 331

Prompt Construction. To evaluate the models’ 332

ability to adapt at inference time, we construct a 333
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prompt by inserting the visual information f(v)4334

into a natural language template T . We investigate335

scenarios using prompts with three different lev-336

els of detail, as illustrated in Figure 2. First, we337

use prompts containing only an instruction. Note338

that we do not necessarily use the same instruc-339

tions as those reported in the original works. In-340

stead, we choose to evaluate the different models341

under the same conditions. Next, we test straight-342

forward prompts that include demonstration exam-343

ples R(I) – image-caption pairs for image caption-344

ing and image-question-answer triplets for VQA345

– directly into the template T . These examples346

are concatenated and followed by an instruction.347

Finally, building upon the Socratic Models (Zeng348

et al., 2023), we further explore detailed prompts349

based on Socratic templates (Zeng et al., 2023;350

Ramos et al., 2023) that specify the task and detail351

the format in which the demonstration examples352

are presented. In this case, the demonstrations are353

inserted at predefined positions within the template.354

We also experiment with minor variations of these355

templates to assess their impact. In all experiments356

involving demonstration examples, we follow the357

approach proposed by Baldassini et al. (2024), pre-358

senting examples in increasing similarity order rela-359

tive to the query image as models tend to give more360

relevance to the last demonstrations. Specifically,361

we select the top-k examples, sorting them so that362

the most similar example is presented last.363

4 Results and Discussions364

Instruction-only Scenario. To establish a base-365

line and analyze the in-context learning capabil-366

ities of VLMs, we first conduct inference using367

instruction-only prompts without demonstration368

examples and investigate the VLMs’ sensitivity369

to minor prompt variations. For this, we eval-370

uate models on the image captioning task using371

four similar instructions, three sourced from (Dai372

et al., 2024): “Write a short description for373

the image.”, “A short image caption.”, and374

“A short image description:” along with a375

fourth variant, “A short image description.”376

where the colon is replaced with a period. Re-377

sults in Table A1 show that InstructBLIP models378

(with Vicuna-7B and FlanT5-XL) exhibit consis-379

tent performance with minimal fluctuations, unlike380

4The visual information f(v) can consist solely of the
query image, as in the instruction-only scenario, or also in-
clude the demonstrations R(I), which is the case of the in-
context learning.

other models. LLaVA demonstrates high sensitiv- 381

ity, with its performance on the MS COCO dataset 382

declining significantly when the period in “A short 383

image description.” is replaced with a colon, 384

while remaining stable on other datasets. This sug- 385

gests a potential memorization of MS COCO’s con- 386

tent, as this dataset is used to generate instruction- 387

following training data. In contrast, Idefics2 and 388

OpenFlamingo perform best with “A short image 389

description:” and show reduced performance 390

when the colon is replaced with a period. Idefics2 391

(Base) exhibits greater variation before instruction- 392

tuning, indicating that this phase enhances robust- 393

ness to prompt variations. 394

Impact of Prompt on In-Context Learning. To 395

investigate the influence of prompt structure on 396

in-context learning, we evaluate models on the im- 397

age captioning task using prompts designed with 398

two levels of detail. The first prompt follows 399

a straightforward template, where demonstration 400

image-caption pairs are directly concatenated with 401

an instruction. In contrast, the second prompt is 402

more detailed, explicitly specifying the format in 403

which the demonstration examples are presented 404

and including the phrase “I am an intelligent 405

image captioning bot.” (Section 3.2). For this 406

experiment, we use the MS COCO training set 407

as the knowledge base, and each sample includes 408

three demonstration examples retrieved as context. 409

The results of this evaluation, along with the best 410

performance in the instruction-only scenario, are 411

reported in Figure 3. 412

One can observe that all models, except 413

instruction-tuned Idefics2, perform better in the 414

instruction-only scenario than when provided with 415

in-context demonstrations. These results indicate 416

that these VLMs struggle to effectively utilize con- 417

textual information to adapt their outputs, thus ex- 418

hibiting weak in-context learning abilities. Particu- 419

larly, OpenFlamingo performs poorly with straight- 420

forward prompts, demonstrating a sharp decline 421

in performance in this scenario. Furthermore, 422

OpenFlamingo and instruction-tuned Idefics2, both 423

of which are trained on interleaved image-text 424

datasets, are the models least affected by the shift 425

from instruction-only to in-context learning scenar- 426

ios. It is worth noting that Idefics2 (Base) performs 427

better with the straightforward prompt than with the 428

detailed one. However, after instruction-tuning, its 429

performance with the detailed prompt improves sig- 430

nificantly, outperforming even the instruction-only 431
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Figure 3: Comparison of Instruction-only and In-Context Learning Scenarios. Evaluation results for image
captioning task under in-context learning using straightforward and detailed prompts. “Idefics2 8B (IT)” stands for
the instruction-tuned checkpoint of the Idefics2 architecture.

setup, where its performance remains relatively sta-432

ble. This result indicates that instruction-tuning433

enhances the model’s ability to comprehend the434

detailed instruction, while training on interleaved435

image-text datasets helps the model better leverage436

contextual information.437

Regarding InstructBLIP models, performance is438

further influenced by the type of input provided to439

the Q-Former. Specifically, using image-caption440

pairs from demonstration examples leads to lower441

performance than image-instruction pairs. Possi-442

bly, this is because InstructBLIP’s Q-Former is pri-443

marily exposed to instructions rather than captions444

during instruction-tuning. Additionally, Instruct-445

BLIP FlanT5-XL performs better with straight-446

forward prompts, whereas InstructBLIP Vicuna-447

7B achieves higher results with detailed prompts.448

This discrepancy is likely due to FlanT5-XL’s449

fine-tuning on datasets containing few-shot exem-450

plars, whose format is similar to the straightfor-451

ward prompt.452

Although there is a notable performance drop453

when shifting from instruction-only to in-context454

learning setup, InstructBLIP models remain com-455

petitive with Idefics2 and OpenFlamingo, despite456

not being trained on interleaved image-text datasets.457

In contrast, LLaVA struggles significantly in the458

in-context learning scenario. We hypothesize that459

Q-Former can compress the visual information into460

a small set of tokens, allowing InstructBLIP to bet-461

ter leverage the LLM’s in-context learning ability.462

Conversely, LLaVA maps each visual patch into463

one input token embedding using a linear layer, re-464

quiring a long sequence of tokens to represent all in-465

put images (demonstrations and query), which may466

confound its LLM block. This hypothesis aligns467

with the findings of Laurençon et al. (2024), which468

suggest that reducing the number of visual tokens469

can improve performance on downstream tasks. 470

Overall, these results indicate that the evaluated 471

VLMs struggle to leverage the contextual infor- 472

mation and underscore the impact of prompt de- 473

sign on in-context learning performance. Detailed 474

prompts that specify both the task and the structure 475

of demonstration examples proved to be more ef- 476

fective than simply concatenating demonstrations. 477

Also, our findings indicate that both instruction- 478

tuning and training on interleaved image-text 479

datasets enhance in-context learning ability. No- 480

tably, models with advanced modality projectors 481

can achieve competitive performance even when 482

trained on datasets containing only single image- 483

text pairs per sample, offering a more cost-efficient 484

alternative to training on interleaved datasets. 485

Influence of the Number of Demonstrations. In 486

our previous experiments (Section 4), we fixed the 487

number of demonstrations at three per sample. We 488

observed that the detailed prompt generally im- 489

proves performance. Building on this finding, we 490

now investigate whether increasing the number of 491

demonstrations (shots) in context further enhances 492

model performance. To test this hypothesis, we 493

evaluate the models on image captioning, using the 494

previously defined detailed prompt, and on four 495

VQA datasets. In this experiment, we vary the 496

number of shots among 0, 1, 3, and 5. In the 0- 497

shot setting, the prompt consists only of the tem- 498

plate, without any demonstrations. We emphasize 499

that this differs from the instruction-only scenario, 500

as the 0-shot prompt signals a demonstration will 501

be provided, but no actual demonstration is given. 502

This setup allows us to evaluate the performance 503

gains achieved by incorporating more demonstra- 504

tions. The image captioning and VQA results are 505

summarized in Figure 4 (the numeric results for 506

image captioning and VQA can also be found in 507

6



Figure 4: Influence of the number of demonstration examples on performance. We evaluate the impact of
varying the number of demonstration examples (shots) in the context. For image captioning, we use a detailed
prompt and employ the MS COCO training set as the knowledge base, plotting the CIDEr-D score. “Instr.” in the
x-axis of charts with image captioning results stands for the best results in the instruction-only scenario. For VQA,
we utilize the corresponding training set for each dataset as the knowledge base and report the VQA accuracy.

Tables A3 and A4, respectively).508

For image captioning, our results reveal that509

most models perform better in the instruction-510

only and 0-shot scenarios than when demonstra-511

tions are provided. Furthermore, we do not ob-512

serve consistent improvements as demonstrations513

increase. In fact, incorporating more demonstra-514

tions often degrades performance relative to the515

0-shot setup. However, consistent with prior ob-516

servations, the Idefics2 and OpenFlamingo models517

appear to be the least affected by the demonstra-518

tions in the in-context learning setting. Specif-519

ically, Idefics2 (Base) and OpenFlamingo show520

slight performance gains as the number of shots in-521

creases, while the instruction-tuned Idefics2 model522

maintains a relatively stable performance. Note523

that InstructBLIP models achieve the highest per-524

formance on MS COCO but experience signifi-525

cant drops on Flickr30K and NoCaps, where the526

instruction-tuned Idefics2 model outperforms them.527

LLaVA is the most hampered by the demonstra-528

tions, it faces a notable decline on Flickr30K and529

NoCaps when demonstrations are included. This530

result corroborates our hypothesis that the long se-531

quence of tokens required to represent the input532

images may confound the LLM.533

Similar to image captioning, in VQA, we ob-534

serve that models generally perform better across535

most datasets without in-context demonstrations.536

However, an opposite trend is observed for Vizwiz,537

where the inclusion of demonstrations appears ben-538

eficial. A detailed analysis (Section A.5.1) reveals539

that this effect is due to a strong dataset imbalance:540

the answer “unanswerable” appears more than a541

thousand times, while most other answers occur542

only once. Likewise, many of the provided demon-543

strations are also annotated as “unanswerable” lead- 544

ing models to favor this response. Additionally, 545

in the TextVQA dataset, models’ performance de- 546

clines consistently as more demonstrations are in- 547

troduced. This drop aligns with expectations, as 548

answering questions in TextVQA requires recog- 549

nizing text within images, and, in this case, similar 550

examples in the context may confound the models. 551

Furthermore, for the GQA and OKVQA datasets, 552

the performance of InstructBLIP models, LLaVA, 553

and instruction-tuned Idefics2 remains relatively 554

unchanged as the number of shots increases. This 555

suggests that these models overlook in-context 556

demonstrations for reasoning-based tasks. Nev- 557

ertheless, it is interesting to note that they sig- 558

nificantly outperform Idefics2 (Base) and Open- 559

Flamingo on these datasets, underscoring the im- 560

portance of instruction-tuning for VQA tasks re- 561

quiring reasoning. 562

Our results suggest that increasing the number 563

of demonstrations in the context does not necessar- 564

ily enhance model performance. Instead, refining 565

model architectures or training strategies may be 566

necessary to leverage contextual information better. 567

Particularly, instruction-tuned models achieve bet- 568

ter results on reasoning-intensive VQA tasks, while 569

models trained on interleaved image-text datasets 570

exhibit better in-context learning ability. Due to 571

computational constraints, our evaluation is limited 572

to up to 5 demonstrations. However, our results 573

show fluctuations in scores across 1, 3, and 5 shots. 574

Therefore, further large-scale exploration is needed 575

to fully understand the impact of number of demon- 576

strations on performance. 577

Similar vs. Random Demonstrations. To inves- 578

tigate the impact of similar demonstrations on final 579

7



results, we conduct a comparative analysis under580

two scenarios: one where demonstrations are sim-581

ilar to the query image and another with demon-582

strations from the same task but randomly chosen,583

either related or unrelated to the query image, re-584

ferred to as random demonstrations. We hypothe-585

size is that providing examples with content similar586

to the query image leads to better performance587

than using random demonstrations. To validate588

this, we fix the number of demonstrations at three589

and conduct experiments using both similar (as590

described in Section 3.2) and random demonstra-591

tions for image captioning and VQA tasks. For592

image captioning, we employ a detailed prompt593

to maintain consistency with previous experiments.594

Figure 5 illustrates the difference in scores between595

similar and random demonstrations across image596

captioning and VQA datasets.597

Our experimental results highlight distinct be-598

haviors across models in both image captioning and599

VQA tasks when exposed to similar and random600

demonstrations. In image captioning, InstructBLIP601

Vicuna-7B and LLaVA 7B demonstrate the most602

substantial performance gains with similar demon-603

strations, particularly on MS COCO and NoCaps604

datasets. In contrast, OpenFlamingo 9B exhibits a605

sharp performance drop, indicating that this model606

struggles to effectively leverage visual elements607

similar to the query image.608

In VQA, most models benefit more from simi-609

lar demonstrations than from random ones, with610

notable improvements on the OKVQA dataset.611

OKVQA consists of images and general questions612

that require commonsense knowledge. Then, simi-613

lar demonstrations help models generate more ac-614

curate responses, whereas random demonstrations615

can confound them. In contrast, in TextVQA, mod-616

els exhibit the greatest performance drop when617

using similar demonstrations. That is, models618

perform better with random demonstrations than619

with similar ones. We hypothesize that, as answer-620

ing TextVQA questions requires recognizing text621

within images, showing random task-related exam-622

ples might help models focus on the task itself. On623

the other hand, similar demonstrations could intro-624

duce visual distractions and lead to answer copying625

from provided examples.626

5 Conclusion627

In this paper, we systematically analyze in-context628

learning in VLMs, evaluating six models from four629

In
st

ru
ct

BL
IP

Vi
cu

na
-7

B

In
st

ru
ct

BL
IP

Fl
an

T5
-X

L

Lla
va

 v
1.

5
7B

Id
ef

ics
2

8B
 (B

as
e)

Id
ef

ics
2

8B
 (I

T)

Op
en

Fl
am

in
go

9B

Models

10

0

10

20

30

40

Di
ffe

re
nc

e 
(S

im
ila

r -
 R

an
do

m
)

MS COCO
Flickr30K
NoCaps

VizWiz
GQA
TextVQA
OKVQA

Figure 5: Difference in scores between in-context learn-
ing using similar demonstrations and random ones
across image captioning and VQA datasets. For the im-
age captioning datasets, we consider the detailed prompt.
We plot the difference in CIDEr-D score for image cap-
tioning and VQA accuracy for VQA datasets.

distinct architectures across multiple image cap- 630

tioning and VQA benchmarks. We investigate the 631

impact of prompt construction, demonstration se- 632

lection, and model design on in-context learning. 633

Unlike previous work, we analyze models beyond 634

those trained on interleaved image-text datasets. 635

Our findings reveal that the evaluated models strug- 636

gle to utilize contextual information to refine their 637

outputs. However, detailed prompts, explicitly 638

defining both the task and the structure of demon- 639

stration examples, significantly enhance this ability 640

compared to simply concatenating examples. In- 641

creasing the number of demonstrations does not 642

necessarily yield better results. While instruction- 643

tuning helps models comprehend detailed instruc- 644

tions, it may reduce their in-context learning capac- 645

ity. In contrast, training on interleaved image-text 646

datasets enhances such ability. Additionally, we 647

show that models with advanced modality projec- 648

tors can achieve competitive in-context learning 649

performance even when trained on single image- 650

text pairs, offering a cost-efficient alternative. 651

This work sheds light on key limitations in cur- 652

rent VLMs regarding their in-context learning abil- 653

ity. Future research should explore modality pro- 654

jectors to better integrate LLMs’ in-context learn- 655

ing abilities into VLMs, as well as a combined 656

approach using instruction-tuning and interleaved 657

image-text training. Another promising direction is 658

the inclusion of both positive and negative demon- 659

strations, which could help models better distin- 660

guish between correct and incorrect responses. 661
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Limitations662

Although our analysis focuses on VLMs with up to663

9B parameters and a maximum of 5 demonstrations664

per query due to computational constraints, study-665

ing larger models and increasing the number of666

shots would be important to determine whether our667

conclusions hold at a greater scale. Furthermore,668

to better understand the role of instruction-tuning669

and training of interleaved image-text datasets, it670

would be interesting to extend our analysis to a671

broader range of model architectures evaluating672

models before and after instruction-tuning. Finally,673

our analysis is limited to VLMs trained in English-674

language texts. However, evaluating the in-context675

learning capacity of multilingual models is essen-676

tial. It would be necessary to study whether in-677

context learning can improve VLMs performance678

on low-resource languages.679

Ethics Statement680

This study systematically analyzes the in-context681

learning capabilities of publicly available VLMs.682

Our analysis is based solely on publicly available683

image captioning and VQA datasets, and we fully684

comply with the terms of use and licensing agree-685

ments associated with each model and dataset. We686

do not conduct any fine-tuning or modifications in687

the models that could introduce unintended risks.688

However, we recognize that our work reflects the689

existing limitations and potential risks of the eval-690

uated models, including but not limited to gender,691

racial, and cultural biases, as well as the potential692

for generating misinformation or disinformation.693
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A Appendix990

A.1 Results on Instruction-only Scenario991

As detailed in Section 4, we first conduct infer-992

ence using instruction-only prompts, i.e., without993

including any demonstration examples, to estab-994

lish a baseline for our in-context learning experi-995

ments. To do so, we test four similar instructions,996

three of which are selected from (Dai et al., 2024):997

(I1) “Write a short description for the998

image.”, (I2) “A short image caption.”, and999

(I3) “A short image description:”. We also1000

create a fourth instruction, (I4) “A short image1001

description.”, by replacing the colon in the lat-1002

ter instruction with a period. Table A1 summarizes1003

the results of these experiments.1004

InstructBLIP models (with Vicuna-7B and1005

FlanT5-XL) exhibit consistent performance, with1006

only minor fluctuations across the different instruc-1007

tions. Interestingly, this consistency does not ex-1008

tend to the other models. LLaVA shows one of the1009

greatest sensitivity to instruction variations, per-1010

forming best with the instruction “A short image1011

caption.” and worst with “Write a short1012

description for the image.”. Notably, its1013

performance on the MS COCO dataset declines1014

significantly when the period in “A short image1015

description.” is replaced with a colon, while1016

remaining stable on the other datasets. This drop1017

in results on MS COCO suggests that LLaVA may1018

be memorizing the content of MS COCO, as this1019

dataset is used to generate instruction-following1020

training data. In contrast, Idefics2 models and1021

OpenFlamingo perform best with the instruction “A1022

short image description:” and show reduced1023

performance when the colon is replaced with a pe-1024

riod. Also, the difference between the highest and1025

lowest scores is more pronounced in Idefics2 be-1026

fore the instruction-tuning phase (Idefics2 (Base)),1027

possibly because this phase enhances the model’s1028

robustness to minor prompt variations. A similar1029

trend is observed in OpenFlamingo, which also1030

does not undergo an instruction-tuning phase dur-1031

ing training.1032

A.2 Experimental Results in Numbers1033

We provide the numerical results of the experi-1034

ments regarding the impact of prompt in the in-1035

context learning ability (Section 4) and the influ-1036

ence of the number of demonstrations in the con-1037

text on the performance (Section 4). The results1038

are divided into three tables. Table A2 presents1039

the results for the image captioning task under 1040

instruction-only and in-context learning scenarios; 1041

it shows the best performance in the instruction- 1042

only scenario alongside the results of in-context 1043

learning with straightforward and detailed prompts. 1044

Tables A3 and A4 show the results for image cap- 1045

tioning and VQA, respectively, varying the number 1046

of demonstration examples in the context. 1047

A.3 Ablation on Detailed Prompt 1048

Building on the findings from the instruction-only 1049

scenario (Section 4), we investigate the impact of 1050

small modifications to the detailed prompt used to 1051

evaluate the in-context learning capabilities of mod- 1052

els in the image captioning task. We use (1) Base 1053

detailed prompt for our experiments and test vari- 1054

ous small changes to this template (Figure A1). 1055

The results, summarized in Table A5, reveal 1056

interesting insights. First, removing the initial 1057

phrase (prompt 2) significantly hampers the per- 1058

formance of most models. Second, models gen- 1059

erally perform better when the word “creative” is 1060

removed from the prompt (prompt 3). However, 1061

removing both the initial phrase and the word “cre- 1062

ative” (prompt 4) produces intermediate results, 1063

suggesting that the effects of these changes are 1064

combined. The best prompt in most cases is to 1065

keep the initial phrase while removing the word 1066

“creative” (prompt 3), which leads to the highest 1067

performance. 1068

These changes in the prompt can result in sub- 1069

stantial performance differences, with variations of 1070

up to 20 points in CIDEr scores. Among the exper- 1071

imented models, InstructBLIP FlanT5-XL demon- 1072

strates major sensitivity to prompt modifications. 1073

Notably, it fails to generate captions when the word 1074

“creative” is included in the prompt, underscoring 1075

its dependence on precise prompt phrasing. Finally, 1076

as expected, altering the name of the modality pro- 1077

jector (prompts 5, 6, and 7, Figure A1) has no 1078

impact on model performance, indicating that the 1079

models simply ignore this detail. 1080

A.4 Impact of Training Size on In-Context 1081

Learning 1082

To further explore the impacts of design decisions 1083

on in-context learning, we investigate the impact 1084

of the training set size on the model performance 1085

in both instruction-only and in-context learning 1086

scenarios. Figure A2 illustrates model performance 1087

across image captioning datasets as a function of 1088

training set size. 1089
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Table A1: Instruction-only scenario. We evaluate the VLMs on image captioning datasets with different instructions
and report the CIDEr-D (↑) and CIDEr-R (↑) scores. The numbers in bold are at least 1 point better than the others.
The evaluated instructions are: (I1) “Write a short description for the image.”, (I2) “A short image
description.”, (I3) “A short image description:” and (I4) “A short image caption.”.

Model Instruction
MS COCO Flickr30K NoCaps

CIDEr-D CIDEr-R CIDEr-D CIDEr-R CIDEr-D CIDEr-R

InstructBLIP
Vicuna-7B

I1 147.4 149.5 85.1 97.0 123.7 130.2
I2 146.7 148.4 85.9 97.8 124.0 130.0
I3 146.8 149.0 86.3 98.4 123.7 130.5
I4 147.2 149.0 86.3 98.2 124.2 130.5

InstructBLIP
FlanT5-XL

I1 142.5 144.5 85.1 96.9 121.5 128.2
I2 142.4 144.3 85.4 97.2 121.6 128.2
I3 142.4 144.4 85.1 96.8 121.4 128.1
I4 142.4 144.4 85.0 97.0 121.4 127.9

LLaVA v1.5-7B

I1 64.9 88.9 47.3 71.8 72.2 93.0
I2 101.3 113.9 69.6 88.4 99.0 113.1
I3 78.3 90.6 69.7 87.4 96.5 111.7
I4 114.5 122.7 83.9 99.2 106.3 117.5

Idefics2-8B
(Base)

I1 0.1 3.1 0.0 1.0 0.3 4.6
I2 9.9 64.6 9.7 61.3 19.0 72.0
I3 81.2 94.6 63.0 79.7 81.0 95.3
I4 0.7 1.5 0.7 2.0 0.4 0.9

Idefics2-8B
(Instruction-Tuned)

I1 57.5 70.1 51.8 66.5 69.1 80.9
I2 49.1 59.6 47.5 61.8 67.7 79.5
I3 83.6 90.1 62.3 74.7 84.3 93.0
I4 53.5 65.3 41.9 55.9 63.2 75.8

OpenFlamingo-9B

I1 36.1 50.9 31.4 43.4 29.8 49.8
I2 60.9 72.8 49.4 62.8 63.1 75.3
I3 71.0 82.0 56.2 69.8 67.4 81.5
I4 58.7 66.7 47.2 58.8 53.0 63.7

Table A2: Comparison between instruction-only and in-context learning scenarios. Evaluation results for image
captioning task under in-context learning using straightforward and detailed prompts. “Instruction” refers to the
best performance in the instruction-only scenario. Bold numbers highlight the best performance for each model.

MS COCO Flickr30K NoCaps
Model Prompt

CIDEr-D (↑) CIDEr-R (↑) CIDEr-D (↑) CIDEr-R (↑) CIDEr-D (↑) CIDEr-R (↑)
Instruction 147.2 149.0 86.3 98.2 124.2 130.5

Straightforward 86.2 96.0 45.0 52.1 66.1 73.3
InstructBLIP Vicuna-7B

(Q-Former fed with Caption)
Detailed 94.4 97.9 47.8 55.8 60.0 71.3

Instruction 147.2 149.0 86.3 98.2 124.2 130.5
Straightforward 100.9 106.3 47.7 53.6 74.2 78.5

InstructBLIP Vicuna-7B
(Q-Former fed with Instruction)

Detailed 105.1 107.5 46.1 52.3 75.4 79.0
Instruction 142.4 144.4 85.0 97.0 121.4 127.9

Straightforward 84.9 87.1 39.0 44.1 58.6 61.6
InstructBLIP FlanT5-XL

(Q-Former fed with Caption)
Detailed 57.4 59.1 26.5 30.5 50.0 52.9

Instruction 142.4 144.4 85.0 97.0 121.4 127.9
Straightforward 107.2 108.2 45.4 51.6 69.2 72.4

InstructBLIP FlanT5-XL
(Q-Former fed with Instruction)

Detailed 106.7 108.6 49.5 56.7 77.1 81.2
Instruction 114.5 122.7 83.9 99.2 106.3 117.5

Straightforward 60.3 65.1 23.4 28.0 36.1 40.4LLaVA v1.5-7B
Detailed 40.6 44.1 17.6 21.1 26.2 29.4

Instruction 81.2 94.6 63.0 79.7 81.0 95.3
Straightforward 21.9 35.6 21.2 32.6 19.8 31.4

Idefics2-8B
(Base)

Detailed 11.2 33.2 13.5 29.4 15.1 37.6
Instruction 83.6 90.1 62.3 74.7 84.3 93.0

Straightforward 44.1 57.1 37.0 51.1 55.2 68.0
Idefics2-8B

(Instruction-Tuned)
Detailed 91.8 99.6 72.5 85.5 91.6 101.0

Instruction 71.0 82.0 56.2 69.8 67.4 81.5
Straightforward 1.2 18.4 1.8 10.6 1.3 13.9OpenFlamingo-9B

Detailed 66.3 70.6 40.7 50.3 56.4 65.2
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(1) Base detailed prompt:
I am an intelligent image captioning bot. Here are the features extracted by Q-Former for similar
images along with their captions, following the format: [visual query tokens for example 1]
[caption of example 1] ... [visual query tokens for example K]. Example 1: <image1> caption 1,
. . . , Example K− 1: <imageK−1> caption K− 1, <image> A creative short caption I can generate
to describe example K is:

(2) Removing the initial phrase:
I am an intelligent image captioning bot. Here are the features extracted by Q-Former for similar
images along with their captions, following the format: [visual query tokens for example 1]
[caption of example 1] ... [visual query tokens for example K]. Example 1: <image1> caption 1,
. . . , Example K− 1: <imageK−1> caption K− 1, <image> A creative short caption I can generate
to describe example K is:

(3) Removing the word “creative”:
I am an intelligent image captioning bot. Here are the features extracted by Q-Former for similar
images along with their captions, following the format: [visual query tokens for example 1]
[caption of example 1] ... [visual query tokens for example K]. Example 1: <image1> caption 1,
. . . , Example K− 1: <imageK−1> caption K− 1, <image> A creative short caption I can generate
to describe example K is:

(4) Removing the initial phrase and the word “creative”:
I am an intelligent image captioning bot. Here are the features extracted by Q-Former for similar
images along with their captions, following the format: [visual query tokens for example 1]
[caption of example 1] ... [visual query tokens for example K]. Example 1: <image1> caption 1,
. . . , Example K− 1: <imageK−1> caption K− 1, <image> A creative short caption I can generate
to describe example K is:

(5) Removing the name Q-Former:
I am an intelligent image captioning bot. Here are the features extracted by Q-Former for similar
images along with their captions, following the format: [visual query tokens for example 1]
[caption of example 1] ... [visual query tokens for example K]. Example 1: <image1> caption 1,
. . . , Example K− 1: <imageK−1> caption K− 1, <image> A creative short caption I can generate
to describe example K is:

(6) Replacing Q-Former with a generic name:
I am an intelligent image captioning bot. Here are the features extracted by Q-Former a model
for similar images along with their captions, following the format: [visual query tokens for
example 1] [caption of example 1] ... [visual query tokens for example K]. Example 1: <image1>
caption 1, . . . , Example K − 1: <imageK−1> caption K − 1, <image> A creative short caption I
can generate to describe example K is:

(7) Replacing Q-Former with a random name:
I am an intelligent image captioning bot. Here are the features extracted by Q-Former XXXX
for similar images along with their captions, following the format: [visual query tokens for
example 1] [caption of example 1] ... [visual query tokens for example K]. Example 1: <image1>
caption 1, . . . , Example K − 1: <imageK−1> caption K − 1, <image> A creative short caption I
can generate to describe example K is:

Figure A1: Detailed prompts to evaluate the in-context learning capabilities of models in the image captioning task.
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Table A3: Influence of the number of demonstration examples on image captioning performance. Evaluation
results for image captioning task with the detailed prompt varying the number of demonstration examples (Shot) in
the context. Bold numbers highlight the best performance for each model. We use the MS COCO training set as the
knowledge base.

Model Shot
MS COCO Flickr30K NoCaps

CIDEr-D (↑) CIDEr-R (↑) CIDEr-D (↑) CIDEr-R (↑) CIDEr-D (↑) CIDEr-R (↑)

InstructBLIP Vicuna-7B
(Q-Former fed with Caption)

Instruction 147.2 149.0 86.3 98.2 124.2 130.5
0 136.2 139.1 80.5 92.7 116.1 123.2
1 97.1 100.1 48.5 55.7 73.7 78.3
3 94.4 97.9 42.8 50.3 68.9 74.3
5 92.9 96.6 38.9 46.3 66.9 72.7

InstructBLIP Vicuna-7B
(Q-Former fed with Instruction)

Instruction 147.2 149.0 86.3 98.2 124.2 130.5
0 136.2 139.1 80.5 92.7 116.1 123.2
1 110.6 112.7 52.6 59.8 81.5 85.4
3 105.1 107.5 46.1 52.3 75.4 79.0
5 102.4 105.2 44.7 50.3 73.5 77.1

InstructBLIP FlanT5-XL
(Q-Former fed with Caption)

Instruction 142.4 144.4 85.0 97.0 121.4 127.9
0 127.9 131.2 78.9 90.9 114.5 122.0
1 54.9 56.3 21.9 25.1 44.4 47.1
3 57.4 59.1 28.3 32.5 54.1 57.5
5 72.3 74.8 28.1 32.3 54.3 57.5

InstructBLIP FlanT5-XL
(Q-Former fed with Instruction)

Instruction 142.4 144.4 85.0 97.0 121.4 127.9
0 127.9 131.2 78.9 90.9 114.5 122.0
1 93.3 95.3 46.0 52.5 71.5 75.5
3 106.7 108.6 49.5 56.7 77.1 81.2
5 104.9 106.6 46.2 53.0 72.5 76.2

LLaVA v1.5-7B

Instruction 114.5 122.7 83.9 99.2 106.3 117.5
0 82.1 87.2 55.4 65.4 77.2 83.9
1 42.9 45.8 18.2 21.5 31.2 34.4
3 40.3 43.8 17.5 21.3 25.2 28.1
5 52.9 56.6 19.6 23.2 30.7 33.9

Idefics2-8B
(Base)

Instruction 81.2 94.6 63.0 79.7 81.0 95.3
0 11.0 36.9 16.1 36.8 13.7 37.0
1 9.4 31.8 13.4 30.2 12.1 32.6
3 11.2 33.2 13.5 29.4 15.1 37.6
5 17.2 38.1 17.3 33.3 17.0 36.9

Idefics2-8B
(Instruction-Tuned)

Instruction 83.6 90.1 62.3 74.7 84.3 93.0
0 102.4 110.4 76.5 91.5 99.7 110.1
1 94.1 102.9 72.7 88.1 93.6 104.4
3 91.8 99.6 72.5 85.5 91.6 101.0
5 88.7 96.1 70.3 82.6 88.1 97.0

OpenFlamingo-9B

Instruction 71.0 82.0 56.2 69.8 67.4 81.5
0 52.1 66.0 38.8 49.4 43.5 61.4
1 61.3 65.1 40.1 48.2 53.4 61.6
3 66.3 70.6 40.7 50.3 56.4 65.2
5 62.6 66.1 38.6 46.2 50.7 56.8

One can observe that, in the instruction-only sce-1090

nario, Idefics2 and OpenFlamingo exhibit lower1091

efficiency compared to InstructBLIP and LLaVA1092

models. However, in the in-context learning setting,1093

instruction-tuned Idefics2 follows the same scaling1094

trend as InstructBLIP and LLaVA on Flickr30K1095

and NoCaps. This indicates that Idefics2 (IT) ben-1096

efits from additional contextual information as ef-1097

ficiently as InstructBLIP models and LLaVA with1098

respect to the training data volume.1099

In contrast, OpenFlamingo consistently under-1100

performs across all datasets. This finding aligns1101

with Qin et al. (2024) and suggests that the fully1102

autoregressive approach – where visual informa-1103

tion is passed as input soft tokens to the LLM – is1104

more data-efficient than OpenFlamingo’s strategy 1105

of integrating visual information directly within the 1106

LLM’s layers. 1107

A.5 Qualitative Analysis 1108

We qualitatively analyze how models’ outputs vary 1109

between instruction-only scenarios and those with 1110

context, using both similar and random demon- 1111

strations. Specifically, we investigate whether the 1112

models effectively leverage contextual information. 1113

To do so, we select four examples from Flickr30K, 1114

as well as the demonstrations for these examples, 1115

as shown in Figure A3. 1116

Consistent with our quantitative analysis pre- 1117

sented in Section 4, InstructBLIP models can gen- 1118

erate captions correctly describing the visual con- 1119
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Figure A2: Influence of training dataset size on performance on instruction-only and in-context learning scenarios.
Note that the training set size is in the log scale.
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Table A4: Influence of the number of demonstration examples on VQA performance. Evaluation results for
the VQA task varying the number of demonstration examples (Shot) in the context. We use the corresponding
training set of each dataset as the knowledge base. We report the VQA accuracy, bold numbers highlight the best
performance for each model.

Model Shot VizWiz (↑) GQA (↑) TextVQA (↑) OKVQA (↑)
0 21.8 49.1 33.8 42.4
1 19.8 47.6 29.6 41.2
3 19.5 46.3 25.2 39.4

InstructBLIP
Vicuna-7B

5 19.5 45.2 23.5 38.2
0 21.0 48.1 31.1 35.6
1 32.0 46.4 28.3 35.2
3 34.0 45.1 26.2 34.7

InstructBLIP
FlanT5-XL

5 32.4 43.4 24.4 34.4
0 15.5 56.3 37.7 27.8
1 15.2 45.5 10.7 27.1
3 20.7 45.4 9.6 28.6

LLaVA v1.5

5 19.9 44.9 10.3 28.9
0 13.08 26.20 35.94 13.98
1 26.05 18.49 26.34 12.33
3 28.11 14.91 20.2 6.98

Idefics2-8B
(Base)

5 32.98 19.38 21.1 7.6
0 23.3 51.5 62.6 38.6
1 24.4 49.1 56.6 37.8
3 26.3 49.9 57.2 38.4

Idefics2-8B
(Instruction-Tuned)

5 27.1 46.8 53.1 36.9
0 13.9 22.5 20.0 10.2
1 29.0 24.9 19.7 14.9
3 33.8 29.1 22.8 17.5OpenFlamingo-9B

5 20.9 23.1 16.8 12.3

tent of the query image in instruction-only and1120

in-context learning with similar demonstrations.1121

However, random demonstrations can confound1122

the models, leading to captions unrelated to query1123

images. Then, it confirms the performance gain1124

shown in Figure 5. Furthermore, LLaVA proves1125

to leverage visual cues provided within the demon-1126

strations, often utilizing information from the first1127

demonstration. Particularly, we can observe in ex-1128

ample #1 that it incorporates the visual detail of1129

the number 4 from the player’s jersey from the last1130

similar demonstration. And, in examples #2 and1131

#4, it ignores the query image and describes ex-1132

actly the first similar demonstration. In contrast,1133

when random demonstrations are used, the model1134

generates captions unrelated to the query image.1135

Idefics2 (IT) appears to ignore contextual infor-1136

mation during caption generation. Interestingly,1137

when given demonstrations, the model generates1138

shorter captions that align with the average sen-1139

tence length found in the MS COCO dataset. This1140

behavior suggests that the model is attempting to1141

replicate the structure of the provided examples1142

rather than leveraging their semantic content. On1143

the other hand, Idefics2 (Base) struggles with cap-1144

tion generation under the instruction-only scenario, 1145

often returning the prompt or part of it or even gen- 1146

erating a text totally unrelated to the query image 1147

as in example #2. This indicates a reliance on con- 1148

textual grounding. Nevertheless, its performance 1149

improves when given demonstrations, generating 1150

outputs similar to those of Idefics2 (IT), albeit with 1151

repetition of prompt segments at the end. This 1152

repetition suggests difficulty in processing instruc- 1153

tions effectively. However, after instruction tun- 1154

ing, the model improves its handling of prompts 1155

and generates cleaner captions without extraneous 1156

prompt segments. 1157

OpenFlamingo can generate captions in both 1158

instruction-only and in-context learning settings. 1159

However, when given demonstrations, it sometimes 1160

mixes up elements from different examples, re- 1161

sulting in captions unrelated to the query image. 1162

This is particularly seen in examples #2 and #3, 1163

where random demonstrations lead to captions in- 1164

corporating unrelated elements. This suggests that 1165

while OpenFlamingo can utilize contextual infor- 1166

mation, it lacks a robust mechanism to differentiate 1167

between relevant and irrelevant context, compro- 1168

mising caption generation. 1169
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InstructBLIP Vicuna:
two dogs playing with a
frisbee in the grass

InstructBLIP Flan-XL: 
two dogs playing with a
frisbee in a grassy field

LLaVA: A man wearing
goggles sits on the ground
holding a book.

Idefics2 (Base): Two dogs
playing in the grass. I am an
intelligent image captioning
bot...

Idefics2 (IT): Two dogs
playing in the grass.

OpenFlamingo: Three
white men in t-shirt jump
into the air. A group of
musician comprised of
string players and a
percussionist. A frisbee is

InstructBLIP Vicuna: 
two dogs playing with a
frisbee in a field

InstructBLIP Flan-XL:
two dogs playing with a
frisbee in a grassy field

LLaVA: A woman
wearing a grey sweater and
holding a brown dog.

Idefics2 (Base): "The dogs
are playing with a yellow
frisbee." I am an intelligent
image captioning bot. [...]

Idefics2 (IT): Two dogs
playing in the grass with a
toy.

OpenFlamingo: Two dogs
in a grassy field are vying
for a frisbee.

InstructBLIP Vicuna: 
two dogs playing with a
frisbee in a field

InstructBLIP Flan-XL: 
two dogs playing with a
frisbee in a grassy field

LLaVA: Two dogs fighting
over a frisbee in a grassy
field.

Idefics2 (Base): Lorem
Ipsum is simply dummy
text of the printing and
typesetting industry.
Lorem Ipsum has been the
industry's standard

Idefics2 (IT): Dogs
playing in the grass and
one has a toy in its mouth.

OpenFlamingo: Two dogs
playing tug-of-war

InstructBLIP Vicuna: 
a woman playing a guitar
in front of a microphone

InstructBLIP Flan-XL: 
a girl in a spider-man
costume riding a toy horse

LLaVA: Little girl
wearing a purple shirt and
pink pajamas lying on the
floor.

Idefics2 (Base): "A soccer
goalie warming up before a
game. "I am an intelligent
image captioning bot. [...]

Idefics2 (IT): A
goalkeeper runs across the
field during a soccer game.

OpenFlamingo: A
goalkeeper stands in front
of the goal.

InstructBLIP Vicuna: 
a group of men playing
soccer on a field

InstructBLIP Flan-XL: 
a group of soccer players
on a field

LLaVA: A man wearing a
white jersey with the
number 4 on it.

Idefics2 (Base): "A soccer
goalie warming up before a
game." I am an intelligent
image captioning bot. [...]

Idefics2 (IT): A soccer
goalie runs across the field
during a game.

OpenFlamingo: A
goalkeeper stands in front
of a soccer goal.

InstructBLIP Vicuna: 
a soccer player standing on
a field in front of a crowd

InstructBLIP Flan-XL: 
a group of people watching
a soccer game on a field

LLaVA: A soccer player
wearing a green shirt and
black shorts.

Idefics2 (Base): A short
image caption. A short
image caption...
Idefics2 (IT): A soccer
goalie runs on the field in
front of thousands of
spectators. The goalie is
wearing a green jersey.
OpenFlamingo: This is a
picture of a goalkeeper.

G
en

er
at

ed
 C

ap
tio

ns
C

on
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xt
Q

ue
ry

Random DemonstrationsSimilar Demonstrations

Instruction

InstructBLIP Vicuna: 
a couple of people hugging
each other in the middle of
a city

InstructBLIP Flan-XL: 
a group of people standing
in a city square

LLaVA: Two people
hugging in the middle of a
city street.

Idefics2 (Base): A short
image caption.

Idefics2 (IT): These people
are in a city. Some are
wearing costumes. There are
cars on the street. There are
stores in the background. The
people are

OpenFlamingo: A group
of people dancing in the
middle of a downtown
street.

InstructBLIP Vicuna: 
there are a lot of people
walking around on the
street

InstructBLIP Flan-XL: 
a busy city street with
many people walking
around

LLaVA: A short caption I
can generate to describe
example 4 is:

Idefics2 (Base): "A group of
people standing in front of a
building." I am an intelligent
image captioning bot.[...]

Idefics2 (IT): A group of
people stand around in
front of a large building.

OpenFlamingo: A city
street that has a large
number of people on it.

InstructBLIP Vicuna: 
a man working at a desk
with three computer
monitors in front of him

InstructBLIP Flan-XL: 
a young boy running away
from a bench.

LLaVA: An older woman
and a young girl are
standing at a kitchen
counter.

Idefics2 (Base): "A group of
people are standing in front
of a building." I am an
intelligent image captioning
bot.[...]

Idefics2 (IT): A group of
people are standing around
in front of a large building.

OpenFlamingo: A group
of people dancing in the
street.

A street scene 
with people and

cars on the street.

A shot of a street 
with a small 
cityscape in the

background.

A busy 
intersection in the

city is full of people and
signs.

A young dirty 
faced asian girl

carrying a pillow.

A woman in a 
blue shirt and

jeans is throwing
something away in a
dumpster.

A man in a gray 
shirt talks to a 
young woman in a

white jacket in front of a
church.

Q
ue

ry
C

on
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xt
G

en
er
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ed

 C
ap

tio
ns

Random DemonstrationsSimilar Demonstrations Random DemonstrationsSimilar Demonstrations

Instruction Instruction
A kid juggling 
balls in the middle

of traffic.

Two football teams 
are in the middle of 
a play as white

jerseys and the opposing green
jerseys are in all positions of
motion while scrambling for
the football.

Some very cute 

brown dogs in

the road with a toy.

The dogs are 
playing with a

yellow frisbee.

A Young child is 
throwing a big

rock into a body of water.

Two people are 
climbing a rock

wall with a rope.

Clown at a circus 
making a balloon

toy for a woman.

A group of 
children playing a

game of soccer in a green
grass covered soccer field.

A player is down 
while others tend

to him at a soccer game.

Teams pause as
 the referee makes 
a decision at a soccer
match.

A man with a 
tattoo on his arm 
cooking

something in a frying pan.

A beautiful 
woman holding a 
brown dog in her

arms near a refrigerator.

Example #1 Example #2

A man is playing 
a musical 
instrument outside

on the sidewalk.

A construction 
worker working

on a railroad waring an
orange shirt

A man in a black 
shirt sings into a

microphone.

Some folks 
having an

appetizer and some drinks.

A couple of men 
sits around a

wooden table 

Guy yawns at 
the table of wine

bottles, glasses and bowl of
food

Random DemonstrationsSimilar Demonstrations

Instruction

InstructBLIP Vicuna: 
a group of people sitting at
a table in a bar

InstructBLIP Flan-XL: 
a group of people sitting
around a table in a bar

LLaVA: A man and a
woman are sitting at a
table with wine bottles and
glasses in front of them.

Idefics2 (Base): A short
image caption.

Idefics2 (IT): This is as
picture taken in a room, there
are group of people sitting on
chairs in front of the people
there is a table on the table
there

OpenFlamingo: A group
of people sitting at a table
in a restaurant.

InstructBLIP Vicuna: 
a group of people sitting at
a table with wine glasses in
front of them

InstructBLIP Flan-XL: 
a group of people sitting at
a wooden table sampling
wine and food
LLaVA: A man in a blue
shirt has his mouth open
while sitting at a table.
Idefics2 (Base): Some
folks having an appetizer
and some drinks. I am an
intelligent image
captioning bot. Here are
the features extracted by Q
Idefics2 (IT): A group of
people eating and drinking at
a restaurant
OpenFlamingo: Guy
yawns at the table of wine
bottles, glasses and bowl
of food.

InstructBLIP Vicuna:
 there is a group of people
sitting at a table playing
video games

InstructBLIP Flan-XL:
a group of people sitting
around a table in a
restaurant

LLaVA: A bird flying over
the water.

Idefics2 (Base): two
people sitting at a table.
The man in the dark blue
jersey is holding a bat, and
the catcher is holding his
mitt

Idefics2 (IT): A group of
people sit at a table in a bar.

OpenFlamingo: A group
of people sitting at a table.

Example #4Example #3

Figure A3: Selected examples from Flickr30K illustrate how models’ outputs vary between instruction-only
scenarios and those with context, using similar and random demonstrations. The demonstration examples are
retrieved from the MS COCO training set, consistent with our experimental pipeline.
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Table A5: Ablation on detailed prompt. Evaluation results for image captioning task under in-context learning
testing detailed prompts with minor changes. Each sample includes three demonstration examples as context,
with the MS COCO training set serving as the knowledge base. Instruction refers to the best performance across
instruction-only prompts. Bold numbers highlight the best performance for each model.

Model Prompt
MS COCO Flickr30K NoCaps

CIDEr-D (↑) CIDEr-R (↑) CIDEr-D (↑) CIDEr-R (↑) CIDEr-D (↑) CIDEr-R (↑)

InstructBLIP
Vicuna-7B

(1) Base detailed prompt 101.6 104.2 44.3 51.8 72.1 77.0
(2) Removing the initial phrase 98.5 101.4 42.6 50.4 70.3 75.2
(3) Removing the word “creative” 106.2 108.5 46.8 53.0 73.6 77.2
(4) Removing both the initial phrase and the word “creative” 103.1 105.9 46.2 52.5 73.0 76.8
(5) Removing the name “q-former” 101.1 103.6 42.6 49.8 70.6 75.4
(6) Replacing “q-former” with a generic name 101.4 103.9 43.7 50.8 70.7 75.5
(7) Replacing “q-former” with a random name 100.4 102.9 43.2 50.0 71.1 76.0

InstructBLIP
FlanT5-XL

(1) Base detailed prompt 0.4 0.4 0.0 0.0 0.5 0.6
(2) Removing the initial phrase 0.7 0.7 0.1 0.1 2.0 2.2
(3) Removing the word “creative” 106.7 108.6 49.6 56.7 76.1 80.2
(4) Removing both the initial phrase and the word “creative” 105.0 106.8 48.6 55.7 75.3 79.3
(5) Removing the name “q-former” 0.5 0.5 0.0 0.1 1.1 1.2
(6) (6) Replacing “q-former” with a generic name 0.2 0.2 0.0 0.1 0.4 0.4
(7) Replacing “q-former” with a random name 0.3 0.3 0.0 0.1 0.2 0.3

LLaVA v1.5

(1) Base detailed prompt 38.9 43.5 18.3 22.2 26.6 30.5
(2) Removing the initial phrase 29.3 32.0 12.8 15.4 18.4 20.7
(3) Removing the word “creative” 40.6 44.1 17.6 21.1 26.2 29.4
(4) Removing both the initial phrase and the word “creative” 29.0 31.4 12.9 15.6 17.0 19.3
(5) Removing the name “q-former” 39.5 44.5 17.2 21.0 26.0 29.5
(6) Replacing “q-former” with a generic name 39.4 44.0 17.4 21.3 25.9 29.7
(7) Replacing “q-former” with a random name 39.8 44.4 17.8 21.6 26.3 29.9

Idefics2-8B

(1) Base detailed prompt 66.5 74.4 53.0 64.2 65.6 74.0
(2) Removing the initial phrase 69.5 76.7 54.0 64.5 69.7 77.8
(3) Removing the word “creative” 91.8 99.6 72.5 85.5 91.6 101.0
(4) Removing both the initial phrase and the word “creative” 87.7 95.4 66.9 80.3 88.4 98.8
(5) Removing the name “q-former” 65.0 72.7 51.0 61.6 64.0 72.3
(6) Replacing “q-former” with a generic name 64.0 72.3 51.5 62.6 62.5 70.9
(7) Replacing “q-former” with a random name 67.6 75.9 54.4 65.4 67.3 76.0

OpenFlamingo-9B

(1) Base detailed prompt 66.9 72.5 43.9 53.8 57.5 66.9
(2) Removing the initial phrase 67.2 72.9 44.4 53.8 58.8 68.0
(3) Removing the word “creative” 66.3 70.6 40.7 50.3 56.4 65.2
(4) Removing both the initial phrase and the word “creative” 66.2 70.8 43.2 52.5 58.3 66.9
(5) Removing the name “q-former” 65.6 71.4 43.0 52.5 56.4 66.0
(6) Replacing “q-former” with a generic name 66.3 72.1 44.4 54.1 56.9 67.1
(7) Replacing “q-former” with a random name 66.5 72.3 42.7 51.8 56.6 65.9

A.5.1 VizWiz1170

To investigate why adding in-context demonstra-1171

tions benefits performance on the VizWiz dataset,1172

unlike other datasets, we first analyze the distribu-1173

tion of answers in this dataset. Figure A4 shows1174

the answers that appear more than 10 times in the1175

dataset. A clear imbalance can be seen, with “unan-1176

swerable” being by far the most frequent answer.1177

It seems approximately 1,750 times, whereas all1178

other answers occur fewer than 100 times, with1179

most appearing only once. We hypothesize that this1180

imbalance explains the performance gains observed1181

when the number of demonstrations increases. To1182

test this, we examine the top 10 most frequently1183

generated answers from each model in the 0-shot1184

setting, where only the question is provided, and1185

the 5-shot setting, as shown in Figure A5.1186

In the 0-shot setting, the distribution of answers1187

is more balanced, and in most cases, “unanswer-1188

able” does not even appear in the top 10. How-1189

ever, when demonstrations are included, “unan-1190

swerable” becomes the most frequent answer, with1191

a significant margin over others for most mod-1192

els. Notably, InstructBLIP FlanT5-XL, Idefics21193

(Base), and OpenFlamingo generate “unanswer- 1194

able” most often, with InstructBLIP FlanT5-XL 1195

and OpenFlamingo outputting it incorrectly many 1196

times. This suggests that demonstrations labeled as 1197

“unanswerable” influence the models to replicate 1198

this response, leading to improved performance 1199

due to the dataset’s strong bias toward this answer. 1200
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Figure A4: Answers that occur more than 10 times in
the VizWiz dataset.
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0-Shot 5-Shot

InstructBLIP Vicuna-7B

InstructBLIP FlanT5-XL

LLaVA v1.5 7B

yes

no

white

Idefics2 8B (Base)

Idefics2 8B (IT)

OpenFlamingo 9B

no
yes

nothing

Figure A5: Top 10 most frequent answers for each model on the VizWiz dataset in both 0-shot and 5-shot scenarios.
“Total” refers to the total number of occurrences of a given answer and “Correct” indicates the number of correct ones.
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A.6 More Details on Experimental Setup1201

To facilitate the reproducibility of our work, we1202

report in Table A6 the models we analyzed, along1203

with details on their number of parameters and1204

training set size. Table A7 shows the datasets used1205

in our experiments, including basic statistics on1206

their size. Additionally, we outline the main hyper-1207

parameters used in our experiments in Tables A81208

and A9. Table A8 lists the hyperparameters specific1209

to image captioning, while Table A9 includes those1210

used for VQA. We conducted our experiments in a1211

heterogeneous computing environment; however,1212

the majority were performed on a single Quadro1213

RTX 8000 GPU. Also, all experiments were con-1214

ducted only once.1215

Table A6: VLMs investigated in this work. For each
model, we report the number of parameters and the size
of the dataset used for training.

Model #Params (B) Training set size (M)
Llava v1.5-7B 7.1 0.15
InstructBLIP Vicuna-7B 7.9 15.1
InstructBLIP Flan-XL 4.0 15.1
Idefics2-8B 8.4 351.2
OpenFlamingo-9B 8.1 2,101.0

Table A7: Datasets used in our experiments. For each
dataset, we report the number of samples in each split
and the specific task it is used for. Note that we do not
use Flickr or NoCaps training sets, as we rely on the
MS COCO training set as the knowledge base for these
datasets. “Val.” stands for the validation dataset.

Dataset Size Task
MS COCO Train: 118.2K/ Val: 5.0K Image Captioning
Flickr30K Val: 1.0K Image Captioning
NoCaps Val: 4.5K Image Captioning
VizWiz Train: 20.5K/ Val: 4.3K VQA
GQA Train: 943K/ Val: 12.5K VQA
TextVQA Train: 34.6K/ Val: 5K VQA
OKVQA Train: 9K/ Val: 5K VQA

Table A8: Hyperparameters for image captioning.

Hyperparameters Value
# Beams 5
Max. New Tokens 30
Min. Length 10
Repetition Penalty 1.5
Length Penalty 1.0
Temperature 1.0

Table A9: Hyperparameters for VQA.

Hyperparameters Value
# Beams 5
Max. New Tokens 10
Min. Length 1
Length Penalty -1.0
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