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Abstract

In-context learning enables Large Language
Models (LLMs) to learn tasks from demon-
stration examples without parameter updates.
While this ability has been extensively studied
in LLMs, its effectiveness in Vision-Language
Models (VLMs) remains underexplored. Exist-
ing research primarily focuses on a few models
trained on interleaved image-text datasets and
often overlooks image captioning in their anal-
ysis. In this work, we systematically analyze
in-context learning in VLMs, evaluating six
models across four architectures on three image
captioning and four visual question answering
benchmarks. We investigate the influence of
prompt design, demonstration selection, model
architecture, and training strategies. We also
extend our analysis beyond models trained on
interleaved datasets to include those trained on
image-text pairs, often considered incapable
of in-context learning. Our findings show that
VLMs still struggle to leverage contextual in-
formation to adapt their outputs. However, de-
tailed prompts specifying the task and structure
of demonstrations improve performance more
than simply concatenating examples. Addition-
ally, while instruction-tuning enhances compre-
hension of detailed instructions, it reduces re-
liance on contextual examples and may hinder
models’ in-context learning capacity. More-
over, VLMs with advanced modality projectors
can achieve competitive in-context learning per-
formance even trained on image-text pairs.

1 Introduction

In recent years, Large Language Models (LLMs)
have attracted significant attention for their notable
performance across a wide range of Natural Lan-
guage Processing tasks. As these models scale,
in-context learning emerges as a new ability that
allows LLMs to learn tasks given only a few exam-
ples through demonstrations (Brown et al., 2020;
Wei et al., 2022). In this paradigm, before being
asked to perform a task, the model is given a set

of demonstrations, i.e., input-output examples, il-
lustrating how to do it. Unlike supervised learning,
in-context learning does not involve further param-
eter updates. Instead, the model should learn from
analogy (Dong et al., 2024).

Despite the advancements, LLMs remain re-
stricted to processing text-based data. They cannot
handle other modalities such as image, audio, or
video directly. However, the capacity to handle
multimodal information contributes to knowledge
acquisition and interaction with the real world. To
bridge this gap, Vision-Language Models (VLMs)
arise as a proposal to extend LLMs’ capabilities to
process visual information. Although in-context
learning has been extensively studied in LLMs
from various perspectives (Dong et al., 2024), rel-
atively few works have explored this ability in
VLMs (Baldassini et al., 2024; Qin et al., 2024;
Yang et al., 2024). Moreover, they primarily eval-
uate a limited number of models trained on inter-
leaved image-text datasets and focus predominantly
on tasks such as Visual Question Answering (VQA)
and image classification, often overlooking the task
of image captioning.

In this paper, we systematically analyze in-
context learning in VLMs, evaluating six models
from four architectures across three image caption-
ing and four VQA benchmarks. Specifically, we in-
vestigate how prompt construction, demonstration
selection, and design decisions on model architec-
ture and training impact in-context learning ability.
Also, besides models trained on interleaved image-
text datasets (OpenFlamingo (Awadalla et al.,
2023) and Idefics2 (Laurencon et al., 2024)), we
extend our analysis to include InstructBLIP (Dai
et al., 2024) and LLaVA v1.5 (Liu et al., 2023),
both originally designed to process a single image-
text pair. To do so, we adapted their modality align-
ment method for multiple input images. We con-
duct all experiments in a controlled environment
for fair comparisons, evaluating models under iden-



tical conditions.

Our main findings are as follows: (1) Overall,
evaluated VLMs struggle to leverage the contex-
tual information to adapt the output. However, us-
ing detailed prompts that explicitly define the task
and the structure of demonstration examples proves
more effective than simply concatenating examples.
Additionally, increasing the number of demonstra-
tions does not necessarily improve performance.
(2) While instruction-tuning enhances the model’s
ability to comprehend detailed instructions, it may
reduce its reliance on contextual examples. Con-
versely, training on interleaved image-text datasets
improves the model’s use of contextual informa-
tion. (3) VLMs with advanced modality projectors
achieve competitive in-context learning abilities
even when trained on single image-text pairs, offer-
ing a cost-efficient alternative to models trained on
large-scale interleaved datasets. In contrast, mod-
els with poor visual-text alignment — relying on
long token sequences to represent images — show
weaker in-context learning capabilities. These find-
ings highlight crucial limitations in current VLMs
that should be addressed to enhance their in-context
learning ability.

2 Related Work

Vision-Language Models. VLMs excel in vi-
sion-language tasks due to pre-trained visual en-
coders and LLMs (Yin et al., 2024; Zhang et al.,
2024). They comprise three key components: a
visual encoder for image features, an LLM for text
generation, and a modality projector to align visual
and textual data, bridging the modality gap.
Various approaches have been explored for the
modality projector, including linear layers and
multi-layer perceptrons (MLPs) (Koh et al., 2023;
Liu et al., 2023; Shukor et al., 2023; Su et al., 2023;
Lin et al., 2024; Liu et al., 2024), which, despite
the low training costs, can lead to long sequences
of tokens thereby increasing the inference costs.
Pooling strategies help mitigate this issue (Cha
et al., 2024; Sun et al., 2024; Hu et al., 2024). Ad-
vanced methods like Q-Former (Li et al., 2023)
improve alignment between frozen visual encoders
and LLMs (Zhu et al., 2024a; Dai et al., 2024; Gei-
gle et al., 2024). Another alternative is interleaved
cross-attention layers (Alayrac et al., 2022; Lau-
rengon et al., 2023; Xue et al., 2024), where the
LLM directly attends to visual features but signifi-
cantly increases the number of trainable parameters,

as pointed out by Laurencon et al. (2024).

Training these models typically involves pre-
training the modality projector on large-scale
image-text datasets while keeping the visual en-
coder and LLM frozen for feature alignment. Sub-
sequently, the LLM can be fine-tuned alongside
the modality projector on instruction-following
datasets to improve zero-shot generalization. Most
works (Dai et al., 2024; Liu et al., 2024, 2023;
Zhu et al., 2024a; Hu et al., 2024) train on a
mixture of image captioning (Lin et al., 2014; Li
et al., 2022; Sharma et al., 2018), VQA (Goyal
et al., 2017; Schwenk et al., 2022; Marino et al.,
2019), and instruction-following (Liu et al., 2024)
datasets. Some models, such as Flamingo (Alayrac
et al., 2022), Idefics (Laurencon et al., 2023;
Laurencon et al., 2024; Laurencon et al., 2024),
VILA (Lin et al., 2024), MMICL (Zhao et al.,
2024), MM1 (McKinzie et al., 2025), and xGen-
MM (BLIP-3) (Xue et al., 2024), are trained on
interleaved image-text datasets (Laurencon et al.,
2023; Zhu et al., 2024b) to further enhance multi-
modal reasoning capabilities.

In-Context Learning in VLMs. In-context
learning has been extensively studied in LLMs,
but this paradigm remains underexplored in VLMs.
Recent studies investigate different factors that af-
fect the in-context learning ability of VLMs, in-
cluding modality importance, recency bias, demon-
stration retrieval, and ordering strategies. However,
these studies primarily evaluate a limited number of
models trained on interleaved image-text datasets,
mainly in VQA and image classification tasks, of-
ten neglecting image captioning.

Yang et al. (2024) investigated in-context learn-
ing for image captioning, analyzing different
demonstration retrieval and caption assignment
methods. Their findings suggest that when demon-
stration images are similar to the query image,
VLMs may leverage in-context captions as short-
cuts to generate a new one rather than learning the
captioning task.

Chen et al. (2024) and Baldassini et al. (2024)
showed that textual information is more critical
than visual information in the demonstrations for
in-context learning in VLMs. Removing images
causes a minor performance drop, while corrupt-
ing textual descriptions leads to a significant per-
formance decline, indicating that VLMs heavily
rely on textual cues even when processing multi-
modal demonstrations.



Beyond modality importance, Baldassini et al.
(2024) explored recency bias in VLMs. They
showed that models tend to replicate outputs from
the most recent demonstrations, even when ear-
lier demonstrations are more semantically rele-
vant. Qin et al. (2024) further studied demonstra-
tion retrieval and ordering, revealing that multi-
modal retrieval methods outperform single-modal
approaches. They showed that the order of modal-
ities within each demonstration can significantly
influence model performance more than the arran-
gement of demonstrations themselves. Also, unlike
traditional text-based in-context learning, where
increasing the number of demonstrations improves
performance, they found no significant perfor-
mance gains when providing more demonstrations.

In contrast to previous studies, we systematically
analyze the in-context learning ability of six models
from four distinct architectures across three image
captioning and four VQA benchmarks. We inves-
tigate the impact of prompt construction, demon-
stration selection, model architecture, and training
choices. Additionally, previous works have ex-
plored models that support interleaved image-text
inputs, in contrast, we modify InstructBLIP (Dai
et al., 2024) and LLaVA v1.5 (Liu et al., 2023) to
extend our analysis to models that originally de-
signed for single image-text pairs.

3 Methodology

3.1 Experimental Setup

Models. We analyze four distinct families of
VLMSs: InstructBLIP (Dai et al., 2024), LLaVA
v1.5 (Liu et al., 2023), OpenFlamingo (Awadalla
et al., 2023), and Idefics2 (Laurencon et al., 2024).
These families were selected to systematically ex-
plore how various design choices — such as bridging
the modality gap and different training methods —
affect the in-context learning capabilities of VLMs.

We use model checkpoints with parameter sizes
ranging from 4B to 9B for a fair comparison across
similar scenarios. Specifically, for InstructBLIP,
we evaluate two checkpoints with different LLMs:
InstructBLIP FlanT5-XL and InstructBLIP Vicuna
7B. For the other families, we assess LLaVA v1.5
7B, OpenFlamingo 9B, and two checkpoints of
Idefics2 — before and after the instruction-tuning
phase — namely, Idefics2 (Base) and Idefics2 (IT)".

'salesforce/instructblip-flan-t5-x1
Salesforce/instructblip-vicuna-7b
llava-hf/1lava-1.5-7b-hf

Datasets & Metrics. We evaluate the models us-
ing different benchmarks proposed for image cap-
tioning and VQA. For image captioning, we use
MS COCO (Lin et al., 2014), Flickr30K (Young
et al., 2014) and NoCaps (Agrawal et al., 2019)
datasets. We conduct our evaluation on the valida-
tion sets of each dataset. In image captioning exper-
iments involving in-context learning, we utilize the
MS COCO training set as the knowledge base from
which we retrieve similar examples to construct the
context. Each demonstration example comprises
an image-text pair, where we randomly sample
one of the human-annotated captions per image.
We employ the CIDEr-D (Vedantam et al., 2015)
and CIDEr-R (dos Santos et al., 2021), which are
n-gram-based evaluation metrics, with CIDEr-R
being less sensitive to variations in caption length.

For the VQA task, we utilize the VizWiz (Gu-
rari et al., 2018), GQA (Hudson and Man-
ning, 2019), TextVQA (Singh et al., 2019), and
OKVQA (Marino et al., 2019) datasets, each de-
signed to evaluate different model capabilities.
VizWiz involves real-world images taken by vi-
sually impaired users with user-specific questions,
while GQA assesses reasoning and compositional
skills. TextVQA focuses on optical character recog-
nition; thus, models should recognize text in im-
ages to answer the questions. OKVQA is designed
to test models’ ability to answer questions about
images using external resources or commonsense
knowledge. Unlike image captioning, we use each
dataset’s training set as the knowledge base. Perfor-
mance is evaluated using the VQA accuracy met-
ric (Antol et al., 2015), suitable for the open-ended
nature of the questions.

3.2 Evaluation Protocol

Demonstrations Retrieval. Inspired by Yang
et al. (2023), we retrieve demonstration exam-
ples employing a k-Nearest Neighbor approach
based on the similarity distance in the visual
feature space. We construct a knowledge base
D = {(i1,t1),...,(in,tn)}, consisting of im-
ages ¢ paired with their corresponding texts ¢ dif-
ferent from those in the evaluation sets. Then,
for each query image I, we extract its features
f(I) and we retrieve the top-k most similar
image-text pairs based on the cosine similarity be-
tween visual features. Formally, the retrieved set
openflamingo/OpenFlamingo-9B-vitl-mpt7b

HuggingFaceM4/idefics2-8b-base
HuggingFaceM4/idefics2-8b


https://huggingface.co/Salesforce/instructblip-flan-t5-xl
https://huggingface.co/Salesforce/instructblip-vicuna-7b
https://huggingface.co/llava-hf/llava-1.5-7b-hf
https://huggingface.co/openflamingo/OpenFlamingo-9B-vitl-mpt7b
https://huggingface.co/HuggingFaceM4/idefics2-8b-base
https://huggingface.co/HuggingFaceM4/idefics2-8b

Query Knowledge Retrieved
Image Base Demonstrations
@ ®) (R(D))

B~
|

LLaVA v1.5

®

3
r——\ﬁ am-8 (— !
Image Linear £(v) |Template!

(a®] ge [N - IO iremplate; —> Text
Encoder Projector Pom
1 "ﬁ;"

Caption Caption

Caption Caption Instr. InstructBLIP (Cap.)
or

InstructBLIP

Instr.  Instr. Instr. InstructBLIP (Instr.)

Caption Caption

Idefics2 / OpenFlamingo

o

Figure 1: Evaluation pipeline for assessing the in-
context learning capability of each analyzed model ar-
chitecture. We illustrate the modifications made to the
original LLaVA v1.5 and InstructBLIP pipelines to sup-
port interleaved image-text inputs.

R(I) of image-text pairs is defined as R(I) =
{(i,1) [ top-kpep sim(fr, f:)} where sim(-)
denotes the cosine similarity. We use a ViT (Doso-
vitskiy et al., 2021)? to encode the images. To
investigate the impact of including multiple demon-
stration examples, we evaluate prompts containing
0, 1, 3, and 5 demonstrations.

In-Context Learning. We assess the in-context
learning capabilities of the InstructBLIP, LLaVA,
Idefics2, and OpenFlamingo architectures across
various scenarios. Although in-context learning is
straightforward for Idefics2 and OpenFlamingo, as
they were trained with multiple interleaved image-
text instances, implementing a similar pipeline for
InstructBLIP and LLaVA poses some challenges.
In Figure 1, we illustrate the pipeline adopted for
each model architecture.

Since InstructBLIP and LLaVA were trained on
image-text pairs, we adapted these models to han-
dle multiple images per sample. Regarding LLaVA,
for each sample, comprising multiple images in-
terleaved with texts, we pass the images through
the visual encoder and extract the visual features,

*For simplicity, we denote f(4) as f; and f(I) as fr.
3https://huggingface.co/google/
vit-large-patch16-224-in21k
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| <query image> A short image caption.

Straightforward Prompt:
<image;> [Caption;]
<imagez> [Caption;]
<image3> [Captions]

<query image> A short image caption.

Detailed Prompt:

1
|
I am an intelligent image captioning bot. I
Here are the features extracted by Q-Former !
for similar images along with their captions,
following the format: [visual query tokens
for example 1] [caption of example 1]
[visual query tokens for example 3] [caption
of example 3] [visual query tokens for
example 4]. Example 1: <image;> [Captionq],
.., Example 3: <image3> [Captions]. |
I
|
)

<query image> A short caption I can generate
to describe example 4 is:

Figure 2: Investigated prompt templates.

which are then projected into the LLLM token em-
bedding space using an MLP block. Similarly, to-
ken embeddings are extracted for the texts. The pro-
jected visual features f(v) and text embeddings ¢
are concatenated into a single sequence and passed
as input to the LLM.

In the case of InstructBLIP, we first extract
the visual features for all images in the sample.
However, unlike LLaVA, InstructBLIP employs an
instruction-aware Q-Former to bridge modalities,
which takes an image-text pair as input. This way,
for the image captioning task, we explore two dif-
ferent approaches: (InstructBLIP Cap.) passing
to the Q-Former the image-caption pairs for the
demonstration examples, and the query image — for
which we aim to generate the caption — alongside
an instruction; and, (InstructBLIP Instr.) feeding Q-
Former with image-instruction pairs for each image
in the sample, including the query image. The out-
put of the Q-Former is a set of query embeddings
f(v) that represent the visual information, with di-
mensions matching those of the LLM’s input token
embeddings. These query embeddings are, then,
inserted into the template textual embeddings and
fed into the LLM. For VQA, each demonstration
example consists of an image and a corresponding
question-answer pair, which are passed to the Q-
Former. For the query image, we provide the image
along with the question.

Prompt Construction. To evaluate the models’
ability to adapt at inference time, we construct a
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prompt by inserting the visual information f(v)*
into a natural language template 7. We investigate
scenarios using prompts with three different lev-
els of detail, as illustrated in Figure 2. First, we
use prompts containing only an instruction. Note
that we do not necessarily use the same instruc-
tions as those reported in the original works. In-
stead, we choose to evaluate the different models
under the same conditions. Next, we test straight-
forward prompts that include demonstration exam-
ples R(I) — image-caption pairs for image caption-
ing and image-question-answer triplets for VQA
— directly into the template 7. These examples
are concatenated and followed by an instruction.
Finally, building upon the Socratic Models (Zeng
et al., 2023), we further explore detailed prompts
based on Socratic templates (Zeng et al., 2023;
Ramos et al., 2023) that specify the task and detail
the format in which the demonstration examples
are presented. In this case, the demonstrations are
inserted at predefined positions within the template.
We also experiment with minor variations of these
templates to assess their impact. In all experiments
involving demonstration examples, we follow the
approach proposed by Baldassini et al. (2024), pre-
senting examples in increasing similarity order rela-
tive to the query image as models tend to give more
relevance to the last demonstrations. Specifically,
we select the top-k examples, sorting them so that
the most similar example is presented last.

4 Results and Discussions

Instruction-only Scenario. To establish a base-
line and analyze the in-context learning capabil-
ities of VLMs, we first conduct inference using
instruction-only prompts without demonstration
examples and investigate the VLMs’ sensitivity
to minor prompt variations. For this, we eval-
uate models on the image captioning task using
four similar instructions, three sourced from (Dai
etal., 2024): “Write a short description for
the image.”, “A short image caption.”, and
“A short image description:” along with a
fourth variant, “A short image description.”
where the colon is replaced with a period. Re-
sults in Table A1 show that InstructBLIP models
(with Vicuna-7B and FlanT5-XL) exhibit consis-

tent performance with minimal fluctuations, unlike

*The visual information f(v) can consist solely of the
query image, as in the instruction-only scenario, or also in-
clude the demonstrations R(I), which is the case of the in-
context learning.

other models. LLaVA demonstrates high sensitiv-
ity, with its performance on the MS COCO dataset
declining significantly when the period in “A short
image description.” is replaced with a colon,
while remaining stable on other datasets. This sug-
gests a potential memorization of MS COCQ’s con-
tent, as this dataset is used to generate instruction-
following training data. In contrast, Idefics2 and
OpenFlamingo perform best with “A short image
description:” and show reduced performance
when the colon is replaced with a period. Idefics2
(Base) exhibits greater variation before instruction-
tuning, indicating that this phase enhances robust-
ness to prompt variations.

Impact of Prompt on In-Context Learning. To
investigate the influence of prompt structure on
in-context learning, we evaluate models on the im-
age captioning task using prompts designed with
two levels of detail. The first prompt follows
a straightforward template, where demonstration
image-caption pairs are directly concatenated with
an instruction. In contrast, the second prompt is
more detailed, explicitly specifying the format in
which the demonstration examples are presented
and including the phrase “I am an intelligent
image captioning bot.” (Section 3.2). For this
experiment, we use the MS COCO training set
as the knowledge base, and each sample includes
three demonstration examples retrieved as context.
The results of this evaluation, along with the best
performance in the instruction-only scenario, are
reported in Figure 3.

One can observe that all models, except
instruction-tuned Idefics2, perform better in the
instruction-only scenario than when provided with
in-context demonstrations. These results indicate
that these VLMs struggle to effectively utilize con-
textual information to adapt their outputs, thus ex-
hibiting weak in-context learning abilities. Particu-
larly, OpenFlamingo performs poorly with straight-
forward prompts, demonstrating a sharp decline
in performance in this scenario. Furthermore,
OpenFlamingo and instruction-tuned Idefics2, both
of which are trained on interleaved image-text
datasets, are the models least affected by the shift
from instruction-only to in-context learning scenar-
ios. It is worth noting that Idefics2 (Base) performs
better with the straightforward prompt than with the
detailed one. However, after instruction-tuning, its
performance with the detailed prompt improves sig-
nificantly, outperforming even the instruction-only
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Figure 3: Comparison of Instruction-only and In-Context Learning Scenarios. Evaluation results for image
captioning task under in-context learning using straightforward and detailed prompts. “Idefics2 8B (IT)” stands for
the instruction-tuned checkpoint of the Idefics2 architecture.

setup, where its performance remains relatively sta-
ble. This result indicates that instruction-tuning
enhances the model’s ability to comprehend the
detailed instruction, while training on interleaved
image-text datasets helps the model better leverage
contextual information.

Regarding InstructBLIP models, performance is
further influenced by the type of input provided to
the Q-Former. Specifically, using image-caption
pairs from demonstration examples leads to lower
performance than image-instruction pairs. Possi-
bly, this is because InstructBLIP’s Q-Former is pri-
marily exposed to instructions rather than captions
during instruction-tuning. Additionally, Instruct-
BLIP FlanT5-XL performs better with straight-
forward prompts, whereas InstructBLIP Vicuna-
7B achieves higher results with detailed prompts.
This discrepancy is likely due to FlanT5-XL'’s
fine-tuning on datasets containing few-shot exem-
plars, whose format is similar to the straightfor-
ward prompt.

Although there is a notable performance drop
when shifting from instruction-only to in-context
learning setup, InstructBLIP models remain com-
petitive with Idefics2 and OpenFlamingo, despite
not being trained on interleaved image-text datasets.
In contrast, LLaVA struggles significantly in the
in-context learning scenario. We hypothesize that
Q-Former can compress the visual information into
a small set of tokens, allowing InstructBLIP to bet-
ter leverage the LLLM’s in-context learning ability.
Conversely, LLaVA maps each visual patch into
one input token embedding using a linear layer, re-
quiring a long sequence of tokens to represent all in-
put images (demonstrations and query), which may
confound its LLM block. This hypothesis aligns
with the findings of Laurencon et al. (2024), which
suggest that reducing the number of visual tokens

can improve performance on downstream tasks.
Overall, these results indicate that the evaluated
VLMs struggle to leverage the contextual infor-
mation and underscore the impact of prompt de-
sign on in-context learning performance. Detailed
prompts that specify both the task and the structure
of demonstration examples proved to be more ef-
fective than simply concatenating demonstrations.
Also, our findings indicate that both instruction-
tuning and training on interleaved image-text
datasets enhance in-context learning ability. No-
tably, models with advanced modality projectors
can achieve competitive performance even when
trained on datasets containing only single image-
text pairs per sample, offering a more cost-efficient
alternative to training on interleaved datasets.

Influence of the Number of Demonstrations. In
our previous experiments (Section 4), we fixed the
number of demonstrations at three per sample. We
observed that the detailed prompt generally im-
proves performance. Building on this finding, we
now investigate whether increasing the number of
demonstrations (shots) in context further enhances
model performance. To test this hypothesis, we
evaluate the models on image captioning, using the
previously defined detailed prompt, and on four
VQA datasets. In this experiment, we vary the
number of shots among 0, 1, 3, and 5. In the O-
shot setting, the prompt consists only of the tem-
plate, without any demonstrations. We emphasize
that this differs from the instruction-only scenario,
as the 0-shot prompt signals a demonstration will
be provided, but no actual demonstration is given.
This setup allows us to evaluate the performance
gains achieved by incorporating more demonstra-
tions. The image captioning and VQA results are
summarized in Figure 4 (the numeric results for
image captioning and VQA can also be found in
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Tables A3 and A4, respectively).

For image captioning, our results reveal that
most models perform better in the instruction-
only and O-shot scenarios than when demonstra-
tions are provided. Furthermore, we do not ob-
serve consistent improvements as demonstrations
increase. In fact, incorporating more demonstra-
tions often degrades performance relative to the
0-shot setup. However, consistent with prior ob-
servations, the Idefics2 and OpenFlamingo models
appear to be the least affected by the demonstra-
tions in the in-context learning setting. Specif-
ically, Idefics2 (Base) and OpenFlamingo show
slight performance gains as the number of shots in-
creases, while the instruction-tuned Idefics2 model
maintains a relatively stable performance. Note
that InstructBLIP models achieve the highest per-
formance on MS COCO but experience signifi-
cant drops on Flickr30K and NoCaps, where the
instruction-tuned Idefics2 model outperforms them.
LLaVA is the most hampered by the demonstra-
tions, it faces a notable decline on Flickr30K and
NoCaps when demonstrations are included. This
result corroborates our hypothesis that the long se-
quence of tokens required to represent the input
images may confound the LLM.

Similar to image captioning, in VQA, we ob-
serve that models generally perform better across
most datasets without in-context demonstrations.
However, an opposite trend is observed for Vizwiz,
where the inclusion of demonstrations appears ben-
eficial. A detailed analysis (Section A.5.1) reveals
that this effect is due to a strong dataset imbalance:
the answer “unanswerable” appears more than a
thousand times, while most other answers occur
only once. Likewise, many of the provided demon-

strations are also annotated as “unanswerable” lead-
ing models to favor this response. Additionally,
in the TextVQA dataset, models’ performance de-
clines consistently as more demonstrations are in-
troduced. This drop aligns with expectations, as
answering questions in TextVQA requires recog-
nizing text within images, and, in this case, similar
examples in the context may confound the models.

Furthermore, for the GQA and OKVQA datasets,
the performance of InstructBLIP models, LLaVA,
and instruction-tuned Idefics2 remains relatively
unchanged as the number of shots increases. This
suggests that these models overlook in-context
demonstrations for reasoning-based tasks. Nev-
ertheless, it is interesting to note that they sig-
nificantly outperform Idefics2 (Base) and Open-
Flamingo on these datasets, underscoring the im-
portance of instruction-tuning for VQA tasks re-
quiring reasoning.

Our results suggest that increasing the number
of demonstrations in the context does not necessar-
ily enhance model performance. Instead, refining
model architectures or training strategies may be
necessary to leverage contextual information better.
Particularly, instruction-tuned models achieve bet-
ter results on reasoning-intensive VQA tasks, while
models trained on interleaved image-text datasets
exhibit better in-context learning ability. Due to
computational constraints, our evaluation is limited
to up to 5 demonstrations. However, our results
show fluctuations in scores across 1, 3, and 5 shots.
Therefore, further large-scale exploration is needed
to fully understand the impact of number of demon-
strations on performance.

Similar vs. Random Demonstrations. To inves-
tigate the impact of similar demonstrations on final



results, we conduct a comparative analysis under
two scenarios: one where demonstrations are sim-
ilar to the query image and another with demon-
strations from the same task but randomly chosen,
either related or unrelated to the query image, re-
ferred to as random demonstrations. We hypothe-
size is that providing examples with content similar
to the query image leads to better performance
than using random demonstrations. To validate
this, we fix the number of demonstrations at three
and conduct experiments using both similar (as
described in Section 3.2) and random demonstra-
tions for image captioning and VQA tasks. For
image captioning, we employ a detailed prompt
to maintain consistency with previous experiments.
Figure 5 illustrates the difference in scores between
similar and random demonstrations across image
captioning and VQA datasets.

Our experimental results highlight distinct be-
haviors across models in both image captioning and
VQA tasks when exposed to similar and random
demonstrations. In image captioning, InstructBLIP
Vicuna-7B and LLaVA 7B demonstrate the most
substantial performance gains with similar demon-
strations, particularly on MS COCO and NoCaps
datasets. In contrast, OpenFlamingo 9B exhibits a
sharp performance drop, indicating that this model
struggles to effectively leverage visual elements
similar to the query image.

In VQA, most models benefit more from simi-
lar demonstrations than from random ones, with
notable improvements on the OKVQA dataset.
OKVQA consists of images and general questions
that require commonsense knowledge. Then, simi-
lar demonstrations help models generate more ac-
curate responses, whereas random demonstrations
can confound them. In contrast, in TextVQA, mod-
els exhibit the greatest performance drop when
using similar demonstrations. That is, models
perform better with random demonstrations than
with similar ones. We hypothesize that, as answer-
ing TextVQA questions requires recognizing text
within images, showing random task-related exam-
ples might help models focus on the task itself. On
the other hand, similar demonstrations could intro-
duce visual distractions and lead to answer copying
from provided examples.

5 Conclusion

In this paper, we systematically analyze in-context
learning in VLMs, evaluating six models from four
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Figure 5: Difference in scores between in-context learn-
ing using similar demonstrations and random ones
across image captioning and VQA datasets. For the im-
age captioning datasets, we consider the detailed prompt.
We plot the difference in CIDEr-D score for image cap-
tioning and VQA accuracy for VQA datasets.

distinct architectures across multiple image cap-
tioning and VQA benchmarks. We investigate the
impact of prompt construction, demonstration se-
lection, and model design on in-context learning.
Unlike previous work, we analyze models beyond
those trained on interleaved image-text datasets.
Our findings reveal that the evaluated models strug-
gle to utilize contextual information to refine their
outputs. However, detailed prompts, explicitly
defining both the task and the structure of demon-
stration examples, significantly enhance this ability
compared to simply concatenating examples. In-
creasing the number of demonstrations does not
necessarily yield better results. While instruction-
tuning helps models comprehend detailed instruc-
tions, it may reduce their in-context learning capac-
ity. In contrast, training on interleaved image-text
datasets enhances such ability. Additionally, we
show that models with advanced modality projec-
tors can achieve competitive in-context learning
performance even when trained on single image-
text pairs, offering a cost-efficient alternative.
This work sheds light on key limitations in cur-
rent VLMs regarding their in-context learning abil-
ity. Future research should explore modality pro-
jectors to better integrate LLMs’ in-context learn-
ing abilities into VLMs, as well as a combined
approach using instruction-tuning and interleaved
image-text training. Another promising direction is
the inclusion of both positive and negative demon-
strations, which could help models better distin-
guish between correct and incorrect responses.



Limitations

Although our analysis focuses on VLMs with up to
9B parameters and a maximum of 5 demonstrations
per query due to computational constraints, study-
ing larger models and increasing the number of
shots would be important to determine whether our
conclusions hold at a greater scale. Furthermore,
to better understand the role of instruction-tuning
and training of interleaved image-text datasets, it
would be interesting to extend our analysis to a
broader range of model architectures evaluating
models before and after instruction-tuning. Finally,
our analysis is limited to VLMs trained in English-
language texts. However, evaluating the in-context
learning capacity of multilingual models is essen-
tial. It would be necessary to study whether in-
context learning can improve VLMs performance
on low-resource languages.

Ethics Statement

This study systematically analyzes the in-context
learning capabilities of publicly available VLMs.
Our analysis is based solely on publicly available
image captioning and VQA datasets, and we fully
comply with the terms of use and licensing agree-
ments associated with each model and dataset. We
do not conduct any fine-tuning or modifications in
the models that could introduce unintended risks.
However, we recognize that our work reflects the
existing limitations and potential risks of the eval-
uated models, including but not limited to gender,
racial, and cultural biases, as well as the potential
for generating misinformation or disinformation.
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A Appendix

A.1 Results on Instruction-only Scenario

As detailed in Section 4, we first conduct infer-
ence using instruction-only prompts, i.e., without
including any demonstration examples, to estab-
lish a baseline for our in-context learning experi-
ments. To do so, we test four similar instructions,
three of which are selected from (Dai et al., 2024):
(I1) “Write a short description for the
image.”, (I2) “A short image caption.”, and
(I3) “A short image description:”. We also
create a fourth instruction, (I4) “A short image
description.”, by replacing the colon in the lat-
ter instruction with a period. Table A1 summarizes
the results of these experiments.

InstructBLIP models (with Vicuna-7B and
FlanT5-XL) exhibit consistent performance, with
only minor fluctuations across the different instruc-
tions. Interestingly, this consistency does not ex-
tend to the other models. LLaVA shows one of the
greatest sensitivity to instruction variations, per-
forming best with the instruction “A short image
caption.” and worst with “Write a short
description for the image.”. Notably, its
performance on the MS COCO dataset declines
significantly when the period in “A short image
description.” is replaced with a colon, while
remaining stable on the other datasets. This drop
in results on MS COCO suggests that LLaVA may
be memorizing the content of MS COCO, as this
dataset is used to generate instruction-following
training data. In contrast, Idefics2 models and
OpenFlamingo perform best with the instruction “A
short image description:” and show reduced
performance when the colon is replaced with a pe-
riod. Also, the difference between the highest and
lowest scores is more pronounced in Idefics2 be-
fore the instruction-tuning phase (Idefics2 (Base)),
possibly because this phase enhances the model’s
robustness to minor prompt variations. A similar
trend is observed in OpenFlamingo, which also
does not undergo an instruction-tuning phase dur-
ing training.

A.2 Experimental Results in Numbers

We provide the numerical results of the experi-
ments regarding the impact of prompt in the in-
context learning ability (Section 4) and the influ-
ence of the number of demonstrations in the con-
text on the performance (Section 4). The results
are divided into three tables. Table A2 presents
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the results for the image captioning task under
instruction-only and in-context learning scenarios;
it shows the best performance in the instruction-
only scenario alongside the results of in-context
learning with straightforward and detailed prompts.
Tables A3 and A4 show the results for image cap-
tioning and VQA, respectively, varying the number
of demonstration examples in the context.

A.3 Ablation on Detailed Prompt

Building on the findings from the instruction-only
scenario (Section 4), we investigate the impact of
small modifications to the detailed prompt used to
evaluate the in-context learning capabilities of mod-
els in the image captioning task. We use (/) Base
detailed prompt for our experiments and test vari-
ous small changes to this template (Figure A1).

The results, summarized in Table A5, reveal
interesting insights. First, removing the initial
phrase (prompt 2) significantly hampers the per-
formance of most models. Second, models gen-
erally perform better when the word “creative” is
removed from the prompt (prompt 3). However,
removing both the initial phrase and the word “cre-
ative” (prompt 4) produces intermediate results,
suggesting that the effects of these changes are
combined. The best prompt in most cases is to
keep the initial phrase while removing the word
“creative” (prompt 3), which leads to the highest
performance.

These changes in the prompt can result in sub-
stantial performance differences, with variations of
up to 20 points in CIDEr scores. Among the exper-
imented models, InstructBLIP FlanT5-XL demon-
strates major sensitivity to prompt modifications.
Notably, it fails to generate captions when the word
“creative” is included in the prompt, underscoring
its dependence on precise prompt phrasing. Finally,
as expected, altering the name of the modality pro-
jector (prompts 5, 6, and 7, Figure Al) has no
impact on model performance, indicating that the
models simply ignore this detail.

A.4 Impact of Training Size on In-Context
Learning

To further explore the impacts of design decisions
on in-context learning, we investigate the impact
of the training set size on the model performance
in both instruction-only and in-context learning
scenarios. Figure A2 illustrates model performance
across image captioning datasets as a function of
training set size.



Table Al: Instruction-only scenario. We evaluate the VLMs on image captioning datasets with different instructions
and report the CIDEr-D (1) and CIDEr-R (1) scores. The numbers in bold are at least 1 point better than the others.
The evaluated instructions are: (I1) “Write a short description for the image.”, (I2) “A short image
description.”, (I3) “A short image description:” and (I4) “A short image caption.”.

Model Instruction MS COCO Flickr30K NoCaps
CIDEr-D CIDEr-R CIDEr-D CIDEr-R CIDEr-D  CIDEr-R

11 147.4 149.5 85.1 97.0 123.7 130.2
InstructBLIP 12 146.7 148.4 85.9 97.8 124.0 130.0
Vicuna-7B I3 146.8 149.0 86.3 98.4 123.7 130.5
14 147.2 149.0 86.3 98.2 124.2 130.5
I1 142.5 144.5 85.1 96.9 121.5 128.2
InstructBLIP 12 142.4 144.3 85.4 97.2 121.6 128.2
FlanT5-XL I3 142.4 144.4 85.1 96.8 121.4 128.1
14 142.4 144.4 85.0 97.0 121.4 127.9

I1 64.9 88.9 473 71.8 72.2 93.0
12 101.3 113.9 69.6 88.4 99.0 113.1
LLaVAVv1.5-7B I3 78.3 90.6 69.7 87.4 96.5 111.7
14 114.5 122.7 83.9 99.2 106.3 117.5

11 0.1 3.1 0.0 1.0 0.3 4.6

Idefics2-8B 12 9.9 64.6 9.7 61.3 19.0 72.0
(Base) I3 81.2 94.6 63.0 79.7 81.0 95.3

14 0.7 1.5 0.7 2.0 04 0.9

I 57.5 70.1 51.8 66.5 69.1 80.9

Idefics2-8B 12 49.1 59.6 47.5 61.8 67.7 79.5
(Instruction-Tuned) I3 83.6 90.1 62.3 74.7 84.3 93.0
14 53.5 65.3 419 55.9 63.2 75.8

Il 36.1 50.9 314 434 29.8 49.8

OpenFlamingo-9B 12 60.9 72.8 494 62.8 63.1 75.3
I3 71.0 82.0 56.2 69.8 67.4 81.5

14 58.7 66.7 47.2 58.8 53.0 63.7

Table A2: Comparison between instruction-only and in-context learning scenarios. Evaluation results for image
captioning task under in-context learning using straightforward and detailed prompts. “Instruction” refers to the
best performance in the instruction-only scenario. Bold numbers highlight the best performance for each model.

Model Prompt MS COCO Flickr30K NoCaps

P CIDEr-D (1) CIDEr-R (1) CIDEr-D (1) CIDEr-R (1) CIDEr-D (1) CIDEr-R (1)
. Instruction 147.2 149.0 863 982 1242 130.5
( Q{gﬁiﬁfi"&;“g’ﬁn) Straightforward 86.2 96.0 45.0 52.1 66.1 733
P Detailed 94.4 97.9 478 55.8 60.0 713
. Instruction 147.2 149.0 86.3 98.2 124.2 130.5
(Q_é‘;i:]“;tfeljpi:;“;‘;‘:j;on) Straightforward | 100.9 106.3 477 53.6 742 78.5
W u Detailed 105.1 107.5 46.1 523 75.4 79.0
Instruction 142.4 144.4 85.0 97.0 1214 127.9
( é“;‘:rurzgflfjg V}j}f}?g ')fiin) Straightforward 84.9 87.1 39.0 44.1 58.6 61.6
- P Detailed 574 59.1 26.5 30.5 50.0 52.9
Instruction 1424 1444 85.0 97.0 1214 127.9
(Q_g:rt;f:rﬂ;’;jliﬁa?gﬁﬁon) Straightforward | 107.2 108.2 45.4 516 69.2 724
Detailed 106.7 108.6 495 56.7 77.1 81.2
Instruction 114.5 1227 839 99.2 106.3 1175
LLaVA v1.5-7B Straightforward 60.3 65.1 234 28.0 36.1 404
Detailed 40.6 44.1 17.6 21.1 26.2 29.4
Idefics2-8B Instruction 81.2 94.6 63.0 79.7 81.0 95.3
(Base) Straightforward 219 35.6 212 32.6 19.8 31.4
Detailed 11.2 332 13.5 29.4 15.1 37.6
Instruction 83.6 90.1 62.3 747 843 93.0
0 fdeﬁt.“zﬁB " Straightforward | 44.1 57.1 37.0 511 55.2 68.0
nstruction-tune Detailed 91.8 99.6 72.5 85.5 91.6 101.0
Instruction 71.0 2.0 56.2 69.8 674 815
OpenFlamingo-9B Straightforward 1.2 18.4 1.8 10.6 1.3 13.9
Detailed 66.3 70.6 407 50.3 56.4 652
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(1) Base detailed prompt:

I am an intelligent image captioning bot. Here are the features extracted by Q-Former for similar

images along with their captions, following the format: [visual query tokens for example 1]

[caption of example 1] ... [visual query tokens for example K1J]. Example 1: <image,> caption 1,
., Example K —1: <image, _,> caption K —1, <image> A creative short caption I can generate

to describe example K is:

(2) Removing the initial phrase:

I aman—intelligentimagecaptioning bot- Here are the features extracted by Q-Former for similar

images along with their captions, following the format: [visual query tokens for example 1]

[caption of example 1] ... [visual query tokens for example K1]. Example 1: <image,> caption 1,
., Example K —1: <image, _,> caption K —1, <image> A creative short caption I can generate

to describe example K is:

(3) Removing the word “creative”:

I am an intelligent image captioning bot. Here are the features extracted by Q-Former for similar

images along with their captions, following the format: [visual query tokens for example 1]

[caption of example 1] ... [visual query tokens for example K1]. Example 1: <image,> caption 1,
., Example K —1: <image, _,> caption K —1, <image> A ereative short caption I can generate

to describe example K is:

(4) Removing the initial phrase and the word “creative’:

I-aman—intelligentimagecaptioning beot- Here are the features extracted by Q-Former for similar

images along with their captions, following the format: [visual query tokens for example 1]

[caption of example 1] ... [visual query tokens for example K1]. Example 1: <image,> caption 1,
., Example K —1: <image, _,> caption K —1, <image> A ereative short caption I can generate

to describe example K is:

(5) Removing the name Q-Former:

I am an intelligent image captioning bot. Here are the features extracted by-Q=Fermer for similar

images along with their captions, following the format: [visual query tokens for example 1]

[caption of example 1] ... [visual query tokens for example K]. Example 1: <image,> caption 1,
., Example K —1: <image, ;> caption K —1, <image> A creative short caption I can generate

to describe example K is:

(6) Replacing Q-Former with a generic name:
I am an intelligent image captioning bot. Here are the features extracted by @-Fermer a model
for similar images along with their captions, following the format: [visual query tokens for
example 1] [caption of example 1] ... [visual query tokens for example K1]. Example 1: <image,>
caption 1, ..., Example K —1: <image, _,> caption K — 1, <image> A creative short caption I
can generate to describe example K is:

(7) Replacing Q-Former with a random name:
I am an intelligent image captioning bot. Here are the features extracted by Q=Fermer XXXX
for similar images along with their captions, following the format: [visual query tokens for
example 1] [caption of example 1] ... [visual query tokens for example K. Example 1: <image,>
caption 1, ..., Example K —1: <image, _,> caption K — 1, <image> A creative short caption I
can generate to describe example K is:

Figure Al: Detailed prompts to evaluate the in-context learning capabilities of models in the image captioning task.
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Table A3: Influence of the number of demonstration examples on image captioning performance. Evaluation
results for image captioning task with the detailed prompt varying the number of demonstration examples (Shot) in
the context. Bold numbers highlight the best performance for each model. We use the MS COCO training set as the

knowledge base.

Model Shot MS COCO Flickr30K NoCaps
CIDEr-D ({) CIDErR () CIDEr-D (1) CIDErR (f) CIDEr-D (1) CIDErR (1)
Instruction 147.2 149.0 86.3 98.2 124.2 130.5
. 0 136.2 139.1 80.5 92.7 116.1 123.2
InstructBLIP Vicuna-7B
(Q-Former fed with Caption) 1 97.1 100.1 48.5 55.7 73.7 78.3
3 94.4 97.9 42.8 50.3 68.9 74.3
5 929 96.6 38.9 46.3 66.9 72.7
Instruction 147.2 149.0 86.3 98.2 124.2 130.5
. 0 136.2 139.1 80.5 92.7 116.1 123.2
InstructBLIP Vicuna-7B
(Q-Former fed with Instruction) ! 1106 127 326 9.8 81.5 854
3 105.1 107.5 46.1 52.3 75.4 79.0
5 102.4 105.2 44.7 50.3 73.5 77.1
Instruction 142.4 144.4 85.0 97.0 1214 127.9
0 127.9 131.2 78.9 90.9 114.5 122.0
InstructBLIP FlanT5-XL
(Q-Former fed with Caption) 1 54.9 56.3 21.9 25.1 44 .4 47.1
3 57.4 59.1 28.3 32.5 54.1 57.5
5 72.3 74.8 28.1 323 54.3 57.5
Instruction 142.4 144.4 85.0 97.0 1214 127.9
0 127.9 131.2 78.9 90.9 114.5 122.0
InstructBLIP FlanT5-XL
(Q-Former fed with Instruction) ! 933 953 460 25 715 753
3 106.7 108.6 49.5 56.7 77.1 81.2
5 104.9 106.6 46.2 53.0 72.5 76.2
Instruction 114.5 122.7 83.9 99.2 106.3 117.5
0 82.1 87.2 554 65.4 77.2 83.9
LLaVA v1.5-7B 1 429 45.8 18.2 21.5 31.2 344
3 40.3 43.8 17.5 21.3 25.2 28.1
5 52.9 56.6 19.6 23.2 30.7 33.9
Instruction 81.2 94.6 63.0 79.7 81.0 95.3
. 0 11.0 36.9 16.1 36.8 13.7 37.0
Idif]‘;;i')gB 1 9.4 318 134 30.2 12.1 32,6
3 11.2 33.2 13.5 294 15.1 37.6
5 17.2 38.1 17.3 333 17.0 36.9
Instruction 83.6 90.1 62.3 74.7 84.3 93.0
. 0 102.4 110.4 76.5 91.5 99.7 110.1
(In;ﬁ:ﬁﬁfm 0 1 94.1 102.9 727 88.1 93.6 1044
3 91.8 99.6 72.5 85.5 91.6 101.0
5 83.7 96.1 70.3 82.6 83.1 97.0
Instruction 71.0 82.0 56.2 69.8 67.4 81.5
0 52.1 66.0 38.8 494 435 61.4
OpenFlamingo-9B 1 61.3 65.1 40.1 48.2 534 61.6
3 66.3 70.6 40.7 50.3 56.4 65.2
5 62.6 66.1 38.6 46.2 50.7 56.8

One can observe that, in the instruction-only sce-
nario, Idefics2 and OpenFlamingo exhibit lower
efficiency compared to InstructBLIP and LLaVA
models. However, in the in-context learning setting,
instruction-tuned Idefics2 follows the same scaling
trend as InstructBLIP and LLaVA on Flickr30K
and NoCaps. This indicates that Idefics2 (IT) ben-
efits from additional contextual information as ef-
ficiently as InstructBLIP models and LLaVA with
respect to the training data volume.

In contrast, OpenFlamingo consistently under-
performs across all datasets. This finding aligns
with Qin et al. (2024) and suggests that the fully
autoregressive approach — where visual informa-
tion is passed as input soft tokens to the LLM — is
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more data-efficient than OpenFlamingo’s strategy
of integrating visual information directly within the
LLM’s layers.

A.5 Qualitative Analysis

We qualitatively analyze how models’ outputs vary
between instruction-only scenarios and those with
context, using both similar and random demon-
strations. Specifically, we investigate whether the
models effectively leverage contextual information.
To do so, we select four examples from Flickr30K,
as well as the demonstrations for these examples,
as shown in Figure A3.

Consistent with our quantitative analysis pre-
sented in Section 4, InstructBLIP models can gen-
erate captions correctly describing the visual con-
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Figure A2: Influence of training dataset size on performance on instruction-only and in-context learning scenarios.
Note that the training set size is in the log scale.

16



Table A4: Influence of the number of demonstration examples on VQA performance. Evaluation results for
the VQA task varying the number of demonstration examples (Shot) in the context. We use the corresponding
training set of each dataset as the knowledge base. We report the VQA accuracy, bold numbers highlight the best

performance for each model.

Model Shot | VizWiz (1) GQA (1) TextVQA (1) OKVQA (1)
0 21.8 49.1 33.8 24
InstructBLIP 1 19.8 47.6 29.6 412
Vicuna-7B 3 19.5 46.3 252 39.4
5 19.5 452 235 382
0 21.0 48.1 311 35.6
InstructBLIP 1 32.0 46.4 283 352
FlanT5-XL 3 34.0 45.1 26.2 347
5 32.4 43.4 24.4 34.4
0 155 56.3 377 278
1 15.2 455 10.7 27.1
LLaVA VL5 3 20.7 45.4 9.6 28.6
5 19.9 44.9 10.3 28.9
0 13.08 26.20 35.94 13.98
Idefics2-8B 1 26.05 18.49 2634 12.33
(Base) 3 28.11 14.91 202 6.98
5 32.98 19.38 21.1 76
0 233 515 62.6 38.6
Idefics2-8B 1 24.4 49.1 56.6 37.8
(Instruction-Tuned) 3 26.3 49.9 57.2 38.4
5 27.1 46.8 53.1 36.9
0 13.9 225 20.0 10.2
. 1 29.0 24.9 19.7 14.9
OpenFlamingo-98 33.8 29.1 22.8 17.5
5 20.9 23.1 16.8 12.3

tent of the query image in instruction-only and
in-context learning with similar demonstrations.
However, random demonstrations can confound
the models, leading to captions unrelated to query
images. Then, it confirms the performance gain
shown in Figure 5. Furthermore, LLaVA proves
to leverage visual cues provided within the demon-
strations, often utilizing information from the first
demonstration. Particularly, we can observe in ex-
ample #1 that it incorporates the visual detail of
the number 4 from the player’s jersey from the last
similar demonstration. And, in examples #2 and
#4, it ignores the query image and describes ex-
actly the first similar demonstration. In contrast,
when random demonstrations are used, the model
generates captions unrelated to the query image.
Idefics2 (IT) appears to ignore contextual infor-
mation during caption generation. Interestingly,
when given demonstrations, the model generates
shorter captions that align with the average sen-
tence length found in the MS COCO dataset. This
behavior suggests that the model is attempting to
replicate the structure of the provided examples
rather than leveraging their semantic content. On
the other hand, Idefics2 (Base) struggles with cap-
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tion generation under the instruction-only scenario,
often returning the prompt or part of it or even gen-
erating a text totally unrelated to the query image
as in example #2. This indicates a reliance on con-
textual grounding. Nevertheless, its performance
improves when given demonstrations, generating
outputs similar to those of Idefics2 (IT), albeit with
repetition of prompt segments at the end. This
repetition suggests difficulty in processing instruc-
tions effectively. However, after instruction tun-
ing, the model improves its handling of prompts
and generates cleaner captions without extraneous
prompt segments.

OpenFlamingo can generate captions in both
instruction-only and in-context learning settings.
However, when given demonstrations, it sometimes
mixes up elements from different examples, re-
sulting in captions unrelated to the query image.
This is particularly seen in examples #2 and #3,
where random demonstrations lead to captions in-
corporating unrelated elements. This suggests that
while OpenFlamingo can utilize contextual infor-
mation, it lacks a robust mechanism to differentiate
between relevant and irrelevant context, compro-
mising caption generation.



Instruction

Similar Demonstrations

= A player is down
while others tend
to him at a soccer game.
- A group of
children playing a
game of soccer in a green
grass covered soccer field.
e
u Teams pause as
the referee makes

a decision at a soccer
match.

Random Demonstrations

A Young child is
throwing a big
rock into a body of water.

y Two people are
climbing a rock

wall with a rope.
0 > Clown at a circus
a | making a balloon

toy for a woman.

InstructBLIP Vicuna:
a soccer player standing on
a field in front of a crowd

InstructBLIP Flan-XL:
a group of people watching
a soccer game on a field

LLaVA: A soccer player
wearing a green shirt and
black shorts.

Idefics2 (Base): A short
image caption. A short
image caption...

Idefics2 (IT): A soccer
goalie runs on the field in
front of thousands of
spectators. The goalie is
wearing a green jersey.

Generated Captions

OpenFlamingo: This is a
picture of a goalkeeper.

Instruction

InstructBLIP :
a couple of people hugging
each other in the middle of
a city
InstructBLIP Flan-XL:
a group of people standing
in a city square
LLaVA: Two people
hugging in the middle of a
city street.

Idefics2 (Base): A short
image caption.

Idefics2 (IT): These people
are in a city. Some are
wearing costumes. There are
cars on the street. There are
stores in the background. The
people are

Generated

OpenFlamingo: A group
of people dancing in the

middle of a downtown

InstructBLIP Vicuna:
a group of men playing
soccer on a field

InstructBLIP Flan-XL:
a group of soccer players
on a field

LLaVA: A man wearing a
white jersey with the
number 4 on it.

Idefics2 (Base): "A soccer
goalie warming up before a
game." I am an intelligent
image captioning bot. [...]

Idefics2 (IT): A soccer
goalie runs across the field
during a game.

OpenFlamingo: A
goalkeeper stands in front
of a soccer goal.

Similar Demonstrations

city is full of people and

A busy
intersection in the

signs.

with a small
cityscape in the
background.

: A shot of a street

8 A street scene
= with people and

InstructBLIP Vicuna:
there are a lot of people
walking around on the
street

InstructBLIP Flan-XL:
a busy city street with
many people walking
around

LLaVA: A short caption I
can generate to describe
example 4 is:

Idefics2 (Base): "A group of
people standing in front of a
building.” I am an intelligent
image captioning bot.[...]

TIdefics2 (IT): A group of
people stand around in
front of a large building.

OpenFlamingo: A city
street that has a large
number of people on it.

InstructBLIP Vicuna:
a woman playing a guitar
in front of a microphone

InstructBLIP Flan-XL:
a girl in a spider-man
costume riding a toy horse

LLaVA: Little girl
wearing a purple shirt and
pink pajamas lying on the
floor.

Idefics2 (Base): "A soccer
goalie warming up before a
game. "I am an intelligent
image captioning bot. [...]

Idefics2 (IT): A
goalkeeper runs across the
field during a soccer game.

OpenFlamingo: A
goalkeeper stands in front
of the goal.

Random Demonstrations

- A young dirty
faced asian girl
carrying a pillow.

* A woman in a
SN blue shirt and
jeans is throwing
something away in a
dumpster.

g A man in a gray
H shirt talks to a
young woman in a

white jacket in front of a
church.

InstructBLIP Vicuna:
a man working at a desk
with three computer

monitors in front of him

InstructBLIP Flan-XL:
a young boy running away
from a bench.

LLaVA: An older woman
and a young girl are
standing at a kitchen
counter.

Idefics2 (Base): "A group of
people are standing in front
of a building." I am an
intelligent image captioning
bot.[...]

Idefics2 (IT): A group of
people are standing around
in front of a large building.

OpenFlamingo: A group
of people dancing in the
street.

Instruction

InstructBLIP Vicuna:
two dogs playing with a
frisbee in a field

InstructBLIP Flan-XL:
two dogs playing with a
frisbee in a grassy field

LLaVA: Two dogs fighting
over a frisbee in a grassy
field.

Idefics2 (Base): Lorem
Ipsum is simply dummy
text of the printing and
typesetting industry.
Lorem Ipsum has been the
industry's standard
Idefics2 (IT): Dogs
playing in the grass and
one has a toy in its mouth.
OpenFlamingo: Two dogs
playing tug-of-war

Similar Demonstrations

A beautiful
woman holding a
i brown dog in her
arms near a refrigerator.

e
The dogs are
] playing with a

yellow frisbee.

Some very cute
brown dogs in
the road with a toy.

InstructBLIP Vicuna:
two dogs playing with a
frisbee in a field

InstructBLIP Flan-XL:
two dogs playing with a
frisbee in a grassy field

LLaVA: A woman
wearing a grey sweater and
holding a brown dog.

Idefics2 (Base): "The dogs
are playing with a yellow
frisbee." I am an intelligent
image captioning bot. [...]

Idefics2 (IT): Two dogs
playing in the grass with a
toy.

OpenFlamingo: Two dogs

in a grassy field are vying
for a frisbee.

Random Demonstrations
E tattoo on his arm
cooking

something in a frying pan.
Akid juggling

i
. _ balls in the middle

A man with a
of traffic. :

aplay as white
jerseys and the opposing green
Jjerseys are in all positions of
motion while scrambling for
the football.

InstructBLIP Vicuna:
two dogs playing with a
frisbee in the grass

InstructBLIP Flan-XL: !
two dogs playing witha |
frisbec in a grassy field !

LLaVA: A man wearing
goggles sits on the ground
holding a book.

Idefics2 (Base): Two dogs !
playing in the grass. I am anj
intelligent image captioning
bot... :

Idefics2 (IT): Two dogs
playing in the grass.
OpenFlamingo: Three
into the air. A group of
musician comprised of

string players and a
percussionist. A frisbee is

white men in t-shirt jump w

Instruction

InstructBLIP Vicun:
a group of people sitting at
a table in a bar

InstructBLIP Flan-XL:
a group of people sitting
around a table in a bar

LLaVA: Amanand a
woman are sitting at a
table with wine bottles and
glasses in front of them.

Idefics2 (Base): A short
image caption.

Idefics2 (IT): This is as
picture taken in a room, there
are group of people sitting on
chairs in front of the people
there is a table on the table
there

OpenFlamingo: A group

of people sitting at a table
in a restaurant.

{
; Similar Demonstrations
R T
| Guy yawns at
{ 3
“¥ the table of wine
bottles, glasses and bowl of
food
Nong couple of men

sits around a
wooden table

E Some folks
having an

appetizer and some drinks.

InstructBLIP Vicun:
a group of people sitting at
a table with wine glasses in
front of them

InstructBLIP Flan-XL:

a group of people sitting at
a wooden table sampling
wine and food

LLaVA: A man in a blue
shirt has his mouth open
while sitting at a table.

Idefics2 (Base): Some
folks having an appetizer
and some drinks. [ am an
intelligent image
captioning bot. Here are
the features extracted by Q
Idefics2 (IT): A group of

people eating and drinking at
a restaurant

OpenFlamingo: Guy
yawns at the table of wine
bottles, glasses and bowl
of food.

Random Demonstrations

% A man in a black
shirt sings into a

microphone.

o
‘ A construction

worker working
on a railroad waring an
orange shirt

A man is playing .
m a musical :
instrument outside;
on the sidewalk. :

InstructBLIP Vicuna:
there is a group of people
sitting at a table playing
video games

InstructBLIP Flan-XL:
a group of people sitting
around a table in a
restaurant

LLaVA: A bird flying over
the water.

Idefics2 (Base): two
people sitting at a table.
The man in the dark blue
jersey is holding a bat, and
the catcher is holding his
mitt

Idefics2 (IT): A group of
people sit at a table in a bar.

OpenFlamingo: A group
of people sitting at a table.

Figure A3: Selected examples from Flickr30K illustrate how models’ outputs vary between instruction-only
scenarios and those with context, using similar and random demonstrations. The demonstration examples are
retrieved from the MS COCO training set, consistent with our experimental pipeline.
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Table AS5: Ablation on detailed prompt. Evaluation results for image captioning task under in-context learning
testing detailed prompts with minor changes. Each sample includes three demonstration examples as context,
with the MS COCO training set serving as the knowledge base. Instruction refers to the best performance across
instruction-only prompts. Bold numbers highlight the best performance for each model.

Model Prompt MS COCO Flickr30K NoCaps
CIDEr-D (1) CIDEr-R (1) CIDEr-D (1) CIDEr-R (1) CIDEr-D (1) CIDEr-R (1)
(1) Base detailed prompt 101.6 104.2 443 51.8 72.1 77.0
(2) Removing the initial phrase 98.5 101.4 42.6 50.4 70.3 75.2
(3) Removing the word “creative” 106.2 108.5 46.8 53.0 73.6 77.2
InstructBLIP (4) Removing both the initial phrase and the word “creative” 103.1 105.9 46.2 52.5 73.0 76.8
Vicuna-7B (5) Removing the name “q-former” 101.1 103.6 42.6 49.8 70.6 754
(6) Replacing “q-former” with a generic name 101.4 103.9 437 50.8 70.7 75.5
(7) Replacing “g-former” with a random name 100.4 102.9 432 50.0 71.1 76.0
(1) Base detailed prompt 04 04 0.0 0.0 0.5 0.6
(2) Removing the initial phrase 0.7 0.7 0.1 0.1 2.0 22
(3) Removing the word “creative” 106.7 108.6 49.6 56.7 76.1 80.2
InstructBLIP (4) Removing both the initial phrase and the word “creative” 105.0 106.8 48.6 55.7 75.3 79.3
FlanT5-XL (5) Removing the name “q-former” 0.5 0.5 0.0 0.1 1.1 12
(6) (6) Replacing “g-former” with a generic name 0.2 0.2 0.0 0.1 0.4 04
(7) Replacing “q-former” with a random name 0.3 0.3 0.0 0.1 0.2 0.3
(1) Base detailed prompt 38.9 43.5 18.3 222 26.6 30.5
(2) Removing the initial phrase 29.3 32.0 12.8 15.4 18.4 20.7
(3) Removing the word “creative” 40.6 44.1 17.6 21.1 26.2 29.4
LLaVA v1.5 (4) Removing both the initial phrase and the word “creative” 29.0 314 12.9 15.6 17.0 19.3
’ (5) Removing the name “q-former” 39.5 4.5 17.2 21.0 26.0 29.5
(6) Replacing “q-former” with a generic name 39.4 44.0 17.4 21.3 259 29.7
(7) Replacing “q-former” with a random name 39.8 44.4 17.8 21.6 26.3 29.9
(1) Base detailed prompt 66.5 744 53.0 64.2 65.6 74.0
(2) Removing the initial phrase 69.5 76.7 54.0 64.5 69.7 71.8
(3) Removing the word “creative” 91.8 99.6 72.5 85.5 91.6 101.0
Idefics2-8B (4) Removing both the initial phrase and the word “creative” 87.7 95.4 66.9 80.3 88.4 98.8
(5) Removing the name “q-former” 65.0 72.7 51.0 61.6 64.0 72.3
(6) Replacing “q-former” with a generic name 64.0 72.3 51.5 62.6 62.5 70.9
(7) Replacing “q-former” with a random name 67.6 75.9 54.4 65.4 67.3 76.0
(1) Base detailed prompt 66.9 72.5 439 53.8 575 66.9
(2) Removing the initial phrase 67.2 72.9 4.4 53.8 58.8 68.0
(3) Removing the word “creative” 66.3 70.6 40.7 50.3 56.4 65.2
OpenFlamingo-9B (4) Removing both the initial phrase and the word “creative” 66.2 70.8 432 52.5 58.3 66.9
(5) Removing the name “q-former” 65.6 714 43.0 52.5 56.4 66.0
(6) Replacing “q-former” with a generic name 66.3 72.1 44.4 54.1 56.9 67.1
(7) Replacing “g-former” with a random name 66.5 723 427 51.8 56.6 65.9

A5.1 VizWiz

To investigate why adding in-context demonstra-
tions benefits performance on the VizWiz dataset,
unlike other datasets, we first analyze the distribu-
tion of answers in this dataset. Figure A4 shows
the answers that appear more than 10 times in the
dataset. A clear imbalance can be seen, with “unan-
swerable” being by far the most frequent answer.
It seems approximately 1,750 times, whereas all
other answers occur fewer than 100 times, with
most appearing only once. We hypothesize that this
imbalance explains the performance gains observed
when the number of demonstrations increases. To
test this, we examine the top 10 most frequently
generated answers from each model in the 0-shot
setting, where only the question is provided, and
the 5-shot setting, as shown in Figure AS.

In the 0-shot setting, the distribution of answers
is more balanced, and in most cases, ‘“unanswer-
able” does not even appear in the top 10. How-
ever, when demonstrations are included, ‘“unan-
swerable” becomes the most frequent answer, with
a significant margin over others for most mod-
els. Notably, InstructBLIP FlanT5-XL, Idefics2

(Base), and OpenFlamingo generate “unanswer-
able” most often, with InstructBLIP FlanT5-XL
and OpenFlamingo outputting it incorrectly many
times. This suggests that demonstrations labeled as
“unanswerable” influence the models to replicate
this response, leading to improved performance
due to the dataset’s strong bias toward this answer.

unanswerable
no

yes

white

blue

black

grey

laptop
computer screen
brown
keyboard
pink

red

nothing

dog

phone

soup

purple

Answers

0 250 500 750 1000 1250 1500 1750
# Occurrences

Figure A4: Answers that occur more than 10 times in
the VizWiz dataset.
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Figure AS: Top 10 most frequent answers for each model on the VizWiz dataset in both 0-shot and 5-shot scenarios
“Total” refers to the total number of occurrences of a given answer and “Correct” indicates the number of correct ones.

20



A.6 More Details on Experimental Setup

To facilitate the reproducibility of our work, we
report in Table A6 the models we analyzed, along
with details on their number of parameters and
training set size. Table A7 shows the datasets used
in our experiments, including basic statistics on
their size. Additionally, we outline the main hyper-
parameters used in our experiments in Tables A8
and A9. Table A8 lists the hyperparameters specific
to image captioning, while Table A9 includes those
used for VQA. We conducted our experiments in a
heterogeneous computing environment; however,
the majority were performed on a single Quadro
RTX 8000 GPU. Also, all experiments were con-
ducted only once.

Table A6: VLMs investigated in this work. For each
model, we report the number of parameters and the size
of the dataset used for training.

Model #Params (B) Training set size (M)
Llava v1.5-7B 7.1 0.15
InstructBLIP Vicuna-7B 7.9 15.1
InstructBLIP Flan-XL 4.0 15.1
Idefics2-8B 8.4 351.2
OpenFlamingo-9B 8.1 2,101.0

Table A7: Datasets used in our experiments. For each
dataset, we report the number of samples in each split
and the specific task it is used for. Note that we do not
use Flickr or NoCaps training sets, as we rely on the
MS COCO training set as the knowledge base for these
datasets. “Val.” stands for the validation dataset.

Dataset Size Task
MS COCO Train: 118.2K/ Val: 5.0K Image Captioning
Flickr30K Val: 1.0K Image Captioning
NoCaps Val: 4.5K Image Captioning
VizWiz Train: 20.5K/ Val: 4.3K VQA
GQA Train: 943K/ Val: 12.5K VQA
TextVQA Train: 34.6K/ Val: 5K VQA
OKVQA Train: 9K/ Val: 5K VQA

Table A8: Hyperparameters for image captioning.

Hyperparameters ~ Value

# Beams 5

Max. New Tokens 30
Min. Length 10
Repetition Penalty 1.5
Length Penalty 1.0
Temperature 1.0
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Table A9: Hyperparameters for VQA.

Hyperparameters  Value

# Beams 5
Max. New Tokens 10
Min. Length 1
Length Penalty -1.0
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