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I. MOTIVATION AND RELATED WORK

The ability to perceive and understand the environment
is fundamental for robots operating in complex real-world
scenarios. At the core of this capability lies the construction of
maps — building a digital twin of the robot’s workspace based
on sensor observations. Such scene representations serve as the
foundation for the robot’s spatial awareness, enabling accurate
state estimation and safe interaction with its surroundings [15].

Throughout the years, researchers have proposed various
scene representations optimized for specific applications. My
research aims to develop a unified scene representation for di-
verse robotic tasks, eliminating redundant task-specific maps.

Over the past decades, explicit scene representations have
been widely used in robotics for tasks such as localiza-
tion [33], planning [3], and exploration [31]. These methods
represent scenes using landmark feature points [4], dense
point clouds [38], surfels [2], meshes [34], or volumetric
grids storing occupancy [5] or signed distance functions [19].
While point-based methods enable localization, volumetric
representations better support planning and obstacle avoidance.
Research has focused on improving the scalability of volumet-
ric representations [6, 20, 35] and enabling incremental map-
ping [21, 24]. Beyond geometric mapping, recent researches
have extended volumetric maps to capture semantics [27, 30],
topological structure [8], and temporal dynamics [29] of the
scene. However, most of explicit volumetric representations
face two key limitations: their fixed spatial resolution creates
a fidelity-scalability trade-off, and their rigid grid structure
prevents deformation during online pose adjustments caused
by loop closures or multi-agent interactions.

Recently, implicit neural representations have been pro-
posed to leverage neural networks to implicitly encode either
geometry [16, 26], appearance [17], or semantics [39] into
compact latent spaces, enabling perception systems to learn
directly from raw sensor data and fine-grained scene details
continuously. These continuous representations offer advan-
tages like compact storage, and better handling of regions with
sparse observations, while supporting conversion to explicit
representations for downstream tasks. To improve scalability
and enable incremental mapping, recent methods [18, 37] em-
ploy hybrid architectures that combine explicitly stored local
features (in regular grids or sparse point sets) with shared MLP
decoders to map these features to various scene properties like
volume density, distance field, or color. Point-based implicit
neural representations [1, 28, 37] store optimizable features in
a neural point cloud, which has advantages over grid-based
alternatives through its flexible layout and inherent elasticity
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Fig. 1: Our unified neural scene representation for robotics to achieve
‘one map to rule them all’.

under transformations for example caused by loop closures.
My research leverages point-based implicit neural maps,

also known as neural point map, to develop a unified scene
representation that enables diverse downstream tasks such as
localization, mesh reconstruction, navigation, teleoperation,
and simulation for robotics learning, as shown in Fig. 1.
Using this representation, I develop SLAM systems that in-
crementally build globally consistent neural point maps while
achieving accurate state estimation and scene reconstruction.
Compared to concurrent works [28], my research focuses
on large-scale scenes, improved computational efficiency, and
maintaining global consistency during long-term missions.
My contributions are summarized as follows: (i) A neural
point-based distance field that enables accurate and globally
consistent LiDAR SLAM with loop closure corrections [25],
demonstrating extensibility through integration of appearance
and semantic information for metric-semantic mapping. (ii)
An extension of [25] by unifying distance fields and Gaussian
splatting radiance fields within a neural point map with mutual
geometric consistency, implemented in a LiDAR-visual SLAM
system that achieves superior accuracy in localization, recon-
struction, and novel view rendering [23]. (iii) A method to han-
dle object-level submaps with pretrained shape priors, enabling
pose estimation and shape completion. This is demonstrated
through panoptic mapping in greenhouse environments [22],
improving fruit harvesting performance [14].

II. PRELIMINARY RESULTS

A. LiDAR SLAM with Point-based Neural Distance Field

In [25], we presented a novel LiDAR SLAM system that
achieves large-scale globally consistent mapping using a com-
pact point-based implicit neural scene representation. Our ap-
proach alternates between online incremental learning of a lo-
cal implicit map modeling the distance field using LiDAR ob-
servations [40] and odometry estimation via correspondence-
free point-to-implicit distance field registration [36]. By using
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Fig. 2: Unified neural point map built by the proposed SLAM system.
Taking image and LiDAR data as input, the system incrementally
builds a compact and globally consistent map modeling the radiance
field and distance field, supporting various downstream tasks.

sparse neural points as local feature embeddings that are
inherently elastic and deformable, we can effectively maintain
global consistency of both the neural points and underlying
distance field through loop closure corrections. Extensive
evaluations on various datasets demonstrate that our SLAM
system achieves superior or comparable localization accuracy
to state-of-the-art methods while building more consistent and
compact implicit maps that enable more accurate and complete
mesh reconstruction. The system runs at sensor frame rate on
a moderate GPU. We further demonstrate the versatility of
our map representation through extensions to metric-semantic
mapping by encoding semantic labels into the neural points.
Additional works showcase its applicability to modeling 4D
dynamic scenes [41] and enabling efficient 2D MCL [12].

B. Unifying Distance and Radiance Fields in Neural Maps

Though the distance field representation in [25] enables ac-
curate localization, surface reconstruction and obstacle avoid-
ance, it falls short of providing photorealistic novel view
rendering, which is crucial for applications requiring dense
photometric information. Inspired by Scaffold-GS [13], in
the paper [23], we develop a novel point-based model that
additionally represents a Gaussian splatting radiance field
which enables real-time rendering. Each neural point spawn
multiple Gaussian surfel primitives with its latent geometric
and appearance features and globally shared MLP decoders.
By enforcing geometric consistency between the distance field
and the radiance field, we achieve mutual improvements: the
distance field provides geometric structure to guide radiance
field optimization, while the radiance field’s dense photometric
cues and multi-view consistency enhance the distance field’s
accuracy in regions with sparse LiDAR measurements. We
further develop a LiDAR-visual SLAM system using such a
unified scene representation, as shown in Figure 2. Experimen-
tal results on challenging datasets demonstrate that our method
incrementally constructs globally consistent maps that outper-
form baseline methods in novel view rendering fidelity, surface
reconstruction quality, odometry estimation accuracy, and map
memory efficiency. The resulting Gaussian splatting radiance
field enables effective active scene reconstruction [10].

C. Object-level Submap using Pre-trained Shape Priors

While the aforementioned works treat the scene as a whole
without leveraging pre-trained priors, real-world environments

often contain multiple objects-of-interest with characteristic
shapes and structures. For many robotic tasks like manip-
ulation and navigation, accurately estimating the pose and
complete shape of these objects is crucial. We represent each
object-of-interest as a separate submap with its own latent
shape feature and pre-trained MLP decoder modeling the
shape priors. This enables joint optimization of object pose and
shape features using accumulated observations. We demon-
strate this approach through panoptic mapping of fruits in
greenhouse environments for agricultural robotics [22]. Using
a multi-resolution representation [30], we model fruits at high
resolution while representing background vegetation at lower
resolution. Our method leverages high-precision 3D scans of
fruits to learn generalizable fruit shape priors offline, which
are combined with an occlusion-aware differentiable rendering
pipeline during online inference. This enables accurate com-
pletion of partial fruit observations and estimation of 7-DoF
fruit poses within the map. The resulting scene representation
has been applied to robotic fruit grasping tasks [14] with a
better fruit harvesting success rate than previous methods.

III. FUTURE WORK

I plan to continue working on the following topics towards
an unified neural scene representation used by more robust and
scalable spatial perception systems for long-term autonomy.

High-level Semantics and Physical Properties. Beyond
geometric and appearance information, I aim to extend the
neural point representation to encode high-level scene seman-
tics and physical properties. While my previous works [22, 25]
integrated pre-defined semantic labels, I plan to leverage large
visual-language models for open-vocabulary scene understand-
ing [7]. This would enable language-based spatial reasoning
with the optimized features of neural points, advancing to-
wards more sophisticated embodied intelligence. By incorpo-
rating multi-modal sensing [32] (e.g., tactile and multi-spectral
data) and visual inference with diffusion priors [11], one
can encode physical properties like materials and affordances.
These rich scene representations would enhance planning and
manipulation for online tasks while helping close the sim-to-
real gap for robotics learning. As shown in [23], enforcing
consistency among different modalities can further improve
the overall map quality through their complementary nature.

Neural Point Hierarchy. Currently, the single-resolution
neural point map requires dense point allocation in freespace
for path planning and obstacle avoidance, resulting in high
memory usage. I plan to develop a multi-resolution hierarchy
where freespace can be efficiently represented using sparse
neural points at Voronoi graph nodes. This hierarchy could also
encode higher-level spatial abstractions, enabling more com-
pact storage and improved spatial reasoning for planning [9].

Long-term Persistence. To enable long-term autonomy, the
scene representation must be both persistent and continuously
updated, capable of accommodating environmental changes
across multiple timescales with temporal consistency. I plan
to use the object-level submaps for efficient long-term change
detection, object retrieval and map update like in [29, 42].
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