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Abstract

The conventional paradigm of using large lan-001
guage models (LLMs) for natural language gen-002
eration (NLG) evaluation relies on pre-defined003
task definitions and evaluation criteria, posi-004
tioning LLMs as “passive critics” that strictly005
follow developer-provided guidelines. How-006
ever, human evaluators often apply implicit007
criteria, and their expectations in practice can008
vary widely based on specific end-user needs.009
Consequently, these rigid evaluation methods010
struggle to adapt to diverse scenarios without011
extensive prompt customization. To address012
this, we introduce ACTIVE-CRITIC, a novel013
LLM-based evaluator that transforms LLMs014
into “active critics” capable of adapting to di-015
verse NLG tasks using limited example data.016
ACTIVE-CRITIC consists of two stages: (1)017
self-inferring the target NLG task and rele-018
vant evaluation criteria, and (2) dynamically019
optimizing prompts to produce human-aligned020
scores along with detailed justifications. Our021
experiments show that ACTIVE-CRITIC can022
generate nuanced, context-aware evaluation cri-023
teria, enabling it to achieve superior alignment024
with human judgments across multiple tasks.025

1 Introduction026

Recent advances in language technologies have027

accelerated the development of natural language028

generation (NLG) systems, benefiting a variety029

of downstream applications such as text sum-030

marization (Fabbri et al., 2021), dialogue gen-031

eration (Mehri and Eskenazi, 2020), and story-032

telling (Guan et al., 2021). However, despite the033

rapid progress in NLG systems, reliable techniques034

for automatic evaluation of NLG systems still lay035

far behind, primarily due to the inherent challenges036

posed by the open-ended nature of NLG and the di-037

verse demands of different stakeholders. This gap,038

in return, undermines the reliability of machine-039

generated content in real-world applications.040

Traditional NLG evaluation methods typically 041

focus on a specific criterion and require human- 042

written references for comparison (Li et al., 2024b). 043

Commonly considered criteria include reference 044

similarity (Papineni et al., 2002; Lin, 2004; Zhang 045

et al., 2019; Yuan et al., 2021), text fluency (Kann 046

et al., 2018; Mutton et al., 2007), human like- 047

ness (Song et al., 2025; Jiang et al., 2019), and in- 048

formation adequacy (Adlakha et al., 2024). Moving 049

beyond single-aspect metrics, recent studies pro- 050

pose to use a universal large language model (LLM) 051

as a judge to score machine-generated texts across 052

multiple criteria in diverse NLG tasks, either by 053

fine-tuning (Zhong et al., 2022; Jiang et al., 2023; 054

Xu et al., 2023; Ke et al., 2023) or by prompting 055

an LLM for assessment (Chiang and Lee, 2023a; 056

Gong and Mao, 2023; Lin et al., 2023). To address 057

the high cost of human annotation and potential bi- 058

ases introduced by limited references, researchers 059

have further developed reference-free LLM-based 060

evaluations (Fu et al., 2024; Liu et al., 2023a; Li 061

et al., 2023; Jia et al., 2023). 062

Despite the remarkable advancements of prior 063

work, one major concern remains: the reliance on 064

pre-defined evaluation task descriptions and cri- 065

teria for assessment, forcing LLM evaluators to 066

adhere strictly to developers’ expectations. In con- 067

trast, human evaluators often use nuanced, implicit 068

evaluation criteria that extend beyond these pre- 069

defined criteria in practice (Liu et al., 2024b; Clark 070

et al., 2021; Celikyilmaz et al., 2020). While recent 071

studies (Liu et al., 2024b; Li et al., 2024a; Liu et al., 072

2024a) have explored prompting LLMs to gener- 073

ate evaluation criteria automatically, these methods 074

still rely on pre-defined task descriptions, requir- 075

ing substantial manual effort to tailor prompts for 076

each NLG task. Moreover, even within the same 077

task, different stakeholders may prioritize distinct 078

evaluation criteria, making it potentially risky to 079

establish a fixed set of criteria in advance without 080

first accounting for human evaluation nuances. 081

1



To overcome the above limitations, we propose a082

novel evaluation approach, i.e., ACTIVE-CRITIC,083

that instructs an LLM to actively derive an eval-084

uation protocol purely from human-scored data085

examples. Our approach includes two stages: (1)086

adaptively inferring the target NLG task and identi-087

fying its underlying evaluation criteria that matter088

most to end users, and (2) dynamically optimiz-089

ing prompts to produce human-aligned judgments090

across diverse NLG scenarios. To enhance trustwor-091

thiness, ACTIVE-CRITIC also generates detailed092

text justifications alongside its scoring.093

We have conducted experiments across diverse094

NLG tasks using various base LLMs. The re-095

sults show that the ACTIVE-CRITIC consistently096

achieves a noticeably higher correlation with hu-097

man judgments, indicating its ability to adapt effec-098

tively to different NLG evaluation tasks according099

to different evaluation criteria. Our approach re-100

quires as few as 5 human-scored data to obtain a101

strong correlation with humans, with performance102

steadily improving as the dataset grows. Further103

analysis highlights that the task inference stage con-104

tributes more to ACTIVE-CRITIC’s performance105

than the scoring stage, and ACTIVE-CRITIC can106

effectively identify nuanced, context-aware criteria107

beyond pre-defined ones. In summary, our method108

offers three key benefits:109

• Self-adaptive evaluation. ACTIVE-CRITIC can110

infer any NLG evaluation task, recover human111

judgment criteria, and make justified assess-112

ments directly from data, eliminating the need113

for pre-defined task descriptions, fixed evalua-114

tion criteria, or manual prompt engineering.115

• Accurate judgment alignment. Our two-stage116

design guides LLMs to mimic human judgment117

step by step, yielding interpretable justifications118

while achieving state-of-the-art alignment with119

human assessments against strong baselines.120

• Generic for diverse LLMs and NLG tasks.121

Our method operates independently of specific122

LLMs and evaluation tasks. Our results on four123

LLM backbones across four NLG tasks show-124

case its broad applicability.125

2 Related Work126

NLG Evaluation Overview. Existing methods127

for NLG evaluation span three major strands,128

including early human-centric evaluation (Mel-129

lish and Dale, 1998), followed by untrained ma-130

chine evaluation (Papineni et al., 2002; Lin, 2004; 131

Lavie and Denkowski, 2009), and more recently, 132

machine-learned evaluation (Sennrich et al., 2015; 133

Zhang et al., 2019; Yuan et al., 2021; Kim et al., 134

2023). These studies largely concentrate on single- 135

criteria metric design, targeting either general NLG 136

tasks like reference alignment (Liu et al., 2023b) 137

or a specific NLG task like coherence for text sum- 138

marization (Wang et al., 2023b). To enhance evalu- 139

ation efficiency, recent works have advocated for 140

unified evaluation frameworks built upon LLMs, 141

aiming to transcend task-specific boundaries and 142

assess multiple criteria simultaneously (Chiang and 143

Lee, 2023a; Liu et al., 2024a; Gong and Mao, 2023; 144

Liu et al., 2024b; Li et al., 2024a). Our work falls 145

into this group, and will discuss the details below. 146

LLM-based NLG Evaluation. Prior studies on 147

unified evaluation frameworks primarily focus on 148

enhancing evaluation generalizability, with an em- 149

phasis on estimating instance quality scores across 150

various NLG tasks and multiple criteria simuta- 151

neously (Xiao et al., 2023; Gao et al., 2024). Stud- 152

ies in this area typically involve two strategies. 153

One is developing criteria-centered prompts that 154

guide LLMs as a judge for multi-faceted, train- 155

free evaluations (Fu et al., 2024; Liu et al., 2023a; 156

Lin and Chen, 2023; Chiang and Lee, 2023b; Li 157

et al., 2024a; Liu et al., 2024b; Yuan et al., 2023). 158

The other focuses on curating a large-scale multi- 159

scenario benchmark to fine-tune an LLM as a gen- 160

eralized evaluator (Zhong et al., 2022; Li et al., 161

2023; Wang et al., 2023a; Ke et al., 2023; Kim 162

et al., 2023; Hu et al., 2024). 163

While prompting-based methods are more cost- 164

effective than tuning-based ones, one major con- 165

cern with these approaches is the sensitivity of 166

LLMs to manual prompts, possibly causing eval- 167

uation biases. To address this issue, several latest 168

works have explored instructing LLMs to gener- 169

ate evaluation criteria (Liu et al., 2024b; Li et al., 170

2024a) or scoring rubrics (Liu et al., 2024a) based 171

on pre-defined context like the target NLG task de- 172

scription. In essence, criteria generation in these 173

studies implicitly assumes that each NLG task has 174

a fixed set of evaluation criteria. In contrast, we 175

argue that different end-user needs may lead to 176

varying emphases, even for the same NLG task, 177

resulting in criterion and/or rubric variation. To 178

address this, our approach takes a data-driven per- 179

spective, instructing the LLM for NLG evaluations 180

through self-inference of all relevant contexts. 181
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Dynamic Prompt Optimization. Dynamic182

prompt optimization iteratively refines prompts to183

enhance the performance of static LLMs on specific184

tasks. Existing methods can be divided into two cat-185

egories based on their inference depth. Single-layer186

optimization methods, such as APE (Zhou et al.,187

2023), APO (Pryzant et al., 2023), OPRO (Yang188

et al., 2023), and IPC (Levi et al., 2024), focus189

on optimizing prompts within a single stage, limit-190

ing their adaptability to complex tasks. In contrast,191

multi-layer optimization methods, like DSPy (Khat-192

tab et al., 2023) and MIPRO (Opsahl-Ong et al.,193

2024), refine prompts across multiple stages, sup-194

porting more comprehensive reasoning but relying195

on scalar-based comparisons between data points,196

which are insufficient for tasks requiring correla-197

tions across data vectors. We design a correlation-198

based comparison rather than a scalar-based one to199

optimize multi-stage NLG evaluation tasks.200

3 Notations and Problem Definition201

Our goal is to develop a highly adaptive NLG eval-202

uation approach that can dynamically align with203

diverse end-user preferences to make explainable204

judgments across diverse NLG scenarios. Specifi-205

cally, given a small set of source-response-quality206

tuples D = {(xi, yi, ri)}Ni=1 annotated by humans207

based on their hidden criteria C = {c1, ..., ck}, we208

aim to build an LLM-based reference-free evalua-209

tor E(x′, y′). This evaluator learns from the anno-210

tated dataset D to infer task-relevant information,211

including the target NLG task description T and212

the evaluation criteria Ĉ = {ĉ1, . . . , ĉm}. Using213

this inferred information, it can estimate the quality214

score r̂ of the source-response pair (x′, y′), along215

with a free-text justification ê. Here, xi denotes the216

i-th input text from the original NLG task, while217

yi denotes the corresponding response generated218

by an NLG system and ri is the quality score of219

yi. We denote LLM([prompt]) → [response]220

as the response generation by LLM given a prompt.221

4 ACTIVE-CRITIC222

Overview. Figure 1 shows the overall workflow223

of ACTIVE-CRITIC. With the motivation that an224

ideal unified evaluation framework should flexi-225

bly uncover the nuanced evaluation criteria of end226

users across diverse generation scenarios and make227

human-aligned judgments, we design a data-driven228

evaluation framework structured in two stages. The229

first stage is task inference (§4.1), where we in-230

struct an LLM to predict task-related information 231

by actively reviewing a small set of human-rated 232

data examples. Through this analysis of the human- 233

rated data, we expect the model to self-infer the 234

details of the target evaluation task and the implicit 235

criteria used by human annotators. The second 236

stage is scoring alignment (§4.2), where we aim 237

to align the LLM evaluator with human scoring 238

based on the predicted evaluation criteria. Specif- 239

ically, we design a dynamic prompt optimization 240

method to automatically select the optimal few- 241

shot examples, Ddemo, from D which enables the 242

LLM evaluator to achieve human-aligned scoring 243

through in-context prediction. 244

4.1 Task Inference 245

The task inference stage, depicted on the left side 246

of Figure 1, focuses on identifying two key compo- 247

nents for NLG evaluation: (1) task description and 248

(2) criteria definition. This stage uses the LLM to 249

analyze the dataset Dtrain, infer the characteristics 250

of the NLG task, and establish relevant evaluation 251

criteria without human intervention. 252

Task Description. This module instructs the 253

LLM to formulate an accurate task description T 254

by reviewing examples in Dtrain and identifying key 255

information that characterizes the target NLG task 256

(e.g., summarization, storytelling) for evaluation. 257

Considering that LLM’s context length limit may 258

not fit in all examples in Dtrain, we split these ex- 259

amples into N mini-batches, and generate one task 260

description Tn from each mini-batch Dtrain,n. That 261

is, LLM(ft(Dtrain,n)) → Tn, ∀n ∈ [1, N ], where 262

ft is a prompt template shown in Table 10 in the 263

appendix. The final task description T is gener- 264

ated by the LLM through the ensemble of all task 265

descriptions {Tn}Nn=1 over all mini-batches. 266

Criteria Definition. After establishing the task 267

description for each mini-batch, the LLM is in- 268

structed to define task-specific evaluation crite- 269

ria for assessing the quality of machine-generated 270

texts. Unlike traditional evaluation frameworks 271

that rely on predefined criteria (e.g., coherence, flu- 272

ency), we instruct the LLM to automatically iden- 273

tify the most relevant evaluation dimensions for the 274

target NLG task. Similar to the task description, 275

the final criteria set Ĉ = {ĉ1, ĉ2, . . . , ĉm}1 is com- 276

posed of all relevant dimensions inferred from all 277

the reviewed mini-batches. 278

1We instruct the LLM to output a criteria set in the JSON
format, as shown in Table 11 in the appendix.
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Stage 1: Task Inference Stage 2: Scoring Alignment

Source Text: 
A southern Iowa 

chiropractor... town of 

Lamoni in southern Iowa.

Response Text: 
The Iowa board … 

in the state.

Human Score: 
88

Data Samples

Target Evaluation Task

Task Description: 
This is a text 

summarization task, 

which refers to … form.

Criteria Definition: 
Coherence: The degree …

Conciseness: The ability …

Fluency: The readability … 

Not comprehensive?

Multi-criteria Scoring + Explanation: 
Coherence{

   Explanation: The response is coherent with a 

                         logical flow.

   Score: 90

},

Conciseness{

   Explanation: The response efficiently 

                         conveys the main idea. 

   Score: 95

}…

 

Overall Scoring + Explanation: 
Explanation: The response provides a concise 

                     and coherent summary of the         

                     source text. …

Score: 90 

Scoring

Prompt 

Optimization

Figure 1: Overview of ACTIVE-CRITIC, including two stages: (1) task inference, where the LLM is instructed to
derive the target NLG evaluation task description and relevant criteria from data samples, and (2) scoring alignment,
allowing the LLM to generate multi-criteria and overall quality scores along with accompanying explanations.

To enhance efficiency, we instruct the LLM to279

decide whether to stop early based on the compre-280

hensiveness of the generated task description and281

criteria set after processing each mini-batch.282

4.2 Scoring Alignment283

Our second stage, as shown on the right side of284

Figure 1, focuses on aligning the LLM evalua-285

tor with human scoring judgments by automati-286

cally optimizing the evaluation prompts. Inspired287

by prior research that harnesses the potential of288

LLMs by breaking down complex tasks into sim-289

pler ones (Wei et al., 2022; Khot et al., 2023), we290

hypothesize that starting with fine-grained, criteria-291

specific scoring can help the model further derive292

an accurate overall quality score. With this intu-293

ition in mind, we structure the scoring stage into294

two modules: (1) Multi-criteria Scoring with Expla-295

nation (McS-E), followed by (2) Overall Scoring296

with Explanation (OS-E).297

Multi-criteria Scoring with Explanation (McS-298

E). In this module, we use the LLM to assess299

the model output yi based on the criteria set Ĉ =300

{ĉ1, ĉ2, . . . , ĉm} obtained from the task inference301

stage (§4.1). Specifically, for each input-output pair302

(xi, yi), the LLM is instructed to estimate a score303

r̂ij and a corresponding explanation eij according304

to each criterion ĉj ∈ Ĉ:305

LLM(xi, yi, fMcS-E(T,C,Ddemo)) → R̂i (1)306

R̂i = {(r̂ij , êij), ∀ĉj ∈ Ĉ} (2)307

where the output uses a JSON format, indicating 308

a set of score-explanation pairs R̂i for all criteria 309

in Ĉ and Ddemo is a set of demonstration examples 310

randomly selected from the training set Dtrain. This 311

mechanism ensures that the evaluation is both quan- 312

titative and interpretable, offering insights into the 313

rationale behind each score. The prompt template 314

fMcS-E(T,C,Ddemo) is designed to enable scoring 315

across multiple criteria simultaneously, accounting 316

for the interconnections between them. This design 317

enables a fine-grained evaluation, where each crite- 318

rion is treated both individually and in connection 319

with the others, providing detailed explanations that 320

enhance the interpretability of the scoring process. 321

Overall Scoring with Explanation (OS-E). Af- 322

ter scoring the individual criteria, we use a prompt 323

template fOS-E to instruct the LLM to synthesize 324

these scores {r̂i1, ...r̂im} into an overall quality 325

score r̂i, and an explanation ei that provides a com- 326

prehensive justification for the final decision. 327

LLM(xi, yi, fOS-E(T, R̂i,Ddemo)) → r̂i, êi (3) 328

Prompt Optimization. Given the sensitivity of 329

LLMs’ in-context prediction performance to the 330

few-shot examples Ddemo in the prompt, we fur- 331

ther propose an automatic prompt optimization 332

strategy built upon DSPy (Khattab et al., 2023) 333

to iteratively select the optimal D∗
demo to refine the 334

prompts. Specifically, given two lists of overall 335

quality scores across all examples in Dtrain—one 336

predicted by the LLM, i.e., r̂ = [r̂1, . . . , r̂N ] from 337

Eq. (3), and the other annotated by humans, i.e., 338
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r = [r1, . . . , rN ]—we design an objective func-339

tion to maximize the correlation between these two340

score lists. To mitigate potential biases caused341

by relying on a single correlation measurement,342

we calculate the sum of three widely-used correla-343

tion coefficients: Pearson (γ), Spearman (ρ), and344

Kendall (τ ) with equal weights:345

Q(r̂, r) = γ(r̂, r) + ρ(r̂, r) + τ(r̂, r) (4)346

D∗
demo = arg max

Ddemo⊂D
Q(r̂, r) (5)347

where Ddemo is the optimal few-shot demonstration348

examples Ddemo selected from Dtrain. To approxi-349

mately solve the above maximization problem, we350

repeat K time for the evaluations of Eq. (3) using351

different randomly sampled Ddemo, and select the352

best D∗
demo that maximizes Q(r̂, r).353

5 Experiment Settings354

Benchmarks Following prior work (Zhong et al.,355

2022; Fu et al., 2024; Liu et al., 2023a), we evaluate356

our method on four popularly-used benchmarks.357

These datasets cover diverse topics (e.g., politics,358

sports, restaurants, etc.) across four NLG tasks (i.e.,359

summarization, dialogue generation, data-to-text360

generation, and storytelling), aiming to construct361

a robust testbed to access ACTIVE-CRITIC. The362

details of each benchmark are described below.363

• SummEval (Fabbri et al., 2021): 1,600364

machine-generated summaries of CNN/Daily-365

Mail articles were rated by both expert and lay-366

man judges on coherence, consistency, fluency,367

relevance, and overall quality.368

• Topical-Chat (Mehri and Eskenazi, 2020): A369

knowledge-grounded, open-domain dialogue370

dataset consisting of 60 conversations, each371

paired with 6 responses (2 by humans and 4 by372

machines). Responses are human-evaluated on373

overall quality across five dimensions: natural-374

ness, coherence, engagingness, groundedness,375

and understandability.376

• SFRES (Wen et al., 2015): A data-to-text gen-377

eration benchmark with 1,181 instances, fo-378

cusing on generating free-text utterances from379

structured restaurant information. Annotators380

rated the overall quality of each instance based381

on informativeness and naturalness.382

• OpenMEVA (ROC) (Guan et al., 2021): 1,000383

open-ended commonsense stories generated by384

various models trained upon the ROCStories 385

corpus. Annotators rate each story based on 386

fluency, creativity, and coherence. 387

We standardize all benchmarks into a uniform 388

format that includes: (1) the machine-generated re- 389

sponses for evaluation, (2) the source input used by 390

the generation systems for response generation, and 391

(3) the human scores assessing response quality. 392

Baselines and Metrics We compare ACTIVE- 393

CRITIC with a variety of state-of-the-art publicly 394

accessible NLG evaluation methods. The baselines 395

are grouped into two categories: (1) fine-tuning- 396

based methods including Auto-J (Li et al., 2023), 397

UniEval (Zhong et al., 2022), InstructScore (Xu 398

et al., 2023) and TIGERScore (Jiang et al., 399

2023); and (2) prompting-based methods, includ- 400

ing GPTScore (Fu et al., 2024), G-eval (Liu et al., 401

2023a) and four selected base LLMs under the 402

zero-shot manner, implemented following (Mah- 403

moudi, 2023). Following prior work (Fu et al., 404

2024; Jiang et al., 2023), we use GPTScore-src to 405

refer to the source-hypothesis scoring type, which 406

is a reference-free evaluation method. 407

Regarding metrics, we use three correlation co- 408

efficients to assess the evaluation consistency be- 409

tween machine-based evaluators and humans: Pear- 410

son (γ) (Mukaka, 2012), Spearman (ρ) (Zar, 2005) 411

and Kendall-Tau (τ ) (Kendall, 1938). 412

Meta-evaluation We establish ACTIVE-CRITIC 413

using four widely adopted backbone models: two 414

open-source LLMs (Orca2-13B and LLaMA3-8B) 415

and two closed-source LLMs (GPT-3.5 and GPT- 416

4)2 across four diverse NLG tasks. We test two 417

variants of ACTIVE-CRITIC (AC) in this study: (1) 418

AC-Coarse performs a coarse-grained, explainable 419

evaluation by prompting the LLM to infer task- 420

related information and directly produce an overall 421

score along with an explanation for each test case. 422

This process considers all inferred criteria at once 423

during scoring alignment. (2) AC-Fine provides 424

a fine-grained, explainable evaluation. Similar to 425

AC-Coarse, it begins with task inference, but dur- 426

ing scoring alignment, it assesses the input test 427

case against each criterion individually, offering 428

detailed explanations for each score. The overall 429

quality score is then generated by combining the 430

evaluations across all criteria. Appendix B provides 431

the details of implementation. 432

2We used GPT-3.5-turbo-1106 and gpt-4-turbo version for
the experiments.
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SummEval TopicalChat SFRES OpenMEVA (ROC)
Average

γ ρ τ γ ρ τ γ ρ τ γ ρ τ

Fine-tuning LLM

InstructScore 0.3496 0.2703 0.203 0.2691 0.2774 0.2423 0.2039 0.1502 0.133 0.2936 0.2772 0.1658 0.2363
Auto-J 0.1345 0.1457 0.1149 0.4681 0.459 0.3714 0.1315 0.1053 0.0869 0.3896 0.3704 0.3065 0.257
TIGERScore 0.458 0.3694 0.2937 0.3785 0.4401 0.3458 0.1898 0.1246 0.1075 0.451 0.4413 0.3356 0.3279
UniEval 0.5457 0.4914 0.3707 0.5133 0.5448 0.4134 0.3247 0.2791 0.2081 0.4501 0.4408 0.3119 0.4078

Prompting Open-source LLM

GPTScore-src (FLAN-T5) 0.4043 0.3584 0.2696 0.2313 0.2437 0.1792 0.2819 0.2082 0.1618 0.2283 0.2265 0.1534 0.2456
Zero-shot (LLaMA3-8B) 0.4104 0.3857 0.2809 0.5197 0.5242 0.4018 0.2138 0.196 0.152 0.4141 0.3676 0.2808 0.3456
Zero-shot (Orca2-13B) 0.5447 0.4916 0.3999 0.5542 0.5512 0.4476 0.3068 0.23 0.1842 0.4809 0.4695 0.358 0.4182
Ours:
AC-COARSE (LLaMA3-8B) 0.5307 0.4972 0.3958 0.4873 0.5246 0.4259 0.1853 0.1594 0.1451 0.4394 0.4403 0.3477 0.3816
AC-FINE (LLaMA3-8B) 0.5334 0.502 0.401 0.5321 0.5379 0.4045 0.2265 0.2245 0.169 0.4506 0.4436 0.3625 0.399

AC-COARSE (Orca2-13B) 0.5386 0.5227 0.4156 0.611 0.6173 0.4845 0.3612 0.2981 0.2393 0.4908 0.4962 0.3622 0.4531
AC-FINE (Orca2-13B) 0.6301 0.5486 0.4299 0.6023 0.6214 0.4713 0.324 0.2834 0.2289 0.5259 0.5363 0.4109 0.4677

Prompting Close-source LLM

G-eval (GPT-3.5) 0.4687 0.4504 0.3745 0.5427 0.5597 0.4501 0.2464 0.1956 0.1591 0.362 0.3408 0.1982 0.3624
Zero-shot (GPT-3.5) 0.453 0.385 0.292 0.5503 0.5436 0.4231 0.2823 0.2274 0.1828 0.4229 0.397 0.3 0.3716
Zero-shot (GPT-4) 0.5943 0.5038 0.4055 0.6659 0.656 0.4937 0.3301 0.2823 0.2284 0.5627 0.4928 0.3777 0.4661
Ours:
AC-COARSE (GPT-3.5) 0.6569 0.5368 0.4178 0.6425 0.6171 0.4855 0.3585 0.2846 0.2374 0.4185 0.3766 0.2981 0.4442
AC-FINE (GPT-3.5) 0.653 0.6016 0.4745 0.6718 0.6703 0.5156 0.3616 0.2833 0.2342 0.4693 0.4527 0.3442 0.4777

AC-COARSE (GPT-4) 0.6561 0.5371 0.4277 0.7264 0.7815 0.6133 0.343 0.2878 0.2395 0.5366 0.5226 0.4039 0.5063
AC-FINE (GPT-4) 0.6926 0.5723 0.462 0.7789 0.7753 0.6212 0.363 0.2809 0.236 0.5877 0.5581 0.4249 0.5294

Table 1: Correlation between LLM-based unified evaluators and human judgments on overall quality per instance
across four NLG tasks. All train-free evaluators are built upon Orca2-13B. We compare Pearson (γ), Spearman (ρ)
and Kendall-Tau (τ ) correlation, respectively. The best performance per indicator is highlighted in bold, and the
second-highest results are underlined. We implemented and tested all the methods with p-value < 0.05.

6 Results and Analysis433

6.1 How well does ACTIVE-CRITIC perform?434

Table 1 displays the correlation between uni-435

fied evaluators and human judgments. Overall,436

ACTIVE-CRITIC noticeably outperforms the cor-437

responding prompting-based baselines and state-438

of-the-art fine-tuning-based evaluators, where our439

variants built on Orca2-13B and GPT-4 achieve440

the highest correlation in the methods using open-441

and close-source LLM, respectively. Comparing442

two variants of ACTIVE-CRITIC per LLM, we443

find that the fine-level variant consistently achieves444

higher alignment with human scores, outperform-445

ing the coarse one by ∼2% in average correlation.446

These results show that our approach can effec-447

tively enhance LLMs’ potential to capture human-448

centric assessment nuances in diverse scenarios449

and make more human-aligned judgments. More-450

over, prompting the LLM to assess each criterion451

individually and then aggregate the scores benefits452

ACTIVE-CRITIC’s decision-making.453

We also validate the generalizability of ACTIVE-454

CRITIC’s self-inferred evaluation prompts on un-455

seen data within a similar NLG scenario. We use456

the prompts generated by ACTIVE-CRITIC on Sum-457

mEVAL examples to evaluate responses from the458

Newsroom (Grusky et al., 2018) benchmark, simi-459

larly focusing on news article summarization but 460

using diverse strategies. As shown in Appendix C, 461

our approach outperforms state-of-the-art baselines, 462

demonstrating strong generalization. 463

Further examining our approach’s stability 464

across base LLMs, we observe that ACTIVE- 465

CRITIC consistently achieves a noticeable improve- 466

ment, with an average gain of ∼6.8% correla- 467

tion over the zero-shot baseline for each base 468

model. This indicates its effectiveness, regard- 469

less of the chosen base LLM. Although ACTIVE- 470

CRITIC generally obtains greater enhancements 471

when employing a stronger base LLM, it is note- 472

worthy that ACTIVE-CRITIC built on Orca2-13B 473

performs comparably to its GPT-4 counterpart on 474

SFRES and OpenMEVA (ROC). Considering the 475

computational cost and evaluator performance, we 476

primarily focus on the ORCA2-based AC-Fine for 477

further analysis. 478

6.2 Ablation Study 479

Dependence on Human-scored Data. To ex- 480

amine the impact of labeled data size on ACTIVE- 481

CRITIC’s performance, we varied the size of the 482

feed examples from 5-shot to 5%, 15%, and the 483

full 25% of each benchmark. Figure 2 shows the 484

results. While ACTIVE-CRITIC improves as the 485
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SummEval TopicalChat SFRES OpenMEVA (ROC)
Average

γ ρ τ γ ρ τ γ ρ τ γ ρ τ

Ours (AC-Fine) 0.6301 0.5486 0.4299 0.6023 0.6214 0.4713 0.324 0.2834 0.2289 0.5259 0.5363 0.4109 0.4677

w/o Task Description 0.5825 0.4826 0.3552 0.4949 0.5057 0.4211 0.2683 0.2017 0.168 0.3846 0.3802 0.2918 0.3781
w/o Criteria Definition 0.5726 0.522 0.4062 0.5533 0.5368 0.4451 0.293 0.2715 0.1907 0.4176 0.4237 0.326 0.4132
w/o McS-E 0.5386 0.5227 0.4156 0.611 0.6173 0.4845 0.3612 0.2981 0.2393 0.4908 0.4962 0.3622 0.4531
w/o OS-E 0.6106 0.5129 0.3908 0.5639 0.5615 0.4464 0.3165 0.2405 0.1899 0.509 0.4931 0.3632 0.4332

Table 2: Ablation study of key modules in ACTIVE-CRITIC.

labeled data size increases, it can achieve a decent486

correlation with human evaluators using as few487

as five human-rated examples. Among four tasks,488

ACTIVE-CRITIC is more sensitive to labeled data489

size in TopicalChat and SummEval than in Open-490

Meva and SFRES. The former two benchmarks491

involve longer contexts and diverse topics, while492

the latter focus on specific topics with shorter con-493

texts, making the first two tasks more complex.494

Our observations suggest that ACTIVE-CRITIC re-495

quires more labeled data for evaluating complex496

NLG tasks compared to simpler ones.497

Sample-5 Sample-5% Sample-15% Sample-25%
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Figure 2: Average correlation between Orca2-based
ACTIVE-CRITIC and human judgments with varying
label sizes. Results for each correlation coefficient are
provided in Appendix D

Impact of Optimization. We compare ACTIVE-498

CRITIC’s performance by removing its dynamic499

prompt optimization for scoring and, furthermore,500

eliminating mini-batch iterations during task in-501

ference. As shown in Figure 3, there is a drop502

in ACTIVE-CRITIC’s performance when removing503

scoring prompt optimization, with a further decline504

when only using a single mini-batch of labeled505

data for task inference, suggesting that both strate-506

gies contribute to ACTIVE-CRITIC for making op-507

timal decisions. Interestingly, the ACTIVE-CRITIC508

shows greater sensitivity to scoring optimization509

in the fine-level evaluation of SummEval and the510

coarse-level evaluation of SFRES, indicating that511

this component plays a more significant role in512

these specific evaluation scenarios. In contrast, the513

influence of mini-batch iterations for task inference514

is minimal in SummEval, suggesting that ACTIVE- 515

CRITIC can effectively infer the target evaluation 516

task in this setting with limited training data. 517

SummEval

TopicalChat
SFRES

OpenMEVA (ROC)
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Task Inference + Self-optimizing Scoring (w/o Prompt Optimization)
Task Inference (w/o Iteration) + Self-optimizing Scoring (w/o Prompt Optimization)

Figure 3: Impact of prompt optimization on scoring and
mini-batch iterations on task inference (Kendall-Tau %).
See Appendix E for Pearson and Spearman results.

Module Contribution. Table 2 shows the indi- 518

vidual contribution of each module in ACTIVE- 519

CRITIC. Note that the variant w/o criteria infer- 520

ence uses the original predefined criteria from each 521

benchmark for further computation. In the variant 522

w/o OS-E, we calculated the overall quality score 523

per test case by averaging the multiple criteria- 524

specific scores generated by McS-E. We find that 525

removing task inference modules leads to a more 526

substantial performance drop compared to remov- 527

ing scoring modules, especially when the LLM 528

is not asked to infer the task description (result- 529

ing in a ∼9% decrease on average). Our findings 530

suggest that guiding LLMs to understand what to 531

evaluate contributes more to ACTIVE-CRITIC’s 532

effectiveness than other modules. Additionally, 533

the larger performance drop in the variant w/o 534

OS-E, compared to the one w/o McS-E, indicates 535

that the LLM-generated overall quality score con- 536

tributes more meaningfully than simply averaging 537

the criteria-specific scores. 538

6.3 Qualitative Analysis of ACTIVE-CRITIC 539

LLM-inferred Criteria Analysis. Moving for- 540

ward from quantitative analysis, we examine the 541

LLM-inferred criteria in depth. Table 3 shows an 542

illustrative comparison between the criteria gener- 543

ated by ACTIVE-CRITIC and those pre-defined by 544
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Coherence: The degree to which the summary flows logically and cohesively, with clear
connections between the main points.
Conciseness: The ability of the summary to convey all necessary information in a succinct
and efficient manner.
Coverage: The extent to which the summary captures the main events and details from the
source text without omitting crucial information.
Accuracy: The faithfulness of the summary to accurately reflect the main points and details
of the source text.
Fluency: The readability and naturalness of the language used in the summary, with
smooth transitions between ideas and paragraphs.
Relevance: The relevance of the summary to the main topic and the inclusion of only
pertinent information from the source text.
Clarity: The clarity and comprehensibility of the summary, with clear and precise
language used to convey the main points.
Engagement: The ability of the summary to captivate and engage the reader, drawing them
into the main events and details effectively.

Coherence: the summary should be
well-structured and well-organized. The summary
should not just be a heap of related information,
but should build from sentence to sentence to a
coherent body of information about a topic.
Consistency: the factual alignment between the
summary and the summarized source. A factually
consistent summary contains only statements that
are entailed by the source document.
Fluency: the summary should have no formatting
problems, capitalization errors or obviously
ungrammatical sentences (e.g., fragments,
missing components) that make the text difficult
to read.
Relevance: The summary should include only
important information from the source document.

(a) AC-Fine (b) Human

Table 3: An illustrative example of the generated evaluation criteria on SummEval, either generated by an ACTIVE-
CRITIC (a) or predefined by humans (b). The highlighted text in blue are additional criteria generated by the
machine compared to the human-defined ones.

Dimension Clarity Relevance Score Consistency Accuracy
Rate→ Yes (%) Yes (%) Yes (%) Yes (%)

Coherence 99.11 92 95.78 85.33
Conciseness 98.67 91.78 96.89 88.89

Coverage 98.82 91.33 97.56 96.89
Accuracy 98.22 92.22 95.56 98
Fluency 99.56 98.89 96 96.67

Relevance 98.89 99.11 98.44 95.56
Clarity 98 94.22 93.56 95.78

Engagement 99.33 94.67 93.33 91.11
Overall Quality 98.44 98.44 97.33 98

Average 98.78 94.74 96.05 94.03

Table 4: Human evaluation of criterion-specific expla-
nations on SummEval samples.

Dimension Aspect-to-Overall Alignment Differentiability Usefulness
Rate→ Yes (%) Yes (%) (1-5)

Overall 95.11 90 4.515

Table 5: Human evaluation of overall explanations on
SummEval samples, emphasizing (1) the alignment of
the overall explanation with criterion-specific ones, (2)
explanations’ differentiability across vary-quality cases,
and (3) explanations’ overall usefulness per case.

humans in SummEval. We find that our approach545

incorporates more nuanced criteria (i.e., “clarity”,546

“conciseness”, “coverage”, and “engagement”) be-547

yond the four pre-defined aspects. Moreover, each548

criterion is paired with a clear definition to specify549

its distinct characteristics. For example, the human-550

defined “coherence” starts with a high-level de-551

scription like “well-structured and well-organized”,552

while the LLM’s definition tends to be more con-553

crete, e.g., “the summary flows logically”.554

Human Evaluation of Explanations. We also555

employ three proficient English-speaking annota-556

tors to evaluate the quality of the scoring explana-557

tions generated by ACTIVE-CRITIC on a random558

sample of 150 test cases from SummEval (see de-559

tails in Appendix G). As shown in Table 4, the560

individual explanations demonstrate comparatively 561

high quality across four dimensions, with average 562

scores of 98.78% for clarity, 94.74% for relevance, 563

96.05% for score consistency, and 94.03% for in- 564

formation accuracy. As shown in Table 5, the over- 565

all explanations generally align with the criteria- 566

specific ones (95.11%), and 90% of the overall 567

explanations effectively differentiate case quality. 568

With an average rating of ∼4.5 out of 5 on the gen- 569

erated explanations across sampled testing cases, 570

the result shows that explanations generated by 571

ACTIVE-CRITIC are of good quality and useful to 572

explain the resulting scores. 573

7 Conclusion 574

We proposed ACTIVE-CRITIC, a novel LLM- 575

based NLG evaluation protocol that relies solely 576

on lightweight human-scored data. Unlike ex- 577

isting machine-based evaluators that depend on 578

human-predefined task-related information for as- 579

sessment, ACTIVE-CRITIC self-identifies the tar- 580

get evaluation task and nuanced evaluation criteria 581

purely from the data for making judgments. This 582

paradigm shift will enhance the adaptability of 583

ACTIVE-CRITIC, enabling it to flexibly capture the 584

varying priority expectations of different end-users 585

across diverse generation scenarios. Our approach 586

reduces the need for intensive manual efforts to 587

design task-specific criteria and extensive prompt 588

engineering. Experiments across four distinct NLG 589

tasks demonstrate LLMs’ potential as active crit- 590

ics, achieving higher correlation with human judg- 591

ments compared to baselines. Fine-level criteria- 592

specific scoring, paired with explanations, prompts 593

the LLM to engage more deeply with the test cases, 594

leading to improved overall quality scoring. 595
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8 Limitation596

Our work has several limitations. First, due to re-597

source constraints, we primarily focused on four598

existing NLG tasks and benchmarks for meta-599

evaluation in our experiments. It would be valuable600

to deploy our protocol in a broader testing envi-601

ronment to assess its performance in more diverse602

settings. Additionally, building ACTIVE-CRITIC603

on a wider range of backbone LLMs could provide604

deeper insights. Overall, we hope this study will605

contribute to advancing generic NLG evaluation606

research and promote system development across607

diverse NLG scenarios.608
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A An example of evaluation protocol and prompt on SummEval900

A.1 An example of input data901

This section shows an example of data (xi, yi, ri) from SummEval in Table 6.902

Source (xi)

A southern Iowa chiropractor accused of accepting sex as payment for his services and performing
exorcisms on patients has surrendered his state license. The Iowa Board of Chiropractic released a
report Wednesday detailing charges against Charles Manuel, of Lamoni. Manuel signed an
agreement last month admitting his misdeeds and pledging not to apply for reinstatement for at
least 10 years. Patient satisfaction: A chiropractor in Iowa has surrendered his license to practice
and admitted to swapping services for sex and performing exorcisms on some patients.
Nonetheless, he’s received outstanding evaluations for patient satisfaction on HealthGrades.com
The agreement requires that Manuel prove any circumstances surrounding the revocation of his
license no longer exist before he can resume practicing chiropractic in the state. Those
circumstances included bartering sex for services with some patients. Manuel also recommended
that patients stop taking medication he prescribed to them. A woman who answered a call to
Manuel’s home from the Des Moines Register declined to comment on the case. A woman at his
former practice said he hadn’t worked there for some time. A Lamoni address listed on the Yelp
page for Manuel’s practice appears to be a home on a residential street. While Maneul has received
just three patient survey responses on HealthGrades.com, those responses were quite positive. The
disgraced chiropractor received a perfect five out of five stars in patient satisfaction. Strange
Practice: Charles Manuel, who admitted wrongdoing to the Iowa Board of Chiropractic, listed his
practice’s addresses on this residential street in the small agricultural town of Lamoni in southern
Iowa.

Response (yi)

The iowa board of chiropractic released a report wednesday detailing charges against charles
manual, of lamoni. Manuel signed an agreement last month admitting his misdeeds and pledging
not to apply for reinstatement for at least 10 years . The agreement requires that manuel prove any
circumstances surrounding the revocation of his license no longer exist before he can resume
practicing chiropractic in the state.

Human Judgment Score (ri)

88.33333333333332

Table 6: An example of data (xi, yi, ri) from SummEval
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A.2 An Example of Output 903

This section shows an example of output with our AC-Fine method in table 7.

Multi-Criteria Scoring with Explanation

Coherence: {
explanation: The response is coherent and logically flows from one point to the next, with clear connections between the

main points.
score: 90

}
Conciseness: {

explanation: The response is concise and efficiently conveys the main events and details from the source text.
score: 90

}
Coverage: {

explanation: The response covers the main events and details from the source text without omitting crucial information.
score: 85

}
Accuracy: {

explanation: The response accurately reflects the main points and details of the source text.
score: 90

}
Fluency:{

explanation: The response is fluent, with smooth transitions between ideas and paragraphs, and natural language used
throughout.

score: 95
}
Relevance: {

explanation: The response is highly relevant to the main topic and includes pertinent information from the source text.
score: 95

}
Clarity: {

explanation: The response is clear and comprehensible, with precise language used to convey the main points effectively.
score: 90

}
Engagement: {

explanation: The response effectively draws the reader into the main events and details, making it highly engaging.
score: 95

}

Overall Scoring with Explanation

Explanation: The response provides a concise and coherent summary of the source text, capturing the main events and
details without omitting crucial information. The summary is accurate, relevant, and clear, with smooth transitions between
ideas and paragraphs, making it highly engaging and readable. The coverage of the main events and details is comprehensive,
and the language used is clear and precise. Overall, the response effectively conveys the main points of the source text in a
compelling and engaging manner.
Overall Score: 90.0

Table 7: An example of output with our AC-Fine method

904
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A.3 Instruction component of the evaluation protocol905

This section presents the instruction I in evaluation protocol Φ, which is also the output of the task906

inference module, in table 8907

Task Description T :

The evaluation task is text summarization, which refers to evaluating abstractive summaries
generated from source texts. The relationship between ‘Source’ and ‘Response’ is that the
responses consistently provide a summary of the main events or details described in the source text
and accurately reflect the main points of the source text in a summarized form.

Critiria C:

“Coherence": “The degree to which the summary flows logically and cohesively, with clear
connections between the main points."
“Conciseness": “The ability of the summary to convey all necessary information in a succinct and
efficient manner."
“Coverage": “The extent to which the summary captures the main events and details from the
source text without omitting crucial information."
“Accuracy": “The faithfulness of the summary to accurately reflect the main points and details of
the source text."
“Fluency": “The readability and naturalness of the language used in the summary, with smooth
transitions between ideas and paragraphs."
“Relevance": “The relevance of the summary to the main topic and the inclusion of only pertinent
information from the source text."
“Clarity": “The clarity and comprehensibility of the summary, with clear and precise language used
to convey the main points."
“Engagement": “The ability of the summary to captivate and engage the reader, drawing them into
the main events and details effectively."

Table 8: An example of instruction I in evaluation protocol Φ
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A.4 In-context exemplar of the evaluation protocol 908

This section presents the in-context exemplar Ddemo in evaluation protocol Φ in table 9 909

AC-Fine Output Example:

Source: “Paul Merson has restarted his row with Andros Townsend... Any bad feeling between the
pair seemed to have passed but Merson was unable to resist having another dig at Townsend after
Tottenham drew at Turf Moor."
Response: “Paul merson has restarted his row with andros townsend .. in the 83rd minutefor
tottenham as they drew 0-0 against burnley."
Multiple Evaluation Criteria:
Coherence: The degree to which the summaryflows logically and cohesively, with clearconnections
between the main point.
Conciseness: The ability of the summary to convey all necessaryinformation in a succinctand
efficient manner.
...
Score Of Each Criterion In JSON:
Coherence: {

Explanation: The response is somewhat coherent, but it jumps between different events and
details without clear connections between them.
Score: 60
}

...
Explanation: The response provides a concise summary ... to provide a more compelling and
logically flowing summary.
Score of overall: 75

Dtrain Example:

Source: Chelsea have made an offer for FC... The initial five-year deal is the biggest in the club ’s
history , with the Blues now considering a two-week pre-season tour of Japan this summer.
Response: Chelsea have made an offer for fc ... in muto is not connected to the 200million
sponsorship deal they signed with japanese company yokohama rubber in February.
"Score of Overall": 91.66666666666666

Table 9: An example of in-context exemplar Ddemo
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A.5 Prompt Template910

This section presents prompt templates in multiple stages: (1) Task Description (Table 10), (2) Criteria911

Definition (Table 11), (3) Multi-Criteria Scoring with Explanation (Table 12), and (4) Overall Scoring912

with Explanation (Table 13).913

Given several examples from an NLG evaluation dataset where each entry consists of a ‘Source’
text and its corresponding ‘Response’, along with a score that evaluates the response quality.
Please write observations about trends that hold for most or all of the samples.
I will also provide you with some previous observations I have already made. Please add your
observations or if you feel the observations are comprehensive say ‘COMPLETE’.
Some areas you may consider in your observations: content and structure, scenario, task,
evaluation objective, evaluation criteria, etc.
It will be useful to make an educated guess as to the nature of the task this dataset will enable.
Don’t be afraid to be creative.
${examples}
${prior observations}

Given a series of observations I have made and some description about this NLG evaluation dataset.
1. Identify the type of evaluation task. Possible tasks include: machine translation, text

summarization, data-to-text generation, dialogue generation, image description, text simplification,
story generation, paraphrase generation, textual entailment, reasoning, etc.

2. What this evaluation task refers to evaluating.
3. Output the relationship between ‘Source’ and ‘Response’ in this task in 1-3 sentences.
4. Given a summary in fill [ ]: The evaluation task is [ ], which refers to evaluating [ ]

generated from [ ]. The relationship between ‘Source’ and ‘Response’ is [ ].
${observations}
${prior task description}

Table 10: Prompt template on Task Description
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Given a task description about this NLG evaluation dataset and a series of observations I have
made.
Your task is to list ten aspects that can be considered when measuring the overall quality of ${task
type}.
${task description}
${observations}
Output in JSON format: aspect as key, description as value.

From the provided sets of criteria for evaluating ${task type}, identify the key aspects that are
essential for this task. Select between 4 to 10 criteria that best align with the goals of your
evaluation task and prioritize them based on their importance to the overall quality of the ${task
type}.
${sets of criteria}
Output in JSON format: aspect as key, description as value.

Table 11: Prompt template on Criteria Definition

${Task Description}
Your task is to evaluate the response on multiple evaluation criteria with respect to the source on a
continuous scale from 0 to 100, and explain your process for scoring each criterion. Rate the
response on multiple evaluation criteria and give a brief explanation in a JSON format by filling in
the placeholders in [ ].

${In-context exemplar}

${Source}
${Response}
${Multiple Evaluation Criteria}

Output format:
Score Of Each Criterion In JSON:

{
Coherence: {

Explanation: “[your explanation]”,
Score: “[score from 0 to 100: 0 - No logic, 100 - Perfectly coherent]” },

Conciseness: {
Explanation: “[your explanation]”,
Score: “[score from 0 to 100: 0- Overly verbose, 100- Highly efficient]” },

...
}

Table 12: Prompt template on Multi-Criteria Scoring with Explanation

17



${Task Description}
Your task is to rate the overall quality of the response, based on the source and the scores for
different criteria of the response on a continuous scale from 0 to 100, where 0 means ‘completely
irrelevant and unclear’ and 100 means ‘perfectly relevant, clear, and engaging.’ IMPORTANT!!
Only output the score as an ‘int’ and nothing else.
“Also explain your process to get this score to response. Also please perform error Analysis of
given response. What should we change to have a better result?"

${In-context exemplar}

${Source}
${Response}
${Score Of Different Criteria}

Output format:

Explanation:
Score Of Overall:

Table 13: Prompt template on Overall Scoring with Explanation
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B Details of Parameter Setting and Implementation 914

We randomly sample 25% of the data for ACTIVE-CRITIC tuning and use the remaining 75% for meta- 915

evaluation across each NLG task. During task inference, we set the number of mini-batches to 25, with a 916

batch size of 5. The LLM is instructed to generate one task description and a set of evaluation criteria per 917

mini-batch. To enhance tuning efficiency, we allow the LLM to decide when to stop early, capping the 918

number of task descriptions and criteria sets at 5. For the scoring stage, we run 11 epoches of prompt 919

optimization. The number of in-context exemplars used per epoch is 3 for SummEval and TopicalChat, 920

and 8 for SFRES and OpenMeVA (ROC), with the difference due to varying input text lengths across 921

tasks. All parameter settings are based on empirical testing of sequential values to determine optimal 922

configurations. 923

Our experiments were carried out using two NVIDIA V100 GPU cards. For prompt optimization in the 924

scoring stage, we utilized the “BootstrapFewShotWithRandomSearch" method in DSPy (Khattab et al., 925

2023) as the optimizer, which leverages random search to generate examples. 926

C Generalization to Unseen Datasets 927

Ideally, we expect the ACTIVE-CRITIC-generated evaluation prompts can be directly used for NLG 928

system assessment in a similar future NLG scenario. To assess the generalizability of these prompts, we 929

use the prompts generated by ACTIVE-CRITIC based on SummEval examples to assess unseen cases 930

in Newsroom (Grusky et al., 2018). This dataset comprises 60 news articles and their corresponding 931

summaries generated by 7 summarization systems. Each summary is paired with an overall quality score 932

provided by human annotators. Table 14 displays the results. Our ACTIVE-CRITIC noticeably outperforms 933

baselines by ∼10% correlation on average, indicating ACTIVE-CRITIC’s generalizability. 934

Method γ ρ τ AVE

TIGERScore 0.3731 0.41 0.3075 0.3635
UniEval 0.4485 0.4505 0.325 0.408

G-eval (gpt3.5) 0.3853 0.4053 0.3012 0.3639
GPT-3.5 (zero-shot) 0.504 0.561 0.430 0.4983
AC-FINE (GPT3.5) 0.6382 0.6444 0.4949 0.5925

GPT-4 (zero-shot) 0.6583 0.6649 0.4957 0.6063
AC-FINE (GPT4) 0.7466 0.7111 0.5474 0.6684

Table 14: Generalization results of ACTIVE-CRITIC on Unseen Datasets.

D Additional Results of ACTIVE-CRITIC’s Dependence on Human-scored Data 935
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Figure 4: Results of ACTIVE-CRITIC’s dependence on human-scored data by Pearson, Spearman, and Kendell-Tau,
respectively.
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E Impact of Optimization by Pearson and Spearman Correlation936
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Figure 5: Effectiveness of Optimization. We report the Pearson (γ) correlation coefficient for our two optimal
experimental variants: AC-Coarse and AC-Fine.
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Figure 6: Effectiveness of Optimization. We report the Spearman (ρ) correlation coefficient for our two optimal
experimental variants: AC-Coarse and AC-Fine.

F Helpfulness of Explanations to ACTIVE-CRITIC’s Judgments937

To assess the impact of explanations generated by ACTIVE-CRITIC, we compared our protocol’s perfor-938

mance with versus without explanations, at both coarse and fine levels of evaluations. Figure 7 shows939

the results based on the Kendall-Tau correlation. We also provide the results of Pearson and Spearman940

correlation in Figure 8 and Figure 9 respectively.941

As shown in Figures 7, ACTIVE-CRITIC with explanations consistently demonstrates a higher correla-942

tion with human judgments than the version without explanations. Notably, the difference in correlation is943

greater for the fine-level ACTIVE-CRITIC compared to the coarse-level variant. These findings suggest944

that generating explanations for scoring helps the base LLM engage more effectively in the evaluation945

process, resulting in stronger alignment with human judgments. In particular, fine-level explanations for946

each model-inferred criterion are especially effective in boosting the model’s engagement and improving947

evaluation accuracy.948
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We measure ACTIVE-CRITIC’s performance by Kendall-Tau correlation (%). Both coarse-level (AC-Coarse) and
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SummEval
TopicalChat

SFRES

OpenMEVA (ROC)0
10
20
30
40
50
60
70

Sp
ea

rm
an

 C
or

re
la

tio
n

AC-Coarse

SummEval
TopicalChat

SFRES

OpenMEVA (ROC)

AC-Fine

With Explanation Without Explanation

Figure 9: Effectiveness of Explanation in Spearman (ρ).

G Details of Human Evaluation Design on ACTIVE-CRITIC’s Explanations 949

Our assessment consisted of four parts, with details provided below. First, for each individual explanation 950

per case, each annotator rated the quality based on: (1) clarity of the statement, (2) relevance to the 951

target criterion, (3) alignment with the corresponding score, and (4) accuracy within the context of 952

the test case (e.g., correctness in matching the source text). Further emphasizing the overall scoring 953

explanation per case, we asked annotators to assess its alignment with the criteria-specific explanations, 954

and its differentiability across cases of varying quality, respectively. Finally, we asked annotators to 955

provide an overall rating on a scale of 1-5 based on the usefulness of all generated explanations per 956

case. To validate the reliability of human annotations, following prior work (Fabbri et al., 2021), 957

we calculated intercoder reliability by Krippendorff’s alpha (Krippendorff, 2011). The 0.6534 Kappa 958

coefficient indicates substantial agreement among annotators. 959
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Human Eval for Explainations 

I will provide you with instances from the SummEval dataset, each randomly selected 

and categorized into three score ranges: 0-50, 51-80, and 81-100, with 10 instances per 

category. Each instance includes a detailed evaluation of a summary response to a source 

text. The evaluation covers several dimensions: coherence, conciseness, coverage, 

accuracy, fluency, relevance, clarity, and engagement, accompanied by detailed 

explanations and scores for each. The overall quality is also assessed.  

Your task is to assess the explanations in these instances using the provided criteria 

below. Please begin your evaluation now. Keep the document open at all times and 

consult it as necessary to guide your assessment of the specific evaluation criteria. 

 

Instance Number  

Copy the instance number, for example, (0-50)_1 

_________________________________ 

 

►Please read the explanation for each dimension in 'Explanation' carefully, and judge 

whether each explanation is unambiguous and easy to understand. 

Clarity: Is the explanation unambiguous and easy to understand? 

Yes: The explanation is concise, clear, and free of confusing terminology or expressions. 

No: The explanation contains ambiguity or confusing terms that make it hard to understand. 

 Yes No 

Coherence ○ ○ 

Conciseness ○ ○ 

Coverage ○ ○ 

Accuracy ○ ○ 

Fluency ○ ○ 

Relevance ○ ○ 

Clarity ○ ○ 

Engagement ○ ○ 

Overall Quality ○ ○ 
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►Please read the explanation for each dimension in 'Explanation' carefully, and judge 

whether each explanation reflects and closely relates to its evaluation dimension. 

Relevance: Does the explanation accurately reflect and closely relate to its evaluation 

dimension? 

Yes: The explanation accurately reflects and closely relates to the evaluation dimension. 

No: The explanation does not accurately reflect or closely relate to the evaluation dimension. 

 Yes No 

Coherence ○ ○ 

Conciseness ○ ○ 

Coverage ○ ○ 

Accuracy ○ ○ 

Fluency ○ ○ 

Relevance ○ ○ 

Clarity ○ ○ 

Engagement ○ ○ 

Overall Quality ○ ○ 

 

►Please read the explanation and score for each dimension in 'Explanation' carefully, 

and judge whether each explanation reflects the assigned score. 

Explanation and Score Alignment: Does the explanation appropriately reflect the 

assigned score, and can the user understand the reason for the assigned score through the 

explanation? 

Yes: The explanation content clearly reflects the assigned score, and the user can understand the 

reason for the score. 

No: The explanation content does not clearly reflect the assigned score, and the user cannot 

understand the reason for the score. 

 Yes No 

Coherence ○ ○ 

Conciseness ○ ○ 

Coverage ○ ○ 

Accuracy ○ ○ 
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Fluency ○ ○ 

Relevance ○ ○ 

Clarity ○ ○ 

Engagement ○ ○ 

Overall Quality ○ ○ 

 

►Please read the 'Source' and 'Explanation' carefully, and judge whether each 

explanation matches the source. 

Accuracy: Does the explanation match the source? 

Yes: The explanation matches the source text, accurately reflecting the source data or facts, with no 

hallucinations. 

No: The explanation does not match the source, containing inaccuracies or hallucinations. 

 Yes No 

Coherence ○ ○ 

Conciseness ○ ○ 

Coverage ○ ○ 

Accuracy ○ ○ 

Fluency ○ ○ 

Relevance ○ ○ 

Clarity ○ ○ 

Engagement ○ ○ 

Overall Quality ○ ○ 

 

►Please read the 'Explanation' carefully and judge from an overall perspective whether 

the overall explanation aligns with the explanations for each dimension. 

Overall Alignment: Does the overall explanation align with the explanations for each 

dimension? 

Yes: The overall explanation is consistent with each dimension's explanation and avoids any 

contradictory meanings. 

No: The overall explanation is inconsistent with the explanations for each dimension and contains 

contradictory meanings. 
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 Yes No 

Overall Alignment ○ ○ 

 

►Please read the 'Explanation' carefully and judge from an overall perspective whether 

the explanation clearly differentiates the current score segment from others. 

Score Segment Differentiation: Does the explanation clearly differentiate the current 

score segment from others? 

Yes: The explanation shows the unique characteristics of its score segment and distinguishes it from 

other segments, ensuring clear and transparent scoring. 

No: The explanation does not clearly show the unique traits of its score segment and fails to 

distinguish it from other segments, which may cause confusion in scoring. 

 Yes No 

Overall Alignment ○ ○ 

 

Overall: Review all your previous evaluations and give an overall score for the 

explanation text in the current instance. 

○1: Very poor quality, most aspects need significant improvement. 

○2: Poor quality, several key aspects need improvement. 

○3: Average quality, some aspects are good, but others need improvement. 

○4: Good quality, most aspects meet standards with minor improvements needed. 

○5: Excellent quality, all aspects are outstanding and consistent. 
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