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Abstract. Bayesian Neural Networks (BNNs) are a principled way to
incorporate epistemic uncertainty into deep learning, and they play a sig-
nificant role in out-of-distribution (OOD) detection, especially in settings
where estimating predictive uncertainty is crucial. Empirical Bayesian
methods, which initialize priors and surrogate posteriors from the weights
of pretrained deterministic neural networks, can help in OOD detection
by providing well-informed models, thereby bridging the gap between
data-driven learning and principled uncertainty estimation — especially
when true Bayesian inference is intractable. In this work, the empirical
Bayes method MOdel Priors with Empirical Bayes using Determinis-
tic neural networks (MOPED) is adapted to include a Gaussian mixture
prior. Experiments on the medical datasets D7P and BreastMNIST, with
OOD images containing artefacts such as rulers and annotations, demon-
strate marked improvements in OOD detection from the proposed prior
with predictive entropy as the score. The proposed empirical Bayes meth-
ods also performs on par with state-of-the art OOD measures.

Keywords: Empirical bayes · Out-of-distribution detection · Bayesian
neural networks.

1 Introduction

Deep neural networks (DNNs) have become a cornerstone of modern medical
imaging analysis, demonstrating exceptional performance in a variety of classifi-
cation tasks across domains such as radiology, pathology, and dermatology [21].
Their ability to automatically learn hierarchical feature representations from raw
image data has significantly reduced the need for manual feature engineering,
allowing for more accurate and scalable diagnostic tools. In particular, convolu-
tional neural networks (CNNs), a class of DNNs, have achieved near-human or
even superhuman performance in detecting diseases such as diabetic retinopa-
thy, skin cancer, and pneumonia from medical images like fundus photographs,
dermoscopic images, and chest X-rays, respectively [3,5,21]. These advances not
only promise to enhance clinical decision-making and early disease detection but
also offer potential solutions to medical resource shortages in underserved re-
gions. As such, DNN-based methods are becoming increasingly central to the
development of robust, efficient, and interpretable systems for medical image
classification.
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Despite the remarkable success of deep neural networks (DNNs) in medi-
cal image classification, their reliability in real-world clinical settings can be
compromised by out-of-distribution (OOD) inputs—samples that differ signifi-
cantly from the training data. In the medical domain, OOD inputs often arise
from imaging artefacts, rare diseases, unusual anatomical variations, or scanner-
specific distortions that were not adequately represented during training. These
anomalous inputs can lead DNNs to produce confidently incorrect predictions,
posing serious risks in high-stakes clinical environments [6, 20]. For instance,
studies have shown that DNNs trained on chest X-rays may misclassify images
with surgical implants, motion blur, or contrast variations, despite these features
being irrelevant or misleading to the diagnostic task [26]. Consequently, the abil-
ity to detect and appropriately handle OOD inputs is critical for ensuring the
safe and trustworthy deployment of AI models in medical imaging workflows.

Bayesian Neural Networks (BNNs) have emerged as a promising framework
for addressing the limitations of standard DNNs, particularly in safety-critical
applications like medical imaging [11,12,18]. Unlike conventional networks that
produce point estimates, BNNs model uncertainty by treating network weights
as probability distributions, allowing them to capture both epistemic uncer-
tainty—which is model uncertainty due to limited training data—and aleatoric
uncertainty, which arises from inherent noise in the input data [10]. This prin-
cipled approach to uncertainty quantification is especially valuable when en-
countering OOD inputs, as high epistemic uncertainty often signals a lack of
familiarity with the input, prompting caution in clinical interpretation. Pre-
dictive uncertainty derived from BNNs can thus serve as a powerful signal for
flagging unreliable predictions, triaging ambiguous cases, or guiding human-in-
the-loop review systems. In the context of medical imaging, leveraging such
uncertainty-aware models can substantially improve decision confidence, model
interpretability, and ultimately, patient safety.

Empirical Bayesian methods, such as MOdel Priors with Empirical Bayes
using DNNs (MOPED) [11], offer a practical and effective approach to improv-
ing OOD detection in Bayesian Neural Networks by leveraging information from
pretrained deterministic networks to define informative weight priors [11]. Un-
like standard Bayesian initializations that often rely on vague or uninforma-
tive priors (e.g., isotropic Gaussians), MOPED uses the pretrained weights to
construct data-informed priors, effectively anchoring the Bayesian model to a
well-performing solution. This strategy enhances epistemic uncertainty estima-
tion, especially in regions far from the training distribution, making the model
more sensitive to OOD samples. In medical imaging, where subtle shifts in in-
put distributions—due to demographic, device, or acquisition differences—can
be clinically significant, such improved uncertainty modeling directly translates
to more robust and calibrated decision-making. As a result, empirical Bayesian
techniques like MOPED bridge the gap between high-performance deterministic
models and uncertainty-aware Bayesian frameworks, offering a compelling tool
for safer AI deployment in healthcare



Empirical Bayesian Methods and BNNs for Medical OOD Detection 3

This work proposes an extension of the MOPED framework by incorporating
a Gaussian mixture instead of a single Gaussian prior on each network weight.
A Gaussian mixture prior introduces greater flexibility than a single Gaussian
by allowing the posterior to adapt to multimodal structures in the weight space,
which may better reflect the complex inductive biases inherent in pretrained net-
works. When applied in an empirical Bayes setting, this richer prior formulation
can encode both local variations and global uncertainty more effectively, poten-
tially leading to sharper epistemic uncertainty estimates in ambiguous or OOD
regions. In high-stakes domains such as medical imaging, this added expressive-
ness may yield better detection of unfamiliar or artefactual inputs, without com-
promising the strong inductive performance of pretrained deterministic models.
By grounding the prior in observed weight statistics while expanding its capacity
to model uncertainty, this approach aims to strike a balance between Bayesian
rigor and practical utility for robust, uncertainty-aware classification. The par-
ticular applications of interest are the D7P (dermatology) [9] and BreastMNIST
(ultrasound) [25] datasets, where OOD data contain rulers and annotations re-
spectively.

2 Background: Bayesian Neural Networks and Predictive
Uncertainty

Bayesian Neural Networks (BNNs) extend standard neural networks by placing
probability distributions over their weights, thereby enabling explicit modeling
of uncertainty in predictions. Let ω denote the set of neural network weights. In
a Bayesian formulation, a prior distribution p(ω) is defined over ω, and the goal
is to compute the posterior distribution given training data D = {(xi, yi)}Ni=1 as:

p(ω | D) =
p(D | ω)p(ω)

p(D)
, (1)

where p(D | ω) is the likelihood and p(D) is the marginal likelihood or evi-
dence. This posterior is generally intractable for deep networks due to the high-
dimensional and nonlinear nature of ω.

To address this, mean-field variational inference is commonly used to ap-
proximate the posterior. A simpler, factorized variational distribution q(ω) is
introduced, typically assumed to be a fully factorized Gaussian:

q(ω) =
∏
j

N (ωj | µj , σ
2
j ), (2)

and optimized by minimizing the Kullback–Leibler divergence between q(ω)
and the true posterior. This is equivalent to maximizing the evidence lower bound
(ELBO):

LELBO = Eq(ω)[log p(D | ω)]− KL[q(ω) ∥ p(ω)]. (3)
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Once trained, BNNs yield a predictive distribution for a new input x∗ by
marginalizing over the approximate posterior:

p(y∗ | x∗,D) =

∫
p(y∗ | x∗, ω) q(ω) dω. (4)

In practice, this integral is approximated via Monte Carlo sampling, by draw-
ing T samples {ω(t)}Tt=1 from q(ω):

p(y∗ | x∗,D) ≈ 1

T

T∑
t=1

p(y∗ | x∗, ω(t)). (5)

A powerful measure of predictive uncertainty is the predictive entropy :

H[y∗ | x∗,D] = −
∑
c

p(y∗c | x∗,D) log p(y∗c | x∗,D), (6)

which captures both aleatoric uncertainty (from noise in the data) and epis-
temic uncertainty (from uncertainty in the model parameters), as described
in [4, 10]. High entropy indicates uncertain predictions, making this score par-
ticularly useful for detecting out-of-distribution (OOD) samples or ambiguous
cases in medical imaging. In all MOPED experiments, predictive entropy is the
applied score.

3 Empirical Bayesian Priors: MOPED and Gaussian
Mixture Extensions

3.1 MOPED: Model Priors with Empirical Bayes

MOPED [11] is an empirical Bayesian method that enables Bayesian neural
networks (BNNs) to incorporate knowledge from deterministic pretrained models
by defining informative Gaussian priors over the model weights. Rather than
adopting standard zero-centered or uninformative priors, MOPED sets the prior
mean to the value of a pretrained deterministic model:

p(ωi) = N (ωi | µpre
i , σ2

i ), (7)

where µpre
i is the pretrained weight value and σ2

i is the prior variance, often
defined via a heuristic or treated as a hyperparameter.

Crucially, MOPED also controls the initialization of the surrogate posteriors
q(ωi) = N (ωi | µq

i , σ
q 2
i ), used in variational inference. Rather than initializing

the posterior variance with a fixed value, MOPED follows a delta-scaled initial-
ization scheme. Specifically, the surrogate posterior is initialized as:

µq
i = µpre

i , log σq
i = log δ + log |µpre

i |, (8)

where δ > 0 is a small scalar hyperparameter controlling the spread of the pos-
terior around the pretrained mean. This strategy ties the uncertainty in each
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weight to its magnitude in the pretrained model, under the intuition that larger
weights may reflect more confident parameters, and thus should have propor-
tionally calibrated uncertainty.

By leveraging pretrained weights in both the prior and the initialization of the
variational posterior, MOPED improves the efficiency and quality of posterior
inference in Bayesian neural networks, particularly under limited data and in
uncertainty-sensitive tasks such as OOD detection.

3.2 A Gaussian Mixture Prior for Bayesian Neural Networks

Consider an extension to the empirical Bayes approach used in MOPED by
replacing the single Gaussian prior with a Gaussian Mixture Model (GMM)
prior over the weights. The prior for each independent weight ωi is modeled as
a mixture of two Gaussians:

p(ωi) = π · N (ωi | µ(1)
i , σ

(1) 2
i ) + (1− π) · N (ωi | µ(2)

i , σ
(2) 2
i ), (9)

where π ∈ [0, 1] is the mixture weight (hyperparameter), and each component
has its own mean and variance. Two configurations are explored for this Gaussian
mixture prior:

1. Dual-Pretrained Initialization: Both components are initialized using
the pretrained weight µpre

i , but are assigned different variances, allowing
the model to represent both high-confidence and exploratory uncertainty
centered around the same mean.

2. Hybrid Initialization: One component is centered at the pretrained mean
µpre
i with unit variance (as in MOPED), while the second component is

initialized with a zero mean and unit variance:

µ
(1)
i = µpre

i , σ
(1)
i = 1, µ

(2)
i = 0, σ

(2)
i = 1.

This allows the model to hedge between learned inductive biases and a non-
informative component, enabling better generalization under distribution
shift or ambiguity.

This mixture formulation provides a more expressive prior that can capture
multi-modal beliefs over weights and offers greater flexibility in uncertainty mod-
eling. As with MOPED, the surrogate posterior is initialized using delta-scaled
rules based on the pretrained weights.

4 Experimental Setting

4.1 Datasets and Out-of-Distribution Detection Task

This study adopts the experimental setup proposed by Anthony and Kamnit-
sas [2] for evaluating out-of-distribution (OOD) detection in medical image clas-
sification, with the key difference that synthetic artefact augmentations are ex-
cluded. The focus is on naturally occurring artefacts, such as rulers and annota-
tion markers, which commonly appear in clinical image data and may indicate
a distributional shift not seen during training.
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Fig. 1: Example medical images (in-distribution and OOD) from D7P and
BreastMNIST. Figure included from Anthony and Kamnitsas [2] with permis-
sion from the authors.

Two medical imaging datasets are used for in-distribution (ID) training and
evaluation:

– D7P: A digital pathology dataset comprising histopathological image patches
across seven diagnostic categories. It captures diverse tissue morphologies
and is used for multi-class classification tasks.

– BreastMNIST: A dataset of breast ultrasound images annotated for benign
and malignant cases. It represents a different imaging modality (ultrasound)
compared to D7P (histopathology), but is still treated as in-distribution for
the purposes of evaluating model confidence under known conditions.

Models are trained and validated on clean, artefact-free subsets of these
datasets. The OOD inputs are composed of naturally occurring artefact-containing
images extracted from the same datasets. These include visual anomalies such
as:

– Rulers: Measurement guides overlaid during the imaging process.
– Annotations: Text labels, arrows, or segmentation markings embedded in

the image.

Such artefacts are not present in the training data and can significantly alter
the model’s feature representation, potentially leading to unreliable predictions.
Figure 1 depicts examples of images with and without artefacts for both datasets.
These inputs are withheld during training and used only at test time to evaluate
OOD detection.
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4.2 BNN Training Details

All Bayesian Neural Networks (BNNs) were trained using the Adam optimizer
with a learning rate of 5×10−5 and a batch size of 32. Training was run for a fixed
500 epochs, and the model was saved whenever validation accuracy improved.
Models were trained on 90 percent of the artefact-free in-distribution dataset,
with 10 percent used as held-out ID test examples [2]. During training, a single
Monte Carlo sample was used to estimate the evidence lower bound (ELBO),
while 100 samples were used at test time for evaluation. The variational posterior
means were initialized from pretrained weights, and the posterior variances were
initialized using a fixed MOPED delta value of 0.01. For standard MOPED, the
prior was a diagonal Gaussian with mean equal to the pretrained weights and
variance set to 1.0.

In the Dual Gaussian Mixture prior variant, both mixture components were
Gaussians centered at the pretrained weight, with variances of 0.1 and 1.0, re-
spectively. The mixture parameter π = 0.25 is applied to the narrow (0.1 vari-
ance) component. In the Hybrid variant, one component was centered at zero
and the other at the pretrained weights; both used variance 1.0. The mixture
parameter π = 0.25 is applied to the pretrained component.

Using a mixture weight of π = 0.25 assigns moderate prior belief to the
pretrained component without overwhelming the model’s ability to adapt. This
value reflects a reasonable balance: it gives the model flexibility to diverge from
pretrained weights when the data demands it (via the 75 percent weight on
the broader or zero-centered component), while still retaining some inductive
bias toward known useful features. Empirically, this balance has been found
to support generalization, as measured by improved validation accuracy on in-
distribution data.

5 Results

OOD performance data for the proposed empirical Bayesian methods and ex-
isting methods reported in Anthony and Kamnitsas [2] are shown in Table 1.
Each AUC score represents the mean over 5 independently trained models, each
initialized with a different random seed. On the D7P (ruler OOD) benchmark,
Dual achieves AUCOOD scores of 78.6 (ResNet18) and 76.3 (VGG16), while Hy-
brid reaches 80.0 and 74.4. On BreastMNIST (annotator OOD), Dual scores
79.2 (ResNet18) and 76.3 (VGG16), with Hybrid close behind at 75.8 and 74.4.
Both methods outperform the baseline MOPED model substantially. Compared
to existing confidence-based methods, which generally yield lower AUCs, and
feature-based methods such as RMS and GRAM that show variable performance,
empirical Bayesian approaches provide strong and consistent improvements. The
proposed empirical Bayes methods demonstrate competitive performance when
compared to the leading Multi-branch Mahalanobis (MBM) method.

The improved results can be attributed to the structured uncertainty mod-
eled by the mixture priors. This enables the methods to better represent multiple
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plausible weight configurations and capture epistemic uncertainty, which is par-
ticularly important for small-scale medical imaging datasets prone to overfitting.

OOD-D method
D7P (ruler OOD) BreastMNIST (anno. OOD)

ResNet18 VGG16 ResNet18 VGG16

AUCOOD AUCOOD AUCOOD AUCOOD

Confidence-based Methods

MCP [6] 49.3 51.9 55.8 52.4
SE [6] 49.5 52.8 55.8 51.4
MLS [7] 48.6 51.5 57.9 52.4
Energy Score [17] 48.5 51.5 57.6 51.9
MCDP-MCP [19] 49.3 52.0 55.8 51.9
MCDP-PE [19] 49.5 51.7 56.7 50.3
MCDP-MI [19] 49.5 51.7 56.7 50.3
DE-MCP [13] 49.9 52.7 56.0 53.3
GradNorm [8] 49.4 51.9 53.8 53.2
ODIN* [16] 64.6 52.0 58.7 53.6
ReAct* [24] 67.2 61.5 60.2 58.0
DICE* [15] 68.5 57.7 58.0 59.1

Feature-based Methods

Mahal. Score [14] 76.9 72.5 77.1 72.5
MBM [1] 80.7 73.8 77.4 76.8
RMS [22] 70.2 60.5 70.5 52.7
GRAM [23] 53.6 72.3 63.6 71.3

Empirical Bayesian Methods

MOPED [11] 64.8 49.8 72.1 67.9
MOPED GMM Dual 78.6 76.3 79.2 76.3
MOPED GMM Hybrid 80.0 74.4 75.8 74.4

Table 1: AUCOOD scores for different OOD detection methods. Feature-based
and confidence-based statistics are retrieved from Anthony and Kamnitsas [2].
The best performing method (specified by architecture and OOD task is bolded
column-wise. * methods incorporate OOD data for hyperparameter tuning.

6 Future Work

Bayesian Neural Networks are strong contenders in uncertainty quantification
applications such as OOD detection. Empirical Bayesian methods are practi-
cally significant for BNN training as they incorporate prior model information.
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This work proposes novel empirical Bayesian methods for improved and state-of-
the-art OOD detection in the context of benchmark medical imaging datasets.
Specifically, the MOPED method is adapted to include a Gaussian mixture prior,
from which two experimental settings are derived; one that incorporates a slab
and spike prior on the model weights for flexible learning, and another that bal-
ances the effects of model information and regularization. Further investigations
could include experimentation with more components in the prior, diversifying
dataset applications, and testing novel Bayesian scores.

Disclosure of Interests The author has no competing interests to declare that
are relevant to the content of this article.
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