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Abstract

In this work, we propose gradient-guided discrete walk-jump sampling (gg-dWJS), a novel
discrete sequence generation method for biological sequence optimization. Leveraging gradi-
ent guidance in the noisy manifold, we sample from the smoothed data manifold by applying
discretized Markov chain Monte Carlo (MCMC) using a denoising model with the gradient-
guidance from a discriminative model. This is followed by jumping to the discrete data
manifold using a conditional one-step denoising. We showcase our method in two different
modalities: discrete image and antibody sequence generation tasks in the single objective
and multi-objective setting. Through evaluation on these tasks, we show that our method
generates high-quality samples that are well-optimized for specific tasks.

1 Introduction

Biological sequences like antibody sequences is critical for a broad range of problems involving diverse
practical applications, from molecular imaging of cancer (Wu, 2014) to immunotherapy of cancer and viral
diseases (Hudson & Souriau, 2003; Lu et al., 2020). The optimization is challenging: the protein sequence
has an enormous state space with high-entropy variable regions. Experimental validation, on the other hand,
is both time-consuming and expensive. Generally, the engineering process begins with in vitro experiments
to determine aspects of interest such as humanization, specificity (Makowski et al., 2022), efficacy, and
pharmacokinetic properties, followed by mutation to the samples for improved properties.

Ab initio sequence generation is a fascinating direction for generating novel biological sequences given prior
samples. Using a generative model, these methods attempt to generate sequences that are similar to prior
data. We can roughly divide these models into two groups: autoregressive models (Wang et al., 2022; Jain
et al., 2022) and denoising models (Luo et al., 2022; Gruver et al., 2023). Albeit compelling, both come with
their drawbacks. On one hand, autoregressive models suffer from error accumulation and even scalability in
the case of reward distribution fitting (e.g., Jain et al. (2022)). On the other hand, denoising models require
intricate noise scheduling, making the real discovery task difficult.

To combat the inefficiency of the autoregressive and denoising models, discrete walk-jump sampling (dWJS)
(Frey et al., 2024) recently proposed sampling antibody sequences by walking on noisy manifolds, followed
by denoising jumping to the discrete data manifold. While dWJS benefits from sampling from noisy mani-
folds for discrete sequence generation, its only objective is to sample from the data distribution, leading to
sequences that are not necessarily optimized for a chosen attribute. However, in a real-world antibody opti-
mization setting, we are interested in sequences that are not only antibody-like but also attribute-optimized.

Instead of focusing on a single attribute, multi-objective optimization is important for biologicial seqeunce
design. For example, therapeutic antibodies must meet numerous criteria at the same time, such as binding
affinity, specificity, stability, and manufacturability. Traditional single-objective optimization can produce
sequences that excel in one attribute but fail in others. By including multi-objective optimization in the
generative process, we can balance competing objectives and build sequences that match all of the criteria.
This method assures that the antibodies produced are not only effective, but also practical for real-world
use.
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A simple but effective way of optimizing properties in a generative model is to train a discriminative model
and use its gradient to guide the sampling process towards a high-fitness region. While this approach is
simpler in continuous settings, enabling direct optimization in the antibody structure space, it still requires
consideration of the amino acid sequence for actual synthesis, necessitating inverse-folding (Dauparas et al.,
2022) of structures. However, the optimized structure does not guarantee a realizable sequence, and even if
the sequence exists, there is no assurance of inverse-folding it, motivating the need for direct optimization
in discrete sequence space. In a discrete setting such as antibody sequence generation, gradient guidance
is difficult. The sampling step in dWJS, thankfully, takes place in the smoothed data manifold, which lets
these discriminative models provide gradient guidance.

In this work, we present gradient-guided discrete walk-jump sampling (gg-dWJS), a novel approach for ab
initio sequence generation, building on (Frey et al., 2024), as shown in Figure 1. To improve the likelihood
of a sequence attribute, gg-dWJS learns a denoising and discriminative model on the noisy data manifold
and then walks on the noisy data manifold using discretized Langevin MCMC with gradient guidance.
Finally, using the model pair, our method performs one-step conditional denoising to jump back to the true
data manifold. We present our approach in two modalities. First, we showcase our approach in discrete
image domain in Section 5. Next, in Section 6, we detail our approach in antibody sequence generation with
two examples: single objective optimization and multi objective optimization with preference conditioning.

To summarize, the contributions of this work are:

• We propose gg-dWJS, a novel algorithm based on dWJS for target optimization using a noised
discriminator model.

• Using preference conditioning, we formalize our method for use in a multi-objective optimization
setting.

• We evaluate our method on discretized image and antibody sequence generation tasks, showing that
our method generates high-quality samples with optimized attributes.

2 Preliminary

2.1 Walk-jump sampling (WJS) with neural empirical Bayes (NEB)

By combining kernel density estimation and empirical Bayes, NEB (Saremi & Hyvärinen, 2019) provides a
denoising method to recover X for a smoothed random variable Y = X +N (0, σ2Id) such that X ⇀ Y using
the gradient log density of Y , where X ⇀ Y refers to the kernel density estimation smoothing. Formally, to
retrieve Y ⇁ X, given Y=y, we can get the least square estimator of X = x̂ according to Robbins (1992);
Miyasawa et al. (1961)–

x̂ = y + σ2∇logp(y) (1)

Where ∇logp(y) is known as the score function (Hyvärinen & Dayan, 2005) which is the gradient of log
density in the smoothed function p(y) =

∫
p(y|x)p(x)dx.

Overall, the above constitutes the WJS framework, where the walk part draws exact samples from the
smoothed density by Langevin MCMC and the jump part approximates the least-squares estimator of X at
an arbitrary time.

2.2 Discrete walk-jump sampling (dWJS)

A key property of the walk-jump sampling framework is that the least square estimation (jump) part is
decoupled from the Langevin MCMC (walk) part. dWJS takes advantage of this decoupling to train an
energy based model or a score based model on the smoothed distribution on the noised samples, sample
noisy samples with Langevin MCMC, and return back to the denoised samples with a least square estimator.
In our work, we restrict ourselves to score based model for both the sampler and the least square estimator.
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Specfically, building on the NEB, dWJS learns the score function on the noisy data manifold parameterized
as gϕ : Rd → Rd. Hence, equation 1 now looks like the following:

x̂ = y + σ2gϕ(y) (2)

We can learn the parameter ϕ by performing stochastic gradient descent on the following loss function to
denoise y in noisy data manifold to x in discrete data manifold .

L(ϕ) = Ex∼p(x),y∼p(y|x)||x− x̂ϕ(y)||2 (3)

To sample discrete under this formulation, we perform Langevin MCMC using gϕ on the noisy data manifold,
returning to the true data manifold using equation 2.

2.3 Classifier guidance in generative models

To obtain a truncation-like in diffusion models, Dhariwal & Nichol (2021) modifies the diffusion score of a
model with an auxilary gradient from the log likelihood of a classifier model. The modified score is then
used during sampling from the diffusion model, which affects sampling by upweighting the data the classifier
labels with high probability to the chosen label, providing a conditioning to the sampling process. We adapt
this effect in our method by incorporating a discriminator model in the sampling process. Unlike the classfier
guidance in diffusion models that uses during sampling, our method incorporates gradient guidance during
the least square estimation (jump) too.

2.4 Multi-objective optimization

Multi-objective optimization (MOO) refers to discovering a set of candidates x∗ ∈ X such that for d different
objectives R(x) = [R1(x), R2(x), . . . , Rd(x)], it maximizes them simultaneously, i.e.,

R(x∗) = max
x∈X

R(x) = [max
x∈X

R1(x), max
x∈X

R2(x), . . . , max
x∈X

Rd(x)]

If the objectives are in tension with one another, there is no x∗ that simultaneously maximizes all objectives.
This leads to the Pareto optimality in MOO, ensuring optimal trade-off among objectives. In this formulation,
for a candidate x1 to dominate x2, written as x1 ≻ x2,

x1 ≻ x2 ⇐⇒ Ri(x1) ≥ Ri(x2)∀i ∈ {1. . . . , d} ∧Rj(x1) > Rj(x2)∃j ∈ {1, . . . , d}.

Finally,
x∗is Pareto-optimal ⇐⇒ xi ̸≻ x∗∀i ∈ {1, . . . , d}

Pareto set constitutes the Pareto-optimal candidates, and Pareto front defines their images in the objective
space. A popular method to tackle MOO is Scalarization, which decomposes the MOO problem into a single-
objective problem. In this method, we assign convex weight wi to each objective Ri(x) such that wi > 0 and∑d

i=1 wi = 1. Using the weights, we can derive a single-objective formulation, i.e., maxx∈X R(x|w), where
R(x|w) is the scalarization function. A widely used scalarization function is weighted-sum scalarization
(Ehrgott, 2005; Miettinen, 1999), where R(x, w) =

∑d
i=1 wiRi(x). Using this formulation, we can represent

the MOO problem as a family of subproblems, each defined by a different preference vector w. Under certain
assumptions, the solutions to these problems are the Pareto optimal candidates for the preference vector w.

3 Gradient-guided discrete walk-jump sampling

gg-dWJS augments dWJS by learning a discriminator model P (C|Y ) (Step A) on the noisy data Y given
the true data X and its label C. Next, we train the score model gϕ on the noisy data Y (Step B). Later,
we utilize the discriminator’s gradient to guide the Langevin MCMC walk (Step C). Finally, we jump from
the noisy data manifold to the true discrete data manifold using the gradient guidance (Step D). For the
remainder of the paper, we use the following notations for the random variables: X refers to the true data,
Y refers to the noisy data, and C refers to the class labels. The lowercase of of the said variables refers to
the specific instances of them.
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Figure 1: Gradient-guided discrete walk-jump sampling process. We begin the sampling process by smoothing
some discrete seed. Next, we conduct the gradient-guided walk process by combining denoising gradient with
the discriminator gradient. Finally, we perform gradient-guided jump to return to the discrete data manifold.
Here, purple tint represents higher data density and larger circle represents higher data distribution.

3.1 Step A: Learning a noisy discriminator model

Given the true data X and its label C, we smooth X by adding Gaussian noise, obtaining Y = X+N (0, σ2Id).
Next, we learn the discriminator model logP (C|Y ) by parameterizing it with fθ(Y ). Note that C can be
both categorical and continuous. For example, for categorical values, we parameterize fθ(y) to return logits
over the labels given y, while for a specific attribute (e.g., Instability index), we simply learn the fθ(y) over
the attribute.

3.2 Step B: Learning a noisy score model

We learn the score model on the noisy data Y , parameterizing it with gϕ. We learn the model by minimizing
the loss L from equation 3.

3.3 Step C: Gradient guided walk

We start by sampling random discrete data y0 ∼ Ud. Langevin MCMC (Sachs et al., 2017) uses the gradient
of log density to guide the sampling process by providing information about the structure of the target
distribution. In our method, we perform discretized Langevin MCMC on y with gradient guidance from
both score function gϕ(y) and discriminator fθ(y). Formally, we use

gϕ(yk) + λ∇Y fθ(yk, c)

to perform MCMC for K steps given yk and label c at the kth step, where λ is the relative gradient guidance
strength with which we control the effect of gradient guidence.. Intuitively, one can see this as performing
a gradient accent on the label c’s probability with respect to the input yk to find the local maxima while
walking towards the smoothed data density with gϕ(yk). We summarize the process in algorithm 1. For a
detailed explanation on the discretization of Langevin MCMC, we guide our readers to Sachs et al. (2017).
Besides, we report all our hyperparameters in the Table 8.

3.4 Step D: Gradient guided jump

After the K steps of walking, we jump from the noisy data manifold to the clear discrete data using the
gradient guidance and score model given smoothed data yk and label c. From NEB, given a smoothed
input y, we can jump back to x̂ using the equation 1. Without loss of generality, we can extend that, for a
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Algorithm 1 gradient-guided discrete walk-jump sampling
Input:
c: targetted label
δ: step size
u: inverse mass
γ: friction
λ: relative gradient-guidance strength
K: number of steps taken
gϕ ≈ ∇logp(y): learnt score function
fθ ≈ logp(c|y): learnt discriminator model
y0 ∼ N (0, σ2Id) + Ud(0, 1)
v0 ← 0
for k = 0, . . . , K − 1; // gradient-guided walk
do

yk+1 ← yk + σ
2 vk

sk+1 ← gϕ(yk+1) ; // score of yk+1
dk+1 ← ∇fθ(yk+1, c) ; // discriminator gradient guidance
gk+1 ← sk+1 + λdk+1
vk+1 ← vk + uδ

2 gk+1
ϵ ∼ N (0, Id)
vk+1 ← e−γδvk+1 + uδ

2 gk+1 +
√

u(1− e−2γδ)ϵ
yk+1 ← yk+1 + δ

2 vk+1

x̂K ← yK + σ2gϕ(yK) + σ2∇fθ(yK , c) ; // gradient-guided jump
Perform argmax to receive the discrete sequence from x̂K

conditional variable c and y ∼ p(y|c),

x̂ = y + σ2∇ylogp(y|c)
= y + σ2∇ylogp(c|y) + σ2∇ylogp(y)− σ2∇ylogp(c)
= y + σ2∇ylogp(c|y) + σ2∇ylogp(y)
≈ y + σ2∇yfθ(y, c) + σ2gϕ(y)

Therefore, according to the above demonstration, we perform a one-step denoising to return to the true
discrete data manifold using fθ and gϕ from steps A & B. Specifically, the jump step approximates the true
discrete point x̂ by adding the gradient-guided adjustments to yK where yK is a point at any K time in the
walk process

x̂ = yK + σ2∇yfθ(yK , c) + σ2gϕ(yK). (4)

Here, σ2∇yfθ(yK , c) represents gradient from the score model, helping align with the data distribution and
σ2gϕ(yK) provides attribute-specific guidance, pushing the output toward regions optimized for the desired
attribute. This approach is useful because it allows to sample discrete points at any time of the walk process.

4 Multi-objective optimization with gg-dWJS

Given the added conditioning capability, we can now proceed to add the formulation for preference con-
ditioning to our method. In the case of preference conditioning, since

∑d
i=1 wi = 1, optimizing a single

objective R(x, w) =
∑d

i=1 wiRi(x) refers to a single point in the pareto front. This means that if we have a
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generative model that is controllable based on the preference vector w = {w1, w2, . . . , wd}, we can generate
the solutions to the sub-problems, thereby constructing the pareto front.

A naive approach for controllable generation with preference conditioning is to simply train d noisy objective
function models fi(y, w) ≈ wRi(y) and use d gradients to guide the generative process, i.e.,

g = gϕ(y) +∇yf1,θ(y, w1) +∇yf2,θ(y, w2) + · · ·+∇yfd,θ(y, wd) (5)

However, this approach requires us to train d discriminator models. Instead, we can approximate the
combined discriminator and use its gradient in the following way:

g = gϕ(y) +∇yf1,θ(y, w1) +∇yf2,θ(y, w2) + · · ·+∇yfd,θ(y, wd)
= gϕ(y) +∇yw1R1(y) +∇yw2R2(y) + · · ·+∇ywdRd(y)
= gϕ(y) +∇y(w1R1(y) + w2R2(y) + · · ·+ wdRd(y))
= gϕ(y) +∇yfθ(y, w)

Here, fθ(y, w) ≈ w1R1(y) + w2R2(y) + · · ·+ wdRd(y) is the preference-conditioned single-objective function.
By learning this function approximation, we can have two benefits: (a) we need only one discriminator
training, and (b) we can generalize to different preference w not seen in training by taking advantage of the
shared structure in the noisy manifold. Training the preference-conditioned discriminator model is simple:
we can sample from a preference distribution p(w) during training, use w to encode multiple objectives to a
single-objective function, and learn a function approximator fθ.1

5 Experiment on discrete image generation (|X | ≈ 10236)

To validate our method, we compare it against dWJS for the binarized static MNIST image generation
task (Salakhutdinov & Murray, 2008; Larochelle & Bengio, 2008). The high-dimensionality of this task
(28× 28× 2) makes it an attractive one to validate our approach. For this task, two questions interest us.

• Does gradient guidance enable more realistic generation than denoising walk?

• Can gg-dWJS generate conditionally, i.e., can we generate binarized MNIST images with a specific
label (say, 0)?

Table 1: Experiment results for binarized static MNIST image generation. Here, we calculate FID on the
test data. Note that by binarizing MNIST images, we lose important pixel information, contributing to the
high FID.

Method FID ↓
dWJS 54.62

dWJS w/o denoising walk w/ gradient guidance 89.42
gg-dWJS 51.88

In figure 2, we show the results of our experiment. On the left, we compare the samples generated by dWJS,
gg-dWJS without denoising walk, and gg-dWJS. Here, for gg-dWJS without denoising walk, we only use
∇fθ(yk, c) as the gradient for the Langevin MCMC. The samples show that gg-dWJS produces the most
realistic and diverse samples, which is further affirmed by the lowest Fréchet inception distance (FID) (Heusel

1Training and evaluation code, training data, and model checkpoints are available at
https://anonymous.4open.science/r/gg-dWJS/.

6



Under review as submission to TMLR

Figure 2: Comparison of binarized MNIST samples generated by different dWJS methods. Left: from top to
bottom: dWJS, gg-dWJS w/o denoising gradient, gg-dWJS. Right: from top to bottom: gg-dWJS generated
samples with label 0, 3, and 8.

et al., 2017) in table 1. Besides, we experiment with performing the walk step using only gradient-guidance,
but we find that it cannot generate high-quality samples. On the right, we show the samples of labels 0,
3, and 8 produced by gg-dWJS. They showcase the method’s ability to conditionally generate samples. We
report the details related to this experiment in Table 8.

6 Experiment on antibody sequence optimization

6.1 Paired chain antibody sequence generation (|X | ≈ 10393)

Figure 3: Visualization of generated heavy and light chain sequences using gg-dWJS optimized for instability
index. We use IgFold (Ruffolo et al., 2023) for sequence folding and Mol* viewer (Sehnal et al., 2021) for
visualization.

Table 2: Statistics of the attribute of the paired OAS dataset.

min mean median max
Instability index 12.687 40.400 40.618 68.230
% Beta sheets 0.314 0.378 0.377 0.455

Now, we turn our attention to antibody sequence generation. Following Frey et al. (2024); Gruver et al.
(2023), we represent antibody sequences as x = (x1, . . . , xd), where xi ∈ 1, . . . , 21 refers to the 20 amino acid
(AA) type, augmented by the gap token ’-’. We use the ∼1.3M sequences provided by Frey et al. (2024).
These sequences are from observed antibody space (OAS) database, aligned according to the AHo number
scheme (Honegger & PluÈckthun, 2001) using the ANARCI package (Dunbar & Deane, 2016). The gapped
heavy and light chain lengths are respectively 149 and 148, making the total dimension (149 + 148) × 21.
For the optimization task, we experiment on two simple single-objective tasks: the percentage of beta sheets
and the protein instability index (Guruprasad et al., 1990). For each task, we train a smoothed predictor on
the antibody sequences and use its gradient guidance to optimize the single objective.

Results We compare gg-dWJS with dWJS, a latent diffusion method generalized for discrete sequences
(Kingma et al., 2021, variational diffusion models (VDM)), a transformer-based language model trained for
antibody sequence design (Shuai et al., 2023, IgLM), a pre-trained large language model (LLM) (GPT-4o),
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Table 3: Experiment results for antibody sequence generation for single-objective optimization task. The
results show that gg-dWJS-generated sequences are better optimized and of higher quality.

Method DCS ↑ Instability index ↓ % Beta sheets ↑
dWJS 0.49 ± 0.30 34.14 ± 6.38 0.393 ± 0.02

gg-dWJS w/ Beta sheet discriminator 0.51 ± 0.28 35.92 ± 6.25 0.408± 0.02
gg-dWJS w/ Instability discriminator 0.56 ± 0.27 31.32 ± 5.21 0.402 ± 0.023

VDM 0.34 ± 0.31 39.50 ± 6.79 0.37 ± 0.02
IgLM 0.19 ± 0.29 38.84 ± 6.18 0.37 ± 0.02

GPT-4o 0.31 ± 0.30 42.63 ± 2.47 0.37 ± 0.01
GFlowNets 0.0 ± 0.0 39.04 ± 1.04 N/A

and a probabilistic method for discrete sequence generation (Bengio et al., 2023; Jain et al., 2022, generative
flow networks (GFlowNets)).

We report the results of our experiments in table 3. Specifically, we report the distributional conformity score
(DCS), percentage of beta sheets, and instability index for samples generated by dWJS and gg-dWJS with
the two discriminators.2 We choose the metrics for their fast evaluation following previous works (Stanton
et al., 2022; Gruver et al., 2024), though the metrics may have limited impact for real-world designs. We
describe the metrics in more details in the Appendix C.3. The results show that with beta sheet gradient
and instability index guidance, gg-dWJS generates samples with improved beta sheet percentage (Paired
t-test, p-value ≪ 0.005) and instability index (Paired t-test, p-value ≪ 0.005) than dWJS, respectively.
The results also show that our method achieves the best DCS score among all the baselines, showing its
capability of generating sequences of high Ablikeness. It is worth noting that we also train the VDM from
the same data, but its DCS score is not as high. Besides, our method with a instability index and beta
sheet percentage discriminator achieves the best instability index and beta sheet percentage of all methods,
respectively. Surprisingly, for the beta sheet percentage counterpart, many other methods come close, but
they cannot generate sequences with good ablikeness, as evident by their low DCS. The result shows that
not only does gg-dWJS generate antibody sequences that are better optimized for their respective objectives,
but it also produces sequences of higher quality overall. Details of this experiment are in appendix C

6.2 Antibody CDR H3 design (|X | ≈ 1013)

Table 4: Experiment results for antibody sequence generation for single-task optimization task. The results
show that gg-dWJS-generated sequences are better optimized and of higher quality.

Method pbind Unique Edist

gg-dWJS w/ binders only 0.93 ± 0.15 0.98 5.47 ± 1.35
dWJS w/ binders only 0.87 ± 0.20 0.99 5.98 ± 1.37

gg-dWJS 0.78 ± 0.33 1 6.30 ± 1.42
dWJS 0.53 ± 0.39 1 7.19 ± 1.34
VDM 0.33 ± 0.35 1 7.58 ± 1.19

GPT-4o 0.57 ± 0.36 1 7.42 ± 1.57
GFlowNets 0.32 ± 0.28 1 9.16 ± 0.78

Now we consider the task of generating CDR mutants on a hu4D5 antibody mutant dataset (Mason et al.,
2021). After de-duplication and removal of multi-label samples, this dataset contains 9k binding and 25k
non-binding hu4D5 CDR mutants up to 10 mutations. To classify the generated samples, we train a binary
classifier that achieves 85% accuracy on a IID validation set. For this task, we generate 1000 samples from
each baseline, classify the samples using our trained classifier, and report the binding probability.

2Because of the unavailability of the open-source implementation of DCS by Frey et al. (2024), we implement the metric
following the provided algorithm, which produces the same result for dWJS (0.49) reported by the authors.
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Results In table 4, we report the results of the comparison of our method with baselines such as dWJS,
GFlowNets, VDM, and GPT-4o. Here, mean binding probability pbind indicates different methods’ ability to
generate binders. Mean uniqueness and pairwise edit distance Edist indicate the diversity of the sequences.
Following Frey et al. (2024), we train our method only on the 9k binders and see a small pbind improvement
(0.93) over the base method (0.87). However, this is not ideal because we are not using the full sequence
data. Therefore, we train all the baselines on the entire dataset. The results indicate that our method can
utilize the sequence data to achieve good diversity (6.3) while having a modest pbind (0.78). Interestingly,
GPT-4o achieves a comparable result to dWJS, while comfortably surpassing VDM and GFlowNets. Besides,
GFlowNets (top 100) achieves the best diversity with a poor pbind. Compared to the methods mentioned
above, our method maintains a good balance of diversity and binding probability.

6.3 Antibody sequence multi-objective optimization

Figure 4: Pareto front of the samples generated
using three preference weights with gg-dWJS.

The main goal of this experiment is to showcase the
capability of gg-dWJS to generate samples with pref-
erence conditioning. Towards that vision, we choose
instability index and beta sheet percentage as the
attributes to perform preference conditioning and train
the preference-conditioned discriminator fθ(y, w) such
that w = {w1, 1 − w1} where p(w1) ∼ U(1). Followed
by a scalar normalization of the attributes, we perform a
weighted-sum scalarization to decompose the attributes
into a single attribute. Subsequently, using the three
different preference vectors w ∈ {[0, 1], [1, 0], [0.5, 0.5]},
we generate 1k samples. Figure 5 shows the distribution
of the attributes of the generated samples, showing that
samples with different preference-conditioning indeed fall
into a distinct distribution. Besides, the generated sam-
ples exhibit good diversity, as shown in table 5. Finally,
in figure 4, we show a pareto front for the generated
samples, showcasing our method’s ability to perform
in a multi-objective setting. The results show that our
method is able to generate samples according to different preferences w, e.g., w = [0, 1] generates samples
focusing on the beta sheet percentage while w = [1, 0] generates samples focusing on the instability index.

Figure 5: Distribution of the generated samples with
our method for three preferences.

Edist ↑ DCS ↑
[1, 0] 41.03 ± 13.26 0.29 ± 0.13
[0, 1] 21.27 ± 5.5 0.05 ± 0.13

[0.5, 0.5] 51.16 ± 31.79 0.10 ± 0.08

Table 5: Experiment results for preference condition-
ing with gg-dWJS for antibody sequence optimization
for three different preferences. The results show that
samples generated with preference conditioning using
gg-dWJS are diverse.

6.4 Effect of guidance strength

To understand the effect of the relative gradient-guidance strength λ, we run the antibody sequence op-
timization with the instability index discriminator guidance for λ ∈ {100, 101, 102, 103} while keeping K
fixed at 40. Figure 6 shows the result of our experiment, showing that optimization and diversity are in
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tension—greater optimization leads to sampling from a smaller region of the sampling space. Similarly, we
can see that higher guidance strength only leads to improvement in DCS up to a certain extent, after which
the DCS reduces.

Table 6: Ablation results on λ for antibody sequence optimization task. The results show that while higher
gradient-guidance strength leads to better optimization, it also leads to less diversity and data fidelity.

λ Instability index ↓ DCS ↓ Edist ↑
100 31.32 ± 5.20 0.56 ± 0.27 89.07 ± 26.80
101 26.29 ± 4.04 0.57 ± 0.27 75.90 ± 29.89
102 22.16 ± 3.63 0.58 ± 0.27 34.04 ± 24.11
103 16.43 ± 3.42 0.51 ± 0.28 28.79 ± 9.79

7 Related Work

7.1 Discrete generative models

A large class of discrete generative models consist of autoregressive models (i.e., language models). Among
many others, Austin et al. (2021) learns the posterior alphabet distribution over the prior generated data
by learning the bidirectional context in a language model. Recent works such as Generative Flow Networks
(GFlowNets) (Bengio et al., 2023; 2021) model the flow as a DAG, and learn to sample directly propor-
tional to a given reward function. Zhang et al. (2022) uses this idea to train and sample from an energy
based model (EBM) (LeCun et al., 2006) using contrastive divergence (Carreira-Perpinan & Hinton, 2005).
Besides, Grathwohl et al. (2021) improves the sampling process by leveraging local gradients using a Gibbs
sampler (George & McCulloch, 1993; Gelfand, 2000).

Another way to generate data is through denoising models (Ho et al., 2020; Song & Ermon, 2020; Song
et al., 2021). These models learn the gradient log density of the data and generate continuous data from the
perturbed data distribution. Thus, they are faster and more efficient than autoregressive models. Of course,
one cannot simply apply the denoising gradient to the discrete data distribution because the gradients are
not defined there. Many promising works attempt to remedy this by proposing different techniques. Chen
et al. (2023) simply transforms the discrete data into analogue bits, learns the denoising gradient, and
applies thresholding to return the categorical data. Sun et al. (2023) applies denoising via a continuous-time
Markov chain to the categorical data using a stochastic jump process. For graph adjacency matrices, Niu
et al. (2020) adds Gaussian perturbation to the upper triangular matrix, sample using the learn score model,
and transform samples in the continuous space by quantizing the generated continuous adjacency matrix to
a binary one. On a similar vain, Yan et al. (2024) performs post-hoc thresholding after the end of Langevin
dynamics to tranform the denoised continuous adjacency matrix to a binary or discrete adjacency matrix.
Frey et al. (2024) leverages the gradient information in the smoothed data manifold and jumps to the true
data manifold using NEB, which allows obtaining a sample at any part of the Langevin dynamics.

7.2 Protein sequence optimization

With the advancement of language models, many recent works (Madani et al., 2020; Nijkamp et al., 2023;
Ferruz et al., 2022) propose language models pre-trained on protein data to generate protein sequences,
often for tasks such as structure prediction (Lin et al., 2023). These protein language models have also
been adopted for antibody generation tasks, both unguided (Shuai et al., 2021) and guided (Gligorijević
et al., 2021; Ferruz & Höcker, 2022; Tagasovska et al., 2022). A key problem with language modeling of
antibodies is that they struggle to capture the data distribution of the antibody sequences given a limited
amount of high-quality data and high-entropy variable regions of the antibody sequences. As such, recent
works such as Luo et al. (2022); Gruver et al. (2023); Peng et al. (2023) leverage the continuous space of
antibody structures to generate antibody structures using diffusion. In this work, we focus on the problem
of generating targeted antibody sequences.
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8 Conclusion and limitations

In this work, we introduce gg-dWJS, which learns a discriminative model on the smoothed data and uses
the gradient information to augment its denoising walk towards the local maxima given some attributes.
Finally, it returns to the clean data manifold by using a conditional jump with the same model. Thus,
our method requires no additional score model training for different optimization tasks. Additionally, we
formalize our method in a multi-objective setting using a preference-conditional discriminator model. Using
preference-conditioning, we show that our method can generate samples that correspond to different regions
of the multi-objective space based on preference. We show our method’s applicability in two modalities:
discrete imagine generation and biological sequence generation in single objective and multi objective cases.

Despite our sincere efforts, our work falls short in addressing numerous issues and has limitations. For
starters, while we see an improvement in DCS with gradient guidance, the improvement starts to fade away
with the higher strength of the gradients. It is also worth mentioning that more optimization leads to less
diversity in the samples. Indeed, the general tension of data fidelity, diversity, and optimization still holds
true in our case, and improving them together is still a challenge. For example, our current approach with
MCMC can be a limitation for diversity, as it is known to suffer from mode collapse, where it diverges to a
local solution for many starting points. There are many line of work that attempts to tackle this problem
(De Souza et al., 2022; Liu et al., 2023; Wang et al., 2024b) from different viewpoints, which we believe can
be an useful addition to our work. Future works can also tackle the problem of optimization and uniqueness
together through the addition of an active learning pipeline (Settles, 2009; Hernandez-Garcia et al., 2023) to
our method. Besides, one can improve fidelity of the generated sequences through the use of strcture priors,
similar to the recent work by Wang et al. (2024a). Furthermore, we did not investigate different scalarization
functions in our preference-conditioning setting; we left that along with the multi-objective benchmarking
of our method for future work.

Broader Impact Statement

This work falls in the line of discrete generative modeling. While the negative impacts of generative modeling
apply to it, the authors do not foresee any particular negative impacts.
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Supplementary material for
Gradient-guided discrete walk-jump sampling

for biological sequence generation
Annonymous authors.

Acronyms

AA amino acid. 7

DAG directed acyclic graph. 10

DCS distributional conformity score. 8–10, 17, 18, 21

dWJS discrete walk-jump sampling. 1–3, 6–8, 18

EBM energy based model. 10

FID Fréchet inception distance. 6, 17

GFlowNets Generative Flow Networks. 10

gg-dWJS gradient-guided discrete walk-jump sampling. 1–3, 5–8, 11, 18, 19, 21

GRAVY grand average of hydropathicity. 17

KDE kernel density estimation. 17

MCMC Markov chain Monte Carlo. 1–4

MOO multi objective optimization. 18, 19

NEB Neural empirical Bayes. 2–4, 10

OAS observed antibody space. 7, 17–20

A Notations

Table 7: Notations summary

Symbol Description
X discrete random variable
Y smoothed random variable

X ⇀ Y kernel density estimation smoothing
Y ⇁ X denoising mechanism of empirical Bayes
gϕ(y) learnt score function
fθ(y) learnt discriminator function

w preference condition weights
δ step size
u inverse mass
γ friction
λ relative gradient-guidance strength
K number of steps taken
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B Additional details on the static MNIST experiment

We train the noisy score and discriminator model on the binarized static MNIST dataset.3 For score
model architecture, we use a U-Net architecture (Ronneberger et al., 2015) that takes the smoothed one-hot
representation of the discrete images and returns the score of the same shape. Finally, we train a CNN
architecture 4 on smoothed data and their corresponding labels for the discriminator model.

Figure 6: Randomly chosen 400 static MNIST test-set samples.

C Additional details on the antibody sequence optimization experiment

C.1 Training details

All our models are trained with maximum 40 epochs with early stopping and with a learning rate of 10−4,
a weight decay of 0.01, and a batch size of 64. We validate our models on a held-out validation set separate
from the training data. Both the discriminator and the score based models for all experiments are trained
with mean square error loss, except for CDR H3 experiment, in which the discriminator is trained with a
binary cross entropy loss. We save the best models based on the validation loss and use the model during
sampling.

C.2 distributional conformity score (DCS)

The recently proposed DCS measures sample quality using a sample-to-distribution metric, as opposed to
previous sample recovery metrics (Jin et al., 2021). It measures the fraction of the validation sequences
that are less similar to their IID samples compared to a target sample. We show the algorithm to calculate
DCS from Frey et al. (2024) in algorithm 2. We implement DCS using two sequence-based properties:
molecular weight and grand average of hydropathicity (GRAVY) (Kyte & Doolittle, 1982). We used the
kernel density estimation (KDE) implementation by Scikit-learn (Pedregosa et al., 2011) to approximate the
joint distribution using a Gaussian kernel and a bandwidth of 0.15. DCS is a data-fidelity metric similar to
FID for images. Unsurprisingly, DCS and optimized attributes are in tension—optimization while preserving
data fidelity is harder.

C.3 Evaluation metrics

Paired OAS experiment. We show the optimization of two attributes in this experiment: % beta sheets
and instability index. The fraction of beta-pleated sheets provides insights into the structural characteristics
of antibody sequences, influencing their stability and functionality. The protein stability index is a test
proposed by Guruprasad et al. (1990). A protein sequence has a short half-life if its stability index is above
40. Stability is a crucial metric in the context of therapeutic antibody generation, as it is closely associated
with manufacturability.

3Collected from Kaggle
4Based on the PyTorch example, adapted for discrete data.
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Algorithm 2 distributional conformity score (DCS) (adapted from Frey et al. (2024))
Input:
D: reference distribution
x ∈ X : test example
A: conformity measure
Output:
py: the fraction of validation examples that are less similar to Dz|y than x

Sample (z1, . . . , zn) , zi ∼ Dz|y and a held-out validation set (z̃1, . . . , ˜zk−1) , z̃i ∼ Dz|y
z̃k ← (x, y)
for i = 1, . . . , k do

αi ← A(z1, . . . , zn, z̃i

py ← 1
k

∑k
i=1[αi < αk]

return py

CDR H3 experiment. The key attribute for this experiment is pbind, the probability of being a binder,
which we obtain from the binary classifier trained on the data. Besides, to measure the diversity of the
generated sequences, we use mean uniqueness and edit distance Edist.

Paired OAS MOO experiment. The metrics used in this experiment are similar to those listed above:
% beta sheets and instability index for the optimization metric, edit distance for the diversity metric, and
DCS for the data fidelity metric.

D Implementation details of the baselines

D.1 Score models

We follow Frey et al. (2024) for the score model implementation available at
https://github.com/Genentech/walk-jump. We use a 35-layer Bytenet (Kalchbrenner et al., 2016)
architecture with a hidden layer of 128. To train the model from scratch, we utilize a batch size of 64 and
the AdamW optimizer (Loshchilov & Hutter, 2019) in PyTorch (Paszke et al., 2019) with early stopping.
The training parameters include a learning rate of 10−4 and a weight decay of 0.01. We conducted the
training using four NVidia A100 GPUs. The training process takes approximately 10 hours. For training
the score model, we use σ = 1. We use the same score model training method for all experiments in this
paper. Table 8 lists all the hyperparameters we use for sampling from the score model using dWJS and
gg-dWJS.

Table 8: Hyperparameters used for dWJS and gg-dWJS sampling.

σ 1
δ 0.5
γ 1
K 40

λ (% beta sheet) 100
λ (instability index) 1

D.2 Discriminator models

Paired OAS experiment We train the discriminator model on two sequence-related properties: the per-
centage of beta sheets and the protein instability index. We label the training sequences using BioPy-
thon (Cock et al., 2009). For the architecture of the smoothed predictor, we adopt a 3-layer 1D-CNN
followed by a 3-layer MLP integrated into the existing ByteNet architecture, incorporating leakyReLU (Xu
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et al., 2020) activations between the layers. Finally, we follow the same training parameters as the score model
training. To use the discriminator models’ prediction gradients as guidance, we use the torch.autograd on
the models prediction given a label or not (in case of a non-categorical variable).

CDR H3 experiment Here, we have two similarly trained discriminator models for two different purposes:
the discriminator model on pbind for classification and the noised discriminator model for generation using
gg-dWJS. We adopt a similar approach to the one used in the paired OAS experiment, except for using a
sigmoid terminal activation and binary cross entropy loss function to accommodate the binary classification.

Paired OAS MOO experiment The chosen attributes for the MOO experiment are instability index
and % beta sheets. For this experiment, we attempt to lower both values as the multi-objective criteria.
Therefore, we train a noised discriminator model that outputs a weighted sum of the normalized attributes.
To achieve preference conditioning, the setup is similar to the other discriminators, except we concatenate
the preference vectors with the output of the 1D-CNN.

D.3 Variational diffusion models (VDM)

In this baseline, we project the discrete sequences into a continuous latent space
and perform the diffusion in the latent space. We use the implementation from
https://github.com/addtt/variational-diffusion-models to train the VDM model on the OAS
dataset by performing gradient descent on the reconstruction and diffusion loss. We use a generalization of
the same model to sample discrete sequences by performing a reverse diffusion process for 100 steps.5 Our
implementation uses hyperparamers as listed in the table 9.

Table 9: Hyperparameters used in the VDM implementation.

Embedding dimension 128
Attention head 1

Dropout probability 0.1
γmin -13.3
γmax 5

Learning rate 2x10−4

Weight decay 0.01

D.4 IgLM

IgLM is the autoregressive baseline for our comparison. We use the open-source package from
https://github.com/Graylab/IgLM to sample heavy and light chain samples. We used the following
prompt to generate the heavy sequences, with an adjustment to the chain_token attribute to generate
the light sequences.

METHOD_NAME = "IgLM"
prompt_sequence = ""
chain_token = "[HEAVY]"
species_token = "[HUMAN]"
num_seqs = 1000

D.5 GPT-4o

Following Frey et al. (2024), We use GPT-4o as a large language model (LLM) baseline. For the paired OAS
generation experiment, we prompt the following prompt.

5In layman’s terms, we perform an argmax on the last step while sampling.
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You are an expert antibody engineer. I am going to give you examples of antibody
heavy chain and light chain variable regions from the paired observed antibody
space database. You will generate 10 new antibody heavy chain and light chain that
are not in the database. Output the 10 samples as a python list. Here are the
examples:
[(’QVQLVQS-GTEVKKPGSSVKVSCKASG-GTFSS––-Y . . . DYYCQAWDY–––––––––––-STAVFGTGTKVTVL’)]

Similarly, we perform a similar prompt for the CDR H3 design experiment. The prompt is the following:.

You are an expert antibody engineer. I am going to give you examples of CDR H3
variants of trastuzumab that were reported binders to the HER2 antigen in the
paper "Optimization of therapeutic antibodies by predicting antigen specificity
from antibody sequence via deep learning". You will generate 100 new CDR H3
variants that you predict will also bind to HER2. Output the 100 samples as a
python list. Do not post the code. Instead, show the samples directly. Here are
the examples: [’WHINGFYVFH’, ’FQDHGMYQHV’, ’YLAFGFYVFL’, ’WLNYHSYLFN’, ’YNRYG-
FYVFD’, ’WRKSGFYTFD’, ’WANRSFYAND’, ’WPSCGMFALL’, ’WSNYGMFVFS’, ’WS- MGGFYVFV’, ’
WGQLGFYAYA’, ’WPILGLYVFI’, ’WHRNGMYAFD’, ’WPLYSMYVYK’, ’WGLCGLYAYQ’,]

D.6 Generative flow networks (GFlowNets)

GFlowNets is a popular baseline for discrete generative modeling using a probabilistic method. However, for
the current implementation of GFlowNets, generating samples in a state space of size 21249 is difficult. There-
fore, we reduce the problem of generating the paired sequences to generating the first 50 mutations of the full
sequences with trajectory balance objective (Malkin et al., 2022). The heavy and light chain suffixes added
to the generated mutations are QVQLVQSGTEVKKPGSSVKVSCKASGGTFSSYAVSWVRQAPGQ-
GLEWMGR FIPILNIKNYAQDFQGRVTITADKSTTTAYMELINLGPEDTAVYYCARGSLSGREGLP-
LEYWGQGTLVSVSS and EVVMTQSPATLSVSPGESATLYCRASQIVTSDLAWYQQIPGQAPRLLI-
FAASTRATGIPARFSGSGSETDFTLTISSLQSEDFAIYYCQQYFHWPPTFGQGTKVEIK, respectively.
We use the implementation provided in Bengio et al. (2023) for our experiment. We use a 3-layer MLP with
256 hidden dimensions to model the forward layer, which is then followed by a leaky ReLU. The forward
layer takes the one-hot encoding of the states as inputs and outputs action logits. To model the forward
and backward flow, we double the action space and train the MLP. with a learning rate of 10−3, including
a learning rate of 0.1 for Zθ. Since GFlowNets can learn to sample proportionally to a reward distribution,
we transform the optimization criteria as a reward function R(x) in the following way:.

Paired OAS experiment: optimizing instability index We label the training sequences using BioPy-
thon (Cock et al., 2009) and transform the instability index to a reward by performing the following trans-
formation: R(x) = 2 index−5

10 where index is the instability index of x.

CDR H3 experiment: optimizing binding likelihood We use the training classifier used for evaluation
to get the binding likelihood of the training sequences. The reward transformation in this task is R(x) =
2pbind − 1.

E Additional experiments

E.1 Effect of K

To understand the effect of the number of sampling steps K, we perform an ablation experiment on K
using the instability index discriminator model as the gradient guidance. For this experiment, we change
K ∈ {10, 20, 30, 40, 50} while keeping λ = 1. Table 10 shows the results of the experiment. We can see that
there is a minimal change in the attribute, data fidelity, and diversity. In a close inspection, we see that as
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K increases, sampled sequences are more optimized, yet less diverse. Notably, DCS continues to improve
until K = 40, after which it decreases.

Table 10: Ablation results on number of samples steps K for antibody sequence optimization task. We see
a generally indifferent yet a slightly optimized attribute in exchange of a reduced diversity as K increases.

K Instability index DCS Edist

10 31.69 ± 5.42 0.52 ± 0.28 95.35 ± 24.35
20 31.96 ± 5.25 0.53 ± 0.28 91.23 ± 25.47
30 31.41 ± 5.42 0.54 ± 0.27 90.34 ± 26.55
40 31.32 ± 5.20 0.56 ± 0.27 89.07 ± 26.80
50 31.38 ± 5.33 0.55 ± 0.27 87.47 ± 26.70

E.2 Statistical analysis on preference conditional generation

To determine the statistical significance of the samples generated with different preferences using gg-dWJS
from figure 5, we run a Friedman test (Friedman, 1937; 1940).6 In this case, we utilize three distinct
preferences to represent three different treatments. Table 11 shows the result of the test. The table contains
three main attributes: the proportion of beta sheets and the instability index, each analyzed using different
weight combinations. The Friedman test yields low p-values (p < 0.001), indicating statistically significant
differences between weight arrangements. For example, sequences optimized with w1=1 and w2=0 have a
beta sheet percentage of 0.44 ± 0.01, whereas those with w1=0 and w2=1 have a greater instability index
of 61.84 ± 4.23. These results demonstrate our method’s capacity to build sequences based on certain
optimization preferences.

Table 11: Experiment results for antibody sequence generation for multi-objective optimization task. Here
the two objectives are percentage of beta sheets and aromaticity. The results show that gg-dWJS-generated
sequences are optimized for different preferences. We use Friedman test to demonstrate that the attributes
are statistically different.

statistic p-value w1=1,w2=0 w1=0,w2=1 w1=0.5,w2=0.5
% Beta sheet 1564 <0.001 0.44± 0.01 0.39± 0.01 0.43± 0.02

Instability index 1522 <0.001 36.11± 2.45 61.84± 4.23 41.90± 8.54

E.3 Experiments with more objectives

To understand the capability of our method under more objectives, we conduct experiments with 5 objectives:
target molecular weight, inverse sequence length, negative GRAVY, % beta sheets, and inverse instability
index, with our preference weight w indictating their preference in that order. We set the target molecular
weight to 23000 and use e−(molWt−23000)2/23000 as our objective which is maximized at 23000. Table 12 shows
the results of our experiment. We can see that with the objectives are satisfied with their corresponding
preferences. For example, with w = [0, 0, 0, 0, 1] the instability index is minimized while with w = [1, 0, 0, 0, 0],
the molecular weight is closer to the target weight.

F Discussion

Why does discriminator gradient guidance produce higher quality samples? We speculate that the guidance
assists the denoising walk by reducing the discrete space. Moreover, by collaborating with the denoising
score, it strengthens the actions taken in relation to a particular label, thus enhancing the accuracy of the

6We use the SciPy package (https://scipy.org).
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Table 12: Experiment results for antibody sequence generation for multi-objective optimization task for five
objectives.

w Molecular weight Sequence length GRAVY % Beta sheets Instability index
[1, 0, 0, 0, 0] 23915.45 ± 475.02 231.36 ± 3.68 -0.25 ± 0.08 0.39 ± 0.02 36.40 ± 6.14
[0, 1, 0, 0, 0] 24727.72 ± 454.44 229.23 ± 3.53 -0.26 ± 0.09 0.39 ± 0.02 35.63 ± 6.26
[0, 0, 1, 0, 0] 24796.43 ± 472.75 229.49 ± 3.73 -0.28 ± 0.09 0.39 ± 0.02 35.25 ± 6.06
[0, 0, 0, 1, 0] 24942.65 ± 483.04 230.78 ± 3.52 -0.24 ± 0.08 0.41 ± 0.02 32.04 ± 4.71
[0, 0, 0, 0, 1] 25273.25 ± 373.58 231.70 ± 3.24 -0.25 ± 0.10 0.39 ± 0.02 26.95 ± 3.89

generated data. There are many works, such as Dhariwal & Nichol (2021); Kawar et al. (2022), that report
the same phenomenon. We leave the experimental validation of this underlying effect for future work.
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