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Abstract
Online safe reinforcement learning (RL) plays
a key role in dynamic environments, with ap-
plications in autonomous driving, robotics, and
cybersecurity. The objective is to learn opti-
mal policies that maximize rewards while satis-
fying safety constraints modeled by constrained
Markov decision processes (CMDPs). Existing
methods achieve sublinear regret under stochastic
constraints but often fail in adversarial settings,
where constraints are unknown, time-varying, and
potentially adversarially designed. In this paper,
we propose the Optimistic Mirror Descent Primal-
Dual (OMDPD) algorithm, the first to address on-
line CMDPs with anytime adversarial constraints.
OMDPD achieves optimal regret Õp

?
Kq and

strong constraint violation Õp
?
Kq without re-

lying on Slater’s condition or the existence of a
strictly known safe policy. We further show that
access to accurate estimates of rewards and tran-
sitions can further improve these bounds. Our
results offer practical guarantees for safe decision-
making in adversarial environments.

1. Introduction
Online safe reinforcement learning (RL) has been applied
successfully across various domains, including autonomous
driving (Isele et al., 2018), recommender systems (Chow
et al., 2017), and robotics (Achiam et al., 2017). It en-
ables the efficient development of policies that adhere to
essential safety requirements, such as collision avoidance,
budget compliance, and reliability. In safe RL, the objec-
tive is to learn an optimal policy that maximizes cumulative
rewards while satisfying expected cumulative safety con-
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straints when interacting with an unknown environment.
These safety-critical sequential decision-making problems
are formally modeled as constrained Markov decision pro-
cesses (CMDPs) (Altman, 1999). We study the problem
of learning such policies in episodic CMDPs where the
agent must balance exploration and exploitation to mini-
mize strong regret(regret and hard constraint violation), a
metric quantifying the cumulative performance loss rela-
tive to the optimal safe policy—while avoiding excessive
constraint violations.

In many practical scenarios, especially in safety-critical
applications, the environment is often dynamic, with con-
ditions that can change unpredictably or even adversarially.
Relying solely on stationary models can lead to suboptimal
or unsafe outcomes, as these models fail to capture the time-
varying nature of constraints and system dynamics. For
instance, in autonomous driving (Kirschner et al., 2021), it
is crucial to avoid collisions in variable environments in-
fluenced by changing traffic flows and weather conditions.
Similarly, in cybersecurity (Yinka-Banjo & Ugot, 2020),
adversarial CMDPs can model interactions between sys-
tem defenders and attackers, requiring defenders to make
decisions under uncertainty and strict system constraints
while accounting for potential adversarial actions. This ne-
cessitates the consideration of adversarial settings, where
constraints may be unknown, time-dependent, and poten-
tially adversarially designed to challenge the learning pro-
cess. Existing methods (Efroni et al., 2020; Müller et al.,
2023; Germano et al., 2023; Müller et al., 2024; Kitamura
et al., 2024) provide sublinear regret guarantees for stochas-
tic constraints but struggle to generalize to such adversarial
cases. The adversarial setting is inherently more challenging
due to the dynamic and unpredictable nature of constraints,
compounded by the assumption that error cancellation in
constraint violations is not allowed. Adversarial CMDPs
are thus crucial for handling dynamic environments, ensur-
ing robust and safe decision-making in situations where
conventional stochastic models fall short.

Constraint violation is usually used to theoretically evaluate
the performance of the safety of a safe RL algorithm. One
commonly used constraint violation evaluates the policies in
the beverage sense such that it allows error cancellation, as
defined by (Efroni et al., 2020), involves summing positive
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(unsafe) and negative (safe) constraint violations, ensuring
a sublinear total constraint violation during learning. In this
paper we consider a stronger notion of constraint violation,
focusing exclusively on the sum of positive errors. To il-
lustrate, consider a cost function dpπkq, which equals ´1
when the policy πk used in episode k is safe, and 1 when it
is unsafe. If half of the policies over K episodes are safe
and the other half are unsafe, the weak constraint violation—
permitting cancellation—results in r

řK
k“1 dpπkqs` “ 0,

where r¨s` “ maxt¨, 0u. However, under strong constraint
violation, which disallows cancellation, the total violation
becomes

řK
k“1 rdpπkqs

`
“ K{2. Clearly, weaker sublinear

constraint violations do not ensure relatively safe policies
during learning.

In this work, we aim to address two fundamental research
questions: RQ1: Can we design a unified algorithm that
achieves the optimal order of regret and hard constraint
violation in unknown CMDPs with both stochastic and ad-
versarial costs under minimum assumption? RQ2: What
are the bottlenecks for further improving the bound?

CMDPs with cumulative constraints that allow cancellation
have been extensively studied under both model-free (Wei
et al., 2022a;b; 2023; Ghosh et al., 2022; Bai et al., 2022)
and model-based approaches (Ding et al., 2021; Liu et al.,
2021a; Bura et al., 2021; Singh et al., 2020; Ding et al., 2021;
Chen et al., 2022; Efroni et al., 2020). The study by (Qiu
et al., 2020; Stradi et al., 2024a) focuses on CMDPs with
only an adversarial reward function. Recent work (Germano
et al., 2023; Stradi et al., 2024c) considers online learning
CMDPs under strong constraint violation for the long-term
average cost and sublinear regret and violation results are
well established. However, we note that in our scenario, the
constraints are sufficiently strict—particularly in adversarial
settings—that an average safe policy fails to guarantee
safety for each individual episode. Consequently, focusing
on the long-term average constraint alone is less meaningful
under these conditions. Other works such as (Ding & Lavaei,
2022; Wei et al., 2023) consider scenarios where rewards,
costs, and transition kernels are non-stationary, assuming
bounded total variation. However, all of the above works
we mentioned are not applicable to settings with adversarial
costs, and they only address weak constraint violations.

To address the aforementioned challenges, we propose the
Optimistic Mirror Descent Primal-Dual (OMDPD) algo-
rithm that ensures optimal regret and strong constraint vi-
olation bounds with respect to the number of episodes K,
regardless of whether the reward and cost functions are gen-
erated stochastically or adversarially. Our contributions are
summarized as follows:

• We present the first work addressing online CMDPs with
anytime adversarial constraints. Our work advances the
theoretical understanding of CMDPs under unknown ad-

versarial cost functions by proposing a novel unified al-
gorithm, OMDPD, capable of handling both stochastic
and adversarial rewards/costs without relying on Slater’s
condition. OMDPD achieves Õp

?
Kq regret and Õp

?
Kq

strong constraint violation when rewards and costs are
either stochastic or adversarial, both of which are optimal
with respect to the total number of learning episodes K.

• It is well known that one of the bottlenecks of forbidding
algorithms for online CMDP from achieving a higher
bound is because of the estimation errors of reward/cost
and transition kernels. We further show that if a perfect
simulator (generative model) is given such that we can
have an accurate estimate of the reward and transition
kernels (cost function is also not known and can be adver-
sarial), our regret bound can be further improved to Op1q

when the reward function(also unknown) is fixed.

2. More Related Work
Müller et al. (2023) proposes an augmented Lagrangian
method for addressing CMDPs with strong constraint vio-
lations under a requirement of a strictly known safe policy.
Stradi et al. (2024c) propose a primal-dual algorithm (CPD-
PO), building on the policy optimization framework of (Luo
et al., 2021), which achieves Õp

?
Kq regret. However, nei-

ther of these works addresses the adversarial cost setting.
In addition, Stradi et al. (2024b) consider the adversarial
reward setting but still assume stochastic constraints, requir-
ing strong assumptions such as access to a strictly feasible
policy and knowledge of its associated cost. Clearly, Stradi
et al. (2024b) also cannot be applied to adversarial constraint
scenarios. Additional studies by (Müller et al., 2024) and
(Kitamura et al., 2024) focus on last-iterate convergence
under stochastic constraints, achieving rates of ÕpK0.93q

and ÕpK6{7q, respectively. These results crucially rely on a
stationary setting. A detailed comparison of the theoretical
results between our algorithm and the most existing studies
is summarized in Table 1.

3. Preliminaries
Notation. For any n P N, we use the short-hand notation
rns to refer to the set of integers t1, . . . , nu. For x P R, we
define the operation rxs` :“ maxt0, xu to be the positive
truncation of x. Throughout the paper, we use } ¨ } to denote
the Euclidean norm. Additionally, for a given 1-strongly
convex function U , we define the Bregman divergence be-
tween two points: Dpa, bq “ Upaq´Upbq´x∇Upaq, a´by.

We consider a finite-horizon episodic CMDP, which is
defined as a tuple M “ pµ,S,A, H, tPhuHh“1, trkuKk“1,
tdkuKk“1q, where µ is the initial state distribution, S and
A are the state and action spaces. We assume that both
the state space and action space are finite and countable
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Algorithm Regret Adversarial Violation Stochastic Violation Slater’s Condition Known Safe Policy
(Efroni et al., 2020) Op

?
Kq N/A Op

?
Kq ✓ No

(Müller et al., 2023): Op
?
Kq N/A Op

?
Kq ✓ Yes

(Stradi et al., 2024c): Õp
?
Kq N/A Õp

?
Kq ✓ No

(Müller et al., 2024): ÕpK0.93q N/A ÕpK0.93q ✓ No
(Kitamura et al., 2024): ÕpK

6
7 q N/A ÕpK

6
7 q ✓ No

OMDPD: Õp
?
Kq Õp

?
Kq Õp

?
Kq ✗ No

Table 1. Comparison between OMDPD and existing related work. We omit the dependence on the dimension of the action, state space,
and the number of steps in CMDPs here. : : Consider the stronger notion of constraint violation, which disallows cancellation. (Efroni
et al., 2020) only consider a weaker version. (Müller et al., 2024) need to access a strictly feasible policy. More discussions can be found
in Section 2.

with cardinalities |S| “ S, |A| “ A. In the online learn-
ing under finite-horizon episodic CMDPs, each episode
k P rKs has H steps and at each h P rHs, we use
Phps1|s, aq : S ˆ A ˆ S Ñ r0, 1s to denote the tran-
sition kernel from state action pair ps, aq to a next state
s1 at step h. Without loss of generality, we assume that
the reward function trkuKk“1 is a sequence of vectors at
each episode k P rKs, in particular,rk “ prk,1, . . . , rk,Hq,
where rk,h : S ˆ A Ñ r0, 1s,@h P rHs, k P rKs.
Similar, the cost function dk,h at step h in episode k is
dk,h : SˆA Ñ r´1, 1s, both rewards and costs are bounded
for any h P rHs, k P rKs. The transition kernels, reward
functions, and cost functions are unknown. In this paper,
we consider the stochastic reward where rk is a random
variable distributed according to a distribution R for every
k P K, with two different types of cost functions: stochastic
constraint and adversarial constraint:

• Stochastic cost: In stochastic cost setting, dk is a ran-
dom variable distributed according to a fixed probability
distribution D for every k P rKs.

• Adversarial cost: In adversarial cost setting, dk are
adversarially-selected and unknown.

In online CMDPs, the agent interacts with the CMDP by
executing a policy π “ tπ1, π2, ..., πHu, where πhp¨|sq P

∆pAq, and ∆p¨q is a probability simplex. We denote by
πp¨|sq the probability distribution for a state s P S, When-
ever the agent takes an action a in state s at step h, in episode
k, it observes reward rk,hps, aq sampled from a fixed dis-
tribution, and cost , dk,hps, aq sampled either from a fixed
distribution for the stochastic setting or chosen by an adver-
sary for the adversarial setting. Then the value function for
the reward and cost under the policy π and transition kernel
p are defined as:

V πprk, pq :“ E

«

H
ÿ

h“1

rk,hpsh, ahq|s1, π, p

ff

(1)

V πpdk, pq :“ E

«

H
ÿ

h“1

dk,hpsh, ahq|s1, π, p

ff

. (2)

In the following, we denote by Π the set of all the possible
policies the agent can choose from. we are interested in
solving the following optimization problem:

π˚ P argmax
πPΠ

V πpr̄, pq

s.t. V πpd̄, pq ď 0, (stochastic cost), (3)
s.t. V πpdk, pq ď 0,@k P rKs (adversarial cost),

where r̄ :“ Er„Rrrs, d̄ :“ Ed„Drds. The solution of this
offline optimization problem (3) is considered as the base-
line algorithm which serves to evaluate the performances of
online algorithms. The goal of the online CMDP problem is
to learn an optimal policy to minimize cumulative regret and
strong cumulative violation of constraints after K episodes,
which are defined below:

RegretpKq “

K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̄, pq

ı

(4)

ViolationpKq“

K
ÿ

k“1

“

V πkpd̄, pq
‰`

, (stochastic cost) (5)

ViolationpKq“

K
ÿ

k“1

rV πkpdk, pqs
`
, (adversarial cost) (6)

Alternatively, the online optimization problem (3) can also
be represented using the notion of occupancy measure (Alt-
man, 1999) tqπhps, a; pquHh“1 under a policy π and transition
kernel p. For everys P S, a P A, we have the occupancy
measure defined as:

qπhps, a, s1q “ Prpsh`1 “ s1, sh “ s, ah “ a|p, π, s1q

qπhps, aq “
ÿ

s1PS
qπhps, a, s1q (7)

It is well known that the CMDP problem can be formulated
as an LP problem (Altman, 1999), then the optimal occu-
pancy measure can be obtained by solving the following
optimization problem:

max
qPQ

r̄Jq (8)

s.t. d̄Jq ď 0, (stochastic cost) (9)
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s.t. dJ
k q ď 0,@k P rKs, (adversarial cost), (10)

where q P r0, 1sSAH is the occupancy measure vector, with
its values defined in Eq. (7), and Q represents the set of
all valid occupancy measures. r̄ P r0, 1sSAH and d̄pdkq P

r´1, 1sSAH denote the reward and cost vectors, respectively,
with a slight abuse of notation. On either hand, for any q,
the corresponding policy can be reconstructed as:

πq
hpa|sq “

qhps, aq
ř

a1 qhps, a1q
. (11)

Given all the notations above, we denote the optimal so-
lution to the optimization problem (3) as q˚, which also
serves as the baseline. In this paper, following the standard
assumptions, we consider the bandit feedback setting in
which the learner observes only the rewards and costs for
the chosen actions in the stochastic cost setting. However,
in the adversarial cost setting, the full cost vector dk is re-
vealed after episode k, while the reward remains as bandit
feedback throughout.

4. Main Algorithm
In this section, we introduce our main algorithm and the
designs behind that to ensure the optimal order on the regret
and violation bounds.

4.1. Optimistic Estimates

To encourage the exploration of the unknown CMDP, we
first need to use the principle of optimistic estimate (Auer
et al., 2008). Let nk´1

h ps, aq “
řk´1

k1“1 1tsk
1

h “s,ak1

h “au
de-

note the number of times that the state-action pair ps, aq

is visited at step h before episode k. Here, psk
1

h , ak
1

h q de-
notes the state-action pair visited at step h in episode k1, and
1t¨u is the indicator function. Then the empirical transition
kernels, rewards and violations can be calculated as follows:

p̂k´1
h ps1|s, aq :“

řk´1
k1“1 1tsk

1

h “s,ak1

h “a,sk
1

h`1“s1u

nk´1
h ps, aq _ 1

, (12)

r̂k´1
h ps1|s, aq :“

řk´1
k1“1 R

k1

h ps, aq1
tsk

1

h “s,ak1

h “au

nk´1
h ps, aq _ 1

, (13)

d̂k´1
h ps1|s, aq :“

řk´1
k1“1 D

k1

h ps, aq1
tsk

1

h “s,ak1

h “au

nk´1
h ps, aq _ 1

, (14)

where a _ b :“ maxta, bu. Remark that Eq. (14) is only
used for the stochastic cost case. Then we can define the
optimistic rewards, costs, and confidence set of transition
kernels Bk,hps, aq as

r̃k,hps, aq :“ r̂k´1
h ps, aq ` βr

k,hps, aq (15)

d̃k,hps, aq :“ d̂k´1
h ps, aq ´ βd

k,hps, aq (16)

Bk,hps, aq :“ tp̃hp¨|s, aq P ∆pSq | @s1 P S :

ˇ

ˇp̃hps1|s, aq ´ p̂k´1
h ps1|s, aq

ˇ

ˇ ď βp
k,hps, a, s1qu

Bk :“
␣

p̃ | @s, a, h : p̃khp¨|s, aq P Bk,hps, aq
(

(17)

where βp
k,hps, a, s1q ą 0 is a UCB-type bonus, which de-

notes the confidence threshold for the transitions and is de-
fined in Appendix B.1. Thus, we can construct a candidate
set for selecting the policy at each episode k as:

Qk :“ tqπppq P RSAH |π P Π, p P Bku, (18)

where we denote qπppq P RSAH as the stacked occupancy
measure vector under transition kernel p, a policy π, and Π
is the set of all the feasible policies.

4.2. Surrogate Objective Function

The objective of online CMDP learning is twofold: (1)
to control the constraint violations over time, and (2) to
maximize cumulative reward. Thus, after constructing the
feasible candidate set for the policy Qk, our algorithm aims
to solve the following optimization problem at each episode:

max
qPQk,dJ

k qď0
rJ
k q. (19)

Inspired by (Sinha & Vaze, 2024; Guo et al., 2022) we
consider the following surrogate objective function with
an exponential potential Lyapunov function: Φpxq :“
exppβxq ´ 1, for some constant β ą 0 :

fkpqq “ α
´

´r̃J
k q ` Φ1pλkq

“

d̃J
k q

‰`
¯

´ 1
2 }q ´ qk}2. (20)

Using the prediction (estimation) of the reward and cost
function together with the online mirror descent optimiza-
tion methods we can achieve a tighter bound.

The dual variable λk aims to track cumulative constraint
violations during learning. Then through analysis of the
drift term Φpλkq ´ Φpλk´1q, the algorithm adaptively reg-
ulates long-term violation behavior: exponential growth
in Φpλkq dynamically amplifies constraint penalties during
high-violation regimes, while bounded drift guarantees vi-
olations remain controllable. Together, these components
enforce an safe exploration.

Specifically, we define the dual variable update as

λk “ λk´1 ` α
“

d̃J
k qk

‰`
, (21)

where d̃k is the estimated constraint vector (Eq. 16) for the
stochastic cost and is replaced with dk when the cost is
adversarial. The operator r¨s` considers only the positively
violated cost to efficiently control the hard constraint. We
then employ the Lyapunov function Φpλkq to track the evo-
lution of these violations. Then we will show later that the
one-step Lyapunov drift can be bounded by:

Φpλkq ´ Φpλk´1q ď Φ1pλkq ¨ α
“

d̃kqk
‰`

. (22)
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Then by using the drift-plus-penalty framework (Neely,
2010), we are able to minimize the surrogate cost func-
tions tfkpqquTt“1 which is the combination of the drift upper
bound (Eq. 22) and the cost function. More precisely, by
selecting q˚ to minimize fkpqq within the feasible set Qk

and summing over K episodes, we can obtain

ΦpλKq`α
K
ÿ

k“1

`

r̃J
k q

˚´r̃J
k qk

˘

ď

K
ÿ

k“1

`

fkpqkq´fkpq˚q
˘

loooooooooomoooooooooon

pIq

(23)

We refer the term pIq as Regretalg . Hence, minimizing this
algorithm’s regret is crucial to bound the cumulative reward
and constraint violation.

4.3. Optimistic OMD

To obtain a tight bound on term pIq, we adopt the Optimistic
Online Mirror Descent (OMD) algorithm to dynamically
control the constraints and adapt to evolving environments.
The algorithm alternates between two phases in each it-
eration. In the optimistic phase, the algorithm constructs
an anticipated occupancy measure, q̂k`1, by solving the
following regularized optimization problem:

q̂k`1 “ arg min
qPQk

ηkxq,∇fkpqkqy ` Dpq, q̂kq,

where ηk is the learning rate, and Dpq, q̂kq represents the
Bregman divergence, ensuring smooth updates. This step
predicts the next occupancy measure by incorporating the
gradient of the current potential function and regularization.
In the refinement phase, the algorithm updates its policy
by leveraging the predicted gradient ∇f̂k`1pq̂k`1q. Follow-
ing the setup in (Rakhlin & Sridharan, 2013), we assume
f̂k`1 “ fk. The subsequent occupancy measure, qk`1, is
obtained by solving:

qk`1 “ arg min
qPQk

ηk`1xq,∇f̂k`1pq̂k`1qy ` Dpq, q̂k`1q.

After we obtain the qk`1, we can then construct πk`1 us-
ing Eq. (11) and execute the policy and get estimations of
the reward function, transition kernels, and cost functions
if for the stochastic setting. The optimistic update is criti-
cal for enabling a tighter bound by incorporating historical
gradients and occupancy measures. The full algorithm is
presented in Algorithm 1.

5. Main Result
We first provide the main theoretical results of OMDPD.

Theorem 5.1. Choose α “ 1
2p1`

?
LδqSAH

, β “

SAH
8

?
C

?
6SAHK

and denote C “ supq1,q2PQ Dpq1, q2q,
where Lδ is defined in Appendix B.1. Let ∇k “

∇fkpqkq,∇k´1 “ ∇fk´1pqk´1q and consider ηk “

Algorithm 1 OMDPD

Input: q1, q̂1 P Q1, r̃1 “ d̃1 “ λ1 “ 0, learning rate ηk.
Parameters: Φpxq “ exppβxq ´ 1, α “ 1

2p1`
?
LδqSAH

,
Lδ is defined in Appendix B.1.
Define function fk by:

fkpqq “ αp´r̃J
k q ` Φ1pλkqrd̃J

k qs`q ´
1

2
}q ´ qk}2

for k “ 1 to K do
Construct the optimistic occupancy measure q̂k`1 by:

q̂k`1 “ arg min
qPQk

ηkxq,∇fkpqkqy ` Dpq, q̂kq

Assume f̂k`1 “ fk; Compute ηk`1 and update qk`1

by:

qk`1 “ arg min
qPQk

ηk`1xq,∇f̂k`1pq̂k`1qy`Dpq, q̂k`1q

Construct πk`1 by qk`1 and execute policy, and get
estimation r̃k`1, d̃k`1 by Eq.(15), (16).
dk`1 is revealed to the agent for the adversarial case.
Update λk`1 as follows:

λk`1 “

#

λk ` α
“

d̃k`1 qk`1

‰`
pStochastic Caseq

λk ` α
“

dk`1 qk`1

‰`
pAdversarial Caseq

Update set Qk`1 by Eq.(17).
end for
Return: πK`1

?
Cmin

"

1?
řk´1

i“1 }∇i´∇i´1}22`
?

řk´2
i“1 }∇i´∇i´1}22

, 1

*

. We

have with probability at least 1 ´ 2δ, OMDPD achieves:

RegretpKq ď Õ
´?

NSAH3K ` S2AH3

`
?
C

?
SAHK ` SAH

¯

,

ViolationpKq ď Õ
´?

NSAH3K ` S2AH3

`
?
C

?
SAHK

¯

pBoth settingsq

Theorem 5.1 establishes the optimal Õp
?
Kq regret and

constraint violation bounds under minimum assumptions.
This is the first result with optimal order in terms of the total
episode K, for the online CMDPS with anytime adversar-
ial constraints. Our results do not rely on the satisfaction
of Slater’s condition—a common assumption requiring the
existence of a strictly feasible solution. Since in the adver-
sarial setting, it is possible to make the slackness arbitrarily
small by the adversary, thus the upper bound could be ex-
tremely large. The removal of this restrictive assumption
represents a key theoretical contribution, as it aligns the
algorithmic framework more closely with practical settings
where Slater’s condition cannot be ensured a priori.
Remark 5.2. Our approach depends on the cumulative vari-
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ation of consecutive gradients, which is often very small
when the reward is fixed and known or can be accurately
estimated. Specifically, by choosing β ď 2SAH

3.5
?
C

?
2SAHK

and setting α, ηk as in Theorem 5.1, we can ensure that
řK

k“1

“

r̃J
k q

˚ ´ r̃J
k qk

‰

is bounded by Op1q. Consequently,
in a CMDP with a generative model or a perfect simulator is
given, such that the transitional kernels and reward functions
can be accurately estimated(which eliminates the estimation
step in Section 4.1, the error term Õp

?
NSAH3Kq) will

be replaced by a constant that independent with episode K.
Thus, the regret is bounded as Op1q. The detailed proof is
deferred in Appendix D.2.
Remark 5.3 (The Constant Bound C). The constant C de-
pends on the divergence measurement. If D is chosen as
the KL divergence, it does not admit a uniform upper bound
over the simplex, as KLpq}q1q may go to infinity. However,
a smoothing track can be applied to keep all updated distri-
butions bounded away from the boundary of the simplex.
Such smoothing can ensure a boundness of C which is inde-
pendent of the time horizon K. This technique is standard
in online convex optimization under entropy regularization,
more details can be found in (Wei et al., 2020).

5.1. Sketch of the Theoretical Analysis

In this section, we show the theoretical analysis of Al-
gorithm 1. We first introduce the following facts for the
CMDPs considered in this paper.
Fact 5.4. For any q1, q2 P Qk,@k P rKs, we have }q1 ´

q2} ď
?
SAH.

Fact 5.5. For any r̃k, dk or d̃k, the reward/cost value func-
tion in terms of q P Qk is convex and Lipschitz continu-
ous such that |r̃J

k q1 ´ r̃J
k q2| ď p1 `

?
Lδq

?
SAH}q1 ´

q2},|dJ
k q1 ´ dJ

k q2| ď
?
SAH}q1 ´ q2},|d̃J

k q1 ´ d̃J
k q2| ď

p1 `
?
Lδq

?
SAH}q1 ´ q2}, @q1, q2 P Qk,@k, where Lδ

is the logarithmic term defined in Appendix B.1.

Now, we introduce the Good event which captures the con-
fidence of the current estimation and will be used to prove
the policy used by OMDPD is comparable to the optimal
solution. Our goal is to show that with a high probability,
the true transition kernel lies in our confidence set such that
the optimal solution is a feasible solution given the current
estimation. We first show that Good event happens with a
high probability. The detailed proof is deferred to Appendix
B.1 due to page limit.

Lemma 5.6. With probability at least 1´δ, PrrGs ě 1´δ,
where G is the good event and δ P p0, 1q.

Basically, the good event shows that our estimation for the
CMDP model is close to the true underlying model with
high probability under the UCB-type exploration. Next,
we will show that under the condition of Good event, the
optimal solution of the CMDP problem Eq.(3) is a feasible

policy for the given Qk in each episode k P rKs, which
make it possible to bound the regret and violation. Detailed
proof can be found in Appendix B.1.

Lemma 5.7. Conditioning on the Good event G, the opti-
mal policy π˚ is a feasible solution policy for any episode
k P rKs such that:

π˚ P

!

π : d̃J
k q

πpp1q ď 0, p1 P Bk

)

Therefore, π˚ is a feasible solution for any episode k P

rKs, where qπ
˚

is the occupancy measure under the optimal
policy π˚ and we denote qπ

˚

by q˚ for simplicity. Lemma
5.7 ensures that the optimal solution q˚ is a feasible solution
given the confidence set at any episode k, which makes it
comparable to the policy used by OMDPD.

Upper Bound of Regretalg. (Eq. (23)) Based on the Good
event G, we first present the upper bound of the Regretalg.
Using optimistic online mirror for selecting the policies in
Algorithm 1, we have

Lemma 5.8. Let C “ supq1,q2PQ DRpq1, q2q,
∇k “ ∇pfkpqkqq, ∇k´1 “ ∇pfk´1pqk´1qq,
and define the learning rate as: ηk “
?
Cmin

"

1?
řk´1

i“1 }∇i´∇i´1}22`
?

řk´2
i“1 }∇i´∇i´1}22

, 1

*

.

Then, the regret is bounded as:

Regretalg ď 3.5
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚

This lemma shows that the upper bound depends on the
sequence of the one-step gradient of the surrogate objective
function over K episodes which can be shown that be further
bounded by Õp

?
Kq. Then, we will introduce the following

lemma to specify how the term
b

řK
k“1 }∇k ´ ∇k´1}2 can

be bounded.

Lemma 5.9. Let ∇k “ ∇fkpqkq denote the subgradient of
the surrogate objective function fk evaluated at qk (Eq. (19)
). Under OMDPD, the cumulative variation of consecutive
gradients is bounded as:
g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ď

g

f

f

e

K
ÿ

k“1

}r̃k ´ r̃k´1}2piq

`

g

f

f

e

K
ÿ

k“1

}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2piiq

`

g

f

f

e2
K
ÿ

k“1

}r̃k ´ r̃k´1}}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}piiiq

ď

?
6SAHKp1 ` Φ1pλKqq

SAH

6
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This lemma first establishes that the aggregated variation
of policy gradients under OMDPD can be bounded by
ÕpSAH

?
Kq`Φ1pλKqSAH

?
K. We also recall the foun-

dational inequality: ΦpλKq ` α
řK

k“1

`

r̃J
k q

˚ ´ r̃J
k qk

˘

ď
řK

k“1

`

fkpqkq ´ fkpq˚q
˘

. Here, for simplicity, we momen-
tarily ignore the factor of SAH to discuss how the Op1q

result in Remark 5.2 can be achieved. First, choosing the
function Φpxq “ exppβxq ´ 1 ensures that Φ1pλKq can
be combined with ΦpλKq in the foundational inequality.
Using Lemma 5.9, we obtain ΦpλKq ` α

řK
k“1

`

r̃J
k q

˚ ´

r̃J
k qk

˘

ď
?
K ` Φ1pλKq

?
K. Then we rearrange to get

α
řK

k“1

`

r̃J
k q

˚´r̃J
k qk

˘

ď exppβλKq
`

β
?
K´1

˘

`1`
?
K.

By choosing the β from Theorem 5.1 so that β
?
K ´ 1 ď 0,

it follows that
řK

k“1

`

r̃J
k q

˚ ´ r̃J
k qk

˘

ď
?
K, which has

an Op
?
Kq bound. Now, when the reward is fixed, terms

piq and piiiq vanish (because r̃k “ r̃k´1), which makes
α
řK

k“1

`

r̃J
k q

˚ ´ r̃J
k qk

˘

ď exppβλKq
`

β
?
K ´ 1

˘

` 1,

so that the
?
K factor disappears and a suitable β yields

an Op1q bound. The details for showing
řK

k“1

“

r̃J
k q

˚ ´

r̃J
k qk

‰

ď Op1q are deferred to Appendix D.2. Consequently,
using Lemmas 5.8 and 5.9, we can now move on to prove
Theorem 5.1 in the following sections.

5.2. Proof of the Main Theorem

To prove the main theorem, we first know that the regret can
be expressed as:

RegretpKq “

K
ÿ

k“1

rV πkpr̃k, p̃kq ´ V πkpr̄, pqs

loooooooooooooooooomoooooooooooooooooon

Estimation Error

`

K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̃k, p̃kq

ı

loooooooooooooooooomoooooooooooooooooon

Optimization Error

. (24)

Similarly, the violation in stochastic setting can be formu-
lated as:

ViolationpKq “

K
ÿ

k“1

”

V πkpd̄, pq ´ V πkpd̃k, p̃kq

ı`

looooooooooooooooooomooooooooooooooooooon

Estimation Error

`

K
ÿ

k“1

”

V πkpd̃k, p̃kq

ı`

looooooooooomooooooooooon

Optimization Error

. (25)

In the constrained adversarial setting, we do not explicitly
perform estimation on constraint d, so the only source of
estimation error arises from the unknown transition kernel.

Overall, the decomposition operation separates the regret
and violation into two distinct components: (i) estimation er-
ror, which arises due to inaccuracies in the estimated model

parameters, and (ii) optimization error, which is influenced
by the online learning algorithm. In the following, we will
analyze and bound each term individually.

To better illustrate the analysis of the main theorem, we
provide a proof roadmap in Figure 1, which establishes the
inequality ΦpλKq ` α

řK
k“1pr̃J

k q
˚ ´ r̃J

k qkq ď Regretalg,
along with the resulting regret and violation bounds.

5.3. Upper Bound of Estimation Error

In the following lemma, we provide an upper bound on the
estimation errors for both regret and violation.

Lemma 5.10. Let p̃k denote the transition kernel in the
candidate set Bk, and let r̃k and d̃k be the estimations
used by OMDPD. Then, conditioned on the good event G,
the estimation errors for the stochastic cost case can be
bounded as follows:

K
ÿ

k“1

rV πkpr̃k, p̃kq´V πkpr̄, pqs

ď Õp
?
NSAH3K S̀2AH3q,

K
ÿ

k“1

”

V πkpd̄, pq´V πkpd̃k, p̃kq

ı`

ď Õp
?
NSAH3K S̀2AH3q.

The estimation error for the adversarial cost case can be
bounded as follows:

K
ÿ

k“1

rV πkpdk, pq´V πkpdk, p̃kqs
`

ď Õp
?
NSAH3K S̀2AH3q.

The above lemma bounds the error incurred by using the esti-
mated transition kernels, rewards, and costs during the learn-
ing process, which improves upon Lemma 29 of (Efroni
et al., 2020) by a factor of Õp

?
Hq. This improvement is

achieved by leveraging a Bellman-type law of total variance
to control the expected sum of value estimates for bounding
the error from estimating the transition kernel (Azar et al.,
2017; Chen & Luo, 2021). The detailed proof is deferred in
Appendix C.2. Next, we will bound the optimization error.

5.4. Upper Bound of Optimization Error

Regret Analysis. We first focus on bounding the optimiza-
tion error associated with regret. The following lemma es-
tablishes that the cumulative variation of gradients between
consecutive episodes under OMDPD is bounded, enabling
adaptive regret-violation guarantees.

To further relate the regret optimization error to Algorithm

7
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Figure 1. Proof Roadmap of the Theorem 5.1

1, consider:
K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̃k, p̃kq

ı

“

K
ÿ

k“1

“

Err̄Jq˚s ´ Err̃J
k qks

‰

“

K
ÿ

k“1

“

Err̄Jq˚s ´ Err̃J
k q

˚s
‰

looooooooooooooomooooooooooooooon

Term 1

`

K
ÿ

k“1

“

Err̃J
k q

˚s ´ Err̃J
k qks

‰

looooooooooooooomooooooooooooooon

Term 2

.

(26)

Notably, Term 2 corresponds to the violation-regret relation-
ship in Eq. (23), providing a critical link to our theoretical
analysis. Consequently, we will first derive an upper bound
for Term 2 in the regret decomposition.

Lemma 5.11. Based on Lemma 5.8, 5.9, the following
upper bound holds:

K
ÿ

k“1

“

r̃J
k q

˚ ´ r̃J
k qk

‰

ď 2p1̀
a

LδqpSAH 4̀
?
C

?
6SAHKq

To complete the upper bound for the optimization error in
regret, we now consider Term 1. The following lemma
provides the required result:

Lemma 5.12. Under the stochastic rewards setting, with
probability at least 1-2δ, we have:

K
ÿ

k“1

“

r̄Jq˚ ´ r̃J
k q

˚
‰

ď SAH

c

pK ´ 1q

2
lnp

2

δ
q ` SAH

By combining Term 1 and Term 2, we can obtain the bound
of

řK
k“1

“

V π˚

pr̄, pq ´ V πkpr̃k, p̃kq
‰

. Finally, by incorpo-
rating the estimation error bounds from Lemma 5.10, we
can establish the complete regret bound, combining both the
estimation and optimization errors. The detailed proofs of
Lemmas 5.9, 5.11 and 5.12 can be found in Appendix C.3,
C.4, C.5.

Violation Analysis. We now analyze the sublinear violation
guarantee in stochastic and adversarial settings.

Stochastic Setting. As discussed earlier, in the stochastic
setting, the overall violation can be decomposed into esti-
mation and optimization parts, with Lemma 5.10 addressing
the estimation error. We now turn our attention to bounding
the optimization error. The following lemma provides the
critical result needed for analyzing this optimization error.

Lemma 5.13. Based on Lemma 5.8, 5.9. Then, the follow-
ing upper bound holds:

K
ÿ

k“1

“

dJ
k qk

‰`
ď 16p1 `

?
Lδq

?
C

?
6SAHK lnpAq

where A “

´

K ` 8
?
C
´?

6SAHK
SAH

¯

` 2
¯

; dk “ d̃k under
stochastic setting and dk “ dk in adversarial setting.
Thus, by combining the estimation bound from Lemma 5.10
with the violation analysis from Lemma 5.13, we have de-
rived the complete violation bound for the stochastic setting.

Adversarial Setting. As defined in Eq.(6), the estimation
error in the adversarial setting differs slightly from that in
the stochastic setting, since there is no estimation error asso-
ciated with the constraints and the only source of estimation
error arises from the transition kernel. Consequently, based
on Lemma 5.10 under the adversarial case and Lemma 5.13,
we obtain the complete violation bound for the adversarial
setting. A detailed proof of Lemma 5.13 can be found in
Appendix C.6.

6. Simulation
We evaluate our algorithm in a synthetic and finite-horizon
CMDP environment constructed to assess performance un-
der both stochastic and adversarial cost settings. The CMDP
consists of a state space S “ t0, 1, 2, 3, 4u with five discrete
states and an action space A “ t0, 1, 2u with three available
actions. The decision process unfolds over a fixed horizon of

8
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H “ 5 steps. At each time step, the agent receives a reward
r P r0, 1sHˆSˆA sampled uniformly from the unit interval.
In the stochastic setting, the cost c P r´1, 1sHˆSˆA is also
drawn uniformly and held fixed across episodes. In contrast,
the adversarial setting introduces a discrete cost perturbation
mechanism: in each episode, the cost is independently sam-
pled from a finite set t´1.0,´0.6,´0.2, 0.0, 0.2, 0.6, 1.0u,
simulating abrupt shifts in constraint feedback. The tran-
sition dynamics are time-dependent, where each transition
distribution Ph,s,a is independently sampled from a Dirich-
let distribution with a concentration parameter α “ 0.5. A
smaller concentration parameter like 0.5 encourages spar-
sity in the resulting probability vectors, meaning that the
sampled distributions are likely to concentrate mass on a
small subset of next states. This induces partially deter-
ministic behavior while still preserving stochasticity across
transitions. The initial state is sampled uniformly, ensuring
that each trajectory starts from a randomly selected state.
Throughout all experiments, the cumulative cost constraint
threshold is 0. This controlled CMDP environment enables
us to evaluate our algorithm under both stochastic and adver-
sarial constraint settings. We plot the cumulative constraint
violation across learning episodes(K “ 3000), where both
the stochastic and adversarial curves clearly demonstrate
the algorithm’s ability to ensure sublinear violation growth.
In particular, the observed trend aligns with the theoretical
Op

?
Kq, highlighting the algorithm’s robustness in main-

taining feasibility over time.

Figure 2. Cumulative Violation over Learning Episodes

7. Conclusion
In this work, we addressed the challenge of online safe
reinforcement learning in dynamic environments with ad-
versarial constraints by proposing the Optimistic Mirror
Descent Primal-Dual (OMDPD) algorithm. Our approach
is the first to provide optimal guarantees in terms of both
regret and strong constraint violation under anytime adver-
sarial cost functions, without requiring Slater’s condition
or the existence of a strictly known safe policy. OMDPD
achieves regret and violation bounds of Õp

?
Kq, which are

optimal with respect to the number of learning episodes
K. We also demonstrated that access to accurate estimates
of rewards and transitions can further improve these per-

formance guarantees. Our work advances the theoretical
understanding of CMDPs and provides a robust solution
for safe decision-making in adversarial and non-stationary
environments. Future research directions include extend-
ing our framework to multi-agent settings and investigating
scenarios with partial observability.
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A. Missing Related Work
Online Constrained Optimization. Recently, (Sinha & Vaze, 2024) achieved sublinear regret in an adversarial violation
setting. However, their approach relies on Online Gradient Descent and thus cannot attain a tighter bound even when the
reward is fixed. Meanwhile, Lekeufack & Jordan (2024) proposed an algorithm based on optimistic online mirror descent,
attaining comparable regret and violation bounds to ours.

B. Optimistic estimates Related Lemmas
B.1. Proof of Lemma 5.6

Lemma 5.6. With probability at least 1 ´ δ, PrrGs ě 1 ´ δ, where G is the good event defined in Eq. (27) for stochastic
constraint setting and Eq.(28) for adversarial setting, where δ P p0, 1q.

Proof:

Define the following failure events representing the set in which the transitions and observations are far from our current
optimistic-estimation:

F p
k “

!

Ds, a, s1, h :
ˇ

ˇphps1|s, aq ´ p̂k´1
h ps1|s, aq

ˇ

ˇ ą βp
k,hps, a, s1q

)

FN “

#

K
ÿ

k“1

ÿ

ps,a,hq

qπk

h ps, a|pq

nk´1
h ps, aq _ 1

ą 4HSA ` 2HSA lnK ` 4 ln
2HK

δ1
,

K
ÿ

k“1

ÿ

ps,a,hq

qπk

h ps, a|pq
b

nk´1
h ps, aq _ 1

ą 6HSA ` 2H
?
SAK ` 2HSA lnK ` 5 ln

2HK

δ1

+

F r
k “

␣

Ds, a, h :
ˇ

ˇr̄hps, aq ´ r̂khps, aq
ˇ

ˇ ą βr
k,hps, aq

(

F d
k “

!

Ds, a, h :
ˇ

ˇ

ˇ
d̄hps, aq ´ d̂khps, aq

ˇ

ˇ

ˇ
ą βd

k,hps, aq

)

(Stochastic setting)

we define βp
k,h as

βp
k,hps, a, s1q :“ 2

d

p̂k´1
h ps1|s, aqp1 ´ p̂k´1

h ps1|s, aqqLp
δ

nk´1
h ps, aq _ 1

`

14
3 Lp

δ

nk´1
h ps, aq _ 1

βr
k,hps, aq :“ βd

k,hps, aq :“

d

Lδ

nk´1
h ps, aq _ 1

where we set Lδ “ lnp 12SAHK
δ q, Lp

δ “ lnp 6SAHK
δ q and δ1 “ δ

3 . Then set F p :“
ŤK

k“1 F
p
k , F

r “
ŤK

k“1 F
r
k , F

d “
ŤK

k“1 F
d
k . Hence the Good event is denoted as:

G :“
´

FN
ď

F p
ď

F r
ď

F d
¯

(27)

And because we did not estimate constraint d in the adversarial setting, the Good event is defined as:

G :“
´

FN
ď

F p
ď

F r
¯

(28)

Finally, it is easy to show that the good event G happens with probability at least 1´δ. Specifically, PrrF pYF r YF ds ď 2
3δ,

where the detailed proof can be found in (Efroni et al., 2020)(Appendix A.1). Furthermore, by Lemma E.2, PrrFN s ď δ1 “
1
3δ. Then we can prove that PrrGs ě 1 ´ δ by union bound.

B.2. Proof of Lemma 5.7

Lemma 5.7. Conditioning on the Good event G, the optimal policy π˚ induced by the occupancy measure qπ
˚

under the
optimal policy for solving the CMDP problem (3) is a feasible solution policy for any episode k P rKs such that:

π˚ P

!

π P ∆S
A : d̃J

k q
πpp1q ď 0, p1 P Bk

)

12
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Proof: For the stochastic cost case, the good event G implies that |d̄hps, aq ´ d̂k,hps, aq| ď βd
k,hps, aq for all ps, a, h, kq P

S ˆ A ˆ S ˆ rKs. Due to the definition of the optimistic cost d̃k, we have d̃k,hps, aq ď d̄hps, aq. Then we have
d̃J
k q

˚ ď d̄Jq˚. Since π˚ is a feasible solution of (3), we have d̃J
k q

˚ ď d̄Jq˚ ď 0. For the adversarial cost case, we take
d̃k “ dk. Furthermore, conditioned on the good event G, we know that the true transition kernel p P Bk. Therefore, q˚

satisfies that q˚ P

!

q : d̃J
k qpp1q ď 0, p1 P Bk

)

.

C. Key Lemmas proofs for Theorem 5.1
C.1. Proof of Lemma 5.8

Lemma 5.8. Let C “ supq1,q2PQ Dpq1, q2q, ∇k “ ∇pfkpqkqq, ∇k´1 “ ∇pfk´1pqk´1qq, and define the learning rate as:

ηk “
?
Cmin

"

1?
řk´1

i“1 }∇i´∇i´1}22`
?

řk´2
i“1 }∇i´∇i´1}22

, 1

*

. Then, the regret is bounded as:

Regretalg ď 3.5
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚

Proof: Updating rule we use for Optimistic OMD in Algorithm 1:

fkpqq “ αp´r̃J
k q ` Φ1pλkqrd̃J

k qs`q ´
1

2
}q ´ qk}2

where we know fkpqq is 1-strong convex. By apply Optimistic OMD and convexity of fkpqq, we have:

pfkpqkq ´ fkpq˚qq ď x∇pfkpqkqq, qk ´ q˚y

For easy notation, we denote ∇pfkpqkqq “ ∇k,∇pfk´1pqk´1qq “ ∇k´1 Then, we can arrange for the following equal
transformation:

xqk ´ q˚,∇ky “

term 1
hkkkkkkkkkkkkikkkkkkkkkkkkj

xqk ´ q̂k,∇k ´ ∇k´1y `

term 2
hkkkkkkkkikkkkkkkkj

xqk ´ q̂k,∇k´1y `

term 3
hkkkkkkkikkkkkkkj

xq̂k ´ q˚,∇ky (29)

We can directly have upper bound for term 1:

xqk ´ q̂k,∇k ´ ∇k´1y ď }qk ´ q̂k}2}∇k ´ ∇k´1}2

And any update of the form a˚ “ argminaPA ηxa, xy ` Dpa, cq satisfies for any d P A:

xa˚ ´ d, xy ď
1

η
pDpd, cq ´ Dpd, a˚q ´ Dpa˚, cqq

In our form, replace a˚ “ qk, d “ q̂k, c “ q̂k´1, x “ ∇k´1, η “ ηk, we have upper bound for term 2:

xqk ´ q̂k,∇k´1y ď
1

ηk
pDpq̂k, q̂k´1q ´ Dpq̂k, qkq ´ Dpqk, q̂k´1qq (30)

Replace a˚ “ q̂k, d “ q˚, c “ q̂k´1, x “ ∇k, η “ ηk, we have upper bound for term 3:

xq̂k ´ q˚,∇ky ď
1

ηk
pDpq˚, q̂k´1q ´ Dpq˚, q̂kq ´ Dpq̂k, q̂k´1qq (31)

Combine their upper bound together we have:

xqk ´ q˚,∇ky ď }qk ´ q̂k}2}∇k ´ ∇k´1}2 `
1

ηk
rDpq̂k, q̂k´1q ´ Dpq̂k, qkq ´ Dpqk, q̂k´1qs

`
1

ηk
rDpq˚, q̂k´1q ´ Dpq˚, q̂kq ´ Dpq̂k, q̂k´1qs (32)

ď }qk ´ q̂k}2}∇k ´ ∇k´1}2 `
1

ηk
rDpq˚, q̂k´1q ´ Dpq˚, q̂kq ´ Dpq̂k, qkq ´ Dpqk, q̂k´1qs

13
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Because we set U is a 1-strongly convex function, we have Dpq1, q2q ě 1
2}q1 ´ q2}22; then:

xqk ´ q˚,∇ky ď }qk ´ q̂k}2}∇k ´ ∇k´1}2 `
1

ηk

„

Dpq˚, q̂k´1q ´ Dpq˚, q̂kq ´
1

2
}q̂k ´ qk}22 ´

1

2
}qk ´ q̂k´1}22

ȷ

Then, sum it:
K
ÿ

k“1

xqk ´ q˚,∇ky ď

K
ÿ

k“1

}qk ´ q̂k}2}∇k ´ ∇k´1}2 `
1

η1
Dpq˚, q̂0q `

K
ÿ

k“2

Dpq˚ ´ q̂k´1qp
1

ηk
´

1

ηk´1
q

´

K
ÿ

k“1

1

2ηk
p}qk ´ q̂k}22 ` }qk ´ q̂k´1}22q

We define C “ supq1,q2PQ Dpq1, q2q, then we have:

K
ÿ

k“1

xqk ´ q˚,∇ky ď

term (a)
hkkkkkkikkkkkkj

p
1

η1
`

1

ηK
qC `

term (b)
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

K
ÿ

k“1

}qk ´ q̂k}2}∇k ´ ∇k´1}2 ´

term (c)
hkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj

K
ÿ

k“1

1

2ηk
p}qk ´ q̂k}22 ` }qk ´ q̂k´1}22q

Besides, we will use the following fact:

}qk ´ q̂k}2}∇k ´ ∇k´1}2 “ inf
ρą0

"

ρ

2
}∇k ´ ∇k´1}22 `

1

2ρ
}qk ´ q̂k}22

*

And by setting ρ “ ηk`1, we have upper bound for term (b):

}qk ´ q̂k}2}∇k ´ ∇k´1}2 ď
ηk`1

2
}∇k ´ ∇k´1}22 `

1

2ηk`1
}qk ´ q̂k}22

Then, consider learning rate ηk in the following condition:

ηk “
?
Cmin

$

&

%

1
b

řk´1
i“1 }∇i ´ ∇i´1}22 `

b

řk´2
i“1 }∇i ´ ∇i´1}22

, 1

,

.

-

ηk ě
?
Cmin

$

&

%

1

2

b

řk´1
i“1 }∇i ´ ∇i´1}22

, 1

,

.

-

1

ηk
ď

1
?
C
max

$

&

%

2

g

f

f

e

k´1
ÿ

i“1

}∇i ´ ∇i´1}22, 1

,

.

-

Then for term (a), the upper bound is p 1
η1

` 1
ηK

q
?
C ď

?
Cp2

b

řK´1
k“1 }∇k ´ ∇k´1}22 ` 2q. Now, we get:

K
ÿ

k“1

xqk ´ q˚,∇ky ď
?
C

¨

˝2

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 2

˛

‚`

K
ÿ

k“1

ηk`1

2
}∇k ´ ∇k´1}22

`

K
ÿ

k“1

1

2ηk`1
}qk ´ q̂k}22 ´

K
ÿ

k“1

1

2ηk
}qk ´ q̂k}22 ´

K
ÿ

k“1

1

2ηk
}qk ´ q̂k´1}22

ď
?
C

¨

˝2

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 2

˛

‚`

K
ÿ

k“1

ηk`1

2
}∇k ´ ∇k´1}22

`

K
ÿ

k“1

1

2ηk`1
}qk ´ q̂k}22 ´

K
ÿ

k“1

1

2ηk
}qk ´ q̂k}22

where the second inequality arrived by dropping positive term }qk ´ q̂k´1}22. Now, we first deal with the last two terms:
K
ÿ

k“1

1

2ηk`1
}qk ´ q̂k}22 ´

K
ÿ

k“1

1

2ηk
}qk ´ q̂k}22 ď

C
2

K
ÿ

k“1

p
1

ηk`1
´

1

ηk
q ď

C
2ηK`1

14
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Now, we get:

K
ÿ

k“1

xqk ´ q˚,∇ky ď
?
C

¨

˝2

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 2

˛

‚`

K
ÿ

k“1

ηk`1

2
}∇k ´ ∇k´1}22 `

C
2ηK`1

ď 3
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚`

K
ÿ

k“1

ηk`1

2
}∇k ´ ∇k´1}22

And notice ηk`1:

ηk`1 “
?
Cmin

$

&

%

1
b

řk
i“1 }∇i ´ ∇i´1}22 `

b

řk´1
i“1 }∇i ´ ∇i´1}22

, 1

,

.

-

“
?
Cmin

$

&

%

b

řk
i“1 }∇i ´ ∇i´1}22 ´

b

řk´1
i“1 }∇i ´ ∇i´1}22

}∇k ´ ∇k´1}22
, 1

,

.

-

Thus, we get:

K
ÿ

k“1

ηk`1

2
}∇k ´ ∇k´1}22 ď

?
C
2

K
ÿ

k“1

¨

˝

g

f

f

e

k
ÿ

i“1

}∇i ´ ∇i´1}22 ´

g

f

f

e

k´1
ÿ

i“1

}∇i ´ ∇i´1}22

˛

‚

ď

?
C
2

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22

Next, we can have the upper bound:

K
ÿ

k“1

xqk ´ q˚,∇ky ď 3
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚`

K
ÿ

k“1

ηk`1

2
}∇k ´ ∇k´1}22

ď 3.5
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚

Finally, we get:
K
ÿ

k“1

pfkpqkq ´ fkpq˚qq ď

K
ÿ

k“1

x∇pfkpqkqq, qk ´ q˚y “

K
ÿ

k“1

xqk ´ q˚,∇ky

ď 3.5
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚

C.2. Proof of Lemma 5.10

Lemma 5.10. Let p̃k denote the transition kernel in the candidate set Bk, and let r̃k and d̃k be the estimations used by
OMDPD. Then, conditioned on the good event G, the estimation errors for the stochastic cost case can be bounded as
follows:

K
ÿ

k“1

rV πkpr̃k, p̃kq ´ V πkpr̄, pqs ď Õp
?
NSAH3K ` S2AH3q,

K
ÿ

k“1

”

V πkpd̄, pq ´ V πkpd̃k, p̃kq

ı`

ď Õp
?
NSAH3K ` S2AH3q.

(33)

The estimation error for the adversarial cost case can be bounded as follows:
K
ÿ

k“1

rV πkpdk, pq ´ V πkpdk, p̃kqs
`

ď Õp
?
NSAH3K ` S2AH3q. (34)

15
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Proof: To prove (33), it is sufficient to show that

K
ÿ

k“1

ˇ

ˇ

ˇ
V πkpℓ̃k, p̃kq ´ V πkpℓ̄, pq

ˇ

ˇ

ˇ
ď Õ

´?
NSAH3K ` S2AH3

¯

for ℓ “ r, d. The right-hand side of the above inequality can be decomposed as

K
ÿ

k“1

ˇ

ˇ

ˇ
V πkpℓ̃k, p̃kq ´ V πkpℓ̄, pq

ˇ

ˇ

ˇ
ď

K
ÿ

k“1

ˇ

ˇ

ˇ
V πkpℓ̃k, p̃kq ´ V πkpℓ̃k, pq

ˇ

ˇ

ˇ

loooooooooooooooooomoooooooooooooooooon

Term 1

`

K
ÿ

k“1

ˇ

ˇ

ˇ
V πkpℓ̃k, pq ´ V πkpℓ̄, pq

ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

Term 2

.

Note that βℓ
k,hps, aq “

b

Lδ{pnk´1
h ps, aq _ 1q ď

?
Lδ. Then the estimated function ℓ̃k satisfies ℓ̃k,hps, aq P r´1 ´

?
Lδ, 1 `

?
Lδs for all ps, a, h, kq P S ˆ A ˆ rHs ˆ rKs. By Lemma E.6 with C “ 1 `

?
Lδ , Term 1 is bounded as

Term 1 ď Õ
´?

NSAH3K ` S2AH3
¯

.

To bound Term 2, by Lemma E.1, we can write it as

Term 2 “

K
ÿ

k“1

E

«

H
ÿ

h“1

ˇ

ˇ

ˇ
ℓ̄hpsh, ahq ´ ℓ̃k,hpsh, ahq

ˇ

ˇ

ˇ
| s1, πk, p

ff

.

Furthermore, conditioned on the good event G, it follows that

ˇ

ˇ

ˇ
ℓ̄hps, aq ´ ℓ̃k,hps, aq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
ℓ̄hps, aq ´ ℓ̂k´1

h ps, aq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
ℓ̂k´1
h ps, aq ´ ℓ̃k,hps, aq

ˇ

ˇ

ˇ
ď 2

d

Lδ

nk´1
h ps, aq _ 1

.

Applying this, Term 2 can be bounded as

Term 2 ď
ÿ

k“1

E

«

H
ÿ

h“1

2

d

Lδ

nk´1
h ps, aq _ 1

| s1, πk, p

ff

ď Õ
´

H
?
SAK ` HSA

¯

where the last inequality follows from Lemma E.2. Finally, we have

K
ÿ

k“1

ˇ

ˇ

ˇ
V πkpℓ̃k, p̃kq ´ V πkpℓ̄, pq

ˇ

ˇ

ˇ
“ Term 1 ` Term 2 ď Õ

´?
NSAH3K ` S2AH3

¯

as required.

Next, (34) is a direct consequence of Lemma E.6 with C “ 1.

C.3. Proof of Lemma 5.9

Lemma 5.9. Let ∇k “ ∇fkpqkq denote the subgradient of the potential function fk evaluated at qk. Under OMDPD, the
cumulative variation of consecutive gradients is bounded as:

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ď

?
6SAHKp1 ` Φ1pλKqq

SAH

Proof: In the algorithm, we have:

λk`1 “ λk ` αrd̃J
k`1qk`1s`, Φpxq “ exppβxq ´ 1, fkpqq “ αp´r̃J

k q ` Φ1pλkqrd̃J
k qs`q ´

1

2
}q ´ qk}2

Based on convexity, we have:

Φpλkq ď Φpλk´1q ` Φ1pλkqpλk ´ λk´1q

“ Φpλk´1q ` Φ1pλkq ¨ αrd̃J
k qks`

16
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Based on drift analysis, we have:

Φpλkq ´ Φpλk´1q ď Φ1pλkq ¨ αprd̃J
k qks`q (35)

And we know:

fkpqkq “ αp´r̃J
k qk ` Φ1pλkqrd̃J

k qks`q ´
1

2
}qk ´ qk}2

fkpqkq ` αpr̃J
k qkq “ Φ1pλkq ¨ αprd̃J

k qks`q (36)

Combine (35) and (36) together:

Φpλkq ´ Φpλk´1q ď fkpqkq ` αpr̃J
k qkq

Also, we have:

fkpq˚q “ αp´r̃J
k q

˚ ` Φ1pλkqrd̃J
k q

˚s`q ´
1

2
}q˚ ´ qk}2

“ ´α ¨ r̃J
k q

˚ ´
1

2
}q˚ ´ qk}2

Combine the equation together, we have:

Φpλkq ´ Φpλk´1q ď fkpqkq ` αpr̃J
k qkq

Φpλkq ´ Φpλk´1q ´ αpr̃J
k qkq ´ f̂kpq˚q ď fkpqkq ´ fkpq˚q

Φpλkq ´ Φpλk´1q ` αpr̃J
k q

˚ ´ r̃J
k qkq ď fkpqkq ´ fkpq˚q

Take the summation over K, we have:

ΦpλKq ` α
K
ÿ

k“1

pr̃J
k q

˚ ´ r̃J
k qkq ď

K
ÿ

k“1

fkpqkq ´ fkpq˚q

Based on Lemma 5.8, we have:

K
ÿ

k“1

fkpqkq ´ fkpq˚q ď 3.5
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚

Now, we analyze the upper bound part. ∇k “ ∇fkpqkq,∇k´1 “ ∇fk´1pqk´1q

∇k “ ∇fkpqkq “ αp´r̃k ` Φ1pλkqd̃kq

∇k´1 “ ∇fk´1pqk´1q “ αp´r̃k´1 ` Φ1pλk´1qd̃k´1q

Thus:

}∇k ´ ∇k´1}2 “ }∇fkpqkq ´ ∇fk´1pqk´1q}2

“ α2} ´ pr̃k´r̃k´1q` Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2

“ α2}r̃k ´ r̃k´1}2`α2}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2 ` 2α}r̃k ´ r̃k´1}}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}

}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2 “}Φ1pλkqd̃k´ Φ1pλk´1qd̃k ` Φ1pλk´1qd̃k ´Φ1pλk´1qd̃k´1}2

“ }d̃kpΦ1pλkq ´ Φ1pλk´1qq ` Φ1pλk´1qpd̃k ´ d̃k´1q}2

ď 2p1 `
a

Lδq2SAH}Φ1pλkq ´ Φ1pλk´1q}2 ` 2p1 `
a

Lδq2SAH}Φ1pλk´1q}2

First deal with }Φ1pλk´1q}2, we define Φpxq “ exppβxq ´ 1, so we have Φ1pλkq “ β exppβλkq ą 0,@k P K. Because
exppxq is increasing, we have Φ1pλ1q ď Φ1pλ2q ď ... ď Φ1pλKq. Thus, @k P K we obtain:

}Φ1pλk´1q}2 ď }Φ1pλKq}2

For }Φ1pλkq ´ Φ1pλk´1q}2, we use pa ´ bq2 ď a2 ` b2 and have:

}Φ1pλkq ´ Φ1pλk´1q}2 ď }Φ1pλkq}2 ` }Φ1pλk´1q}2

17
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ď }Φ1pλKq}2 ` }Φ1pλKq}2 “ 2}Φ1pλKq}2

Therefore, we have the upper bound:

}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2 ď 2p1 `
a

Lδq2SAH}Φ1pλkq ´ Φ1pλk´1q}2 ` 2p1 `
a

Lδq2SAH}Φ1pλk´1q}2

ď 2p1 `
a

Lδq2SAH ¨ 2}Φ1pλKq}2 ` 2p1 `
a

Lδq2SAH ¨ }Φ1pλKq}2

ď 6p1 `
a

Lδq2SAH}Φ1pλKq}2

Therefore,
g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22

“ α

g

f

f

e

K
ÿ

k“1

}r̃k ´ r̃k´1}2`

K
ÿ

k“1

}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2`2
K
ÿ

k“1

}r̃k ´ r̃k´1}}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}

ď α

g

f

f

e

K
ÿ

k“1

}r̃k ´ r̃k´1}2

loooooooooomoooooooooon

diff 1

`α

g

f

f

e

K
ÿ

k“1

}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2

looooooooooooooooooooomooooooooooooooooooooon

diff 2

`α

g

f

f

e2
K
ÿ

k“1

}r̃k ´ r̃k´1}}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

diff 3

For diff 1:

α

g

f

f

e

K
ÿ

k“1

}r̃k ´ r̃k´1}2ď α

b

p1 `
a

Lδq2SAHK

For diff 2:

α

g

f

f

e

K
ÿ

k“1

}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2 ď α

g

f

f

e

K
ÿ

k“1

6p1 `
a

Lδq2SAH}Φ1pλKq}2 “ αΦ1pλKq

b

6p1 `
a

Lδq2SAHK

For diff 3:
g

f

f

e2
K
ÿ

k“1

}r̃k ´ r̃k´1}}Φ1pλkqd̃k ´ Φ1pλk´1qd̃k´1} ď

g

f

f

e2
K
ÿ

k“1

b

p1 `
a

LδqSAH}Φ1pλkqd̃k ´ Φ1pλk´1qd̃k´1}

ď

g

f

f

e2
K
ÿ

k“1

b

p1 `
a

LδqSAH

b

6p1 `
a

Lδq2SAHΦ1pλKq

“

g

f

f

e

K
ÿ

k“1

SAH

b

24p1 `
a

Lδq3Φ1pλKq

ď

g

f

f

e

K
ÿ

k“1

SAH

b

36p1 `
a

Lδq4Φ1pλKq

“

g

f

f

e

K
ÿ

k“1

6p1 `
a

Lδq2SAHΦ1pλKq “
a

Φ1pλKq

b

6p1 `
a

Lδq2SAHK

ď
`

Φ1pλKq ` 1
˘

b

6p1 `
a

Lδq2SAHK

where the last inequality holds for
?
a ď a ` 1,@a ą 0. Therefore, we have the upper bound of

b

řK
k“1 }∇k ´ ∇k´1}22:

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ď α

g

f

f

e

K
ÿ

k“1

}r̃k ´ r̃k´1}2

loooooooooomoooooooooon

diff 1

`α

g

f

f

e

K
ÿ

k“1

}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}2

looooooooooooooooooooomooooooooooooooooooooon

diff 2
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`α

g

f

f

e2
K
ÿ

k“1

}r̃k ´ r̃k´1}}Φ1pλkqd̃k´Φ1pλk´1qd̃k´1}

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

diff 3

ď α

b

p1 `
a

Lδq2SAHK
loooooooooooooomoooooooooooooon

diff 1

`αΦ1pλKq

b

6p1 `
a

Lδq2SAHK
loooooooooooooooooooomoooooooooooooooooooon

diff 2

` α

b

6p1 `
a

Lδq2SAHK ` αΦ1pλKq

b

6p1 `
a

Lδq2SAHK
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

diff 3

ď 2α

b

6p1 `
a

Lδq2SAHK ` 2αΦ1pλKq

b

6p1 `
a

Lδq2SAHK “ 2αp1 `
a

Lδq
?
6SAHK

`

1 ` Φ1pλKq
˘

“

?
6SAHKp1 ` Φ1pλKqq

SAH

where the last equality holds for choosing α “ 1
2p1`

?
LδqSAH

.

C.4. Proof of Lemma 5.11

Lemma 5.11. Based on Lemma 5.8, 5.9, the following upper bound holds:
K
ÿ

k“1

“

r̃J
k q

˚ ´ r̃J
k qk

‰

ď 2p1 `
a

LδqpSAH ` 4
?
C

?
6SAHKq

Proof: Based on Lemma 5.8, 5.9, we have the following relation:

ΦpλKq ` α
K
ÿ

k“1

pr̃J
k q

˚ ´ r̃J
k qkq ď

K
ÿ

k“1

f̂kpqkq ´ f̂kpq˚q ď 3.5
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚

ď 3.5
?
C

¨

˝

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}22 ` 1

˛

‚

ď 3.5
?
C

˜?
6SAHKp1 ` Φ1pλKqq

SAH

¸

Now we can have:

ΦpλKq ` α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď 3.5

?
C

˜?
6SAHKp1 ` Φ1pλKqq

SAH

¸

ΦpλKq ` α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď 3.5

?
C

˜?
6SAHKp1 ` Φ1pλKqq

SAH

¸

exppβλKq ´ 1 ` α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď 4

?
C

˜?
6SAHK

SAH

¸

` 4
?
C

˜

β exppβλKq
?
6SAHK

SAH

¸

α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď exppβλKq

˜

β ¨ 4
?
C

?
6SAHK

SAH
´ 1

¸

` 4
?
C

˜?
6SAHK

SAH

¸

` 1

K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď exppβλKq

˜

β ¨ 4
?
C

?
6SAHK

αSAH
´

1

α

¸

` 4
?
C

˜?
6SAHK

αSAH

¸

`
1

α

“ 2p1 `
a

LδqSAH ` 8p1 `
a

Lδq
?
C

?
6SAHK

“ 2p1 `
a

LδqpSAH ` 4
?
C

?
6SAHKq

where the last equality obtained by α “ 1
2p1`

?
LδqSAH

, β ď SAH
4

?
C

?
6SAHK

.

19



An Optimistic Algorithm for online CMDPS with Anytime Adversarial Constraints

C.5. Proof of Lemma 5.12

Lemma 5.12. Under the stochastic rewards setting, with probability at least 1-2δ, we have:

K
ÿ

k“1

“

r̄Jq˚ ´ r̃J
k q

˚
‰

ď SAH

c

K

2
lnp

2

δ
q

Proof: Based on the optimistic estimates, we know that: r̃k “ r̂k´1 ` βr
k´1ps, aq. Then, we have the following relationship:

r̄Jq˚ ´ r̃J
k q

˚ “ r̄Jq˚ ´ r̂J
k´1q

˚ ´ βr
k´1ps, aqq˚

ď r̄Jq˚ ´ r̂J
k´1q

˚

where the inequality holds for βr
k´1ps, aq and q˚ is non-negative. Thus, we have the following relationship easily:

K
ÿ

k“1

“

r̄Jq˚ ´ r̃J
k q

˚
‰

ď

K
ÿ

k“1

“

r̄Jq˚ ´ r̂J
k´1q

˚
‰

Based on norm property, and for each episode k, we have:
ˇ

ˇr̄Jq˚ ´ r̂J
k´1q

˚
ˇ

ˇ ď }r̄ ´ r̂k´1}8 ¨ }q˚}1

and from the definition of reward r and Fact 5.4, we know that }r̄ ´ r̂k´1}8 ď 1 and }q˚}1 ď SAH . Thus:
ˇ

ˇr̄Jq˚ ´ r̂J
k´1q

˚
ˇ

ˇ ď SAH

If the objective costs are stochastic under Lemma 5.6, and by the Azuma-Hoeffding inequality we have:

Pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

K´1
ÿ

k“1

r̄Jq˚ ´

K´1
ÿ

k“1

r̂J
k´1q

˚

ˇ

ˇ

ˇ

ˇ

ˇ

ě M

ff

ď δ “ 2e
p´ 2M2

pK´1qpSAHq2
q

Thus by setting M as:

M “ SAH

c

pK ´ 1q

2
lnp

2

δ
q

we have when the objective costs are stochastic, with the probability at least 1 ´ 2δ:
ˇ

ˇ

ˇ

ˇ

ˇ

K´1
ÿ

k“1

r̄Jq˚ ´

K´1
ÿ

k“1

r̂J
k´1q

˚

ˇ

ˇ

ˇ

ˇ

ˇ

ď SAH

c

pK ´ 1q

2
lnp

2

δ
q

Then, by the absolute value property, we can obtain:

K
ÿ

k“1

“

r̄Jq˚ ´ r̃J
k q

˚
‰

ď

K´1
ÿ

k“1

r̄Jq˚ ´

K´1
ÿ

k“1

r̂J
k´1q

˚ ` r̄Jq˚

ď

ˇ

ˇ

ˇ

ˇ

ˇ

K´1
ÿ

k“1

r̄Jq˚ ´

K´1
ÿ

k“1

r̂J
k´1q

˚

ˇ

ˇ

ˇ

ˇ

ˇ

` |r̄Jq˚|

ď SAH

c

pK ´ 1q

2
lnp

2

δ
q ` SAH

C.6. Proof of Lemma 5.13

Lemma 5.13. Based on Lemma 5.8, 5.9. Then, the following upper bound holds:

K
ÿ

k“1

“

dJ
k qk

‰`
ď 16p1 `

?
Lδq

?
C

?
6SAHK ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

where dk “ d̃k under stochastic setting and dk “ dk in adversarial setting.
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Proof: To begin with, we deal with the stochastic setting first, which is dk “ d̃k. Since we have the fact that min and max
value for regret that: ´|r̃J

k q
˚ ´ r̃J

k qk| ď pr̃J
k q

˚ ´ r̃J
k qkq ď |r̃J

k q
˚ ´ r̃J

k qk|. And |r̃J
k q

˚ ´ r̃J
k qk| ď }r̃k}2}q˚ ´ qk}2 “

p1 `
?
LδqSAH . Thus, we have:

K
ÿ

k“1

pr̃J
k q

˚ ´ r̃J
k qkq ě

K
ÿ

k“1

´|r̃J
k q

˚ ´ r̃J
k qk| “ ´p1 `

a

LδqSAHK

Therefore, we have:

ΦpλKq ` α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď 3.5

?
C

˜?
6SAHKp1 ` Φ1pλKqq

SAH

¸

ΦpλKq ` αp´p1 `
a

LδqSAHKq ď 3.5
?
C

˜?
6SAHKp1 ` Φ1pλKqq

SAH

¸

exppβλKq ´ 1 ` αp´p1 `
a

LδqSAHKq ď 4
?
C

˜?
6SAHK

SAH

¸

` 4
?
C

˜

β exppβλKq
?
6SAHK

SAH

¸

exppβλKq

˜

1 ´ β ¨ 4
?
C

˜?
6SAHK

SAH

¸¸

ď αpp1 `
a

LδqSAHKq ` 4
?
C

˜?
6SAHK

SAH

¸

` 1

exppβλKq ď
αpp1 `

?
LδqSAHKq ` 4

?
C
´?

6SAHK
SAH

¯

` 1
´

1 ´ β ¨ 4
?
C
´?

6SAHK
SAH

¯¯

where the last inequality holds for choosing β such that 1 ´ β ¨ 4
?
C
´?

6SAHK
SAH

¯

ą 0:

β ¨ 4
?
C

˜?
6SAHK

SAH

¸

ă 1 Ñ β ă
SAH

4
?
C

?
6SAHK

which the choosing of β match when we prove the regret bound in that case we choose β ď SAH
4

?
C

?
6SAHK

. Here, we let

β “ SAH
8

?
C

?
6SAHK

and we have:

exppβλKq ď

αpp1 `
?
LδqSAHKq ` 4

?
C
´?

6SAHK
SAH

¯

` 1
´

1 ´ β ¨ 4
?
C
´?

6SAHK
SAH

¯¯

“
αpp1 `

?
LδqSAHKq ` 4

?
C
´?

6SAHK
SAH

¯

` 1

1
2

“ 2αpp1 `
a

LδqSAHKq ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

“ K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

where the last inequality holds for take α “ 1
2p1`

?
LδqSAH

. Then, recall the definition λk “ λk´1 ` αrd̃J
k qks`, so

λK “ α
řK

k“1rd̃J
k qks`. Thus, take the log operation and we have:

βλK ď ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

λK ď
1

β
ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

α
K
ÿ

k“1

rd̃J
k qks` ď

1

β
ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸
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K
ÿ

k“1

rd̃J
k qks` ď

1

αβ
ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

“ 16p1 `
?
Lδq

?
C

?
6SAHK ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

The proof of dk “ dk is almost same with the situation that dk “ d̃k. Hence, we can directly have:
K
ÿ

k“1

rdJ
k qks` ď 16p1 `

?
Lδq

?
C

?
6SAHK ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

D. Main Theoretical Analysis
D.1. Proof of Theorem 5.1

Proof: In this section, our proof is based on the roadmap described in Figure 3. The context is divided into Regret and
Violation parts, respectively.

Figure 3. Proof Roadmap of Theorem 5.1

D.1.1. REGRET BOUND PROOF

Recall the definition of Regret:

RegretpKq “

K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̄, pq

ı

“

K
ÿ

k“1

rV πkpr̃k, p̃kq ´ V πkpr̄, pqs

loooooooooooooooooomoooooooooooooooooon

Estimation Error

`

K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̃k, p̃kq

ı

loooooooooooooooooomoooooooooooooooooon

Optimization Error

We can bound the “Estimation Error” term by using Lemma 5.10. Now, let’s go through the details of the “Optimization
Error” term. We will first decompose it as follows:
K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̃k, p̃kq

ı

“

K
ÿ

k“1

“

Err̄Jq˚s ´ Err̃J
k qks

‰

“

K
ÿ

k“1

“

Err̄Jq˚s ´ Err̃J
k q

˚s
‰

looooooooooooooomooooooooooooooon

Term 1

`

K
ÿ

k“1

“

Err̃J
k q

˚s ´ Err̃J
k qks

‰

looooooooooooooomooooooooooooooon

Term 2

.

Thus, it’s clear that we can use Lemma 5.11 and Lemma 5.12 to bound these two terms, respectively. Therefore, the Regret
is bounded in the following inequality:

RegretpKq “

K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̄, pq

ı

“

K
ÿ

k“1

rV πkpr̃k, p̃kq ´ V πkpr̄, pqs `

K
ÿ

k“1

”

V π˚

pr̄, pq ´ V πkpr̃k, p̃kq

ı
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“

K
ÿ

k“1

rV πkpr̃k, p̃kq ´ V πkpr̄, pqs

loooooooooooooooooomoooooooooooooooooon

Lemma 5.10

`

K
ÿ

k“1

“

Err̄Jq˚s ´ Err̃J
k q

˚s
‰

looooooooooooooomooooooooooooooon

Lemma 5.12

`

K
ÿ

k“1

“

Err̃J
k q

˚s ´ Err̃J
k qks

‰

looooooooooooooomooooooooooooooon

Lemma 5.11

ď Õ
?̀
NSAH3K S̀2AH3

˘

` SAH

c

pK ´ 1q

2
lnp

2

δ
q ` SAH ` 2p1 `

a

LδqpSAH ` 4
?
C

?
6SAHKq

ď Õ
?̀
NSAH3K S̀2AH3

˘

` SAH

c

pK ´ 1q

2
lnp

2

δ
q ` 3p1 `

a

LδqpSAH ` 4
?
C

?
6SAHKq

D.1.2. VIOLATION BOUND PROOF

Stochastic setting. Recall the definition of stochastic Violation:

ViolationpKq “

K
ÿ

k“1

“

V πkpd̄, pq
‰`

“

K
ÿ

k“1

”

V πkpd̄, pq ´ V πkpd̃k, p̃kq

ı`

looooooooooooooooooomooooooooooooooooooon

Estimation Error

`

K
ÿ

k“1

”

V πkpd̃k, p̃kq

ı`

looooooooooomooooooooooon

Optimization Error

Similarly, we first use Lemma 5.10 to bound “Estimation Error” term under the stochastic setting. Next, we will deal with
the optimization error term by Lemma 5.13:

K
ÿ

k“1

”

V πkpd̃k, p̃kq

ı`

“

K
ÿ

k“1

rErd̃J
k qkss` ď 16p1 `

?
Lδq

?
C

?
6SAHK ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

Hence, the whole stochastic Violation is bounded as:

ViolationpKq “

K
ÿ

k“1

“

V πkpd̄, pq
‰`

“

K
ÿ

k“1

”

V πkpd̄, pq ´ V πkpd̃k, p̃kq

ı`

looooooooooooooooooomooooooooooooooooooon

Lemma 5.10

`

K
ÿ

k“1

”

V πkpd̃k, p̃kq

ı`

looooooooooomooooooooooon

Lemma 5.13

ď Õ
?̀
NSAH3K S̀2AH3

˘

` 16p1 `
?
Lδq

?
C

?
6SAHK ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

Adversarial setting. When we deal with adversarial constraint, by the definition:

ViolationpKq “

K
ÿ

k“1

rV πkpdk, pqs` “

K
ÿ

k“1

rV πkpdk, pq ´ V πkpdk, p̃kqs
`

loooooooooooooooooooomoooooooooooooooooooon

Estimation Error

`

K
ÿ

k“1

rV πkpdk, p̃kqs`

loooooooooomoooooooooon

Optimization Error

In this situation, we proved an additional estimation error bound in Lemma 5.10 with adversarial case and with Lemma 5.13,
the following bound can be obtained:

ViolationpKq “

K
ÿ

k“1

rV πkpdk, pqs
`

“

K
ÿ

k“1

rV πkpdk, pq ´ V πkpdk, p̃kqs
`

loooooooooooooooooooomoooooooooooooooooooon

Lemma 5.10

`

K
ÿ

k“1

rV πkpdk, p̃kqs
`

loooooooooomoooooooooon

Lemma 5.13

ď Õ
?̀
NSAH3K S̀2AH3

˘

` 16p1 `
?
Lδq

?
C

?
6SAHK ln

˜

K ` 8
?
C

˜?
6SAHK

SAH

¸

` 2

¸

D.2. Proof of Remark 5.2

If we fix the reward and constraint, where r̃k “ r̃k´1, d̃k “ d̃k´1, then we have the following relationship adapted from
Lemma 5.9:

g

f

f

e

K
ÿ

k“1

}∇k ´ ∇k´1}2 ď α

g

f

f

e

K
ÿ

k“1

Φ1pλkqd̃k ´ Φ1pλk´1qd̃k´1
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ď αp1 `
?
LδqΦ1pλKq

?
2SAHK

Tighter Bound Analysis. Similar to proof in Appendix C.4 we can obtain:

ΦpλKq ` α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď 3.5

?
C

˜

Φ1pλKq
?
2SAHK

2SAH

¸

exppβλKq ´ 1 ` α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď β exppβλKq ¨ 3.5

?
C

˜?
2SAHK

2SAH

¸

α
K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď exppβλKq

˜

β ¨ 3.5
?
C

˜?
2SAHK

2SAH

¸

´ 1

¸

` 1

K
ÿ

k“1

rr̃J
k q

˚ ´ r̃J
k qks ď exppβλKq

¨

˝

β ¨ 3.5
?
C
´?

2SAHK
2SAH

¯

α
´

1

α

˛

‚`
1

α

ď 2p1 `
?
LδqSAH

where the last equality obtained by α “ 1
2p1`

?
LδqSAH

, β ď 2SAH
3.5

?
C

?
2SAHK

. Now, we clearly prove a Op1q bound for
řK

k“1rr̃J
k q

˚ ´ r̃J
k qks.

E. Useful Lemmas
Lemma E.1 (Lemma E.15 of (Dann et al., 2017)). Consider two MDPs M1 “ pS,A, tp1huHh“1, tr1huHh“1q and M2 “

pS,A, tp2huHh“1, tr2huHh“1q. For any policy π and s, h, the following relation holds.

V π
h ps; r1, p1q ´ V π

h ps; r2, p2q

“ E

«

H
ÿ

h1“h

r1hpsh, ahq ´ r2hpsh, ahq ` pp1h ´ p2hqp¨ | sh, ahqV π
h`1p¨; r1, p1q | sh “ s, π, p2

ff

(37)

where pp1h ´ p2hqp¨ | sh, ahqV π
h`1p¨; r1, p1q “

ř

sPSpp1h ´ p2hqps1 | sh, ahqV π
h`1ps1; r1, p1q.

Lemma E.2 (Lemma D.5 of (Liu et al., 2021b)). With probability at least 1 ´ δ,
K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aq

qπk

h ps, aq
b

nk´1
h ps, aq _ 1

ď 6HSA ` 2H
?
SAK ` 2HSA lnK ` 5 ln

2HK

δ

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aq

qπk

h ps, aq

nk´1
h ps, aq _ 1

ď 4HSA ` 2HSA lnK ` 4 ln
2HK

δ

(38)

where qπk

h ps, aq “ Prpsh “ s, ah “ a | s1, πk, pq.

Lemma E.3 (Lemma 8 of (Jin et al., 2020)). Conditioned on the good event G, for all ps, a, h, s1, kq P SˆAˆrHsˆSˆrKs,
there exists constants C1, C2 ą 0 for which we have for all p̃k P Bk that

|pph ´ p̃khqps1 | s, aq| ď C1

d

phps, aqLp
δ

nk´1
h ps, aq _ 1

`
C2L

p
δ

nk´1
h ps, aq _ 1

.

The following lemma is Lemma 10 of (Chen & Luo, 2021) with a boundedness constant C for the reward function rk.
Lemma E.4 (Lemma 10 of (Chen & Luo, 2021)). Let rk be an arbitrary function such that rk,hps, aq P r´C,Cs for all
ps, a, h, kq P S ˆ A ˆ rHs ˆ rKs. If the true transition kernel p satisfies p P Bk, then for any p̃k P Bk we have

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H
ÿ

h“1

pph ´ p̃khqp¨ | sh, ahqpV πk

h`1p¨; rk, pq ´ V πk

h`1p¨; rk, p̃
kqq | s1, πk, p

ff
ˇ

ˇ

ˇ

ˇ

ˇ

“ ÕpCH3S2Aq.

Lemma E.5 (Lemma 4 of (Chen & Luo, 2021)). For any reward function r, policy π, transition kernel p,

Var

˜

H
ÿ

h“1

rhpsh, ahq | s1, π, p

¸

ě E

«

H
ÿ

h“1

Vhpsh, ah;π, pq | s1, π, p

ff

. (39)
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Lemma E.6 (Estimation Error for p). Let p̃k denote the transition kernel in the candidate set Bk, and let ℓk be an arbitrary
function with ℓk,hps, aq P r´C,Cs for all ps, a, h, kq P S ˆ A ˆ rHs ˆ rKs and some C ą 0. Then, conditioned on the
good event G, the estimation error on the transition kernel can be bounded as follows:

K
ÿ

k“1

|V πkpℓk, pq ´ V πkpℓk, p̃kq| ď ÕpC
?
NSAH3K ` CS2AH3q.

Proof. By Lemma E.1, the desired term can be rewritten as

K
ÿ

k“1

|V πkpℓk, pq ´ V πkpℓk, p̃
kq| “

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H
ÿ

h“1

pph ´ p̃khqp¨ | sh, ahqV πk

h`1p¨; ℓk, p̃
kq | s1, πk, p

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H
ÿ

h“1

pph ´ p̃khqp¨ | sh, ahqV πk

h`1p¨; ℓk, pq | s1, πk, p

ff
ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Term (I)

`

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H
ÿ

h“1

pph ´ p̃khqp¨ | sh, ahqpV πk

h`1p¨; ℓk, pq ´ V πk

h`1p¨; ℓk, p̃
kqq | s1, πk, p

ffˇ

ˇ

ˇ

ˇ

ˇ

loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

Term (II)

where we use the short-hand notation php¨ | s, aqV πp¨; ℓk, pq “
ř

s1PS phps1 | s, aqV πps1; ℓk, pq. Under the good event G,
we have

|pph ´ p̃khqps1 | s, aq| ď C1

d

phps, aqLp
δ

nk´1
h ps, aq _ 1

`
C2L

p
δ

nk´1
h ps, aq _ 1

(40)

due to Lemma E.3. Applying this, Term (I) can be written as

Term (I) “

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H
ÿ

h“1

pph ´ p̃khqp¨ | sh, ahqV πk

h`1p¨; ℓk, pq | s1, πk, p

ff
ˇ

ˇ

ˇ

ˇ

ˇ

“

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H
ÿ

h“1

ÿ

s1

pph ´ p̃khqps1 | sh, ahqV πk

h`1ps1; ℓk, pq | s1, πk, p

ff
ˇ

ˇ

ˇ

ˇ

ˇ

“

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H
ÿ

h“1

ÿ

s1

pph ´ p̃khqps1 | sh, ahqpV πk

h`1ps1; ℓk, pq ´ Es2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pqq | s1, πk, p

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď

K
ÿ

k“1

E

«

H
ÿ

h“1

ÿ

s1

ˇ

ˇpph ´ p̃khqps1 | sh, ahq
ˇ

ˇ

ˇ

ˇV πk

h`1ps1; ℓk, pq ´ Es2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pq
ˇ

ˇ | s1, πk, p

ff

ď

K
ÿ

k“1

E

«

H
ÿ

h“1

ÿ

s1

C1

d

phps1 | sh, ahqLp
δ

nk´1
h psh, ahq _ 1

ˇ

ˇV πk

h`1ps1; ℓk, pq ´ Es2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pq
ˇ

ˇ | s1, πk, p

ff

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

Term (I-a)

`

K
ÿ

k“1

E

«

H
ÿ

h“1

ÿ

s1

C2L
p
δ

nk´1
h psh, ahq _ 1

ˇ

ˇV πk

h`1ps1; ℓk, pq ´ Es2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pq
ˇ

ˇ | s1, πk, p

ff

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

Term (I-b)

where the third equality follows from
ř

s1 pph ´ p̃khqps1 | s, aqEs2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pq “ 0, and the last inequality is
due to (40). Note that the expectations can be expressed by occupancy measures. Furthermore, in Term (I-a), we can replace
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ř

s1 with
ř

s1:phps1|s,aqą0. Then this can be rewritten as

Term (I-a)

“ C1

b

Lp
δ

K
ÿ

k“1

E

»

–

H
ÿ

h“1

ÿ

s1:phps1|s,aqą0

d

phps1 | sh, ahq

nk´1
h psh, ahq _ 1

ˇ

ˇV πk

h`1ps1; ℓk, pq ´ Es2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pq
ˇ

ˇ | s1, πk, p

fi

fl

“ C1

b

Lp
δ

K
ÿ

k“1

E

»

–

H
ÿ

h“1

ÿ

s1:phps1|s,aqą0

d

phps1 | sh, ahqpV πk

h`1ps; ℓk, pq ´ Es2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pqq2

nk´1
h psh, ahq _ 1

| s1, πk, p

fi

fl

“ C1

b

Lp
δ

K
ÿ

k“1

ÿ

ps,a,hq

qπk

h ps, a; pq
ÿ

s1:phps1|s,aqą0

d

phps1 | s, aqpV πk

h`1ps; ℓk, pq ´ Es2„php¨|s,aqV
πk

h`1ps2; ℓk, pqq2

nk´1
h ps, aq _ 1

ď C1

b

Lp
δ

g

f

f

e

K
ÿ

k“1

ÿ

ps,a,hq

qπk

h ps, a; pq
ÿ

s1:phps1|s,aqą0

phps1 | s, aqpV πk

h`1ps; ℓk, pq ´ Es2„php¨|s,aqV
πk

h`1ps2; ℓk, pqq2

ˆ

g

f

f

e

K
ÿ

k“1

ÿ

ps,a,hq

ÿ

s1:phps1|s,aqą0

qπk

h ps, a; pq

nk´1
h ps, aq _ 1

where the inequality follows from the Cauchuy-Schwarz inequality. Here,
ÿ

s1:phps1|s,aqą0

phps1 | s, aqpV πk

h`1ps; ℓk, pq ´ Es2„php¨|s,aqV
πk

h`1ps2; ℓk, pqq2 “ Vhps, a;πk, pq.

Then, Term (I-a) is upper bounded as

Term (I-a) ď C1

b

Lp
δ

g

f

f

e

K
ÿ

k“1

ÿ

ps,a,hq

qπk

h ps, a; pqVhps, a;πk, pq ˆ

g

f

f

e

K
ÿ

k“1

ÿ

ps,a,hq

ÿ

s1:phps1|s,aqą0

qπk

h ps, a; pq

nk´1
h ps, aq _ 1

ď C1

b

Lp
δ

g

f

f

e

K
ÿ

k“1

E

«

H
ÿ

h“1

Vhpsh, ah;πk, pq | s1, πk, p

ff

ˆ

g

f

f

eN
K
ÿ

k“1

ÿ

ps,a,hq

qπk

h ps, a; pq

nk´1
h ps, aq _ 1

.

By Lemma E.5, we have E
”

řH
h“1 Vhpsh, ah;πk, pq | s1, πk, p

ı

ď Var
´

řH
h“1 ℓk,hpsh, ahq | s1, πk, p

¯

. Since
řH

h“1 ℓk,hpsh, ahq P r´CH,CHs almost surely, we have Var
´

řH
h“1 ℓk,hpsh, ahq | s1, πk, p

¯

ď C2H2. Furthermore, we
can bound the later term with Lemma E.2. Then it follows that

Term (I-a) “ ÕpC
?
KH2 ˆ

?
NSAHq “ ÕpC

?
NSAH3Kq.

To bound Term (I-b), under the good event G, we have
ˇ

ˇV πk

h`1ps1; ℓk, pq ´ Es2„php¨|sh,ahqV
πk

h`1ps2; ℓk, pq
ˇ

ˇ ď 2CH . By
Lemma E.2,

Term (I-b) ď 2CHS
K
ÿ

k“1

H
ÿ

h“1

E

«

C2L
p
δ

nk´1
h psh, ahq _ 1

| s1, πk, p

ff

“ Õ
`

CH2S2A
˘

.

Then we have
Term (I) “ Term (I-a) ` Term (I-b) “ Õ

´

C
?
NSAH3K ` CH2S2A

¯

.

By Lemma E.4, we can bound Term (II) as

Term (II) “ ÕpCH3S2Aq.

Finally, we have
K
ÿ

k“1

|V πkpℓk, pq ´ V πkpℓk, p̃
kq| ď Term (I) ` Term (II) “ ÕpC

?
NSAH3K ` CH3S2Aq.
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