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Abstract

Realism constraints (or constraints on perceptual quality) have received consid-
erable recent attention within the context of lossy compression, particularly of
images. Theoretical studies of lossy compression indicate that high-rate common
randomness between the compressor and the decompressor is a valuable resource
for achieving realism. On the other hand, the utility of significant amounts of com-
mon randomness at test time has not been noted in practice. We offer an explanation
for this discrepancy by considering a realism constraint that requires satisfying
a universal critic that inspects realizations of individual compressed images, or
batches thereof. We characterize the optimal rate-distortion-perception trade-off
under such a realism constraint, and show that it is asymptotically achievable
without any common randomness, unless the batch size is impractically large.

1 Introduction

Realism, or perceptual quality, of reconstructed signals is a long-standing open challenge in lossy
compression, particularly for image/video compression [8, 25]. It has received renewed interest in
the recent years due to the remarkable progress in image generation models and neural compression
techniques. The idea is that reconstructed images should be indistinguishable to humans from
naturally occurring ones in addition to having a high pixel-level fidelity to the original source. This
ensures that reconstructed images are free of obvious artifacts such as blocking, blurriness, etc.

The idea that the output of the decoder should resemble the source in a statistical sense is not new.
Advanced Audio Coding (AAC), for instance, includes a provision to add high-frequency noise to the
output so that its power spectrum resembles that of the source [19]. But the idea has received renewed
attention with the emergence of adversarial loss functions in learned compression [18, 23, 2, 3].
In practice, this has proven to be a powerful method for ensuring that reconstructed images have
high perceptual quality [2, 15, 11, 13]. Adversarial loss functions can in many cases be viewed as
variational forms of statistical divergences. Thus one can think of constraining the distribution of
reconstructions to be close to that of the source according to some divergence, in addition to requiring
that each reconstructed image be close to its respective source according to conventional notions of
distortion.

Rate-distortion theory characterizes the optimal trade-off between rate and distortion in lossy com-
pression [16, 19]. The fundamental object in the theory is the rate-distortion function, for a given
source distribution pX :

∆ ∈ [0,∞) 7→ R(0)(∆) := min
pY |X s.t. Ep[d(X,Y )]≤∆

Ip(X;Y ), (1)

where pX,Y is defined as pX · pY |X . This function has been shown to describe the optimal trade-off
between rate and distortion under a variety of assumptions. Blau and Michaeli [3] postulated an
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augmented form that includes a distribution matching constraint, which they call the rate-distortion-
perception (RDP) function

(∆, λ) ∈ [0,∞)2 7→ R(1)(∆, λ) := min
pY |X s.t. D(pX ,pY )≤λ,Ep[d(X,Y )]≤∆

Ip(X;Y ), (2)

where D can be any divergence between distributions. This function has likewise been shown
to describe the optimal trade-off between rate, distortion, and realism under a variety of assump-
tions [22, 5]. Curiously, however, these results show that substantial amounts of high-quality common
randomness are needed to meet the R(1)(·, 0) bound [17, 24, 5] — see also [26]. The exception is the
case in which the realism constraint is imposed in a very weak form, namely that the histograms of the
source and reconstruction images should be close on a per-realization basis [5]. Note that common
pseudorandomness, say generated from a shared seed, does not qualify as common randomness for
the purposes of the above results.

On the other hand, the theoretical prediction that lossy compression schemes would benefit from
substantial amounts of high-quality common randomness between the encoder and decoder has
not been observed in practice. To the best of our knowledge, there exist compression schemes
[1, 11, 12, 9, 15, 27], considered as state-of-the-art, that do not involve any common randomness.
While it is possible that future designs will find common randomness to be a valuable resource, it
seems more likely that the discrepancy between the theoretical prediction and practical experience
lies with a flaw with the theoretical models.

Consider a communication system for which a strong realism constraint is imposed: the distribution
of the reconstructions must be close to the distribution of natural images, say, in Wasserstein or
total variation distance (TVD). If the source distribution is continuous, then the code cannot be
deterministic, for otherwise the reconstruction distribution would be supported on a countable set
(corresponding to the set of received bit strings). Thus some amount of randomization is required to
meet the constraint. The decoder can randomize its output in a way that “spreads” the point masses
out to form a continuous distribution, but adding independent noise at the decoder inevitably degrades
the distortion. Common randomness is useful because it allows the discrete reconstruction points to
be dispersed to form a continuous distribution without less overall distortion. This is the basis for the
finding that common randomness is a useful resource for compression under realism constraints [21].1

The above reasoning is evidently sensitive to the nature of the realism constraint. If we simply require
that each reconstructed image appear realistic in its own right, without reference to the reconstruction
ensemble, then the spreading process mentioned above is unnecessary. It follows that there would be
no need for randomization. This is relevant because human observers, who are the ultimate arbiters of
realism in practice, are adept at identifying unrealistic features of individual images. Yet it is difficult
for human observers to distinguish between a continuous ensemble and one that is discrete with a
very large support set, since doing so would require viewing (and remembering) many images. In
short, human critics are very good at spotting unrealistic aspects of individual images but are expected
to be poor at detecting subtle ensemble-level differences.

This suggests posing the realism constraint in a way that better captures the relative strengths
and weaknesses of human critics. The aforementioned strong realism constraint has also been
challenged in the context of other problems, such as generative modeling [20]. We consider a novel
formulation of the lossy compression problem in which the goal is to satisfy a critic that is incredibly
discriminating when viewing individual images. In fact, a reconstructed image is declared unrealistic
if there exists some computable test, no matter how complex, that can distinguish it from the set of
typical source images (see Definition 3.5 to follow). At the same time, we assume that the critic
can glean information about the ensemble only by inspecting batches of individual samples. Under
this formulation, we show that the rate-distortion-perception function R(1)(·, 0) in (2) is achievable
without common randomness unless the batch size is unreasonably high—on par with the number
of possible outputs of the decoder (Theorems 4.1 and C.1). If common randomness is not needed
to fool this critic, it should not be needed to fool any weaker (and more practical) critic, since the
stronger critic subsumes the weaker one. This is akin to how in cryptography one might prove security
guarantees assuming a very strong adversary, stronger than can be implemented in practice. The fact
that the adversary cannot be practically implemented is a strength of our approach. It is notable that

1It is now apparent why sharing a pseudorandom seed is insufficient, as this would expand the number of
distinct reproductions by a multiplicative factor equal to the number of possible values of the seed, which is
relatively small if the seed is short.
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there exist compressors that can satisfy such discriminating critics at all. It is all the more notable that
such critics can be satisfied while achieving the rate-distortion-perception function R(1)(·, 0) in (2),
which is the most optimistic rate-distortion trade-off possible under the circumstances. Conversely,
we show that common randomness is indeed beneficial if the batch size is extremely large, larger
than would ever occur in practice (Theorem 4.3). In this regime, our realism measure reduces
to a divergence and common randomness is again useful. These two results clarify that common
randomness is indeed useful, consistent with theoretical predictions, but only in regimes that do not
occur in practice, consistent with the current state of the experimental literature. Our results show the
existence of optimal schemes which do not involve any common randomness at test time, but there
may exist other optimal schemes, which rely on common randomness at test time, as well as learned
schemes relying on common randomness at training time.

In Section 2, we provide some background on the formalism for critics in algorithmic information
theory. In Section 3, we introduce our new formalism for the RDP trade-off, including in asymptotic
regimes where the source is of the form p⊗n, where n → ∞. In Section 4, we present our main
asymptotic results, which pertain to low batch size and large batch size regimes. Due to space
limitations, achievable points in the one-shot setting are provided in Appendix C.

2 Background

The cardinality of a finite set X is denoted |X |. We denote by [a] the set [1, a] ∩ N. We use x1:n

to denote a finite sequence (x1, ..., xn), and x(n,b) to denote a batch {x(k)
1:n}k∈[b] of b strings, each

being of length n. We abbreviate x(1,b) with x(b). We use ≡ to denote equality of distributions, and
Ip(X;Y ) to denote the mutual information between X and Y with respect to joint distribution pX,Y .
We denote by {0, 1}∗ the set of non-empty finite strings of 0’s and 1’s. For any nonempty finite set
X , and any distribution p on X , we denote by p⊗∗ the function defined on {0, 1}∗, which is null
outside of ∪n∈NXn, and such that for every n ∈ N, the restriction of p⊗∗ on Xn is p⊗n. The total
variation distance between distributions p and q is denoted ∥p− q∥TV .

2.1 Background on algorithmic information theory

The theory of p-critics and universal critics has recently been brought to the attention of the machine
vision community via [20]. We refer to it for readers interested in a high-level and insightful presen-
tation of the topic and its usefulness in diverse machine learning tasks (generative modeling, outlier
detection). Relevant background on computability theory is provided in Appendix B. Throughout
the paper, we assume that the source X follows a distribution pX on a finite set X , and that pX is
a computable function from X to (0, 1). We identify every element of X with a string of 0’s and
1’s, via an injection from X to {0, 1}s, for some s ∈ N. For example, if X is a set of images of a
given resolution, then one can identify each image with the corresponding output from a fixed-length
lossless compressor. The following definition is substantially close to Definition 4.3.8 in [14]. See
also Lemma 4.3.5 in [14].

Definition 2.1. Consider a finite set X , identified with a subset of {0, 1}s. Let p be a distribution on
X such that ∀x ∈ X , p(x) > 0. A p-critic is a function δ : X → R, such that∑

x∈X
p(x)2δ(x) ≤ 1. (3)

A p⊗∗ -critic is a function δ : ∪n∈NXn → R, such that for every input dimension n ∈ N, we have∑
x∈Xn

p⊗n(x)2δ(x) ≤ 1. (4)

The notion of p⊗∗-critic in Definition 2.1 is used to study an asymptotic regime in Section 3.2.
Note that for any probability distribution π on N, the mixture p̃ :=

∑
n∈N π(n)p⊗n is a probability

measure. By multiplying (4) by πn, and summing over n, we obtain∑
x∈∪n∈NXn

p̃(x)2δ(x) ≤ 1. (5)
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Encoder𝑋 Decoder
𝑀 ∈ [2!]

𝑌

𝐽 ∈ [2!!]

Figure 1: The system model for the one-shot setting.

Hence, a p-critic (resp. p⊗∗-critic) is akin to a log-likelihood ratio: given a p-critic (resp. p⊗∗-critic)
δ, setting q : x 7→ p(x)2δ(x) (resp. q : x 7→ p̃(x)2δ(x)) gives

∀x ∈ X s.t. p(x) > 0, δ(x) = log
(q(x)
p(x)

)
(resp. log

(q(x)
p̃(x)

)
), and

∑
x∈X

q(x) ≤ 1. (6)

Links to hypothesis testing are discussed in [20], where a sample x is deemed unrealistic if the
likelihood ratio is large enough. Hence, intuitively, δ(x) can be considered as a measure of realism
deficiency of x. The strength of this theory lies in the existence of objects (critics, measures) having a
so-called universality property. For the purpose of clarity, we defer such results to Appendix B, as
they are only used in our proofs.

3 New model for the rate-distortion-perception trade-off

3.1 The one-shot setting

We consider a function d : X×X → [0,∞) called the distortion measure. A compression scheme
can be randomized, and potentially leverage available common randomness J between the encoder
and the decoder, as depicted in Figure 1 and formalized in the following definition.

Definition 3.1. Given non-negative reals R and Rc, an (R,Rc) code is a privately randomized
encoder and decoder couple (F,G) consisting of a conditional distribution FM |X,J from X × [2Rc ]
to [2R], and a conditional distribution GY |M,J from [2R] × [2Rc ] to X . Variables M and Y are
called the message and reconstruction, respectively, and distribution

P := pX · pU[2Rc ] · FM |X,J ·GY |M,J

is called the distribution induced by the code. Moreover, such a code is said to be deterministic if
Rc = 0 and mappings F,G are deterministic.

We propose a new RDP trade-off, as follows.

Definition 3.2. We extend d into an additive distortion measure on batches of elements of X : for all
B∈N,

∀(x(B),y(B)) ∈ XB ×XB , d(x(B),y(B)) := 1
B

∑B
k=1d(x

(k), y(k)).

Definition 3.3. Consider a positive integer B, and a p⊗B
X -critic δ. A tuple (R,∆, C) is said to be

δ-achievable with algorithmic realism if there exists some Rc ∈ R≥0 and an (R,Rc) code such that
the distribution P induced by the code satisfies

EP⊗B

[
d(X(B),Y(B))

]
≤ ∆ and (7)

EP⊗B [δ(Y(B))] ≤ C, (8)

where X(B) denotes a batch of B i.i.d. source samples, and Y(B) the batch of corresponding
reconstructions produced by the code (with each source sample being compressed separately). If the
code is deterministic, then we say that (R,∆, C) is δ-achievable with a deterministic code.

Due to space limitations, we provide achievable points in Appendix C. In the next section, we define
an asymptotic notion of achievability.
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(𝑘) Decoder
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𝑌1:𝑛
(𝑘)

𝑀 ∈ [2𝑛𝑅]

Figure 2: The system model for the asymptotic setting. Index k ranges from 1 to the batch size. The
same encoder-decoder pair is used to process each source sample in the batch.

3.2 Asymptotic setting

In order to derive insight into the corresponding RDP trade-off, we study a special case, which is
typical in the information theory literature. We consider the compression of a source distributed
according to p⊗n

X , with n a large integer. More precisely, we characterize the RDP trade-off in
asymptotic settings where both n and the batch size go to infinity. The extension of d into an additive
distortion measure on finite sequences, and batches of finite sequences, follows from Definition 3.2.
The setup is depicted in Figure 2. Given a coding scheme, each item in a batch of source samples is
compressed separately, and realism is measured based on the resulting batch of reconstructions. This
is formalized in the definition below.
Definition 3.4. Given R,Rc ≥ 0, and n ∈ N, a (n,R,Rc) code is a privately randomized encoder
and decoder couple (F (n), G(n)) consisting of a mapping F

(n)
M |X1:n,J

from Xn × [2nRc ] to [2nR]

and a mapping G
(n)
Y1:n|M,J from [2nRc ] × [2nR] to Xn. Moreover, such a code is said to be fully

deterministic if Rc = 0 and both F (n) and G(n) are deterministic. The distribution induced by the
code is

P (n) := p⊗n
X · pU[2nRc ] · F

(n)
M |X1:n,J

·G(n)
Y1:n|M,J ,

and variable Y1:n is called the reconstruction.

We define asymptotic achievability as follows. See Appendix B for background on computability.
Definition 3.5.
A quadruplet (R,Rc, {Bn}n≥1,∆) is said to be asymptotically achievable with algorithmic realism
if for any ε > 0, there exists a sequence of codes {(F (n), G(n))}n, the n-th being (n,R + ε,Rc),
such that the sequence {P (n)}n of distributions induced by the codes satisfies

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (9)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (10)

We say that (R, {Bn}n≥1,∆) is achievable with a fully deterministic scheme if for each n, the code
(F (n), G(n)) is fully deterministic.

Constraint (10) is very stringent: a single compression scheme is to satisfy a performance guarantee
for every lower semi-computable p⊗∗

X -critic (i.e. every relevant one). The motivation for the specific
form of (10) is firstly from the algorithmic information theory literature: it is stated in [14] (p.140)
that a sample from a large set, identified to a long string of 0’s and 1’s of some length k, is realistic
if its realism deficiency is small compared to k. The constraint in (10) is at least as stringent, since
in our asymptotic setting, each x1:n ∈ Xn is identified with a string of length linear in n, while we
require the realism deficiency to be bounded. Moreover, consider the following simple example.
Assume X = {0, 1}, and pX is a Bernoulli distribution B(ρ). Consider the 0-1 distortion (also
called Hamming distortion), and some distortion level ∆ < min(ρ, 1− ρ). Then, for large enough
n, the classical rate-distortion optimal code appearing in the information theory literature produces
reconstructions having a frequency of 1’s of roughly (ρ−∆)/(1−2∆) ([6], Sections 10.3.1 and 10.5),
i.e. different from ρ (if ρ ̸= 1/2 and ∆ > 0). Then, for the p⊗∗

X -critic appearing in Appendix I (Claim
I.1), which involves the frequency of occurrence of a pattern, the expected score diverges as n goes to
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infinity. Hence, constraint (10) is not satisfied by such a code, optimized only for rate and distortion,
but not for realism. This concludes the definitions for our setup. In the next sections, we present our
results in asymptotic settings. See Appendix C for achievable points in the one-shot setting.

4 Results

4.1 Low batch size regime

The following theorem states that R(1)(·, 0), defined in (2), which naturaly arises in the distribution
matching formalism, also characterizes the optimal trade-off in our asymptotic setting, when the
batch size is not impractically large.
Theorem 4.1. Consider a computable sequence {Bn}n≥1 of positive integers such that
log(Bn)/n → 0. For any ∆ ∈ R+, let R(∆) be the infimum of rates R such that there exists
Rc ∈ R≥0 such that (R,Rc, {Bn}n≥1,∆) is asymptotically achievable with algorithmic realism.
Moreover, for any ∆ ∈ R+, let R∗(∆) be the infimum of rates R such that (R, {Bn}n≥1,∆) is
asymptotically achievable with algorithmic realism with fully deterministic codes. Then, we have

∀∆ ∈ R+ s.t. R(1)(∆, 0) < Hp(X), we have R(∆) = R∗(∆) = R(1)(∆, 0). (11)

The proof is provided in Appendices E and F. The strength of this result lies in how stringent
constraint (10) is: a single compression scheme satisfies a performance guarantee for every relevant
p⊗∗
X -critic, and deterministic schemes are sufficient. The proof leverages the existence of a universal

p⊗∗
X -critic δ0 (see Appendix B.2). Indeed, it is sufficient to construct a scheme which achieves (10)

only for such a δ0, which is more sensitive than all relevant p⊗∗
X -critics. It is a very strong critic,

stronger than can be implemented in practice, which is another strength of Theorem 4.1.

4.2 Generalizing the distribution matching formalism

Under the distribution matching formalism for the RDP trade-off, the natural asymptotic notion of
achievability is as follows.
Definition 4.2. [17, 3]
A quadruplet (R,Rc, {Bn}n≥1,∆) is said to be asymptotically achievable with near-perfect realism
if for any ε > 0, there exists a sequence of codes {(F (n), G(n))}n, the n-th being (n,R + ε,Rc),
such that the sequence {P (n)}n of distributions induced by the codes satisfies

lim sup
n→∞

EP (n)

[
d(X1:n, Y1:n)

]
≤ ∆+ ε and ∥P (n)

Y1:n
− p⊗n

X ∥TV −→
n→∞

0. (12)

The total variation distance (TVD) in (12) is directly related to the performance of the optimal
hypothesis tester between the reconstruction distribution P

(n)
Y1:n

, and the source distribution p⊗n
X [3].

Replacing the second property in (12) with

∃N ∈ N,∀n ≥ N, P
(n)
Y1:n

≡ p⊗n
X (13)

gives the notion of asymptotic achievability with perfect realism. It was shown that these two
notions are equivalent for finite-valued sources [17], as well as for continuous sources under mild
assumptions [17, 24]. As formalized in the theorem below, in a certain large batch size regime,
asymptotic achievability with algorithmic realism is equivalent to asymptotic achievability with
near-perfect realism. The proof is provided in Appendix G.
Theorem 4.3. Consider a computable increasing sequence {Bn}n≥1 in N such that Bn/|X |n → ∞.
Then, for any Rc ∈ R≥0, and any (R,∆) ∈ (R+)

2, tuple (R,Rc, {Bn}n≥1,∆) is asymptotically
achievable with algorithmic realism if and only if (R,Rc,∆) is asymptotically achievable with
near-perfect realism, if and only if (R,Rc,∆) is asymptotically achievable with perfect realism.

Hence, Theorem 4.3, similarly to the finding in [20], shows that for large batch size, our formalism
is equivalent to the distribution matching formalism. Hence, the former is a generalization of the
latter. Moreover, Theorem 4.3 implies that common randomness is useful when the size of the
batch inspected by the critic is extremely large. As discussed in Section 4.1, Theorem 4.1 states that
common randomness does not improve the trade-off under our formalism, in all regimes where the
batch size is not impractically large with respect to the dimension n of the source. Thus, Theorems
4.1 and 4.3 show that, in order to understand the role of randomization in lossy compression with
realism constraints, the focus should be shifted to the size of the batch inspected by the critic.
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A Additional notation

Calligraphic letters such as X denote sets, except in pUJ , which denotes the uniform distribution
over set J . Given a real number τ, we denote by ⌊τ⌋ (resp. ⌈τ⌉) the largest (resp. smallest) integer
less (resp. greater) than or equal to τ. The length of a string x is denoted by l(x). We denote the
set of (strictly) positive reals by R+, the set of (strictly) positive integers by N, the set of rational
numbers by Q, and the Borel σ-algebra of R by B(R). The closure of a set A is denoted by cl(A).
Logarithms are in base 2. For a finite set X , the empirical distribution of a sequence x1:n∈Xn is
denoted Pemp

X (x1:n). Given a distribution PX1:n
on Xn, we denote by P̂X [X1:n] the average marginal

distribution of random string X1:n, i.e., the distribution on X defined by:

P̂X [X1:n] :=
1
n

∑n
t=1 PXt

.

B Further background on algorithmic information theory

B.1 Computability

This definition matches Definition 1.7.4 in [14], except for the definition of a computable real number,
which we adapted from Exercise 1.7.22 of [14], and for the definition of a computable set, which
matches that of [14], page 32.
Definition B.1. Consider a subset E of N≥0. A map f from E into N3

≥0 is said to be computable if it
corresponds to a Turing machine (Section 1.7.1 in [14]). This notion extends to functions having as
domain other common countable sets, such as Nk

≥0 for k ∈ N, and {0, 1}∗, or any subset thereof, by
identifying elements of these sets with non-negative integers via some reference bijections. Consider
a computable map f from a subset E of N≥0 into {0, 1} × N≥0 × N. Then, composing f with
(s, a, b) 7→ (2s − 1)a/b yields a map from E to Q, which is said to be a computable map from E
to Q. A map f from a subset E of N≥0 into R is said to be lower semi-computable if there exists a
computable function φ from E × N into Q, such that

∀x ∈ E , φ(x, k) →
k→∞

f(x), and ∀x ∈ E ,∀k ∈ N, φ(x, k + 1) ≥ φ(x, k).

Moreover, f is said to be a computable map from E to R if both f and −f are lower semi-computable.
A real number λ is said to be computable if the constant function f : N≥0 → R, n 7→ λ is a
computable function from N≥0 to R. A (possibly infinite) subset X of N≥0, is said to be computable
if there exists a computable function f from N≥0 to {0, 1}, which returns 1 if its input is in X , and 0
otherwise.

The following lemma allows to construct (semi-)computable functions. Its proof is deferred to
Appendix M.
Lemma B.2. Let E denote a non-empty subset of N≥0, and let f and g denote functions from E to R.
(i) If f and g are both lower semi-computable, then functions f + g, ⌈f⌉, and 2f are lower semi-
computable. If, in addition, f and g only take non-negative values, then fg and 2f/(3+f)2 are lower
semi-computable. If, in addition, f only takes positive values, then log(f) is lower semi-computable.
(ii) If f and g are both computable, then functions f + g, fg, and |f | are computable. If, in addition,
f only takes positive values, then functions 1/f, and f1/b are computable, for any positive integer b.
(iii) Let X be a computable finite subset of {0, 1}∗. If f is a lower semi-computable function from
{0, 1}∗ into R, then the function f̃ : {0, 1}∗ → R which is null outside of ∪n∈NXn, and is defined by

∀x ∈ ∪n∈NXn, f̃(x) =
∑

y∈X l(x)

f(y),

is lower semi-computable. Moreover, if p is a lower semi-computable probability measure on X , then
p⊗∗ is lower semi-computable.

B.2 Universal critics and semi-measures

Definition B.3. Given a finite set W, a function f : W → [0, 1] is a semi-measure if∑
w∈W

f(w) ≤ 1.

9



It is said to be a lower semi-computable semi-measure if f is a semi-measure and f is lower
semi-computable.

The following theorem, corresponds to Definition 4.3.2, Equation (4.2), and Theorems 4.3.1 and 4.3.3
in [14]. It introduces the notion of universal p⊗∗-critic, used in [20]. The mixture m therein can be
used as a prior distribution, which has been shown to be relevant in machine learning applications
involving realism, such as outlier detection and generative modeling [20].
Theorem B.4. Consider a finite set X , each element of which is identified with a string in {0, 1}s,
for some s ∈ N. Let p be a computable distribution on X such that ∀x ∈ X , p(x) > 0. Then, there
exists a p⊗∗-critic δ0 (which is not necessarily lower semi-computable), such that for any lower
semi-computable p⊗∗-critic δ, there exists a constant cδ such that

∀x ∈
⋃
n∈N

Xn, δ0(x) ≥ δ(x)− cδ. (14)

Any p⊗∗-critic satisfying (14) is called a universal p⊗∗-critic.

Since our definitions are slightly different from the classical ones, we provide a proof of Theorem
B.4 in Appendix L.

Such a critic δ0 is one of the best measures of realism deficiency according to p, in the limit of
arbitrarily long strings. If a critic δ identifies a certain amount of deficiency in a given string, then δ0
will identify at least as much deficiency, up to some additive constant. Intuitively, δ0 is sensitive to all
properties of randomness according to p.

Remark B.5. ([14], Theorem 4.3.3) The universal semi-measure m can be chosen in such a way that
∀x ∈ {0, 1}∗, | − log(m(x))−K(x)| ≤ c, (15)

for some constant c, where K is the Kolmogorov complexity (see, e.g., [14], Section 3.1). Property
(15) constitutes a strong result, since the Kolmogorov complexity is only defined up to a constant
-we omit the corresponding details, for the purpose of clarity. The map x 7→ log(1/p(x))−K(x) is
sometimes considered to be an approximation of a universal p⊗∗ critic, see, e.g., [20], and Appendix
L.

C One-shot achievable points

The quantities in this section should be understood as follows:

• X is a finite set of images, e.g. the set of all images of a given resolution, with a finite range
for pixels (finite precision).

• d is the mean squared error between pixel values.
• B is the number of images inspected by the critic at a time.
• R1 is the number of bits into which a given image is compressed.

No statistical assumption is made regarding the source distribution pX of images in X . We have the
following family of achievable points, in the sense of Definition 3.3.
Theorem C.1. Consider a finite set X such that |X | ≥ 2, a computable distribution pX on X such
that ∀x ∈ X , pX(x)>0, a positive integer B, some R > log(B)/ log(X ), some ∆ ∈ R+, and a
p⊗B
X -critic δ. Consider any conditional transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (16)
Then, for any ε ∈ (0,∆/2), and any γ > 0, the triplet (R1,∆1, C1) is δ-achievable, with a (R1, 0)
code, where

R1 := R log(|X |) (17)

∆1 := ∆ + ε+
6∆

ε
max(d) · ηR,γ (18)

C1 :=
3∆

ε

[ B2

⌊2R1⌋
+ 2BηR,γ

]
·maxx B log

1

pX(x)
(19)

ηR,γ := p(AR,γ) + 2−γ log(|X |)/2 (20)

AR,γ :=
{
(x, y) ∈ X 2 | log

( pX,Y (x, y)

pX(x)pY (y)

)
− log(⌊2R1⌋) > −γ log(|X |)

}
, (21)
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with the convention 0/0 := 1.

The proof is provided in Appendix D. This result provides insights on the asymptotic regime of
Theorem 4.1. Consider the limit of large |X |, with fixed R,∆, ε, γ, and with log(B) = o(log |X |).
We know that

Ep

[
log

( pX,Y (x, y)

pX(x)pY (y)

)]
= Ip(X;Y ). (22)

Hence, if this log-likelihood ratio concentrates well, and if R1 > Ip(X;Y ), as in the definition of
R(1)(·, 0) in (2), then p(AR,γ) is small for small enough γ. In such an asymptotic regime, we obtain
∆1 ≈ ∆, and C1 = O(1). The assumption in Theorem 4.1, that the source is of the form p⊗n

X for
some large n, is only used to prove the concentration of this likelihood ratio. Hence, that result can
be extended to a larger set of sources. The term B2/⌊2R1⌋ is an upper bound on the probability
that two source samples in the batch are compressed into the same message. This is related to the
so-called birthday paradox (see Appendix K). The term maxx B log(1/pX(x)) is an upper bound on
the output of δ.

D Proof of Theorem C.1

D.1 Outline

To show the achievability of a tuple (R1,∆1, C1), it is not necessary to construct an explicit com-
pression scheme: it is sufficient to prove the abstract existence of such a scheme. To that end, we
consider a set of random reconstructions, and study its realism properties in Section D.2. Then, we
show the existence of a suitable choice of realizations of the latter reconstructions in Section D.3. In
Section D.4, we prove Theorem C.1 by proposing a compression scheme achieving a close-to-uniform
sampling from the set of reconstructions. For the remainder of Section D, we fix a finite set X such
that |X | ≥ 2, a distribution pX on X such that ∀x ∈ X , pX(x)>0, a positive integer B, and a
p⊗B
X -critic δ.

D.2 Realism performance of a uniformly sampled batch of random reconstructions

D.2.1 Random candidate reconstructions

Given a positive real R1, let C be a family of ⌊2R1⌋ i.i.d. variables, each sampled from pX . The m-th
variable is denoted y(C,m). We denote their joint distribution by QC . Given a realization c of C, we
consider a batch y(B) of B elements of c, sampled uniformly with replacement. Then, we compute
the batch’s realism score δ(y(B)). This is formalized in the following lemma, which gives an upper
bound of the expected score with respect to QC .

Lemma D.1. Consider a positive real R1 ∈ (log(B),∞), and the following pmf.

QC,M(B),Y(B)

(
{y(m′)}m′∈[⌊2R1⌋],m

(B),y(B)
)

:=
( ⌊2R1⌋∏

m′=1

pX (y(m′))

)
· 1

⌊2R1⌋B
·

B∏
k=1

1y(k)=y(m(k)). (23)

Then, we have

EQ[δ(Y
(B))] ≤ B2

⌊2R1⌋
maxx B log

1

pX(x)
. (24)

The remainder of Section D.2 is dedicated to the proof of Lemma D.1. Fix R1 > log(B).

D.2.2 Realism performance

Claim D.2. Since R1 > log(B), a simple bound yields,

(pU
[⌊2R1⌋])

⊗B(M (1), ...,M (B) 2 by 2 distinct) ≥ 1− B2

⌊2R1⌋
.

11



See Appendix K for a proof. From the definition (Section D.2.1) of Q, for any E ∈ B(R),

Q
({

δ0
({

y(C,M (k))
}
k∈[B]

)
∈ E

}
∣∣∣{M (1), ...,M (B) 2 by 2 distinct

})
= p⊗B

X

(
δ0
(
X(B)

)
∈ E

)
. (25)

Therefore, we have

EQ[δ({y(C,M (k))}k∈[B])]

=
∑
m(B)

EQ[1M(B)=m(B)δ({y(C,m(k))}k∈[B])]

=
∑
m(B)

EQ[1M(B)=m(B) ]EQ[δ({y(C,m(k))}k∈[B])]

=
∑

{m(k)}k∈[B] 2 by 2 ̸=

(pU[⌊2R1⌋])
⊗B(M(B)=m(B))Ep⊗B

X
[δ(X(B))]

+
∑

{m(k)}k∈[B] not 2 by 2 ̸=

(pU[⌊2R1⌋])
⊗B(M(B)=m(B))EQ[δ({y(C,m(k))}k∈[B])]

≤ Ep⊗B
X

[δ(X(B))] + max(δ)(pU[⌊2R1⌋])
⊗B(M (1), ...,M (B)not 2 by 2 ̸=)

≤ Ep⊗B
X

[δ(X(B))] +
B2

⌊2R1⌋
max

x
B log

1

pX(x)
, (26)

where (26) follows from Claim D.2 and (3).

Claim D.3. For any distribution p on a finite set, any p-critic δ satisfies

Ep[δ(X)] ≤ 0. (27)

Proof. By setting q : x 7→ p(x) · 2δ(x), we can write

∀x ∈ X s.t. p(x) > 0, δ(x) = log
(q(x)
p(x)

)
, with 0 <

∑
x∈X

q(x) ≤ 1. (28)

We denote the latter sum by q(X ). Then, q/q(X ) is a probability distribution on X , and we have

Ep[δ(X)] ≤ Ep

[
log

(q(X)/q(X )

p(X)

)
1p(X)>0

]
= −KL(p||q/q(X )) ≤ 0. (29)

This concludes the proof of Lemma D.1.

D.3 Further properties of a uniformly sampled batch

Proposition D.4. Consider a finite set X such that |X | ≥ 2, a distribution pX on X such that
∀x ∈ X , pX(x)>0, a positive integer B, some R > log(B)/ log(|X |), some ∆ ∈ R+, and a
p⊗B
X -critic δ. Consider any conditional transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (30)

Then, for any ε ∈ (0,∆/2), and any γ > 0, there exists a family {y(m)}m∈[⌊2R1⌋], denoted c, of
elements of X , such that distribution

QM,Y,X

(
m, y, x

)
:=

1

⌊2R1⌋
·
(
1y=y(m)

)
· pX|Y=y(m)(x) (31)
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satisfies

∥QX − pX∥TV ≤ 3∆

ε
[p(AR,γ) + 2−γ log(|X |)/2] (32)

EQ⊗B [d(X(B),Y(B))] ≤ ∆+ ε (33)

EQ⊗B [δ(Y(B))] ≤ 3∆

ε
· B2

⌊2R1⌋
max

x
B log

1

pX(x)
, (34)

where R1 = R log |X|, and

AR,γ :=
{
(x, y) ∈ X 2 | log

( pX,Y (x, y)

pX(x)pY (y)

)
− log(⌊2R1⌋) > −γ log(|X |)

}
. (35)

Proof. Fix some R > log(B)/ log(|X |), some ∆ > 0, some ε ∈ (0,∆/2), some γ > 0, and a
conditional transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (36)

Define R1 = R log |X |. We apply Lemma D.1, and use the notation therein. Then, from Markov’s
inequality, we have

QC

(
EQ[δ(Y

(B))|C] ≥ 3∆

ε

B2

⌊2R1⌋
max

x
B log

1

pX(x)

)
≤ ε

3∆
. (37)

We extend distribution Q as follows.

QC,M(B),Y(B),X(B)

(
{y(m′)}m′∈[⌊2R1⌋],m

(B),y(B),x(B)
)
:=

QC,M(B),Y(B)

(
{y(m′)}m′∈[⌊2R1⌋],m

(B),y(B)
)
·

B∏
k=1

pX|Y=y(m(k))(x
(k)). (38)

Distribution QC,M(1),Y (1),X(1) corresponds to the setting of Theorem VII.1 of [7], known as the soft
covering lemma. Since pY ≡ pX , the latter lemma yields that for any τ ∈ R,

EC
[
∥QX(1)|C − pX∥TV

]
≤ p(Aτ ) + 2τ/2, (39)

where

Aτ := {(x, y) | log(pY |X=x(y)/pX(y))− log(⌊2R1⌋) > τ}. (40)

We choose τ = −γ log |X |. Then, Aτ = AR,γ , with the notation of Proposition D.4. Hence, from
(39) and Markov’s inequality, we have

QC

(
∥QX(1)|C − pX∥TV ≥ 3∆

ε
[p(AR,γ) + 2−γ log(|X |)/2]

)
≤ ε

3∆
. (41)

By construction, we have QY(B),X(B) ≡ p⊗B
Y,X . Therefore, from (36), and the additivity of d, we have

EQ[d(X
(B),Y(B))] ≤ ∆. (42)

Therefore, from Markov’s inequality,

QC

(
EQ[d(X

(B),Y(B))|C] ≥ ∆+ ε
)
≤ ∆

∆+ ε
= 1− ε

∆
· 1

1 + ε/∆
< 1− 2ε

3∆
, (43)

where we have used the fact that ε ∈ (0,∆/2). From a union bound and (37), (41), and (43) there
exists a realization c∗ of C such that none of the corresponding events hold. Since, by construction,

QM(B),Y(B),X(B)|C=c∗ ≡ Q⊗B
M(1),Y (1),X(1)|C=c∗,

this concludes the proof of Proposition D.4.

D.4 Proof of Theorem C.1

Fix some R > log(B)/ log(|X |), some ∆ > 0, some ε ∈ (0,∆/2), some γ > 0, and a conditional
transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (44)

Define R1 = R log |X |. Then, we can apply Proposition D.4. We use the notation from the latter.
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D.4.1 Compression scheme achieving close-to-uniform sampling

We define the following distribution PX,Y,M , which differs from Q in having the correct marginal for
X :

PX,M,Y := pX ·QM,Y |X. (45)

Therefore, from (31), distribution P satisfies Markov chain X−M−Y. Hence, it defines a (R1, 0)
code. From Lemma J.2 (Appendix J), comparing P with Q reduces to comparing marginals, i.e. to
(32) : ∥∥PM,X, Y−QM,X, Y

∥∥
TV

=
∥∥PX−QX

∥∥
TV

=
∥∥pX −QX

∥∥
TV

≤ 3∆

ε
[p(AR,γ) + 2−γ log(|X |)/2]. (46)

Since d is additive, we have

E(P )⊗B [d(X(B),Y(B))] = EP [d(X,Y )] and

E(Q)⊗B [d(X(B),Y(B))] = EQ[d(X,Y )].

Since d is bounded, then we can apply Lemma J.3 (Appendix J). Then, from (46), and Lemma J.1
with W = (X,Y ), we have

EP⊗B [d(X(B),Y(B))] ≤ EQ⊗B [d(X(B),Y(B))] +
6∆

ε
max(d)[p(AR,γ) + 2−γ log(|X |)/2]

≤ ∆+ ε+
6∆

ε
max(d)[p(AR,γ) + 2−γ log(|X |)/2], (47)

where the last inequality follows from (33). Moving to the realism performance, we have the following
property of the TVD - see Appendix J:

Claim D.5. Given any two distributions P and Q on the same finite alphabet, we have, for any
B ∈ N, ∥∥∥P⊗B−Q⊗B

∥∥∥
TV

≤ B
∥∥P−Q

∥∥
TV

.

From Lemma J.3, Claim D.5, (46), and Lemma J.1 with W = Y(B), we have,

EP⊗B [δ(Y(B))] ≤ EQ⊗B [δ(Y(B))] +
6B∆

ε
max(δ)[p(AR,γ) + 2−γ log(|X |)/2]

≤ 3∆

ε
· B2

⌊2R1⌋
max

x
B log

1

pX(x)
+

6B∆

ε
[p(AR,γ) + 2−γ log(|X |)/2] ·max

x
B log

1

pX(x)
. (48)

This concludes the proof.

E Achievability of Theorem 4.1

Consider some ∆ ∈ R+ such that R(1)(∆, 0) < Hp(X), and a sequence {Bn}n≥1 of positive
integers such that

log(Bn)/n −→
n→∞

0. (49)

Fix R ∈ (R(1)(∆, 0), Hp(X)), ε ∈ (0, R − R(1)(∆, 0)), and γ ∈ (0, ε/ log(|X |)). Then, there
exists pY |X such that

pY ≡ pX , Ep[d(X,Y )] ≤ ∆, R ≥ Ip(X;Y ) + ε. (50)

We use the powerful result of Theorem B.4 regarding the existence of a so-called universal critic.
From Definition 2.1, for every n ∈ N, the restriction of δ0 to XnBn is a p⊗nBn

X -critic. Moreover,
from (49), for large enough n, we have nR > log(Bn). Then, for large enough n, we can apply
Theorem C.1 for set Xn, distribution p⊗n

X , transition kernel
∏n

t=1 pY |X, batch size Bn, critic δ0, rate
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nR/ log(|Xn|), and constants ∆, ε, γ. This gives that, for every n large enough, there is a (n,R, 0)
code, inducing a distribution P (n) such that

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε+

6∆

ε
max(d)[p(A(n)

R,γ) + 2−γn log(|X |)/2], (51)

E(P (n))⊗Bn

[
δ0(Y

(n,Bn))
]
≤

3∆

ε

[ B2
n

⌊2nR⌋
maxx nBn log

1

pX(x)
+ 2Bn[p(A(n)

R,γ) + 2−γn log(|X |)/2] ·maxx nBn log
1

pX(x)

]
, (52)

where

A(n)
R,γ :=

{
(x1:n, y1:n) ∈ (Xn)2 |

n∑
t=1

log
( pX,Y (xt, yt)

pX(xt)pY (yt)

)
− log(⌊2nR⌋) > −γn log(|X |)

}
, (53)

with the convention 0/0 := 1. From (50), log(⌊2nR⌋)/n− γ log(|X |) > Ip(X;Y ) for large enough
n. Then, since X is finite, we have, from Hoeffding’s inequality,

p(A(n)
R,γ) = O(e−κn), (54)

for some κ > 0. Hence, from (49), (51), (52), and Theorem B.4, we have

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (55)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (56)

From the proof of Theorem C.1, we know that P (n) has a deterministic decoder. Hence, it only
remains to derandomize the encoder of P (n). We denote its decoder by m 7→ y1:n(m). The following
claim is a slight modification of Proposition 4 in [10]. We provide details in Section E.1.
Claim E.1. There exists a sequence of deterministic maps

f (n) : Xn → [2nR], such that∥∥ ˆ̃P
(n)
X 2 [X

n, y1:n(M)]− P̂
(n)
X 2 [X

n, y1:n(M)]
∥∥
TV

−→
n→∞

0,

lim infn→∞
−1

n
log

∥∥P̃ (n)
M − P

(n)
M

∥∥
TV

> 0, where (57)

P̃
(n)
Xn,M := p⊗n

X · 1M=f(n)(Xn).

Then, from (49) and Claim D.5, we have

lim infn→∞
−1

n
log

∥∥(P̃ (n))⊗Bn

M − (P (n))⊗Bn

M

∥∥
TV

> 0. (58)

Thus, from Lemma J.3 and (3), we have

|E(P̃ (n))⊗Bn

[
δ(Y(n,Bn))

]
− E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
| −→
n→∞

0. (59)

Moreover, since d is bounded, then from Lemma J.3, we obtain

|E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
− E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
| −→
n→∞

0. (60)

Since this analysis is valid for any ε ∈ (0, R−R(1)(∆, 0)), then tuple (R, {Bn}n≥1,∆) is asymp-
totically achievable with algorithmic realism with fully deterministic codes. This being true for any
R ∈ (R(1)(∆, 0), Hp(X)), we have

R(∆) ≤ R∗(∆) ≤ R(1)(∆, 0),

as desired.

E.1 Encoder derandomization

We show that Claim E.1 follows from Proposition 4 in [10], and its proof. We can apply that result
directly, since R < Hp(X) and X is finite. This would give all properties in Claim E.1, except for
the exponential decay in (57). To obtain the latter, it is sufficient to adapt the proof of Proposition 4
in [10], by replacing the use of the law of large numbers with the use of Hoeffding’s inequality, and
using Theorem VII.1 of [7] with τ = −nγ, for small enough γ.
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F Converse of Theorem 4.1

From standard information-theoretic arguments, we have the following result - see Appendix H for a
proof.
Lemma F.1. Consider a triplet (R,Rc,∆) and a sequence of codes, the n-th being (n,R,Rc),

inducing a sequence {P (n)
X1:n,J,M,Y1:n

}n≥1 of distributions such that

lim sup
n→∞

E(P (n))⊗bn

[
d(X(n,bn),Y(n,bn))

]
≤ ∆, (61)

for some sequence {bn}n≥1 of positive integers. For every n ≥ 1, let T (n) denote a uniform variable
on [nbn] independent from all other random variables. Then, there exists a conditional distribution
pY |X and an increasing sequence {ni}i≥1 of positive integers such that

(P (ni))
⊗bni

X
T (ni)

,Y
T (ni)

−→
i→∞

pX,Y (62)

∆ ≥ Ep[d(X,Y )] (63)
R ≥ Ip(X;Y ), (64)

where pX,Y refers to pX · pY |X .

F.1 Converse proof

Consider some ∆ ∈ R+ such that R(1)(∆, 0) < Hp(X), and a sequence {Bn}n≥1 of positive
integers such that

log(Bn)/n −→
n→∞

0. (65)

We know that R∗(∆) ≥ R(∆), and prove that R(∆) ≥ R(1)(∆, 0). Consider a couple (R,∆) ∈ R2
+,

and some Rc ∈ R≥0 such that (R,Rc, {Bn}n≥1,∆) is asymptotically achievable with algorithmic
realism. Fix ε > 0. Then, there exists a sequence of codes, the n-th being (n,R,Rc), inducing a
sequence {P (n)

X1:n,J,M,Y1:n
}n of distributions such that

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (66)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (67)

Then, Lemma F.1 applies, with bn = Bn, for all n, with R+ ε instead of R, and ∆+ ε instead of ∆.
Then, there exists a conditional distribution pY |X and an increasing sequence {ni}i≥1 of positive
integers such that

(P (ni))
⊗bni

X
T (ni)

,Y
T (ni)

−→
i→∞

pX,Y (68)

∆+ ε ≥ Ep[d(X,Y )] (69)
R+ ε ≥ Ip(X;Y ), (70)

where for any n ∈ N, variable T (n) is uniformly distributed on [nBn], and independent from all
other random variables. We prove that pY ≡ pX . Fix e0 ∈ X . Consider the computable p⊗∗

X -critic δ
from Claim I.1, with q therein taken to be pX . Then, from (67),

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))− 2 log(δ(Y(n,Bn)) + 3)

]
< ∞. (71)

Thus,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞, and E(P (n))⊗Bn

[
δ(Y(n,Bn))− 1

2
log(nBn)

]
−→
n→∞

−∞.

Thus, the frequency of e0 in a batch of reconstructions converges in L1 norm to pX(e0). Hence, the
expected frequencies converge to pX(e0). This rewrites as

(P (n))⊗Bn

Y
T (n)

(e0) → pX(e0). (72)
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This is true for any e0 in X . Thus, from (68), pY ≡ pX . Hence, from (69) and (70), we have

R+ ε ≥ R(1)(∆ + ε, 0). (73)

This being true for any ε > 0, and since R(1)(·, 0) is convex -thus continuous- on (0,∞), we have

R ≥ R(1)(∆, 0). (74)

This being true for any R ∈ R+ such that there exists Rc ∈ R≥0 such that (R,Rc, {Bn}n≥1,∆) is
asymptotically achievable with algorithmic realism, we have

R(∆) ≥ R(1)(∆, 0), (75)

as desired.

G Proof of Theorem 4.3

Consider an increasing sequence {Bn}n≥1 of positive integers such that
Bn

|X |n
→ ∞, (76)

some Rc ∈ R≥0, and some (R,∆) ∈ (R+)
2 such that tuple (R,Rc,∆) is asymptotically achievable

with near-perfect realism. From Theorem 1 in [24], (R,Rc,∆) achievable with perfect realism, i.e.
satisfying the properties in Definition 4.2, with (12) replaced with

∃N ∈ N,∀n ≥ N, P
(n)
Y1:n

≡ p⊗n
X . (77)

Fix ε > 0, and a corresponding sequence of (n,R+ ε,Rc) codes. Denote by P (n) the distribution
induces by the n-th code. Then, there exists an integer Nε such that

lim sup
n→∞

EP (n)

[
d(X1:n, Y1:n)

]
≤ ∆+ ε, (78)

∀n ≥ Nε, (P
(n)
Y1:n

)⊗Bn ≡ p⊗nBn

X . (79)

From (78), (79), Claim D.3, and the additivity of the distortion measure d, we have

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (80)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (81)

Since this analysis is valid for every ε > 0, then (R,Rc, {Bn}n≥1,∆) is asymptotically achievable
with algorithmic realism. Moving to the converse, consider a computable increasing sequence
{Bn}n≥1 of positive integers such that

Bn

|X |n
→ ∞, (82)

some Rc ∈ R≥0, and some (R,∆) ∈ (R+)
2 such that tuple (R,Rc,∆) is asymptotically achievable

with algorithmic realism. Fix ε > 0. Then, there exists a sequence of codes, the n-th being
(n,R+ ε,Rc), such that the sequence {P (n)}n of distributions induced by the codes satisfies

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, and (83)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (84)

Lemma G.1. [4] There exists a positive integer λ such that for any k ∈ N, any distribution q on
some finite set W of size k, any ε, η > 0, and any integer b satisfying

b ≥ λ · k + log(1/η)

ε2
, (85)

we have

q⊗b
(∥∥Pemp

W [W b]− q
∥∥
TV

≥ ε
)
≤ η. (86)
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For every n ∈ N, define

Cn :=
⌈( Bn

|X |n
) 1

3
⌉
. (87)

Since X is finite, {Cn}n≥1 is a computable sequence of positive integers. Moreover, from (82), we
have

Cn −→
n→∞

∞. (88)

Choosing, for every n ∈ N, η = 1/3 and ε = 1/Cn, then from Lemma G.1 and (88) we have, for
large enough n,

(P (n))⊗Bn

(∥∥Pemp
Xn [Y

(n,Bn)]− P
(n)
Y1:n

∥∥
TV

≥ 1

Cn

)
≤ 1

3
. (89)

Consider the computable sequence of positive integers defined by

∀n ∈ N, An :=
⌈( Bn

|X |n
) 4

9
⌉
. (90)

Since {Bn}n≥1 is increasing, then for any t ∈ N, there exists a unique integer n ∈ N≥0 such that

t ∈ [nBn, (n+ 1)Bn+1),

with the definition B0 := 0. We define δ : ∪t∈NX t → N≥0 as follows. For any integer t ∈ [1, B1),
and any x1:t ∈ X t, let δ(x) := 0. For any n ∈ N, any t ∈ [nBn, (n+ 1)Bn+1), and any x1:t ∈ X t,
let

δ(x1:t) :=
⌈
An

∥∥Pemp
Xn [x1:nBn ]− p⊗n

X

∥∥
TV

⌉
. (91)

Claim G.2. From Lemma G.1 and (88), there exists a positive integer L such that δ−2 log(δ+3)−L
is a lower semi-computable p⊗∗

X -critic.

We provide a proof in Appendix I.2. Then, we can apply (84) to critic δ − 2 log(δ + 3)− L, and get,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))− 2 log(δ(Y(n,Bn)) + 3)− L

]
< ∞. (92)

Thus,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞, and (P (n))⊗Bn

(
δ(Y(n,Bn)) ≥ Cn

)
−→
n→∞

0,

because {Cn}n≥1 tends to infinity. Combining this with (89) through a union bound, we obtain, from
the triangle inequality for the TVD,

(P (n))⊗Bn
(∥∥P (n)

Y1:n
− p⊗n

X

∥∥
TV

≤ Cn

An
+

1

Cn

)
> 0,

for large enough n. The above event does not depend on the random batch, hence the corresponding
inequality is true, for large enough n. Since {Cn}n≥1 tends to infinity and since from (82), (87), and
(90), we have Cn/An → 0, then we obtain∥∥P (n)

Y1:n
− p⊗n

X

∥∥
TV

−→
n→∞

0. (93)

Hence, from (83) and the additivity of d, we have that (R,Rc,∆) is asymptotically achievable with
near-perfect realism. This concludes the proof.

H Standard converse arguments

Here, we provide a proof of Lemma F.1 (Appendix F). The sequence of distributions (P (n))⊗bn
XT ,YT

can be seen as a bounded sequence in R22s , thus it admits a converging subsequence:

(P (ni))⊗bn
XT ,YT

−→
i→∞

pX,Y . (94)
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Since d is bounded, we have

E(P (ni))⊗bn [d(XT , YT )] −→
i→∞

Ep[d(X,Y )]. (95)

Since d is additive, we have, for any n ∈ N,

E(P (n))⊗bn

[
d(X(n,bn),Y(n,bn))

]
= E(P (n))⊗bn

[
d(XT , YT )

]
. (96)

From (61), (95) and (96), we have ∆ ≥ Ep[d(X,Y )]. Secondly, distribution P (n) satisfies

nbnR ≥ H({m(k)}k∈[bn]|{J
(k)}k∈[bn])

≥ I({m(k)}k∈[bn];X
(n,bn)|{J (k)}k∈[bn])

= I({m(k)}k∈[bn], {J
(k)}k∈[bn];X

(n,bn))

≥ I(Y(n,bn);X(n,bn))

≥
bn∑
k=1

n∑
t=1

I(Y
(k)
t ;X

(k)
t )

= nbnI(YT ;XT |T )
= nbnI(T, YT ;XT )

≥ nbnI(YT ;XT ).

Therefore, from (94), and by continuity of mutual information on the set of distributions on ({0, 1}s)2,
we have R ≥ Ip(X;Y ).

I Frequency critics

I.1 Critic involving the frequency of a specific pattern

The following claim, and its proof, are inspired from Lemma 4.3.5 and Exercise 2.4.1 in [14].
Claim I.1. Consider a finite set X , identified with a subset of {0, 1}s. Let q be a distribution on X
such that ∀x ∈ X , q(x) > 0. Let e0 be any string in X , considered as a pattern of interest. For any
n ∈ N and any x1:n ∈ Xn, let S(x1:n) denote the number of occurrences of e0 in x1:n. Define map
δ:∪n∈N → N≥0 by

∀n ∈ N,∀x1:n ∈ Xn, x1:n 7→
⌈
log

⌈
|S(x1:n)− q(e0)n|

/ √
n
⌉⌉

. (97)

Then, δ − 2 log(δ + 3) is a computable q⊗∗-critic.

Proof. From Lemma B.2, δ is lower semi-computable. Since δ − 2 log(δ + 3) = log(2δ/(δ + 3)2),
then by Lemma B.2, δ − 2 log(δ + 3) is lower semi-computable. For any (n,C) ∈ N2, and any
x1:n ∈ Xn, we have:

{δ(x1:n) ≥ C} =
{⌈

log
⌈
|S(x1:n)− nq(e0)|

/√
n
⌉⌉

≥ C
}

=
{
log

⌈
|S(x1:n)− nq(e0)|

/ √
n
⌉
> C − 1

}
=

{⌈
|S(x1:n)− nq(e0)|

/ √
n
⌉
> 2C−1

}
=

{
|S(x1:n)− nq(e0)|

/ √
n > 2C−1

}
.

From this and Chebyshev inequality, we obtain:

q⊗n(δ(X1:n) ≥ C) ≤ Eq⊗n

[(
S(X1:n)− nq(e0)

)2
/n

]
/4C−1

= (q(e0)−q(e0)
2)/4C−1 (98)

≤ 4−C

≤ 2−C ,
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where (98) comes from the fact that S(X1:n) follows a binomial distribution B(n, q(e0)). Thus,

Eq⊗n [1δ(X1:n)=C ] ≤ 2−C . (99)

Therefore,

Eq⊗n [1δ(X1:n)=C · 2δ(X1:n)−2 log(δ(X1:n)+3)] ≤ 1

(C + 3)2
. (100)

This also holds for C = 0. Summing over C ∈ N≥0 gives, for any n ∈ N,∑
x1:n∈Xn

q⊗n(x1:n) · 2δ(x1:n)−2 log(δ(x1:n)+1)−1 ≤ 1. (101)

Hence, we have that δ − 2 log(δ + 3) is a lower semi-computable q⊗∗-critic.

I.2 Critic involving an empirical distribution

We provide a proof of Claim G.2.
Claim I.2. The map f : ∪t∈NX t → R defined by ∀t ∈ [1, B1) ∩ N,∀x1:t ∈ X t, f(x1:t) := 0, and

∀n ∈ N,∀t ∈ [nBn, (n+ 1)Bn+1) ∩ N,∀x1:t ∈ X t, f(x1:t) :=
∥∥Pemp

Xn [x1:nBn ]− p⊗n
∥∥
TV

(102)

is computable.

Proof. Since there exists s ∈ N such that X ⊆ {0, 1}s, then, given some x ∈ ∪t∈NX t → R, one can
compute the unique corresponding t via a Turing machine. Moreover, since {Bn}n≥1 is computable,
one can further compute the unique n such that t ∈ [nBn, (n+ 1)Bn+1) via a Turing machine, as
well as the empirical probability appearing in (102). For any k ∈ N, and any x0 ∈ X , one can
call the rational-valued computable upper and lower approximations of p at point (x0, k). Then,
one can go over all y1:n ∈ Xn, and use the explicit constructions from the proof of Lemma B.2
regarding the product, sum, and absolute value, yielding rational-valued computable upper and lower
approximations of f.

We know that Ann≥1 is computable. From Lemma B.2, the product of two computable functions
is computable, thus lower semi-computable, and the ceiling function preserves semi-computability.
Therefore, δ is lower semi-computable. Since δ − 2 log(δ + 3) = log(2δ/(δ + 3)2), then by Lemma
B.2, for any positive integer L, function δ − 2 log(δ + 3)− L is lower semi-computable. It remains
to prove that a certain choice of L yields a p⊗∗

X -critic. From (82) and (90), there exists N0 ∈ N such
that

∀n ≥ N0, Bn ≥ λ(|X |n + 2)A2
n. (103)

For any n ≥ N0, any C ≥ 2, any integer t ∈ [nBn, (n+ 1)Bn+1), and any x1:t ∈ X t, we have:

{δ(x1:t) ≥ C} =
{⌈

An

∥∥Pemp
Xn [x1:nBn ]− p⊗n

∥∥
TV

⌉
≥ C

}
=

{
An

∥∥Pemp
Xn [x1:nBn

]− p⊗n
∥∥
TV

> C − 1
}
.

From this, (103), and Lemma G.1, with distribution p⊗n
X , and parameters b = Bn,

ε = (C−1)/An, η = 2−C we obtain,

∀t ≥ [N0BN0
,∞) ∩ N,∀C ∈ N≥2, p⊗t

X (δ(X1:t) ≥ C) ≤ 2−C .

Therefore,

∀t ≥ [N0BN0
,∞) ∩ N,∀C ∈ N≥2, Ep⊗t

X
[1δ(X1:t)=C · 2δ(X1:t)−2 log(δ(X1:t)+3)] ≤ 1

(C + 3)2
.

This also holds for C ∈ {0, 1}. Summing over C ∈ N≥0 gives,

∀t ≥ [N0BN0 ,∞) ∩ N,
∑

x1:t∈X t

p⊗t
X (x1:t) · 2δ(x1:t)−2 log(δ(x1:t)+3) ≤ 1. (104)

In order to extend this to all positive integers t, it is sufficient to multiply by 2−L for some L large
enough. Therefore, there exists L ∈ N such that δ − 2 log(δ + 3)− L is a lower semi-computable
p⊗∗
X -critic. This concludes the proof.
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J On the total variation distance

J.1 Some lemmas

Lemma J.1. Let Π and Γ be two distributions on a set W ×L. Then

∥ΠW − ΓW ∥TV ≤ ∥ΠW,L − ΓW,L∥TV .

Lemma J.2. Let Π and Γ be two distributions on a set W×L. Then when using the same conditional
probability kernel ΠL|W , we have

∥ΠWΠL|W − ΓWΠL|W ∥TV = ∥ΠW − ΓW ∥TV .

Lemma J.3. Let Π and Γ be two distributions on a set W, and f : W → R be a bounded function.
Then,

| EΠ[f ]− EΓ[f ] | ≤ 2max |f | · ∥Π− Γ∥TV .

J.2 Proof of Claim D.5

Let P and Q be any two distributions on the same alphabet. Fix a positive integer B. Then, we have,
with the convention Π⊗ Γ⊗0 ≡ Π,

∥PB −QB∥TV = ∥
B∑

k=1

(P⊗(B−k+1) ⊗Q⊗(k−1) − P⊗(B−k) ⊗Q⊗k)∥TV

≤
B∑

k=1

∥P⊗(B−k+1) ⊗Q⊗(k−1) − P⊗(B−k) ⊗Q⊗k∥TV (105)

≤
B∑

k=1

∥P⊗(B−k) ⊗ P ⊗Q⊗(k−1) − P⊗(B−k) ⊗Q⊗Q⊗(k−1)∥TV

≤
B∑

k=1

∥P −Q∥TV = B∥P −Q∥TV , (106)

where (105) follows from the triangle inequality for the TVD ; and (106) follows form Lemma J.2,
with W = XB−k+1, ΠW ≡ P and ΓW ≡ Q.

K The birthday paradox

We provide a proof of Claim D.2. We have

(pU[⌊2R1⌋])
⊗B

(
M (1), ...,M (B) 2 by 2 distinct

)
=

B∏
k=1

⌊2R1⌋ − k + 1

⌊2R1⌋

≥ (⌊2R1⌋ −B + 1)B

⌊2R1⌋B

≥
(
1− B − 1

⌊2R1⌋

)B

≥ 1− B(B − 1)

⌊2R1⌋
(107)

≥ 1− B2

⌊2R1⌋
,

where (107) follows from Bernoulli’s inequality, since R1 > log(B).
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L Existence of a universal p⊗∗-critic

We provide a proof of Theorem B.4. From Theorem 4.3.1 in [14], there exists a sequence {qn}n≥1

containing all lower semi-computable semi-measures on {0, 1}∗, and a sequence {πn}n≥1 of (strictly)
positive reals, such that the mixture defined by

m :=
∑
n≥1

πnqn (108)

is a lower semi-computable semi-measure on {0, 1}∗. For every n ∈ N, let m(Xn) denote∑
x1:n∈Xn

m(x1:n).

From (108), we have ∀x ∈ {0, 1}∗,m(x) > 0. Moreover, ∀x0 ∈ X , p(x0) > 0, thus ∀x ∈
∪n∈NXn, p⊗∗(x) > 0. Define function δ0, by

∀n ∈ N,∀x1:n ∈ Xn, δ0(x1:n) := log
( m(x1:n)

m(Xn)p⊗n(x1:n)

)
. (109)

Fix any lower semi-computable p⊗∗-critic δ. Define map qδ : {0, 1}∗ → R by

∀x ∈ ∪n∈NXn, qδ(x) := m(X l(x))2δ(x)p⊗∗(x),

and x 7→ 0 elsewhere. From Lemma B.2 (iii), the function which is null outside of ∪n∈NXn, and
defined by x 7→ m(X l(x)) on ∪n∈NXn, is lower semi-computable. Moreover, x 7→ 2δ(x) and
x 7→ p⊗∗(x) are lower semi-computable by Lemma B.2 (i) and (iii) respectively. Thus, qδ is the
product three non-negative lower semi-computable functions. Hence, qδ is lower semi-computable
by Lemma B.2 (i). Moreover, we have∑

x∈{0,1}∗

qδ(x) =
∑
n∈N

m(Xn)
∑

x∈Xn

2δ(x)p⊗n(x)

≤
∑
n∈N

m(Xn) (110)

≤ 1, (111)
where (110) follows from the definition of a p⊗∗-critic; and (111) follows from the fact that m is a
semi-measure. Therefore, qδ is a lower semi-computable semi-measure. Thus, from (108), we have
m ≥ πqδqδ, for some positive real πqδ . In order to derive (14), fix x ∈ ∪n∈NXn, and denote l(x) by
n. From (108), we have m(x) > 0. Therefore, since ∀x0 ∈ X , p(x0) > 0, we have qδ(x) > 0. Thus,
from (109), we have

δ0(x) = log
( m(x1:n)

m(Xn)p⊗n(x1:n)

)
≥ log

( πqδq(x1:n)

m(Xn)p⊗n(x1:n)

)
= log(πqδ) + δ(x).

This is true for any lower semi-computable p⊗∗-critic δ, and any x ∈ ∪n∈NXn. Since log(πqδ) does
not depend on x, then property (14) holds. This concludes the proof.

M Additional semi-computability arguments

We provide a proof of Lemma B.2. If f is lower semi-computable, we denote by (x, k) 7→ φf,−(x, k)
a computable function from E to Q, monotonically approaching f from below, in the sense of
Definition B.1. If f is upper semi-computable, then φf,+(x, k) denotes a function of the form
φ−f,−(x, k), which monotonically approaches f from above.

M.1 Assume that f and g are computable

M.1.1 f + g

Function φf,− + φg,− is a computable function from E × N to Q, which monotonically approaches
f + g from below. Similarly, φf,+ + φg,+ constitutes a computable rational upper approximation.
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M.1.2 |f |

We construct φ|f |,− as follows. Let x ∈ E and k ∈ N. If φf,−(x, k) ≥ 0, return |φf,−(x, k)|.
Otherwise, if φf,+(x, k) ≤ 0, return |φf,+(x, k)|. Otherwise, return 0. We define φ|f |,+(x, k) as

max
(
|φf,−(x, k)|, |φf,+(x, k)|

)
.

Straightforwardly, this implies that |f | is computable.

M.1.3 fg

Define φfg,−(x, k) as follows. If φf,−(x, k) ≥ 0 and φg,−(x, k) ≥ 0, then return
φf,−(x, k)φg,−(x, k). Otherwise, if φf,+(x, k) ≤ 0 and φg,+(x, k) ≤ 0, then return
φf,+(x, k)φg,+(x, k). Otherwise, return

−max
(
|φf,−(x, k)|, |φf,+(x, k)|

)
max

(
|φg,−(x, k)|, |φg,+(x, k)|

)
.

Define φfg,+ as −φ(−f)g,−.

M.2 Suppose that f is computable and only takes positive values

M.2.1 1/f

Define φ1/f,−(x, k) as 1/φf,+(x, k). Compute k1(x), the smallest positive integer k such that
φf,−(x, k) > 0. For all integers k ∈ [1, k1(x)], define φ1/f,+(x, k) as 1/φf,−(x, k1(x)). For all
integers k ∈ (k1(x),∞), define φ1/f,+(x, k) as 1/φf,−(x, k).

M.2.2 f1/b

Compute k1(x), the smallest positive integer k such that φf,−(x, k) > 0. For all integers
k ∈ [1, k1(x)), define φf1/b,−(x, k) := 0 and φf1/b,+(x, k) = ⌈φf,+(x, k)⌉. Consider an inte-
ger k ∈ [k1(x),∞). Compute the greatest integer m such that (m/2k)b ≤ φf,−(x, k). Then, define
φf1/b,−(x, k) := m/2k. Therefore, we have

∀k ≥ k1(x), 0 ≤ φf,−(x, k)
1/b − φf1/b,−(x, k) <

1

2k
. (112)

From (112), and since the b-th root function and k 7→ φf,−(x, k) are both non-decreasing, we have

∀k ≥ k1(x) + 1, φf1/b,−(x, k − 1) ≤ φf,−(x, k)
1/b. (113)

Since φf1/b,−(x, k − 1) can also be written in the form m′/2k, then, from the maximality of the
integer m appearing in the construction of φf1/b,−(x, k), we have

∀k ≥ k1(x) + 1, φf1/b,−(x, k − 1) ≤ φf1/b,−(x, k). (114)

This also holds for all integers k ∈ [2, k1(x)+1). Properties (112) and (114) imply that f1/b is lower
semi-computable. We prove upper semi-computability similarly, using the smallest integer m̃ such
that (m̃/2k)b ≥ φf,+(x, k), and setting φf1/b,+(x, k) := m̃/2k.

M.3 Assume that f and g are lower semi-computable

M.3.1 f + g

Function φf,− + φg,− is a computable function from E × N to Q, which monotonically approaches
f + g from below.

M.3.2 ⌈f⌉

Define φ⌈f⌉,− as ⌈φf,−⌉.
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M.3.3 2f

Fix x ∈ E and k ∈ N. Let a ∈ Z and b ∈ N such that φf,−(x, k) = a/b. Compute the greatest
integer m such that (m/2k)b ≤ 2a. Then, define φ2f ,−(x, k) := m/2k. Therefore, we have

0 ≤ 2φf,−(x,k) − φ2f ,−(x, k) <
1

2k
. (115)

From (115), and since the exponential function and k 7→ φf,−(x, k) are both non-decreasing, we
have

∀k ≥ 2, φ2f ,−(x, k − 1) ≤ 2φf,−(x,k). (116)
Since φ2f ,−(x, k−1) can also be written in the form m′/2k, then, from the maximality of the integer
m appearing in the construction of φ2f ,−(x, k), we have

∀k ≥ 2, φ2f ,−(x, k − 1) ≤ φ2f ,−(x, k). (117)

Properties (115) and (117) imply that 2f is lower semi-computable.

M.4 Assume that f and g are semi-computable and non-negative

M.4.1 fg

If φf,−(x, k) ≥ 0 and φg,−(x, k) ≥ 0, return φf,−(x, k)φg,−(x, k). Otherwise, return 0.

M.4.2 2f/(3 + f)2

There exists a real ε ∈ (0, 1) such that u 7→ 2u/(3 + u)2 is non-decreasing on (−ε,∞). Fix
x ∈ E . Compute k1(x), the smallest positive integer k such that φf,−(x, k) > −ε. For all integers
k ∈ [1, k1(x)), define φ2f/(3+f)2,−(x, k) := 0. Fix an integer k ≥ k1(x). Let a ∈ Z and b ∈ N such
that φf,−(x, k) = a/b. Compute the greatest integer m such that (m/2k)b ≤ 2a/(3 + a/b)2b. Then,
define φ2f/(3+f)2,−(x, k) := m/2k. Therefore, we have

∀k ≥ k1(x), 0 ≤ 2φf,−(x,k)

(3 + φf,−(x, k))2
− φ2f/(3+f)2,−(x, k) <

1

2k
. (118)

From (118), and since k 7→ φf,−(x, k) is non-decreasing, and u 7→ 2u/(3 + u)2 is non-decreasing
on (−ε,∞), we have

∀k ≥ k1(x) + 1, φ2f/(3+f)2,−(x, k − 1) ≤ 2φf,−(x,k)

(3 + φf,−(x, k))2
. (119)

Since φ2f/(3+f)2,−(x, k − 1) can also be written in the form m′/2k, then, from the maximality of
the integer m appearing in the construction of φ2f/(3+f)2,−(x, k), we have

∀k ≥ k1(x) + 1, φ2f/(3+f)2,−(x, k − 1) ≤ φ2f/(3+f)2,−(x, k). (120)

This is also true for all integers k ∈ [2, k1(x)+1). Properties (118) and (120) imply that 2f/(3+f)2

is lower semi-computable.

M.4.3 log(f)

Assume that f only takes positive values. Fix x ∈ E . Compute k1(x), the smallest positive integer
k such that φf,−(x, k) > 0. Fix an integer k ≥ k1(x). Compute the largest integer m such that
2m ≤ φf,−(x, k)

2k . Then, define φlog(f),−(x, k) := m/2k. For all integers k ∈ [1, k1(x)), define
φlog(f),−(x, k) as φlog(f),−(x, k1(x)). Therefore, we have

∀k ≥ k1(x), 0 ≤ log(φf,−(x, k))− φlog(f),−(x, k) <
1

2k
. (121)

From (121), and since the logarithm and k 7→ φf,−(x, k) are both non-decreasing, we have
∀k ≥ k1(x) + 1, φlog(f),−(x, k − 1) ≤ log(φf,−(x, k)). (122)

Since φlog(f),−(x, k − 1) can also be written in the form m′/2k, then, from the maximality of the
integer m appearing in the construction of φlog(f),−(x, k), we have

∀k ≥ k1(x) + 1, φlog(f),−(x, k − 1) ≤ φlog(f),−(x, k). (123)
This also holds for all integers k ∈ [2, k1(x) + 1). Properties (121) and (123) imply that log(f) is
lower semi-computable.
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M.5 Functions of finite binary strings

Let X be a finite computable subset of {0, 1}∗, and f be a lower semi-computable function from
{0, 1}∗ into R.
Lemma M.1. ∪n∈NXn is a computable set.

Proof. By Definition B.1, it is sufficient to construct a computable function τ from {0, 1}∗ to {0, 1},
which returns 1 if its input is in ∪n∈NXn, and 0 otherwise. Since X is computable, there exists a
computable function τ0 from {0, 1}∗ to {0, 1}, which returns 1 if its input is in X , and 0 otherwise.
Fix x ∈ {0, 1}∗. Define τ(x) as follows. Enumerate all partitions of x into consecutive sub-strings.
For each, call τ0 on every sub-string. If for some partition, the output of τ0 is 1 for every sub-string,
then return 1. Otherwise, return 0.

Hereafter, we use the notation τ defined in the above proof.

M.5.1 Partial sums

Consider the function f̃ : {0, 1}∗ → R which is null outside of ∪n∈NXn, and is defined by

∀x ∈ ∪n∈NXn, f̃(x) =
∑

y∈X l(x)

f(y).

Fix x ∈ {0, 1}∗ and k ∈ N. Define φf̃ ,−(x, k) as follows. Compute τ(x). If it is null, return 0.

Otherwise: compute l(x), and for each y in X l(x), compute φf,−(y, k), then return∑
y∈X l(x)

φf,−(y, k).

Fix some x ∈ ∪n∈NXn. The (finite) set of indices of the above sum does not depend on k. Therefore,
since for each y ∈ {0, 1}∗ we have φf,−(y, k) →

k→∞
f(y), we get

∀x ∈ ∪n∈NXn, φf̃ ,−(x, k) −→
k→∞

f̃(x). (124)

Similarly, since for any y ∈ {0, 1}∗ and any k ≥ 1, we have φf,−(y, k) ≤ φf,−(y, k + 1), then we
have

∀x ∈ ∪n∈NXn,∀k ∈ N, φf̃ ,−(x, k) ≤ φf̃ ,−(x, k + 1). (125)

Properties (124) and (125) also hold for finite strings outside of ∪n∈NXn. Thus, f̃ is lower semi-
computable.

M.5.2 Product distribution

Let p be a lower semi-computable probability measure on X . Fix x ∈ {0, 1}∗ and k ∈ N. Define
φp⊗∗,−(x, k) as follows. Compute τ(x). If it is null, return 0. Otherwise, proceed as follows.
Compute l(x). We write x as x1:l(x), with xt ∈ X for any integer t in [1, l(x)]. Compute and return

l(x)∏
t=1

φp,−(xt, k).

Fix some x ∈ ∪n∈NXn. The (finite) set of indices of the above product does not depend on k.
Therefore, since for each y ∈ X , we have φp,−(y, k) →

k→∞
p(y), we get

∀x ∈ ∪n∈NXn, φp⊗∗,−(x, k) −→
k→∞

p⊗∗(x). (126)

Similarly, since for any y ∈ X , and any k ≥ 1, we have φp,−(y, k) ≤ φp,−(y, k + 1), and since p is
non-negative, then we have

∀x ∈ ∪n∈NXn,∀k ∈ N, φp⊗∗,−(x, k) ≤ φp⊗∗,−(x, k + 1). (127)

Properties (126) and (127) also hold for finite strings outside of ∪n∈NXn. Thus, p⊗∗ is lower
semi-computable.
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