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Abstract

Graph classification has long assumed a closed-world setting, limiting its appli-
cability to real-world scenarios where new categories often emerge. To address
this limitation, we introduce Graph-Level Novel Category Discovery (GLNCD), a
new task aimed at identifying unseen graph categories without supervision from
novel classes. We first adapt classical Novel Category Discovery (NCD) methods
for images to the graph domain and evaluate these baseline methods on four di-
verse graph datasets curated for the GLNCD task. Our analysis reveals that these
methods suffer a notable performance degradation compared to their image-based
counterparts, due to two key challenges: (1) insufficient utilization of structural
information in graph self-supervised learning (SSL), and (2) ineffective pseudo-
labeling strategies based on ranking statistics (RS) that neglect graph structure. To
alleviate these issues, we propose ProtoFGW-NCD, a framework consisting of two
core components: ProtoFGW-CL, a novel graph SSL framework, and FGW-RS,
a structure-aware pseudo-labeling method. Both components employ a differen-
tiable Fused Gromov-Wasserstein (FGW) distance to effectively compare graphs
by incorporating structural information. These components are built upon learnable
prototype graphs, which enable efficient, parallel FGW-based graph comparisons
and capture representative patterns within graph datasets. Experiments on four
GLNCD benchmark datasets demonstrate the effectiveness of ProtoFGW-NCD.

1 Introduction

Graph neural networks [70, 10, 1, 6] have become important in modern machine learning, finding
applications in diverse domains such as protein function prediction [55], malware detection [2], and
social network analysis [71]. However, most existing methods assume either a closed-world setting
[70, 68, 74], where all test categories are known during training, or an unsupervised setting, where no
categories are known [43, 42, 12, 64, 22]. In real-world scenarios, this assumption often breaks down:
new graph categories may emerge dynamically (e.g., novel protein structures or previously unseen
software behaviors), requiring models to adapt to an open-world setting. Despite the importance of
this challenge, the problem of discovering novel graph categories remains unexplored.

We introduce graph-level novel category discovery (GLNCD), a new task that extends graph classifi-
cation to open-world scenarios. Different from node-level NCD [32, 34, 11] aiming to discover new
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node categories, GLNCD is to discover novel graph classes (i.e., cluster unlabeled graphs) without
explicit label supervision for these classes. In Section 3.1, we construct four diverse GLNCD datasets
spanning various graph classification domains, including bioinformatics [55], program analysis [21],
social networks [71], and graph-based image classification [15]. These datasets serve as benchmarks
for evaluating GLNCD methods and highlight the unique challenges posed by graph data.

We adapt classical visual NCD methods (originally designed for image data) [78, 27, 80, 60] to
the GLNCD setting. A typical visual NCD method is comprised of self-supervised learning (SSL),
supervised learning on known classes, and category discovery. By replacing these components
with the counterparts in graph domain (e.g, replacing SSL [23, 24, 5, 7, 9, 76] with Graph SSL
[56, 75, 73, 66, 41, 72, 81, 82, 73, 12, 35]), we get the graph variants of visual NCD methods
(detailed in Section 3.2). Surprisingly, our experiments (see Figure 1 and Table 2) reveal that
these adapted methods perform significantly worse on graph data than on image data. Through
systematic investigation presented in Section 4, we identify two key limitations contributing to this
underperformance: 1) Existing graph-level SSL methods fail to fully exploit the structural information
in graphs, resulting in suboptimal graph encoders. 2) The unlabeled sample pseudo-labeling strategy
commonly used in visual NCD, ranking statistics (RS) [27], does not account for the structural
information of graphs, leading to low-quality pseudo-labels for unlabeled graph samples.

To address the above limitations, we propose ProtoFGW-CL, a new graph SSL framework, and FGW-
RS, a structure-aware pseudo-labeling method. They constitute our GLNCD method, ProtoFGW-NCD
(Section 5), and both rely on the Fused Gromov-Wasserstein (FGW) distance [59, 39], which enables
structural comparison between attributed graphs—going beyond readout vectors in baseline methods.
However, computing pairwise FGW distances between two batches of graphs G1 and G2 with varying
sizes is inefficient using the BAPG solver [39] from existing tools [20]. To address this, we design
a differentiable BAPG layer that supports efficient parallel computation during both forward and
backward passes (Section B). Our BAPG layer assumes that the second group of graphs has uniform
size. To handle variable-sized input graphs, we introduce K learnable prototype graphs G(B) of
identical size. We then compute the FGW distance matrix V1 ∈ Rb1×K between G1 and G(B), and
V2 between G2 and G(B). By comparing V1 and V2, we derive the pairwise relationships between
G1 and G2, which are central to graph SSL and unlabeled graph pseudo-labeling. To make G(B) more
than just computational intermediaries, we treat them as learnable parameters following [5]. These
prototypes are updated through BAPG layer during training, enabling them to capture representative
structural patterns from the dataset, thereby benefiting graph SSL and pseudo-labeling.

Contributions: 1) We introduce graph-level novel category discovery (GLNCD), a new task that
extends graph-level classification to open-world scenarios, along with four diverse benchmark
datasets spanning multiple domains. 2) We adapt classical visual NCD methods to the graph domain
and conduct a systematic analysis, revealing their limitations in sufficiently capturing structural
information in graphs. 3) To address these limitations, we propose ProtoFGW-NCD, a novel GLNCD
method built upon a differentiable Fused Gromov-Wasserstein (FGW) distance. 4) We design a
parallel, differentiable BAPG layer for extremely efficient pairwise FGW distance computation.

2 Related Work

2.1 Visual Novel Category Discovery for Image Data

Novel Category Discovery (NCD) for image data has been well studied. AutoNovel [27] generates
binary pairwise pseudo-labels for unknown samples using ranking statistics (RS), providing learning
signals for the MLP-based clustering head. The quality of these pseudo-labels is closely tied to the
representation quality output by the encoder. Incorporating contrastive loss [80] can enhance both
representation and pseudo-label quality, thereby improving NCD performance. Exploiting multi-scale
representation can improve pseudo-label reliability; for instance, DualRS [78] leverages both global
and local branches to capture large-scale and fine-grained visual information, respectively. UNO
[19] introduces a Sinkhorn-based approach to generate pseudo-labels without requiring pairwise
comparisons. To better leverage knowledge from known categories, rKD [25] employs a fixed,
supervised encoder with a known category head to constrain model outputs on known classes during
the discovery training phase. Vaze et al. [61] and Cao et al. [4] propose a more challenging setting
where the model must classify known-category samples and cluster unknown-category samples
simultaneously during inference. While these methods perform well on regular image data, adapting
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them to graph-structured data requires tailored modifications. We find that straightforward adaptations,
such as replacing a CNN encoder with a GNN encoder, yield poor performance (see Figure 1 and
Table 2), suggesting the need for more exploration.

2.2 Open World Graph Learning

Recent graph learning research has begun tackling open-world settings, where a node’s class may
be one that was unseen during training. In the node classification context, this gives rise to open-set
recognition (OSR) problem: the model must classify nodes from known classes while identifying
any nodes belonging to novel classes as “unknown.” The seminal OpenWGL method [67] tackles
this by learning uncertainty-aware node embeddings via a variational GNN, so that nodes from
novel classes yield high predictive uncertainty and can be automatically rejected during inference.
Hoffmann et al. [31] propose a meta-model that aggregates multiple confidence scores and employs a
weakly-supervised thresholding strategy to decide when to label a node as unknown. Zhang et al.
[77] propose to generate proxy nodes for unknown categories, tackling inductive node OSR problem.
Beyond merely rejecting unknown nodes, NCD methods to cluster unlabeled nodes are proposed.
ORAL [34] detects and remove the edges linking old and novel categories to alleviate the bias towards
old categories, and uses multi–layer predictions to generate pseudo labels for unknown nodes. Hou et
al. [32] consider a different NCD task that provides old-class nodes in the first training stage and
then novel-class nodes in the second one. It is worth noting that open-world graph learning has been
explored almost exclusively at the node level so far, and our work is the first to focus on graph-level.

3 Datasets and Baselines Adapted from Visual NCD

3.1 Prepare GLNCD datasets

Novel Category Discovery (NCD) can be viewed as a relaxed version of multi-class classification,
where the goal is to group samples from the same novel category into the same cluster, without
requiring them to be assigned to a specific label (e.g., y = 0). Therefore, one common approach to
constructing an NCD dataset is to treat a subset of classes in a standard multi-class classification
dataset as novel categories.

Although over 120 public graph-level datasets [50, 15] are available, we observe that only about
five real-world multi-class graph classification datasets exist outside of computer vision scenarios.
From these, we select three representative datasets spanning diverse domains, which, together with
CIFAR10 (graph) [15], form the benchmark for GLNCD (Table 1). Bioinformatics: Graph structures
naturally model protein molecules, where nodes represent secondary structure elements and edges
indicate either sequential or spatial proximity between elements. The ENZYMES dataset [55, 50]
contains six types of proteins with different catalytic functions. We treat the first three classes as old
categories and the remaining three as novel categories. Program Analysis: The MalNet-Tiny dataset
[21] consists of function call graphs (FCGs) derived from Android APK static disassembly. Each
graph corresponds to a program type (Addisplay, Adware, Benign, Downloader, Trojan). We use
the first three classes as old categories and the last two as novel categories. Social Networks: In the
REDDIT12K dataset [71, 50], each graph represents a discussion thread, where nodes correspond
to users and edges denote comment responses. The dataset contains 12 types of graphs, each
corresponding to a subreddit. We designate the first six classes as old categories and the last five as
novel categories. Computer Vision: An image can be decomposed into super-pixels, each forming
a node whose features are computed as the average RGB values and spatial coordinates of the
constituent pixels. Each node is connected to its eight nearest neighbors via edges weighted by
Gaussian similarity. The CIFAR10 (graph) dataset [15] is constructed from CIFAR10 (image) [38] in
this way. And we treat the first five classes as old categories and the rest as novel ones.

Luo et al. [46] incorporated various modern deep learning techniques, e.g., batch normalization [33]
and residual connections [30], into GCN [37] and GIN [70] for graph-level tasks. More importantly,
they employed Random Walk Structural Encoding (RWSE) [40, 16] as a preprocessing step to extract
structural information, which is then used as part of the node and edge features. For all four datasets
used in this work, we also apply RWSE-based preprocessing with a maximum path length of 32.
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Table 1: Overview of GLNCD datasets. # steps is the maximal random walking length [46].
Dataset # graphs Avg. # nodes Avg. # edges # node/edge feats # steps # old/new classes

ENZYMES 600 32.6 124.3 21/0 32 3/3
MalNet-Tiny 5000 1410.3 2859.9 0/0 32 2/3
REDDIT12K 11929 391.41 456.89 0/0 32 5/6

CIFAR10 60000 117.6 941.1 5/1 32 5/5

3.2 Design GLNCD Baselines with Visual NCD Methods

A number of NCD methods have been developed in the field of computer vision. If these can be
directly adapted to the graph-level setting, it would offer a convenient solution to GLNCD. To explore
this, we adapt three representative visual NCD methods, i.e., AutoNovel [27], NCL [80], and DualRS
[78], to the graph domain. These models typically consist of an encoder fθ and two classification
heads: hn (for novel categories) and ho (for old known categories). The encoder is trained using
SSL, the old-class head is trained with standard supervised signals from labeled samples, and the
new-class head relies on specifically designed pseudo-labeling strategies for training. By replacing
each component with its counterpart in the graph domain, we achieve a straightforward adaptation.

AutoNovel: (Stage1) Originally employs a RotNet approach [23] for pre-training, where the encoder
learns to recognize rotation angles (0°, 90°, 180°, or 270°) to capture semantical image features.
(Stage 2) After pretraining, the GNN encoder and the old-class head is trained on old-class samples.
(Stage 3) Finally, the new-class head is trained using pairwise ranking statistics (RS) pseudo-labels
generated with new-class sample representations. Adaptation: Since graph data consists of abstract
topological structures without spatial orientation, we replace RotNet with GraphCL [75], a contrastive
learning method tailored for graph-level tasks. Other stages remain unchanged.

NCL: Builds upon AutoNovel by introducing a MoCo-style [29] contrastive loss in (Stage 3), where
negative samples are drawn from queues representing labeled and unlabeled data. Positive pairs
include augmented views of the same sample and samples sharing the same old class label [36]. A
hard-negative mining strategy is also incorporated [54]. Adaptation: The readout outputs of the
encoder are Euclidean, so the changes of NCL from AutoNovel can directly fit into graph domain.

DualRS: (Stage 1) Abandons the RotNet-pretrained ResNet18 and instead uses a ResNet50 backbone
pretrained on ImageNet [13] with MoCoV2 [8]. (Stage 2) is removed. (Stage 3) Both classification
heads are equipped with global and local branches. The global branch captures coarse-grained
representations, while the local branch focuses on fine-grained details. Each branch generates pseudo-
labels via RS to train its respective head, and then distilled to the other branch. Adaptation: We use
GraphCL to pretrain the GNN encoder. All other components remain unchanged.

We largely retain the original names of the visual NCD methods when referring to their adaptations
for the graph domain. To avoid possible confusion in some cases, we prefix them, in these instances,
with "G-" and refer to them as G-AutoNovel, G-NCL, and G-DualRS, respectively.

4 Challenges in NCD Method Adaptation: From Image to Graph Data

In this section, we reveal the failure of adapting the visual NCD methods to the graph domain like
Section 3.2, and analyze the underlying reasons.

4.1 Why Direct Adaptation Fails? Ranking Statistics (RS) Fails

Table 2 shows the performance of AutoNovel on three image datasets, as well as its adapted version
for graph-level tasks on four GLNCD datasets (Section 3.1), following the modifications described in
Section 3.2. The New ACC (Train) on graph datasets, which is the primary metric of interest in NCD,
is significantly lower than that on image datasets. More importantly, we observe a substantial perfor-
mance gap between novel-class and old-class samples on graph datasets (Table 2), a phenomenon not
present in image datasets. This suggests that the direct adaptation of AutoNovel fails to effectively
leverage knowledge from old classes to aid in clustering unlabeled novel-class samples.

Given that pseudo-label quality plays a critical role in the performance of NCD methods, we
hypothesize that the observed failure is due to the inability of RS to produce reliable pseudo-labels
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Figure 1: Training dynamics of AutoNovel [27] on CIFAR10 (image) and ENZYMES (graph). (a)
The performance on unlabeled training dataset. (b) The Matthews Correlation Coefficient (MCC) to
evaluate the quality of pairwise pseudo-labels generated via ranking statistics (RS). (c) The ratio of
samples for which at least one true positive (same-class) pair is identified by RS. The definitions of
these two pseudo-label metrics and the rationale for their selection are provided in Appendix A.

Table 2: The average performance (over 10 runs) of AutoNovel [27] on image and graph datasets.
Old ACC (Test) is the accuracy on the old-class samples in test dataset. New ACC (Train) is the
clustering accuracy on the unlabeled training dataset. The last row is the gap between these metrics.

Datasets Image Graph
CIFAR10 CIFAR100 SVHN ENZYMES MalNet-Tiny REDDIT12K CIFAR10

Old ACC (Test) 95.34 74.51 98.10 73.00 93.30 67.59 61.36
New ACC (Train) 88.50 74.28 94.21 41.90 74.51 39.21 41.67

Old (row1) - New (row2) 6.84 0.23 3.89 31.10 18.79 28.38 19.69

on graph-based datasets. To verify this, we track the New ACC (Train) along with RS pseudo-
label quality on CIFAR-10 (image) and ENZYMES (graph), as shown in Figure 1. The results
indicate that RS produces higher-quality pseudo-labels on CIFAR-10, with an overall increasing trend
during training (Figure 1b and 1c). In contrast, on ENZYMES, the quality of pseudo-labels remain
consistently low throughout training, suggesting that RS fails on graph-structured data in the direct
adaptation described in Section 3.2.

4.2 Why RS Fails? Insufficient Exploration of Graph Structure

Ranking statistics (RS) generates pseudo-labels based on the representations output by the encoder
(see Appendix A for the details of generation). If the encoder produces high-quality representations
(i.e., samples from the same class are similar and those from different classes are dissimilar), the
resulting RS pseudo-labels are typically of higher quality.

We therefore suspect that the representation learned by GraphCL in G-AutoNovel is not sufficiently
discriminative. This hypothesis would be supported if higher-quality representations led to better
pseudo-labels. However, according to recent reports [69, 26, 79], GraphCL performs as well or better
than other graph SSL methods across a wide range of datasets, suggesting that replacing GraphCL
with alternative SSL methods would not yield a significant improvement in representation quality for
comparison purposes. To validate our hypothesis in another way, we pretrain three GNN encoders
with increasing representation quality using the Supervised Contrastive (SupCon) loss [36], under
settings where 0% (i.e., standard SSL), 50%, and 100% of the ground-truth binary pairwise labels are
known. We then evaluate how the quality of RS pseudo-labels and NCD performance vary across
these three levels of representation qualities.

Contrary to expectations, the quality of RS pseudo-labels (Figure 2b and 2c) shows little difference
across the three representation qualities. Strikingly, despite nearly identical pseudo-label quality, the
final NCD performance varies significantly across the three setups. 1) This suggests that representation
quality primarily influences the pseudo-label utilization rather than the pseudo-label quality itself:
higher-quality representations provide a better data manifold, which facilitates learning better decision
boundaries even when pseudo-labels are of comparable quality. 2) This result does not imply that
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Figure 2: Training dynamics of G-AutoNovel [27] on ENZYMES (graph). Three GIN encoders
are pretrained with 0% (SSL), 50% (SupCon), and 100% (SupCon), true binary pairwise labels. (a)
The performance on unlabeled training dataset. (b) The Matthews Correlation Coefficient (MCC) to
evaluate the quality of RS pseudo-labels. (c) The ratio of samples for which at least one true positive
pair is identified by RS. The details about of these pseudo-label metrics are provided in Appendix A.

representation quality has no impact on pseudo-label quality: as shown in Figure 1, on CIFAR-10
(image), RS pseudo-label quality improves substantially as the encoder learns better representations
during training. Therefore, the nearly identical pseudo-label quality is likely due to the fact that RS is
not well-suited to graph data and thus cannot effectively leverage improvements in representation
quality to generate better pseudo-labels. We attribute the failure of RS to two principal factors:
1) insufficient GNN pretraining that limits the representation quality and thus RS pseudo-label
utilization; 2) RS is unsuitable for graph data and fails to improve pseudo-label quality even when
representation quality increases. Both issues stem from insufficient exploitation of graph structure:

• Methods like GraphCL do not make sufficient use of structural information, resulting in
suboptimal representations;

• RS operates solely on the readout graph representation vectors, thereby discarding part of
valuable graph-structure information.

5 Proposed Method: ProtoFGW-NCD

To test our hypothesis from Section 4.2—that the absence of structural information adversely affects
both the SSL (i.e., GraphCL) and RS modules of AutoNovel—we developed ProtoFGW-NCD
(Figure 3). This method was designed as a controlled experiment; it mirrors the architecture of
AutoNovel exactly, with the sole exception of a Bregman Alternating Projected Gradient (BAPG)
layer that injects structural information into the SSL and RS pipelines. Crucially, this integration
requires no auxiliary loss functions or sophisticated mechanisms. This design provides a clean
and direct means to validate our claim by allowing any performance difference to be attributed
solely to the inclusion of structural information. The differentiable BAPG layer functions by solving
the optimal transport problem between batches of attributed graphs [59, 65, 53], yielding rich
structural information for graph comparison. With the inclusion of this layer, the original SSL and
RS components of AutoNovel are adapted into our proposed ProtoFGW-CL and FGW-RS modules,
respectively.

5.1 ProtoFGW-CL: Graph-level Representation Learning by Swapping Transport Couplings

GraphCL [75] utilizes graph structure only in the message-passing phase of the GNN encoder. The
contrastive loss is computed solely on Euclidean vectors obtained via readout operations (e.g., min,
sum), and does not explicitly compare structural differences between graphs Gi and Gj at this
critical stage. Other graph-level SSL methods not only perform similarly to GraphCL but also fail to
make full use of graph structure. For instance, some approaches generate views based on structural
information (e.g., graph diffusion, communities, or motifs) [62, 57, 28, 58], while others employ
multi-channel encoders to exploit more the original graph [69, 47]. However, like GraphCL, they all
ignore structures when computing the distances between different graphs or graph views.
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To address this, we propose ProtoFGW-CL, a graph-level contrastive learning method that ex-
plicitly computes the distances considering graph structures. Specifically, we compute the Fused
Gromov-Wasserstein (FGW) distances between each graph and prototype graphs, normalizes it
into codes, and enforces consistency across views. These randomly initialized prototype graphs{
G

(B)
k = (A

(B)
k ,Z

(B)
k )|A(B)

k ∈ RNk×Nk

≥0 ,Z
(B)
k ∈ RNk×dk

}K

k=1
establish the coordinates for cross-

view structure-aware graph comparisons, and are learned with backpropagation to capture represen-
tative graph patterns in dataset. The FGW distance (Definition 2) [59, 39] between two graphs is
defined as the optimal transport between their probability measures given by Definition 1.
Definition 1. (Graph as Probability Measure) An attributed graph G1 = (C1,X1) with N1 = |V1|
nodes defines a metric-measure (MM) space (V1,C1, µ1). Each node vi has an explicit node feature
vector x1,i ∈ Ωx ⊂ Rd and an implicit structural feature s1,i ∈ Ωs. The pairwise relationship
among structural features is encoded in C1, where C1,ij = DΩs

(s1,i, s1,j) typically represented as
an adjacency or Laplacian matrix. The probability measure associated with G1 is defined as µ1 =∑N1

i=1 h
(1)
i δ(s1,i,x1,i), where h(1) ∈ HN =

{
h | h ∈ RN

>0,
∑N

i=1 hi = 1
}

is a simplex histogram,
and δ(s1,i,x1,i) denotes the Dirac delta function located at (s1,i,x1,i).

Definition 2. (FGW distance) Given two attributed graphs G1 = (C1,X1) and G2 = (C2,X2), their
corresponding probability measures are µ1 =

∑N1

i=1 h
(1)
i δ(s1,i,x1,i) and µ2 =

∑N2

j=1 h
(2)
j δ(s2,j ,x2,j),

respectively. The FGW distance between them is defined as

inf
π∈Π

{
N1∑

i,k=1

N2∑
j,l=1

[
(1− α)DΩx(x1,i,x2,j) + α|C1(i, k)−C2(j, l)|2

]
Ti,jTk,l

}
, (1)

where Π = {T ∈ RN1×N2

≥0 | T1N2
= h(1),T⊤1N1

= h(2)} is the feasible set of transport plans,
h(1) and h(2) denote marginal distributions and are typically set to uniform distributions in practice,
DΩx

is a metric in Ωx, and α ∈ [0, 1] balances the contributions of node features and graph structures.

5.2 FGW-RS: Ranking Statistics with More Graph Structure Information

G-AutoNovel applies ranking statistics (RS) to the Euclidean readout summary vectors, while
graph structure is only implicitly used during message passing. Given the importance of structural
information in graph-level tasks, this utilization is insufficient. To enable RS to more directly
incorporate graph structure information, we construct two attributed graphs from the representations
before readout Gz

1 = (A1,Z1) and Gz
2 = (A2,Z2), corresponding to the two graph samples.

We then compute their FGW distances to a set of prototype graphs, resulting in distance vectors
v1,v2 ∈ RK

≥0, which are subsequently fed into classic RS used in [27].

The prototype graphs, learned during training, capture diverse representative structural patterns in
the dataset. The FGW distances v1,v2 explicitly encode both the input samples’ structures and their
relations to global patterns in the dataset. This allows RS to generate pseudo-labels that better reflect
structural information, thereby improving the quality of pseudo-labels.

5.3 ProtoFGW-NCD: Integrating ProtoFGW-CL and FGW-RS

Unlike AutoNovel [27], which separates pretraining, supervised learning, and category discovery
from each other, ProtoFGW-NCD performs representation learning, supervised learning and category
discovery within a single training process. Figure 3 illustrates the architecture and pipelines. At the

beginning of training, we randomly initialize a set of prototype graphs
{
G

(B)
k = (A

(B)
k ,Z

(B)
k )

}K

k=1
.

Labeled old-class samples and unlabeled new-class samples from the training set are mixed and
randomly sampled into mini-batches. For each graph sample Gi = (Ai,Xi,Ei), Ai ∈ RNi×Ni

≥0

is the adjacency matrix, Xi ∈ RNi×dn is the node feature matrix, and Ei ∈ REi×de is the edge
feature matrix. Data Augmentation: We randomly remove p% of the nodes (and their edges) to get
the subgraph G̃i = (Ãi, X̃i, Ẽi) induced by the rest nodes. Encoding: Both Gi and G̃i are passed
through a learnable feature encoder to refine node and edge features, followed by a GNN+ encoder
fθ [46]. The outputs at the final GNN layer are denoted as (Ai,Zi) and (Ãi, Z̃i), where Zi and Z̃i

are the learned node representations. FGW Codes: We compute the FGW distances between these
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Figure 3: Illustration of ProtoFGW-NCD. Unlike previous graph SSL methods that directly compare
Euclidean representations, ProtoFGW-CL maps graphs to codes by aligning them with learnable
prototype graphs using the Fused Gromov-Wasserstein (FGW) distance. Under the supervision of
LSSL, these codes are encouraged to be consistent across views, such that the code from one view
can be predicted using the other. FGW-RS: The codes of n unlabeled graphs are fed into RS to
generate pseudo-label matrix S, and also into the new-class head to obtain predictions. The pairwise
similarities between these predictions are guided by S with LBCE . Supervised Learning: The codes
of m labeled graphs and their augmentations are fed into the old-class head to compute LCE .

outputs and the K prototype graphs, resulting in distance vectors vi, ṽi ∈ RK . Let m and n denote
the number of labeled and unlabeled samples in a batch, respectively. The overall training loss is
composed of three terms

L = LCE + LBCE + LSSL (2)

LCE = − 1

2m

m∑
r=1

log [ho(vr)]yr
+ log [ho(ṽr)]yr

(3)

LBCE = − 1

n2

n∑
i=1

n∑
j=1

[
sij log hn (vi)

⊤
hn (vj) + (1− sij) log

(
1− hn (vi)

⊤
hn (vj)

)]
(4)

LSSL =
1

2(m+ n)

m+n∑
i=1

K∑
k=1

[SM(z̃i)]k log ([SM(zi/τ)]k) + [SM(zi)]k log ([SM(z̃i/τ)]k) (5)

where SM(·) is the softmax operator, g(·) is the projector for SSL, z̃i = g(ṽi), zi = g(vi), LCE

provides supervised signals from old-class samples, LBCE guides the new-class head hn, and LSSL

encourages the cross-view consistency of FGW codes. Here, sij ∈ {0, 1} is the binary pseudo-label
generated by ranking statistics (RS) based on structure-aware codes vi and vj , and sij = 1 if RS
considers i and j to belong to the same class. FGW is typically solved using iterative algorithms. If
backpropagation is naively handled by PyTorch, it would record many intermediate steps, leading to
an excessively large and computationally intractable computational graph. To address this, we design
a parallel, differentiable FGW module, BAPG layer. This layer supports parallel differentiable FGW
distances between b1 torch_sparse.SparseTensor [18] and b2 dense torch.Tensor on GPU.
In contrast, previous differentiable FGW module [63] only supports CPU backend and relies on slow
nested loops for pairwise FGW solving.

6 Experiments

6.1 Experimental Setup

We adopt the latest improved versions of two classic GNN architectures, i.e., GCN+ and GIN+

[46], as the backbones for all GLNCD methods. These models achieve or approach state-of-the-art
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Table 3: GLNCD results with GIN+ encoder. The 1st and 2nd results are highlighted.
ENZYMES MalNet-Tiny REDDIT12K CIFAR10 Avg. Rank ↓

Old ACC New ACC Old ACC New ACC Old ACC New ACC Old ACC New ACC Old ACC New ACC All
K-means 50.33±5.19 39.90±4.01 54.75±0.00 40.24±0.11 35.22±1.58 30.56±2.04 42.16±3.52 40.76±4.18 5.00 4.00 4.500

AutoNovel 73.00±1.39 41.90±1.62 90.75±2.66 68.93±6.29 67.59±0.77 39.21±0.92 61.36±3.95 41.67±1.90 3.00 2.75 2.875
NCL 70.00±2.04 45.81±5.82 92.55±1.14 69.76±7.44 70.11±0.75 36.57±1.59 67.54±1.24 38.21±2.01 2.25 3.00 2.625

DualRS 76.33±0.75 39.52±1.12 92.85±1.05 69.09±3.37 66.05±0.58 39.68±1.77 65.78±1.39 40.23±0.66 2.25 3.25 2.750
Ours 74.00±5.68 37.95±3.16 93.30±0.76 74.51±7.05 67.39±0.48 39.94±2.42 56.44±1.43 44.04±1.58 2.50 2.00 2.250

Table 4: GLNCD results with GCN+ encoder. The 1st and 2nd results are highlighted.
ENZYMES MalNet-Tiny REDDIT12K CIFAR10 Avg. Rank ↓

Old ACC New ACC Old ACC New ACC Old ACC New ACC Old ACC New ACC Old ACC New ACC All
K-means 39.67±1.83 38.86±2.89 66.60±9.26 58.72±2.76 42.34±4.28 37.05±2.11 42.27±0.12 40.72±1.42 5.00 3.75 4.375

AutoNovel 71.33±2.74 41.52±1.86 80.30±6.79 62.43±5.40 68.91±0.33 39.08±1.34 61.10±3.12 41.26±1.31 3.00 2.00 2.500
NCL 67.67±1.49 39.71±3.77 85.50±2.35 62.23±1.68 69.35±1.11 37.01±1.20 70.63±0.46 39.64±0.82 2.25 3.50 2.875

DualRS 64.67±3.21 39.33±5.07 68.75±7.45 49.53±3.74 66.47±0.87 40.76±2.77 70.90±0.86 39.17±0.86 3.50 3.75 3.625
Ours 72.17±5.67 44.84±3.07 80.95±6.16 63.35±1.19 69.43±3.74 40.81±2.16 71.25±0.61 38.92±0.49 1.25 2.00 1.625

performance on graph-level supervised tasks [46]. In the Fused Gromov-Wasserstein (FGW) distance
Eq. (1), we use the Euclidean distance as node feature comparison metric DΩx

, and the adjacency
matrix A to represent pairwise structural relationship C. The attributed graphs used in computing
FGW distances are constructed by the node hidden features Z of the final GNN layer and the input
graph adjacency matrix A. Inspired by [63], we set the trade-off parameter α as learnable. For
data graphs, the marginal probability distributions are set to uniform, while for prototype graphs the
marginals are made learnable. ProtoFGW-CL aims to incorporate structural information into the
contrastive loss. So for graph data augmentation, we follow GraphCL and simply apply random node
dropping: a fraction p% of nodes are randomly removed, along with all edges connected to them.

6.2 Main Results

The GLNCD datasets constructed in Section 3.1 each include a training set, validation set, and test set,
as detailed in Table 7. We train the model on all labeled old-class samples and unlabeled new-class
samples from the training set. During evaluation, we report two performance metrics: the clustering
accuracy on unlabeled (new-class) training samples, denoted as New ACC and the classification
accuracy on old-class test samples, denoted as Old ACC. We report the GLNCD results using a GIN+

encoder in Tables 3 while the results for the GCN+ encoder are provided in Table 4. As shown in
these tables, ProtoFGW-NCD, which incorporates more graph structural information, demonstrates
decent NCD performance and achieves the highest average ranking on all datasets. This confirms the
effectiveness of exploiting more graph structure in GLNCD tasks.

6.3 Ablation Study

Table 5: Ablation with GCN+ on ENZYMES

Method Old ACC New ACC
wo FGW-RS 72.00±5.14 33.33±0.00

wo ProtoFGW-CL 70.50±3.69 42.10±4.52
wo Supervised learning 34.00±2.74 41.05±3.36

fixed proto. graphs 62.33±4.32 38.19±2.12
ProtoFGW-NCD 72.17±5.67 44.84±3.07

We conduct ablation studies on the components
of ProtoFGW-NCD by reporting both Old ACC
and New ACC to evaluate their effectiveness.
ProtoFGW-NCD consists of four key components:
ProtoFGW-CL, FGW-RS, supervised learning, and
learnable prototype graphs. Removing the first
three components can be achieved by excluding
LSSL, LBCE , and LCE from the training loss. To
assess the importance of adaptively learned proto-
type graphs, we disable gradient updates for them.

The results in Table 5 demonstrate that each component contributes significantly, and removing
any leads to noticeable degradation. Among the components, FGW-RS has a minor impact on Old
ACC but plays a decisive role in New ACC, as its removal leads to a drop to 33.33%, equivalent
to random guessing among the three unlabeled categories. In contrast, ProtoFGW-CL significantly
affects Old ACC while having minimal influence on New ACC. This may be because training the
encoder and new head with pseudo-labels from FGW-RS itself serves as a form of self-supervised
learning (SSL) beneficial for novel category discovery. Without supervised signals, although Old ACC
degrades to the level of random guessing, New ACC still achieves notable performance, indicating
that ProtoFGW-CL effectively guides the model to learn meaningful SSL representations for NCD.
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Figure 4: The epoch time (s) of different BAPG solver implementations for FGW problems. The
x-axis indicates different synthetic datasets, i.e., CSBM-20-10, CSBM-50-10, ..., CSBM-1000-10.

Table 6: The average batch time (s) of different BAPG implementations. ↑ indicates speedup factor.
The highest speedup for each dataset (row) across all batch sizes is shown in boldface.

Batch Size B 64 128 256 512
Dataset POT Ours ↑ POT Ours ↑ POT Ours ↑ POT Ours ↑

CSBM-20-10 8.90 0.04 250.7 17.96 0.02 719.6 34.19 0.03 1296.8 67.34 0.03 2070.2
CSBM-50-10 8.69 0.03 333.5 16.67 0.03 598.8 32.57 0.04 844.8 65.02 0.06 1020.1

CSBM-100-10 8.55 0.03 289.3 16.78 0.04 416.9 32.54 0.07 457.6 65.14 0.14 474.6
CSBM-200-10 8.38 0.06 142.6 16.79 0.11 150.2 32.66 0.28 117.9 65.43 0.74 88.0
CSBM-500-10 8.56 0.53 16.2 17.22 1.20 14.3 33.56 2.43 13.8 67.23 4.85 13.8

CSBM-1000-10 8.58 2.59 3.3 17.12 5.17 3.3 33.54 10.35 3.2 68.26 20.82 3.3

Learnable prototypes are critical for both Old ACC and New ACC, resulting in performance changes
of approximately 10 and 6 points, respectively. This highlights the necessity of learnable prototypes
and our efficient BAPG layer.

6.4 The Efficiency of Our BAPG Layer

In contrast to the BAPG operator in POT [20] which requires a brute-force loop, our proposed BAPG
layer (Appendix B) can compute the Fused Gromov-Wasserstein (FGW) distance between B1 and
B2 graphs in parallel. We compare their efficiency on Contextual Stochastic Block Model (CSBM)
graphs [14, 48] with varying numbers of nodes. For a graph dataset with N nodes, we assume there
are 10 prototype graphs, each with N logN

2 nodes (see Appendix C.2 for more details) and denote by
CSBM-N-10 the synthesized dataset. The computation times for FGW distance under different batch
sizes are presented in Table 6 and Figure 4, where our method achieves a speedup of up to 2070.2x
compared to the POT implementation.

7 Conclusion

This paper introduces Graph-Level Novel Category Discovery (GLNCD) task, aiming to identify
unseen graph categories in an open-world setting. We present four diverse benchmark datasets across
different scenarios and systematically adapt classical NCD methods for images to the graph domain.
However, experimental results show that these direct adaptations perform poorly on graph data due
to insufficient graph structure explorations. To address this issue, we propose ProtoFGW-NCD that
consists of structure-aware SSL and pseudo-labeling, via a differentiable Fused Gromov-Wasserstein
(FGW) module, BAPG layer. Experiments demonstrate that ProtoFGW-NCD matches or outperforms
baseline methods. As a direction for future research, it would be promising to develop methods that
explore graph structures more efficiently than FGW module for GLNCD tasks on large-scale datasets.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Our main contributions and scope have been accurately summarized in the last
paragraph of introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section D.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the hyper-parameter values or search spaces in Section C.1. We
also include the description of the data we used in Sections 3.1 and C.1.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We plan to release the code, datasets, and pre-trained models with sufficient
instructions to faithfully reproduce our results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in Section C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results in Section 6 include both the means and standard deviations of
more than 5 repeating runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computer resources information in Section C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conform with the Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] ,

Justification: We discuss the broader impacts of our work in Sections 7 and D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All codes and datasets used in this work are publicly available for research
purposes.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code and pre-processed GLNCD datasets will be provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Measure the Quality of Pairwise Pseudo Labels for Unlabeled Samples

The pseudo labels from ranking statistics (RS) Methods such as AutoNovel [27] generate
pairwise pseudo-labels using ranking statistics (RS). Instead of directly computing the similarity
(e.g., cosine similarity) between d-dimensional readout vectors vi = Readout(fθ(Gi)) and vj =
Readout(fθ(Gj)) of samples i and j, RS ranks the d elements of each vector based on the element
magnitudes. If the element ranking orders of two readout vectors are consistent, the corresponding
samples are likely to belong to the same novel category, and we assign a pseudo-label sij = 1.
Otherwise, we set sij = 0. The new-class head hn is then trained using binary cross-entropy loss and
the pairwise binary labels:

LBCE = − 1

M2

M∑
i=1

M∑
j=1

[
sij log hn (vi)

⊤
hn (vj) + (1− sij) log

(
1− hn (vi)

⊤
hn (vj)

)]
, (6)

where hn (vi) is the softmaxed prediction on sample i and M is the number of unlabeled samples
involved.

Han et al. [27] found the loss Eq. 6 to be the most critical component for NCD. Therefore, we aim to
quantify its quality to enable deeper analysis. Given M unlabeled new-class samples, RS generates a
pseudo-label matrix S ∈ {0, 1}M×M . Let T denote the ground-truth pairwise label matrix, where
Tij = 1 if samples i and j belong to the same novel class, and Tij = 0 otherwise. Evaluating the
quality of RS can thus be framed as a binary classification problem.

Evaluate pseudo labels with Matthews Correlation Coefficient According to Proposition 3, there
are much more zeros than ones in T. So the RS pseudo label quality evaluation is an imbalanced
binary classification task, making accuracy an unsuitable evaluation metric. Instead, we adopt the
Matthews Correlation Coefficient (MCC) [49], a widely used measure for evaluating classification
performance under class imbalance. Let the confusion matrix for the binary classification be(

TP FN
FP TN

)
.

Then MCC is defined as

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

which takes into account all four components of the confusion matrix, i.e., true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN), and therefore provides a comprehensive
measure of the agreement between generated pseudo-labels and the ground truth pairwise labels.
Proposition 3. Consider a class-balanced dataset with C categories, each containing M samples.
Define the pairwise comparison matrix T ∈ {0, 1}CM×CM such that Tij = 1 if samples i and j
belong to the same class, and Tij = 0 otherwise. Then, the fraction of positive entries (i.e., entries
equal to 1) in T is given by

CM2

(CM)2
=

1

C
.

Evaluate pseudo labels with the portion of samples with at least one same-class pair As stated
in Proposition 3, the majority of sample pairs are negative, i.e., with a label 0. Each sample encounters
far fewer true positive pairs than negative ones, making true positive pseudo-labels more valuable.
Therefore, we use the ratio of samples that have encountered at least one true positive pair to quantify
the quality of the pairwise pseudo-labels (generated by RS) .

B Parallel Differentiable BAPG Layer for Efficient FGW Distance

B.1 Forward

For two attributed graphs G1 = (C1,X1) and G2 = (C2,X2), the Fused Gromov Wasserstein dis-
tance (Definition 2) between them amounts to, given M ∈ Rns×nt defined by Mij = DΩx

(x1,i,x2,j),
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the following quadratic optimization problem

FGW = min
T

(1− α)⟨T,M⟩F + α
∑
i,j,k,l

L(C1i,k,C2j,l)Ti,jTk,l

s.t. T ∈ [0, 1]ns×nt T1 = p TT1 = q.

According to Proposition 1 in [53], it holds that∑
i,j,k,l

L(C1i,k,C2j,l)Ti,jTk,l =
〈[

C⊙2
1 p1⊤

N2
+ 1N1

q⊤ (
C⊙2

2

)⊤ − 2C1TC⊤
2

]
,T

〉
F
,

where C⊙2
1 is the elementwise square and 1N2

∈ Rnt is the all-one vector. Then we have

FGW = min
T

(1− α)⟨T,M⟩F + α
〈[

C⊙2
1 p1⊤

N2
+ 1N1q

⊤ (
C⊙2

2

)⊤ − 2C1TC⊤
2

]
,T

〉
F

s.t. T ∈ [0, 1]ns×nt T1 = p TT1 = q.

We take L(C1i,k,C2j,l) = (C1i,k−C2j,l)
2 and employ the Bregman Alternating Projected Gradient

(BAPG) method proposed in [39] to solve the optimal transport plan T and the corresponding FGW
distance. The pseudo code of BAPG can be found in Algorithm 1.

Algorithm 1: POT BAPG Solver [39] for Fused Gromov-Wasserstein Distance (Forward)
Input: Node feature cost matrix M ∈ Rns×nt . Sparse structure matrices C1 ∈ Rns×ns .

C2 ∈ Rnt×nt . Distributions p ∈ Rns , q ∈ Rnt . Trade-off α ∈ (0, 1), entropy ϵ > 0.
Max iterations T , Tolerance tol

Output: Optimal transport matrix T ∈ Rns×nt and FGW distance

1 Initialize T← pq⊤;
2 Elementwise function: f(C1)← C⊙2

1 , h(C1)← C1, f(C2)← C⊙2
2 , h(C2)← C2;

3 Precompute constants: R← f(C1)p1
⊤
nt

+ 1ns(f(C2)q)
⊤;

4 Define gradient operator ∇T ← 2α(R− 2h(C1)Th(C2)
⊤ + (1− α)M;

5 for t← 1 to T do
6 Tprev ← T;
7 Row projection:
8 Update: T← T⊙ exp (−∇T/ϵ)
9 Normalize rows: Ta,: ← pa∑

j Ta,b
Ta,:

10 Column projection:
11 Update: T← T⊙ exp (−∇T/ϵ)
12 Normalize columns: T:,b ← qb∑

a Ta,b
T:,b

13 if t mod 10 = 0 then
14 Compute error: err ← ∥T−Tprev∥F ;
15 if err < tol then
16 break;
17 end
18 end
19 end
20 return T and FGW ;

Our proposed method, ProtoFGW-NCD, requires computing pairwise FGW distances between b1
sparse adjacency matrices of varying sizes (represented as torch_sparse.SparseTensor) and b2
dense adjacency matrices of prototype graphs with uniform size. Ideally, we aim to solve these FGW
distances in parallel. However, both the official implementation 2 and the POT implementation 3 only
support solving the FGW distance between one pair of dense matrices at one time. When b1 and b2
are large, invoking these implementations b1b2 times within nested loops results in prohibitively long
computational time.

2https://github.com/squareRoot3/Gromov-Wasserstein-for-Graph
3https://pythonot.github.io/gen_modules/ot.gromov.html#ot.gromov.BAPG_fused_gromov_wasserstein
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Figure 5: The illustration of two key operators in the forward of our BAPG layer, which parallels
POT BAPG solver. The left is to parallel h(C1i)Tijh(C2j)

⊤ (Line 4 in Algorithm 1) and the right
is to parallel [Tij ]:,b ←

qb∑
a[Tij ]a,b

[Tij ]:,b(Line 12 in Algorithm 1), for i ∈ [1 : b1] and j ∈ [1 : b2].

Observing Algorithm 1, we find that the main challenge in parallelizing the fused Gromov-Wasserstein
(FGW) computation across b1b2 groups lies in the irregular sizes of the b1 sparse matrices. To address
this, we propose constructing a sparse giant graph C1 ∈ Rs×s (where s =

∑b1
i=1 nsi) by arranging

the sparse matrices C11,C12, . . . ,C1b1 as diagonal blocks:

C1 =


C11 0 · · · 0

0 C12 · · ·
...

...
...

. . .
...

0 0 · · · C1b1

 ∈ Rs×s.

This allows for intra-batch parallelization even under irregular matrix dimensions. Meanwhile,
the b2 dense matrices C21,C22, . . . ,C2b2 are stacked into a tensor C2 ∈ Rb2×nt×nt , enabling
parallelization along the first dimension via broadcasting rules. This design enables the b1b2 pairs of
FGW computations to be efficiently implemented using existing operators from torch_sparse and
torch_scatter.

Since we need to solve for b1b2 transport plans {Tij ∈ Rnsi×nt}, i ∈ [1 : b1], j ∈ [1 : b2], we
represent them using a whole tensor T ∈ Rb2×s×nt . Placing the batch size b2 of dense matrices
along the first dimension facilitates efficient sparse-dense matrix multiplication (via spmm) over
all b2 matrices. Our goal is to parallelize b1b2 FGW with the operations among C1 ∈ Rs×s,
C2 ∈ Rb2×nt×nt , and T ∈ Rb2×s×nt . The key computational steps in Algorithm 1 to parallelize are

• Line 4 h(C1i)Tijh(C2j)
⊤ that can be parallelized using the spmm operator from

torch_sparse4

• Line 12 [Tij ]:,b ← qb∑
a[Tij ]a,b

[Tij ]:,b that requires computing the normalization sums∑
a[Tij ]a,b for each pair (C1i,C2j) using scatter_sum from torch_scatter5, fol-

lowed by grouped broadcasting across the first two dimensions of T ∈ Rb2×s×nt .

We illustrate the above two parallelization designs in Figure 5. The forward process of our parallel
BAPG layer is concluded in Algorithm 2, in a pytorch style.

4https://github.com/rusty1s/pytorch_sparse
5https://github.com/rusty1s/pytorch_scatter
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Algorithm 2: Our BAPG layer for Fused Gromov-Wasserstein Distance (Forward)

Input: (1) Node feature cost matrix M ∈ Rb2×b1×ns×nt . (2) Diagonal block matrix
C1 ∈ Rs×s stacked by b1 sparse structure matrices C11,C12, . . . ,C1b1 where
s =

∑b1
i=1 nsi. (3) The tensor C2 ∈ Rb2×nt×nt stacked by b2 dense structure

matrices C21,C22, . . . ,C2b2 . (4) Marginal distributions of b1 sparse matrices
p = [p1 | p2 | · · · | pb1 ] ∈ Rs where pi ∈ Rnsi . (5) Marginal distributions of b2
dense matrices q ∈ Rb2×nt . (6) g ∈ [1 : b1]

s where g[a] is the graph index of node a
in the giant graph C1. (7) Trade-off α ∈ (0, 1), entropy ϵ > 0. Max iterations T ,
tolerance tol

Operator : @: @ in pytorch, matrix/tensor multiplication. ∗: elementwise multiplication.
.view(...): pytorch tensor .view(...). [:, ind, :]: pytorch tensor slice.

Output: Optimal transport plans T ∈ Rb2×s×nt of and FGW distances between b1b2 pairs

1 Initialize T← p.view(s, 1) ∗ q.view(b2, 1, nt);
2 Elementwise function: f(C1)← C⊙2

1 , h(C1)← C1, f(C2)← C⊙2
2 , h(C2)← C2;

3 Precompute constants:
R← f(C1)@p.view(s, 1)@1⊤

nt
+ 1ns

.view(s, 1)@q.view(b2, 1, nt)@f(C2);
4 Define gradient operator ∇T ← 2α(R− 2h(C1)@T@h(C2) + (1− α)M;
5 for t← 1 to T do
6 Tprev ← T;

/* Row projection */
7 T← T ∗ exp (−∇T/ϵ) // Update
8 Sr = p/(T.sum(−1)) // Row scaling factor
9 T← Sr.view(b2, s, 1) ∗T // Normalize rows

/* Column projection */
10 T← T ∗ exp (−∇T/ϵ) // Update

/* Sum the elements from the same sparse matrix along the 2nd dim */
11 group_sum = scatter_sum(T,g, dim = 1)

/* Broadcast to each group and get columnm scaling factor */
12 Sc = q.view(b2, 1, nt)/group_sum[:,g, :]
13 T← Sc ∗T // Normalize columns
14 if t mod 10 = 0 then
15 Compute error: err ← ∥T−Tprev∥F ;
16 if err < tol then
17 break;
18 end
19 end
20 end
21 return T and corresponding FGW distances

B.2 Backward

With L(C1i,k,C2j,l) = (C1i,k −C2j,l)
2, the gradients of 1-to-1 FGW w.r.t. the input elements are

∂FGW

∂M
= (1− α)T

∂FGW

∂C1
= 2αC1 ⊙ (pp⊤)− 2αTC2T

⊤

∂FGW

∂C2
= 2αC2 ⊙ (qq⊤)− 2αT⊤C1T

∂FGW

∂α
=

〈[
C⊙2

1 T1N21
⊤
N2

+ 1N11
⊤
N1

T
(
C⊙2

2

)⊤ − 2C1TC⊤
2

]
,T

〉
− ⟨T,M⟩F

∂FGW

∂p
= αC⊙2

1 p
∂FGW

∂q
= α(C⊙2

2 )⊤q.
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The backward computations of b1b2 FGW distances can be parallelized via similar techniques
introduced in parallel FGW computation described in the forward process of our BAPG layer (Section
B.1).

C More Experiments

C.1 Implementation Details

The implementation is based on Pytorch2.5 [52] and PyG2.6 [17]. All experiments are conducted
on Ubuntu 22.04 server equipped with an RTX 4090 GPU and Intel Xeon Gold 6240C CPU. For
FGW [59, 39], we implement an extremely efficient version from scratch (Section B) instead of using
Python Optimal Transport toolbox [20].

Table 7: The split information of four
GLNCD datasets

Dataset # train # test # all
ENZYMES 420 120 600

MalNet-Tiny 3500 1000 5000
REDDIT12K 8350 2386 11929

CIFAR10 35000 10000 60000

Many studies report test performance based on the epoch
that achieves the best performance on the validation set.
However, in the context of NCD, selecting the epoch based
on clustering accuracy over unlabeled validation samples
would require knowledge of the ground truth new-class
labels, which violates the NCD assumption. Alternatively,
using old-class accuracy on the validation set may rein-
force model bias toward known classes, potentially harm-
ing performance on new classes. Therefore, we report
results from the final training epoch. In addition to the
three baseline methods designed in Section 3.2, we also implement a K-means baseline: after pre-
training the GNN encoder with GraphCL, we apply K-means directly to the GNN representations of
the unlabeled training samples and old-class test samples, and report the corresponding clustering
accuracies. For all experiments, we use the AdamW optimizer [45] and cosine annealing scheduler
[44] with warmup.

Following common practice in visual NCD [80, 78, 27], we first determine the hyperparameters for
AutoNovel on a given dataset. These hyperparameters are then inherited by NCL and DualRS on
the same dataset, and only the hyperparameters that differ from AutoNovel are subsequently tuned
for these two methods. ProtoFGW-NCD has a fundamentally different architecture from the above
baselines, and its hyperparameters are therefore not influenced by AutoNovel. The hyperparameter
values or search spaces of these mehods are presented in Table 8.

C.2 Benchmarking Our BAPG Layer Implementation

Section B introduces our BAPG layer for efficient, differentiable FGW distance computation, which
leverages torch_sparse and torch_scatter to parallels pairwise FGW computations between
b1 sparse matrices and b2 dense matrices. Compared to the BAPG implementation in POT 6, our
improved version supports sparse matrices, parallelized iterative solving, and efficient automatic dif-
ferentiation. These enhancements significantly promote the broader application of the FGW distance
in graph-level machine learning. In this section, we compare our parallel BAPG implementation with
POT on a series of synthetic attributed graph datasets.

Graph sizes considered are 20, 50, 100, 200, 500, and 1000 nodes. For each size, we generate 1000
Contextual Stochastic Block Model (CSBM) graphs [14, 48]. Prototype graphs are typically used
to represent large-scale topological relationships; thus, each node in a prototype graph corresponds
to a block or community of nodes. While no universally accepted formula exists for determining
the optimal number of communities in a network, empirical studies suggest that the number of
communities typically grows sub-linearly with the number of nodes N , often approximated as
O(N/ logN), especially in scale-free or real-world networks where community sizes follow a
power-law distribution [51, 3]. Therefore, for graphs of size N , we use 10 prototype graphs of size
N/2 logN to capture patterns in the dataset, and the dataset is denoted CSBM-N -10. In Figure 6,
we display 10 prototype graphs used to generate 1000 graphs in CSBM-100-10 dataset. Commonly
used batch sizes in graph learning are 64, 128, 256, and 512. We evaluate the efficiency of different

6https://pythonot.github.io/gen_modules/ ot.gromov.html#ot.gromov.BAPG_fused_gromov_wasserstein
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Table 8: Hyperparameter values and search spaces of GLNCD methods
Group Hyperparameter Value or Search Space

Common Hyperparameters
Optimization Learning rate [0.001, 0.005, 0.01, 0.05, 0.1]

Dropout [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
Weight decay [0.0, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2]
Cosine warmup steps [2, 5, 10]
Batch size [64, 128, 256, 512]
Max epochs [20, 50, 100, 300]

Neural Network Arch. GNN encoder layer [2, 3, 4, 5, 6]
Hidden dimension [32, 64, 128, 256]
has_residual [False, True]
has_ffn [False, True]
Normalization [batchborm, None]

Graph SSL Node droprate [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
Temp. for contrastive loss [0.1, 0.3, 0.5, 0.7, 0.9, 1.1]

GLNCD method Hyperparameters
All baselines Encoder pooling readout [’mean’, ’add’, ’max’]

AutoNovel Topk in RS [5, 10, 15]
Rampup length [10, 50, 80, 150, 300]
Rampup coefficient [1.0, 5.0, 25., 50.]

NCL Labeled NCL loss weight [0.2, 1]
Unlabeled NCL loss weight [0.2, 1]
Queue length [200, 2000]

DualRS Memory bank length [256, 512, 1024]

ProtoFGW-NCD Epsilon [0.01, 0.05, 0.07, 0.11, 0.15, 0.19]
Prototype node feature std. [0.5, 1.]
# prototype graphs range(10, 130, 10)
# prototype graph nodes 20

BAPG implementations in comparing all 1000 graphs with the 10 prototype graphs under various
batch sizes.

The average time for computing the FGW distance between a batch of graphs and all 10 prototype
graphs, under different batch sizes across various datasets, is shown in Table 6. The total time
required to traverse each entire dataset is presented in Figure 4. As summarized in Table 6, our
parallel BAPG solver delivers dramatic runtime improvements over the POT implementation across
all batch sizes and problem scales. While POT’s runtime grows roughly linearly with batch size
(e.g., from ≈8.9 s at B=64 to ≈67.3 s at B=512 on CSBM-20-10), our approach maintains a nearly
constant per-batch cost (≈0.02–0.04 s), yielding speedups that increase from ≈250× to ≈2070× as B
grows. Furthermore, the degree of acceleration decreases as the graph size N increases—exceeding
400×–2000× for small-to-medium sizes (N≤100) at B=512, yet still achieving 3×–14× for large-size
graphs (N=500–1000). These findings demonstrate that our technique effectively amortizes overhead
and exploits parallelism for batches of FGW problems, offering exceptional throughput for the tasks
of small- and medium-size graphs while retaining nontrivial gains even in large-graph settings. This
is also supported by the epoch time comparison displayed in Figure 4.

D Limitations

As the first work to consider graph-level NCD, this paper aims to introduce the new task of GLNCD
and examine whether existing visual NCD methods can be effectively adapted by simply replacing their
components with graph-domain counterparts. To address this question, we adapt three classic NCD
methods from computer vision to establish GLNCD baseline approaches (Section 3.2) and evaluate
their performance on four newly designed GLNCD datasets spanning different domains (Section 3.1).
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Figure 6: The prototype graphs used to synthesize the 1000 graphs in CSBM-100-10 dataset.

Our experimental results and analysis (Section 4) clearly indicate a negative answer, suggesting that
current graph SSL methods and ranking statistics are insufficient in capturing structural information
within graphs, thereby leading to low GLNCD performance. Although we do not adapt the most
recent visual NCD methods, the limitations we observe from direct transfer can be generalized to
them. This is because these recent visual NCD methods would still rely on existing graph SSL
techniques for representation learning and employ pseudo-labeling strategies that neglect graph
structure to train the new-class head. Additionally, despite the development of our parallel BAPG
solver (Section B), which significantly improves computational efficiency in solving FGW for graph
learning—achieving an impressive 2070× speedup on the CSBM-20-10 dataset where graphs have 20
nodes—the experimental results (Section C.2) show that the acceleration drops to only about 3.3× on
larger graphs (CSBM-1000-10). Future work may focus on analyzing the causes of reduced speedup
and improving the implementation, or exploring alternatives to FGW that more efficiently exploit
graph structure to enhance both graph SSL and pseudo-labeling strategies.

30


	Introduction
	Related Work
	Visual Novel Category Discovery for Image Data
	Open World Graph Learning

	Datasets and Baselines Adapted from Visual NCD
	Prepare GLNCD datasets 
	Design GLNCD Baselines with Visual NCD Methods 

	Challenges in NCD Method Adaptation: From Image to Graph Data 
	Why Direct Adaptation Fails? Ranking Statistics (RS) Fails
	Why RS Fails? Insufficient Exploration of Graph Structure 

	Proposed Method: ProtoFGW-NCD 
	ProtoFGW-CL: Graph-level Representation Learning by Swapping Transport Couplings
	FGW-RS: Ranking Statistics with More Graph Structure Information
	ProtoFGW-NCD: Integrating ProtoFGW-CL and FGW-RS

	Experiments 
	Experimental Setup
	Main Results
	Ablation Study 
	The Efficiency of Our BAPG Layer

	Conclusion 
	Measure the Quality of Pairwise Pseudo Labels for Unlabeled Samples
	Parallel Differentiable BAPG Layer for Efficient FGW Distance 
	Forward 
	Backward

	More Experiments
	Implementation Details 
	Benchmarking Our BAPG Layer Implementation 

	Limitations

