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Abstract
Methods for machine unlearning in large language
models seek to remove undesirable knowledge or
capabilities without compromising general lan-
guage modeling performance. This work inves-
tigates the use of mechanistic interpretability to
improve the precision and effectiveness of un-
learning. We demonstrate that localizing unlearn-
ing to components with particular mechanisms
in factual recall leads to more robust unlearning
across different input/output formats, relearning,
and latent knowledge, and reduces unintended
side effects compared to nonlocalized unlearning.
Additionally, we analyze the strengths and weak-
nesses of different automated (rather than manual)
interpretability methods for guiding unlearning,
finding that their corresponding unlearned models
require smaller edit sizes to achieve unlearning
but are much less robust.

1. Introduction
Large language models (LLMs) often learn to encode unde-
sirable knowledge, such as generating harmful stereotypes
or leaking private information. The ability to selectively “un-
learn” this problematic knowledge is paramount for ensuring
safety, fairness, and control of AI. Yet, removal of knowl-
edge from these models presents significant challenges.

Unlearning methods often rely on gradient-based updates
of the entire model. These often come at the cost of affect-
ing other general or tangential knowledge within the model.
Moreover, the unlearning achieved through these methods
may not be robust – slight variations in the prompt formula-
tion can often still elicit the unlearned fact or capability.

Some recent editing and unlearning techniques use heuris-
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tics to judge the relevance of model components (such as
specific neurons or MLP modules) for particular facts, and
then localize updates to those components to minimize unde-
sired side effects of unlearning. However, Hase et al. (2023)
has cast doubt on the efficacy of these importance heuristics
for edits and unlearning. Indeed, our work finds that un-
learning of facts based on common automated localization
techniques, even ones which are designed to find causally
important components, performs no-better or even worse
than non-localized unlearning, especially when evaluated
on a broad-range of tests that check for robustness and latent
information in intermediate representations.

In contrast to these automated localization techniques, mech-
anistic interpretability seeks to attribute describable task
mechanisms to particular components. We hypothesize
that this detailed understanding of component mechanisms,
requiring what we refer to as manual mechanistic inter-
pretability, leads to improved localization for unlearning.

In this work we exploit the findings from this literature to
design a manual interpretability-based unlearning technique
that we refer to as manual mechanistic unlearning. Using
this, we localize our unlearning and cause the model to
robustly unlearn facts with minimal side effects. Our ex-
periments demonstrate that manual mechanistic unlearning
outperforms all other automated localization and nonlocal-
ized unlearning approaches.

Summary of Contributions

• We motivate the necessity for robust unlearning ap-
proaches and evaluation by demonstrating the inability
of standard approaches to generalize to output distribu-
tion shifts, adversarial relearning, and latent knowledge
probing on our chosen task.

• We demonstrate that localization informed by manual
mechanistic interpretability leads to robust and targeted
unlearning that generalizes well and is resilient to re-
learning and probing. In contrast, automated localiza-
tion and nonlocalized unlearning approaches are not as
robust/targeted.

• We show that both automated localization and manual
mechanistic interpretability approaches can achieve
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a given forget set inaccuracy with smaller edit sizes
(fewer weights masked).

1.1. Related Work

Mechanistic Interpretability is a subfield of AI inter-
pretability, aiming to understand the internal processes of AI
models by attributing them to subnetworks (called circuits)
within the model (Olah et al., 2020). We focus on factual
recall interpretability literature from (Nanda et al., 2023;
Geva et al., 2023; Chughtai et al., 2024; Yu et al., 2023),
which discovers mechanisms for the retrieval and formatted
extraction of factual information.

Automated Circuit Discovery methods aim to automati-
cally find causally important subnetworks of components
for a task. Causal Tracing (Meng et al., 2023) and Auto-
mated circuit discovery (ACDC) (Conmy et al., 2023) utilize
repeated activation patching to find these subnetworks that
are most critical for the model’s behavior on that task. Ef-
ficient methods such as attribution patching (Nanda, 2023)
and edge attribution patching (Syed et al., 2023) are lin-
ear approximations of activation patching for discovering
important components quickly.

Fact Editing and Machine Unlearning Machine unlearn-
ing seeks to modify pre-trained models to eliminate or alter
learned knowledge such as capabilities or facts. A number
of prior approaches focused on identifying and removing
specific individual training data points, aiming to obtain
a model that is “similar” to one that had never trained on
these data points (Cao & Yang, 2015; Xu et al., 2023). This
goal of unlearning to match a retrained-from-scratch model
relates to a mathematical definition for unlearning that have
been proposed by Ginart et al. (2019), closely relating to
differential privacy (Dwork et al., 2014).

A growing body of work aims to unlearn a subset of the
training data in LLMs. Eldan & Russinovich (2023) propose
a method for unlearning entire books like the Harry Potter
series. Chen & Yang (2023) consider modifying transformer
architecture by inserting “unlearning” layers.

Fact editing focuses on overwriting factual information
while preserving overall language generation ability. Meng
et al. (2023) identifies MLP modules that are most respon-
sible for factual predictions via Causal Tracing and then
applies a rank-one transformation upon these modules to
replace factual associations.

In the context of LLMs and safety, techniques such as
Helpful-Harmless RLHF (Bai et al., 2022) and Represen-
tation Misdirection for Unlearning (Li et al., 2024) aim to
suppress dangerous knowledge or harmful tendencies in
LLMs. A related line of work on safety proposes methods
making it difficult to modify open models for use on harmful
domains (Deng et al., 2024; Henderson et al., 2023).

Evaluating Failures of Unlearning Several recent papers
demonstrate failures of unlearning/editing methods, both
localized and nonlocalized. Patil et al. (2023) extract correct
answers to edited facts from the intermediate residual stream
and through prompt rephrasing. Yong et al. (2024) show
that low-resource languages jailbreak models output unsafe
content, and Lo et al. (2024); Lermen et al. (2023) demon-
strate that relearning with a small amount of compute/data
causes models to regain undesirable knowledge/tendencies.

2. Methods
2.1. Unlearning Tasks

We focus on unlearning subsets of the Sports Facts dataset
from Nanda et al. (2023), which contains subject-sport rela-
tions across three sports categories for 1567 athletes.

We attempt to unlearn two groups of factual associations.
First, we unlearn all athlete-sport associations for a given
sport. In this case, we establish a forget set consisting of
all the basketball athletes. Second, we unlearn a set of 16
athletes belonging to all three sport categories. The forget
set here is the set of the 16 athletes. In both groups, the
retain sets are the rest of the non-forget athletes.

For all tasks, we use the Gemma-7B LLM (Team et al.,
2024) rather than the Pythia-2.8B (Mallen & Belrose, 2023)
model tested in Nanda et al. (2023), for its stronger gen-
eral capabilities which we can measure for side effects, and
for its ability to provide sports knowledge in different in-
put/output formats.

2.2. Unlearning Procedure

For all unlearning, we use a two-step unlearning process.
First, we use a localization method to isolate a subset of
components that we deem are valuable or meaningful candi-
dates for unlearning. Then, we optimize over the parameters
of these isolated components using an unlearning loss func-
tion, with the end goal being a model that is incapable of
performing the associations in the forget set while retaining
other retain associations and general language modeling
capability.

2.3. Localization Methods and Baselines

Given a model M : X 7→ L mapping sequence of tokens
X to logits L ∈ RV over vocabulary V , we consider M
to be a directed acyclic graph (C,E) with C being a set of
model components and E being edges between components.
Adopting notation from Elhage et al. (2021), we consider the
query, key, value, and output weights Wh

Q,W
h
K ,Wh

V ,W
h
O

of each head along with the input and output projection
weights Wm

I ,Wm
O of each MLP as components.
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We are interested in finding S : C −→ R, a mapping of com-
ponents to their importance in a given task. A localization is
a set of components Cτ := {c : c ∈ C, |S(c)| > τ}, where
τ is a threshold. In practice, we fix τ such that Cτ contains
5% of the total components of the model, corresponding to
approximately 10 components.

We use efficient automated localization methods for finding
these mappings currently available in the literature.

Causal Tracing and Attribution Patching First, we test
Causal Tracing, a method for finding components with
high direct importance for factual associations (Meng et al.,
2023). Previous work has highlighted the shortcomings of
Causal Tracing as a localization method (Hase et al., 2023),
so we also use Attribution Patching (Nanda, 2023), which
uses a linear approximation to activation patching to auto-
matically localize over components with high direct and
indirect importance.

Manual Mechanistic Interpretability Next, we use a
manually derived localization inspired by Nanda et al.
(2023), who discover components in Pythia 2.8B responsi-
ble for token concatenation, fact lookup, and attribute ex-
traction. We replicate a key result of their work in Gemma-
7B and localize the fact lookup stage to be the MLP com-
ponents between layers 2 and 7, which we hypothesize to
be the optimal location for robust unlearning (discussed in
Section 4). The analysis is performed in Appendix A.2.

Random, All MLPs, and Nonlocalized We additionally
consider three baselines: one corresponding to Cτ = C
(i.e., no localization, optimizing all the components of the
model), another that randomly chooses 5% of components,
and another that trains all MLP components. We test the last
All-MLPs localization to determine if our mechanistically
localized MLPs are uniquely important - we want to know if
the same unlearning performance can be achieved with just
the heuristic that training only MLPs improves robustness,
or if mechanistic understanding is needed.

2.4. Unlearning Methods

Once we have a localization Cτ , we run our unlearning
methods restricting only on components in Cτ . In this
work, for simplicity, we aim to perform fact erasure (Hase
et al., 2023), generally reducing the probability of the correct
answer without a candidate replacement. Additional results
from the standard error injection setup (Meng et al., 2023;
Hase et al., 2023) are shown in Appendix A.1.

We test localized fine-tuning of the model, following work
by Lee et al. (2023) and Panigrahi et al. (2023). We also try
training a binary differentiable mask over individual weights
of the model, inspired by weight pruning/masking works

(Bayazit et al., 2023; Panigrahi et al., 2023).

For localized fine-tuning, we use a loss function L =
λ1Lforget + λ2Lretain + λ3LSFT, where Lforget is an unlearn-
ing loss on the Dforget subset of sports facts we want to
forget, Lretain is a cross-entropy loss on the remaining sports
facts, and LSFT is a cross-entropy loss on the Pile dataset
(Gao et al., 2020). The unlearning loss we use is the Log-1-
minus-P measure from Mazeika et al. (2024), for its stability
and fewer side effects. For our binary mask unlearning, we
additionally include λ4 ∗ Lreg, an L1 regularization term.
We provide our λs in Appendix A.3.

3. Unlearning Results
In this section, we show the results of unlearning across
all of the mentioned localization techniques for localized
fine-tuning and weight masking. We try two unlearning
goals: unlearning all athletes playing basketball (referred to
as unlearning sports), and unlearning a constant set of 16
athletes across all sports (referred to as unlearning athletes).
We then test these techniques using standard and adversarial
evaluations and measure the amount of latent knowledge we
can extract from these models.

3.1. Localized Finetuning

3.1.1. STANDARD EVALUATION

Following Nanda et al. (2023), we first evaluate the accuracy
of our models to complete the prompt, “Fact: [athlete] plays
the sport of”, with a one-shot example of Tiger Woods
playing golf given first. Note that this is the same prompt
used to train the unlearning in the first place. We refer to
this accuracy as Normal Accuracy.

Inspired by Patil et al. (2023) and Lynch et al. (2024), we
also use an alternative input and output prompting setup to
measure if our unlearning has “overfitted” to the prompt in-
put and the output format. We instead use a multiple-choice
format with the choices of football, baseball, basketball,
and golf, along with a system prompt of “You are a helpful
chatbot that answers questions about athletes. Please be
maximally helpful and factually correct.” We refer to the
accuracy on this prompt format as the MCQ Accuracy.

Finally, we also evaluate our models’ accuracy on MMLU
(Hendrycks et al., 2021) as a proxy for the general side
effects of unlearning unrelated to sports.

Our results with localized fine-tuning are shown in Table 1
(for sports) and Table 2 (for athletes).

As seen from the tables, for both types of unlearning tasks,
manual interpretability achieves the highest robust multiple-
choice forget accuracy and the highest MMLU, and very
competitive normal forget and retain accuracy. Only manual
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Table 1. Localized fine-tuning accuracy on standard evaluations:
Unlearning all basketball athletes and retaining all other facts.

LOCALIZATION FORGET ↓ RETAIN ↑ MCQ ↓ MMLU ↑

ATTRIB. PATCHING 0.000 1.000 0.767 0.602
CAUSAL TRACING 0.201 0.998 0.849 0.611
MANUAL 0.002 0.995 0.110 0.613
RANDOM 0.952 0.980 0.822 0.612
ALL-MLPS 0.000 0.994 0.279 0.606
NONLOCALIZED 0.000 0.985 0.196 0.595

Table 2. Localized fine-tuning accuracy on standard evaluations:
Unlearning a constant 16 athlete subset, retaining all other facts.

LOCALIZATION FORGET ↓ RETAIN ↑ MCQ ↓ MMLU ↑

ATTRIB. PATCHING 0.941 0.964 0.934 0.614
CAUSAL TRACING 0.891 0.915 0.910 0.612
MANUAL 0.034 0.975 0.175 0.615
RANDOM 0.938 0.952 0.883 0.612
ALL-MLPS 0.003 0.973 0.281 0.599
NONLOCALIZED 0.203 0.570 0.391 0.540

xz

interpretability, all MLPs, and nonlocalized approaches had
generalized their unlearning to the multiple choice format,
but manual interpretability had significantly higher MMLU
performance and higher retain accuracy than all MLPs and
nonlocalized.

This indicates that automatic localization methods do not
robustly unlearn, and the supposedly-unlearned information
can be extracted through prompt and task variations.

3.1.2. ADVERSARIAL RELEARNING

We measure the ability of our models to withstand adversar-
ial relearning, both to address the scenario in which adver-
saries may have fine-tuning access and as an upper-bound
measure for the quality of unlearning–a model taking rel-
atively fewer steps to relearn probably has not deeply un-
learned facts. We retrain with a rank-64 LoRA across all
linear modules, with details available in Appendix A.4.2.

Figure 1 and Figure 10 compare relearning robustness of
different unlearning techniques, for sports and athletes re-
spectively. As shown in Figure 1, for sports-unlearned mod-
els, manual interpretability is the localization method that
is most robust to the low-resource relearning. Unlearn-
ing based on every other localization as well as the no-
localization technique regains accuracy on the rest of the
forget set within a few iterations. For all of the athlete-
unlearned models, relearning on some of the unlearned ath-
letes does not recover accuracy on the other athletes in the
manual interpretability, all MLPs, and nonlocalized models.

Figure 1. Retraining basketball-unlearned models with two athletes
in the forget set, for ten iterations.

3.1.3. LATENT KNOWLEDGE

Similar to Patil et al. (2023), we train logistic regression
models (probes) (Alain & Bengio, 2018) on the activations
of every model layer to predict the correct sport from the
prompt, with the idea that a model that has truly unlearned a
fact would not have much predictive value in its activations.
For more details on probe training, see Appendix A.4.3.

We test whether the models post-unlearning retain informa-
tion about the forget set in the intermediate layer represen-
tations. Figure 11 and Figure 2 show the accuracy of the
trained per-layer probes on the forget set for each of the
unlearning tasks, sports and athletes respectively.

Figure 2. Probe accuracy (combined over all three sports) on the
athlete-forgotten models across layers.

Figure 2 provides evidence that the manual interpretability,
all MLPs, and nonlocalized athlete-unlearned models con-
tain less or no recoverable representations of the unlearned
association in the intermediate layers.

Figure 11 shows that all unlearning techniques we test
on basketball produce models that continue to encode the
supposedly-unlearned basketball associations even while
these models output an incorrect answer (Tables 1 and 2).
However, this is somewhat expected because unlearned mod-
els likely learn to treat basketball prompts distinctly from
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non-basketball prompts, which makes it no less difficult for
probes to learn to distinguish these prompts.

Note, however, that due to the nature of this experiment
and dependence on the probing technique used, a positive
result (failing to reconstruct the accuracy based on interme-
diate layer representations) does not rule out that the forget
set is still represented in these layers, and that a different
probing/extraction technique may be more successful. A
negative result, on the other hand, is conclusive: if the probe
accuracy is high, we know the unlearned information is still
recoverable in the intermediate layer representations.

3.2. Weight Masking

The localization methods discussed above isolate differ-
ent numbers of components/parameter counts, resulting in
unlearning techniques that may vary in terms of the total
number of modifiable parameters. In this section we em-
ploy weight masking to quantify the size of edits needed
to unlearn facts, for more direct comparisons. In particular,
we empirically evaluate how a learned binary mask over
the individual weights of the localized components can pro-
duce unlearning, and vary the size of this mask/number of
masked elements.

3.2.1. STANDARD EVALUATION

We show standard evaluations across a sweep of discretiza-
tion thresholds, which directly corresponds to the size of
the model edit. Figure 3 shows the accuracy on the forget
and retain sets for unlearning basketball across different edit
sizes. Here, we see all methods being effective in unlearning
basketball facts while retaining all other facts. In particular,
Attribution Patching and Causal Tracing localizations cause
the model to have zero accuracy on the in-distribution set
with much fewer masked weights needed than every other
localization, including manual interpretability.
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Figure 3. Testing the models’ unlearning of basketball athletes
against the number of weights masked.

However, when checking for generalization using a multiple-
choice format, we clearly see that only manual localization
has successfully generalized the unlearning of basketball

facts (Figure 4).
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Figure 4. Testing the models’ unlearning of basketball athletes
against the number of weights masked, in the MCQ prompt format.

We find similar results when testing for performance degra-
dation on MMLU (because we have to evaluate many model
variations, we use a smaller MMLU test set from Polo et al.
(2024)). While all localized methods perform well when
evaluated normally (Figure 16), Figure 5 shows manual
localization generalizes for minimizing loss of MMLU ca-
pabilities while unlearning sports facts in the MCQ format,
while other methods experience relatively significant side
effects across different numbers of weights masked.

For unlearning the subset of athletes, Figure 12 shows that
causal tracing localization causes the model to have 0%
accuracy on the forget set, and manual interpretability and
nonlocalized unlearning cause the model to have near guess-
ing rate (33%) accuracy. However, only manual localization
minimizes loss of capabilities while unlearning the athlete
subset (Figure 14).

Furthermore, no method completely generalizes this un-
learning to the MCQ prompt format (Figure 13), and manual
localization remains superior in minimizing loss of capabili-
ties while unlearning the athlete subset (Figure 15).
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Figure 5. Unlearning basketball facts, measuring MMLU and
MCQ forget set performance across different discretization thresh-
olds.
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4. Discussion
Recent work by Hase et al. (2023) has argued that localiza-
tion is not useful for unlearning. Our findings demonstrate
that the relationship between localization and unlearning
is more nuanced, and reveals that not all localization tech-
niques are equal.

Our work evaluates the efficacy of different localization
methods for unlearning factual associations. We demon-
strate clear benefits of localization for unlearning robustness
through localized fine-tuning combined with manual mech-
anistic interpretability techniques designed for fact recall.

We hypothesize that automated localization approaches fail
to be robust because they target easily-localizable and high
direct logit importance attention head components, that
transform existing latent factual knowledge to the desired
output format. This can fail to generalize to different input
and output formats and does not target the true source of
knowledge in the model: other input/output formats can
allow alternative attention mechanisms to transform this
knowledge, and low-resource relearning can quickly re-
pair the original attention mechanism. In contrast, mech-
anistic understanding allows us to target unlearning at the
sites where knowledge is sourced, which we hypothesize to
robustly prevent that information from entering the latent
stream in any format.

Our models generalize across prompt formats and resist
adversarial relearning and latent probing while minimizing
side effects.

Our work also suggests unlearning as a potential testbed for
different interpretability methods, which might sidestep the
inherent lack of ground truth in interpretability (Templeton
et al., 2024). We hope our work provides a framework for
evaluating the quality of localizations and explanations.

Impact Statement
This paper advances the fields of interpretability and un-
learning, both of which are relevant for ensuring the safety,
privacy, and fairness of models. We hope our methods
help model developers responsibly unlearn harmful knowl-
edge/behaviors.
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Figure 6. Retraining models that have had 16 athlete-sport associations replaced with Golf as the athletes’ associated sport, with two
athletes in the forget set, for ten iterations.

A. Appendix
A.1. Fact Injection Results

We additionally consider the common factual editing methodology, specifically an error injection setup (Hase et al., 2023)
where we replace correct athlete-sport associations with incorrect associations between athlete and ”Golf”. The results
are in Table 3 and Table 4, where we demonstrate that our manual localization method again achieves the strongest robust
unlearning generalization while maintaining more general capabilities than the other robustly unlearned model.

Table 3. Results of unlearning basketball associations, with the objective of replacing the correct sport of ”Basketball” with ”Golf”. Forget
refers to the model’s accuracy at stating the original sport association which should have been replaced.

LOCALIZATION FORGET ↓ RETAIN ↑ MCQ ↓ MMLU ↑

ATTRIB. PATCHING 0.000 1.000 0.815 0.611
CAUSAL TRACING 0.028 1.000 0.866 0.614
MANUAL 0.035 0.973 0.257 0.610
RANDOM 0.018 1.000 0.839 0.611
ALL MLPS 0.000 0.946 0.363 0.571
NONLOCALIZED 0.000 0.995 0.376 0.565

Table 4. Results of unlearning 16 athlete associations, with the objective of replacing the correct sport with ”Golf”.

LOCALIZATION FORGET ↓ RETAIN ↑ MCQ ↓ MMLU ↑

ATTRIB. PATCHING 0.447 0.998 0.895 0.612
CAUSAL TRACING 0.586 0.994 0.945 0.613
MANUAL 0.001 0.970 0.108 0.611
RANDOM 0.883 0.988 0.875 0.614
ALL MLPS 0.001 0.965 0.166 0.574
NONLOCALIZED 0.354 0.890 0.155 0.573

We also perform relearning and latent knowledge experiments in Figure 6 and Figure 7, demonstrating that manual
localization for the athlete subset injection improves relearning and latent knowledge robustness.

A.2. Gemma Interpretability Analysis

We find that probes predicting the correct sport increase in accuracy significantly in layers 2 through 7, and we find the mean
ablation of all attention heads past layer 7 to have minimal impact on the linear representation of player attributes (Figure 9).

Unlike Nanda et al. (2023), we find attention heads past layer 2 that impact the linear representation of attributes and
thus could potentially be important for fact lookup (Figure 8). However, because they could likely play a variety of other
different roles, following the findings of Geva et al. (2023); Nanda et al. (2023) that MLPs do primary factual representation
enrichment, in this work we only consider the MLPs as our localization.

9



Robust Unlearning via Mechanistic Localizations

Figure 7. Probe accuracy (combined over all three sports) on the athlete golf-injected models across layers.
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Figure 9. Probe accuracy on predicting sport across layers.
”Prompt” refers to the entire facts prompt, while ”Athlete” is
just the athlete’s name.

A.3. Hyperparameters

For localized fine-tuning, we use λ1 = 0.2 for forgetting basketball associations and λ1 = 1 for forgetting particular athlete
associations. For weight masking, we use λ1 = 0.3 for both basketball and athlete associations. λ2 and λ3, the retain and
SFT loss coefficients, were both set to 1 across all experiments. For weight masking regularization, we used λ4 = 1 ∗ 10−7

(where our regularization loss was the total sum of weight mask values).

For localized fine-tuning on Gemma, we trained using 50 iterations of batch size 4 with 16 accumulation steps, using an
AdamW optimizer (Kingma & Ba, 2017) with 0 weight decay, a learning rate of 1 ∗ 10−5, and a cosine annealing scheduler
for both basketball and athletes.

For weight masking, we unlearned using 50 iterations of batch size 10 with 15 accumulation steps, using an SGD optimizer
(for memory efficiency) with learning rate of 1∗10−3 for both basketball and athletes and clamping the mask values between
0 and 1 every update step.

A.4. Evaluation Details

A.4.1. TRAIN-TEST SPLITS

We split the basketball Dforget set and both Dretain sets (basketball and athletes) into an 80%-20% train-test-split, and all
of our reported numbers are on the test set. We do not split the Dforget set of 16 athletes, because we wish to test if the
model has unlearned the athletes it was trained to unlearn.
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A.4.2. DETAILS ON ADVERSARIAL RELEARNING

We retrain the model with only two athletes in Dforget for multiple iterations (along with a standard retain and SFT loss), in
both the sport and athlete unlearning scenarios. In practice, for basketball this looks like giving the model the same batch of
only Boris Diaw and Jae Crowder multiple times, and for athletes we give a batch of only DeForest Buckner and Walter
Payton. We retrain with a rank-64 LoRA on all linear modules.

A.4.3. DETAILS ON LATENT KNOWLEDGE

We don’t follow the same methodology as Patil et al. (2023) because we only care about the same three possible tokens, so it
isn’t applicable to apply their search-budget methodology and we instead try linear probes. In general, we don’t consider
linear probing to be a realistic threat model for beating unlearning, as attackers need white-box access and labels for large
subsets of the forget set, but we do these tests for an approximate upper bound of accessible information by a capable-enough
adversary.

We train three linear probes (Alain & Bengio, 2018) for every model and layer, one for each sport (to predict True or False
with a base rate of 66%), on samples from both the forget and retain datasets. We train each probe on both forget and retain
samples because for sports, there is only one forget sport (so the answer would be constant if we trained different probes),
and for athletes we only have 16 total examples that must further be split into train-test.

For athletes, we split the forget set into a 50%-50% train-test split, so the probe training dataset includes 8 of the forgotten
athletes (along with the standard retain train split) and the test set includes the other 8 (along with the retain test split). For
sports, we use the standard basketball train and test split. Then, as a measure of aggregated accuracy, we only consider a test
sample to be correct if probes for all three sports are correct.

A.5. Localized Fine-tuning Additional Results

Figure 10. Retraining athlete-unlearned models with two ath-
letes in the forget set, for ten iterations. The y-axis represents
the normal accuracy on the forget set. Low-resource relearn-
ing of athletes demonstrates that manual and non-localized
unlearning techniques are robust to this test (staying close to
the guessing rate of 33%), while the other methods maintain
full performance on the entire forget set.

Figure 11. Probe accuracy (combined over all three sports)
on the basketball-unlearned models, by layer. Probing
reveals that all unlearning methods leave recoverable informa-
tion about which sport is the answer, which is expected be-
cause the unlearned models likely treat all basketball prompts
significantly differently from the retained sport prompts. The
probe accuracies for Attribution Patching, Causal Tracing,
and Random localized-models overlap because their different
unfrozen components are all in later layers, when the probe
accuracies are already 100%.
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A.6. Weight Masking for Athletes

A.6.1. NORMAL AND MCQ ACCURACIES
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Figure 12. Unlearning subset of athletes, measuring accuracy
on the forget set.
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Figure 13. Unlearning subset of athletes, measuring accuracy
on the forget set in the MCQ prompt format.

A.6.2. PERFORMANCE DEGRADATION ON MMLU
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Figure 14. Unlearning subset of athletes, measuring MMLU
and forget set performance across different discretization
thresholds.
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Figure 15. Unlearning subset of athletes, measuring MMLU
and MCQ forget set performance across different discretiza-
tion thresholds.
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Figure 16. Unlearning basketball facts, measuring MMLU and forget set performance across different discretization thresholds.
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