
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

OPTIMIZING COMPUTATIONALLY-INTENSIVE SIMULA-
TIONS USING A BIOLOGICALLY-INSPIRED ACQUISI-
TION FUNCTION AND A FOURIER NEURAL OPERATOR
SURROGATE

John P. Lins1 & Wei Liu2

1,2Lawrence Livermore National Laboratory, 1UC Santa Barbara
Livermore, CA 94551, USA
1johnlins@engineering.ucsb.edu, 2liu56@llnl.gov

ABSTRACT

Computational modeling of physical phenomena has enabled researchers to acquire
insight that was previously only observable from costly real-world experiments.
The adoption of physics simulations has resulted in numerous advancements in
fusion energy, seismic inversion/monitoring, and national defense. However, opti-
mizing simulation studies requires many realizations of the intensive simulations.
Manually tweaking control parameters and searching for optimal results can be
tedious and inefficient. To tackle such obstacles in simulation studies, we found
that differential evolution combined with the covariance matrix adaptation strat-
egy could effectively optimize simulations while simultaneously behaving as an
acquisition function to collect samples. The samples collected may be used to train
intelligent surrogate models such as a Fourier neural operator (FNO). Once a surro-
gate is constructed, it could be used to accelerate the sampling of the optimization
search space further. This methodology effectively optimized a hydrodynamic
simulation modeled by systems of partial differential equations; it may also be
extended to simulation optimization in other disciplines.

1 INTRODUCTION

Idea Optimizing the control parameters of certain physics simulations needs to be approached as a
black-box optimization problem when gradient information of the loss landscape cannot be computed
from the simulation itself. To work around this issue, we designed a new genetic optimization
algorithm in conjunction with constructing a differentiable surrogate model of the simulation using
the samples that were already taken; our approach will enable us to efficiently optimize the simulation
further and possibly perform gradient-based optimization.

Surrogate This idea prompted us to examine the FNO’s effectiveness at emulating the real simula-
tion. Executing this task required us to take samples of the simulation. However, if we were to run a
set of simulations with randomly or uniformly generated control parameters, then too many samples
would crash; that is why we use genetic optimization first, to have a high quality data set.

DECAF We propose DECAF (Differential Evolution [with] Covariance Adaptation [followed
by optimizing a] Fourier [neural operator surrogate]), a novel solution. Our approach combines
differential evolution with covariance matrix adaptation (Igel et al., 2007) to minimize undesirable
artifacts while simultaneously behaving as an acquisition function to construct a data set of samples
for the FNO surrogate. We then suggest ways to optimize the surrogate further to find a highly
optimal set of parameters. We hypothesized that our approach would reduce the number of crashes
through the course of sampling and create a high enough quality data set to train an FNO surrogate.

Parameters Our control parameters were defined by the artificial coefficient of shear viscosity (cm),
bulk-viscosity dilatation (cb), and thermal conductivity (ck), as well as, ceiling values on artificial

1



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

bulk viscosity (cl), thermal conductivity (cc), and diffusivity (cf ). These artificial coefficients are
used to enhance numerical stability and fidelity by smoothing shock waves interacting with materials.

Some choices of the artificial coefficients can render the simulation highly stiff, in which the time
step size becomes drastically small. The minuscule time steps are often associated with non-physical
numerical artifacts that can lead to instability in numerical simulations (Cook, 2007).

2 APPROACH

Differential evolution (DE) (Das & Suganthan, 2010) is a genetic optimization algorithm that
optimizes non-convex loss landscapes. DE adheres to the following sequential process in Fig. 1.

Initialization Mutation Crossover Selection

Figure 1: The sequential process of differential evolution

Mutation Vanilla differential evolution (vanilla-DE) generates mutant vectors m⃗i ∈ M in the
following way. Here, αm is the mutation factor and we set this value to 0.5. M and P define the
mutant and current populations respectively.

m⃗i := v⃗1 + αm · (v⃗2 − v⃗3) where v⃗1 ̸= v⃗2 ̸= v⃗3 and v⃗1, v⃗2, v⃗3 ∈ P (1)

DE-GM Unlike vanilla differential evolution, our approach of combining the covariance matrix
adaptation strategy with differential evolution in this way uses a multivariate Gaussian to generate
mutant vectors. We call our approach “Differential Evolution with Gaussian Mutation (DE-GM).”

X ∼ N (µ⃗P , σ⃗P
2) (2)

X is a random variable constructed using the mean µ⃗P and diagonal covariance entries σ⃗2P of the
entire current population.

m⃗i := X (3)
This Gaussian is then sampled to construct a mutant population.

Crossover Differential evolution uses crossover to retain some good genetic material from the
previous generation. Crossover is performed by randomly swapping some elements of the mutant
vectors with elements from the current population vectors to construct trial vectors ∈ T . The trial
vectors are later compared to the current population vectors during the selection process.

Ti,j =
{

Mi,j rand(0, 1) ≥ αc

Pi,j otherwise
(4)

αc is the crossover factor, we set this value to 0.2.

Selection After the test function or simulation has been evaluated, we iterate through the current
and trial vectors with their corresponding losses. We select the next population (N ) in the following
way.

Ni =

{
Ti loss(Ti) < loss(Pi)
Pi otherwise

(5)

Bounds We handled boundary conditions by replacing mutants that step outside the boundary with
a random value within the defined boundary. For our simulation, each parameter was bound by its
default value scaled up and down by a factor of 10.

Convergence We eventually declared that the process has converged when the average loss of the
population for the past n iterations is less than the convergence constant αv. When optimizing the
test function, we used n = 10, αv = .001, and when optimizing the actual simulation, we were more
forgiving and used n = 3, αv = 10.

2



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

3 TESTING GENETIC ALGORITHMS

i = 01 i = 02 i = 04

i = 06 i = 14 i = 17

Figure 2: The multivariate Gaussian changing per iteration i

Test Function We conducted ex-
periments on a test function before
optimizing the simulation itself. The
Ackley function is ideal for testing
because it has many non-optimal lo-
cal extrema and one global minimum.
We used a test function to make it
computationally inexpensive to com-
pare vanilla-DE with DE-GM. When

we tested DE-GM on the test function, Fig. 2, intuitively, as the number of iterations i increased
i → ∞, the population became less scattered σ⃗P

2 → 0⃗ while µ⃗P → optimal minimum.

3.1 RESULTS AND COMPARISON

We collected data from 15 training sessions of both vanilla-DE and DE-GM. Independent t-test for
difference of mean with an α-value of 0.01 informed us that DE-GM converged 5.667 iterations earlier,
with significance (p = 0.003 ≪ 0.01), and at a 0.032 point lower final average loss (−66.76%),
without significance (p = 0.512 ≮ 0.01). What mattered most was minimizing the number of
iterations needed to converge, because fewer iterations means fewer computationally expensive
samples need to be taken. For this reason, we decided to use DE-GM for optimizing the simulation.

DE-GM tends to exploit the loss landscape better, which is ideal for our task. Alternatively, vanilla-
DE (and CMA-DE, DES, etc. (Arabas & Jagodzinski, 2020)) may cause mutation vectors to be flung
far away from the rest of the population in the loss landscape if v⃗2 and v⃗3 are very different—wasting
costly simulation samples.

4 DE-GM ON SIMULATION DATA

We experimented with a hydrodynamic simulation which modeled the behavior of a water droplet
that underwent a hypersonic shock. This particular simulation was modeled by the Navier-Stokes
momentum equation (Cook, 2009, eqn. 2), the advection-diffusion equation (Cook, 2009, eqn. 9),
and the energy equation for multicomponent flows (Cook, 2009, eqn. 11).

Objective The optimization objective was to minimize the number of time steps needed to reach
a fixed point in time—fewer time steps due to a bigger step size tend to yield fewer undesirable
non-physical artifacts. We defined this fixed point in time to be 0.2 µs. The loss landscape is discrete,
and the input space is continuous. We also accounted for trials where the choice of control parameters
caused the simulation to fail to reach the specified point in time; we declare this phenomenon a
‘crash.’ When this happened, we assigned the largest possible error to it: 9999999. By doing this, the
next population would likely not incorporate parameters that cause crashes. Our population size was
four, and we ran six training sessions.

4.1 RESULTS

default÷ 10 default default · 10
Parameter value

2000

3000

4000

5000

6000

7000

8000

L
os

s

cm

cb

ck

cl

cc

cf

(a)
0 5 10 15 20 25 30 35 40

Iteration
15000

20000

25000

30000

35000

40000

L
os

s

Session 1
Session 2
Session 3
Session 4
Session 5
Session 6

(b)
0 5 10 15 20 25 30 35 40

Iteration
0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

nu
m

of
cr

as
he

s

(c)
0 20 40 60 80 100 120 140 160

Sample
0

5

10

15

20

25

30

35

40

Pa
ra

m
et

er
va

lu
e

cm
cb
ck
cl
cc
cf

(c)(d)

Figure 3: The optimization process over time provided valuable insights into the effectiveness of
DE-GM: (a) sensitivity of parameters, (b) loss reduction over six consecutive sessions, (c) fewer
crashes over iterations, (d) convergence of parameters.

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Each parameter had been independently minimized and maximized while keeping the other five
parameters constant at their default value, we observed that some are more sensitive to extreme values
than others, Fig. 3(a).

Unoptimized Optimized

Figure 4: Simulated pressure
field with randomly initialized v.s.
optimized parameters

Fig. 3(c) illustrates the average number of crashes that typically
occurred in a given iteration step across all training sessions.
Since the number of crashes decreased over each iteration, we
reduced the amount of computational waste.

Fig. 3(d) illustrates where each parameter converged per training
session, often at different values per session; this indicates that
DE-GM did not find the same minimum for each session.

The pressure of the third training session is illustrated in Fig. 4.
The first iteration (loss = 31146) showed some non-physical os-
cillations, potentially Gibbs oscillations (Gottlieb & Shu, 1997).
The last iteration, now optimized, had much fewer time steps
(loss = 12793) and showed minimal visual evidence of undesir-
able non-physical artifacts.

5 FOURIER NEURAL OPERATOR

One FNO layer update (Li et al., 2020; Kovachki et al., 2021) consists of passing input function v(x)
through both a local linear operator as well as a kernel integral operator; the two are then summed
together and passed through a non-linear activation function.

vt+1(x) := σ(Wvt(x) + F−1(ζ[Rθ · (Fvt(x))])) (6)

F is the fast Fourier transform (FFT). σ is a non-linear activation function—such as ReLU. Rθ is a
transformation which contains the learnable parameters. ζ removes the higher Fourier modes. W is
the local linear operator.

Input (5th snapshot) Ground-truth (6th snapshot) FNO prediction (6th snapshot)

Figure 5: FNO accurately predicting the pressure

We applied the standard 4-layer FNO architec-
ture for our experiments. As a proof of concept,
the neural operator only predicts the sixth snap-
shot given the fifth snapshot, Fig. 5. The FNO
was trained in under 24 hours on a single node
of an NVIDIA V100 GPU for 200 epochs with
488 training samples and 50 test samples.

Not only can the trained FNO be evaluated effi-
ciently, but it is also differentiable with respect
to the control parameters—meaning we can fur-
ther optimize using gradient descent.

By constructing a multilayer perceptron (MLP) to identify patterns indicating non-physical oscilla-
tions in the FNO output—which we know is possible according to the universal approximation theory
(Hornik et al., 1989)—then we can use the FNO to explore the loss landscape.

6 SUMMARY

DE-GM can effectively explore simulation settings while minimizing the number of heavily penalized
samples and conserving computational resources. Our study found that an accurate FNO surrogate
can be constructed from sparse samples in time evolution from the simulation taken with the DE-GM
acquisition function. The approach studied here may also be used to optimize other types of numerical
experiments in which users can flexibly define optimization objectives.

Limitations and Broader Impacts There are no apparent negative societal impacts to this work. A
limitation of our study is that training an MLP to approximate the loss from visual data was untested.

4



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

ACKNOWLEDGMENTS

We would like to thank Dr. Britton Olson for his assistance related to LLNL’s MIRANDA software,
Dr. Andrew Cook & Calvin Young for their guidance with the hydrodynamic simulation, and Dr.
Qingkai Kong for his assistance regarding the Fourier neural operator. This work was performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

REFERENCES

Jaroslaw Arabas and Dariusz Jagodzinski. Toward a matrix-free covariance matrix adaptation
evolution strategy. IEEE transactions on evolutionary computation, 24(1):84–98, 2020. ISSN
1089-778X.

Andrew W Cook. Artificial fluid properties for large-eddy simulation of compressible turbulent
mixing. Physics of fluids, 19(5), 2007.

Andrew W Cook. Enthalpy diffusion in multicomponent flows. Physics of Fluids, 21(5), 2009.

Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: A survey of the
state-of-the-art. IEEE transactions on evolutionary computation, 15(1):4–31, 2010.

David Gottlieb and Chi-Wang Shu. On the gibbs phenomenon and its resolution. SIAM review, 39(4):
644–668, 1997.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix adaptation for multi-objective
optimization. Evolutionary computation, 15(1):1–28, 2007.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

5


	Introduction
	Approach
	Testing Genetic Algorithms
	Results and Comparison

	DE-GM on Simulation Data
	Results

	Fourier Neural Operator
	Summary

