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ABSTRACT

Explainable molecular property prediction is essential for various scientific fields,
such as drug discovery and material science. Despite delivering intrinsic explain-
ability, linear models struggle with capturing complex, non-linear patterns. Large
language models (LLMs), on the other hand, yield accurate predictions through
powerful inference capabilities yet fail to provide chemically meaningful explana-
tions for their predictions. This work proposes a novel framework, called MoleX,
which leverages LLM knowledge to build a simple yet powerful linear model for
accurate molecular property prediction with faithful explanations. The core of
MoleX is to model complicated molecular structure-property relationships using
a simple linear model, augmented by LLM knowledge and a crafted calibration
strategy. Specifically, to extract the maximum amount of task-relevant knowledge
from LLM embeddings, we employ information bottleneck-inspired fine-tuning
and sparsity-inducing dimensionality reduction. These informative embeddings
are then used to fit a linear model for explainable inference. Moreover, we intro-
duce residual calibration to address prediction errors stemming from linear mod-
els’ insufficient expressiveness of complex LLM embeddings, thus recovering the
LLM’s predictive power and boosting overall accuracy. Theoretically, we provide
a mathematical foundation to justify MoleX’s explainability. Extensive experi-
ments demonstrate that MoleX outperforms existing methods in molecular prop-
erty prediction, establishing a new milestone in predictive performance, explain-
ability, and efficiency. In particular, MoleX enables CPU inference and accelerates
large-scale dataset processing, achieving comparable performance 300x faster
with 100,000 fewer parameters than LLMs. Additionally, the calibration improves
model performance by up to 12.7% without compromising explainability. The
source code is available at https://github.com/MoleX2024/MoleX,

1 INTRODUCTION

Molecular property prediction, aiming to analyze the relationship between molecular structures
and properties, is crucial in various scientific domains, such as computational chemistry and bi-
ology (Xia et al.,|2024; Yang et al.,2019). Deep learning advancements have significantly improved
this field, showcasing the success of Al-driven problem-solving in science. Representative deep
models for predicting molecular properties include graph neural networks (GNNs) (Lin et al., 2022
Wu et al., |2023b) and LLMs (Chithrananda et al.| [2020; |[Ahmad et al., [2022). In particular, re-
cently developed LLMs have exhibited remarkable performance by learning chemical semantics
from text-based molecular representations, e.g., Simplified Molecular Input Line Entry Systems
(SMILES) (Weininger, |1988). By capturing the chemical semantics and long-range dependencies
in text-based molecules, LLMs show promising capabilities in providing accurate molecular prop-
erty predictions (Ahmad et al.|, [2022). Nevertheless, the black-box nature of LLMs hinders the
understanding of their decision-making mechanisms. Inevitably, this opacity prevents people from
deriving reliable predictions and insights from these models (Wu et al., 2023a)).

To narrow this gap, numerous explainable GNN and LLM methods have been proposed to iden-
tify molecular substructures that contribute to specific properties (Xiang et al., 2023} [Proietti et al.
2024; [Wang et al.l |2024). Among these, Lamole (Wang et al., 2024) represents the state-of-the-art
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Figure 1: The framework of MoleX is divided into the following stages: (1) given ChemBERTa-
2 as the pre-trained LLM, (2) fine-tune it on Group SELFIES (functional group-based molecular
representation) with an information bottleneck-inspired objective to produce embeddings with max-
imum task-relevant information, (3) extract high-dimensional LLM embeddings and apply sparsity-
inducing dimensionality reduction to exclude redundant information, (4) train a linear model using
the preserved task-relevant information, (5) integrate the linear model with a residual calibrator that
corrects prediction errors for explainable inference (see an algorithmic explanation in algorithm .

LLM-based approach attempting to provide both accurate predictions and chemically meaningful
explanations—chemical concepts-aligned substructures along with their interactions. However, it
still suffers from several flaws: first, the attention weights used for explanations do not correlate di-
rectly with feature importance (Jain and Wallace, 2019)); second, it is model-specific due to varying
implementations and interpretations of attention mechanisms across models (Voita et al.,|2019); and
third, the provided explanations are local, struggling to approximate global model decisions using
established chemical concepts (Liu et al.l 2022)). Therefore, it is imperative to design a globally
explainable method that delivers accurate predictions and identifies contributing substructures with
their interactions for molecular property predictions.

This work proposes a new framework (illustrated in Figure , dubbed MoleX, that leverages a linear
model augmented with LLM knowledge for explaining complex, non-linear molecular structure-
property relationships, motivated by its simplicity and global explainability. To capture these com-
plex relationships, MoleX extracts informative knowledge/embeddings from the LLM, which serve
as inputs to fit a linear model. Moreover, we design information bottleneck-inspired fine-tuning and
sparsity-inducing dimensionality reduction to maximize task-relevant information in LLM embed-
dings. Following prior work (Wang et al.| [2024)), we use Group SELFIES (Cheng et al., 2023)—a
text-based molecular representation that partitions molecules into functional groups—as the LLM’s
input (as shown in appendix [A.T5). Group SELFIES enables LLMs to tokenize molecules into units
of functional groups, aligning with chemical concepts at the substructure level. To quantify func-
tional groups’ contributions, we extract n-grams from Group SELFIES and feed them into the LLM,
generating embeddings with semantically distinct functional groups for nuanced analysis. Notably,
MoleX’s simplicity enables global explanations by approximating model behavior across the entire
input space, rather than focusing on individual samples.

Although augmented with LLM knowledge, linear models still underfit complex non-linear rela-
tionships. To address this, we propose a residual calibration strategy that learns and corrects the
linear model’s residuals, iteratively bridging the gap between high-dimensional LLM embeddings
and linear model’s limited expressiveness by calibrating predictions. By iteratively driving residuals
toward target values, the residual calibrator calibrates errors and restores the original LLM’s pre-
dictive power. The linear model, augmented by LLM knowledge and a residual calibrator, achieves
excellent predictive performance while retaining the explainability of linear models. In molecular
context, the residual calibrator enables MoleX to iteratively correct mispredicted functional groups
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and interactions, aligning predictions with domain expertise and leveraging chemically accurate
substructures as explanations. Our contributions are summarized as

1. We propose MoleX, which extracts LLM knowledge to build a simple yet powerful lin-
ear model that identifies chemically meaningful substructures with their interactions for
explainable molecular property predictions.

2. We develop optimization-based methods to maximize and preserve task-relevant informa-
tion in LLM embeddings and theoretically demonstrate their explainability and validity.

3. We design a residual calibration strategy to correct linear model’s prediction errors, im-
proving both predictive and explanation performance.

4. We introduce n-gram coefficients, with a theoretical justification, to assess individual func-
tional group contributions to molecular property predictions.

Experiments across 7 datasets demonstrate that MoleX achieves state-of-the-art classification and
explanation accuracy while being 300x faster with 100,000 fewer parameters than alternative base-
lines, highlighting its superiority in predictive performance, explainability, and efficiency.

2 RELATED WORK

Explainable Molecular Property Prediction. Given that molecules can be naturally represented
as graphs, a collection of explainable GNNs have been proposed to explain the relationship between
molecular structures and properties (Lin et al., [2021} |Pope et al.l 2019). However, these atom or
bond-level explanations are not chemically meaningful to interpret their sophisticated relationships.
Besides, through learning chemical semantics, the transformer-based LLMs can effectively capture
interactions among substructures (Wang et al.,2024)) and thus demonstrated their potential in under-
standing text-based molecules (Ross et al., |2022; (Chithrananda et al., 2020). However, the opaque
decision-making process of LLMs obscures their operating principles, risking unfaithful predictions
with severe consequences, especially in high-stakes domains like drug discovery (Chen et al.,[2024).

Explainability Methods for LLMs. To obtain trustworthy output, various techniques were in-
troduced to unveil the LLM’s explainability. The gradient-based explanations analyze the feature
importance by computing output partial derivatives with respect to input (Sundararajan et al.l[2017).
These methods, nevertheless, lack robustness in their explanations due to sensitivity to data per-
turbations (Kindermans et al., [2019; |/Adebayo et al., [2018). The attention-based explanations use
attention weights to interpret outputs (Hoover et al.,|2020). Yet, recent studies challenge their reli-
ability as attention weights may not consistently reflect true feature importance (Jain and Wallace|
2019; Serrano and Smith, [2019). The perturbation-based explanations elucidate model behaviors by
observing output changes in response to input alterations (Ribeiro et al.l 2016)). However, these ex-
planations are unstable due to the randomness of the perturbations (Agarwal et al.,2021)). To resolve
these issues, we extract informative embeddings from the LLM to fit a linear model for inference.
This approach leverages both the LLM’s knowledge and the linear model’s explainability, offering
reliable substructure-level explanations.

3 PRELIMINARIES

Let G = {(g?,y®)} be the dataset consisting of molecular graphs ¢(*) and their corresponding
properties 3(*). Our goal is to train a model f to map a molecular representation g to its property ¥,
denoted as f : g — y. We first convert each molecular graph ¢(*) into Group SELFIES, denoted as
z® = {xgi), ceey xsgl) }, where xy) is the j-th functional group, and n(?) is the number of functional
groups in molecule 7. For simplicity, we omit the superscript () in the following descriptions.

MoleX consists of two modules: an explainable model ~ and a residual calibrator r. After h pre-
dicts, its residuals are fed into r, which boosts performance without incurring any explainability
impairment. We denote fr(z) and fr(x) as the features used by h and r, respectively, and L(§, y)
as the training loss. To learn h and r, we freeze the parameters of h and sequentially calibrate the
mispredicted samples with the objective:
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min B,y [£ (b (Fir(@) + 7 (Fr(@) o), (3.1

where D is the training dataset. Adapting the approach by Sebastiani| (2002), we use n-gram coef-
ficients in the linear model to measure the contributions of decoupled n-gram features (functional
groups) to molecular properties. Let the n-gram feature x; takes the coefficient w; in the linear
model; then its contribution score is computed as ¢; = w; - Embedding(x;). This allows us to
quantify the contribution of the j-th functional group to the property y. Our proof of the validity of
using n-gram coefficients as contribution scores is provided in appendix [A.2]

4 QOUR FRAMEWORK: MoleX

MoleX does two things, i.e., (1) maximizing and preserving the task-relevant information in LLM
embeddings via fine-tuning and dimensionality reduction and (2) extracting these embeddings to
build a linear model with residual calibration. We thus divide it into two stages: LLM knowledge
extraction and LLM-augmented linear model fitting. This section details our framework and pro-
vides theoretical foundations for its explainability.

4.1 LLM KNOWLEDGE EXTRACTION WITH IMPROVED INFORMATIVENESS

Fine-tuning. To enhance the pre-trained LLM’s understanding of functional group-based molecules,
we fine-tune it on Group SELFIES data. However, extracting maximally informative embeddings
from the LLM to augment the linear model’s expressiveness is still challenging. We overcome
this by incorporating the Variational Information Bottleneck (VIB) (Alemi et al.l [2022) into the
fine-tuning process, crafting a training loss that encourages the LLM to produce embeddings with
maximum task-relevant information, thereby fully exploiting its internal knowledge. Particularly,
given Group SELFIES inputs z, properties y, and LLM embeddings ¢, we define po(¢) as the prior
distribution over ¢, and gy(y | t) as the variational approximation to the conditional distribution of
the properties given the embeddings ¢. The mutual information between ¢ and y is defined as:

p(yt)]’

I(t;y) = Epry) [k’g M} = Frew) [log p(y)

ply

and the mutual information between ¢ and x is defined as:

p(t| )
p(t)

I(t52) = By [mg } — By [Dict (polt | 2) | (1))

Since the marginal distribution p(t) is intractable, we approximate it with the prior po(t). Under
this approximation, we use Dxr, (po(t | z) H po(t)) as a tractable surrogate for I(t;x), allowing
us to minimize the mutual information between ¢ and x. Inspired by |[Kingma et al.| (2015), we
approximate encoder py(t | ) by a Gaussian distribution. Let f#(z) and f>(z) be neural networks
that output the mean and covariance matrix of latent variable ¢. Then, the encoder is given as:

po(t | @) = N (t| fl(x), £ (2)).

Applying the reparameterization trick, we sample ¢ as:

t = fPx)+ f2(x)/? e, where e ~ N(0,1).

Putting all these together, we design our training loss as:

L(0) = Z (Epgtlzo) (=108 a0 (ys | £)] + B - Dxr (po(t | z:) || po(t))) 4.1

(zi,yi)ESF
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where [ is the tuning parameter between compression and performance, gy is the decoder (pre-
dictive model), and Sy is the dataset used for fine-tuning. In particular, the first component,
Epg(t)2:) [—10g ga (v | )], encourages the embeddings ¢ to be informative about y by maximizing
their predictive power. The second component, 5 - Dk, (po(t | ;) || po(t)), regularizes the embed-
dings to minimize redundant information from z, effectively promoting compression. Empirically,
we use ChemBERTa-2 (Ahmad et al., 2022) as the foundation LLM for fine-tuning.

In essence, this objective ensures the fine-tuned LLM generates embeddings ¢ that capture property-
relevant information from y while compressing redundancy in . Grounded in the information
bottleneck principle, it produces informative embeddings (see our proof in appendix [A.3])

Theorem 4.1. Let L(0) be the loss defined in eq. . Under the assumptions of the reparam-
eterization trick and the use of stochastic gradient descent, the optimization process converges to
a local minimum that yields an informative representation t while retaining only the most relevant
information from the task.

Embedding Extraction. To capture individual functional group contributions and contextual infor-
mation, we extract n-grams from Group SELFIES, with n selected via cross-validation. To ensure
explainability, each n-gram is processed separately by the fine-tuned LLM using a functional group-
level tokenizer, encoding a fixed-size embedding vector. These vectors are then aggregated into a
single fixed-size embedding that encompasses semantics of all individual n-grams. More precisely,
this single embedding contains all chemical semantics at the functional group level and represents
the knowledge LLM learned during its training and fine-tuning.

4.2 DIMENSIONALITY-REDUCED EMBEDDINGS FOR LINEAR MODEL FITTING

Dimensionality Reduction. As the aggregated n-gram embeddings are high-dimensional and noisy,
eliminating the redundancy in them becomes our new problem. Drawing inspiration from |Lin et al.
(2016), we design an explainable functional principal component analysis (EFPCA) that leads to
effective dimensionality reduction. Accordingly, this preserves a compact yet informative feature
set for the linear model. We formulate this dimensionality reduction as an optimization problem
with a sparsity-inducing penalty, defined as:

Definition 4.1 (EFPCA). Let X (t) be a stochastic process defined on a compact interval [a, b

with mean function (i(t) = E[X (t)]. Assume that X (t) has a covariance operator C derived from
the centered process X (t) — u(t). The EFPCA seeks functions & (t) that maximize the variance
explained by the projections of X (t) while promoting sparsity for explainability. Specifically, for
each principal component indexed by k, the EFPCA solves:

max { (¢4, C&) = v (&) |

subject o ||gx |13 = |16k |1* + YIID*&kl* = 1 and (&k, ;) = 0 for all j < k.

Here, ||&)% = f; &x(t)? dt is the squared L* norm, D? denotes the second derivative operator, so
&t
D2¢i(t) = fl;‘l( ) The standard L? inner product is (f, g) = f; f(t)g(t) dt, and the roughness-

penalized inner product is (f,g), = (f,g) + 7(D?f, D%g), where v > 0 balances fit and smooth-
ness. The parameter py, > 0 controls sparsity. The function S(&) = fab 1, (1)0) At measures the
support length of {i(t). The index k specifies the principal components, with k = 1,2, ...

Since j(t) is a linear combination of basis functions, we expand it using basis functions {¢; (¢)};_,
with local support on sub-intervals S; C [a,b] as &(t) = >0,
(ag1y---, ak,,)T are coefficients to be determined. In this finite-dimensional setting, the support
length S(&;;) approximates to S(&y) ~ Zle 1{a,,+0}|S;|, which is proportional to the £y "norm”
of ag, [lakllo = >2%_, 1{a,, 0} assuming equal |.S;|. The £o penalty py[|a o thus promotes spar-
sity by encouraging many coefficients ay; to be zero when py, is large, forcing £ (t) to be zero
over extensive portions of [a, b]. Zero coefficients mean zero contributions from corresponding ba-

sis functions, so the optimization balances maximizing variance while minimizing the number of

a;¢;(t), where ap =
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nonzero coefficients, preserving significant components. As ¢;(t) have local support, nonzero ay;
correspond to specific intervals S, resulting in £ (¢) being nonzero only over certain intervals.
Thus, EFPCA produces sparse, explainable principal components due to their localized structure,
highlighting regions where the data exhibits significant variation.

In summary, EFPCA offers a framework for explainable principal components, enabling effective
dimensionality reduction. By combining a sparsity-inducing penalty with the local support of ba-
sis functions, the resulting principal components are sparse and capable of capturing informative
features. Therefore, MoleX excludes irrelevant functional groups and identifies principal ones from
high-dimensional embeddings. We thus formulate the theorem as (see our proof in appendix [A.4):

Theorem 4.2. The EFPCA produces sparse FPCs &, (t) that are exactly zero in intervals where the
sample curves exhibit minimal variation. Consequently, the FPCs & (t) are statistically explanatory,
facilitating effective dimensionality reduction.

Linear Model Fitting. Applying dimensionality-reduced n-gram embeddings as features, we train
a logistic regression model for our classification tasks, which takes the form:
1
_ T _

h(fH(X)) =0 (W fH(x) + b) - 1+ e_(WTfH(x)“’b) )
where o is the sigmoid function, w € R" is the weight vector, b € R is the bias term, and [ (x)
is the explainable feature representation defined in eq. (3.I). In our setting, logistic regression is
explainable since the log-odds transformation establishes a linear relationship between the features

%) = w ' fy(x) + b. Differentiating with respect
to a feature component [ f(x)]; shows that each coefficient w; quantifies the impact of that feature

on the log-odds, shown as 7l fHa(x)]j log (1ﬁng(1;1(:2<)))> = wj. Moreover, if fz is a linear transfor-

4.2)

and the target variable, shown as log (

mation, i.e., fi(x) = Cx, the chain rule relates changes in the original features to the log-odds,

which can be expressed as % log (%) = > p—, wiC;. Therefore, this linearity allows

straightforward interpretation of each feature’s influence on the predicted probabilities, making lo-
gistic regression highly explainable (Hastie et al.,|2009).

Residual Calibration. The final step of MoleX involves training a residual calibrator . With the
parameters of the explainable model & frozen, the calibrator corrects mispredicted samples from h.
By optimizing the objective in eq. (3.1)), prediction errors are iteratively fixed, progressively aligning
overall predictions with target values. Besides, to maintain explainability, the residual calibrator is
designed as a linear model. Specifically, we define the residual calibrator 7 with weights w, € R%"
corresponding to each residual feature and bias b,.:

r(fr(2)) = w, fr(z) + b

Here, fr(x) represents the residual features obtained from the decomposition of the feature space
R< into orthogonal subspaces such that f(x) = fg(x) + fr(x) with fg(z), fr(z) € R% The
vector fg () contains the explainable features used by h and has non-zero components only in the
index set Iy C {1,2,...,d}, while fr(z) contains the residual features used by r and has non-zero
components only in the index set g C {1,2,...,d}, with [gNIg =0 and IgUIR = {1,2,...,d}.
The orthogonality condition is given by (fy(z), fr(z)) = 0, which holds because the supports of
fu(z) and fr(x) are disjoint. Then, the overall prediction from % and r is given by:

~ T T
9(z)=  w,fu(@)+bn  + w, fr(z)+b
——— N—_———’
Explainable Model Contribution ~ Residual Calibrator Contribution

where wy,, w, € R? are the weight vectors for h and r, respectively, with w;, and w, having non-
zero components only in I and Iy, respectively. The orthogonality and linearity between fg ()
and fr(x) guarantee that the contributions from h and r are additive and independent, making the r
explainable. Moreover, each feature’s impact on the prediction can be directly understood through
the corresponding weights in wy, and w,.. Since fy (z) and fr(z) are orthogonal, the inner products
wy, fr(z) = 0and w,’ fy(z) = 0 vanish. This ensures that h and 7 do not influence each other’s
feature contributions, thus preserving the explainability of both models in the combined prediction.
Empirically, both h and r update their parameters during prediction error calibration to enhance
overall model performance. We formalize the following theorem (see our proof in appendix [A-3)):
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Theorem 4.3. Let X and ) be the input and output spaces, respectively. Let f : X — R% be a
pre-trained feature mapping, and let h : R% — ) be an explainable linear model operating on the
explainable features fy(x). The residual calibrator r : R — ), defined on the residual features
fr(x), captures the variance not explained by h in an explainable manner, thereby preserving the
overall model’s explainability.

Quantifiable Functional Group Contributions. As described in section [3} we measure the func-
tional group x;’s contributions to molecular property y using n-gram coefficients. The molecular
property y distributes its entire semantic information into individual functional groups x ;. Due to the
linearity and additivity between x; and y, the scalar coefficient w; corresponding to x; in the linear
model weighs x;’s contributions to y in terms of chemical semantics. By taking the dot product of
w; and the embedding of x;, we obtain a projection length of the functional group in the direction
of weight vector, thus quantifying the impact of that functional group on the molecular property.
Quantitatively, the larger the absolute value of an n-gram coefficient, the greater the contribution
of the corresponding functional group to property. This metric provides a rigorous interpretation of
feature contributions, ensuring unbiasedness and significance through OLS estimation (see our proof
in appendix [A.2)). Using this method, we identify important functional groups from the LLM’s com-
plex embedding space. Furthermore, by incorporating n-gram coefficients and identified functional
groups into the molecular graph, we can determine whether identified functional groups bond with
each other and infer interactions among them. Based on this, MoleX reveals chemically meaningful
substructures along with their interactions to faithfully explain molecular property predictions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We empirically evaluate MoleX’s performance on six mutagenicity datasets and one hepa-
totoxicity dataset. The mutagenicity datasets include Mutag (Debnath et al., 1991), Mutagen (Morris
et al.,2020), PTC family (i.e., PTC-FM, PTC-FR, PTC-MM, and PTC-MR) (Toivonen et al., 2003)
and the hepatotoxicity dataset includes Liver (Liu et al [2015). To demonstrate that MoleX can
explain molecular properties using chemically meaningful substructures, we introduce the concept
of ground truth: substructures verified by domain experts to have significant impacts on molecular
properties. The ground truth substructures for six mutagenicity datasets are provided by [Lin et al.
(2022); Debnath et al.|(1991)), while those for the hepatotoxicity dataset are provided by |(Cheng et al.
(2023). Further details are available in appendix[A.6]

Evaluation Metrics. In this study, we evaluate the predictive performance, explainability perfor-
mance, and computational efficiency of MoleX. Particularly, we apply a specific metric to assess

each aspect of the model performance. For predictive performance, we define % Zle H(y(i) = g(i))
to compute the classification accuracy. For explainability performance, we follow GNNExplainer
(Ying et al., [2019), treating explanations as binary edge classification and using AUC to measure
their accuracy. Noteworthily, as LLMs’ probabilistic distributions over large vocabularies are in-
compatible with AUC’s binary classification framework, we thus can not offer explanation accuracy
for LLMs. For computational efficiency, we evaluate the execution time for each method.

Baselines. To extensively compare MoleX with different methods, we utilize (1) GNN baselines,
including GCN (Kipf and Welling} |2016), DGCNN (Zhang et al., 2018)), edGNN (Jaume et al.,
2019), GIN (Xu et al., [2018), RW-GNN (Nikolentzos and Vazirgiannis} [2020), DropGNN (Papp
et al., [2021), and IEGN (Maron et al., [2018)); (2) LLM baselines, including Llama 3.1-8b (Dubey
et al.,[2024), GPT-40 (Achiam et al.| 2023)), and ChemBERTa-2 (Ahmad et al.,|2022); (3) explainable
model baselines, including logistic regression, decision tree (Quinlan, |1986), XGBoost (Chen and
Guestrinl 2016), and random forest (Breiman, [2001)).

Implementations. Our model is pre-trained on the full ZINC dataset (Irwin et al.| 2012)) using
ChemBERTa-2, with 15% of tokens in each input randomly masked. We then fine-tune this model
on the Mutag, Mutagen, PTC-FM, PTC-FR, PTC-MM, PTC-MR, and Liver datasets (in Group
SELFIES). To evaluate model performance, we compute the average and standard deviation of each
metric for each method after 20 rounds of execution. Further details are provided in appendix
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Table 1: Classification accuracy over seven datasets (%). The best results are highlighted in bold.

Methods Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

GCN (Kipf and Welling} [2016) 83.4+04 77.2:07 56.5£03  62.7+05 58.3x0.2 52.1x06 40.6£0.3
DGCNN (Zhang et al.}[2018) 86.2+02 73.7+05 56.1x04  64.0+08 61.8+0.7 57.1206 45.4+09
edGNN (Jaume et al.;[2019) 85.4+06 76.5£03 58704  66.3+0.7 65.2+ 0.6 55.1x08 43.7£04
GIN (Xu et al.}[2018) 86.1x03 81.0£0.5 63.4+08  67.8+0.6 66.5+ 0.4 65.5+04 45.2+09
RW-GNN (Nikolentzos and Vazirgiannis||2020) 88.2£0.6 79.6+0.2 60.5+0.7 63.2+0.5 61.1+04 58.2+0.6 42.9+03
DropGNN (Papp et al.|[2021) 90.3+0.5 82.2+03 61.4£08  65.3+0.6 62.9+0.2 63.5£0.7 46.1£0.6
IEGN (Maron et al.| 2018) 83.9£04 79.3x05 61.9£04  60.1x03 62.1£04 60.7£0.5 44.8£0.8
LLAMA3.1-8b (Dubey et al.,|2024) 67.6+34 50.7£3.6  49.6£26  46.2+38 42.0+2.8 47528 42.2+22
GPT-40 (Achiam et al.,[2023) 73.5+£3.6 51.2+05 52.7+23  53.8+29 48.8+24 53.7+1.8 44.5£25
ChemBERTa-2 (Ahmad et al.|[2022) 87.3x27 77.6£22 59.2+19  64.8+22 59.7+2.8 59.8+24 46.3:23
Logistic Regression 58312 55408 484+1.1  483x10 48.7+ 1.1 449+1.0 32.5+05
Decision Tree (Quinlan} |1986) 60.8£1.7 58.6+15 43310  46.1x0.7 47.2+0.7 43.5+05 36908
Random Forest (Breiman|[2001) 64.6£19 60.6+15 46.9+12 51415 51.3+1.8 46.4+1.1  34.8+1.9
XGBoost (Chen and Guestrin, [2016) 669+12 67.6+14 51.4+13 53114 55.8+1.2 493+2.1 38.5+18
w/o Calibration 86.1£22 744+1.0 59.7£2.1 68.9+ 1.9 69.3£2.7 61.2+24  45.0£2.0
w/ Calibration (Ours) 91.6+2.0 83.7x09 64.2+ 1.4 74.4+1.9 76.4+ 1.8 68.4+23 54.9+24

Table 2: Explanation accuracy over seven datasets (%). The best results are highlighted in bold.

Methods Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

GCN (Kipf and Welling| [2016) 81.1£02 76.4£02 65304  67.8£0.7 70.8£0.8 65.1£02  62.8£0.2
DGCNN (Zhang et al.}|2018) 86.3+12 87.1x05  63.0x13  57.0£12 63.0£1.3 62.3£08 67.5£1.6
edGNN (Jaume et al.|[2019) 94.7£09 744+07  65.9:05  64.1x05 66.6+0.7 61.4£07 63.2£03
GIN (Xu et al.}|2018) 92.1x02 75.6+03  67.5:06  69.2+05 68.5+0.8 61.3x05 68.3+0.9
RW-GNN (Nikolentzos and Vazirgiannis}|2020) 89.9+0.6 76.7+0.2 65.8+03  55.5+03 66.9+0.1 59.3x02 64.7£05
DropGNN (Papp et al.|[2021) 83.4+02 77.4+03 68.4+02  64.7+04 63.2£0.2 574+£07 64.5£0.8
IEGN (Maron et al.|[2018) 82.0+02 77.5+02  61.6£06  62.6+09 69.3+£0.7 59.1£0.7  66.6%0.6
Logistic Regression 59.2+04 50.6£09  54.4+03  47.7£0.8 49.9+0.7 44.3+0.7  53.8+0.7
Decision Tree (Quinlan, |1986) 612+02 557+10  56.7+08  46.4+1.1 48.1x09 39.9£08 56.4:£1.0
Random Forest (Breiman), [2001) 66.7+12 57.2+12 59.9+1.7 50.9+1.2 55.0+0.8 46.6£1.1 60.7+1.4
XGBoost (Chen and Guestrin} 2016) 65.2+12 61.3+1.1 58.5+1.8  49.4+18 51.6£1.3 50.2£0.8  69.0+1.4
w/o Calibration 90.0£09 77.7x10  68.0£1.7  66.6% 1.1 62.0£1.5 67.5£1.5 72.0£2.0
w/ Calibration (Ours) 92.6+1.7 89.0+1.2 77.9+1.5 79.3+ 1.4 72.3+1.7 734+13 80.3+x14

5.2 RESULTS

Predictive Performance. Table|l|presents a comparison of predictive performance across different
methods. MoleX outperforms all baselines, showing robustness and generalizability. By combining
LLMs with explainable models, it achieves 16.9% and 23.1% higher average accuracy than LLM
and explainable model baselines, proving the effectiveness of augmenting explainable models with
LLM knowledge. Moreover, by integrating residual calibration, MoleX raises the average classi-
fication accuracy by 7.0% across seven datasets. Notably, the classification accuracy of our base
model, logistic regression, improves by 27.8% after LLM knowledge augmentation and then by an
additional 5.5% after residual calibration on the Mutag dataset. Therefore, by maximizing task-
relevant semantic information in the LLM knowledge and employing a residual calibration strategy,
we enable a simple linear model to achieve predictive performance even superior to that of GNNs
and LLMs in molecular property predictions.

Explainability Performance. Table 2] summarizes the explanation accuracy of different methods.
Be encoding functional group-based molecules, MoleX achieves significantly better explainability
than baselines. Residual calibration further enhances explainability, improving average accuracy
by 8.8%. It achieves this by iteratively correcting mispredicted functional groups and leveraging
chemically accurate ones with their interactions to explain molecular properties. On the Mutag, the
explanation accuracy of logistic regression is boosted by 33.4% via LLM knowledge augmentation
and residual calibration. Interestingly, while others excel on simpler datasets like Mutag but falter on
complex ones, MoleX achieves 13.2% higher classification and 16.9% higher explanation accuracy
on Liver. It highlights MoleX’s capability of representing the complexity of molecular data.
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Figure 2: Explanation visualization of a molecule from the Mutag dataset (left), and
the contribution scores of the identified functional groups offered by MoleX (right).

Figure 2] visualizes the explanation for a randomly selected molecule from the Mutag dataset. The
ground truth, verified by domain experts, shows that mutagenicity arises from an aromatic functional
group (e.g., benzene ring) bonded with another group like nitro or carbonyl. MoleX precisely identi-
fies this ground truth substructure, faithfully explaining molecular structure-property relationships.
In contrast, other methods only identify a collection of individual atoms and bonds, failing to rec-
ognize chemically meaningful substructures as a whole. For instance, PGExplainer identifies single
atoms from multiple benzene rings, whereas atoms alone are insufficient to explain overall molec-
ular properties. Notably, MoleX without calibration identifies two additional elements beyond the
ground truth, thus suggesting the significance of residual calibration to explanation accuracy. More-
over, contribution scores elucidate interactions among functional groups, with the benzene-nitro
substructure on the upper left receiving a high score, showcasing its importance to mutagenicity as
a bonded/interacting entity. More explanation visualizations are in appendix [A.T2]

Computational Efficiency. Figure[3|displays the inference time of different methods. Unlike meth-
ods that rely on iterative optimization in neural networks, MoleX enables considerably faster infer-
ence. Generally, MoleX outperforms both GNNs (at least 15x faster) and LLMs (at least 120x
faster) in speed while achieving higher classification and explanation accuracy. MoleX consistently
costs the least inference times across all datasets, reinforcing its scalability for real-world applica-
tions and large-scale computations on molecular data. In addition to faster inference, MoleX also
significantly reduces GPU memory usage compared to baselines by avoiding numerous iterative pa-
rameter updates and storage in optimization algorithms. Consequently, the inference power of the
linear model is critically augmented by LLM knowledge and residual calibration while preserving
the advantage of explainability and computational efficiency.

5.3 ABLATION STUDIES

In this section, we introduce ablation studies on the number of n in n-gram, principal components
in EFPCA, training iterations of the residual calibrator, and the selection of the base model.

Number of n in N-grams. We empirically compare the choice of n in n-grams. As shown in
fig. [6] the overall model performance improves as n increases from 1 to 3, then declines for n
from 4 to 9. Three of four datasets in our studies indicate the optimal performance at n = 3.
Increasing n captures more contextual semantics, including functional group interactions and raises
the model performance. However, overlarge n values incorporate excessive or irrelevant contextual
information and reduce model utility correspondingly. Further details are in appendix [A.TT]

Dimensionality Reduction via EFPCA. We use EFPCA to reduce the dimensionality of LLM
embeddings, obtaining explainable and compact embeddings. As shown in fig. [5] cross-validation
across four datasets determines the optimal number of principal components. Empirically, compo-
nents beyond 20 contribute minimally to the molecular property prediction. Additional components
yield diminishing returns while increasing model complexity and reducing explainability. Further
details are in appendix[A.9] Moreover, we also investigate the effect of our dimensionality reduction.
As presented in table[5| we compare the model performance without dimensionality reduction. We
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Figure 3: Execution time across different methods over seven datasets. Ours achieves
the best inference efficiency.

find that models using only 20 principal components achieve performance within 5% of models us-
ing all components. This means selected components effectively preserve task-relevant information
while excluding redundancy. Further details are offered in appendix [A.10]

Training Iterations of the Residual Calibrator. We apply the training objective in [3.1] to learn
a residual calibrator that iteratively fix prediction errors. As shown in fig. @ we observe that the
model performance improves substantially with increasing training iterations until reaching a thresh-
old. Beyond this point, the model overfits the data, leading to a performance decline. This finding
suggests the need for an appropriate stopping criterion to balance model performance and prevent
overfitting. Empirically, the optimal number of training iterations is 5. Further details and a theoret-
ical demonstration are offered in appendix [A8]

Selection of the Base Model. Aside from the logistic regression, we examine the effect of LLM
augmentation using other statistical learning models as the base model. The classification and ex-
planation accuracy are reported in table [6] and table [7] respectively. All statistical learning models
augmented with LLM knowledge and residual calibration outperform GNNs and LLMs. Besides,
more complicated models, like XGBoost and random forest, achieve better performance in both clas-
sification and explanation accuracy than simple models like LASSO. Therefore, LLM knowledge is
capable of augmenting a model on top of its original predictive capabilities, evidencing the effec-
tiveness and generalizability of our method. However, model complexity generally trades off with
explainability. Considering this, we select the logistic regression as our base model for its optimal
balance between explainability and performance. Further details are offered in appendix [A.T3]

6 CONCLUSION

This work presents MoleX, a framework leveraging LLM knowledge to train a linear model for ac-
curate molecular property predictions with chemically meaningful explanations. Using information
bottleneck-inspired fine-tuning and sparsity-based dimensionality reduction, MoleX extracts task-
relevant knowledge for explainable inference. Furthermore, a residual calibration module further
boosts performance by correcting prediction errors. During its inference, MoleX precisely reveals
crucial substructures with their interactions as explanations. Notably, MoleX enjoys the advantage
of LLM’s predictive power while preserving the linear model’s intrinsic explainability. Extensive
theoretical and empirical justification demonstrate MoleX’s exceptional predictive performance, ex-
plainability, and efficiency.

10
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A APPENDIX

A.1 ALGORITHMIC EXPLANATIONS FOR MoleX’S WORKFLOW

We offer the pseudo code describing the training and inference of MoleX as shown in algorithm I}

Algorithm 1 Training and Inference Procedure for MoleX

Input: Dataset Sp = {(«;, y;)} where x; are input Group SELFIES, y; are molecular properties.
1: Split dataset: Sp = Sirain U Seval U Stest

2: for each z; in Sp do
3: Extract n-gram features:
2" = N-Gram(z;)

Obtain embeddings from fine-tuned LLM:

»

2™ = Extract (z}™")

5: Dimensionality reduction via EFPCA:
i; = EFPCA (25™)

3

6: Train explainable model h:
7: Train h by minimizing:

h= argm}jn Z L(h(fu(Z:)), vi)

1€ Strain

8: Compute residuals on Seyq:
9: for each i € S,y do
10: Compute residual:

Yri = Yi — h (fu (2:))

11: Train residual calibrator 7:
12: Train r by minimizing:

r= argmrin Z L(r(fr(Z:)s Yri)

1€ Seval

13: Make final predictions on Seg:
14: for each ¢ € Siei dO
15: Compute final prediction:

i = Aggregate (h (fu (%)), 7 (fr (%:)))

A.2 PROOF OF N-GRAM COEFFICIENTS AS VALID CONTRIBUTION SCORES FOR
DECOUPLED N-GRAM FEATURES

In this section, we demonstrate that n-gram coefficients in the linear model can be interpreted as
feature contribution scores based on the statistical properties of the linear model.

Proof. Suppose E € R"*4 is the matrix of n-gram embeddings, where each row e, is the embed-
ding of the i-th n-gram. Let v;; € R? be the embedding of the j-th feature in the i-th n-gram, and
suppose that each n-gram consists of m features (we assume m is a constant across all n-grams for
simplicity). Let ¢;; denote the contribution score of the j-th feature in the ¢-th n-gram.

We formulate the following linearity assumptions to ensure the validity of using n-gram coefficients
as contribution scores:

14
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* Linearity. The relationship between the input embeddings and the output is linear. Namely,

for all i,

R
Yi=¢€;, W +¢€,

where w* € R? is the true coefficient vector, and ¢; is the error term.

* N-gram Embedding Decomposition. Each n-gram embedding e; is the average of its
constituent feature embeddings:

m

1
e, = — E Vii.
m < J
Jj=1

* Ordinary Least Squares (OLS). The linear model is estimated using OLS by minimizing
the residual sum of squares:

n

W = arg min Z(yl —e/w)2

w
=1

* Error Properties.
(a) Zero Mean Errors. The errors ¢; have zero mean given the embeddings:
Ele; | E] = 0.
(b) Homoscedasticity. The errors have constant variance given the embeddings:
Varle; | E] = o2,

where o2 > 0 is a constant.
(¢) No Autocorrelation. The errors are uncorrelated with each other:

Covle;,e; | E] =0 fori # j.

« Full Rank. The matrix ET E is invertible (i.e., E has full column rank).

We define the contribution score of each decoupled n-gram feature as follows:

Definition A.1. The feature contribution score c;; for the j-th feature in the i-th n-gram is defined
as

Cij = V;;VAV7
where W is the estimated coefficient vector from the linear model.

Lemma A.1 (Prediction as Sum of Feature Contributions). Under Assumption the predicted
output for the i-th n-gram is

m
i —eTw— S
yz—eiw—m Cij-
j=1

Proof. Using the embedding decomposition and the definition of the contribution scores, we have

g

Yi = €;

This completes the proof. O
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Theorem A.2 (Contribution Scores Quantify Individual Feature Contributions). Under the Linear-
ity assumption (Assumption , the feature contribution scores c;; quantify the contributions of
individual features to the prediction ;.

Proof. From LemmalA.T] the predicted value §; is given as the average of the feature contribution
scores c;;:

1 m
Yi = E E Cij-
j=1

This equation shows that each feature’s contribution score ¢;; directly influences the prediction ;.
Therefore, ¢;; quantifies the contribution of the j-th feature in the i-th n-gram to the prediction.

This completes the proof. O

Due to the statistical properties of the OLS estimator, we formulate the following theorem:

Theorem A.3 (Properties of the OLS Estimator). Under Assumptions the OLS estimator
W satisfies:

1. Unbiasedness. E[w | E] = w*.

2. Variance-Covariance Matrix. Var[w | E] = c?(ETE)~L.
3. Consistency. As n — 0o, W £> w*.

Proof. We prove each property as follows.

(1) Unbiasedness: The OLS estimator is given by
w=(E'E)"'E'y.
Substituting y = Ew™* + €, we have
w=w"+(E'E)"'E'e.
Taking expectations conditional on E and using Assumption [A.2{a),

Ew |E]=w" + (ETE)"'E"E[e | E] = w".

(2) Variance-Covariance Matrix: The variance conditional on E is
Var[w | E] = Var (E'E) " 'E"¢ | E)
= (E"E)"'E" Var[e | E[E(E"E) !
=o*(E'E),
using Assumptions[A.2]b) and (c).
(3) Consistency: As n — oo, under the Law of Large Numbers,

1 P
“E'E = Q,
n
where Q is positive definite due to Assumption[A.2] Additionally,
1 P
“ETe >0,
n
since € has zero mean and finite variance. Therefore,

w=w"+(E'E)"'E'e Ly wr.

This completes the proof. O
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To validate the convergence of the contribution scores, we introduce the asymptotic normality of the
OLS estimator.

Corollary A.1 (Asymptotic Normality). If the error terms € are independently and identically nor-
mally distributed with mean zero and variance o2, then we have

Via(w —w*) & N (0,6°Q71),

where Q = lim,, _, %ETE.

Proof. Under the given conditions, the Central Limit Theorem applies to E " €. Specifically,
1 BRVAR!
¥ —w*)=(E'E)"'E'e=(-E'E —E'e].
Vn(w —w*) = ( ) € - NG €

Asn — oo, LETE £ Qand ﬁETe 4, N(0,52Q). Therefore,

Va(w —w*) & N (0,6°Q71).
This completes the proof. O

Lemma A.4 (Variance of ¢;;). The variance of the estimated feature contribution score ¢;j = VW
is

Var[é;; | E] = o>v(ETE) 'vy;.

Proof. Since ¢;; is a linear function of W, its variance conditional on E is
Var[é;; | E] = Var (v;;w | E)
= V;l; Var[w | E]v;;
= O'2V;rj(ETE)_1Vij,
using the result from Theorem [A.3(2).
This completes the proof. O

Finally, we demonstrate the statistical significance of the feature contribution scores based on the
n-gram coefficients.

Theorem A.5 (t-Statistic for Feature Contribution Scores). Under the above assumptions, the t-
statistic for testing Hy : c;; = 0 is given by

~ T
Cij ViiW

SE[éij] o /V;;(ETE)_lvjj .

Proof. The standard error of ¢;; is

SE[éw] = \/V&T[éij ‘ E] =0 V;;(ETE)flvij.

Therefore, the t-statistic is

o Cig

Y SEle;;]”
Under the null hypothesis Hy : ¢;; = 0 and assuming normality of the errors, ¢;; follows a t-
distribution with n — d degrees of freedom.
This completes the proof. O
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From Theorem [A.2] we have shown that the feature contribution scores c;; represent the contribu-
tions of individual features to the predictions ;. The statistical properties outlined in Theorem [A.3]
and Lemma guarantee that these estimates are reliable and that their statistical significance can
be assessed.

Therefore, we conclude that each feature’s contribution to the prediction can be quantified by its
corresponding coefficient in the linear model, enabling us to assess the importance of individual
features. By mathematically linking the model coefficients to the feature contributions, we validate
the use of these coefficients as measures of feature importance. We also establish that using n-gram
coefficients derived from feature embeddings and model coefficients as contribution scores for input
features is valid and grounded in the statistical properties of the linear model.

By expressing the predicted output as the sum of individual feature contributions, we effectively
decouple the influence of each feature or functional group on the output or molecular property.
This decoupling allows us to isolate the effect of each n-gram feature or functional group x on the
molecular property y. Consequently, the contribution scores c;; provide a quantitative measure of
how each functional group impacts the molecular property.

This completes the proof.

A.3 PROOF OF THEOREM@](DEMONSTRATION OF VIB-BASED TRAINING OBJECTIVES)

Proof. We demonstrate the Variational Information Bottleneck (VIB) framework, which aims to
learn a compressed representation Z of the input variable X that preserves maximal information
about the target variable Y while being minimally informative about X itself. This is achieved by
optimizing the objective function as follows:

L(0) =1(Z;X) - BI(Z;Y)

where I(+; -) is mutual information, § > 0 is a tuning parameter, and 6 represents the parameters of
the encoder. Our goal is to derive a tractable variational lower bound of this objective function that
can be optimized using stochastic gradient descent.

Definition A.2 (Mutual Information). For random variables X and Z with joint distribution
p(X, Z), the mutual information 1(X; Z) is defined as

X, Z
I(X;Z) =Epx,2) {log p}(?(X)p(Z))]

Alternatively, it can be expressed as

I(X;Z) = Epx) [Dxu(p(Z | X)[p(2))]

Definition A.3 (Kullback-Leibler Divergence). For probability distributions P and Q) over the same
probability space, the KL divergence from Q to P is defined as

DxL(P|Q) = /p(x) log Zgg dz =Ep() {bg pgﬂ

q
Definition A.4 (Conditional Entropy). The conditional entropy H(Y | Z) is defined as

H(Y | Z) = =Ep(z,y) [logp(Y | Z)]

We then formulate the problem. Let D = {(X;,Y;)}Y, be a dataset of input-output pairs sampled
from an unknown distribution p(X,Y’). The encoder py(Z | X) parameterizes the conditional
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distribution of Z given X, and the decoder g4(Y | Z) parameterizes the conditional distribution
of Y given Z. Our objective is to optimize the parameters 6 and ¢ by maximizing the Information
Bottleneck Lagrangian as follows:

Lis(0,¢) =1(Z;Y) — pI(Z; X)

However, direct computation of I(Z;Y") and I(Z; X) is intractable. Therefore, we derive variational
bounds to make the optimization objective tractable. We start by applying the following lemma:

Lemma A.6 (Variational Upper Bound on I(Z; X)). The mutual information I(Z; X ) can be upper-
bounded as

I(Z; X) < Epx) [Dxulpe(Z | X)|Ir(Z))]
where r(Z) is an arbitrary prior distribution over Z.
Proof. We start by expressing I(Z; X) as

I(Z; X) = Epx) [Dxu(pe(Z | X)|p(2))]

Since p(Z) = [ po(Z | X)p(X)dX is intractable, we introduce an arbitrary prior (Z) and con-
sider:

I(Z; X) = Eyx) [Dxi(pe(Z | X)|r(Z)) — Dxr(p(2)|Ir(2))]
Here, we utilize the identity:

Dxw(pe(Z | X)[lp(2)) = Dxr(pe(Z | X)|I7(2)) — Dxr(p(2)||r(2))

since

Epx) [DxuL(po(Z | X)llp(2))] = Eyx) [Dxu(pe(Z | X)[r(Z))] — DxL(p(2)[r(2))

Since Dk, (p(Z)||r(Z)) > 0, it follows that:

I(Z; X) < Epx) [Dxn(pe(Z | X)||r(2))]
This completes the proof. O

Lemma A.7 (Variational Lower Bound on I(Z;Y")). The mutual information I(Z;Y') can be lower-
bounded as

H(Z:Y) 2 Byxyy [Bpy(zi) llog as(Y | 2)]] = H(Y)

Proof. By the definition of mutual information:

I(Z;Y)=H(Y)-HY [Z)=H({Y)+Epzy)[logp(Y | Z)]

Since p(Y | Z) is generally intractable, we introduce a variational approximation g4(Y | Z) and
leverage Jensen’s inequality:

Epzyy logp(Y | 2)] > Epiz,y) [log qe (Y | Z)]

Therefore:
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H(Z:Y) 2 HY) + Epzy) [loggs (Y | Z)]

Rewriting the expectation over p(Z,Y") as an expectation over p(X,Y) and py(Z | X), we have:

I(ZY) > HY) +Eyx,y) [Epyzix) [log qs(Y | 2)]]

Thus:

I(Z;Y) > Epix vy [Epyzix) [logag (Y | Z)]] — H(Y)

This completes the proof. O

Now we can formulate the Variational Information Bottleneck (VIB) objective. By combining Lem-
mas[A.6and[A.7] we obtain a tractable objective function.

Proposition A.8 (Variational Upper Bound on the Information Bottleneck Objective). The Informa-
tion Bottleneck Lagrangian can be upper-bounded by the variational objective function:

L(6,0) =Epx,v) [Epp(z1x) [=logas(Y | Z)] + B Dxr(pe(Z | X)||r(Z))]

Proof. Starting from the original objective:

Lig(0,9) =I1(Z; X) - BI(Z;Y)

Applying the upper bound of I(Z; X) from Lemma and the lower bound of I(Z;Y) from
Lemmal[A.7] we get:

Lig(0,¢) < Epx) [DrrL(pe(Z | X)I1(2))] = B (Epx,vy [Epy(zix) log au(Y | Z)]] — H(Y))
= Epx) [Dxe(po(Z | X)||r(2))] + BH(Y) — BEyx,v) [Epe(zix) log gs (Y | Z)]]

Since H(Y) is constant with respect to # and ¢, we can ignore it for optimization purposes. Thus,
we define the variational objective function as:

L(0,0) = Eyx,yy [Epyz1x) [~ logqe(Y | Z)] + 8 DxL(pe(Z | X)||r(2))]

By minimizing £(6, ¢), we effectively minimize an upper bound on Lig(0, ¢), satisfying our opti-
mization goal.

This completes the proof. O
In our fine-tuning stage, since the expectation over p(X,Y) is approximated by empirical samples
from the dataset D, and the expectations over pg(Z | X)) are approximated by Monte Carlo sampling

using the reparameterization trick. Thus, the loss function is expressed as (this is a generalized form
of our designed loss function shown in (@.1})):

L(8,9) = %Z (—Eps(21x:) log a4 (Vi | 2)] + B Dxw(pe(Z | Xi)|7(2)))

To demonstrate convergence, we formulate the following theorem:

Theorem A.9 (Convergence of Stochastic Gradient Descent). Under standard assumptions of
stochastic optimization (e.g., bounded gradients, appropriate learning rates, smoothness condi-
tions), stochastic gradient descent (SGD) converges to a local minimum of L(0, ¢).
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Proof. While neural network training is non-convex, empirical and theoretical results in optimiza-
tion suggest that SGD can converge to critical points (which may be local minima, maxima, or saddle
points) provided the loss function is smooth (i.e., continuously differentiable) and the gradients are
Lipschitz continuous. Given that ﬁ(@, @) is composed of differentiable functions, and the gradients
with respect to 6 and ¢ can be computed via backpropagation, convergence to a local minimum is
attainable under proper settings of the learning rate and optimization parameters.

This completes the proof. O

We express the following corollary regarding our learned molecular representation after fine-tuning:

Corollary A.2 (Informative and Compressed Molecular Representation). At convergence, the
learned representation Z satisfies:

1(Z;Y) is maximized, and I(Z; X) is minimized (subject to the tuning parameter [3)

Proof. By optimizing the variational objective function ﬁ(&, @), we are effectively minimizing an
upper bound on I(Z; X) (Lemma and maximizing a lower bound on I(Z;Y) (Lemma [A.7).
The trade-off between the two objectives is controlled by .

As (3 increases, more emphasis is placed on minimizing I(Z; X), leading to a more compressed
representation Z that preserves only the most task-relevant information about Y.

This completes the proof. O

Specifically, as the first term in the loss function encourages the embeddings ¢ to be highly predictive
of y, it intrinsically captures the task-relevant information. Meanwhile, the second term penalizes
the complexity of ¢ by forcing it to be close to the prior po(t), thereby excluding unnecessary in-
formation from x. These objectives ensure that the embeddings are both task-relevant and compact,
containing minimal spurious data. Additionally, through the derivation of variational bounds and
the construction of a tractable objective function, we have shown that minimizing £(6, ¢) allows
us to learn a molecular representation Z that captures maximal information about Y while being
minimally informative about X, in accordance with the Information Bottleneck principle. The op-
timization of £ via SGD converges to a local minimum under standard optimization assumptions.
Therefore, we learn an informative embedding after fine-tuning the pre-trained LLM, and we thus
can extract the embedding with improved informativeness.

In conclusion, by framing the fine-tuning within the VIB framework, we derive this approach that
balances the essential information for property prediction y with the elimination of irrelevant details
from the input molecular representation x. This theoretical foundation ensures that our method
effectively focuses on extracting the most relevant features needed for accurate predictions.

This completes the proof. O

A.4 PROOF OF THEOREM [4.2] (EXPLAINABILITY OF EFPCA)

Proof. To demonstrate the explainability of the EFPCA method, we will show how the incorporation
of a sparsity-inducing penalty and the use of basis functions with local support lead to functional
principal components (FPCs) that are both sparse and localized, enhancing interpretability.

First, we formulate the EFPCA as an optimization problem. The EFPCA seeks to find FPCs & ()
that maximize the variance of the projections of the centered stochastic process X (t) — u(t) onto
&1 (t), while promoting sparsity for explainability. Specifically, for each principal component in-
dexed by k, we solve:

Héax{@kaéfw = Pk S(&)} (A.1)
k
subject to the normalization constraint:
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lex)2 = ll€xll? + v | P26 = 1, (A2)

and the orthogonality constraints:

€k, &)y =0 forall j < k. (A.3)
Here C is the empirical covariance operator of the centered process X ( ) u(t), eﬁned by Cf =
I b ¢é(t, s) f(s) ds, where ¢(t, s) is the empirical covariance function. (f, g f t) dt is the

standard L? inner product. ||f||?> = (f, f) is the squared L? norm. D?f = )

ond derivative of f(t). | D2f||? = (D?f, D? f) penalizes the roughness of f (¢ ) ~ > 0 is a smooth-
ing parameter balancing variance explanation and smoothness. (f, g), = (f, g) + v(D%f, D?g) is

denotes the sec-

the roughness-penalized inner product. S(&) f 1(¢, (t)0} dt measures the length of the support
of &k (t), promoting sparsity. px > 0 controls the sparsity of £, (t). k is the index of the principal
component, with k = 1,2, .. ..

Then, we construct an expansion of £ (¢) using basis functions with local support. Let {¢;(¢) 5:1 be
a set of basis functions that have local support on the interval [a, b], such as B-spline basis functions.
Each ¢, (t) is nonzero only over a subinterval S; C [a, b]. We express () as a linear combination
of these basis functions:

P
t) = aro;(t), (A4)

j=1
where a = (ak1,ake, - . - ,akp)T is the coefficient vector for the k-th principal component. We

substitute the expansion (A.4) into the optimization problem (A.T). To express the objective function
and constraints in terms of ay, we compute the variance explained by & (t):

D b
(&, C ) = <Zakz¢zaczakj¢j> =Y akiar; (6i,Ce;).

i=1j=1

We define the matrix Q € RP*P with entries Q;; = <¢i7(f¢j>, so the variance term becomes
a; Qay. The sparsity-inducing term S(;;) approximates to:

p
~ Z l{akﬁéO}‘SjL

j=1
assuming negligible overlap between the supports of different ¢, (¢), where |.S;| is the length of the

support of ¢;(t). If the supports are of equal length or normalized, we can consider S(&x) o< ||ax||o,
where ||ax|lo = Z§:1 144,,+0} counts the number of nonzero coefficients.

Therefore, the objective function becomes:

Objective: a; Qay — prlla|lo. (A5)

We have the roughness-penalized norm is:

1€k112 = (€k, &) + (D&, D?&k) = ay Gag,

where G = G +7Gg, with G having entries (Go);; = (¢:, @;), and Gy having entries (Gz);; =
(D?¢;, D?¢;). Thus, the normalization constraint becomes:
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af Ga = 1. (A.6)

Additionally, the orthogonality constraints with respect to the roughness-penalized inner product are
given as:

€k, &)y = af Ga; =0, forall j < k.

Combining these, the optimization problem becomes:

max {az Qar — prllaxllo} (A7)

subject to:

apGap =1, and a]Ga; =0 forallj< k. (A.8)

The term pg||ak||o in the objective function is an ¢, penalty that promotes sparsity in the coefficient
vector a;. When py is large, the optimization favors solutions with fewer nonzero coefficients,
effectively selecting only the most significant basis functions. We define the index set of nonzero
coefficients:

The principal component & (t) then simplifies to:

&) = ar;d;(t). (A.10)

JELk

Since each ¢;(t) has support only on S, the support of £ (¢) is given by:

supp(&) = | J S, (A.11)

JELy

Thus, &, (t) is exactly zero outside these intervals, and nonzero only over regions where significant
variation is captured by the selected basis functions. The localization of £ (¢) enhances explainabil-
ity in several ways:

* Identification of Significant Intervals. The nonzero coefficients aj; correspond to basis
functions whose supports S; cover intervals where the data exhibits important features.
This directly highlights regions of interest in the functional data.

« Simplification of Interpretation. By reducing the number of nonzero coefficients, & (t)
becomes simpler and easier to interpret, focusing on key patterns in the data.

* Exclusion of Irrelevant Information. The sparsity induced by the ¢, penalty effectively
filters out noise and redundant information, ensuring that only meaningful variations are
considered.

Moreover, the roughness penalty 7||D?&||? ensures that & (t) remains smooth within its support,
avoiding overfitting and maintaining the functional integrity of the principal components. The pa-
rameter y balances the trade-off between fitting the data closely and keeping the principal compo-
nents smooth.

In the context of high-dimensional embeddings from LLMs, the EFPCA method effectively reduces
dimensionality while enhancing explainability. By promoting sparsity, it preserves only the most
informative features associated with the task, filtering out task-irrelevant information present in the
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embeddings. The localized structure of & (t) allows for direct interpretation of the components in
terms of specific intervals or features in the data.

In conclusion, the incorporation of a sparsity-inducing ¢, penalty and the use of basis functions
with local support in the EFPCA framework lead to principal components that are both sparse and
localized. This results in FPCs & (¢) that are nonzero only over intervals where the data contains
significant variation, making them intrinsically explainable. The optimization framework balances
variance maximization, sparsity, and smoothness, yielding components that facilitate effective di-
mensionality reduction while providing clear insights into the underlying functional data. In our
implementation, we maintain statistically significant features in an explainable manner, ensuring
that the dimensionality reduction aids in both performance and interpretability.

This completes the proof. O

A.5 PROOF OF THEOREM (EXPLAINABILITY OF RESIDUAL CALIBRATION)

Proof. We demonstrate that the residual calibrator 7 is explainable when combined with the explain-
able linear model h, under the conditions of linearity and orthogonality.

Let X and ) be the input and output spaces, respectively. Let f : X — R? be a pre-trained feature
mapping that extracts features from the inputs z € X. We decompose the feature vector f(x) into
two components:

f(@) = fu(z) + fr(z),

where f# (), fr(x) € R? are the explainable and residual features, respectively. The vector fz (z)
contains the explainable features used by the explainable model h, and has non-zero components
only in the index set [y C {1,2,...,d}. Similarly, fr(z) contains the residual features used by the
residual calibrator r, and has non-zero components only in the index set Ir C {1,2,...,d}, with
IgNiIg=0and Iy UIr ={1,2,...,d}. To ensure orthogonality between fx (z) and fr(z), we
observe that their supports are disjoint, implying that their inner product is zero:

d

(fr (), fr(x)) = Y _[fu(@)]; - [fr(2)) =0,

i=1

since for each 1, at least one of [fz (z)]; or [fr(z)]; is zero. The explainable model  : R? — Y is
defined as a linear model operating on fg (x):

h(fu(x)) = wy, fu(z) + by,

where w;, € R? is the weight vector with non-zero components only in I, and b;, € R is the bias
term. Similarly, the residual calibrator r : R? — ) is defined as a linear model operating on fg(x):

r(fr(@)) = w, fr(z) + b,

where w, € R? is the weight vector with non-zero components only in Iz, and b, € R is the bias
term. The overall prediction from h and r is given by:

§(x) = h(fu(@)) +r(fr(z) = wy fa(x)+ by +w, fr(z) + b,

We define the combined weight vector w = wy, + w, € R< and combined bias b = by, + b, so the
prediction simplifies to:

g(z) =w' f(z) +b.
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Due to the orthogonality of fg(z) and fr(z), and the disjoint supports of wy, and w,., the cross
terms vanish:

wy fr(x) = Y [wnlilfr@))i =0, w! fu(@) =Y [wlilfu()i =0,

i€ly i€lr

since [wp]; = 0 for ¢ ¢ Iy and [fr(z)]; = 0 for i € Iy, and similarly for w,. and f(x). This
ensures that h and r do not influence each other’s feature contributions, thus preserving the ex-
plainability of both models in the combined prediction. To illustrate how r captures the variance not
explained by h in an explainable manner, consider that the residual calibrator 7 corrects mispredicted
samples from h by fitting to the residuals y — h(fx (z)). By optimizing the objective:

min B y)~p [C (h(fu(x)) +r(fr(@)), v)],

where D is the data distribution and £ is a suitable loss function (e.g., mean squared error), the
residual calibrator r learns to model the remaining variance in y that i does not capture. The
linearity of r ensures that its contribution to the prediction is transparent and explainable. Each
residual feature [fr(z)]; contributes to §(z) proportionally to its corresponding weight [w,];:

8[fR (I)]z
Similarly, for the explainable features, we have:
99(x)
e = W)
oo "

This allows us to directly understand each feature’s impact on the prediction. Furthermore, during
training, both i and r can update their parameters to enhance overall model performance. The
orthogonality condition allows us to optimize w), and w, separately. Considering a convex and
differentiable loss function (7, y), the gradients with respect to wy, and w, are:

vwh£ = IE(I,y) [gl (@(Jj), y) fH(x)] ’ vwrﬁ = IE(Jv,y) [E/ (g(l‘), y) fR(m)] )

where ¢’ denotes the derivative of ¢ with respect to its first argument. Since fr(z) and fr(z) have
disjoint supports, the inner product fz ()" fr(z) = 0, and thus the updates to wy, and w, do not
interfere with each other. We formalize these observations in the following theorem:

Theorem A.10. Let X and Y be the input and output spaces, respectively. Let f : X — R? be a
pre-trained feature mapping, and let h : R® — Y be an explainable linear model operating on the
explainable features fr(x). The residual calibrator v : R — Y, defined on the residual features
fr(x), captures the variance not explained by h in an explainable manner, thereby preserving the
overall model’s explainability.

Proof of Theorem As established, the combined model’s prediction is:

§(z) = h(fr(2)) +r(fr(2)) = wy fu (@) + by + w fr(@) + by

The orthogonality of fy(x) and fr(x), along with the disjoint supports of wy, and w,., ensures
that the cross terms vanish, shown as w;| fr(z) = 0, w,| fg(x) = 0. Therefore, the combined
prediction simplifies to sum of individual contributions from % and r. To understand how 7 captures
the unexplained variance, consider the total variance of y decomposed into the variance explained
by h and the residual variance:

Var(y) = Var (h(fu(z))) + Var (y — h(fu())) + 2 Cov ((fu(x)), y — h(fu(x))) .
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However, since y—h(fg (z)) is uncorrelated with h( fg (z)) under certain conditions, the covariance
term becomes zero, leading to:

Var(y) = Var (h(fi (2))) + Var (y — h(fi ().

The residual calibrator r models the residual y — h(fg(x)), aiming to minimize
Var (y — h(fm(z)) — r(fr(x))). Since r is linear and operates on fr(x), and given that
fu(z) and fr(x) are orthogonal, the variance captured by r(fr(x)) does not overlap with that
captured by h(fm(x)). This additive property ensures that the total variance explained by the
combined model is:

Var (h(fr () +r(fr(z))) = Var (h(fu(2))) + Var (r(fr(2))),

due to the independence arising from orthogonality. The explainability of r is preserved because:

* Transparency: The linearity of r allows us to interpret the contribution of each residual
feature directly through its weight in w,..

* Non-Interference: Orthogonality guarantees that r does not affect the interpretability of
h, as they operate on separate feature subsets.

* Predictive Enhancement: r enhances the predictive performance by capturing additional
patterns in the data that h alone cannot explain.

Moreover, from a functional analysis perspective, the projection operators Py and Pr associated
with fg () and fr(z) satisfy Py + Pg = I, where I, is the identity matrix in RZ. This confirms
that the entire feature space is covered by the combined subspaces, and there is no loss of information
in the decomposition. Furthermore, considering the operator norms of h and r:

1Allop = sup  |A(fu (@), lIrllop = sup |r(fr(2))];
£ (@) lI=1 Ifr(@)lI=1

we can analyze the stability and boundedness of both models. The boundedness of /& and r ensures
that small changes in the input features lead to proportionally small changes in the predictions, which
is desirable for model robustness and interpretability. Thus, r captures the variance not explained
by h in an explainable manner, preserving the overall model’s explainability. This completes the
proof of Theorem [A.T0] The final step of MoleX involves training the residual calibrator r. With
the parameters of the explainable model h frozen (or updated separately due to orthogonality), the
calibrator corrects mispredicted samples from h. By optimizing the objective:

mrin E(z,y)~D (L (h(fu(z)) +r(fr(Z)), )],

prediction errors are iteratively fixed, progressively aligning overall predictions with target values.
The design of 7 as a linear model and its orthogonality with /i ensure that explainability is maintained
while enhancing model performance. Moreover, each feature’s impact on the prediction can be
directly understood through the corresponding weights in wj, and w,.. Since fg(z) and fr(z) are
orthogonal, and their weight vectors wy, and w, have disjoint supports, we have:

oy(x) {[wh]i, ifi € Iy,
olf (@)]i [wr];, ifi € Ip.

This explicit form provides clear interpretability of the model’s predictions, allowing practitioners to

understand and trust the contributions of individual features. Thus, under the conditions of linearity

and orthogonality, the residual calibrator r preserves explainability when combined with h. The

combined model benefits from improved predictive accuracy while retaining transparency, satisfying

both performance and interpretability objectives.

This completes the proof. O
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A.6 DATASET DETAILS

We use six mutagenicity datasets and one hepatotoxicity dataset. The mutagenicity datasets are:
Mutag (Debnath et al.| [1991), Mutagen (Morris et al.|[2020), PTC-FM (Toivonen et al., 2003), PTC-
FR (Toivonen et al.,[2003), PTC-MM (Toivonen et al.,[2003), PTC-MR (Toivonen et al., 2003}, and
the hepatotoxicity dataset is the Liver (Liu et al., 2015). Followed by Morris et al.[(2020), we list
the summary statistics of these datasets as

Table 3: Summary statistics of seven datasets

Dataset Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver
Samples 188 4337 349 351 336 344 587
Classes 2 2 2 2 2 2 3
Ground truth 120 724 58 49 51 61 187

Note: Ground truth refers to the number of annotated samples in each dataset.

The ground truth indicates the true molecular substructures that impact molecular properties. As ver-
ified by |Lin et al.| (2022)); Debnath et al.|(1991)), the ground truth substructures for six mutagenicity
datasets consist of an aromatic group, such as a benzene ring, bonded with another functional group,
such as methoxy, oxhydryl, nitro, or carboxyl groups (note that ground truth exists only for the
mutagenic class). For the Liver dataset, the ground truth annotated by chemists are: fused tricyclic
saturated hydrocarbon moiety, hydrazines, arylacetic acid, sulfonamide moiety, aniline moiety, a
class of proton pump inhibitor drugs, acyclic bivalent sulfur moiety, acyclic di-aryl ketone moiety,
para oxygen and nitrogen di-substituted benzene ring, a relatively small number of com- pounds in
the expanded LiverTox dataset, halogen atom bonded to a sp> carbon, and fused tricyclic structural
moiety. A detailed illustration of Liver’s ground truth are provided by |Liu et al.|(2015).

A.7 IMPLEMENTATION DETAILS

Our model is pre-trained on all data in the ZINC dataset (over 230 million compounds) using
ChemBERTa-2, with 15% (default setting) of tokens in each input randomly masked. We extract
all functional groups in the ZINC dataset as the vocabulary to expand the LLM’s tokenizer so that
the fine-tuned LLLM can better encode functional group-level inputs. We then fine-tune this model
on Mutag, Mutagen, PTC-FM, PTC-FR, PTC-MM, PTC-MR, and Liver datasets. The fine-tuning
is conducted on 1x NVIDIA RTX3090 GPU for about 3 hours. The detailed hyperparameters with
their values are given in table For experiments on model performance, we employ chain-of-
thought prompting for the molecular property prediction tasks on LLMs.

Hyperparameter Value
learning rate le-5
batch size 128
epochs 30
weight decay 0.01
gradient clipping 1.0
warmup proportion 0.06
max sequence length 1024
optimizer AdamW
dropout rate 0.1
gradient accumulation steps 1
mixed precision training True

Table 4: Hyperparameters and their values we used for fine-tuning

We offer the pseudo code to explain our fine-tuning procedure as shown in algorithm 2}
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Algorithm 2 Fine-tuning LLM with Group SELFIES

Input: Fine-tuning dataset Sp = {(z;,y;)} where x; are Group SELFIES, y; are molecular prop-
erties.

Input: Initialize ChemBERTa-2 model parameters 6.

Input: Prior distribution po(t) = N (0, I).

Input: Learning rate 7 and trade-off parameter 3.

1: while not converged do

2 for each mini-batch B C Sg do

3: for each (z;,y;) € Bdo

4: Compute encoder mean and covariance:

wi = fl(xi), Xi= fez(l"i)

5: Sample ¢; ~ N (0, 1)
6: Generate embedding using reparameterization trick:
ti=m+3% 6
7: Compute decoder loss:
Lacc (i) = —log qo(yilt:)
8: Compute KL divergence:
Lx(i) = Dxw (po(tilzi) || po(t))
9: Compute total loss:
»Ci = ﬁdec(i) + B : ‘CKL(Z)
10: Compute batch loss:
1
Ly =z L
Bl i
11: Update model parameters:

9(—9—77-V9£5
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A.8 DOES THE RESIDUAL CALIBRATOR IMPROVES MODEL PERFORMANCE BY TRAINING
WITH MORE ITERATIONS?

We employ the training objective in[3.1]to learn a residual calibrator that iteratively corrects samples
the linear model fails to predict accurately. We empirically study how training iterations influence
the overall model predictions. As shown in fig. 4} we visualize the model performance on the Mutag,
Mutagen, PTC-MR, and Liver datasets under different numbers of training iterations. As training
iterations increase, model performance improves significantly until reaching a threshold. This sug-
gests that more iterations on our designed loss lead to better performance. After the threshold, the
model overfits the data, resulting in performance degradation. Therefore, increasing the number
of training iterations helps improve model performance. Empirically, we found that 5 iterations
yield optimal performance. A theoretical demonstration shows that training with multiple iterations
increases model performance until a threshold, after which it declines, as follows.

===
/

N I T

(c) PTC-MR (d) Liver

Figure 4: The model performance with different training iterations of the residual calibrator

Problem Setup. Given the objective the residual calibrator minimized during training:

it By ) £ (b1 (@) + 7(Fn(a)). )], (A12)

where Syin is the empirical distribution of the training data and £ : R x R — R is a convex,
differentiable loss function, e.g., the squared loss £(7,y) = %(§ — y)®. We demonstrate that:
initially, as the residual calibrator 7 is trained, the model’s performance on unseen data improves, i.e.,
the generalization loss decreases. Beyond a certain threshold, further minimization of the training
loss leads to overfitting, where the generalization loss starts to increase, and prediction accuracy on

unseen data degrades.

Proof. We aim to demonstrate that learning the residual calibrator  with multiple training iterations
initially improves the model accuracy, but after a certain training threshold, continued minimization
of the training loss leads to overfitting, leading to the predictive accuracy on unseen data decline.

Let X and ) be the input and output spaces, respectively. Consider a feature extraction function f :
X — R? that maps inputs to a d-dimensional feature space. We assume that f can be decomposed
into two components:

f(@) = fu(z) + fr(z),

where fg(z) € R represents the explainable features used by the explainable model %, and
fr(x) € R represents the residual features used by the residual calibrator 7, with d = d,. + d,..
We assume that the feature components fg () and fr(x) are orthogonal, which means:

(fa(x), fr(z)) =0 forallz € X.
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The explainable model A : R% — R is defined as a linear model:

h(fu(x)) =Wy fu(z) + b,

where W, € R% and by, € R are the weights and bias of h. The residual calibrator 7 : Rér — Ris
also defined as a linear model:

r(fr(x)) = W, fr(z) + by,

where W,. € R% and b, € R are the weights and bias of r. Due to the orthogonality of fz(x) and
fr(z), the overall prediction model becomes:

§(x) = h(fu (@) + r(fr(2)) = Wy fr(z) + W, fr(z) + by + b,

Our objective is to minimize the expected loss:

‘C(Wha W, by, b?“) = E(m,y)r\/D [e (22(33)7 y)] ’

where £ (§(x),y) is a convex and differentiable loss function, such as the squared loss £(§,y) =
%(g — y)?, and D is the data distribution. We begin by considering the training loss over a finite
training dataset {(z;, y;)} 71"

n

1 N
Lasin(Wn Wi, bn, bp) = — > € (i), 1)

i=1

Initially, when r is untrained or minimally trained, the model may be underfitting, and both the
training 1oss Liin and generalization loss Ly, are high. By updating W,. and b,. via gradient descent
to minimize Ly, we have the updates:

WT(H—l) = Wr(t) - nvwrclrain(Whv Wﬁt% bn, bgt))’

b’g‘""l) = bs‘t) — ’I’]vz;r»ctrain(Whﬂ th)7 bh’ b'g’t))7

where 17 > 0 is the learning rate, and ¢ denotes the iteration number. Since ¢ is convex and differen-
tiable, these updates ensure that the training loss decreases:

E(tJrl) < £(t)

train train

During this phase, r captures genuine patterns in the residual features fr(x) that are not explained
by h. Consequently, the generalization loss decreases as well:

E(t+1) < ‘Cg:zn

gen

where £gen(Wh7 W, bh) bT) = E(m,y)ND [f (:l)(.l?), y)] .

However, as training continues, W, and b, may begin to fit the noise or idiosyncrasies specific to the
training data, especially if the model has a high capacity (i.e., d, is large relative to n). The fitting
capacity of r allows it to minimize L, further, but this comes at the cost of increasing complexity.

To formalize this, we consider the concept of Rademacher complexity 2R,,(#) for the hypothesis
class H associated with r. The Rademacher complexity provides a measure of the model’s ability to
fit random noise in the data. The generalization error can be bounded as:

Lgen(W}za Wr; bh7 br) < Etrain (Wh7 W7‘7 bhv br) + 2%n(H) + 5’
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where ¢ is a constant dependent on the loss function and confidence level. As ||W,.| increases
due to continued training, R, (#) increases, reflecting the higher complexity of r. This leads to
circumstances that:

LD a0 e ) ﬁgg fort > t,

train train gen
where t* is the iteration threshold beyond which overfitting occurs.

For linear models, the Rademacher complexity can be bounded by:

o, () < 2L

NZD
where B = sup,cy || fr(2)|]. As ||[W,]| increases, 9, (H) increases, leading to a wider general-
ization gap. This increase in model complexity without a corresponding increase in true predictive
power causes the model to generalize poorly on unseen data, despite the training loss decreasing.
This phenomenon is a bias-variance trade-off: the variance increases significantly due to overfitting,
outweighing any small reductions in bias achieved by further minimizing the training loss.

In conclusion, while initial training of the residual calibrator r improves model accuracy by reduc-
ing both the training loss and the generalization loss, continued training beyond a certain threshold
leads to overfitting. The residual calibrator begins to model noise in the training data, increasing its
complexity and causing the generalization loss to increase. This results in a decline in prediction
accuracy on unseen data, suggesting the importance of strategies such as early stopping or regular-
ization to prevent overfitting.

This completes the proof. O

A.9 HOW TO CHOOSE THE OPTIMAL NUMBER OF PRINCIPAL COMPONENTS?

To empirically determine the optimal number of principal components for our implementation, we
compare model performance metrics (classification accuracy and explanation accuracy) across four
datasets under different numbers of principal components. As shown in fig. [5] both metrics tend to
converge as the number of principal components exceeds 20. This indicates that when the number of
components surpasses 20, the contribution of additional components to molecular property predic-
tion becomes trivial. In this scenario, adding more components produces diminishing marginal bene-
fits while significantly increasing model complexity, which in turn reduces explainability. Therefore,
we choose the top 20 principal components to explain the variance in molecular properties, seeking
for a balance between performance and explainability.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ the muTas Explanation Accuracy on the MUTAS

(a) Mutag (b) Mutagen

(c) PTC-MR (d) Liver

Figure 5: Optimal number of principal components
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A.10 DoOESs EFPCA EFFECTIVELY WORKS?

In addition to the analysis in appendix [A.9] we demonstrate that the dimensionality reduction by
EFPCA effectively preserves the most explanatory components. We compare the model perfor-
mance across seven datasets with and without dimensionality reduction. As shown in table [5] when
using only 20 PCs, the model performance improves by no more than 5% compared to using all
384 components (i.e., no dimensionality reduction). This indicates that EFPCA effectively pre-
serves the most task-relevant and important information in LLM embeddings while excluding noisy
components. These preserved components achieve comparable performance to the models with all
components while being significantly simpler and more explainable. This showcases the success of
our dimensionality reduction in maintaining model performance while enhancing explainability.

Dataset Classification Accuracy (%) Explanation Accuracy (%)

Mutag 94.9:1.6 96.113.0
Mutagen 86.4+1.4 91.2116
PTC-FR 78.7+12 82.7+1.7
PTC-FM 68.1=+1.5 81.1x20
PTC-MR 70.521.7 76.5:26
PTC-MM 80.9:2.7 75.3%22
Liver 57.3z16 83.8+19

Table 5: Model performance without EFPCA over seven datasets

A.11 DOES THE CHOICE OF n IN N-GRAM MAKES A DIFFERENCE?

We compare the different values of n in n-gram via cross-validation based on our two evaluation
metrics, classification accuracy and explanation accuracy. The results in fig. [6] suggest an overall
trend that as n goes from 1 to 3, both classification accuracy and explanation accuracy improve; as
n goes from 4 to 9, both classification accuracy and explanation accuracy drop. On the four datasets
we used for experiments, three of them show that good model performance can be achieved when
n is taken to be 3. As n grows from small to large, it encourages the model to capture more con-
textual semantics, including interactions between functional groups, which allows for a significant
improvement in prediction. When n exceeds a certain threshold, irrelevant or even toxic information
emerges from the captured contextual information (i.e., irrelevant long-range dependencies), making
the overall model utility gradually decreases.

(c) PTC-MR (d) Liver

Figure 6: The choice of n in n-gram on the Mutag, Mutagen, PTC-MR, and Liver datasets
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A.12 MORE EXPLANATION VISUALIZATIONS

We randomly select one sample from each of the six remaining datasets and provide explanation
visualizations based on MoleX. Specifically, fig.[7] fig.[§] fig. O] fig.[I0] fig. [T} and fig. [I2]display
the samples selected from the Mutagen, PTC-FM, PTC-MM, PTC-FR, PTC-MR, and Liver datasets,
respectively. On the left, we compare molecular substructures identified by different methods, with
ground truth showing expert-validated substructures influencing molecular properties. Red marks
on the molecular graph highlight key components identified by each method. We compare with
three baselines: OrphicX (Lin et al.l 2022), GNNEXxplainer (Ying et al.l |2019), and PGExplainer
(Luo et al.|, 2020), as well as MoleX with and without residual calibration (w/ denotes with and w/o
denotes without). On the right, we show MoleX’s n-gram contribution scores (0—100) for functional
groups, with higher scores indicating greater influence on molecular properties.

Taking fig. [7)as an example, MoleX precisely identifies the ground truth substructures for the sample
from the Mutagen dataset. Specifically, MoleX highlights the benzene ring bonded with an amino
group on the upper left as vital substructures to explain the molecule’s mutagenicity. The contri-
bution scores computed by MoleX indicate that the benzene ring has the highest contribution to
molecular properties, followed by the amino group. This aligns with the ground truth that a benzene
ring bonded with an amino group leads to mutagenicity (Lin et al.l 2022} |Debnath et al.| [1991).
Therefore, MoleX accurately captures the important functional groups (i.e., the benzene ring and
the amino group) and the interaction between them, revealing their precise bonding. As the ground
truth indicates, only the bonded benzene and amino group together impact the molecular properties.
In contrast, other methods provide only atom or bond-level explanations and fail to discover im-
portant functional groups as a whole. They identify only a few atoms and bonds in the benzene or
amino group and fail to capture the interaction between these two functional groups. Consequently,
these atom or bond-level explanations are insufficiently faithful in explaining molecular properties,
as individual atoms or bonds have limited impact on overall molecular properties (Mirghaffari et al.,
2021). The explanation visualizations for samples from other datasets also demonstrate MoleX’s
effectiveness in identifying important substructures and their interactions, aligning with chemical
concepts to explain molecular property predictions.
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Figure 7: Explanation visualization of a molecule from the Mutagen dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).
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Figure 8: Explanation visualization of a molecule from the PTC-FM dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).
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Figure 9: Explanation visualization of a molecule from the PTC-MM dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).
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Figure 10: Explanation visualization of a molecule from the PTC-FR dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).
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Figure 11: Explanation visualization of a molecule from the PTC-MR dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).
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Figure 12: Explanation visualization of a molecule from the Liver dataset (left), and
contribution scores of the identified functional groups offered by MoleX (right).
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A.13 CAN OTHER STATISTICAL LEARNING MODELS BE AUGMENTED WITH THE LLM
KNOWLEDGE?

In addition to the linear model, we augment various statistical learning models with the LLM knowl-
edge and test them on seven datasets. The classification accuracy and explanation accuracy are
shown in table [] and table[7] respectively. Other linear models, such as ridge regression, LASSO,
and linear discriminant analysis, achieve comparable performance to MoleX and showcase the gen-
eralizability of LLM knowledge augmentation on linear models. Additionally, the polynomial re-
gression, as a more complicated linear model, achieves better performance compared to the simpler
ones shown above. For more complex models, such as tree-based and ensemble learning models, the
performance is even better, achieving incredible results across all seven datasets. These empirical
studies suggest that augmenting statistical machine learning models with LLM knowledge signif-
icantly improves performance. Moreover, compared to simple models, the models exhibit more
powerful data fitting capabilities become more predictive after the LLM augmentation. However,
model complexity generally trades off with explainability. Considering this, we select the logistic
regression as our base model due to its optimal balance between explainability and performance.

Table 6: Classification Accuracy across different machine learning models over seven datasets (%)

Method Mutag Mutagen PTC-FR PTC-FM PTC-MR PTC-MM Liver

Ridge Regression 90.7+12 84.1x1.3 72.4+20 65220 69.8£14  77.5x15 58.1x16
LASSO 91.9+17 84.4207 75.1+21 65.8+1.7 65.2+09 74.2+12 58.7:1.8
Linear Discriminant Analysis 89.9+1.9 83.6+12 75219 65.7x1.9 69.3:18 76.8+20 57.7x13
Polynomial Regression 93.9+24 87.2+20 77.1x21 673x1.8 70.2+£23  79.5£1.8 60.2+24
Support Vector Machine 93.9+1.6 86.6x1.5 73.4x19 693226 69.5:20  78.6x1.3 61.5229
Decision Tree 89.7+2.1 79.5¢12 T72.4+18 64321 68.5:15 T4.4x14 59522
Random Forest 92.8+27 84.4+17 77.3x21 68.6x25 T1.0£22  77.2+21 62.7£27
Gradient Boosting Machine ~ 94.8x2.1 85.3x19 78.9:1.9 69.4+28 72.2+2.1  79.2+19 63.9x26
XGBoost 94.6+23 85.0x20 78.7+22 70.1x23 73.4+29  78.1x21 63.0+2.3
MoleX (Ours) 91.6+2.0 83.7x09 74.4+19 64.2+14 684+23 76418 54.9+24

Table 7: Explanation Accuracy across different machine learning models over seven datasets (%)

Method Mutag Mutagen PTC-FR PTC-FM PTC-MR PTC-MM Liver

Ridge Regression 92.8+1.1 89.5+#13 79.0x12  78.1x1.6 T72.5£25  69.7x23 82.4x17
LASSO 92.3x1.5 89.6:09 76.9+18 81.2+¢19 704223  70.7x2.1 81.3x1.8
Linear Discriminant Analysis 92.9:1.8 88.5:1.9 80.7+23 80.1x22 71.7#28 71.3z16 87.8x16
Polynomial Regression 943221 91.9+16 80.1x1.9 82.9+19 79.3+23  75.4x17 81.0+22
Support Vector Machine 92.0:1.7 92.0s16 84.7x22 86.3x20 80.1x23  76.0x23 81.9:2.1
Decision Tree 87.6x19 89.1x1.5 78.6£20 80.7¢1.6 73.1x21  T74.2+18 76.0x1.8
Random Forest 93.2+1.9 90.5+1.8 82.1x2.1 84.2+22 74.2+20  T4.5+21 81.2+20
Gradient Boosting Machine ~ 92.7x22 92.4x15 82.9+23 852+24 739+29 77.7#26 84.5+24
XGBoost 95.6+1.8 90.7x1.7 84.0+22 82.0£23 74.4+27 T7.4x22 86.2+25
MoleX (Ours) 92.6+1.7 89.0:09 79.3+x26 779+26 73.4+28 72.3x30 80.3%25

A.14 CLASSIFICATION ANALYSIS VIA CONFUSION MATRIX

As shown in fig.[T3] we visualize the classification result via confusion matrix at a random round on
the Mutag and PTC-MR datasets. For Mutag, we achieve high precision in predicting the positive
class due to fewer false positives and high recall for the positive class, reflecting the model’s effec-
tiveness in identifying positive instances. Furthermore, the model shows a good balance between
precision and recall, with a low number of false positives and false negatives. For PTC-MR, the
model achieves lower precision compared to the Mutag due to a higher number of false positives.
The confusion matrix also suggests that the model struggles with false negatives and false posi-
tives, indicating areas for improvement. This analysis highlights the strengths and weaknesses of
the model, providing insight for further model refinement.
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Figure 13: The confusion matrix of classification results on the Mutag and PTC-MR datasets

Table 8: Classification accuracy over three datasets (%). The best results are highlighted in bold.

Methods BBBP ClinTox HIV

GCN (Kipf and Welling}||2016) 78.5+08  78.2+1.0  72.1x0.8
DGCNN (Zhang et al.}[2018) 80.0£0.9  79.0+1.1  73.2+1.4
edGNN (Jaume et al.}|2019) 79.009  77.5+1.0  69.5£0.7
GIN (Xu et al.; 2018) 82.020.7  80.9+0.9  74.0£1.3
RW-GNN (Nikolentzos and Vazirgiannis|[2020) 81.0£1.0 ~ 78.5x1.0  75.5+0.4
DropGNN (Papp et al.}[2021) 83.0£09  81.0+0.8  64.520.6
IEGN (Maron et al.}|2018) 85.5+1.0  80.1x05  76.0x0.9
LLAMA3.1-8b (Dubey et al.}[2024) 69.0+2.5  52.0+2.7  56.0£1.5
GPT-40 (Achiam et al.;[2023) 74.5+23  56.4+25  64.5+1.8
ChemBERTa-2 (Ahmad et al.,[2022) 78.01.5 71.5+1.4  73.0%0.6
Logistic Regression 66.5£08  60.2+0.6  60.120.7
Decision Tree (Quinlan}|1986) 70.3+0.8 62.8+0.6 66.2+0.8
Random Forest (Breiman, [2001) 73.5£09  68.5+0.7  69.8x1.9
XGBoost (Chen and Guestrin}, 2016) 742208  67.8+0.8  70.2x1.2
w/o Calibration 80.6£1.3  85.9+0.7  75.6x1.3
w/ Calibration (Ours) 93.1+0.6 94.1x0.8 81.3x1.4

A.15 AN ILLUSTRATION OF GROUP SELFIES

As illustrated in fig.[T4] the 4-Nitroanisole (C;H;7NOj3) can be represented by Group SELFIES with
three functional groups separated by square brackets: a benzene ring, a nitro group, and a methoxy
group (different functional groups are displayed in different colors).

\ /

o N*

\

o-

SMILES: C1=CC(=C(C=C1N)C(=0)0)0

Group SELFIES: [Ring2]

[pop][Branch] [pop]

Figure 14: Molecular representation of 4-Nitroanisole (C;H7NO3)

A.16 MORE EMPIRICAL EVALUATION ON THE ROBUSTNESS OF MoleX

As the molecular data is diverse, complex, and intrinsically noisy, we offer experiments on another
three datasets, covering more extensive domains/tasks in molecular property prediction to demon-
strate MoleX’s robustness. MoleX performs consistently excellent across all datasets and baselines,
showcasing its effective generalizability. The results of classification and explanation accuracy are

shown in table[8]and table[9] respectively.
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Table 9: Explanation accuracy over three datasets (%). The best results are highlighted in bold.

Methods BBBP ClinTox HIV

GCN (Kipf and Welling}|2016) 751204  74.620.6  67.6+0.6
DGCNN (Zhang et al.;|2018) 77.6+1.1 79.2+0.5 73.8+1.1
edGNN (Jaume et al.,|2019) 789202  74.8202  71.6£0.6
GIN (Xu et al.; 2018) 80.4+0.7  77.1x0.8  70.3x0.8
RW-GNN (Nikolentzos and Vazirgiannis}|2020) 79.5+0.4 69.4+0.6 69.5+0.7
DropGNN (Papp et al.,[2021) 72.6£06  76.7x02  74.4203
IEGN (Maron et al.||2018) 80.8£0.7  79.1204  69.5x1.2
Logistic Regression 67.9+03  61.9+02  61.8+0.6
Decision Tree (Quinlan}|1986) 68.4+15  66.820.8  64.0£1.2
Random Forest (Breiman, |2001) 73.3x1.1 68317  65.7£13
XGBoost (Chen and Guestrin, [2016) 73.5+1.4  65.5+1.6  67.8+0.9
w/o Calibration 81.1£1.8  78.6x1.5  71.2+1.1
w/ Calibration (Ours) 90.8+1.6 92.8+1.9  82.4+1.2

A.17 BROADER IMPACT

This study on explainable molecular property prediction using an LLM-augmented linear model of-
fers significant real-world applications. The efficiency of linear models enables fast inference on
large-scale molecular data, potentially accelerating drug discovery and materials design. Enhanced
by LLM-derived features, our method combines predictive accuracy, cost-effectiveness, and com-
putational efficiency, addressing critical needs in fields like healthcare and materials science. Its
high explanation accuracy provides faithful insights into structure-property relationships, fostering
adoption in high-stakes domains and supporting scientific discovery. Additionally, this balance of
accuracy, explainability, and efficiency serves as a template for developing trustworthy Al in other
fields, with potential impacts on personalized medicine and sustainable chemistry. However, respon-
sible implementation is crucial to mitigate risks, such as over-reliance on predictions or misuse in
harmful molecule design, emphasizing the need for expert validation and research into limitations.

A.18 LIMITATIONS AND FUTURE WORKS

The proposed explainable molecular property prediction method has some limitations and needs
further studies.

* Generalizability: Enhancing the generalizability of explainable models to deal with dif-
ferent molecular datasets across various chemical domains while preserving explainability
to structure-property relationships remains a persistent challenge.

* Impact of LLM choices: Though our empirical studies discuss the model performance of
Llama3.1 and GPT-40 on molecular property prediction, LLM quality is still a topic that
deserves to be explored in-depth. Future studies may discuss how LLM choices impact
the augmented linear model, e.g., model performance change using weak LLMs or LLMs
without fine-tuning.

* Trade-off between complexity and performance: In pursuit of explainability, we employ
a linear model, which inherently risks underfitting when faced with complex data patterns.
Our preliminary experiments comparing MoleX with more sophisticated statistical learning
models show marginally better performance from these complex models. Future research
could explore the trade-off between model complexity and performance in the context of
LLM knowledge augmentation and investigate optimal balances between explainability and
performance.
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