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ABSTRACT

It is well noted that coordinate based MLPs benefit – in terms of preserving high-
frequency information – through the encoding of coordinate positions as an array
of Fourier features. Hitherto, the rationale for the effectiveness of these positional
encodings has been mainly studied through a Fourier lens. In this paper, we strive
to broaden this understanding by showing that alternative non-Fourier embedding
functions can indeed be used for positional encoding. Moreover, we show that their
performance is entirely determined by a trade-off between the stable rank of the
embedded matrix and the distance preservation between embedded coordinates.
We further establish that the now ubiquitous Fourier feature mapping of position
is a special case that fulfills these conditions. Consequently, we present a more
general theory to analyze positional encoding in terms of shifted basis functions.
To this end, we develop the necessary theoretical formulae and empirically verify
that our theoretical claims hold in practice.

1 INTRODUCTION

Positional encoding is an umbrella term used for representing the coordinates of a structured object as
a finite-dimensional embedding. Such embeddings are fast becoming critical instruments in modern
language models [1; 2; 3; 4; 5; 6] and vision tasks that involve encoding a signal (e.g. 2D image,
3D object, etc.) as weights of a neural network [7; 8; 9; 10; 11; 12; 13; 14]. Of specific interest
in this paper is the use of positional encodings when being used to enhance the performance of
coordinate-MLPs. Coordinate-MLPs are fully connected networks, trained to learn the structure of
an object as a continuous function, with coordinates as inputs. However, the major drawback of
training coordinate-MLPs with raw input coordinates is their sub-optimal performance in learning
high-frequency content [15].

As a remedy, recent studies empirically confirmed that projecting the coordinates to a higher di-
mensional space using sine and cosine functions of different frequencies (i.e., Fourier frequency
mapping) allows coordinate-MLPs to learn high-frequency information more effectively [7; 8]. This
observation was recently characterized theoretically by Tancik et al. [16], showing that the above
projection permits tuning the spectrum of the neural tangent kernel (NTK) of the corresponding MLP,
thereby enabling the network to learn high-frequency information. Despite impressive empirical
results, encoding position through Fourier frequency mapping entails some unenviable attributes.
First, prior research substantiates the belief that the performance of the Fourier feature mapping is
sensitive to the choice of frequencies. Leading methods for frequency selection, however, employ a
stochastic strategy (i.e., random sampling) which can become volatile as one attempts to keep to a
minimum the number of sampled frequencies. Second, viewing positional encoding solely through a
Fourier lens obfuscates some of the fundamental principles behind its effectiveness. These concerns
have heightened the need for an extended analysis of positional encoding.

This paper aims to overcome the aforesaid limitations by developing an alternative and more com-
prehensive understanding of positional encoding. The foremost benefit of our work is allowing
non-Fourier embedding functions to be used in positional encoding. Specifically, we show that
positional encoding can be accomplished via systematic sampling of shifted continuous basis func-
tions, where the shifts are determined by the coordinate positions. In comparison to the ambiguous
frequency sampling in Fourier feature mapping, we derive a more interpretable relationship between
the sampling density and the behavior of the embedding scheme. In particular, we discover that the
effectiveness of the proposed embedding scheme primarily relies on two factors: (i) the approxi-
mate matrix rank of the embedded representation across positions, and (ii) the distance preservation
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between the embedded coordinates. Distance preservation measures the extent to which the inner
product between the shifted functions correlates with the Euclidean distance between the correspond-
ing coordinates. Intuitively, a higher approximate matrix rank causes better memorization of the
training data, while the distance preservation correlates with generalization. Remarkably, we establish
that any given continuous function can be used for positional encoding – as performance is simply
determined by the trade-off between the aforementioned two factors. Further, we assert that the
effectiveness and shortcomings of Fourier feature mapping can also be analyzed in the context of this
newly developed framework. In summary, the contribution of this paper is three-fold:

• We expand the current understanding of positional encoding and show that it can be formu-
lated as a systematic sampling scheme of shifted continuous basis functions. Compared to
the popular Fourier frequency mapping, our formulation is more interpretative in nature and
less restrictive.

• We develop theoretical formulae to show that the performance of the encoding is governed
by the approximate rank of the embedding matrix (sampled at different positions) and the
distance preservation between the embedded coordinates. We further solidify this new
insight using empirical evaluations.

• As a practical example, we employ a Gaussian signal as the embedding function and show
that it can deliver on-par performance with the Fourier frequency mapping. Most importantly,
we demonstrate that the Gaussian embedding is more efficient in terms of the embedding
dimension while being less volatile. Promising empirical reconstuction performance is
obtained on both 1D and 2D signals using our proposed embedding function in conjunction
with coordinate MLPs.

(a) (b)

(c) (d)

Figure 1: Overview of the proposed positional encoding scheme. Positions are encoded as equidistant
samples from shifted basis functions (embedders). The shifts are determined by the corresponding
coordinate positions we are wanting to embed. In (a) and (b), x1 and x2 are encoded as samples from
shifted Gaussians with a higher and a lower standard deviation, respectively. Note that we need a
higher number of samples for (b) due to higher bandwidth (see Sec. 2). In (c) and (d), x1 and x2 are
encoded with sinusoidal signals with a different frequencies. Note that although different sampling
rates are employed for (c) and (d), the same two values are repeated across the samples. Hence,
sampling more than twice is redundant.

2 POSITIONAL EMBEDDING: A THEORETICAL WALK-THROUGH

This section contains an exposition of the machinery and fundamentals necessary to understand the
proposed framework. We begin our analysis by considering a simple linear learner. The rationale
for choosing a linear leaner is two-fold: a) rigorous characterization of a linear learner is convenient
compared to a non-linear model. Therefore, we study a linear learner and empirically show that the
gathered insights are extendable to the non-linear models. b) The last layer of a coordinate-MLP
is typically linear. Hence, the output of the penultimate layer can be considered as a positional
embedding of a linear model. Thus, we intend to study the preferred characteristics of the penultimate
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layer and then inject those properties into the positional embedding layer with the hope of achieving
better results.

First we show that the capacity to memorize a given set of training data entirely depends on the
(approximate) rank of the embedding matrix. Next, we establish that for generalization, the rank
should be upper-bounded against the number of coordinates, i.e., the embedding function should
be bandlimited 1. We incur a crucial insight here that positional encoding essentially portrays
a trade-off between memorization and generalization. Afterward, we discuss the importance of
distance preservation between embedded coordinates and its relationship to bandlimited embedding
functions. Finally, we consider several possible embedder functions and analyze their behavior using
the developed tools.

2.1 RANK OF THE EMBEDDED REPRESENTATION

Let x = [x1, x2, · · · , xN ]T be a vector of 1-D coordinates where xi ∈ [0, C] and y =
[y1, y2, · · · , yn]T be the corresponding outputs of a function f : R → R. Our goal is to find a
d dimensional embedding Ψ : R→ Rd for these positions, so that a linear model can be employed to
learn the mapping f as,

wTΨ(x) + b ≈ f(·), (1)

where w ∈ Rd and b ∈ R, are the learnable weights and the bias, respectively. Then, it is straightfor-
ward to show that for the perfect reconstruction of any given y using Eq. 1, the following condition
should be satisfied:

Rank{[Ψ(x1) Ψ(x2) . . . Ψ(xN )]} = N. (2)

Thus, we establish the following Proposition:
Proposition 1. Consider a set of coordinates x = [x1, x2, · · · , xN ]T , corresponding outputs y =
[y1, y2, · · · , yN ]T , and a d dimensional embedding Ψ : R → Rd. Under perfect convergence, the
sufficient condition for a linear model for perfectly memorizing the mapping between x and y is for
X = [Ψ(x1),Ψ(x2), . . . ,Ψ(xN )]T to have full rank.

2.2 BANDLIMITED EMBEDDERS

One possible way of enforcing the condition in Eq. 2 is to define an embedding scheme where the
rank of the embedded matrix strictly monotonically increases with N (for a sufficiently large d). As
depicted in Sec. 2.1, this would ensure that the model can memorize the training data and therefore
perfectly reconstruct y. However, memorization alone does not yield a good model. On the contrary,
we also need our model to be generalizable to unseen coordinates.

To this end, let us define elements of Ψ(·) as sampled values from a function ψ : R2 → R such that
for a given x,

Ψ(x) = [ψ(0, x), ψ(s, x), . . . , ψ((d− 1)s, x)]T , (3)

where s = Cd−1 is the sampling interval. We shall refer to ψ(·) as the embedder. As discussed
above, for better generalization, we need,

ψ(t, x) ≈
B∑
b=0

αbβb(t) (4)

where αb and βb(t) are weights and shifted basis functions, respectively, that can approximately
estimate ψ(t, x) at any arbitrary position x. We refer to such embedders as bandlimited embedders
with a bandwidth B. This is equivalent to saying that the embedding matrix has a bounded rank, i.e.,
the rank cannot increase arbitrarily with N . The intuition here is that if B is too small, the model
will demonstrate poor memorization and overly smooth generalization. On the other hand, if B is
extremely high, the model is capable of perfect memorization but poor generalization. Therefore we
conclude that for ideal performance, the embedder should be chosen carefully, such that it is both
bandlimited and has a sufficient rank. As we shall discuss the bandwidth B can also act as a guide
for the minimal value of d.

1We assume that in a regression task, the smoothness of a model is implicitly related to generalization.
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2.3 DISTANCE PRESERVATION

Intuitively, the embedded coordinates should preserve the distance between the original coordinates,
irrespective of the absolute position. The embedded distance (or similarity) D(·, ·) between two
coordinates (x1, x2) can be measured via the inner product D(x1, x2) =

∫ 1

0
ψ(t, x1)ψ(t, x2)dt. For

ideal distance preservation we need,

‖x1 − x2‖ ∝ D(x1, x2). (5)

Interestingly, this property is also implicitly related to the limited bandwidth requirement. Note that
in practice, we employ sampled embedders to construct Ψ as shown in Eq. 3. Hence, the dot product
between the sampled ψ(t, x1) and ψ(t, x2) should be able to approximate D as,

D(x1, x2) =

∫ C

0

ψ(t, x1)ψ(t, x2)dt ≈
d−1∑
d=0

ψ(s · d, x1)ψ(s · d, x2), (6)

which is possible if, and only if, ψ is bandlimited. In that case, d = B is sufficient where B is the
bandwidth of ψ (by Nyquist sampling theory). In practical implementations, we choose C = 1.
Remark 1. The embedder should be bandlimited for better generalization (equivalently, the rank
of the embedded matrix should be upper-bounded). Further, the ideal embedder should essentially
face a trade-off between memorization and generalization. Here, memorization correlates with the
rank of the embedded matrix, while generalization relates to the distance preservation between the
embedded coordinates.

3 ANALYSIS OF POSSIBLE EMBEDDERS

Although our derivations in Sec. 2 are generic, it is imperative to carefully choose a specific form of
ψ(·, ·), such that properties of candidate embedders can be conveniently analyzed. Hence, we define
embedders in terms of shifted basis functions, i.e., ψ(t, x) = ψ(t− x). Such a definition permits us
to examine embedders in a unified manner, as we shall see below.

Moreover, the rank of a matrix can be extremely noisy in practice. Typically, we need to heuristically
set an appropriate threshold to the singular values, leading to unstable calculations. Therefore, we use
the stable rank [17] instead of the rank in all our experiments. In particular, the stable rank is a more
stable surrogate for the rank, and is defined as ‖A‖

2
F

‖A‖22
, where A is the matrix, ‖ · ‖F is the Frobenius

norm, and ‖ · ‖2 is the matrix norm. From here onwards, we will use the terms rank, approximate
rank, and stable rank interchangeably.

Impulse embedder. One simple way to satisfy the condition 2 for an arbitrary large N is to define
ψ(t, x) = δ(t − x), where δ(·) is the impulse function. Note that using an impulse embedder
essentially converts the embedding matrix to a set of one-hot encodings. With the impulse embedder,
we can perfectly memorize a given set of data points, as then the embedded matrix has full rank. The
obvious drawback, however, is that the bandwidth of the impulse embedder is infinite, i.e., assuming
a continuous domain, d needs to reach infinity to learn outputs for all possible positions. Hence, the
distance preservation is hampered, and consequently, the learned model lacks generalization.

Sine embedder. Consider ψ(t, x) = sin(f(t− x)) for an arbitrary fixed f . Since sin(f(t− x)) =
sin(ft)cos(fx)− cos(ft)sin(fx), elements of any row of the embedding matrix can be written as
a linear combination of the corresponding sin(ft) and cos(ft). Thus, the rank of the embedding
matrix is upper-bounded at 2. Consequently, the expressiveness of the encoding is limited, leading to
poor memorization and overly smooth generalization (interpolation) at unseen coordinates.

Square embedder. Let us denote a square wave with unit amplitude and period 2π as sgn(sin(t)),
where sgn is the sign function. Then, define ψ(t, x) = sgn(sin(t − x)). It is easy to deduce that
the embedded distance D(x1, x2) = 1 − 2‖x1 − x2‖,∀|x| ≤ 1 which implies perfect distance
preservation. The drawback, however, is that the square wave is not bandlimited. Thus, it cannot
approximate the inner product

∫
ψ(t, x)ψ(t, x′) using a finite set of samples as in Eq. 6. However, an

interesting attribute of the square wave is that it can be decomposed into a series of sine waves with
odd-integer harmonic frequencies as sgn(sin(t)) = 4

π

[
sin(t)+ 1

3 sin(3t)+ 1
5 sin(5t)+ 1

7 sin(7t)+. . .
]
.
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In other words, its highest energy (from a signal processing perspective) is contained in a sinusoidal
with the same frequency. Thus, the square wave can be almost approximated by a sinusoidal signal.
In fact, the square wave and the sinusoidal demonstrates similar properties in terms of the stable rank
and the distance preservation (see Fig. 3).
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Figure 2: Stable rank of the Gaussian embedder
against the standard deviation for different number
of samples. The dash line is the theoretical stable
rank 1

2
√
πσ

Gaussian embedder. We define the Gaussian
embedder as ψ(t, x) = exp(−‖t−x‖

2

2σ2 ) where σ
is the standard deviation. The Gaussian embed-
der is also approximately bandlimited like the
square embedder. However, the Gaussian em-
bedder has a higher upper bound for the stable
rank that can be controlled by σ. More precisely,
when the embedding dimension is large enough,
the stable rank of the Gaussian embedding ma-
trix and the embedded distance between coor-
dinates can be obtained analytically as shown
below.
Proposition 2. Let the Gaussian embedder be
denoted as ψ(t, x) = exp(−‖t−x‖

2

2σ2 ). With a
sufficient embedding dimension, the stable rank of the embedding matrix obtained using the Gaussian
embedder is min(N, 1

2
√
πσ

) where N is the number of embedded coordinates. Under the same condi-

tions, the embedded distance between two coordinates x1 and x2 is D(x1, x2) = exp(−‖x1−x2‖2
4σ2 ).

(see Fig. 2 for an experimental illustration). It is clear from Proposition 2 that as the number of
sampled positions goes up, the stable rank of the Gaussian embedding matrix will linearly increase
until it reaches its upper bound. Finally, Fig. 3 empirically validates the theoretically discussed
properties of different embedders.

3.1 CONNECTION TO THE RANDOM FOURIER FEATURES

The prominent way of employing Fourier frequency mapping is via Random Fourier Features (RFF)
mapping, where the frequencies are randomly sampled from a Gaussian distribution with a certain
standard deviation σ. In this Section, we show that RFF mapping can be analyzed through the lens of
our theoretical framework discussed thus far. To this end, we first establish the following proposition:
Proposition 3. Let the RFF embedding be denoted as γ(x) = [cos(2πbx), sin(2πbx)], where b are
sampled from a Gaussian distribution. When the embedding dimension is large enough, the stable
rank of RFF will be min(N,

√
2πσ), where N is the numnber of embedded coordinates. Under

the same conditions, the embedded distance between two coordinates x1 and x2 is D(x1, x2) =∑
j cos 2πbj(x1 − x2).

As shown in Fig. 6, the stable rank of RFF inceases linearly with the number of samples until it gets
saturated at

√
2πσ. This gives us a relationship between RFF and the Gaussian embedder: Let σg

and σf be the standard deviations of the Gaussian embedder and RFF, respectively. When their stable
ranks are equal, 1

2
√
πσg

=
√

2πσf (from Proposition 2 and 3). This implies that when σgσf = 1
2
√
2π

,
these two embeders are equivalent in terms of the stable rank and distance preservation (observe
Fig. 6 when σg = 0.01 and σf = 0.1).

Also, a common observation with RFFs is that when σf is too low, the reconstruction results are
overly smooth and if σf is too high, it gives noisy interpolations [16]. This observation directly
correlates with our theory. See in Fig. 6 that when the standard deviation increases, the stable rank
increases and distance preservation decreases. Similarly, When the standard deviation is too low, the
stable rank decreases while distance preservation increases.

4 EXPERIMENTS

In this Section, we empirically confirm the advantages of using the proposed embedding procedure
and verify that the theoretically predicted properties in the previous Sections hold in practice.
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Figure 3: Quantitative comparison of (a) the stable rank and (b) the distance preservation of different
embedders and random Fourier features. As expected, the stable rank of the impulse embedder strictly
increases with the number of sampled points, causing poor distance preservation. The stable rank
of the sine embedder is upper-bounded at 2. Note that as predicted in theory, the stable ranks of
the square embedder and the sine embedder almost overlap. However, if the sample numbers are
extremely high (not shown in the figure), their stable ranks begin to deviate. Similarly, the square
embedder demonstrates perfect distance preservation, and the sine embedder is a close competitor. In
contrast, the Gaussian embedder and the RFF showcase mid-range upper bounds for the stable rank
and adequate distance preservation, advocating a much better trade-off between memorization and
generalization.
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Figure 4: Stability of the performance at different embedding dimensions when encoding a 1-D
signal. Shaded areas correspond to two standard deviations across 10 experiments. As illustrated,
the Gaussian embedder demonstrates much stable performance, especially at lower embedding
dimensions.

4.1 THE GAUSSIAN EMBEDDER VS RFF

The proposed positional embedding scheme is a deterministic process, i.e., there is no ambiguity in
performance against hyper-parameters. In comparison, RFF samples frequencies randomly, leading
to unstable performance, especially when the embedding dimension is low. In order to verify this, we
use a 1D signal (a stripe from the popular Pepper image) as the target signal and train a linear network
with a single layer with both embeddings. Following Sec. 3.1, we choose the standard deviations
σg = 0.005 and σf = 1

2
√
2πσg

. We run the experiment 10 times with random initializations and
obtain the means and the standard deviations for different embedding dimensions. As reported in
Fig. 4, the variance of performance in the Gaussian embedder is much smaller compared to RFF.
Note that the performance variance of the RFF decreases as the embedding dimension increases. In
particular, this means that the ambiguity of performance in RFF can be reduced with a sufficiently
large embedding dimension. However, at lower embedding dimensions, the Gaussian embedder
demonstrates less ambiguity and better performance.

4.2 PERFORMANCE OF DIFFERENT EMBEDDERS

We empirically compare the performance of different embedders and verify that the theoretically
predicted properties hold in practice. We use a single-layer linear MLP for this experiment and
choose the embedding dimension to be 10000. Further, we pick ten random rows from the Pepper
image as our targets and measure the average performance. We train the model with each embedder
for 4000 epochs using the Adam optimizer with a learning rate of 1e−4.
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Figure 6: The stable rank (left column) and dis-
tance preservation (right column) of the Gaussian
embedder and RFF across different standard de-
viations.

Impulse & Random embedder: We implement the impulse embedder as a one-hot encoder. The
results are shown in Fig. 5. It is clear from the theory due to the unbounded stable rank (or equivalently,
the unlimited bandwidth) of the impulse embedder, the train PSNR should be high and the test PSNR
should be poor. To further validate our theory, we employ a random noise as the embedder and
compare its performance. Note that the bandwidth of a random noise is extremely high and as
expected, its behavior is similar to the impulse embedder.

Square & Sin embedder: As discussed in Sec. 3, these two embedders contain low stable ranks that
are approximately upper-bounded at 2. Consequently, we can observe a low training PSNR in Fig. 5.
Interestingly, we also observe a lower test PSNR, since extremely small stable ranks cause overly
smooth generalizations.

Gaussian embedder: The experimental results for the Gaussian embedder is depicted in Fig. 7. As
per Proposition 2, the standard deviation σ of the Gaussian embedder can tune the trade-off between
the rank and distance preservation. For each number of samples N , 50 samples of σ are chose
log-linearly from [10−4, 10−1]. Recall that the stable rank of the Gaussian embedding matrix is
min(N, 1

2
√
πσ

), and a higher rank can achieve good memorization (a higher training PSNR). However,
from the experimental results, it is evident that we do not need full rank to have a good enough PSNR
on real signals since real signals contain redundancies. Experimentally, training PSNR generally hits
a peak near σ = 1

2N (indicated by star key points). Similarly, the test PSNR depends on distance
preservation. The experiment results show that the test PSNR decreases as σ get very small. This
is intuitive, since when σ is too small, the output is overly smoothened. Then, for a small interval
of σ, the test PSNR keeps constant before it begins to drop drastically. The reason is obvious, as
when σ is very high, the distance preservation is hampered. To avoid this, we need the distance to
be preserved at least between the two nearest sampled points from the input signal. Therefore, for
N equally spaced training samples, we need distance to be preserved in an interval l ≈ 1

2N . From
the Proposition 2 we know that σ = 1

4N
√
k ln 10

where k is an empirically chosen threshold. For our
experiment we choose k = 1.6, thus, σ = 1

4N
√
1.6×ln 10

. This corresponds well with the rightmost
key points on the test PSNR plot. The leftmost key points on test PSNR plot is σ = 10

4N
√
1.6×ln 10

,
which means the distance is preserved over an interval of five nearest points on either side.

4.3 RECONSTRUCTION OF 1-D SIGNALS

We use three random rows from an image to test the reconstruction ability of the Gaussian embedder
for a 1-D signal. The training data are sampled with an interval of one. We use a one-layer linear
network and train for 2000 epochs. The results are shown in Fig. 8. As illustrated, for a very large σ,
the stable rank is too low, leading to poor memorization and overly smooth generalization. When
σ is too small, the memorization is better, but the generalization is poor. A mid-range σ learns the
mapping best. A notable advantage of the Gaussian embedder is that it will output zeros outside the
learning range instead of meaningless random numbers.
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Figure 7: Performance of the Gaussian embedder against the standard deviation over different number
of input samples.

σ 0.1 0.5 0.05 0.025 0.012 0.006 0.003 0.001 0.0007 0.0003 0.0002 0.0001
Train PSNR 17.59 19.25 21.83 24.98 29.54 52.77 125.42 113.22 113.62 115.76 115.38 115.41
Test PSNR 17.57 19.21 21.77 24.75 28.41 31.63 30.87 30.00 19.21 12.17 12.81 12.21

Table 1: Quantitative comparison of 1D signal reconstruction performance of the Gaussian embedder
against the standard deviation (σ). Memorization ability of the model increases with σ. In contrast,
the model generalizes better for a mid-range σ. We use a 4-layer MLP with Gaussian positional
embedding for this experiment.

We also conduct an experiment where we pick 1D signals, and measure the train and test PSNRs
across varying σ, using a 4-layer non-linear MLP. The tests are run for 10 signals and the average
numbers are reported in Table 1. As shown, the training PSNR monotonically decreases against σ,
implying worsening memorization. In contrast, extremely low σ and high σ corresponds to low test
PSNR due to overly smooth generalization and poor generalization, respectively. A mid-range σ
demonstrates best results.
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Figure 8: Qualitative comparison of reconstructing 1-D signals using the Gaussian embedder across
different standard deviations. A too small σ demonstrates poor generalization, a too high σ gives
over-smooth generalization, while a mid-range σ yields better results.

4.4 EXTENSION TO 2-D SIGNALS

A seemingly critical disadvantage of our embedding mechanism is that when working with higher
dimensions, the embedding dimension should grow exponentially (in order to facilitate the dense
sampling of embedders in higher dimensions). However, this can be alleviated using separable
functions as the embedders. A straightforward example for this is the Gaussian embedder. Recall that
high dimensional Gaussians with diagonal covariance matrices are separable along axes. Therefore,
we can employ 1-D embedders along each dimension and then concatenate the embedder outputs for
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(a) GT (b) σ = 0.001 (c) σ = 0.003 (d) σ = 0.07

Figure 9: Qualitative results of reconstructing 2-D
signals using the Gaussian embedder across dif-
ferent standard deviations (best viewed in zoom).
Here, we only sample along two directions.

Embedding Image type Train PSNR Test PSNR
No PE Natural 20.42 20.39

Sin Natural 22.94 22.63
RFF Natural 34.53 26.03

Gaussian Natural 34.52 27.19
No PE Text 18.49 18.49
Basic Text 20.52 20.49
RFF Text 38.39 31.71

Gaussian Text 36.93 30.65
No PE Noise 10.82 10.78
Basic Noise 10.83 10.78
RFF Noise 17.60 9.20
Ours Noise 11.41 10.55

Table 2: Quantitative comparison between no
embedding, sin embedding, RFF, and Gaussian
embedding in 2D image reconstruction.

each position. As a result, the embedding dimension only increases linearly with the dimension of the
input signal. However, there is an associated drawback with this method, which we will discuss next.

Consider sampling a 1-D separable embedder along x and y axes separately and concatenating them
to obtain the embedding for each (x, y) point of a 2-D signal. Also, denote the ground truth signal as
I(x, y). Then, using a linear model we have, I(x, y) ≈ wT

xΨ(x) + wT
y Ψ(y). This can be written in

the matrix form as, I(1, 1) . . . I(N, 1)
...

. . .
...

I(1, N) . . . I(N,N)

 ≈
wT

xΨ(x1) . . . wT
xΨ(xN )

...
. . .

...
wT
xΨ(x1) . . . wT

xΨ(xN )

+

wT
y Ψ(y1) . . . wT

y Ψ(y1)
...

. . .
...

wT
y Ψ(yN ) . . . wT

y Ψ(yN )


Clearly, right hand side matrices are of rank one. Therefore, a linear network can only reconstruct an
image signal with at most rank 2. However, this drawback can be addressed in most practical cases
using a non-linear MLP with a higher number of layers. Therefore, a vital insight to note here is that
the advantage of using deeper and non-linear networks to encode signals becomes more significant as
the dimensionality of the input signal increases.

A qualitative example is shown in Fig. 9. For this experiment, we use a 4-layer MLP with ReLU
activation and only sample along x and y axes separately using a Gaussian embedder to obtain the
embedding matrix. We employ 256 neurons in each layer and train for 2000 epochs. For each image,
we choose 25% of the total pixels (regularly sampled) as training samples. Similar to 1-D signal
reconstruction, using a mid-range standard deviation for the Gaussian embedder works best.

We also conduct a comparison on the 2D image dataset released by by [16]. The dataset consists of
natural images, text images, and noise images, where each category contains 32 images. Original
images are of 512 × 512 resolution. A sub-sampled grid of 256 × 256 pixels is used as training
data, and the remaining pixels are used as test data. The MLP consists of three hidden layers,
with 256 neurons in each hidden layer followed by ReLU activation. Results are illustrated in
Table 2. All reported values are average quantities measured over each category. In contrast to 1D
signal reconstruction, the Gaussian embedder demonstrates slightly inferior performance to RFF
due to sparse sampling. We conducted an exhaustive hyper-parameter sweep for RFF and Gaussian
embedder to obtain optimal performance.

5 CONCLUSION

In this paper, we develop a novel perspective on positional encoding. In summary, we show that
the performance of a positional embedding scheme is mainly governed by the stable rank of the
embedding matrix and the distance preservation between the embedded coordinates. In light of this
discovery, we propose a novel positional encoding mechanism that can incorporate arbitrary continu-
ous signals as potential embedders, under certain constraints. This allows for a more interpretable
and less restrictive way to encode positions that can be used in various computer vision tasks.
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