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ABSTRACT

We deal with the combinatorial problem of learning directed acyclic graph (DAG)
structure from observational data adhering to a linear structural equation model
(SEM). Leveraging advances in differentiable, nonconvex characterizations of
acyclicity, recent efforts have advocated a continuous constrained optimization
paradigm to efficiently explore the space of DAGs. Most existing methods em-
ploy lasso-type score functions to guide this search, which (i) require expensive
penalty parameter retuning when the unknown SEM noise variances change across
problem instances; and (ii) implicitly rely on limiting homoscedasticity assump-
tions. In this work, we propose a new convex score function for sparsity-aware
learning of linear DAGs, which incorporates concomitant estimation of scale and
thus effectively decouples the sparsity parameter from the exogenous noise levels.
Regularization via a smooth, nonconvex acyclicity penalty term yields CoLiDE
(Concomitant Linear DAG Estimation), a regression-based criterion amenable
to efficient gradient computation and closed-form estimation of noise variances
in heteroscedastic scenarios. Our algorithm outperforms state-of-the-art methods
without incurring added complexity, especially when the DAGs are larger and
the noise level profile is heterogeneous. We also find CoLiDE exhibits enhanced
stability manifested via reduced standard deviations in several domain-specific
metrics, underscoring the robustness of our novel linear DAG estimator.

1 INTRODUCTION

Directed acyclic graphs (DAGs) have well-appreciated merits for encoding causal relationships
within complex systems, as they employ directed edges to link causes and their immediate effects.
This graphical modeling framework has gained prominence in various machine learning (ML) appli-
cations spanning domains such as biology (Sachs et al.| 2005} [Lucas et al., 2004)), genetics (Zhang
et al.| |2013)), finance (Sanford & Moosa, [2012)), and economics [Pourret et al.| (2008)), to name a few.
However, since the causal structure underlying a group of variables is often unknown, there is a need
to address the task of inferring DAGs from observational data. While additional interventional data
are provably beneficial to the related problem of causal discovery (Lippe et al., 2021} [Squires et al.,
2020; |/Addanki et al., [2020; Brouillard et al.,2020), said interventions may be infeasible or ethically
challenging to implement. Learning a DAG solely from observational data poses significant com-
putational challenges, primarily due to the combinatorial acyclicity constraint which is notoriously
difficult to enforce (Chickering} |1996; (Chickering et al., [2004). Moreover, distinguishing between
DAGs that generate the same observational data distribution is nontrivial. This identifiability chal-
lenge may arise when data are limited (especially in high-dimensional settings), or, when candidate
graphs in the search space exhibit so-termed Markov equivalence; see e.g., (Peters et al., 2017).

Recognizing that DAG learning from observational data is in general an NP-hard problem, recent ef-
forts have advocated a continuous relaxation approach which offers an efficient means of exploring
the space of DAGs (Zheng et al., 2018} Ng et al., 2020; Bello et al., [2022). In addition to break-
throughs in differentiable, nonconvex characterizations of acyclicity (see Section [3)), the choice of
an appropriate score function is paramount to guide continuous optimization techniques that search
for faithful representations of the underlying DAG. Likelihood-based methods (Ng et al.l [2020)
enjoy desirable statistical properties, provided that the postulated probabilistic model aligns with
the actual causal relationships (Hastie et al., 2009; (Casella & Berger, [2021). On the other hand,
regression-based methods (Zheng et al.| 2018 |Bello et al., 2022) exhibit computational efficiency,
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robustness, and even consistency (Loh & Biihlmann, |2014), especially in high-dimensional settings
where both data scarcity and model uncertainty are prevalent (Ndiaye et al.,[2017). Still, workhorse
regression-based methods such as ordinary least squares (LS) rely on the assumption of homoscedas-
ticity, meaning the variances of the exogenous noises are identical across variables. Deviations from
this assumption can introduce biases in standard error estimates, hindering the accuracy of causal
discovery (Long & Ervin,[2000; Loh & Biihlmann,|2014). Fundamentally, for heteroscedastic linear
Gaussian models the DAG structure is non-identifiable from observational data (Peters et al.,|[2017)).

Score functions often include a sparsity-promoting regularization, for instance an ¢;-norm penalty as
in lasso regression (Tibshirani| [1996)). This in turn necessitates careful fine-tuning of the penalty pa-
rameter that governs the trade-off between sparsity and data fidelity (Massias et al.,|2018]). Theoreti-
cal insights suggest an appropriately scaled regularization parameter proportional to the observation
noise level (Bickel et al.l 2009), but the latter is typically unknown. Accordingly, several linear re-
gression studies (unrelated to DAG estimation) have proposed convex concomitant estimators based
on scaled LS, which jointly estimate the noise level along with the regression coefficients (Owen,
2007;|Sun & Zhang|, 2012 |Belloni et al., [2011; Ndiaye et al.,[2017). A noteworthy representative is
the smoothed concomitant lasso (Ndiaye et al.,2017)), which not only addresses the aforementioned
parameter fine-tuning predicament but also accommodates heteroscedastic linear regression scenar-
ios where noises exhibit non-equal variances. While these challenges are not extraneous to DAG
learning, the impact of concomitant estimators is so far largely unexplored in this timely field.

Contributions. In this work, we bring to bear ideas from concomitant scale estimation in (sparse)
linear regression and propose a novel convex score function for regression-based inference of linear
DAGs, demonstrating significant improvements relative to existing state-of-the-art methodsﬂ Our
contributions can be summarized as follows:

e We propose a new convex score function for sparsity-aware learning of linear DAGs, which in-
corporates concomitant estimation of scale parameters to enhance DAG topology inference using
continuous first-order optimization. We augment this LS-based score function with a smooth, non-
convex acyclicity penalty term to arrive at CoLiDE (Concomitant Linear DAG Estimation), a simple
regression-based criterion that facilitates efficient computation of gradients and estimation of exoge-
nous noise levels via closed-form expressions. To the best of our knowledge, this is the first time
that ideas from concomitant scale estimation permeate benefits to DAG learning.

o In existing methods, the sparsity regularization parameter depends on the unknown exogenous
noise levels, making the calibration challenging. CoLiDE effectively removes this coupling, leading
to minimum (or no) recalibration effort across diverse problem instances. Our score function is fairly
robust to deviations from Gaussianity, and relative to ordinary LS used in prior score-based DAG
estimators, experiments show CoLiDE is more suitable for challenging heteroscedastic scenarios.

o We demonstrate CoLiDE’s effectiveness through comprehensive experiments with both simulated
(linear SEM) and real-world datasets. When benchmarked against state-of-the-art DAG learning
algorithms, CoLiDE consistently attains better recovery performance across graph ensembles and
exogenous noise distributions, especially when the DAGs are larger and the noise level profile is
heterogeneous. We also find CoLiDE exhibits enhanced stability manifested via reduced standard
deviations in various domain-specific metrics, underscoring the robustness of our novel estimator.

2 PRELIMINARIES AND PROBLEM STATEMENT

Consider a directed graph G (V,£, W), where V = {1,...,d} represents the set of vertices, and
£ CV x Vis the set of edges. The adjacency matrix W = [wy, ..., wg] € R?*9 collects the edge
weights, with W;; # 0 indicating a direct link from node ¢ to node j. We henceforth assume that
G belongs to the space D of DAGs, and rely on the graph to represent conditional independencies
among the variables in the random vector X = [21,...,24]" € R% Indeed, if the joint distribution
P(x) satisfies a Markov property with respect to G € D, each random variable x; depends solely on

"While preparing the final version of this manuscript, we became aware of independent work in the un-
published preprint (Xue et al., 2023, which also advocates estimating (and accounting for) exogenous noise
variances to improve DAG topology inference. However, dotears is a two-step marginal estimator requiring
additional interventional data, while our concomitant framework leads to a new LS-based score function and,
importantly, relies on observational data only.
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its parents PA, = {j € V : W}; # 0}. Here, we focus on linear structural equation models (SEMs)
to generate said probability distribution, whereby the relationship between each random variable
and its parents is given by x; = wiTx + 2z, Vi€ V,and z = [2,..., zd}T is a vector of mutually
independent, exogenous noises; see e.g., (Peters et al.,[2017). Noise variables z; can have different
variances and need not be Gaussian distributed. For a dataset X € R?*"™ of n i.i.d. samples drawn
from IP(x), the linear SEM equations can be written in compact matrix form as X = W' X + Z.

Problem statement. Given the data matrix X adhering to a linear SEM, our goal is to learn the latent
DAG G € D by estimating its adjacency matrix W as the solution to the optimization problem

H‘lhi/n S(W) subjectto G(W) € D, (1)

where S(W) is a data-dependent score function to measure the quality of the candidate DAG. Ir-
respective of the criterion, the non-convexity comes from the combinatorial acyclicity constraint
G(W) € D; see also Appendixfor a survey of combinatorial search approaches relevant to solv-
ing (I), but less related to the continuous relaxation methodology pursued here (see Section [3).

A proper score function typically encompasses a loss or data fidelity term ensuring alignment with
the SEM as well as regularizers to promote desired structural properties on the sought DAG. For a
linear SEM, the ordinary LS loss 5-[| X — W " X ||, is widely adopted, where | -||  is the Frobenius
norm. When the exogenous noises are Gaussian, the data log-likelihood can be an effective alterna-
tive (Ng et al., [2020). Since sparsity is a cardinal property of most real-world graphs, it is prudent
to augment the loss with an ¢1-norm regularizer to yield S(W) = #[|X — WTX||% + X|W]||,
where A > 0 is a tuning parameter that controls edge sparsity. The score function S(W) bears
resemblance to the multi-task variant of lasso regression (Tibshiranil [1996), specifically when the
response and design matrices coincide. Optimal rates for lasso hinge on selecting A < o+/logd/n
(Bickel et al., [2009; [Li et al., [2020). However, the exogenous noise variance o? is rarely known
in practice. This challenge is compounded in heteroscedastic settings, where one should adopt a
weighted LS score (see (Loh & Biihlmann, 2014) for an exception unlike most DAG learning meth-
ods that stick to bias-inducing ordinary LS). Recognizing these limitations, in Section[d we propose
a novel LS-based score function to facilitate joint estimation of the DAG and the noise levels.

3 RELATED WORK

We briefly review differentiable optimization approaches that differ in how they handle the acyclicity
constraint, namely by using an explicit DAG parameterization or continuous relaxation techniques.

Continuous relaxation. Noteworthy methods advocate an exact acyclicity characterization using
nonconvex, smooth functions H : R?*? — R of the adjacency matrix, whose zero level set is ID.
One can thus relax the combinatorial constraint G(W) € D by instead enforcing H(W) = 0, and
tackle the DAG learning problem using standard continuous optimization algorithms (Zheng et al.,
20185 [Yu et al., [2019; [Wei et al., 2020; Bello et al., 2022). The pioneering NOTEARS formulation
introduced Hexpm(W) = Tr(e™W°W) — d, where o denotes the Hadamard (element-wise) product
and Tr(-) is the matrix trace operator (Zheng et al., |2018). Diagonal entries of powers of W o W
encode information about cycles in G, hence the suitability of the chosen function. Follow-up work
suggested a more computationally efficient acyclicity function Hpoly (W) = Tr((I+ 3 WoW)4)—d,
where I is the identity matrix (Yu et al.l 2019); see also (Wei et al., 2020) that studies the general
family H(W) = ZZ=1 cx Tr((W o W)9), ¢, > 0. Recently, Bello et al. (2022) proposed the
log-determinant acyclicity characterization H,4et(W, 8) = dlog(s) — log(det(sI — W o W)), s €
R; outperforming prior relaxation methods in terms of (nonlinear) DAG recovery and efficiency.
Although global optimality results are so far elusive, progress is being made (Deng et al.| 2023b)).

Order-based methods. Other recent approaches exploit the neat equivalence G(W) € D & W =
IT' UII, where IT € {0,1}9*4 is a permutation matrix (essentially encoding the variables’ causal
ordering) and U € R9*? is an upper-triangular weight matrix. Consequently, one can search
over exact DAGs by formulating an end-to-end differentiable optimization framework to minimize
S (HTUH) jointly over IT and U, or in two steps. Even for nonlinear SEMs, the challenging pro-
cess of determining the appropriate node ordering is typically accomplished through the Birkhoff
polytope of permutation matrices, utilizing techniques like the Gumbel-Sinkhorn approximation
(Cundy et al.,|2021), or, the SoftSort operator (Charpentier et al., 2022). Limitations stemming from
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misaligned forward and backward passes that respectively rely on hard and soft permutations are
well documented (Zantedeschi et al., [2023). The DAGuerreotype approach in (Zantedeschi et al.,
2023) instead searches over the Permutahedron of vector orderings and allows for non-smooth edge
weight estimators. TOPO (Deng et al.l|2023a) performs a bi-level optimization, relying on topolog-
ical order swaps at the outer level. Still, optimization challenges towards accurately recovering the
causal ordering remain, especially when data are limited and the noise level profile is heterogeneous.

While this work is framed within the continuous constrained relaxation paradigm to linear DAG
learning, preliminary experiments with TOPO (Deng et al., 2023a) show that CoLiDE also benefits
order-based methods (see Appendix [E-8). We leave a full exploration as future work.

4 CONCOMITANT LINEAR DAG ESTIMATION

Going back to our discussion on lasso-type score functions in Section 2, minimizing S(W) =
~||X — WTX|% + A[W|; subject to a smooth acyclicity constraint H(W) = 0 (as in e.g.,
NoTears (Zheng et al.}2018))): (i) requires carefully retuning A when the unknown SEM noise vari-
ance changes across problem instances; and (ii) implicitly relies on limiting homoscedasticity as-
sumptions due to the ordinary LS loss. To address issues (i)-(ii), here we propose a new convex score
function for linear DAG estimation that incorporates concomitant estimation of scale. This way, we
obtain a procedure that is robust (both in terms of DAG estimation performance and parameter fine-
tuning) to possibly heteroscedastic exogenous noise profiles. We were inspired by the literature of
concomitant scale estimation in sparse linear regression (Owen), 2007; |Belloni et al., 2011} |Sun &
Zhang| [2012; Ndiaye et al.l 2017); see Appendix [A.T|for concomitant lasso background that informs
the approach pursued here. Our method is dubbed CoLiDE (Concomitant Linear DAG Estimation).

Homoscedastic setting. We start our exposition with a simple scenario whereby all exogenous vari-
ables 21, ..., zq in the linear SEM have identical variance o2. Building on the smoothed concomi-
tant lasso (Ndiaye et al.,[2017), we formulate the problem of jointly estimating the DAG adjacency
matrix W and the exogenous noise scale o as

1 d
5 IX = WX} + T+ A[WIli subjectto H(W) =0, )

min
W, o>00

:=8(W,0)

where H : R4 5 R is a nonconvex, smooth function, whose zero level set is D as discussed in
Section [3| Notably, the weighted, regularized LS score function S(W, o) is now also a function
of o, and it can be traced back to the robust linear regression work of [Huber| (1981). Due to the
rescaled residuals, A in (Z)) decouples from o as minimax optimality now requires A < y/logd/n
(L1 et al.l [2020; [Belloni et al., 2011). A minor tweak to the argument in the proof of (Owen, 2007,
Theorem 1) suffices to establish that S(W, o) is jointly convex in W and o. Of course, (2)) is still
a nonconvex optimization problem by virtue of the acyclicity constraint % (W) = 0. Huber| (1981)
included the term do /2 so that the resulting squared scale estimator is consistent under Gaussianity.
The additional constraint o > o safeguards against potential ill-posed scenarios where the estimate

¢ approaches zero. Following the guidelines in (Ndiaye et al.,[2017), we set g = % x 1072.

With regards to the choice of the acyclicity function, we select Hige(W,s) = dlog(s) —
log(det(sI — W o W)) based on its more favorable gradient properties in addition to several other
compelling reasons outlined in (Bello et al., 2022, Section 3.2). Moreover, while LS-based lin-
ear DAG learning approaches are prone to introducing cycles in the estimated graph, it was noted
that a log-determinant term arising with the Gaussian log-likelihood objective tends to mitigate this
undesirable effect (Ng et al., 2020)). Interestingly, the same holds true when #4¢; is chosen as a regu-
larizer, but this time without being tied to Gaussian assumptions. Before moving on to optimization
issues, we emphasize that our approach is in principle flexible to accommodate other convex loss
functions beyond LS (e.g., Huber’s loss for robustness against heavy-tailed contamination), other
acyclicity functions, and even nonlinear SEMs parameterized using e.g., neural networks. All these
are interesting CoLiDE generalizations beyond the scope of this paper.

Optimization considerations. Motivated by our choice of the acyclicity function, to solve the
constrained optimization problem (2)) we follow the DAGMA methodology by Bello et al/| (2022).
Therein, it is suggested to solve a sequence of unconstrained problems where 4. is dualized and
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viewed as a regularizer. This technique has proven more effective in practice for our specific problem
as well, when compared to, say, an augmented Lagrangian method. Given a decreasing sequence of
values p — 0, at step k£ of the COLIDE-EV (equal variance) algorithm one solves

1 do

W | S X = WX+ T AW |+ Huae (W), @)
where the schedule of hyperparameters p;, > 0 and s > 0 must be prescribed prior to implemen-
tation; see Section[4.1] Decreasing the value of /14, enhances the influence of the acyclicity function
Higet! (W, s) in the objective. [Bello et al.| (2022) point out that the sequential procedure (3) is remi-
niscent of the central path approach of barrier methods, and the limit of the central path p;, — 0 is
guaranteed to yield a DAG. In theory, this means no additional post-processing (e.g., edge trimming)
is needed. However, in practice we find some thresholding is required to reduce false positives.

Unlike Bello et al.[(2022), CoLiDE-EV jointly estimates the noise level o and the adjacency matrix
W for each p,. To this end, one could solve for ¢ in closed form [cf. (@)] and plug back the solution
in (3), to obtain a DAG-regularized square-root lasso (Belloni et al.|, 2011)) type of problem in W.
We did not follow this path since the resulting loss || X — W ' X]| is not decomposable across
samples, challenging mini-batch based stochastic optimization if it were needed for scalability (in
Appendix [Bl we show that our score function is fully decomposable and present corresponding
preliminary experiments). A similar issue arises with GOLEM (Ng et al., 2020), where the derived
Gaussian profile likelihood yields a non-separable log-sum loss. Alternatively, and similar to the
smooth concomitant lasso algorithm Ndiaye et al.| (2017), we rely on (inexact) block coordinate
descent (BCD) iterations. This cyclic strategy involves fixing o to its most up-to-date value and
minimizing (3) inexactly w.r.t. W, subsequently updating o in closed form given the latest W via

& — max (\/Tr (T—=W)T cov(X)(I— W) /d, 00> , )

where cov(X) := %XXT is the precomputed sample covariance matrix. The mutually-reinforcing
interplay between noise level and DAG estimation should be apparent. There are several ways to
inexactly solve the W subproblem using first-order methods. Given the structure of (3), an elegant
solution is to rely on the proximal linear approximation. This leads to an ISTA-type update for
‘W, and overall a provably convergent BCD procedure in this nonsmooth, nonconvex setting (Yang
et al., 2020, Theorem 1). Because the required line search can be computationally taxing, we opt
for a simpler heuristic which is to run a single step of the ADAM optimizer (Kingma & Ba, [2015))
to refine W. We observed that running multiple ADAM iterations yields marginal gains, since we
are anyways continuously re-updating W in the BCD loop. This process is repeated until either
convergence is attained, or, a prescribed maximum iteration count 7}, is reached. Additional details

on gradient computation of (3) w.r.t. W and the derivation of () can be found in Appendix [B]

Heteroscedastic setting. We also address the more challenging endeavor of learning DAGs in het-
eroscedastic scenarios, where noise variables have non-equal variances (NV) 0%, ..., o2, Bringing
to bear ideas from the generalized concomitant multi-task lasso (Massias et al.,[2018) and mimicking
the optimization approach for the EV case discussed earlier, we propose the CoLiDE-NV estimator

1 _ 1
Lk |:2n Tr ((X - WTX)TE 1(X — WTX)) + 5 TI“(E) + >\||W||1:| + ”Hldet(W, Sk)
®)
Note that ¥ = diag(o1, . .., 04) is a diagonal matrix of exogenous noise standard deviations (hence

not a covariance matrix). Once more, we set 3y = /diag (cov(X)) x 1072, where /() is meant
to be taken element-wise. A closed form solution for 3 given W is also readily obtained,

min
WS>,

3 = max | 1/diag (I— W) T cov(X)(I - W)), X | . (6)
(v )

A summary of the overall computational procedure for both CoLiDE variants is tabulated under
Algorithm I} see Appendix [B]for detailed gradient expressions and a computational complexity dis-
cussion. CoLiDE’s per iteration cost is O(d?), on par with state-of-the-art DAG learning methods.

The first summand in (3) resembles the consistent weighted LS estimator studied in [Coh &
Biihlmann| (2014), but therein the assumption is that exogenous noise variances are known up to
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Algorithm 1: CoLiDE optimization Function CoLiDE-EV update:
In: data X and hyperparameters A and H = { (1, %, Tx) es. Update W with one iteration of
Out: DAG W and the noise estimate o (EV) or X (NV). a ﬁrst—or(}er rpethod for @
Compute lower-bounds oo or . Compute & using @)

Initialize W = 0, 0 = 0 x 10% or & = X x 10 Function CoLiDE-NV update:

foreach (ur, sk, Tx) € H do Update W with one iteration of
fort=1,...,T; do a first-order method for (3))
| Apply CoLiDE-EV or NV updates using px and s. Compute b using (@)

a constant factor. CoLiDE-NV removes this assumption by jointly estimating W and 3, with
marginal added complexity over finding the DAG structure alone. Like GOLEM (Ng et al., 2020)
and for general (non-identifiable) linear Gaussian SEMs, as n — oo CoLiDE-NV probably yields a
DAG that is quasi-equivalent to the ground truth graph (see Appendix [C]for futher details).

4.1 FURTHER ALGORITHMIC DETAILS

Initialization. Following Bello et al.|(2022), we initialize W = 0 as it always lies in the feasibility
region of Hyqe. We also initialize o = g X 10? in CoLiDE-EV or ¥ = ¥ x 102 for CoLiDE-NV.

Hyperparameter selection and termination rule. To facilitate the comparison with the state-of-
the-art DAGMA and to better isolate the impact of our novel score function, we use the hyperparam-
eters selected by Bello et al.| (2022) for CoLiDE-EV and NV. Hence, our algorithm uses A = 0.05
and employs K = 4 decreasing values of u; € [1.0,0.1,0.01,0.001], and the maximum number of
BCD iterations is specified as T}, = [2 x 10%,2 x 10%,2 x 10%,7 x 10%]. Furthermore, early stop-
ping is incorporated, activated when the relative error between consecutive values of the objective
function falls below 10~6. The learning rate for ADAM is 3 x 10~*. We adopt s, € [1,0.9,0.8,0.7].

Post-processing. Similar to several previous works (Zheng et al.l 2018 Ng et al., [2020; Bello et al.,
2022), we conduct a final thresholding step to reduce false discoveries. In this post-processing step,
edges with absolute weights smaller than 0.3 are removed.

5 EXPERIMENTAL RESULTS

‘We now show that CoLiDE leads to state-of-the-art DAG estimation results by conducting a compre-
hensive evaluation against other state-of-the-art approaches: GES (Ramsey et al.,|2017), GOLEM
(Ng et al.[|2020), DAGMA (Bello et al.,[2022), SortNRegress (Reisach et al.,2021)), and DAGuerreo-
type (Zantedeschi et al.,|2023)). We omit conceptually important methods like NoTears (Zheng et al.}
2018)), that have been outclassed in practice. To improve the visibility of the figures, we report in
each experiment the results of the best performing methods, excluding those that perform particu-
larly poorly. We use standard DAG recovery metrics: (normalized) Structural Hamming Distance
(SHD), SHD over the Markov equivalence class (SHD-C), Structural Intervention Distance (SID),
True Positive Rate (TPR), and False Discovery Rate (FDR). We also assess CoLiDE’s ability to esti-
mate the noise level(s) across different scenarios. Further details about the setup are in Appendix [D}

DAG generation. As standard (Zheng et al., 2018]), we generate the ground truth DAGs utilizing the
Erd6s-Rényi or the Scale-Free random models, respectively denoted as ERk or SFk, where k£ is the
average nodal degree. Edge weights for these DAGs are drawn uniformly from a range of feasible
edge weights. We present results for £ = 4, the most challenging setting (Bello et al., [2022).

Data generation. Employing the linear SEM, we simulate n = 1000 samples using the homo- or
heteroscedastic noise models and drawing from diverse noise distributions, i.e., Gaussian, Exponen-
tial, and Laplace (see Appendix D). Unless indicated otherwise, we report the aggregated results of
ten independent runs by repeating all experiments 10 times, each with a distinct DAG.

Appendix [E] contains additional results (e.g., other graph types, different number of nodes, and k&
configurations). There, CoLiDE prevails with similar observations as in the cases discussed next.

Homoscedastic setting. We begin by assuming equal noise variances across all nodes. We em-
ploy ER4 and SF4 graphs with 200 nodes and edge weights drawn uniformly from the range
€ € [-2,-0.5] U [0.5, 2] (Zheng et al.,[2018; |Ng et al., 2020; Bello et al., 2022).
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Figure 1: Mean DAG recovery performance, plus/minus one standard deviation, is evaluated for

ER4 (top row) and SF4 (bottom row) graphs, each with 200 nodes, assuming equal noise variances.
Each column corresponds to a different noise distribution.

Table 1: DAG recovery results for 200-node ER4 graphs under homoscedastic Gaussian noise.
Noise variance = 1.0 Noise variance = 5.0

GOLEM DAGMA CoLiDE-NV  CoLiDE-EV GOLEM DAGMA CoLiDE-NV  CoLiDE-EV
SHD 468.6+£144.0 100.1+41.8 111.9£29 87.3+£33.7  336.6£233.0 194.4+36.2 1574442 105.6+51.5
SID 2226043951  4389+£1204  5333+£872 4010+1169 1447249203  6582+£1227  6067+1088  4444+1586
SHD-C  473.6+144.8 101.2£41.0 113.6%29.2 88.1+33.8  341.0+£234.9 199.9£36.1 161.0+43.5 107.1+51.6
FDR 0.284+0.10 0.07+0.03 0.08+0.02 0.06£0.02 0.2140.13 0.154+0.02 0.124+0.03 0.08+0.04
TPR 0.6610.09 0.9410.01 0.93+0.01 0.95+0.01 0.76+0.18 0.924+0.01 0.931+0.01 0.95+0.01

In Figure [T} we investigate the impact of noise levels varying from 0.5 to 10 for different noise
distributions. CoLiDE-EV clearly outperforms its competitors, consistently reaching a lower SHD.
Here, it is important to highlight that GOLEM, being based on the profile log-likelihood for the
Gaussian case, intrinsically addresses noise estimation for that particular scenario. However, the
more general CoLiDE formulation still exhibits superior performance even in GOLEM’s specific
scenario (left column). We posit that the logarithmic nonlinearity in GOLEM’s data fidelity term
hinders its ability to fit the data. CoLiDE’s noise estimation provides a more precise correction,
equivalent to a square-root nonlinearity [see (9) in Appendix [A.T]l, giving more weight to the data
fidelity term and consequently allowing to fit the data more accurately.

In Table [I} we deep-dive in two particular scenarios: (1) when the noise variance equals 1, as in
prior studies (Zheng et al., 2018; |[Ng et al., [2020; |Bello et al., 2022), and (2) when the noise level
is increased to 5. Note that SortNRegress does not produce state-of-the-art results (SHD of 652.5
and 615 in each case, respectively), which relates to the non-triviality of the problem instance.
These cases show that CoLiDE’s advantage over its competitors is not restricted to SHD alone, but
equally extends to all other relevant metrics. This behavior is accentuated when the noise variance
is set to 5, as CoLiDE naturally adapts to different noise regimes without any manual tuning of its
hyperparameters. Additionally, CoLiDE-EV consistently yields lower standard deviations than the
alternatives across all metrics, underscoring its robustness.

CoLiDE-NYV, although overparametrized for homoscedastic problems, performs remarkably well,
either being on par with CoLiDE-EV or the second-best alternative in Figure[T]and Table[l] This is
of particular importance as the characteristics of the noise are usually unknown in practice, favoring
more general and versatile formulations.

Heteroscedastic setting. The heteroscedastic scenario, where nodes do not share the same noise
variance, presents further challenges. Notably, this setting is known to be non-identifiable (Ng et al.,
2020) from observational data. This issue is exacerbated as the number d of nodes grows as, whether
we are estimating the variances explicitly or implicitly, the problem contains d additional unknowns,
which renders its optimization harder from a practical perspective. We select the edge weights by
uniformly drawing from [—1, —0.25] U [0.25, 1] and the noise variance of each node from [0.5, 10].
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Figure 2: Mean DAG recovery performance, plus/minus one standard deviation, under heteroscedas-
tic noise for both ER4 (top row) and SF4 (bottom row) graphs with varying numbers of nodes. Each
column corresponds to a different noise distribution.

Table 2: DAG recovery results for 200-node ER4 graphs under heteroscedastic Gaussian noise.
GOLEM-EV GOLEM-NV DAGMA SortNRegress CoLiDE-EV ~ CoLiDE-NV
SHD 642.9+61.5 481.3+45.8 470.2+50.6 397.8+£27.8 426.5+49.6 390.7+35.6
SID 29628+1008 2569942194 24980+1456 22560+1749 23326+1620 2273441767
SHD-C  630.14+53.5 509.5+£50.6 490.2446.8 402.1+26.3 449.44449  407.9+37.5
FDR 0.35+0.05 0.30+0.03 0.31£0.04 0.20+0.01 0.29+0.04 0.25+0.03
TPR 0.33+£0.09 0.60+0.07 0.64+0.02 0.62+0.02 0.68+0.02 0.68+0.01

This compressed interval, compared to the one used in the previous section, has a reduced signal-to-
noise ratio (SNR) (Zheng et al.l 2018} Reisach et al.| 2021])), which obfuscates the optimization.

Figure 2] presents experiments varying noise distributions, graph types, and node numbers. CoLiDE-
NV is the clear winner, outperforming the alternatives in virtually all variations. Remarkably,
CoLiDE-EV performs very well and often is the second-best solution, outmatching GOLEM-NV,
even considering that an EV formulation is clearly underspecifying the problem.

These trends are confirmed in Table[2] where both CoLiDE formulations show strong efficacy on ad-
ditional metrics (we point out that SHD is often considered the more accurate among all of them) for
the ER4 instance with Gaussian noise. In this particular instance, SortNRegress is competitive with
CoLiDE-NV in SID, SHD-C, and FDR. Note that, CoLiDE-NV consistently maintains lower devi-
ations than DAGMA and GOLEM, underscoring its robustness. All in all, CoLiDE-NV is leading
the pack in terms of SHD and performs very strongly across all other metrics.

In Appendix [E:5] we include additional experiments where we draw the edge weights uniformly
from [—2, —0.5]U[0.5, 2]. Here, CoLiDE-NV and CoLiDE-EV are evenly matched as the simplified
problem complexity does not warrant the adoption of a more intricate formulation like CoLiDE-NV.

Beyond continuous optimization. We also tested the CoLiDE objective in combination with
TOPO |Deng et al.| (2023a)), a recently proposed bi-level optimization framework. Results in Ap-
pendix [E.8| show that CoLiDE yields improvements when using this new optimization method.

Noise estimation. An accurate noise estimation is the crux of our work (Section [)), leading to a
new formulation and algorithm for DAG learning. A method’s ability to estimate noise variance
reflects its proficiency in recovering accurate edge weights. Metrics such as SHD and TPR prioritize
the detection of correct edges, irrespective of whether the edge weight closely matches the actual
value. For methods that do not explicitly estimate the noise, we can evaluate them a posteriori by
estimating the DAG first and subsequently computing the noise variances using the residual variance
formula 62 = -L||X — W' X||% in the EV case, or, ;> = 1 ||z; — w; ' x||3 in the NV case.

We can now examine whether CoLiDE surpasses other state-of-the-art approaches in noise estima-
tion. To this end, we generated 10 distinct ER4 DAGs with 200 nodes, employing the homo and
heteroscedastic settings described earlier in this section. Assuming a Gaussian noise distribution, we
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Figure 3: Mean relative noise estimation errors, plus/minus one standard deviation, as a function of
the number of samples, aggregated from ten separate ER4 graphs, each comprising 200 nodes.

Table 3: DAG recovery performance on the Sachs dataset (Sachs et al., 2005).
GOLEM-EV ~ GOLEM-NV  DAGMA  SortNRegress = DAGuerreotype GES CoLiDE-EV ~ CoLiDE-NV

SHD 22 15 16 13 14 13 13 12
SID 49 58 52 47 50 56 47 46
SHD-C 19 11 15 13 12 11 13 14
FDR 0.83 0.66 0.5 0.61 0.57 0.5 0.54 0.53
TPR 0.11 0.11 0.05 0.29 0.17 0.23 0.29 0.35

generated different numbers of samples to assess CoLiDE’s performance under limited data scenar-
ios. We exclude GOLEM from the comparison due to its subpar performance compared to DAGMA.
In the equal noise variance scenario, depicted in Figure [3] (left), CoLiDE-EV consistently outper-
forms DAGMA across varying sample sizes. CoLiDE-EV is also slightly better than CoLiDE-NV,
due to its better modeling of the homoscedastic case. In Figure [3] (right), we examine the non-equal
noise variance scenario, where CoLiDE-NV demonstrates superior performance over both CoLiDE-
EV and DAGMA across different sample sizes. Of particular interest is the fact that CoLiDE-NV
provides a lower error even when using half as many samples as DAGMA.

Real data. To conclude our analysis, we extend our investigation to a real-world example, the Sachs
dataset (Sachs et al.||2005), which is used extensively throughout the probabilistic graphical models
literature. The Sachs dataset encompasses cytometric measurements of protein and phospholipid
constituents in human immune system cells (Sachs et al., |2005). This dataset comprises 11 nodes
and 853 observation samples. The associated DAG is established through experimental methods as
outlined by [Sachs et al.| (2005)), and it enjoys validation from the biological research community.
Notably, the ground truth DAG in this dataset consists of 17 edges. The outcomes of this experiment
are consolidated in Table [3] Evidently, the results illustrate that CoOLiDE-NV outperforms all other
state-of-the-art methods, achieving a SHD of 12. To our knowledge, this represents the lowest
achieved SHD among continuous optimization-based techniques applied to the Sachs problem.

6 CONCLUDING SUMMARY, LIMITATIONS, AND FUTURE WORK

In this paper we introduced CoLiDE, a framework for learning linear DAGs wherein we simulta-
neously estimate both the DAG structure and the exogenous noise levels. We present variants of
CoLiDE to estimate homoscedastic and heteroscedastic noise across nodes. Additionally, estimat-
ing the noise eliminates the necessity for fine-tuning the model hyperparameters (e.g., the weight on
the sparsity penalty) based on the unknown noise levels. Extensive experimental results have vali-
dated CoLiDE’s superior performance when compared to other state-of-the-art methods in diverse
synthetic and real-world settings, including the recovery of the DAG edges as well as their weights.

The scope of our DAG estimation framework is limited to observational data adhering to a linear
SEM. In future work, we will extend it to encompass nonlinear and interventional settings. Therein,
CoLiDE’s formulation, amenable to first-order optimization, will facilitate a symbiosis with neural
networks to parameterize SEM nonlinearities. Although CoLiDE’s decomposability is a demonstra-
ble property, further experimental results are needed to fully assert the practical value of stochastic
optimization. Finally, we plan to introduce new optimization techniques to realize CoLiDE’s full
potential both in batch and online settings, with envisioned impact also to order-based methods.
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A ADDITIONAL RELATED WORK

While the focus in the paper has been on continuous relaxation algorithms to tackle the linear DAG
learning problem, numerous alternative combinatorial search approaches have been explored as
well; see (Kitson et al., [2023) and (Vowels et al., 2022) for up-to-date tutorial expositions that also
survey a host of approaches for nonlinear SEMs. For completeness, here we augment our Section
review of continuous relaxation and order-based methods to also account for discrete optimization
alternatives in the literature.

Discrete optimization methods. A broad swath of approaches falls under the category of score-
based methods, where (e.g., BD, BIC, BDe, MDL) scoring functions are used to guide the search
for DAGs in D, e.g., (Peters et al., 2017, Chapter 7.2.2). A subset of studies within this domain
introduces modifications to the original problem by incorporating additional assumptions regarding
the DAG or the number of parent nodes associated with each variable (Nie et al., [2014} |Chen et al.
2016; [Viinikka et al., [2020). Another category of discrete optimization methods is rooted in greedy
search strategies or discrete optimization techniques applied to the determination of topological or-
ders (Chickering, 2002; [Park & Klabjanl 2017). GES (Ramsey et al., 2017) is a scalable greedy
algorithm for discovering DAGs that we chose as one of our baselines. Constraint-based meth-
ods represent another broad category within discrete optimization approaches (Biihlmann et al.,
2014)). These approaches navigate D by conducting independence tests among observed variables;
see e.g., (Peters et al.| 2017, Chapter 7.2.1). Overall, many of these combinatorial search methods
exhibit scalability issues, particularly when confronted with high-dimensional settings arising with
large DAGs. This challenge arises because the space of possible DAGs grows at a superexponential
rate with the number of nodes, e.g.,|Chickering| (2002]).

A.1 BACKGROUND ON SMOOTHED CONCOMITANT LASSO ESTIMATORS

Consider a linear regression setting y = H@+€ in which we have access to a response vectory € R¢
and a design matrix H € R%*? comprising p explanatory variables or features. To obtain a sparse
vector of regression coefficients 8 € RP, one can utilize the convex lasso estimator (Tibshirani,
1996)

~ . 1
6 € argmin — ||y — HO||3 + X||0]1 7
o 2d

which facilitates continuous estimation and variable selection. Statistical guarantees for lasso hinge
on selecting the scalar parameter A > 0 to be proportional to the noise level. In particular, under

the assumption that € ~ A(0,0%1,), solving (7) with \* < o4/ 1"5” yields the minimax optimal
solution for parameter estimation in high dimensions (Bickel et al., [2009; |L1 et al.,[2020). However,

in most cases having knowledge of the noise variance is a luxury we may not possess.

To address the aforementioned challenge, a promising solution involves the simultaneous estima-
tion of both sparse regression coefficients and the noise level. Over the years, various formulations
have been proposed to tackle this problem, ranging from penalized maximum likelihood approaches
(Stadler et al., |2010) to frameworks inspired by robust theory (Huber,[1981;|Owen,[2007). Several of
these methods are closely related; in particular, the concomitant lasso approach in (Owenl [2007) has
been shown to be equivalent to the so-termed square-root lasso (Belloni et al., [2011), and rediscov-
ered as the scaled lasso estimator (Sun & Zhang, 2012). Notably, the smoothed concomitant lasso
(Ndiaye et al.,[2017) stands out as the most recent and efficient method suitable for high-dimensional
settings. The approach in (Ndiaye et al.,|2017) is to jointly estimate the regression coefficients € and
the noise level o by solving the jointly convex problem

1 o
min —— |y — HO|3 + = + \||0]|; + {0 > o 8
yin 5 ly — HOJ3+ 7 + A6 + I{o > a0} ®)
where o is a predetermined lower bound based on either prior information or proportional to the
initial noise standard deviation, e.g., g = % x 1072, Inclusion of the constraint ¢ > oy is

motivated in (Ndiaye et al., |2017) to prevent ill-conditioning as the solution & approaches zero.
To solve (B)), a BCD algorithm is adopted wherein one iteratively (and cyclically) solves (8] for 6
with fixed o, and subsequently updates the value of o using a closed-form solution given the most
up-to-date value of 8; see (Ndiaye et al.,[2017) for further details.
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Interestingly, disregarding the constraint o > o and plugging the noise estimator 6 = |y —
HO|»/ Vdin (8), yields the squared-root lasso problem (Belloni et al., 2011), i.e.,

1
in—|ly — HO 0.
meln\/EHy 2+ All6]11 ©)
This problem is convex but with the added difficulty of being non-smooth when y = H@. It has been
proven that the solutions to problems (8)) and (9) are equivalent (Ndiaye et al[2017). Moreover, one

can show that if € ~ N(0,0°1;) and \* =< 4/ 1"5” , the solution of (9) is minimax optimal, and

notably, it is independent of the noise scale o.

Remark. [Li et al.|(2020) noticed that the non-differentiability of the squared-root lasso is not an
issue, in the sense that a subgradient can be used safely, if one is guaranteed to avoid the singularity.
For DAG estimation, due to the exogenous noise in the linear SEM, we are exactly in this situa-
tion. However, we point out that this alternative makes the objective function not separable across
samples, precluding stochastic optimization that could be desirable for scalability. Nonetheless, we
leave the exploration of this alternative as future work.

A limitation of the smoothed concomitant lasso in () is its inability to handle multi-task settings
where response data Y € R?X™ is collected from d diverse sources with varying noise levels.
Statistical and algorithmic issues pertaining to this heteroscedastic scenario have been successfully
addressed in (Massias et al.l 2018)), by generalizing the smoothed concomitant lasso formulation to
perform joint estimation of the coefficient matrix @ € RP*"™ and the square-root of the noise covari-
ance matrix ¥ = diag(oy,...,04) € R4 Accordingly, the so-termed generalized concomitant
multi-task lasso is given by

1 9 tr(X)
win 5 Y —HO|5 + =

Similar to the smoothed concomitant lasso, the matrix ¥ is either assumed to be known a priori,
or, it is estimated from the data, e.g., via 3y = % x 1072 as suggested in (Massias et al.,|2018)).

+A[O]l2,1 +I{3 = 3o} (10)

B ALGORITHMIC DERIVATIONS

In this section, we compute the gradients of the proposed score functions with respect to W, derive
closed-form solutions for updating ¢ and 3, and discuss the associated computational complexity.

B.1 EQUAL NOISE VARIANCE

Gradients. We introduced the score function S(W,0) = 71| X — WX + % + A\|W]||; in
@). Defining f(W,0) := 51| X — WTX||% + 4, we calculate the gradient of f(W,0) w.r.t.
W, for fixed 0 = 6.

The smooth terms in the score function can be rewritten as

1 dé
5) = X - T:)( 2 e 11
FW,5) = I X - WX} + % an
_ ! Tx\T T o
=5 Tr(X-W'X) (X-W'X)) + 5 (12)
-1l (XT(I—W)(I—WT)X)—i—d—& (13)
2n6 2
1 T dé
= 2—ATr((I—W) cov(X)(I - W)) + > (14)
&
where cov(X) = LXXT is the sample covariance matrix. Accordingly, the gradient of f(W, o) is
XX XX YW
wa(W,&):—( ) XX (15)
ng né
= —icov(X)[I—W]. (16)
&
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Closed-form solution for & in (). We update o by fixing W to W and computing the minimizer
in closed form. The first-order optimality condition yields

‘9f(;§’0') _ 2;; IX - WTX|2 + g 0. (17)
Hence,
5% = %IIX—WTXH% (18)
_ idTr (X-WTX)T(X - WX)) (19)
- %Tr (xT (I— W)(I— wT)x) (20)
_ id T (- WHXXT(1- W) b3
_ - Tr ((I W) cov(X)(I — W)) . (22)

Because of the constraint o > oy, the minimizer is given by

X <\/Tr (T = W)T cov(X)(I— W) /d, ao> . (23)

Complexity. The gradient with respect to W involves subtracting two matrices of size d x d, result-
ing in a computational complexity of O(d?). Additionally, three matrix multiplications contribute
to a complexity of O(nd? + d*). The subsequent element-wise division adds O(d?). Therefore, the
main computational complexity of gradient computation is O(d?), on par with state-of-the-art con-
tinuous optimization methods for DAG learning. Similarly, the closed-form solution for updating o
has a computational complexity of O(d?), involving two matrix subtractions (O(2d?)), four matrix
multiplications (O(nd? + 2d?)), and matrix trace operations (O(d)).

Online updates. The closed-form solution for & in @) can be used in a batch setting when all
samples are jointly available. The proposed score function allows to design a solution for this
scenario, as the updates naturally decompose in time (i.e., across samples). In the mini-batch setting,
at each iteration ¢, we have access to a randomly selected subset of data X, € R4Xms with ny, < n
as the size of the mini-batch. Consequently, we could utilize mini-batch stochastic gradient descent
as the optimization method within our framework. Given an initial solution Wo, it is possible to
conceptualize an online algorithm with the following iterations fort = 1,2,. ..

1. Compute the sample covariance matrix cov(X;) = 1 ((t —1)cov(Xs_1) + n%,XtX:)'

2. Compute W, using cov(X;) and a first-order update as in Algorithm
3. Compute the noise estimate 6; using cov(X;) and (@).

Alternatively, we could keep sufficient statistics for the noise estimate. In this case, the update
would proceed as follows. We first compute the residual ¢; = ﬁ X — W, X;||2 and update the

sufficient statistic e; = e;_1 + €;. Finally, we compute the noise estimate &; = max (, / %et, 00>.

The use of this type of sufficient statistics in online algorithms has a long-standing tradition in the
adaptive signal processing and online learning literature (e.g., Mairal et al., 2010). Although the
above iterations form the conceptual sketch for an online algorithm, many important details need to
be addressed to achieve a full online solution and we leave this work for the future. Our goal here
was to illustrate that resulting DAG structure and scale estimators are decomposable across samples.

To empirically explore the mentioned sufficient statistics, we conducted an experiment using mini-
batches of data. The performance of these optimization methods is tested on an ER4 graph of size
d = 50, where we generate n = 1000 i.i.d samples using a linear SEM. We assume the noise
distribution is Gaussian, and the noise variances are equal. We explore two distinct batch sizes,
namely 100 and 500, corresponding to using 10% and 50% of the data at each iteration, respectively.

To monitor how well these algorithms track the output of the CoLiDE-EV algorithm, denoted as W*
W —W~|r

and o*, we calculate the relative error W s

at each iteration ¢. Similarly, the relative error
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Figure 4: Tracking performance of mini-batch stochastic gradient descent in relation to the output
of the original CoLiDE-EV algorithm. The left plot illustrates the tracking of the output graph W*,
while the right plot represents the tracking of the noise level o*.

for the noise scale is computed as loe=a"1  As outlined in Section@ we address CoLiDE-EV for

lo*]
sequences of decreasing p. To enhance visual clarity, we focus on W, and o; for the smallest .

The experimental results, shown in Figure ] demonstrate that mini-batch stochastic gradient de-
scent with varying batch sizes adeptly follows the output of CoLiDE-EV for both the DAG adja-
cency matrix (left) and the noise level (right). While these findings showcase promising results,
we acknowledge the need for further evaluation to conclusively assert the decomposability benefits
of our method. This experiment serves as an initial exploration, providing valuable insights for a
subsequent analysis of the online updates.

B.2 NON-EQUAL NOISE VARIANCE

Gradients. We introduced the score function S(W, X) in (3)). Upon defining

g(W,X) = %T& (X-W'X)'s (X -W'X)) + %ﬂ(z), (24)

we derive the gradient of (W, X) w.r.t. W, while maintaining ¥ = 3 fixed. To this end, note that
g(W, X) can be rewritten as

g(W,S) = % Tr ((X WX TS (X - WTX)) + % () (25)
_ % Tr (2_1()( ~WTX)(X - WTX)T) + %Tr(ﬁ) (26)
_ %Tr <21(I—WT)XZ{T(I—W)) + %Tr(ﬁ]) 27)
= %Tr (2‘1(1—W)TCOV(X)(1—W)) + %Tr(ﬁ]). (28)

Accordingly, the gradient of g(W, X) is

~ 1 N — " — " "
Vwg(W, %) = o [—XXTE T oxXTe T A XXTWE T £ XXTWS 1} (29)
.1 .1
xXxXTs ' XXTWS
- 4 (30)
n n
~ —1
=—cov(X)[I-W]X . 31
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Closed-form solution for 3 in (6). We update X by fixing W to W and computing the minimizer
in closed form. The first-order optimality condition yields

-T
Vsg(W,3) = fn X-WX)X-W'X)"Ts"T 4+ %1 =0. (32)
Hence,
W _wT T
$° (X -W X);X W'X) (33)
= (I-W)" cov(X)(I - W). (34)

Note that we can ascertain 3 is a diagonal matrix, based on SEM assumptions of exogenous noises
being mutually independent. Because of the constraint 3 > 33, the minimizer is given by

$ = max <\/diag (T = W)T cov(X)(I — W)), Eo> , (35)

where /(-) and max(-) indicates an element-wise operation, while the operator diag(-) extracts the
diagonal elements of a matrix.

Complexity. The gradient with respect to W entails the subtraction of two d x d matrices, re-
sulting in O(d?) complexity. The inverse of a diagonal matrix, involved in the calculation, also
incurs a complexity of O(d?). Additionally, four matrix multiplications contribute to a complexity
of O(nd? + 2d?). The subsequent element-wise division introduces an additional O(d?). Conse-
quently, the principal computational complexity of gradient computation is O(d?®), aligning with
the computational complexity of state-of-the-art methods. The closed-form solution for updating 3
has a computational complexity of O(d?), involving two matrix subtractions (O(2d?)), four matrix
multiplications (O(nd? + 2d*)), and two element-wise operations on the diagonal elements of a
d x d matrix (O(24d)).

Online updates. As in the homoscedastic case, we can devise an online algorithm based on
CoLiDE-NYV. The main difference is that we now need a collection of d sufficient statistics, one

for each node in the graph. For j = 1,...,dand allt = 1,2, ..., we now have
2
i = ((x0)s = (Wxa); ) (36)
€t = €jt—1+ €ty (37
. 1
0j¢ = mMax ;ej,tyo—O ) (38)
where x; = [(X¢)1,...,(X¢)q] and e; o = 0 for all j. Using x, the noise estimates {61 ¢,...,0q,},

and W,_1, we can compute W, e. g., using a first-order update as in Algorithm |1 I Although
these elements provide the foundation for an online algorithm, we leave the completion of this new
technique as future work. In any case, this shows the updates decompose across samples.

B.3 GRADIENT OF THE LOG-DETERMINANT ACYCLICITY FUNCTION

We adopt Higet (W, s) = dlog(s) — log(det(sI — W o W)) as the acyclicity function in CoLiDE’s
formulation. As reported in Bello et al.| (2022), the gradient of H,4e(W, s) is given by

VHige (W) =2[sI - Wo W] ' o W. (39)

The computational complexity incurred in each gradient evaluation is O(d®). This includes a matrix
subtraction (O(d?)), four element-wise operations (O(4d?)), and a matrix inversion (O(d?)).

Complexity summary. All in all, both CoLiDE variants, CoLiDE-EV and CoLiDE-NV, incur a per
iteration computational complexity of O(d?). While CoLiDE concurrently estimates the unknown
noise levels along with the DAG topology, this comes with no significant computational complexity
overhead relative to state-of-the-art continuous relaxation methods for DAG learning.
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C GUARANTEES FOR (HETEROSCEDASTIC) LINEAR GAUSSIAN SEMS

Consider a general linear Gaussian SEM, whose exogenous noises can have non-equal variances
(i.e., the heteroscedastic case). This is a non-identifiable model (Peters et al.l [2017), meaning that
the ground-truth DAG cannot be uniquely recovered from observational data alone. Still, we argue
that the interesting theoretical analysis framework put forth in (Ghassami et al.,2020) and (Ng et al.,
2020) — as well as its conclusions — carry over to CoLiDE. The upshot is that just like GOLEM, the
solution of the CoLiDE-NV problem with u; — oo asymptotically (in n) will be a DAG equivalent
to the ground truth. The precise notion of (quasi)-equivalence among directed graphs was introduced
by |Ghassami et al.| (2020), and we will not reproduce all definitions and technical details here. The
interested reader is referred to (Ng et al.| 2020, Section 3.1).

Specifically, it follows that under the same assumptions in (Ng et al., 2020\ Section 3.1), Theorems
1 and 2 therein hold for CoLiDE-NV when uj — oo. Moreover, (Ng et al., [2020, Corollary 1)
holds as well. This corollary motivates augmenting the score function in (3)) with the DAG penalty
Higet (W, si), to obtain a DAG solution quasi-equivalent to the ground truth DAG in lieu of the so-
termed ‘Triangle assumption’. The proofs of these results are essentially identical to the ones in (Ng
et al.| 2020, Appendix B), so in the sequel we only highlight the minor differences.

Let G* and ® be the ground truth DAG and the precision matrix of the random vector x € R, so
that the generated distribution is x ~ A/(0, @71). Let W and X2 be the weighted adjacency matrix
and the diagonal matrix containing exogenous noise variances o2, respectively. As n — oo, the law

of large numbers asserts that the sample covariance matrix cov(X) — ©!, almost surely. Then,
if we drop the penalty term, p; — 0o, and considering A such that both trace terms in the score
function in () dominate asymptotically, COLiDE-NV’s optimality condition implies [cf. (34)]

S - 1-W)TeHI-W). (40)
Note that when p;; — 0o, CoLiDE-NV is convex and we are thus ensured to attain global optimality.
This means that we will find a pair (W, 3) of estimates such that (I — W)2_2(I -W)T =8,

and denote the directed graph corresponding to W by G(W) One can readily show that under the

mild assumptions in (Ng et al., [2020), G(W) is quasi equivalent to G*. The remaining steps of the
proofs of both Theorems are identical to those laid out by Ng et al.| (2020, Appendix B).

D IMPLEMENTATION DETAILS

In this section, we provide a comprehensive description of the implementation details for the exper-
iments conducted to evaluate and benchmark the proposed DAG learning algorithms.

D.1 COMPUTING INFRASTRUCTURE

All experiments were executed on a 2-core Intel Xeon processor E5-2695v2 with a clock speed of
2.40 GHz and 32GB of RAM. For models like GOLEM and DAGuerreotype that necessitate GPU
processing, we utilized either the NVIDIA A100, Tesla V100, or Tesla T4 GPUs.

D.2 GRAPH MODELS

In our experiments, each simulation involves sampling a graph from two prominent random graph
models:

* Erdés-Rényi (ER): These random graphs have independently added edges with equal
probability. The chosen probability is determined by the desired nodal degree. Since ER
graphs are undirected, we randomly generate a permutation vector for node ordering and
orient the edges accordingly.

* Scale-Free (SF): These random graphs are generated using the preferential attachment
process (Barabasi & Albert, [1999). The number of edges preferentially attached is based
on the desired nodal degree. The edges are oriented each time a new node is attached,
resulting in a sampled directed acyclic graph (DAG).
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D.3 METRICS

We employ the following standard metrics commonly used in the context of DAG learning:

* Structural Hamming distance (SHD): Quantifies the total count of edge additions, dele-
tions, and reversals required to transform the estimated graph into the true graph. Normal-
ized SHD is obtained by dividing this count by the number of nodes.

* SHD-C: Initially, we map both the estimated graph and the ground truth DAG to their
corresponding Completed Partially Directed Acyclic Graphs (CPDAGs). A CPDAG repre-
sents a Markov equivalence class encompassing all DAGs that encode identical conditional
independencies. Subsequently, we calculate the SHD between the two CPDAGs. The nor-
malized version of SHD-C is obtained by dividing the original metric by the number of
nodes.

 Structural Intervention Distance (SID): Counts the number of causal paths that are dis-
rupted in the predicted DAG. When divided by the number of nodes, we obtain the normal-
ized SID.

* True Positive Rate (TPR): Measures the proportion of correctly identified edges relative
to the total number of edges in the ground-truth DAG.

* False Discovery Rate (FDR): Represents the ratio of incorrectly identified edges to the
total number of detected edges.

For all metrics except TPR, a lower value indicates better performance.

D.4 NOISE DISTRIBUTIONS

We generate data by sampling from a set of linear SEMs, considering three distinct noise distribu-

tions:

¢ Gaussian: z; ~ N(0, J?), i =1,...,d, where the noise variance of each node is 01»2
* Exponential: z; ~ Exp()\;), i« = 1,...,d, where the noise variance of each node is )\i_z.
 Laplace: z; ~ Laplace(0,b;), i = 1,...,d, where the noise variance of each node is 2b$.

D.5 BASELINE METHODS

To assess the performance of our proposed approach, we benchmark it against several state-of-the-
art methods commonly recognized as baselines in this domain. All the methods are implemented
using Python.

* GOLEM: This likelihood-based method was introduced by [Ng et al.| (2020). The code
for GOLEM is publicly available on GitHub at https://github.com/ignavier/
golemnl Utilizing Tensorflow, GOLEM requires GPU support. We adopt their recom-
mended hyperparameters for GOLEM. For GOLEM-EV, we set \; = 2x 102 and \, = 5,
and for GOLEM-NV, \; = 2 x 1073 and \; = 5; refer to Appendix F of Ng et al.[(2020)
for details. Closely following the guidelines inNg et al.|(2020), we initialize GOLEM-NV
with the output of GOLEM-EV.

* DAGMA: We employ linear DAGMA as introduced in Bello et al. (2022). The code is
available at https://github.com/kevinsbello/dagma. We adhere to their rec-
ommended hyperparameters: T = 4, s = {1,.9,.8,.7}, 8; = 0.05, « = 0.1, and p(®) = 1;
consult Appendix C of [Bello et al.|(2022) for specifics.

* GES: This method utilizes a fast greedy approach for learning DAGs, outlined in |Ram-
sey et al|(2017). The implementation leverages the py—causal Python package and
can be accessed at https://github.com/bd2kccd/py—causal. We configure
the hyperparameters as follows: scoreId = ’cg-bic-score’, maxDegree = 5,
dataType = ’continuous’,and faithfulnessAssumed = False.
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Figure 5: DAG recovery performance assessed for ER4 and SF4 graphs with 200 nodes, assuming
equal noise variances. Each row represents a distinct noise distribution, and the shaded area depicts
the standard deviation. The first two columns display SID, while the remaining columns focus on
FDR.

* SortNRegress: This method adopts a two-step framework involving node ordering based
on increasing variance and parent selection using the Least Angle Regressor (Reisach
et al., 2021). The code is publicly available at https://github.com/Scriddie/
Varsortability.

* DAGuerreotype: This recent approach employs a two-step framework to learn node or-
derings through permutation matrices and edge representations, either jointly or in a bi-
level fashion (Zantedeschi et al., 2023). The implementation is accessible at https:
//github.com/vzantedeschi/DAGuerreotype| and can utilize GPU process-
ing. We employ the linear version of DAGuerreotype with sparseMAP as the operator
for node ordering learning. Remaining parameters are set to defaults as per their paper. For
real datasets, we use bi-level optimization with the following hyperparameters: K = 100,
pruning.reg=0.01, lr_theta=0.1,and standardize=True. For synthetic sim-
ulations, we use joint optimization with K = 10.

E ADDITIONAL EXPERIMENTS

Here, we present supplementary experimental results that were excluded from the main body of the
paper due to page limitations.

E.1 ADDITIONAL METRICS FOR THE HOMOSCEDASTIC EXPERIMENTS

For the homoscedastic experiments in Section [5] we exclusively presented the normalized SHD
for 200-node graphs at various noise levels. To offer a comprehensive analysis, we now introduce
additional metrics—SID and FDR—in Figure [5] We have also incorporated normalized SHD-C,
as illustrated in Figure [6] The results in Figures 5| and [6] demonstrate the consistent superiority of
CoLiDE-EV over other methods in both metrics, across all noise variances.

E.2 SMALLER GRAPHS WITH HOMOSCEDASTIC ASSUMPTION

For the homoscedastic experiments in Section [5} we exclusively examined graphs comprising 200
nodes. Here, for a more comprehensive analysis, we extend our investigation to encompass smaller
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Figure 6: DAG recovery performance assessed for ER4 and SF4 graphs with 200 nodes, assuming
equal noise variances. Each row represents a distinct noise distribution, and the shaded area depicts
the standard deviation.

graphs, specifically those with 100 and 50 nodes, each with a nodal degree of 4. Utilizing the Linear
SEM model, as detailed in Section 5] and assuming equal noise variances across nodes, we gener-
ated the respective data. The resulting normalized SHD and FDR are depicted in Figure [/| where
the first three rows present results for 100-node graphs, and the subsequent rows showcase findings
for 50-node graphs. It is notable that as the number of nodes decreases, GOLEM’s performance im-
proves, benefitting from a greater number of data samples per variable. However, even in scenarios
with fewer nodes, CoLiDE-EV consistently outperforms other state-of-the-art methods, including
GOLEM.

E.3 ADDITIONAL METRICS FOR THE HETEROSCEDASTIC EXPERIMENTS

For the heteroscedastic experiments in Section [5] we exclusively displayed normalized SHD for
various node counts and noise distributions. To ensure a comprehensive view, we now include
normalized SID and FDR in Figure [§] and normalized SHD-C in Figure [9] representing the same
graphs analyzed in Section[5] Figures [§] and [0] demonstrate the consistent superiority of CoLiDE-
NV over other state-of-the-art methods across multiple metrics.

E.4 DATA STANDARDIZATION IN HETEROSCEDASTIC SETTINGS

In simulated SEMs with additive noise, a phenomenon highlighted in (Reisach et al.,[2021) indicates
that the data generation model might inadvertently compromise the underlying structure, thereby un-
expectedly influencing structure learning algorithms. Reisach et al.|(2021)) argue that, for generically
sampled additive noise models, the marginal variance tends to increase along the causal order. In
response to this observation, they propose a straightforward DAG learning algorithm named Sort-
NRegress (see Appendix [D.5), which we have integrated into our experiments to demonstrate the
challenging nature of the task at hand. To mitigate the information leakage caused by such inadver-
tent model effects, Reisach et al.| (2021) suggest standardizing the data of each node to have zero
mean and unit variance.

We note that such standardization constitutes a non-linear transformation that can markedly im-
pact performance, particularly for those methods developed for linear SEMs. For our experiments
here, we utilized the same graphs presented in the heteroscedastic settings section of the paper but
standardized the data. The recovery performance of the algorithms tests is evaluated using the nor-
malized SHD and SHD-C metrics, as illustrated in Figure[I0} Despite the overall degradation in per-
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Figure 7: DAG recovery performance for graphs with 100 nodes (the first three rows) and 50 nodes.
Each graph is designed with a nodal degree of 4, and equal noise variances are assumed across
nodes. The initial two columns display normalized SHD, while the subsequent columns present
FDR. The shaded areas indicate standard deviations.

formance resulting from such standardization, CoLiDE-NV continues to outperform state-of-the-art
algorithms in this challenging task.

We also conducted a similar standardization on 10 small and sparse ER1 graphs, each comprising
d = 20 nodes, with a substantial dataset of n = 100, 000 i.i.d. observations. This time, we consid-
ered the greedy algorithm GES (see Appendix for comparisons. Prior to standardization, the
performance of the algorithms in terms of SHD was as follows: CoLiDE-EV: 12.8; CoLiDE-NV:
14.9; and GES: 14.9. Post-standardization, the SHD values changed to CoLiDE-EV: 18.8; CoLiDE-
NV: 19.5; and GES: 14.9. Notably, the performance of GES remained unaffected by standardization.
While CoLiDE exhibited superior performance compared to others based on continuous relaxation
(see Figure[T0), it displayed some sensitivity to standardization, indicating that it is not as robust in
this aspect as greedy algorithms. We duly acknowledge this as a limitation of our approach.
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Figure 8: DAG recovery performance evaluated for ER4 and SF4 graphs with varying node counts
under different noise distributions (each row). The figures display normalized SID (first two
columns) and FDR (last two columns). We consider varying noise variances across nodes, and
the shaded areas represent standard deviations.
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Figure 9: DAG recovery performance evaluated for ER4 and SF4 graphs with varying node counts
under different noise distributions (each row). The figures display normalized SHD-C. We consider
varying noise variances across nodes, and the shaded areas represent standard deviations.

E.5 HIGH SNR SETTING WITH HETEROSCEDASTICITY ASSUMPTION

For the heteroscedastic experiments in Section[5] we discussed how altering edge weights can impact
the SNR, consequently influencing the problem’s complexity. In this section, we explore a less
challenging scenario by setting edge weights to be drawn from [—2, —0.5] U [0.5, 5], creating an
easier counterpart to the heteroscedastic experiments in Section 5] We maintain the assumption
of varying noise variances across nodes. The normalized SHD and FDR for these experiments
are presented in Figure [T1] As illustrated in Figure [TT} CoLiDE variants consistently outperform
other state-of-the-art methods in this experiment. Interestingly, CoLiDE-EV performs on par with
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Figure 10: DAG recovery performance for ER4 and SF4 graphs when data standardization is ap-
plied, considering varying noise variances for each node. These experiments were conducted across
different numbers of nodes and noise distributions (each row). The first two columns display nor-
malized SHD, while the rest present normalized SHD-C. Shaded areas represent standard deviations.
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Figure 11: DAG recovery performance in a high SNR setting for ER4 and SF4 graphs, considering
varying noise variances for each node. These experiments were conducted across different numbers
of nodes and noise distributions (each row). The first two columns display normalized SHD, while
the rest present FDR. Shaded areas represent standard deviations.

CoLiDE-NV in certain cases and even outperforms CoLiDE-NV in others, despite the mismatch in
noise variance assumption. We attribute this to the problem’s complexity not warranting the need
for a more intricate framework like CoLiDE-NV in some instances.
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Figure 12: DAG recovery performance assessed on sparse graphs with a nodal degree of 2 and
500 nodes, assuming homoscedastic noise. The first two columns depict normalized SHD, and the
following columns depict FDR. Shaded regions represent standard deviations.

E.6 LARGER AND SPARSER GRAPHS

It is a standard practice to evaluate the recovery performance of proposed DAG learning algorithms
on large sparse graphs, as demonstrated in recent studies (Ng et al.,[2020; Bello et al.,2022). There-
fore, we conducted a similar analysis, considering both Homoscedastic and Heteroscedastic settings,
with an underlying graph nodal degree of 2.

Homoscedastic setting. We generated 10 distinct ER and SF DAGs, each consisting of 500 nodes
and 1000 edges. The data generation process aligns with the setting described in Section [5] as-
suming equal noise variance for each node. We replicated this analysis across various noise levels
and distributions. The performance results, measured in terms of Normalized SHD and FDR, are
presented in Figure [I2] CoLiDE-EV consistently demonstrates superior performance in most sce-
narios. Notably, GOLEM-EV performs better on sparser graphs and, in ER2 with an Exponential
noise distribution and high variance, it marginally outperforms CoLiDE-EV. However, CoLiDE-
EV maintains a consistent level of performance across different noise distributions and variances in
homoscedastic settings.

Heteroscedastic setting. Similarly, we generated sparse DAGs ranging from 200 nodes to 500
nodes, assuming a nodal degree of 2. However, this time, we generated data under the heteroscedas-
ticity assumption and followed the settings described in Section[5] The DAG recovery performance
is summarized in Figure[T3] where we report Normalized SHD and FDR across different noise distri-
butions, graph models, and numbers of nodes. In most cases, CoLiDE-NV outperforms other state-
of-the-art algorithms. In a few cases where CoLiDE-NV is the second-best, CoLiDE-EV emerges
as the best-performing method, showcasing the superiority of CoLiDE’s variants in different noise
scenarios.

E.7 DENSE GRAPHS

To conclude our analysis, we extended our consideration to denser DAGs with a nodal degree of 6.

Homoscedastic setting. We generated 10 distinct ER and SF DAGs, each comprising 100 and 200
nodes, assuming a nodal degree of 6. The data generation process was in line with the approach
detailed in Section [5] assuming equal noise variance for each node. This analysis was replicated
across varying noise levels and distributions. The performance results, assessed in terms of normal-
ized SHD and FDR, are presented in Figure CoLiDE-EV consistently demonstrates superior
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Figure 13: DAG recovery performance in large, sparse graphs with a nodal degree of 2, considering
varying noise variances for each node. The experiments were conducted across different numbers
of nodes and noise distributions (each row). The first two columns display normalized SHD, while
the rest present FDR. Shaded areas represent standard deviations.

performance across all scenarios for DAGs with 100 nodes (Figure [I4] - bottom three rows), and
in most cases for DAGs with 200 nodes (Figure |[14] - top three rows). Interestingly, in the case of
200-node DAGs, we observed that GOLEM-EV outperforms CoLiDE-EV in terms of normalized
SHD in certain scenarios. However, a closer inspection through FDR revealed that GOLEM-EV
fails to detect many of the true edges, resulting in a higher number of false positives. Consequently,
the SHD metric tends to converge to the performance of CoLiDE-EV due to the fewer detected
edges overall. This suggests that CoLiDE-EV excels in edge detection. It appears that CoLiDE-EV
encounters challenges in handling high-noise scenarios in denser graphs compared to sparser DAGs
like ER2 or ER4. Nonetheless, it still outperforms other state-of-the-art methods

Heteroscedastic setting. In this analysis, we also incorporate the heteroscedasticity assumption
while generating data as outlined in Section[5] Dense DAGs, ranging from 50 nodes to 200 nodes
and assuming a nodal degree of 6, were created. The DAG recovery performance is summarized
in Figure presenting normalized SHD (first two columns) and FDR across varying noise distri-
butions, graph models, and node numbers. CoLiDE-NV consistently exhibits superior performance
compared to other state-of-the-art algorithms in the majority of cases. In a few instances where
CoLiDE-NV is the second-best, GOLEM-EV emerges as the best-performing method by a small
margin. These results reinforce the robustness of CoLiDE-NV across a spectrum of scenarios, span-
ning sparse to dense graphs.

E.8 INTEGRATING COLIDE WITH OTHER OPTIMIZATION METHODS

CoLiDE introduces novel convex score functions for the homoscedastic and heteroscedastic settings
in (Z) and (3), respectively. Although we propose an inexaxt BCD optimization algorithm based on a
continuous relaxation of the NP-hard problem, our convex score functions can be readily optimized
using other techniques. For instance, TOPO (Deng et al., |2023a)) advocates a bi-level optimization
algorithm. In the outer level, the algorithm performs a discrete optimization over topological orders
by iteratively swapping pairs of nodes within the topological order of a DAG. At the inner level,
given a topological order, the algorithm optimizes a score function. When paired with a convex
score function, TOPO is guaranteed to find a local minimum and yields solutions with lower scores.
The integration of TOPO and CoLiDE combines the former’s appealing convergence properties with
the latter’s attractive features discussed at length in the paper.
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Figure 14: DAG recovery performance for graphs with 200 nodes (first three rows) and 100 nodes
(bottom three rows). Each graph is constructed with a nodal degree of 6, assuming equal noise vari-
ances across nodes. The first two columns display normalized SHD, while the subsequent columns
present FDR. Shaded areas represent standard deviations.

Using the available code for TOPO in https://github.com/Duntrain/TOPO, here we pro-
vide an initial assessment of this novel combination, denoted as CoLiDE-TOPO. We generate 10
different ER graphs with 50 nodes from a linear Gaussian SEM, where the noise variance of each
node was randomly selected from the range [0.5, 10]. For the parameters of TOPO, we adhered to
the values (s9 = 10, Sgman = 100, and Sjyree = 1000) recommended by . The
results in Table ] show that utilizing TOPO as an optimizer enables CoLIDE-NV to attain better
performance, with up to 30% improvements in terms of SHD and for this particular setting.

Granted, the selection of the solver depends on the problem at hand. While discrete optimizers excel
over smaller graphs, continuous optimization tends to be preferred for larger DAGs (with hundreds
of nodes). Our experiments show that CoLiDE offers advantages in both of these settings.
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Figure 15: DAG recovery performance in dense graphs featuring a nodal degree of 6, considering
differing noise variances for each node. The experiments were conducted across varying numbers of
nodes and noise distributions (each row). The initial two columns illustrate normalized SHD, while
the subsequent columns present FDR. Shaded areas depict standard deviations.

Table 4: DAG recovery results for 50-node ER4 graphs under heteroscedastic Gaussian noise.

CoLiDE TOPO CoLiDE-TOPO

EV NV EV NV

SHD 100.7+£29.6  100.9+£23.5 128.4+£38.0 88.8+21.4 66.9+15.4
SHD-C 102.4+30.0 102.8£23.8 131.14+37.3 91.3+20.7 68.8+15.4
FDR 0.26£0.10  0.26+0.07  0.36+0.08 0.23+0.06 0.16+0.04
TPR 0.69+0.06  0.68+0.06  0.72+0.06  0.74£0.04 0.74+0.04

E.9 EXAMINATION OF THE ROLE OF SCORE FUNCTIONS

Here we conduct an empirical investigation on the role of score functions in recovering the underly-
ing DAG, by decoupling their effect from the need of a (soft or hard) DAG constraint. Given a DAG
G(W), the corresponding weighted adjacency matrix W can be expressed as W = I1' UIL, where
IT € {0, 1}9%4 is a permutation matrix (effectively encoding the causal ordering of variables), and
U € R%*? s an upper-triangular weight matrix. Assuming we know the ground truth II and param-
eterizing the DAG as W = I17 UII so that an acyclicity constraint is no longer needed, the DAG
learning problem boils down to minimizing the score function S(W) solely with respect to U

min S (HTUH> . 41)

Notice that (41) is a convex optimization problem if the score function is convex. Subsequently, we
reconstruct the DAG structure using the true permutation matrix and the estimated upper-triangular
weight matrix W = I1"T UTL.

In this setting, we evaluate the CoLiDE-EV and CoLiDE-NV score functions in and (3). In
comparison, we assess the profile log-likelihood score function used by GOLEM (Ng et al., [2020).
As a reminder, the GOLEM-NV score function tailored for heteroscedastic settings, is given by

1 d
5 > 10 ([lxi — wiX[[3) +log (| det(T — W)) + X[ W, 42)
=1
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Figure 16: DAG recovery performance in ER4 DAGs under the assumption of known permutation
matrices. The experiments were conducted for varying numbers of nodes and noise distributions
(each column). The first row illustrates normalized SHD, while the subsequent row presents SHD-
C. Shaded areas depict standard deviations.

where x; € R" represents node i’s data, and W = [wr, ..., wy] € R¥? The GOLEM-EV score
function, a simplified version of @2)), is given by

d 2
5 log (HX - WTXHF> +log (| det(I — W)|) + \[W]|,. 43)
In all cases we select A = 0.002 by following the guidelines in|Ng et al.| (2020)).

It is important to note that the Gaussian log-likelihood score function used by GOLEM incorporates
a noise-dependent term f% Zle log o2, as discussed in [Ng et al[ (2020, Appendix C), which is
profiled out during optimization. This noise-dependent term bears some similarities with our CoL-
iDE formulation. Indeed, after dropping the log (| det(I — W)|) term in that vanishes when W
corresponds to a DAG, the respective score functions are given by:

d
1 1
CoLiDE-NV: S(W, %) = 5 T (X-W'X)'sH(X-W'X)) + 3 > oi + AW
=1

d
1 1
GOLEM-NV: (W, %) = - Tr (X-W'X)TE (X -W'X)) + 5 > logo} + AW/
=1

While the similarities can be striking, notice that in CoLiDE the squared linear SEM residuals are
scaled by the noise standard deviations ;. On the other hand, the negative Gaussian log-likelihood
uses the variances o2 for scaling as in standard weighted LS squares. This observation notwithstand-
ing, the key distinction lies in the fact that the negative Gaussian log-likelihood lacks convexity in
the o;, making it non-jointly convex. In contrast, CoLiDE is jointly convex in W and X due to
Huber’s concomitant estimation techniques (see Appendix [A.T)), effectively convexifying the Gaus-
sian log-likelihood; refer to Owen| (2007, Section 5) for a more detailed discussion in the context of
linear regression.

Going back to the experiment, we generate 10 different ER4 DAGs along with their permutation
matrices. These graphs have number of nodes ranging from 10 to 50. Data is generated using
a linear SEM under the heteroscedasticity assumption, akin to the experiments conducted in the
main body of the paper. The normalized SHD and SHD-C of the reconstructed DAGs are presented
in Figure [I6] Empirical results suggest that the profile log-likelihood score function outperforms
CoLiDE in smaller graphs with 10 or 20 nodes. However, as the number of nodes increases, CoLiDE
(especially the CoLiDE-EV score function), outperforms the likelihood-based score functions.

29



	Introduction
	Preliminaries and Problem Statement
	Related work
	Concomitant Linear DAG Estimation
	Further algorithmic details

	Experimental Results
	Concluding Summary, Limitations, and Future Work
	Additional related work
	Background on smoothed concomitant lasso estimators

	Algorithmic derivations
	Equal noise variance
	Non-equal noise variance
	Gradient of the log-determinant acyclicity function

	Guarantees for (heteroscedastic) linear Gaussian SEMs
	Implementation details
	Computing infrastructure
	Graph models
	Metrics
	Noise distributions
	Baseline methods

	Additional experiments
	Additional metrics for the homoscedastic experiments
	Smaller graphs with homoscedastic assumption
	Additional metrics for the heteroscedastic experiments
	Data standardization in heteroscedastic settings
	High SNR setting with heteroscedasticity assumption
	Larger and sparser graphs
	Dense graphs
	Integrating CoLiDE with other optimization methods
	Examination of the role of score functions


