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Abstract

Diffusion language models have emerged as a new approach for text genera-
tion. By enabling the parallel sampling of multiple tokens in each diffusion step,
they appear to offer a more efficient alternative to auto-regressive models. How-
ever, our observations show that current open-sourced diffusion language models
require more sampling steps to achieve comparable accuracy on representative
tasks—resulting in even higher inference costs than their auto-regressive counter-
parts. To investigate whether this is an inherent limitation, we conduct a rigorous
theoretical analysis of a widely adopted variant: the Masked Diffusion Model
(MDM). Surprisingly, our analysis reveals that the conclusion is highly sensitive
to the choice of evaluation metric. Under mild conditions, we prove that when
the target is near-optimal perplexity, MDMs can achieve this goal in a constant
number of sampling steps, independent of sequence length. This result demon-
strates that efficiency can, in principle, be attained without compromising genera-
tion quality. However, when targeting low sequence error rate—which is important
for assessing the “correctness" of a generated sequence, such as a reasoning chain—
we show that in the worst case, the required sampling steps must scale linearly
with sequence length, thereby eliminating the efficiency advantage. Our analy-
sis establishes the first theoretical foundation for understanding the comparative
strengths and limitations of MDMs, offering practical guidance on when to favor
MDMs over auto-regressive models and vice versa.

1 Introduction

Diffusion models (Hoef"all, 2072(J; Song et all, PZ02TH) have emerged as a powerful paradigm in gen-
erative modeling, establishing state-of-the-art performance in image synthesis (Karras_ef_all, 2027
Song et all, P(07T4). Their extension to discrete domains has opened new possibilities for generating
sequences, such as natural language (Campbell et all, P027; Dieleman_ef all, P027; Zheng et all,
P023; Couef all, 2074; Campbell et all, 2074; Lavelace ef all, 2(074)) and biological sequences (Ras3
fogi et all, P0077; [Vignac et all, 2027; Sun & Yang, P073; [Avdeyev et all, P073). Among various
discrete diffusion architectures, masked diffusion models (MDMs), which generate sequences by
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iteratively converting masks to tokens, have demonstrated competitive performance across language
generation tasks (Shief-all, 2074; Sahoo ef all, P074; On"ef all, 2074).

While auto-regressive models generate sequences token-by-token, discrete diffusion models can gen-
erate multiple tokens simultaneously during each step, offering the potential for greater efficiency.
However, efficiency and quality are often two sides of the same coin, and the key lies in identifying
the trade-off points of different approaches. Unfortunately, as shown in Figure [, we observed that
for two recent open-sourced large MDMs, achieving performance comparable to that of left-to-right
generative models incurs higher computational costs, as more sampling steps are required. This
leads us to ask: do discrete diffusion models really offer a better trade-off than auto-regressive mod-
els, achieving superior efficiency while maintaining high-quality generated content? The answer
may vary. If MDMs require fewer steps (i.e., neural network executions) without compromising
quality, they could offer a more favorable trade-off than auto-regressive models. However, if the
number of executions needed to maintain quality is similar to or exceeds that of auto-regressive
models, then MDMs may not present a clear advantage.

To address the above question, we present the first theoretical analysis of the efficiency of Masked
Diffusion Models (MDMs) and find that the efficiency-accuracy trade-off is highly sensitive to the
choice of evaluation metric. We adopt two complementary metrics to assess the efficiency of MDMs
in language modeling. The first metric, foken error rate (TER), quantifies token-level accuracy,
which correlates with the fluency of the generated text. In practice, perplexity is a widely used metric
for measuring token-level errors of language models (lelinek ef all, T977; Devlinef all, DOTY); thus,
we define the metric of TER by perplexity in this paper. The second metric, sequence error rate
(SER), evaluates the correctness of an entire sequence, which is crucial for reasoning tasks requiring
logically correct sequences. We provide a natural definition of SER that reflects the correctness of
the whole sequence. Together, these metrics enable a comprehensive evaluation of MDMs at both
the token and sequence levels.

We first provide a positive theoretical result regarding TER. We prove that under mild conditions,
MDMs can achieve near-optimal TER with sampling steps regardless of the sequence length L.
Compared to the auto-regressive model, which must be executed L times to generate the sequence,
MDMs demonstrate substantial efficiency gains, especially when the generation length is long. How-
ever, we show that this efficiency advantage diminishes when SER is considered. We theoretically
prove that to achieve a low SER, in the worst case, the number of required sampling steps for MDMs
must scale at least linearly with sequence length. Intuitively, this limitation arises from the fact that
SER, as a metric for the entire sequence, requires the generated sequence to be free of any error
in the whole sequence, which forces MDMs to sample only a small number of tokens per step to
mitigate such inconsistencies. As a result, the number of required sampling steps can be signifi-
cant. It is notable that each MDM sampling step usually incurs a higher computational cost than an
auto-regressive step under the same architecture, thus MDMs offer no efficiency advantage.

To fully validate our theoretical findings, we conduct synthetic experiments and examine MDMs
trained on formal languages, including n-gram languages and Hidden Markov Models (HMMs),
systematically analyzing the relationship between performance and efficiency under both TER and
SER metrics. All empirical results align with our theoretical predictions: For MDMs, achieving a
low SER requires a significant number of sampling steps, and this requirement increases as sequence
length grows. In contrast, obtaining a satisfactory TER demands fewer sampling steps, with this
number remaining relatively constant regardless of sequence length. These findings offer practical
guidance for selecting when to deploy diffusion language models based on specific application needs
and requirements.

2 Related Work

Discrete Diffusion Models. The auto-regressive paradigm has achieved significant success in
language modeling (Dai, 20T9; Floridi & Chiriaffi, 2020; Achiam ef all, 2023). However, its left-
to-right, token-by-token generation approach is not without limitations. Notably, it faces challenges
such as restricted controllability (Zhang et all, 2073) and inefficiencies in inference speed (Ceviafhat
ef-all, 2073). To overcome these drawbacks, inspired by the success of diffusion models in image
generation (Sohl=Dicksfein_ef-all, Z0TY; Song et all, P02Ta; Karras_ef all, 2027) researchers have
adapted these techniques for NLP tasks (Ansfin_ef all, DO7Ta; He ef all, D027, Chen ef all, D077,



Meng_ et all, 2077 [Ye“et all, P023; Gulrajani & Hashimotd, 2023; Zhang et al], 2024). Discrete
diffusion models, in particular, have shown promising results, achieving comparable performance
with auto-regressive models across a range of NLP benchmarks.

Discrete diffusion models can be categorized based on the initialization strategy of the reverse
process: (1) reverse processes that begin with masked sequences and (2) reverse processes that
start with sequences of tokens sampled randomly from the vocabulary. The first category, termed
masked diffusion models (MDMs), includes models such as SEDD Absorb (Lonefall, 2074) and
its streamlined variants in subsequent works (Sahoo"ef-all, P074; Zhao et all, 2074; Shi_ef all,
0074, On_ef-all, 2074; Zheng et all, 7074). The second category encompasses models like SEDD
Uniform (Con“ef-all, P0724), as well as extensions introduced in follow-up studies (Campbell et all,
2074). Notably, Gaf_ef all (2024); Davis_ef all (2074) and Campbell et al] (2074) further extend
flow-matching to the discrete domain, with differing initialization strategies: the former employs
masked sequences, while the latter utilizes a customized distribution for the reverse process.

Masked Diffusion Models. Among the two primary classes of discrete diffusion models, MDMs
have consistently demonstrated superior performance and scalability (Cou_ef-all, P024; Campbell
efall, 2074). For instance, in Con_ef all (2074), the masked variant of SEDD significantly outper-
forms its uniform counterpart across a range of benchmarks. Similarly, Campbell et al] (2024 report
that the masked variant achieves better results in most language tasks. Based on MDMs, some sam-
pling strategies have been proposed to enhance efficiency or generation quality (Sahooef-all, 2024
On_ef all, P074; Wang_et all, P075; Kim_ef all, 079). Furthermore, recent advancements have suc-
cessfully scaled MDMs to 8 billion parameters (Gaf-ef-all, 2074; Nieef all, P074; Gong et all, 2074
Shi‘efall, 2074; Nie_ef all, PO75; Ye'ef all, 2025), underscoring their robustness and adaptability to
large-scale NLP models. In this paper, we focus on MDMs, and our theoretical contributions can be
applied to all MDMs, including the masked variant of discrete flow matching. Notably, concurrent
with our theoretical analysis of MDMs, LCi“ef-all (2074) also conduct an in-depth theoretical and
empirical study on another class of MDMs. While their work primarily investigates the statistical
complexity of learning these models, our analysis concentrates on the efficiency-accuracy trade-off
of MDMs during inference.

3 Masked Diffusion Language Model

Without loss of generality, we study the sequence generation task where the sequence length is upper
bounded by L. Let V denote the vocabulary. The MDM (Conefall, P074; Shiefall, 2074; Gong et all,
2024, Sahoo ef all, P0724)) extends the vocabulary V by introducing a special mask token [m]. The
forward diffusion process progressively transforms an initial sequence x¢ = (2, 22,...,2k) € VX
into a fully masked sequence ©; = ([ml, [m],..., [m]) by independently masking each token
according to a predefined schedule. Conversely, the reverse process defines a generative model
that reconstructs a sequence by iteratively modifying a fully/partially masked sequence. Below, we
formally define both the forward and reverse processes.

Forward process. Given a sequence x and a masking schedule «;, the distribution of the sequence
x; at time ¢t € [0, 1] is expressed as:

L—1
ao(@elwo) = [T auolxilzh),
=0 o (1)
1 1 Qt, l’% = m(z)’
where zhxh) = ‘
alaile) = {7 AT
The masking schedule «; is designed such that oy = 1, ensuring that the sequence remains un-
masked at the start of the process. Similar to the continuous diffusion methods (Ho ef-all, ZO21;
Song et all, P072T4; Karras_ef all, 2027), we set a; = 0 (or a value approaching zero), ensuring the
sequence is fully masked at the end of the forward process.

Reverse process. The reverse process reconstructs a sequence from a masked version by reversing
the forward dynamics. Given the sequence at time ¢ and the original sequence x(, the conditional
distribution of the sequence at time s < {, is defined as:

8y () +

1— oy Qg — Qy

q$|t,0(xi|mtam0) =

1—O[t 1—0615
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Figure 1: Efficiency and accuracy of MDMs on GSMS8K (8-shot): The left figure uses Qwen2.5-7B
as the evaluation baseline and plots the relative accuracy and efficiency of Dream-v0-Base-7B and
LLaDA-8B-Base across different sampling steps. The origin can be considered as the baseline result.
The first quadrant demonstrates models that can simultaneously achieve higher efficiency and accu-
racy. From the figure, we can see that the MDMs all fall into the third quadrant, indicating lower
efficiency and lower performance. The right figure uses a baseline in which the MDMs are con-
strained to generate the left-most masked token at each step, effectively mimicking auto-regressive
decoding using the same model. Still, even under this setting, none of the configurations fall into
the first quadrant.

where d,(y) is the Kronecker delta function. Marginalizing over xg yields the true reverse process

q(xs|x¢):
qs|e(@s|xe) = H qsje(at|@y),  where
]1-7 xi # [m],xi = xia 2)
. _(Xs’ rl = [m],xl _ [m],
Goie(@5|®e) = § ar%h; Pt o
T—a; LIO\t( s‘xt)7 z; = [m], 2% # [m],
0, otherwise.

In MDM, a parameterized reverse model py is often employed to approximate the distribution
q0|t(xé|act). This model is trained by minimizing the evidence lower bound (ELBO) (Lou_ef all,
2024; Shief all, P074; Gong et all, P024; Sahoo ef all, 2024)) on the negative log-likelihood of the
data distribution q.

Inference. Inference within the MDM framework entails discretizing the reverse process to itera-
tively reconstruct sequences from a fully masked sequence. Let T' denote the number of sampling
steps. Starting with a fully masked sequence, the denoising process proceeds via gg¢(xs | @),

where s = % and t = &L At each step, the model first samples @ from the conditional distribu-
tion py(xo | ), followed by masking specific tokens according to q(xs | T+, o).

In practice, the reverse model is parameterized using a factorized denoising model, where the condi-
tional distribution pg (¢ | x;) is expressed as:

Hpe h | ®y).

Here, each token is predicted independently using py(z | x;), allowing for efficient parallel sam-
pling. However, this factorized approach imposes a significant limitation: it disregards interdepen-
dencies between tokens within the sequence. As a result, the factorized model py(x¢ | ;) cannot
exactly match the true reverse distribution g(xg | x;) (Xu_efall, 2074). In this work, we analyze
the conditions under which this sampling method achieves a favorable balance between efficiency
and the quality of the generated sequences. Motivated by these observations, this paper begins by
re-examining the theoretical upper bounds on the performance and efficiency of MDMs.

3)

po(To | 1) =

Efficiency-accuracy trade-off of open-sourced MDMs. The efficiency-accuracy trade-off is cru-
cial for understanding the strengths of different generative models. In Con“ef-all (201724)); Nie_ef all



(2024), researchers demonstrate that MDMs offer a more favorable trade-off than auto-regressive
models in terms of perplexity-that is, the learned MDMs can achieve competitive perplexity with
higher token throughput. However, to the best of our knowledge, there has been limited empirical
investigation of this trade-off in realistic tasks such as reasoning.

To address this gap, we conducted experiments on the GSM8K, MBPP, and HumanEval benchmarks

MDMs in 2025, Dream-v0-Base-7B and LLaDA-8B-Base (IYe_ef_all, 2025; Nie_ef all, 2025). We
directly evaluate these checkpoints using different numbers of decoding steps, and compare the ac-
curacy and efficiency against similar-size auto-regressive baseline Qwen2.5-7B (Team, 2(074)). The
results on GSMS8K are presented in Figure [, the results on MBPP and HumanEval are presented
in Appendix B3 and Appendix B=4. Notably, across all configurations (sampling steps), the perfor-
mance and efficiency of MDMs are significantly worse than that of auto-regressive models.

A key contributing factor to this gap is that the model checkpoints were trained on different private
datasets, which inherently introduces bias into the comparison. To ensure fairness, we also construct
a baseline by running the MDMs in an auto-regressive manner: at each diffusion step, the model is
constrained to generate the left-most masked token, thereby producing the full sequence in L steps.
However, even compared to this naive baseline, none of the configurations fall into the first quadrant
of the plot in Figure [M-indicating that, compared to auto-regressive decoding, MDMs may not be
able to simultaneously achieve superior efficiency and improved performance. Full details are given
in Appendix [A.

4 Theoretical Analysis

Motivated by the observations above, this paper begins by re-examining the theoretical trade-off
between the accuracy and efficiency of MDMs. In image generation, the primary goal is typically
to produce visually appealing and seamless images (Hensel'ef all, POT7). Language generation is
more task-specific. Depending on the application, the users may prefer fluent outputs, as in article
writing, or precise and accurate reasoning, as in problem-solving tasks. In this section, we explore
the sampling efficiency of MDMs in addressing various language tasks with respect to different
evaluation metrics.

4.1 Notations and Problem Setting

Our investigation employs the hidden Markov model (HMM) framework to analyze natural lan-
guage generation. This section establishes the formal notation and problem setting that underlie our
subsequent analysis.

HMMs (Eddyl, MT996) provide a probabilistic foundation for modeling sequential data with latent
structures, where observed sequences are generated by an underlying sequence of unobservable
hidden states. Formally, an HMM H = (S, V, A, B) is characterized by the following components:
a finite set of hidden states S = {s1, $2,..., SN}, an observable vocabulary V), a state transition
probability matrix A € RN*N | an emission probability matrix B € RV <Vl and an initial state
distribution 7w € RY. Given a sequence of observations = (21, ¥, ...,2r) € VL and a sequence
of hidden states s = (s1,s2,...,51) € S, the generative process of an HMM is governed by the
following probabilistic relations:

Pr(sl) = Tsy, PI'(LCZ | S'L) = BSi,Cl)i7
Pr(s; | s1.5-1) =Pr(s; | si—1) = As,_, ;-

This formulation enables HMMs to capture both the sequential dependencies among hidden states
and their probabilistic relationships with observed data. In the field of NLP, HMMs serve as the
fundamental statistical tools to model natural language (Eddyj, T996; Marfi_ & Bunke, DOOT). A
notable special case of HMM is the n-gram language model (Brown et all, T997), which estimates
the probability of a token given its preceding n — 1 tokens. Despite their simplicity, n-gram models
are foundational tools in NLP tasks (Brown ef all, T997; De Naovais_ef all, Z0T0U). Moreover, L1
ef-all (2024) suggests that scaling up n-gram models can also achieve performance comparable to
modern large language models.

Formally, we aim to address the following question: If MDMs have the capability to approximate
a target HMM model, what are the computational costs, and do MDMs offer advantages over auto-



regressive models? To evaluate the approximation quality of MDMs, we adopt two widely used
metrics: TER and SER, which quantify different aspects of a model’s performance.

Token Error Rate. In practice, perplexity is one of the most widely used metrics for evaluating
token-level errors in language models. It quantifies the uncertainty of a model in predicting the next
token in a sequence and serves as a standard measure for assessing the quality of text generation. In
this paper, we define the TER by perplexity. Models with lower TER are generally considered more
effective at generating fluent and coherent text. Formally, given a ground-truth language model ¢
and an evaluated model p, the TER is computed as:

TER(p) = 28=~al~ 255=]

“
Sequence Error Rate. The SER evaluates the correctness of an entire sequence rather than individ-
ual tokens. Let g represent a target language defined over a vocabulary V, and let £, = {x € V* |
q(z) > 0} denote the support set of distribution ¢. For a generative model p, the SER is defined as:

SER(p) =1- Y _ p(=). )

xeLl,

This metric quantifies the probability that the model generates sequences falling outside the support
set of the ground-truth distribution.

Compared to TER, SER imposes a stricter evaluation criterion by requiring the correctness of entire
sequences. This makes SER particularly well-suited for tasks that demand logical consistency or
reasoning, where the correctness of the complete reasoning chain is crucial.

4.2 MDMs Can Generate Low-TER Sentences Efficiently

In this subsection, we rigorously examine the efficiency of sampling in MDMs, demonstrating that
MDMs are capable of efficiently generating sentences with near-optimal TER. To establish the main
theoretical results, we assume that the MDMs have enough expressive power and begin with the
following assumption:

Assumption 4.1 (Learning with Small Error). Let ¢ denote the target language model with vocabu-
lary V, and let py represent the reverse model trained to approximate the reverse process generating
the target language under a masking schedule o;. Assume there exists €jeaming > 0 such that the KL
divergence between py and the reverse process distribution generating the language ¢ is bounded by
€learning i.e., ) )

Dxv(qoe(zo | ®4)||po(zg | ®4)) < €leaming, V¢ and ;.

It is worth noting that pg(z{, | &) = qoj(x§ | ) represents the optimal solution to the ELBO loss
during training. Assumption Bl implies that the MDM model is well-trained and approximates the
ground-truth distribution with only a small error.

During MDM inference, the time interval [0, 1] is discretized into N steps, where ¢; = %, S
[N], and iteratively reconstruct sequences from a fully masked sequence. The following theorem
shows that the sequence distribution generated by the reverse process, even with a small number
of sampling steps, can achieve near-optimal TER. Consequently, MDMs exhibit high efficiency in
generating n-gram language.

Theorem 4.2 (TER Bounds for n-Gram Language Generation). For any n-gram language q and
any € > 0, let pg denote the reverse model and L denote the sequence length. The distribution over
sequences generated by py is denoted as p. For any L > O(enﬂ%), under Assumption B, there
exists a masking schedule oy such that, with N = O ( ”;1) sampling steps, the TER of the MDM is
upper-bounded by:

log TER(p) < log TER(q) + €learming + 4€log |V]. (6)

The proof of this theorem is presented in Appendix D. Theorem B2 demonstrates that MDMs can
efficiently generate sentences with high fidelity. It is notable that for a given data distribution ¢,
the TER of a language model p achieves its global minimum when p = ¢. To ensure a gap of at
most € with the optimal TER during sampling, the number of required sampling steps is bounded by

o(=)

en

The above results suggest that to achieve near-optimal TER, MDMs require only a number of sam-
pling steps that is independent of the sequence length L. In each sampling step, the neural network



model, i.e., a Transformer, is executed once. Therefore, informally, the neural network execution
count is constant for MDM. This offers substantial efficiency gains over auto-regressive models,
where the model must be executed L times, once for each token in the sequence. Such efficiency
enables MDMs to handle long-sequence generation tasks effectively while maintaining high-quality
outputs.

4.3 MDMs Cannot Generate Low-SER Sentences with A Low Cost

In this subsection, we examine the SER of sampling in MDMs and highlight a fundamental lim-
itation of MDMs in generating logically rigorous language. We begin by establishing that, with
sufficient sampling steps, the MDMs are able to approximate a target HMM model with perfect
SER.

Theorem 4.3 (Accurate Generation of HMM with Sufficient Steps). Let q denote any HMM, and
let pg represent the reverse model under an arbitrary masking schedule, where L is the sequence
length. Let p denote the distribution over sequences generated by py. Under Assumption with a
learning error €jeaming < O(%), and given a sufficient number of reverse steps, the sequence error
rate SER(p) of the generated text satisfies SER(p) < 6.

The complete proof of Theorem B3 is detailed in Appendix EJl. While this result establishes the
theoretical capability of MDMs to achieve low SER, we still need to estimate the computational cost
to achieve it. The following theorem provides a negative result for this problem.

Theorem 4.4 (SER Bound for HMM Generation). There exists an HMM q over a vocabulary of
size 16 that satisfies the following conditions: for any reverse model pg under Assumption with
€learning < ﬁls, and any masking schedule oy, let p denote the distribution over sequences generated
by pg. There exists a constant C such that if the number of sampling steps satisfies N = C'L, where
L is the sequence length, the SER of the generated text is lower-bounded by: SER(p) > %

The proof of Theorem B4 is presented in Appendix EZA. Theorem B4 shows that to generate se-
quences with low SER, the number of sampling steps in MDMs must scale at least linearly with
the sequence length L, indicating that the number of neural network executions is comparable be-
tween MDMs and autoregressive models. However, this scaling law of MDMs typically leads to
much higher computational costs compared to autoregressive models. For instance, in the case of
Transformer-based architectures, each execution step in MDMs involves a quadratic computational
complexity in terms of L, as opposed to the linear complexity of auto-regressive Transformer models
in each generation step (through reusing the stored KV caches). Consequently, in accuracy-critical
applications, MDMs offer no computational efficiency advantage over auto-regressive models.

Extended analysis of Theorem B4 Since the high SER partly arises from irreducible errors intro-
duced by parallel sampling, it is natural to ask whether this issue can be mitigated by allowing tokens
to be remasked. In Appendix E3, we examine the remasking strategy recently proposed by (Wang
ef-all, 20729), and demonstrate that Theorem B4 continues to hold. Furthermore, some prior works
(Sahoo"ef all, P074); On_ef-all, 2074) have proposed efficient sampling strategies that reuse cached
outputs without requiring additional forward passes through the network when no token is modified
from [m] at a given step. Nevertheless, our theoretical results remain applicable to these sampling
strategies, which is discussed in Appendix B3.

Discussion regarding theory and GSM8k result. SER is closely related to the accuracy of MDMs
in solving mathematical problems, as an incorrect chain of thoughts typically leads to an erroneous
answer (Weief all, PO272H; Yo ef-all, P024; Zhu ef all, 2024)). Our theory reveals that MDMs incur
higher computational costs when evaluating generations by SER. This finding is consistent with re-
sults presented in Figure 0. Both our theoretical insights and these prior experiments demonstrate
that when MDMs are applied to math problems, their efficiency-performance trade-off is less favor-
able than that of AR models. For further discussion, please refer to Appendix BZ2.

Practical guideline of ARs v.s. MDMs. Based on the theoretical results, conclusions regarding
when to favor MDMs depend heavily on the evaluation metric employed. Specifically, MDMs excel
in applications where fluency is prioritized. In contrast, for reasoning-intensive tasks that demand
highly accurate trajectories, MDMSs may fail to offer a significant efficiency advantage over auto-
regressive models. As a result, MDMs are better suited for fluent generation tasks, while ARs
remain the preferred choice for tasks that require precise, step-by-step reasoning.



SER with Different Sampling Steps

N-gram Length 128 256 512 1024 2048 AR

512 362+42 245£32 144+29 T74£22 54+12 02+£0.1

2-gram 004 595449 403446 232232 146430 94+15 03+02

2048 88.70 £2.8 T71.5+3.7 502£44 402+39 269+33 0.3=+0.1

512 37.3£36 216£33 164+27 11.6+£3.0 79+21 02+£0.1

3-gram 004 648147 394453 266430 193432 139427 03403

2048 86.0£39 66.1£53 482452 482+56 378=£52 02£0.2

512 51.8+44 39.2+32 340+£35 30.0%+27 25.7+£26 05=£0.1

4-gram 004 670456 520+51 418427 361458 354451 04402

2048 80.0£4.1 681£55 620+54 62.0+43 60.1£38 05+£04

512 19.1£21 16.7x23 128+26 91+26 82+22 04+£0.1

HMM 1024 40.14+25 328+31 209+26 305+3.0 28.0+33 0.4+0.2

2048 685+56 63.4+42 629+55 62.9+47 61.8458 0.3+0.1
TER with Different Sampling Steps

N-gram Length 128 256 512 1024 2048 AR
512 3.71+.03 3.68+.02 3.67+£.01 3.67+£.01 3.67+.01 3.67=£.01

Zgram - “yo04  372+.05 3.70+.03 3.68+.01 3.68+.02 3.67+.01 3.67+.01
2048 371+£.05 3.69+£.03 3.67+.02 3.66+.01 3.66+.01 3.66%.02
512 3.13+.05 3.10+£.03 3.07+.01 3.07+.01 3.07+.01 3.07=+.01

d-gram 004 314+ .06 3.10+.03 3.09+.02 3.08+.01 3.08+.01 3.08+.02
2048 3.15+.06 3.11+.03 3.104+.02 3.09+.01 3.08+.02 3.08+.02
512 327+.08 323+.04 320+.02 320+.01 3.19+.01 3.19+.01

4-gram 004 321+ .08 3.16+.03 3.16+.02 3.14+.01 3.14+.01 3.14+ .01
2048 320+.06 3.16+.03 3.14+.02 3.13+.02 3.12+.01 3.124.02
512 4.04+.03 4.01+.03 4.00+.01 3.99+.01 3.99+.01 3.99+.01

HMM  “024  403+.04 401+.02 400+ .01 399+.02 3.98+.02 3.98+.02
2048  4.03+.02 4.02+.01 4.01+.01 4.00+.01 4.00=+.01 4.00+.01

Table 1: SER and TER results for MDMs (n-grams, n € {2,3,4}; HMMs) vs. AR baseline across
varying sequence lengths (512, 1024, 2048) and sampling steps. The AR’ column (underlined) pro-
vides the baseline for comparison. In the TER table, blue highlighting indicates MDM performance
statistically similar to the AR baseline according to T-Test. MDMs approach AR TER with ~ 512
sampling steps, irrespective of sequence length. Accuracy, however, requires more steps for longer
sequences and generally lags behind AR models with a large margin.

5 Experiments

As discussed in the previous section, our theory aligns with observations in natural language tasks.
However, for comprehensive validation and completeness, we also conducted experiments to empir-
ically support our theoretical results. More precisely, these experiments were designed to investigate
the relationship between sampling steps, sequence length, the SER, and the TER. We will first intro-
duce our experimental setup, followed by a presentation of the results.

5.1 Experimental Setup

Tasks and Datasets. We evaluated MDMs on several formal languages: n-gram languages
(with n € {2,3,4}) and HMMs. For each language type, parameters (e.g., transition matrices,



observation matrices, initial distributions) were randomly sampled. A detailed description of this
generation process and examples of resulting sequences are available in Appendix E]l. These formal
languages were used to generate datasets of 1,000,000 samples each, with 990,000 for training and
10,000 for validation. Datasets were generated with sequence lengths L € {512, 1024, 2048}.

Model Training. Transformer-based architectures served as the backbone for our MDMs, chosen
for their scalability and expressiveness in sequence modeling. Detailed architectural specifications,
including layer counts, hidden dimensions, and positional encoding schemes, are provided in Table [
(Appendix E2). The training procedure largely followed the framework of Sahooefall (2074)), with
specific training configurations detailed in Table B. Models were trained for 20 epochs, with conver-
gence monitored on the validation set using perplexity. The trained models successfully achieved
perplexity values consistent with the ground-truth language models generating the datasets.

Evaluation Metrics. To evaluate the quality of generated sequences in line with our theoretical
framework, we used TER and SER as primary metrics. Generative perplexity, computed using the
ground-truth model, served as the TER metric. SER was calculated directly via Equation (H) (where
accuracy reported in tables is 1 — SER), also utilizing the ground-truth models. For sequence
generation, we employed the ddpm_cache sampler from Sahoo“ef"all (?074)); its influence under
varying sampling steps is further discussed in Appendix B3. We report the inference time per
sequence of MDMs with 512 sampling steps and AR models in Table O across different sequence
length (detailed inference settings in Appendix EZ). For robust evaluation, all reported TER and
SER values are averages over 2000 generated sequences for each experimental setting.

Auto-Regressive Baseline. We also trained AR models with identical architectures and model sizes
on the same datasets generated by the formal languages for comparison. These AR models were
evaluated using the same metrics. Training configurations for the AR models are detailed in Table B.

5.2 [Experiment Results

The experiment results are presented in Section 8. This table presents the generative perplexity and
accuracy on n-gram languages (n € {2,3,4}) and HMM. The results are detailed for sequence
lengths of 512, 1024, and 2048, across a varying number of sampling steps (128, 256, 512, 1024,
and 2048). The final AR’ column shows the performance of the auto-regressive baseline.

As Section B shows, under the metric of TER, MDMs achieve near-optimal generative perplexity,
closely matching the AR baseline, with approximately 512 sampling steps. Crucially, this required
number of sampling steps remains relatively constant across the tested sequence lengths (512, 1024,
2048). This empirically supports our theoretical finding that TER is primarily dependent on the
number of sampling steps, rather than sequence length.

In contrast, achieving low SER with MDMs necessitates a substantially larger number of sampling
steps. This requirement becomes more pronounced as sequence length increases. For instance, for
2-gram models generating sequences of length 2048, even 2048 sampling steps yield only 73.1%
accuracy, whereas AR models achieve near 100%. This aligns with our theory that SER is more
sensitive to both the number of sampling steps and the sequence length.

Furthermore, even with a high number of sampling steps (e.g., 2048), a significant gap in SER
persists between MDMs and AR models. This is particularly evident for more complex languages
like 4-grams and HMMs across all sequence lengths. For example, with 4-gram language of length
512, MDMs with 2048 steps achieve 74.3% accuracy, while the AR baseline reaches 99.5%. AR
models, due to their token-by-token generation mechanism, consistently achieve near-perfect SER
on these tasks. This result further validate our theoretical result that MDMs Cannot generate low-
SER sentences with a low cost.

Sequence Length 512 1024 2048

MDMs (512 steps) 3.1s  4.2s  4.7s
AR 1.7 33s  7.0s

Table 2: The inference time per sequence of MDMs with 512 sampling steps and AR models.

Despite the challenges in achieving low SER, MDMs demonstrate considerable efficiency in gener-
ating fluent sequences with a fixed number of sampling steps (e.g., 512 steps), especially for longer
sequences. The inference time per sequence, detailed in Table [, quantifies this advantage, showing
MDMs to be highly efficient for generating fluent long sequences.



These empirical findings underscores the trade-off between generation efficiency and performace
for MDMs. While MDMs excel at producing fluent outputs efficiently, they require considerably
more sampling iterations to achieve low SER. This characteristic is particularly salient for reasoning-
intensive tasks that demand high sequence-level correctness. Collectively, these experimental results
provide strong empirical corroboration for our theoretical analyses.

6 Conclusion and Limitations

This paper provides a rigorous theoretical analysis of the efficiency of MDMs under various metrics.
We demonstrate that MDMs can achieve near-optimal TER with a fixed number of sampling steps,
regardless of sequence length, making them highly efficient for tasks emphasizing fluency. However,
when evaluated using SER, MDMs require sampling steps that scale linearly with sequence length,
negating their efficiency advantage over auto-regressive models. Our study focuses on formal lan-
guages modeled using HMM, which, while foundational, still differs from modern language models.
Extending this analysis to more advanced language models remains an important direction for fu-
ture work. Additionally, we primarily analyze Masked Diffusion Models, but a broader family of
diffusion-based language models, including variants like SEDD-unform (Couef-all, 2024). Further
exploration is needed to generalize our findings to real-world settings and to systematically analyze
other diffusion approaches.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction (Section [) accurately
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discuss the limitations in Section B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For each theoretical result, the paper provides the full set of assumptions in
Section @ and a complete proof in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-

rems.

The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a

short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-

mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The training and testing details are presented in Appendices [Al and B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will open the code base and data when the paper is published.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and testing details are presented in Appendices A and B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We run experiments for 5 times and report standard deviation.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are listed in Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work aims for understanding diffusion language models, has no potential
malicious or unintended use.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We only use open source data and synthetic data.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We use LLM to help with paper writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.

Appendix

A Details of Preliminary Experiments

A.1 Models and Sampling Strategies Compared

We follow Ye ef all (P075) and Nie"ef-all (Z0075) to setup our experiments on GSM8K, MBPP and
HumanEval benchmarks. For each benchmark, we compare the following sampling strategies of
different models as suggested:

* Entropy-based sampling (Ye“ef-all, 2075) applied to Dream-v0-Base-7B, with different
sampling steps.

* Low-confidence-based sampling (Nieef all, P075) applied to LLaDA-8B-Base, also with
different sampling steps.

* Left-to-right (AR-style) sampling strategy for Dream-v0-Base-7B and LLaDA-8B-Base,
where one token is generated per step in a sequential, left-to-right manner.

» Standard auto-regressive generation for Qwen2.5-7B with default settings.

Here, the entropy-based sampling strategy and the low-confidence-based sampling strategy are the
recommended sampling strategies for the MDMs (Ye_ef-all, P075; Nie“ef all, P075). Qwen2.5-7B
serves as the standard AR baseline, while the left-to-right sampling strategy of MDMs serves as
a naive baseline for the MDMs, aiming to eliminate the influence of other contributing factors,
including different training datasets or training methods.

For Dream-v0-Base-7B, we manually implemented the left-to-right sampling process. In the case of
LLaDA-8B-Base, setting block_length=1 during generation naturally obtains the same behavior.
This configuration does not stop generation after encountering EOS, which may cause an increased
time cost, but our results indicate that this behavior does not affect the overall conclusions.

A.2 Settings for GSM8k Experiments

Following IYe_ef all (2025) and Nie_ef all (2025), we use the widely-adopted Im-evaluation-harness®

framework to evaluate the performance. For the GSM8K benchmark, we follow prior work and set
the number of few-shot examples to 8 and the maximum length of answer to 256. We assess the
GSMB8K Accuracy and model efficiency of different models, where efficiency is defined by the in-
verse Onf the execution time measured on 8 Nvidia RTX 4090 GPUs with Huggingface’s transformers
library®.

3https://github.com/EleutherAl/lm-evaluation-harness
*https://github.com/huggingface/transformers
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In the figure, we report the relative accuracy and efficiency of MDMSs compared to the baselines.
These relative values are computed by dividing the actual accuracy and efficiency by those of the
respective baselines — Qwen and the MDMs using the left-to-right strategy.

We list the detailed testing configurations for GSM8K in Appendix B72.

Dream w/ Dream w/ LLaDA w/ LLaDA w/

Models entropy left-to-right low-confidence left-to-right Qwen2.5
Max new tokens 256 256 256 256 256
Block length N/A N/A 256 1 N/A
Sampling algorithm Entropy Sequential ~ Low-confidence  Sequential N/A
Sampling steps {64,128,256} N/A {64,128,256} 256 N/A
Temperature 0 0 0 0 0

Table 3: Testing Configurations for GSM8K

A.3 Settings and Results for MBPP Experiments

For the MBPP experiment, the evaluation settings are similar to the GSM8K experiment. Specifi-
cally, use 3 few-shot examples and set the maximum answer length to 512, as suggested, to evaluate
the MBPP Accuracy and efficiency. The definition of efficiency and the method for computing rela-
tive accuracy and efficiency values — by normalizing against the respective baselines — are identical
to those used in the GSMS8K evaluation.

The results are presented in Figure [, and the detailed testing configurations for MBPP are listed in
Appendix B3

Dream w/ Dream w/ LLaDA w/ LLaDA w/

Models entropy left-to-right low-confidence left-to-right Qwen2.5
Max new tokens 512 512 512 512 512
Block length N/A N/A 512 1 N/A
Sampling algorithm Entropy Sequential ~ Low-confidence  Sequential N/A
Sampling steps {128,256,512} N/A {128,256,512} 512 N/A
Temperature 0.2 0.2 0 0 0
Top p 0.95 0.95 N/A N/A N/A

Table 4: Testing Configurations for MBPP

A.4 Settings and Results for HumanEval Experiments

For the HumanEval experiment, we use zero-shot and set the maximum answer length to 512 to eval-
uate the HumanEval Accuracy and efficiency. The evaluation methods and definitions are identical
to previous experiments.

The results are presented in Figure B, and the detailed testing configurations for MBPP are listed in
the table below.
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Figure 2: Efficiency and accuracy of MDMs on MBPP (3-shot): Similar to the GSM8K experiment,
the left figure uses Qwen2.5-7B as the evaluation baseline and compares the MBPP relative accuracy
and efficiency of Dream-v0-Base-7B and LLaDA-8B-Base across different sampling steps. The
origin can be considered as the baseline result. The first quadrant demonstrates models that can
simultaneously achieve higher efficiency and accuracy. From the figure, we can see that the MDMs
all fall into the third quadrant, indicating lower efficiency and lower performance. The right figure
uses a baseline in which the MDMs are constrained to generate the left-most masked token at each
step, effectively mimicking auto-regressive decoding. Still, even under this setting, none of the
configurations fall into the first quadrant.

Dream w/  Dream w/ LLaDA w/ LLaDA w/

Models entropy  left-to-right low-confidence left-to-right Qwen2.5
Max new tokens 512 512 512 512 512
Block length N/A N/A 512 1 N/A
Sampling algorithm  Entropy Sequential  Low-confidence  Sequential N/A
Sampling steps {256,512} N/A {128,256,512} 512 N/A
Temperature 0.2 0.2 0 0 0
Top p 0.95 0.95 N/A N/A N/A

Table 5: Testing Configurations for HumanEval

B Further Discussion

B.1 Various Metrics in NLP Tasks.

Evaluation metrics in NLP tasks are inherently tied to the specific objectives and requirements of
their respective domains. For general language modeling tasks, perplexity (lelinek_ef all, T977;
Devlin_ef all, POTY) remains the metric of choice due to its ability to capture a model’s predictive
performance effectively. However, domain-specific tasks often demand more specialized evaluation
criteria. For instance, in machine translation (Bahdanau, 2014; Wi ef all, PZOT6), the BLEU score is
widely regarded as a standard measure of translation quality (Papineni et all, P007), while text gen-
eration tasks (Sufskeved, P00T4) frequently rely on metrics such as ROUGE to assess output fidelity
(Cin, P004). Similarly, tasks requiring reasoning (Wei ef-all, P077d), such as mathematics (Bubeck
efall, D00773) or code generation (Roziere ef all, 0773; Ouyang et all, 20773), commonly adopt accuracy
as an intuitive and straightforward measure of success.

B.2 Discussion Regarding the Empirical Observations.

The above results reveal that MDMs can efficiently generate low-TER sentences but may incur
higher costs when evaluating the generation under SER. One might think these results are contra-
dictory. Note that several previous works have already shown that TER (a.k.a perplexity) may not
reflect a model’s true performance in solving several long-sequence understanding tasks (Huang
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Figure 3: Efficiency and accuracy of MDMs on HumanEval: Similar to above, the left figure uses
Qwen2.5-7B as the evaluation baseline and compares the HumanEval relative accuracy and effi-
ciency of Dream-v0-Base-7B and LLaDA-8B-Base across different sampling steps. The origin can
be considered as the baseline result. The first quadrant demonstrates models that can simultaneously
achieve higher efficiency and accuracy. From the figure, we can see that the MDMs all fall into the
third quadrant, indicating lower efficiency and lower performance. The right figure uses a baseline
in which the MDMs are constrained to generate the left-most masked token at each step, effectively
mimicking auto-regressive decoding. Still, even under this setting, none of the configurations fall
into the first quadrant.

ef-all, P027; Huefall, 2024; Ludenef-all, 2024). Thus, it is natural to arrive at different conclusions
depending on the metric used. Moreover, many practical scenarios have shown that the choice of
evaluation metric significantly influences the conclusion of other problems (see Appendix B for
various metrics in NLP tasks). For instance, while the community has previously focused on the
emergence phenomenon, recent works by Wei ef all (20274a) and Schaeffer ef all (2024) demonstrate
that this phenomenon may stem from the use of non-smooth evaluation metrics.

B.3 [Extend to Efficient Sampling Strategies

In Sahoo’ef all (2024 and On’efall (2074), an efficient sampling strategy ddpm_cache is proposed,
which can reduce the sampling time by a constant order of magnitude. Specifically, this sampler is
approximately 3-4 times faster than previously used samplers when the number of sampling steps is
large. In this section, we discuss the influence of ddpm_cache on our conclusions under different
sampling steps.

First, we briefly introduce the principles of ddpm_cache. It utilizes the observation that if no loca-
tions are sampled at a given step, the sequence remains unchanged. Consequently, when the reverse
model is not conditioned on time, the cached value computed during the first time this sequence
went through the reverse model can be reused, instead of going through the reverse model again.

This sampling strategy does not affect our main theorems, as they are based solely on the sampled
locations at each step, while unsampled locations are not considered. As for the evaluation metrics
for computational efficiency in our experiments, we break it down into the following two cases:

1. When the number of sampling steps is much smaller than the sequence length, which is the
primary scenario we focus on, the expectation of steps where no new locations are sampled
is relatively low, resulting in a computational cost that is nearly linear with respect to the
number of sampling steps.

2. As the number of sampling steps becomes larger, the computational cost is mainly depen-
dent on the number of valid steps where at least one location is sampled. As a matter of
fact, the expectation of the number of valid steps increases as the number of sampling steps
increases, and the maximum number of valid steps is equal to the number of sampling steps.
In this case, the MDMs offer no computational advantage over auto-regressive models.

Based on the above conclusions, we can find that for tasks requiring a low TER, using ddpm_cache
can further accelerate the generation of MDMs, suggesting high efficiency. Conversely, for tasks that
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demand a low SER, we have shown that the number of sampling steps need to be large enough, such
that MDMs can not generate with low cost even when using ddpm_cache. Therefore, we extend our
findings to MDMs with efficient sampling strategies.

C Auxiliary Lemma

In this section, we present some technical lemmas for the proof of our main results.

Lemma C.1 (Upper Bound for Multi-tokens Sampling). Let X = (X1, X,..., X;) € [N]* be a
random vector following the distribution q, where each component X; follows the marginal distri-
bution q;. Define X = (X1, Xa, ..., Xk) ~ p as another random vector, where the components X;
are sampled independently according to p;. Let 6 = max;{Dx1(q;||pi)}, then, the KL divergence
between p and q satisfies the inequality:

Dx1.(q|lp) < (k—1)log N + ké.

Proof. Using the chain rule for probabilities, the KL divergence can be written as:

1 <Q1 Zq | X<z))

E 0gl )
pi(z;)

where x; = (1,...,%;—1). For i = 1, there are no preceding variables, so:

E, [log(;i%z;)] = Dxw(q1llp1)-

o) <2 o))

Decomposing E, [log(1/p;(x;))], we get:

E, log( )} =E [log( ﬂ +E {log()] .
{ pi(z:) ! pi(zi) / qi(z;)
The first term is Dk, (g;]|p;), and the second term is —E, [log ¢;(;)], which represents the entropy

of g;. Since the entropy of any distribution over [N] is at most log N, we have:

-E, [log ql(xl)] <logN.

Dxuw(qllp) =

For 7 > 1, we bound:

Thus:
i\ Tq | X<i
E, {10g<q(|<))] < Dkuw(gil|pi) +1og N.
pi(l‘i)
Summing over all ¢ = 1,..., k, we obtain:

k
Dxv(qlp) = ZE [ (Wﬂ < Dxw(qillp) + Y (Dxw(aillpi) +log N).
=2

Di (xz)

Reorganizing, we have:

!
Diw(qllp) <) Dxr(gillpi) + (k= 1) log N.

i=1

Since Dkr,(gi||p;) < 6 for all 4, the total sum of marginal KL divergences is bounded by kd. There-
fore:
Dxv(qllp) < k6 + (k —1)log N.

This completes the proof.
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Lemma C.2 (Chernoff Bound). Let X1, ..., X,, be independent random variables taking values in
{0,1}. Define X = > | X; as the sum of these independent random variables, and let ;1 = E[X]
denote the expected value of X. Then, the following probabilistic bounds hold:

Pr(X > (1+0)p) < e 295, foré >0,

Pr(Xg(l—é)u)ge‘éT”7 for 0 <6 <1

Lemma C.3 (Pinsker’s Inequality). Let p and q be two probability distributions. Then, the total
variation distance between these distributions satisfies:

Drv(p.) < \/ 5 D (pllo)

Specifically, since Drv (p,q) = 5 ||[p — ql|;, the following inequality holds:

lp —qll, < v2Dkw(pll9).

D Proof for Theorem 4.2

This section provides the complete proof of Theorem EZ1. We first outline the proof strategy, then
present the detailed arguments with supporting lemmas and definitions.

Our proof rests on reformulating TER bounds through KL divergence and carefully analyzing de-
pendencies in the n-gram setting. The key steps are:

* We establish a connection between the perplexity of the discrete diffusion model and the
KL divergence between generated and data distributions. This involves deriving an upper
bound on KL divergence using expected divergence over reverse processes (Lemma D)
and decomposing this divergence into per-step conditional KL terms (Lemma [D3).

* We analyze n-gram model dependencies through a rigorous characterization of reverse pro-
cesses (Definition D) and separators(n — 1) continuous sampled tokens that create inde-
pendent intervals (Definition D). This leads to a precise formulation of per-step depen-
dencies using these separators (Definition D).

* We derive an upper bound for the KL divergence between generated and data distributions
based on the number of per-step dependencies (Lemmas D8 and [D9).

* We employ probabilistic bounds to analyze and bound the number of per-step dependencies
(Lemmas 1, D10 and D).

* Finally, we demonstrate the existence of a schedule achieving small KL divergence with
O(Z51) steps by constructing an efficient sampling schedule using the preceding lemmas

en

(Lemma DT32).

To begin the formal proof, we introduce key definitions for analyzing the discrete diffusion process.

Consider a masking schedule a; and a sequence of sampling time steps t; = NN . For a sequence
of length L, we define an instance of the discretization of the reverse process 7 as follows:

Definition D.1 (An Instance of Reverse Process). Let 7 = (M7, Ma, ..., My) represent a reverse
process, where M; = {l;;} denotes the set of locations sampled at step ¢. For a sequence of length
L, the sets M; satisfy the following conditions:

U Mlz[L] and m Mlzw

i€[N] 1€[N]

Specifically, we denote M .; as the union of all locations sampled prior to step ¢;:

M<Z‘ = U ./\/l je
Jj<i
Under a given instance of the reverse process 7, at each time step t; = NA? ¢, the set of locations

M; = {l;;} is sampled. Let &; denote the tokens associated with the locations sampled at time step
t;. Given the masking schedule o, there exist multiple possible instances of the reverse process. We
denote the distribution over these instances by REVR(ay, N, L).
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Lemma D.2 (KL Divergence Upper Bound for the Masking Schedule). Let g denote the data dis-
tribution over sequences of length L, and let p denote the distribution over sequences of length
L generated by the reverse model pg with masking schedule oy and N sampling steps. The KL
divergence between q and p satisfies the following upper bound:

Dxw(qllp) < ErerEVR(ar,~,2)PkL(allp(-|7)),

where the expectation is taken over the distribution of reverse processes T induced by
REVR(ay, N, L).

Proof. Let X denote the set of all possible generated sequences. Then, the KL divergence between
q and p is given by:
q(z)

D (gllp) = ) g(x)log ——.

xrcX p(.’I})

Let h denote the distribution over reverse processes 7 ~ REVR(ay, N, L). Due to the convexity of
log % by applying Jensen’s inequality, we can obtain:

log = log

1 1
(@) 27h< P S 2N g s

Since data distribution ¢ is independent of reverse process 7:
q(x) = q(x|7), V.

(x) q(z|7)
—— < h(7)log .
) Z p(a|7)
Substituting this back, we can get the final result:

Dxw(qllp) < Z Zh EZ:;

xeX T

= Zh Z (z|7)log qg::g

xeX

Therefore, we have:

= ETNREVR(at7N,L)DKL(‘]('|T) p(-[7))
= ErrREVR(ar,N,2) DxL(ql[p(-] 7))
O

We next establish an upper bound for the KL divergence between the distribution of sequences
sampled under an instance of the reverse process 7 and the ground-truth distribution in the n-gram
setting. To achieve this, we leverage the chain rule for KL divergence, which allows decomposi-
tion of the KL divergence of the entire sequence into a summation of the KL divergences at each
individual step of the process.

Lemma D.3 (KL Divergence Decomposition for the Reverse Process). Consider an instance of
reverse process T = (My, Ma,...,My) ~ REVR(ay, N, L). Let &; denote the set of tokens
corresponding to the locations sampled at time step t;, and T ; denote the set of tokens sampled
at all steps prior to step t;. The KL divergence between the ground-truth distribution q and the
distribution p, generated by the reverse process T and reverse model py satisfies the following

decomposition:
N

Dxw(qllpr) =Y Ea_, Dxr(q(@:|Z<i)||p- (&%),
i=1
Proof. Given the reverse process 7, the reverse model samples x; sequentially from ¢ = 1 to N,

and the probability of sampling @; at step ¢; depends only on the previously sampled tokens & ;.
Therefore, the distribution p(x) can be factorized as:

N
z) = [ [ p-(@i|2<:).
i=1
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On the other hand, since the data distribution ¢ is independent of the reverse process 7, it can
similarly be decomposed as:

N
q(x) = H q(&i|x<i).

Applying the chain rule for KL divergence, we obtain:

N
Dxr(qlpr) =Y Ea_, Dxu(q(&:| <) ||p- (#:]2 ;).
i=1
]

Next, we derive an upper bound for the KL divergence at each step of the reverse process. In the
n-gram setting, it is important to note that, at step ¢;, the tokens z;,; and xy,, are conditionally
independent if there are at least n — 1 consecutive tokens between the positions /;; and [,/ that have
already been sampled prior to step 7. Under this condition, sampling these two tokens simultaneously
incurs no sampling error, as the distributions of z;,; and xy,, are independent.

To formalize this concept, we introduce a measure of dependencies among the tokens sampled in
M; during the reverse process. For the i-th reverse step in the n-gram setting, the number of
dependencies, denoted as DEP,,(M;, M), is determined by the structure of M ;. Specifically, it
depends on the number of separators in M ;, denoted as SEP,, (M ;), as described in the following
definition.
Definition D.4 (Number of Separators in a Reverse Step). Consider a reverse process 7 =
(M1, Ma, ..., My), where M; = |J;_; M; represents the union of all previously sampled
location sets. The set M .; can be partitioned into several contiguous segments. Let S1, Sz, - -+ , Sk
denote the segments containing at least n — 1 consecutive tokens (i.e., |S;| > n — 1) with the max-
imum k. We refer to these segments as separators, and denote the number of separators in the set
M as:
SEP,(M«;) =max k
st. [Sj|>n—1,8 C M, Vjelk],
S; ﬂS]'- =0, Vj#j.
Note that if a contiguous segment S in M ; contains at least d(n — 1) consecutive tokens, where d
is an integer, then S consists of at least d separators.

Definition D.5 (Number of Dependencies in a Reverse Step). Consider a reverse process 7 =
(My, My, ..., Mpy). The separators of M_; divide the sequence into at most SEP,,(M;) + 1
disjoint intervals 71, Zs, . . ., Z. Under the n-gram setting, the sampling within each interval is in-
dependent of the sampling in other intervals. The number of dependencies of step t; is defined as
the number of intervals Z,, (for p = 1, ..., k) that contain at least one location in M,:

k
DEP,, (M;, Mi) = M| =Y T[T, " M; # 0],
p=1

where I is the indicator function.

To illustrate this definition, we provide the following example:

Example D.6 (Computing Dependencies in the n-gram Setting). Consider a token sequence of
length 10, denoted as = (1, 2, ...,210), with n = 4. Let the previously sampled location set
be M.; ={2,3,4,6,7} and the current location set be M; = {1,5,9}.

1. Identify contiguous segments in M, containing at least n — 1 = 3 consecutive tokens:
The set M ; = {2,3,4, 6,7} forms the following contiguous segments:
{2,3,4} and {6,7}.

Only the segment {2, 3,4} contains at least n — 1 = 3 consecutive tokens. Thus, we have
S1 = {2, 3,4}. The sequence is then divided into the following disjoint intervals:

Il = {1}7 IQ = {5767 758797 10}
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2. Determine which intervals overlap with M; = {1,5,9}: Token 1 belongs to interval Z,
and tokens 5 and 9 belong to interval Zs.

3. Compute the number of dependencies: The number of dependencies is:

k
DEP,,(M;, M<i) = [M;| = > T[T,n M; # 0] =3-2=1.
p=1

R

{1} {5,6,7,8,9,10}

Figure 4: Tllustration of the example for computing dependencies in the n-gram setting. Tokens
T9,X3, X4, X6, T7 (blue) represent the previously sampled location set M ;, forming two contigu-
ous segments: {2,3,4} and {6,7}. The current sampled locations x1, x5, 29 (red) overlap with
disjoint intervals Z; = {1} and Z, = {5,6,7,8,9,10}. The number of dependencies is computed
as DEP,,(M;, M ;) = | M;| — (number of overlapping intervals) = 3 — 2 = 1.

This example demonstrates how dependencies are computed, highlighting the interaction between
previously sampled locations and the current reverse step. Such formalization is critical for under-
standing the efficiency and accuracy of discrete diffusion processes.

Finally, we extend this concept to define the total number of dependencies across an entire reverse
process:

Definition D.7 (Number of Dependencies in a Reverse Process). Consider a reverse process 7 =
(M1, Ma, ..., My). Under the n-gram setting, the total number of dependencies in the process is
defined as the sum of the dependencies across all steps:

N
DEP,(7) = »  DEP,(M;, M;).

i=1

Using the definition of DEP,,(7), we can bound the KL divergence between the distribution of
sequences sampled under an instance of the reverse process and the ground-truth distribution in the
n-gram setting.

Lemma D.8 (KL Divergence Upper Bound for the Instance of Reverse Process). Let q denote the
data distribution for sequences of length L, and let p denote the distribution of sequences of length
L generated by reverse model py via the reverse process 1. Under Assumption B]Ll, the following
upper bound holds:

Dxw(qllp(-|7)) < DEPy,(7)log [V] + Léicarning,

where V denote the vocabulary.

Proof. Using Lemma D3, we have:

N
Dxuw(qllp-) = Z Ez_, Dxr(q(®i|®<i)|[pr (Ti]T<i)).
=1

For each time step ¢;:

i . o q(T5|T <4
Eoo Dt (@) [pr(@15<)) =Ea., Y q@ijd;)log LEiT<i)
i:iEV‘Mi‘ pT(w’L‘x<'L)
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Given M; and M_,, the tokens &; at step ¢; can be partitioned into independently sampled token

(1), e ,il(.m) with k; denoting the size of each token set:

=127, j € [m), m=|M,|—DEP,(M;, M,).

Using the independence, for each & ;, we can decompose the sum into:

()5
a:zm i T," | <
> al@lE<)log T = B _$ S g6 o) log AEE)

ZieVIMil r(Til@<i) pr (& |2<)

sets x©

7=1 (J)eVJ

=" Dxu(e(@ &) llpr (& <)
=1

J
Under Assumption B, the KL divergence between ¢ and py is bounded by:

DKL(QOH(J;ZO | wt)”pa(mlo | :Bt)) < €learning V¢t and .
By Lemma I, we know that:

DKL( ( j |$<Z)||p7( J |w<z) S (k - 1) 1Og|V| + k 6learnmg
Substituting back:

o Q(EilE<i) _
Z Q(mi|m<i)10g ‘ < Z k — 1 IOg |V| + k; j €learning «
&, eVIMil Pr(®:|2<i) j=1
Using the fact that
> (k= 1) = M| —m = DEP, (Mi, M), Sk = M
=1 3=t

we can obtain:
Ez_, Dx1(q(@:]|@<;)||pr (&i|Z<i)) < DEP,(M;, M<;)log |V| + | M;|€lcarning -
Thus, combined with the definition of DEP,,(7) and p, = p(+|7), we can draw the final conclusion:
N
D (allp(-|m) < D (DEP, (M, M) log [V| + [ M €tcarning)
i=1
= DEP, (T) log |V| + Lelearning~
O

The above Lemma directly leads to the bound for the KL divergence between the distribution of
sequences generated by the reverse model with a given masking schedule and the ground-truth dis-
tribution in the n-gram setting.
Lemma D.9 (KL Divergence Upper Bound for a Masking Schedule). Let q denote the data dis-
tribution over sequences of length L, and let p denote the distribution over sequences of length L
generated by the reverse model pg with masking schedule oy and N reverse steps. Under Assump-
tion B, the KL divergence between q and p satisfies the following upper bound:

N

DKL (qu) S IOg |V| Z ETNREVR(L,(Xt,N) DEPn (M“ M<z) + Lelearning
i=1

Proof. By Lemma D2, we can obtain:

Dxw(qllp) < ErerEVR(ar,~,2) PkL(allp(-|7)).
Applying Lemma D78 to the instances of reverse process, we can conclude that:
N

DKL (qnp) < IE'rr\zl:{EVl:{(at,N,L) Z DEPn (Mm M<1) log |V‘ + Lelearning
=1
N

= IOg |V| Z ETNREVR(L,Ott,N) DEPn (Mi7 M<i) + Lelearning
=1
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For the final estimation, we need to derive an upper bound for the expected number of dependencies
at each reverse step. First, we use Chernoff Bound to control the number of separators and new
locations at each reverse step for a given masking schedule.

Lemma D.10 (Bounds on Separator and New Location Count at Each Reverse Step). Given a se-
quence of length L, a masking schedule o, and N reverse steps. Assume that L is divisible by
n — 1. Given the time step t; = is
and SEP,, denote the number of separators in the previously sampled locations. Under the n-gram
setting, the following bounds hold for NEW and SEP,:

Lpn71 Lpl'~ 1

EP,, —r )< 5w

(S = 3 1>>e |
Pr (NEW > 2L4;) < e~ 5,

where p; = o, , and §; = oy, — o, _,

Proof. Given a masking schedule oy, using the expression of true reverse process in Equation (2)
and a; = 0, we can compute the probability p(*) of a token being sampled at time step #; to be:

i—1

. Q. — O, 1— Qi
1) __ i i—1 J — —
p( ) - . - O‘t{, - at{,71 - 5L
1— oy, 111—%;1
Jj=1 ’

Therefore, d; is the probablhty of a location being sampled at time step ¢;. Summing up J;, we can
know that p; = Z 5 is the probability of a location being sampled prior to time step ;.

To derive a bound for SEP,,, we partition the sequence into nj intervals, each of length n — 1.
For a given interval, the probability that all locations within the interval have been sampled prior to
step t; is p?il. Define X; = 1 if the locations in the j-th interval have been sampled prior to %;,
and X; = 0 otherwise. The random variables X1, X5,--- , X L are independent and satisfy the

following expectation:

n— 1 —1
Lp?
E:  REVR(L,00,N Z Xj=—".

By the definition of SEP,,, we know that:

Applying Lemma 2 to the sum of X;, we derive:

n 1 Lpt—1

L i
SEP < <P _ < e B8n-1),
( 2 = ) ! Z J—zn—n =

Next, we consider the bound for NEW. Given that the sequence contains L locations and the
probability of sampling any specific location at step t; is J;, the expected number of new locations
sampled at ¢; is given by:

E: REVR(L,a.,N) NEW = Ld;.
Since the sampling of each location occurs independently, applying Lemma 2, we have:

Ls;

Pr(NEW > 2L§;) <e” 5.

O

Using the above lemma, we can divide the estimation for the number of dependencies into three
cases, and derive the bound case by case. This is achieved by using a variety of means and careful
estimations.
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Lemma D.11 (Upper Bound for the Expectation of Dependencies at Each Reverse Step). Given
a sequence of length L, a masking schedule oy, and N reverse steps. Assume Lé; > 1, then the

expected number of dependencies at time step t; = NN satisfies:

9 C(n —1)Ls?
Er REVR(L,ar,N) DEPR (M, M ;) < 3T s, ( p”_l) ;

where p; = oy, |, 6; = oy, — ay,_,, and C'is a constant.
Proof. By Lemma D0, at step ¢;, the following bounds hold:

n—1 Lp;"fl
pr(SEP, < PP\ < e~ ST,
2(n—1)
Pr (NEW > 2L6;) < e~ .
Since DEP,,(M;, M ;) > 0, its expectation can be decomposed into three components:

E: REVR(L,ar,N) DEP, (M, M) = Pr(NEW > 2L4;) - Er wreVR(L,a;,8) DEP, (M, M<;) (Case1)

NEW>2L3;
Lp”*1
+Pr(SEP, < P NEW < 2L, | -
2(n—1)
E;  REVR(L,a,N) DEPn (M, M) (Case 2)
n—1
SEPng%
NEW <2L3;
Lpr—!
+ Pr | SEP,, > ——, NEW < 2L6; | -
2(n—1)
E: < REVR(L,a;,n) DEP,(M;, M) (Case 3)
n—1
SEP, > gt
NEW<2L3;

We estimate these three cases separately.

Case 1: NEW > 2L6;.

By the definitions of DEP,,(M;, M ;) and NEW, we have:
DEP,,(M;, M,;) < |M;| = NEW.

Substituting this into the estimation, we obtain:

Pr (NEW 2 2L5i)'ETwREVR(L,a,,,N) DEPn (M“ M<7,) S Pr (NEW Z 2L5i)'ET~REVR(L,at,N) NEW
NEW>2Ld; NEW>2L4;

Since DEP,,(M;, M ;) > 0, the expectation can be expressed as an integral of the tail probability:

+oo
Er REVR(L.a,, ) NEW = Pr(NEW > z | NEW > 2L§;) da.
NEW>2L4; 2L6;

It directly follows that:

“+oo
Pr (NEW > 2L6;) - E, REvR(L.a.,~) NEW = Pr (NEW > 2L§;) - / Pr(NEW > z | NEW > 2L4;) dz
NEW2>2L4; 2L6;

+oo
= / Pr(NEW > z | NEW > 2L4;) Pr (NEW > 2L6;) da
2L9;

+oo

= / Pr (NEW > z)dz.
2L3;

Using the same trick as Lemma D10, applying Lemma [, we can derive the bound for probability

Pr(NEW > z) as:

_ (@—Lsy)?

Pr(NEW > ) < e =¥E% |
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Note that NEW < L, we only need to consider 26; < 1. In this case, we have:

+oo L (w—L6;)2
/ Pr(NEW > z)dz < / e =FLé dg
2L35; 2L3s;

Lety =« — Lo; € [Ld;, L(1 — &;)], the integral can be rewritten as:
400 L(1-6;) 42
/ Pr(NEW > z)dx < / e vFLsidy.
2L5; LS,
Observe that y 4+ 2L§; < 3y, we can obtain:
Foo L(1=6:) g2 Ls; L(1-5;) L5, L(1-25;)
/ Pr(NEWEx)de/ e 3ydy=3(e_T—6_f) =3e" 3 (1—6_f).
2L5; LS,

Using the fact that e™ < -— for x > 0, we have the upper bound:

3 L3, 1 _ L(1-25;) <3 LS, < 9
3 — 3 3
€ ( € ) = ¢ - 3+L67,

Combining the above results, we know that:

Pr(NEW > 2L6;) - B+ rEVR(L,a;,N) DEP, (M, M <) < .
NEW>2L§; 3+ Lé;

Case 2: SEP,, < 2(n 1) and NEW < 2Lé;.

Similar to Case 1, we have:
DEP,,(M;, M.;) < NEW < 2Ld;,
so the expectation also follows:
]ETNREVR(L as,N) DEP, (M, M) < 2L6;.

n 1

SEP, < gt
NEW<2L4;

Using the probability bound, it follows that:

L n—1 L n—1 Lpn—l
SEP, < —Li _ NEW < 2L5; | <Pr (SEP, < —Li— ) < ¢ s,
2(n—1) 2(n—1)

Since e~ * <13 forx >0:

Lpy ! 8(n—1)
e Fm=D < - )
Lp?~ +8(n—1)

Combining these results, we obtain:

Lp;~! 16(n — 1)L5;
SEP, < 21 NEW < 2LJ; | -E. . a,.v) DEP, (M;, M ;) <
( 2( 1) ) REVR(Lw_l ) n( <i) < Lo 1 8(n— 1)
SEP,, <2(n )
NEW<2LJ,;

Case 3: SEP,, > 2(n 1) and NEW < 2L9§;.

Apparently, we have:

n—1

Lri
2(n—1)’
Given a, b, let E, ;, DEP,,(M;, M;) denote the expectation of DEP,,(M;, M ;) under the con-
dition of SEP,, = a and NEW = b. In other words:

Eqp DEP, (M, M<;) = Er REVR(L,a:r,N) DEP R (M, My).
P,=
NEW—=b

Pr (SEPn > NEW < 2L§; >
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Since all the locations are sampled independently, and DEP,,(M;, M.;) depends only on
the relative positions of separators in M; and the new locations in M;, the expectation
E, DEP, (M;, M,;) only depends on the ordering of separators and new locations.

Assume x1,--- ,Z44p are a + b positions (not locations) in order. We can regard the process of
ordering separators and new locations as the process of choosing b positions randomly from z;. For
1<j<a+b—1,define X; = 1if z; and x; are both new locations, and X; = 0 otherwise. By
the definition of DEP,,(M,, M;), we can obtain:

a+b—1
DEP,(Mi, M) = > X;.

Since the b new locations are chosen randomly, the probability of X; = 1 can be calculated as:

oGt bb—1)
Pr(X;=1) =~ T atb)(atb-1)

b
Ca+b

Therefore, the expectation of X is:

b(b—1)
EX; = .
7 (a+b)(at+b-1)
Summing up, we have:

a+b—1 b(b—1)
E,, DEP, (M;, M) = E Z Xj=(a+b-1EX) == —=~.

Since a > T and b < 2L§;, we can derive the upper bound for any a, b:

b(b—1) < b(b—1) 2L5 (2L5i -1) < 8(n — 1)L5i2
b — Lpr! L - =1 _ .
ot 20=T) o s ors, P A =10
Since this holds for all a and b, we can obtain:

2(

L n—1
Pr (SEPn > ﬁ NEW < 2L5> TNREVR( L0, ) DEP (M;, M)
SEP,, >2(n 11)
NEW<2L4;

< ETNREVR(L a:,N) DEP, (M, M <)

SEP,, > yoirs
NEW<2Lé;

= Z Pr(SEP,, = a,NEW = b) - E, , DEP,,(M;, M ;)

a> 2(n D b<2L$;
8(n — 1)Ld?
L rd(n-1)8

Summarize the above proof:

Combining the above three cases, we can obtain:

9 16(n — 1)Lo; 8(n — 1)Lo?
E,. DEP,,(M;, M ;) < PEwaE
REVR(L,a,N) ( < ) 3+ Lo; ;L 1 + 8(TL — 1) p?il =+ 4(n — 1)51
If we have the assumption LJ; > 1, it is easy to find that:
9 16(n —1)5;  8(n —1)L?
E, . w, Ny DEP,, (M, M ;) < -
REVR(L,a:,N) (M, M) < 3+ Lo, + P + o]
_ 2 - 2
< 9 . 16(n — 1) Lo; . 8(n —1)LJ;
3+ Lé; P! Pt
9 C(n— 1)L(52

<
~ 3+ Ld; pzll
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Where C = 24 is a constant.
O

Finally, we can derive the upper bound for the KL divergence between the distribution of sequences
generated by the reverse model and the ground-truth distribution in the n-gram setting.

Lemma D.12 (Efficient Sampling with Small KL Divergence). Let q denote the data distribution
over sequences of length L, and let p denote the distribution over sequences of length L generated
by the reverse model py with a masking schedule o; and N reverse steps. Assume that pg satisfies

Assumption El. For any € > 0, there exists a masking schedule oy such that, for L > SCTEZZD, with
€ 2

N=0 ( ) sampling steps, the KL divergence between q and p satisfies:

DKL(q”p) < de + €learning
Llog|V| — log |V] *

Proof. By Lemma D9, we know that:

N
Dx1(qllp) <log|V| ZETNREVR(L,at7N) DEP,,(M;, M ;) + Léiearning-
i=1

Note that at step ¢1, the reverse process can be bounded using Lemma . By reviewing our proof
process, it is easy to see that we can substitute DEP,, (M7, M ;) for (JM;]| — 1) log |V|, where V
stands for the vocabulary. By the definition of d;, we know that:

Er REVR(L,a.,n)(IM1| = 1) log [V| = (0: L — 1) log [V|.

Applying Lemma D11 to DEP,,(M;, M;), if L§; > 1, we can obtain:

9 Cln— 1L
3+ L¢; p? 1

N
Dia(alp) < 61108 V] +10s M 3 R
=2

By the definition of p;, we know that ps = ¢;. For any small € > 0, consider the following masking
schedule:

6774

C(n—1)’
Then, for L > %, the KL divergence can be bounded by:

N
DKL(qu) S €+ 9(N - 1) Z C(n - })52 + €learning
Llog|V| LB+Lo) =  pi~ log |V
N-2
B 9(1—47) C(n—1)¢6 C(n —1)6? €learning
T IB L) T et - ; G0y TogV[
N-2
9 C n — 1 C 7’l - 1 6learning
< .
ST G L) T at +; 51+15 T Jog V)
By simple calculations, we know that:
9 3
— < if L > .
L6B+Lo) = "FEa
It is clear that 6 < 1, so:
—1)62
C(nnil) <ed<e
oy
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Since ™™ is convex on [0, +00), the accumulation can be bounded by:

N—-2 N-2

C(n—1)8? 9 1
X S - S
N-2 400 1

<C(n-— 1)6%m

—C(n—1)8 " 1 < 5 )nl

n—1 E
0o
6f*1
<e.
Combining the above, we have:
M < de + elearning.
Llog|V| log |V|

Meanwhile, the time step is limited by:

N:1+1_51=O<n_1>,

) €n

and the lower bound for L:
3 _3C(n—-1)

Je ents

L>

M

O

Combining the above lemmas, we can prove Theorem B by breaking the expression of log TER(p)
into two parts.

Theorem D.13 (TER Bounds for n-Gram Language Generation). For any n-gram language q and
any € > 0, let py denote the reverse model and L denote the sequence length. The distribution over

sequences generated by py is denoted as p. For any L > O(efﬁr;ol.s), under Assumption B, there
n

exists a masking schedule oy such that, with N = O( 6711) sampling steps, the perplexity of the
MDM is upper-bounded by:

log TER(p) < log TER(q) + €leaming + 4€log |V].

Proof. By Lemma IDI2, for any L > O(-45' ), there exists a masking schedule o with N =
O(™5}) sampling steps satisfying:

en

Diaalp) _ ., canns
Llog|V| — log|V] *

q(z)

1
ZEEN(] 10g — < 4e log |V| + €learning-

p(z)

In other words:

By the definition of TER, we have:

log p(x 1 i
log TER(p) = Eqrq — IwT ) _ TEa~q (— log g(z) + log pEwD :
Note that: logq(z) 1
og q(x
log TER(q) = Egng — T = ZEqu —log g(x).

‘We can obtain:
log TER(p) S 1Og TER(q) + €learning + 4e IOg |V‘ .
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E Proof for Theorem &3 and Theorem 4.4

E.1 Proof for Theorem B3

In this section, we aim to derive the upper bound for the SER, of generated sequences with sufficient
reverse steps. First, we argue that, given a making schedule o, with sufficient steps, the probability
of sampling multiple locations in the sequence at the same time can be very low.

Lemma E.1 (Low Probability of Simultaneous Sampling with Sufficient Steps). Given a sequence
of length L and a masking schedule oy. For any € > 0, there exists Ny, such that for any N > Ny,
with N reverse steps, the probability pyy1 of sampling multiple locations in the sequence at the same
time satisfies:

Pmul < E.

Proof. By Lemma D10, we know that the probability of a location being sampled at time step

t; = N]\?l is:

57; :Otti — O :OtNI\?i — QU N—it1.

i=1 - N

Since all the locations are sampled independently, for two distinct locations 7 # j in the sequence,
the probability that ¢ and j are sampled simultaneously is:

N
P =) 0.
i=1

Summing up p; ;, the probability of having two locations a=sampled simultaneously can be bounded
by:

N
L(L—1) ,
Pmul § 9 N Eﬁl 51

Since «; is continuous on [0, 1], we know that it is uniformly continuous. Therefore, for any ¢ > 0,
there exists Ny > 0 that satisfies:

2e 1
z — < — Vax,yel0 1],z —yl < —.
In this case, for N > Ny, we know that:
8| = Jano: » 2 Vie [N
|Z|—|Oz%—OKN—A;+1|<m7 ZE[ }

Combining with the fact that Zf\il d; = 1, we can obtain:

N

. 0; - max 5]' < €.
- ey

L(L—1)

Pmul S 9

O

Next, we consider the SER increase due to the learning error. Specifically, we only investigate the
case where all the locations are sampled at different steps.

Lemma E.2 (Accurate Step-by-Step Generation with Low Learning Error). Let g denote any HMM,
and let py represent the reverse model under an arbitrary masking schedule, where L is the se-
quence length. Let p denote the distribution over sequences generated by pg. Under Assump-
tion with a learning error €aming < %, 6 > 0, and given an instance of reverse process
T = My, My, -+, Mpy) with |M;| < 1, let pacc denote the probability of generating a valid
sequence. Then p,.. satisfies:

pacc Z 6_6'

Proof. Since |[M;| < 1, we only need to consider the steps where one token is sampled. Let &;
denote the previously sampled tokens, and z; denote the token sampled at the current step. If &,
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is can later form a valid sequence, let &; denote the set of valid choices for ;. In other words, if
Ty € Xy, then the combination of ; and Z; is can later form a valid sequence, or more intuitively:

qoj¢(Z¢ | 2¢) > 0.
Under Assumption BT, we know that:
DKL((IO\t(xt | Z¢)||po(z¢ | 1)) < €learning -
Since it is assumed that 0 log 0 = 0, we have:

Z qoj¢(ze | 1) log

T EX

QO|t($t | Zy)

Do (l't | -'it) €learning -

Equivalently, we have:

po(xy | T)

_Elearning < Z QO\t(mt | ;it) 1Og qo‘ (mt | i:t) .
t

T EX

Due to the concavity of log z, by Jensen’s Inequality, we can obtain:

Po\x pg €T xr .
Z qoj¢ (¢ | wt)IOg((;Hm < log ( Z qojt(we | &+) ((xt | :1?)) = log Z po(Tt | Zt).
wiC X, qo|t\ Tt t) o e, QO|t t| Lt v EX,

Therefore, the probability that each step remains valid satisfies:

Z po(mt ‘ it) 2 e_fleaming Z e
T €A

o

Since there are L locations in the sequence, the probability of generating a valid sequence is bounded
by:
Pacc Z (ei%)L = 67§~
O

Combining the above lemmas, we can derive the upper bound of SER by taking sufficient reverse
steps and small learning error.

Theorem E.3 (Accurate Generation of HMM with Sufficient Steps). Let q denote any HMM, and
let py represent the reverse model under an arbitrary masking schedule, where L is the sequence
length. Let p denote the distribution over sequences generated by pg. Under Assumption with a
learning error €jparming < O(%), and given a sufficient number of reverse steps, the sequence error
rate SER(p) of the generated text satisfies

SER(p) < 4.

Proof. For § > 0, we know that:
l1-d<ec

By Lemma ET, given the masking schedule o, there exists Ny, for N > Ny and N reverse steps,
the probability of sampling multiple locations in the sequence at the same time is bounded by:

1-6
pmul<]-7 6_5 .

In other words, the probability of sampling all the locations at different steps is at least 1=9. By
Lemma E™, for each reverse process which satisfies that all the locations are sampled at dlfferent
steps, the probability of generating a valid sequence is lower bounded by:

pacc Z 6_6
Therefore, the sequence error rate SER satisfies:
1-9

—4
e % =4.
e—90

SER(p) <1 -
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E.2 Proof for Theorem &4

In the section, we aim to find an example (Example EZ2) with high sequence error rate. To present
this example, we begin with a special class of languages defined under the interval setting:

Definition E.4 (Interval Setting). Consider a seckuence of length L, which is divided equally into
M intervals Z,,Z5,- -+ , I, each of length [ = 57 > 2. Given a masking schedule o, an instance
of reverse process 7 = (My, Ma, -+, My) is defined by Definition Dl. For any two locations
within different intervals, their corresponding tokens are independent from each other. In other

words, let a:(J ) denote the new tokens in M; NI, m(J ) denote the previously sampled tokens in
Mo;iNT and p denote the distribution over sequences generated by the reverse model with reverse

process T, then for time step ¢; = NA? i

p(@?|3<) = p@7|2Y)).

In this case, we have:

N
Hp (J)|w(J)

i=1

::1:

M
- Hp(w(J)
j=1

We denote the above setting as Inter(L, [, o).

I
-

J

Under the interval setting defined above, we can control the probability of sampling simultaneously
in the same interval.

Lemma E.5 (Simultaneous Sampling Probability for an Interval). Consider the interval setting
Inter(L,l, o). For each interval Z; of length l, let h; denote the probability that all the locations
in I; are sampled in different time steps. Then, h; can be bounded by:
1
h; <1-——.
7= N

Proof. Letd; = ou, — oy, . Similar to Lemma D10, we know that J; is the probability of a location
being sampled at time step ¢;. Take the first location in and let X5, --- , X]
denote the rest I — 1 locations in Z;. If X; is sampled at step tl, then Xo,--- , X; must be sampled
at time steps other than ¢;. Therefore h; can be bounded by:

h; <Z§ (1-46 “<Z§

Let f(6) = §(1 — 0). Note that we have:
118 =2 <0,

which indicates that f(9) is concave. Using Jensen’s Inequality, we can obtain:

O

Using the above lemma, if we assume that sampling simultaneously in one interval increases SER,
then we can derive an lower bound for SER(p).

Lemma E.6 (SER bound for Interval Setting). Consider the interval setting Inter(L, [, ). Assume
that sampling simultaneously in the same interval introduces an error with probability at least py,
and other actions do not reduce error. In other words, if two locations in an interval are both
sampled at step t;, then there is a probability of p. that the sequence will not be accurate afterwards.
In this case, let p denote the distribution over sequences of length L generated by the reverse model
with masking schedule oy and N reverse steps. We have the following bound for SER.:
P\ L/
SER(p) > 1 (1 N) .
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Proof. By Lemma EJ, we can obtain that for each interval Z;, the probability péﬁ;Lr of generating

an error in Z; is lower-bounded by:

1 Pe
P > pe(1—ny) = 22

Due to the independence between different intervals, the accuracy SER (p) can be calculated as:

M
SER(p) =1 - [](1 = p).-
j=1

Therefore, we have the bound:

O

To show that the above setting is reasonable and achievable, we give the following example, which
is later shown to be the example we are looking for.

Example E.7. Consider a sequence of length L, which is divided equally into M intervals, each of
length [ = L/M. Denote the k-th interval as 7, = [1 + (k — 1)I, kl]. The tokens z;, 1 <4 < L in
the sequence satisfy the following rules:

* Each z; takes values in the set A = {a1,-- - , asi-1}. Foreach a; € A, there corresponds a
vector v; = (vj1, -+ ,vj-1) € {0, 1}, where (v; 1 -+ - v;,_1)2 is the binary expression
for j — 1. Thus, each random variable x; corresponds to a random vector (vgz), e ,vl(l_)l),

where vj(»i) e{0,1}forj=1,---1—1.
» Fori € 7 and j € Z,, if k # s, then z; and x; are independent.

» Fori,j € I such that i < j,leti =4 — (s — 1)l and j/ = j — (s — 1)I. Then, z; and
x; are the ¢'-th and j'-th elements in interval 7y, respectively. The corresponding binary
(@ () (s)

components satisfy v;,_; = v;;" ~ Bernoulli(%), which is independent of all other v;

In this setup, each interval Z contains @ pairs of mutually independent random variables. Given
an arbitrary masking schedule ay, this setting is consistent with Definition E. Let ¢ denote the data

distribution described above.

Under Assumption B, we only need to examine the case where x; has no error. By Lemma 3,
we know that:

laoje (@0 [ ) — polay | 20|, < \/2DKL(q0|t(x6 | @)llpo (2 | 1)) < \/2€ieaming.-
Let M denote the set of previously sampled locations. For ¢ and any unsampled location in interval

T, all of the potential tokens z at this location which is consistent with x; have the same probability:

1
q(@lee) = S

If two locations x;, x; within the same interval Z are sampled simultaneously, ignoring the possible
inconsistency with previously sampled tokens (since error can not be reduced), the independence of
the random variable pairs implies that the probability of generating an error is lower-bounded by:

1 1 1 1
> (= Z _ Z
pe 2 (5 +e)(5 +e) + (5 +e)(5 +ea)

D or o)

where % implies the probability (for ¢) of letting v o1 to be O or 1, and e, es, e3, e4 satisfies:

lex] + les| = [|goje (o | ¢) — po(ay | o)

ea] + lea] = |[aop (e | @) = polah | @)
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Thus, we know that:
-2 \ 2€learning~

In other words, this is consistent with the setting Lemma [E-6, with an error probability p, =
2\/ 2€leurning‘

Although the example above seems a bit tricky, it can actually be modified into the form of an HMM,
a commonly considered structure for generative models.

Note E.8 (HMM Form of Example ETl). The setting described in Example EZ2 can be alternatively
modeled as a Hidden Markov Model (HMM), where the observation space is O = A4, and the state
space is S = {(i, AW)|A®) ¢ RU-UxU=1) i — 1 ... [}, Here, i represents the current position
within the interval, and A(*) is an upper triangular matrix with entries taking values of 0 or 1. For
j < i, the j-th row of A() encodes the values sampled by the variable pairs formed between the j-th
position and all its subsequent positions in the interval. For j > i, the j-th row of A(® is set to 0.

N[ =

1
pe 2 5 = (lea] +lez| + les| +leal) =

1
2

Given the current state s = (i, A(¥)), the state transition and emission process can be describe as
follows:

» The observation o; corresponds to the ¢ — 1-th column and the i-th row of the matrix A(i),
where the values of variable pairs relevant to the ¢-th position within the interval are en-

coded. Specifically, we know that o; € A corresponds to a vector v; = (v; 1, ,V;1-1),
where 0
A <,
Vij = 40 s
i j >
s If i < I, the next state is s’ = (i, AC*1)), where the first i rows of A(*+1) is the same as
AW and Agfllj) ~ Bernoulli(}) ii.d. for j =4+ 1,--- 1 — 1, with the remaining entries
set to 0.
o If ¢ = I, the next state resets to s' = (1, A(l)), where the entries in the first row are

independently sampled from Bernoulli(3), and other entries are set to 0.

The size of the observation space is given by |O| = |A| = 2!=!. The size of the state space is
computed as:

l
S| = Z 9(21=i=1)i/2 < | 9l-1)/2,
i=1

The above Note gives the HMM form of Example EZ. In fact, with appropriate adjustments, it
can be further modified into an n-gram language. Using the HMM defined above, we can prove
Theorem E4.

Theorem E.9 (SER Bound for HMM Generation). There exists an HMM q over a vocabulary of
size 16 that satisfies the following conditions: for any reverse model py under Assumption with
€learning < ﬁls, and any masking schedule oy, let p denote the distribution over sequences generated
by pg. There exists a constant C such that if the number of sampling steps satisfies N = CL, where
L is the sequence length, the SER of the generated text is lower-bounded by:

SER(p) >

N~

Proof. Take the HMM described in Note EXR, and set [ = 5, N = CL. The vocabulary is the
observation space O which satisfies |O| = 2!~!. By Lemma E®, for any masking schedule o, we
have: Y
Pe
SER >1—(1——> .
(p) = N
As illustrated in Example EZ2:

1

Pe = 5 -2 2€leurning-
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Therefore, take N = C'L, and let y = , we have:

SER(p) > 1 Kl_;ﬂ

Since (1 — y) is decreasing, and apparently y > > , we know that:

Pe
SER(p) > —.
LetC = l +1, we can get the upper bound:
SER(p) > +.
2
In this way:

v
\

25 1_2 Qeeamin 1
C = Pe _ 2~ “V Tleaming = 0(1).

Tl4+1 6 — 24

E.3 Extending Theorem 4.4 to Remasking Strategies

In this section, we extend the conclusion of Theorem E-4 to masked diffusion models with remasking
sampler (named ReMDM) proposed by (Wang et all, Z025). We begin by presenting the main
mechanisms of the sampler, followed by the justification for analogous results.

As is introduced in the paper, ReMDM is an MDM with remasking designs, where preciously sam-
pled tokens have a chance to be remasked and resampled again in later steps. Formally, let o, be the
remasking schedule that satisfies 0 < ¢; < min{1, 1=%= 2= } for any time step s < ¢.

In contrast to the conventional reverse process deﬁned in Equation (B), the reverse process of
ReMDM (with the original sequence ) is defined as:

ds|t wslwtv H qs|t |wta ,  where
1—0',5, xt;’é [m]axi:xia
‘ o, z} # [ml,z} = [m], 0
Gopp (@ |y, @) = =g i = [m], zf = [m],

a57(17t0t)at

1—ay QO|t(1’§|wt); 1’% = [m],xé 7& [m]v
0, otherwise.

Intuitively, compared to the original reverse process, there is a probability that already generated
tokens are remasked during the generation. Now, consider the last time ¢ that a location is sampled.
In other words, the location is sampled at step ¢, and is not remasked in later steps, thus the token
sampled at ¢ will stay unchanged. We will derive the probability that a location is sampled for the

last time at time step t; = NJ\7 L.

Lemma E.10 (Last Sample Probability Estimate of ReMDM). Given a masking schedule o, a
remasking schedule o and N reverse steps, for ReMDM, the probability §; that a location is sampled
for the last time at time step t; = % satisfies that:

N—
52':(0%7;7(]—70} atfl ]:[1*0'75

Proof. 1t follows from the symmetry that we can consider any location in the sequence. First, we use
induction to show the probability p,, (%) that the token at this location is [m]at ¢; satisfies p,, (i) =
1— Q.

For i = 0, since ay = 0, it is direct that p,,, (0) = 1 = 1 — .

42



For i = k + 1, assume that p,,, (k) = 1 — oy, . Combining with Equation (@), we know that

1-— atk+1 — Utkatk

Pm(k +1) = pm(k) - + (1 =pm(k) o1, =1 — g,

170‘tk-

Thus, we can conclude that p,, (i) = 1 — «ay,. Therefore, the probability J; can be decomposed into

0; = Pr([mlatt;, ,)-Pr(not [mlatt;, | [m]at¢,, ,)- Pr(stay unmasked | not [m]latt;,)
N-1

. Qg *(170} _1)O[t._1
— o (i—1)- i i i . 1_
p (Z ) 1-— Qi E ( O—tj)
N-1
= (ati - (1 - 075@'71)057%71) H (1 - Utj)'
Jj=i

By replacing the probability of a location being sampled at time step ¢ with the probability of that a
location being sampled for the last time to be at time step ¢ (and letting ¢; to be the corresponding
probability in Lemma ET0), we can derive analogous results to those presented in Lemma ETJ,
Lemma E-f, and Theorem EZ9. This substitution is justified because when two locations are sampled
simultaneously and are not later remasked and resampled, there exists a probability of introducing
errors. Therefore, by applying similar proof techniques, we arrive at the same conclusion as stated
in Theorem B4,

F Experiment Details

In this section, we will present the details of the experiments.

F.1 Data Generation

We evaluate the MDMs in a variety of formal languages, including n-gram languages and HMMs.
For each formal language, parameters are generated through random sampling, we present the sam-
pling algorithm in Algorithm 0 and Algorithm . It is notable that to add some deterministic to the
language model in the evaluation of SER, we add the parameter of thres to prune the tail proba-
bilities, making sure the language model only generates the correct sequence. For the evaluation
of TER, we set the thres to be 0, for the well definition of generative perplexity. The detailed
parameters to generate the formal languages are listed in Table B.

Table 6: Generation Parameters for Different Language Models

Parameter 2-gram 3-gram 4-gram HMM
vocabulary size 8 8 8 8
Hidden States (1) N/A N/A N/A 32
Temperature 2 2 2 3.2
Threshold 0.008 0.008 0.005 0.003
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Algorithm 1 Generate n-gram Language Model

Input:

n: number of grams

vocab_size: size of vocabulary

temp: temperature (controls randomness, higher indicates more randomness)
thres: threshold for pruning small probabilities

Output: n-gram language model with parameters:

T transition probability matrix (vocab_size™ ! x vocab_size)

Init_dist: initial state distribution

: Init_dist < rand(hidden_states_num)
Init_dist « Init_dist/ > (Init_dist)
T + randn(vocab_size”_l, vocab_size) X randomness
T « softmax(T)
if thres > 0 then
T[where(T < thres)] < 0
T < T /rowsum(T)
end if
return 7" and Init_dist

R A A i

Algorithm 2 Generate Hidden Markov Model
Input:
n: number of hidden states
vocab_size: size of vocabulary
randomness: temperature parameter to control probability distributions
thres: threshold for pruning small transition probabilities
Output: HMM with parameters:
A: state transition matrix (n X n)
B: emission probability matrix (n x (vocab_size + 1))
Init_dist: initial state distribution (n-dimensional)
1: hidden_states_num < n
2: Init_dist + rand(hidden_states_num)
3: Init_dist + Init_dist/ > (Init_dist)
4: A <+ randn(hidden_states_num, hidden_states_num) x randomness
5: A + softmax(A)
6
7
8

: if thres > O then
Al[where(A < thres)] < 0
i A<+ A/rowsum(A)
9: end if
10: B « randn(hidden_states_num, vocab_size) X randomness X 2.5
11: B + softmax(B)
12: B[where(B < 0.05)] < 0
13: B < B/rowsum(B)
14: B « concat(B, ones(hidden_states_num, 1) /hidden_states_num)
15: return A, B, and Init_dist

F.2 Model Training and Testing

In our experiments of formal languages, all training was conducted on NVIDIA A100 GPUs. The
model architectures and train configurations are listed in Table @ and Table B. The training configu-
ration of the auto-regressive model is listed in Table B. We run the each experiment for 5 times and
report the mean and standard deviation.

44



Model Configuration

Hidden Size 768

Sequence Length {512,1024,2048}
Number of Layers 10

Attention Heads 12

Table 7: Model Configuration for the Formal Language Tasks

Training Configuration for MDMs

Epochs 20

Learning Rate 3e-4

Optimizer AdamW

B1 0.9

Ba 0.999

Learning Rate Scheduler Cosine Scheduler with Warmup
Warmup Ratio 0.1

Table 8: Training Configuration for MDMs on the Formal Language Tasks

Training Configuration for Auto-regressive Models

Epochs 20

Learning Rate 3e-4

Optimizer AdamW

51 0.9

Ba 0.999

Learning Rate Scheduler Cosine Scheduler with Warmup
Warmup Ratio 0.1

Table 9: Training Configuration for Auto-regressive Models on the Formal Language Tasks

Speedup Testing Settings

GPU Nvidia RTX 4090
Batch Size 1
Sequence Length 2048

Testing Model Configuration In Table O

Table 10: Setting for the experiments to test the speedup of MDMs under different sampling steps
compare to auto-regressive models.
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