
Published as a conference paper at ICLR 2023

HIERARCHICAL ABSTRACTION FOR COMBINATORIAL
GENERALIZATION IN OBJECT REARRANGEMENT

Michael Chang
⇤
, Alyssa L. Dayan, Franziska Meier, Thomas L. Griffiths, Sergey Levine, Amy Zhang

ABSTRACT

Object rearrangement is a challenge for embodied agents because solving these
tasks requires generalizing across a combinatorially large set of configurations of
entities and their locations. Worse, the representations of these entities are un-
known and must be inferred from sensory percepts. We present a hierarchical
abstraction approach to uncover these underlying entities and achieve combinato-
rial generalization from unstructured visual inputs. By constructing a factorized
transition graph over clusters of entity representations inferred from pixels, we
show how to learn a correspondence between intervening on states of entities in
the agent’s model and acting on objects in the environment. We use this corre-
spondence to develop a method for control that generalizes to different numbers
and configurations of objects, which outperforms current offline deep RL methods
when evaluated on simulated rearrangement tasks. 1

1 INTRODUCTION

The first level groups visual
features from sensorimotor

interaction to produce transitions
between sets of entities

The second level groups entities
that share the same state transition

to produce a graph over entity-
agnostic state transitions

!!

!!"#

!!

!!"#

"∗

"∗%

#&

#&

#

$&' "&'

$&' "&'%

target object

context objects

state (texture)

identity (solid
color)

action

entity-set

Figure 1: NCS uses a two-level
hierarchy to abstract sensorimo-
tor interactions into a graph of
learned state transitions. The af-
fected entity is in black.

The power of an abstraction depends on its usefulness for solving
new problems. Object rearrangement (Batra et al., 2020) offers an
intuitive setting for studying the problem of learning reusable ab-
stractions. Solving novel rearrangement problems requires an agent
to not only infer object representations without supervision, but also
recognize that the same action for moving an object between two
locations can be reused for different objects in different contexts.
We study the simplest setting in simulation with pick-and-move ac-
tion primitives that move one object at a time. Even such a simple
setting is challenging because the space of object configurations is
combinatorially large, resulting in long-horizon combinatorial task
spaces. We formulate rearrangement as an offline goal-conditioned
reinforcement learning (RL) problem, where the agent is pretrained
on a experience buffer of sensorimotor interactions and is evaluated
on producing actions for rearranging objects specified in the input
image to satisfy constraints depicted in a goal image.
Offline RL methods (Levine et al., 2020) that do not infer factorized
representations of entities struggle to generalize to problems with
more objects. But planning with object-centric methods that do in-
fer entities (Veerapaneni et al., 2020) is also not easy because the
difficulties of long-horizon planning with learned parametric mod-
els (Janner et al., 2019) are exacerbated in combinatorial spaces.
Instead of planning with parametric models, our work takes inspi-
ration from non-parametric planning methods that have shown suc-
cess in combining neural networks with graph search to generate
long-horizon plans. These methods (Yang et al., 2020; Zhang et al.,
2018; Lippi et al., 2020; Emmons et al., 2020) explicitly construct a transition graph from the ex-
perience buffer and plan by searching through the actions recorded in this transition graph with a
learned distance metric. The advantage of such approaches is the ability to stitch different path seg-
ments from offline data to solve new problems. The disadvantage is that the non-parametric nature

⇤work done as an intern at Meta AI. Correspondence to: mbchang@berkeley.edu and amyzhang@meta.com
1A step-by-step explanatory video of our method can be found in the supplementary material.

1

Published as a conference paper at ICLR 2023

of such methods requires transitions that will be used for solving new problems to have already
been recorded in the buffer, making conventional methods, which store entire observations mono-
lithically, ill-suited for combinatorial generalization. Fig. 2b shows that the same state transition can
manifest for different objects and in different contexts, but monolithic non-parametric methods are
not constrained to recognize that all scenarios exhibit the same state transition at an abstract level.
This induces an blowup in the number of nodes of the search graph. To overcome this problem, we
devise a method that explicitly exploits the similarity among state transitions in different contexts.
Our method, Neural Constraint Satisfaction (NCS), marries the strengths of non-parametric plan-
ning with those of object-centric representations. Our main contribution is to show that factoriz-
ing the traditionally monolithic entity representation into action-invariant features (its type) and
action-dependent features (its state) makes it possible during planning and control to reuse action
representations for different objects in different contexts, thereby addressing the core combinato-
rial challenge in object rearrangement. To implement this factorization, NCS constructs a two-level
hierarchy (Fig. 1) to abstract the experience buffer into a graph over state transitions of individual en-
tities, separated from other contextual entities (Fig. 3). To solve new rearrangement problems, NCS
infers what state transitions can be taken given the current and goal image observations, re-composes
sequences of state transitions from the graph, and translates these transitions into actions.
In §3 we introduce a problem formulation that exposes the combinatorial structure of object re-
arrangement tasks by explicitly modeling the independence, symmetry, and factorization of latent
entities. This reveals two challenges in object rearrangement which we call the correspondence

problem and combinatorial problem. In §4 we present NCS, a method for controlling an agent
that plans over and acts with emergent learned entity representations, as a unified method for tack-
ling both challenges. We show in §5 that NCS outperforms both state-of-the-art offline RL methods
and object-centric shooting-based planning methods in simulated rearrangement problems.

2 RELATED WORK

The problem of discovering re-composable representations is generally motivated by combinatorial
task spaces. The traditional approach to enforcing this compositional inductive bias is to compactly
represent the task space with MDPs that human-defined abstractions of entities, such as factored
MDPs Boutilier et al. (1995; 2000); Guestrin et al. (2003a), relational MDPs Wang et al. (2008);
Guestrin et al. (2003b); Gardiol & Kaelbling (2003), and object-oriented MDPs Diuk et al. (2008);
Abel et al. (2015). Approaches building off of such symbolic abstractions (Chang et al., 2016;
Battaglia et al., 2018; Zadaianchuk et al., 2022; Bapst et al., 2019; Zhang et al., 2018) do not address
the problem of how such entity abstractions arise from raw data. Our work is one of the first to learn
compact representations of combinatorial task spaces directly from raw sensorimotor data.
Recent object-centric methods (Greff et al., 2017; Van Steenkiste et al., 2018; Greff et al., 2019;
2020; Locatello et al., 2020a; Kipf et al., 2021; Zoran et al., 2021; Singh et al., 2021) do learn entity
representations, as well as their transformations (Goyal et al., 2021; 2020), from sensorimotor data,
but only do so for modeling images and video, rather than for taking actions. Instead, we study how

well entity-representations can reused for solving tasks. Kulkarni et al. (2019) considers how object
representations improve exploration, but we consider the offline setting which requires zero-shot
generalization. Veerapaneni et al. (2020) also considers on control tasks, but their shooting-based
planning method in suffers from compounding errors as other learned single-step models do (Janner
et al., 2019), while our hierarchical non-parametric approach enables us to plan for longer horizons.
Non-parametric approaches have recently become popular for long horizon planning (Yang et al.,
2020; Zhang et al., 2018; Lippi et al., 2020; Emmons et al., 2020; Zhang et al., 2021), but the draw-
back of these approaches is they represent the entire scenes monolithically, which causes a blowup
of nodes in combinatorial task spaces, making it infeasible for these methods to be applied in rear-
rangement tasks that require generalizing to novel object configurations with different numbers of
objects. Similar to our work, Huang et al. (2019) also tackles rearrangement problems by search-
ing over a constructed latent task graph, but they require a demonstration during deployment time,
whereas NCS does not because it reuses context-agnostic state transitions that were constructed dur-
ing training. Zhang et al. (2021) conducts non-parametric planning directly on abstract subgoals
rather than object-centric states — while similar, the downside of using subgoals rather than ab-
stract states is that those subgoals are not used to represent equivalent states and therefore cannot
generalize to new states at test time. Our method, NCS, captures both reachability between known
states and new, unseen states that can be mapped to the same abstract state.

2

Published as a conference paper at ICLR 2023

observation

model
entities

environment
objects

sensorimotor
interface

agent

environment

imagined transformation0

2
3

1
0

2
3

1

1
2

3

0

1
2

3

0

real transformation

!!
action (pick-place)

correspondence problem

(a) Correspondence Problem

"!"#"!

$ %

(b) Combinatorial Problem

The same state transition can manifest for different objects and in different contexts

visualized state transition
different context object

different target object
and different context

configuration

observed transition different target object different position
for context object

target object that was moved

same type (solid color), different state (texture)

Figure 2: Solving object rearrangement requires solving two challenges. (a) The correspondence prob-

lem is the problem of abstracting raw sensorimotor signal into representations of entities such that there is a
correspondence between how an agent intervenes on an entity and how its action affects an object in the envi-
ronment. k denotes the index of the entity, z denotes its type (shown with solid colors), and s denotes its state
(shown with textures). The entity representing the moved object is in black. (b) The combinatorial problem is
the problem of representing the combinatorial task space in a way that enables an agent to transfer knowledge
of a given state transition (indicated by the dotted circle) to different contexts.

3 GOAL-CONDITIONED REINFORCEMENT LEARNING WITH ENTITIES

This section introduces a set of modifications to the standard goal-conditioned partially observed
Markov decision process (POMDP) problem formulation that explicitly expose the combinatorial
structure of object rearrangement tasks of the following kind: “Sequentially move a subset (or all)
of the objects depicted in the current observation o1 to satisfy the constraints depicted in the goal
image og .” We assume an offline RL setting, where the agent is trained on a buffer of transitions
{(o1, a1, ...aT�1, oT)}Nn=1 and evaluated on tasks specified as (o1, og).
The standard POMDP problem formulation assumes an observation space O, action space A, latent
space H, goal space G, observation function E : H! O, transition function P : H ⇥A! H, and
reward function R : H⇥G ! R. Monolithically modeling the latent space this way does not expose
commonalities among different scenes, such as scenes that contain objects in the same location or
scenes with multiple instances of the same type of object, which prevents us from designing control
algorithms that exploit these commonalities to collapse the combinatorial task space.
To overcome this issue, we introduce structural assumptions of independence, symmetry, and fac-
torization to the standard formulation. The independence assumption encodes the intuitive property
that objects can be acted upon without affecting other objects. This is implemented by decompos-
ing the latent space into independent subspaces as H = H1 ⇥ ... ⇥HK , one for each independent
degree of freedom (e.g. object) in the scene. The symmetry assumption encodes the property that
the the same physical laws apply to all objects. This is implemented by constraining the observation
function E, transition function P and reward function R to be shared across all subspaces, thereby
treating H1 = ... = HK . We define an entity

2 h 2 Hk as a member of such a subspace, and an
entity-set as the set of entities h = (h1, ..., hK) that explain an observation, similar to Diuk et al.
(2008); Weld. Lastly, the factorization assumption encodes that each subspace can be decomposed
as Hk = Z ⇥ S , where the z 2 Z represents the entity’s action-invariant features like appearance,
and s 2 S represents its action-dependent features like location. We call z the type and s the state.
Introducing these assumptions solves the problem of modeling the commonalities among different
scenes stated above. It allows us to describe scenes that contain objects in the same location by
assigning entities in different scenes to share the same state s. It allows us to describe a scene with
multiple instances of the same type of object by assigning multiple entities in the scene to share
the same type z. This formulation also makes it natural to express goals as a set of constraints
hg = (h1

g, ..., h
k
g). To solve a task is to take actions that transform the subset of entities in the initial

observation o1 whose types are given by zg to new states specified by sg .
Exposing this structure in our problem formulation enables us to exploit it by designing methods
that represent entities in an independent, symmetric, and factorized way and that use these three
properties to collapse the combinatorial task space. To do so involves solving two problems: the cor-

respondence problem of learning to represent entities in this way and the combinatorial problem

2We use “object” to refer to an independent degree of freedom in the environment, and “entity” to refer to
the agent’s representation of the object.

3

Published as a conference paper at ICLR 2023

(a) Representation Learning

!!"! "!"#

# 				 				 slot
attention transformer slot

attention
prior

!!" "!" !!" "!"#

!

!

!

!

!′

!′
!

!′

!′′

!′′

!′′

!′′

(b) Graph Construction

concrete entity transitions

abstract state transition

&∗

&∗%

' & ' &′

'′ & '′ &′

'’’ & '’’ &′

same type (solid color), different state (texture)

action (pick-place)

Figure 3: Modeling. NCS constructs a two-level abstraction hierarchy to model transitions in the experience
buffer. (a) Level 1: NCS learns to infer a set of entities from sensorimotor transitions with pick-and-move
actions, in which one entity is moved per transition. We enforce that the type z (shown with solid colors) of an
entity remains unchanged between time-steps. The GPT dynamics model learns to sparsely predict the states
s (shown with textures) of the entities at the next time-step. This addresses the correspondence problem by

forcing the network to use predict and reconstruct observations through the entity bottleneck. (b) Level 2: NCS
abstracts transitions over entity-sets into transitions over states of individual entities, constructing a graph where
states are nodes and transitions between them are edges. This is done by clustering entity transitions that share
similar initial states and final states. This addresses the combinatorial problem by making it possible for state

transitions to reused for different entity types and with different context entities.

of using these properties to make planning tractable. The correspondence problem is hard because it
assumes no human supervision of what the entities are. It also goes beyond problems solved by exist-
ing object-centric methods for images and videos because it involves action: it requires representing
entities such that there is a correspondence between how the agent models how its actions affect
entities and how its actions actually affect objects in the environment. The combinatorial problem
goes beyond problems solved by methods for solving object-oriented MDPs, relational MDPs, and
factorized MDPs because it requires the agent to recognize whether and how previously observed
state transitions can be used for new problems, using learned, not human-defined, entity represen-
tations. The natural evaluation criterion for both problems is to test to what extent an agent can
zero-shot-generalize to solve rearrangement tasks involving new sets of object configurations that
aree disjoint from the configurations observed in training, assuming that the training configurations
have collectively covered Z and S . Our experiments in §5 test exactly this.

Simplifying assumptions To focus on the combinatorial nature of rearrangement, we are not in-
terested in low-level manipulation, so we represent each action as (w,�w), where w are Cartesian
coordinates w = (x, y, z). We assume actions sparsely affect one entity at a time and how an action
affects an object’s state does not depend on its identity. We are not interested in handling occlusion,
so we assume that objects are constrained to the xy plane or xz plane and are directly visible to the
camera. Following prior work (Hansen-Estruch et al., 2022; Castro et al., 2009), we make a bisimu-

lation assumption that the state space can be partitioned into a finite set of equivalence classes, and
that there is one action primitive that transitions between each pair of equivalence classes. Lastly,
we assume objects can be moved independently. Preliminary experiments suggest that NCS can be
augmented to support tasks like block-stacking that involve dependencies among objects, but how
to handle these dependencies would warrant a standalone treatment in future work.

4 NEURAL CONSTRAINT SATISFACTION

In §3 we introduced a structured problem formulation for object rearrangement and reduced it to
solving the correspondence and combinatorial problems. We now present our method, Neural Con-
straint Satisfaction (NCS) as a method for controlling an agent that plans over and acts with a state
transition graph constructed from learned entity representations. This section is divided into two
parts: modeling and control. The modeling part is further divided into two parts: representation
learning and graph construction. The representation learning part addresses the correspondence
problem, while the graph construction and control parts address the combinatorial problem.

4.1 MODELING

The modeling component of NCS abstracts the experience buffer into a factorized state transition
graph that can be reused across different rearrangement problems. Below we describe how we first

4

Published as a conference paper at ICLR 2023

train an object-centric world model to infer entities that are independent, symmetric, and factorized
and then construct the state transition graph by clustering entities with similar state transitions. These
two steps comprise a two-level abstraction hierarchy over the raw sensorimotor transitions.

Level 1: representation learning The first level concerns the unsupervised learning of entity rep-
resentations that factorizes into their action-invariant features (their type) and their action-dependent
features (their state). Concretely our goal is to model a video transition ot, at ! ot+1 as a transition
over entity-sets ht, at ! ht+1, where each entity hk is factorized as a pair hk = (zk, sk). Given
our setting where an action moves only a single object in the environment at a time, successful
representation learning implies three criteria: (1) the world model properly identifies the individual
entity hk corresponding to the moved object, (2) only the state sk of that entity should change, while
its type zk should remain unaffected, and (3) other entity representations h 6=k should also remain
unaffected. Criteria (1) and (3) rule out standard approaches that represent an entire scene with a
monolithic representation, so we need an object-centric world model instead of a monolithic world
model. But criterion (2) rules out standard object-centric world models (e.g. (Veerapaneni et al.,
2020; Elsayed et al., 2022; Singh et al., 2022b)), which do not decompose entity representations
into action-invariant and action-dependent features.
Because the parameters of a mixture model are independent and symmetric by construction, we pro-
pose to construct our factorized object-centric world model as an equivariant sequential Bayesian
filter with a mixture model as the latent state, where entity representations are the parameters of the
mixture components. Recall that a filter consists of two major components, latent estimation and
latent prediction. We implement latent estimation with the state-of-the-art slot attention (SA) (Lo-
catello et al., 2020b), based on the connection Chang et al. (2022) between mixture components and
SA slots. We implement latent prediction with the transformer decoder (TFD) architecture (Vaswani
et al., 2017) because TFD is equivariant with respect to its inputs. We denote the SA slots as �
and SA attn masks as ↵. We split each slot � 2 Rn into two halves �z 2 Rn

2 and �s 2 Rn
2 .

Given observations o and actions a, we embed the actions as ã with an feedforward network and
implement the filter as:

�̂1 ⇠ Gaussian �̂s
t+1 = TFD (queries = �s

t , keys/values = [�s, ãt])

�t,↵t = SA
⇣
�̂t, ot

⌘
�̂t+1 =

h
�z
t , �̂

s
t+1

i

where [·, ·] is the concatenation operator, �̂ is the output of the latent prediction step, and � is the
output of the latent estimation step. We embed this filter inside the SLATE backbone (Singh et al.,
2022a) and call this implementation dynamic SLATE (dSLATE).
By constructing �̂z

t+1 as a copy of �z
t , dSLATE enforces the information contained �z to be action-

invariant, hence we treat �z as dSLATE’s representation of the entities’ types. As for the entities’
states, either the action-dependent part of the slots �s or the attention masks ↵ can be used. Using ↵
may be sufficient and more intuitive to analyze if all objects looks similar and there is no occlusion,
while �s may be more suitable in other cases, and we provide an example of each in the experiments.
To simplify notation going forward and connect with the notation in §3, we use h to refer to (�,↵),
use z to refer to �z , and use s to refer to �s or ↵. Thus by construction dSLATE satisfies criterion
(2). Empirically we observe that it satisfies criterion (1) as well as SLATE does, and that TFD learns
to sparsely edit �s

t , thereby satisfying criterion (3).

Level 2: graph construction Having produced from the first level a buffer of entity-set transitions
{ht, at ! ht+1}Nn=1, the goal of the second level (Fig. 3b) is to use this buffer to construct a factor-
ized state transition graph. The key to solving the combinatorial problem is to construct the edges
of this graph to represent not state transitions of entire entity-sets (i.e. st, at ! st+1) as prior work
does (Zhang et al., 2018), but state transitions of individual entities (i.e. skt , at ! skt+1). Construct-
ing edges over transitions for individual entities rather than entity sets enables the same transition to
be reused with different context entities present. Constructing edges over state transitions instead of
entity transitions enables the same transition to be reused across entities with different types. This
would enable the agent to recompose sequences of previously encountered state transitions for solv-
ing new rearrangement problems with different entities in different contexts. Henceforth our use of
“state” refers specifically to the state of individual entity unless otherwise stated.
Given our bisimulation assumption that states can be partitioned into a finite number of groups, we
construct our graph such that nodes represent equivalence classes among individual states and the
edges represent actions that transform a state from one equivalence class to another. To implement

5

Published as a conference paper at ICLR 2023

this we cluster state transitions of individual entities in the buffer, which reduces to clustering the
states of individual entities before and after the transition. We treat each cluster centroid as a node
in the graph, and an edge between nodes is tagged with the single action that transforms one node’s
state to another’s. The algorithm for constructing the graph is shown in Alg. 1 and involves three
steps: (1) isolating the state transition of an individual entity from the state transition of the entity-
set, (2) creating graph nodes from state clusters, and (3) tagging graph edges with actions.

Algorithm 1 Building the Graph
1: input model, buffer
2: for {(ot, at, ot+1)}n in buffer do

3: # infer entities from transition
4: {(ht, at,ht+1)}n model ({ot, at, ot+1}n).
5: # identify which entity changed in transition
6: {(hk

t , at, h
k
t+1)}n isolate ({(ht, at,ht+1)}n)

7: end for

8: # partition transitions by clustering entities
9: {s⇤}Mm=1 cluster

�
{(skt , at, s

k
t+1)}Nn=1

�

10: # transitions between clusters are edges
11: initialize graph with nodes s[m]

⇤ , for m 2 [1 : M]
12: for each {(hk

t , at, h
k
t+1)}n do

13: # infer cluster assignments
14: [i], [j] bind

�
hk
t

�
,bind

�
hk
t+1

�

15: # tag edge with action at

16: graph.edges[i, j] create-edge

⇣
s[i]⇤

at! s[j]⇤

⌘

17: end for

18: return graph

The first step is to identify which
object was moved in each transition,
i.e. identifying the entity hk that
dSLATE predicted was affected by at
in the transition (ht, at,ht+1). We
implement a function isolate

that achieves this by solving
k = argmaxk02{1,...,K} d(s

k0

t , sk
0

t+1)
to identify the index of the entity
whose state has most changed during
the transition, where d(·, ·) is a
distance function, detailed in Table 3
of the Appendix. This converts the
buffer of transitions over entity-sets
ht, at ! ht+1 into a buffer of
transitions over individual entities
hk
t , at ! hk

t+1.
The second step is to cluster the states
before and after each transition. We
implement a function cluster that
uses K-means to returns graph nodes as the centroids {s⇤}Mm=1 of these state clusters.
The third step is to connect the nodes with edges that record actions that actually were taken in
the buffer to transform one state to the next. We implement a function bind that, given entity hk,
returns the index [i] of the centroid s⇤ that is the nearest neighbor to the entity’s state sk. For each
entity transition (hk

t , at, h
k
t+1) we bind entity hk

t and hk
t+1 to their associated nodes s[i]⇤ and s[j]⇤

and create an edge between s[i]⇤ and s[j]⇤ tagged with action a, overwriting previous edges based on
the assumption that with a proper clustering there should only be one action per pair of nodes.
In our experiments both cluster and bind use the same distance metric (see Table 2 in the
Appendix), but other clustering algorithms and distance metrics can also be used. Our experiments
(Fig. 11) also show that it is also possible to have more than one action primitive per pair of nodes
as long as these actions all map between states bound to the same pair of nodes.

4.2 CONTROL

Algorithm 2 Action Selection
1: given model, graph
2: input goal og , observation ot
3: # infer goal constraints and current entities
4: hg,ht model (og) ,model (ot)
5: align entity indices of ht with those of hg

6: ⇡ align (ht,hg)
7: permute indices of ht according to ⇡

8: ht (h⇡[1]
t , ..., h⇡[K]

t)
9: identify kth goal constraint to satisfy next

10: k select-constraint (ht,hg)
11: infer cluster assignments
12: [i], [j] bind

�
hk
t

�
,bind

�
hk
g

�

13: action that transforms node [i] to node [j]
14: return graph.edges[i, j].action

To solve new rearrangement problems, we re-
compose sequences of state transitions from the
graph. Specifically, the agent decomposes the rear-
rangement problem into a set of per-entity subprob-
lems (e.g. initial and goal positions for individual
objects), searches the transition graph for a transition
that transforms the current entity’s state to its goal
state, and executes the action tagged with this tran-
sition in the environment. This problem decomposi-
tion is possible because the transitions in our graph
are constructed to be agnostic to type and context,
enabling different rearrangement problems to share
solutions to the same subproblems. The core chal-
lenge in deciding which transitions to compose is in
determining which transitions are possible to com-
pose. That is, the agent must determine which nodes
in the graph correspond to the given goal constraints
and which nodes correspond to the entities in the current observation, but the current entities ht and

6

Published as a conference paper at ICLR 2023

goal!! goal!" goal!#goal !$!! !" !# !$
unaligned aligned unaligned aligned unaligned aligned unaligned aligned

goal
constraint

selected
factor

goal
constraint

selected
factor

goal
constraint

selected
factor

goal
constraint

selected
factor

attention mask for
concrete factor

attention mask for
abstract node

a) partition latent factors over the training set for each episode step:
b) align

c) isolate

d) bind

(b) align

(c) select-constraint

(d) bind

Action Selection
!

!

slot
attention

slot
attention

align

select-constraint

bind bind

!!!"

!∗ !∗"

!#$!%$"
"#$ "%$

!#$
"#$

!%$"
"%$

!#$
"#$

! = 0 ! = 1 ! = 2 ! = 3(a)

attention mask for
concrete entity

attention mask for
abstract node

goal
constraint

goal
constraint

goal
constraint

aligned aligned aligned aligned

type (solid color)
state (texture)

unaligned unaligned unaligned unaligned

goal
constraint

selected
entity

selected
entity

selected
entity

selected
entity

Figure 4: Planning and control. Given a rearrangement problem specified only by the current and goal
observations (o0, og), NCS decomposes the rearrangement problem into one subproblem (ot, og) per entity.
(a) shows the computations NCS uses to solve each subproblem and (b-d) show these steps in context. For
each subproblem (ot, og), NCS infers entities from both the current and goal observations. The states of the
goal entities indicate constraints on the desired locations of the current entities. (b) NCS aligns the indices of
the current entities to those of the goal entities with corresponding types. (c) It selects the index k of the next
goal constraint skg to satisfy, as indicated by the red box. The selected goal constraint and current entity are
also colored black in (a), and note that their types are the same but states are different; we want to choose the
action to transform the state of the current entity to the state of the goal constraint. (d) It binds the selected goal
constraint and its corresponding current entity to nodes s⇤ and s0⇤ in the transition graph. Lastly, it identifies
the edge connecting those two nodes and executes the action tagged to that edge in the environment.

goal constraints hg must themselves be inferred from the current and goal observations ot and og ,
requiring the agent to infer both what to do and how to do it purely from its sensorimotor interface.
Our approach takes four steps, summarized in Alg. 2 and Fig. 4. In the first step, we use dSLATE
to infer ht and hg from ot and og (e.g. the positions and types of all objects in the initial and goal
images). In the second step (Fig. 4b), because of the permutation symmetry among entities, we find
a bipartite matching that matches each entities in hj

g with a corresponding entity in hk
t that shares

the same type and permute the indices k of ht to match those of hg . We implement a function
align that uses the Hungarian algorithm to perform this matching over (z1t , ...zKt) and (z1g , ...z

K
g),

with Euclidean distance as the matching cost. The third step selects which goal constraint hk
g to

satisfy next (Fig. 4c). W implement this select-constraint procedure by determining which
constraint hk

g has the highest difference in state with its counterpart hk
t , which reduces to solving

the same argmax problem as in isolate with the same distance function used in isolate. The
last step chooses an action given the chosen goal constraint hk

g and its counterpart hk
t , by binding

hk
t and hk

g to the graph based on their state components and returning the action tagged to the edge
between their respective nodes (Fig. 4d). If an edge does not exist between the inferred nodes, then
we simply take a random action.

5 EXPERIMENTS

We have proposed NCS as a solution to the object rearrangement problem that addresses two chal-
lenges: NCS addresses the correspondence problem by learning a factorized object-centric world
model with dSLATE and it addresses the combinatorial problem by abstracting entity representa-
tions into a queryable state transition graph. Now we test NCS’s efficacy in solving both problems.
The key question is whether NCS is better than state-of-the-art offline RL algorithms in generalizing
over combinatorially-structured task spaces from perceptual input. As stated in §3, the crucial test
for answering this question is to evaluate all methods on solving new rearrangement problems with
a disjoint set of object configurations from those encountered during training. The most straightfor-
ward way to find a disjoint subset of the combinatorial space is to evaluate with a novel number of

7

Published as a conference paper at ICLR 2023

objects. We compare NCS to several offline RL baselines and ablations on two rearrangement envi-
ronments and find a significant gap in performance between our method and the next best method.

(a) block-rearrange

(b) robogym-rearrange

Figure 5: Our environ-
ments are block-rearrange

and robogym-rearrange.
Fig. 5a shows a complete
specification of goal con-
straints; Fig. 5b shows a
partial specification that
only specifies the desired
locations for two objects.

Environments. In block-rearrange (Fig. 5a), all objects are the same
size, shape, and orientation. S covers 16 locations in a grid. Z is the con-
tinuous space of red-green-blue values from 0 to 1. robogym-rearrange

(Fig. 5b) is adapte from the OpenAI (2020) rearrange environment and
removes the assumptions from block-rearrange that all objects have the
same size, shape, and orientation. The objects are uniformly sampled
from a set of 94 meshes consisting of the YCB object set Calli et al.
(2015) and a set of basic geometric shapes, with colors sampled from a
set of 13. Although locations are not pre-defined in robogym-rearrange

as in block-rearrange, in practice there is a limit to the number of ways to
arrange objects on the table to still be visible to the camera, which makes
the bisimulation still a reasonable assumption here. For block-rearrange

we use the SA attention mask ↵ as the state s, and for robogym-rearrange

we use the action-dependent part of the SA slot �s as the state s.
Experimental setup. We evaluate two settings: complete and partial. In
the complete setting, the goal image shows all objects in new locations.
The partial setting is underspecified: only a subset of objects have asso-
ciated goal constraints (Fig. 5b). In block-rearrange, all constraints are
unsatisfied in the start state. In robogym-rearrange, four constraints are
unsatisfied in the start state. Our metric is the fractional success rate,
the average change in the number of satisfied constraints divided by the
number of initially unsatisfied constraints.
The experiences buffer consists of 5000 trajectories showing 4 objects. We evaluate on 4-7 objects
for 100 episodes across 10 seeds. Even if we assume full access to the underlying state space, the
task spaces are enormous: with |S| object locations and k objects, the number of possible trajectories
over object configurations of t timesteps is

�|S|
k

�
⇥(k⇥(|S|�k))t, which amounts to searching over

more than 1016 possible trajectories for the complete specification setting of block-rearrange with
k = 7 objects (see Appdx. E for derivation). Our setting of assuming access to only pixels makes
the problem even harder.
Baselines. The claim of this paper are that, for object rearrangement, (1) object-centric methods
fare better than monolithically-structured offline RL methods (2) non-parametric graph search fares
better than parametric planning for object rearrangement and (3) a factorized graph search over state
transitions of individual entities fares better than a non-factorized graph search over state transitions
over entire entity-sets. To test (1), we compare with state-of-the-art pixel-based behavior cloning
(BC) and implicit Q-learning (IQL) implementations based off of Kostrikov (2021). To test (2),
we compare against a version of object-centric model predictive control (MPC) (Veerapaneni et al.,
2020) that uses the cross entropy method over dSLATE rollouts. To test (3), we compare against an
ablation (abbrv. NF, for “non-factorized”) that constructs a graph with state transitions of entity-sets
than of individual states. Our last baseline just takes random actions (Rand).

5.1 RESULTS

Figure 1 shows that NCS performs significantly better than all baselines (about a 5-10x improve-
ment), thereby refuting the alternatives to our claims. Most of the baselines perform no better or
only slightly better than random. We observe that it is indeed difficult to perform shooting-based
planning with an entity-centric world model trained to predict a single step forward (Janner et al.,
2019): the MPC baseline performs poorly because its rollouts are poor, and it is significantly more
computationally expensive to run (11 hours instead of 20 minutes). We also observe that the NF
ablation performs poorly, showing the importance of factorizing the non-parametric graph search.
Additional results are in the Appendix.

5.2 ANALYSIS

Having quantitatively shown the relative strength of NCS in combinatorial generalization from pix-
els, we now examine how our key design choices of (1) factorizing entity representations into action-
invariant and action-dependent features and (2) querying a state transition graph constructed from
action-dependent features contribute to NCS’s behavior and performance. Is copying the entity type

8

Published as a conference paper at ICLR 2023

Table 1: This table compares NCS with various baselines in the complete and partial evaluation settings of
block-rearrange and robogym-rearrange. The methods were trained on 4 objects and evaluated on generalizing
to 4, 5, 6, and 7 objects. We report the fractional success rate, with a standard error computed over 10 seeds.

(a) block-rearrange, complete specification.
Method 4 5 6 7

NCS (ours) 0.94 ± 0.01 0.93 ± 0.00 0.93 ± 0.00 0.89 ± 0.00

Rand 0.06 ± 0.02 0.07 ± 0.03 0.07 ± 0.03 0.08 ± 0.03

MPC 0.16 ± 0.06 0.12 ± 0.04 0.11 ± 0.04 0.10 ± 0.03

NF 0.07 ± 0.03 0.06 ± 0.02 0.07 ± 0.02 0.08 ± 0.03

IQL 0.07 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

BC 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

(b) block-rearrange, complete specification.
Method 4 5 6 7

NCS (ours) 0.89 ± 0.01 0.86 ± 0.01 0.78 ± 0.01 0.70 ± 0.01

Rand 0.06 ± 0.02 0.08 ± 0.03 0.08 ± 0.03 0.08 ± 0.03

MPC 0.13 ± 0.05 0.11 ± 0.04 0.10 ± 0.04 0.08 ± 0.03

NF 0.06 ± 0.03 0.07 ± 0.03 0.08 ± 0.03 0.07 ± 0.03

IQL 0.01 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.05 ± 0.00

BC 0.05 ± 0.01 0.04 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

(c) robogym-rearrange, complete specification.
Method 4 5 6 7

NCS (ours) 0.64 ± 0.01 0.47 ± 0.01 0.49 ± 0.01 0.41 ± 0.01

Rand 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MPC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

NF 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

IQL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

BC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(d) robogym-rearrange, partial specification.
Method 4 5 6 7

NCS (ours) 0.47 ± 0.01 0.33 ± 0.01 0.27 ± 0.01 0.22 ± 0.01

Rand 0.005 ± 0.001 0.001 ± 0.00 0.002 ± 0.001 0.001 ± 0.00

MPC 0.00 ± 0.00 0.001 ± 0.001 0.00 ± 0.00 0.00 ± 0.00

NF 0.005 ± 0.001 0.001 ± 0.00 0.002 ± 0.001 0.001 ± 0.00

IQL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

BC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

during latent prediction as dSLATE does sufficient for disentangling the location and appearance
of objects into the state and type respectively? Does dSLATE learn to sparsely modify only the
entity that corresponds to the moved object in the sensorimotor transition, such that the nodes of the
state transition graph meaningfully can be reused across entities? These are nontrivial capabilities
because NCS is self-supervised on only the experience buffer.

goal!! goal!" goal!#goal !$!! !" !# !$
unaligned aligned unaligned aligned unaligned aligned unaligned aligned

goal
constraint

selected
factor

goal
constraint

selected
factor

goal
constraint

selected
factor

goal
constraint

selected
factor

attention mask for
concrete factor

attention mask for
abstract node

a) partition latent factors over the training set for each episode step:
b) align

c) isolate

d) bind

Partitioning of states from the training set into equivalence classes

Figure 6: Nodes as equivalent classes over

states. We show a clustering of states inferred for
robogym-rearrange, where each cluster centroid
is treated as a node in our transition graph. A sub-
set of clusters are labeled with an attention mask
computed by averaging the slot attention masks
for the entities associated with the cluster.

Fig. 4b, which visualizes the align,
select-constraint, and bind functions
of NCS on robogym-rearrange, suggests that, at
least for the simplified setting we consider, the
answer to both questions is yes. NCS has learned
to represent different objects in different slots and
construct a graph whose nodes capture location
information. Fig. 6 shows a t-SNE (Van der Maaten
& Hinton, 2008) plot that clusters entities inferred
from the robogym environment. Because we have
not provided supervision on what states should
represent, we observe there are multiple cluster
indices that map onto similar groups of points.
This reveals that multiple different regions of S
appear to be modeling similar states. We also tried
merging redundant clusters, but found that this did
not improve quantitative performance.

6 DISCUSSION

Object rearrangement offers an intuitive setting for
studying how an agent can learn reusable abstractions from its sensorimotor experience. This paper
takes a first step toward connecting the world of symbolic planning with human-defined abstrac-
tions and the world of representation learning with deep networks by introducing NCS. NCS is a
method for controlling an agent that plans over and acts with state transition graph constructed with
entity representations learned from raw sensorimotor transitions, without any other supervision. We
showed that factorizing the entity representation into action-invariant and action-dependent features
are important for solving the correspondence and combinatorial problems that make the object rear-
rangement difficult, and enable NCS to significantly outperform existing methods on combinatorial
generalization in object rearrangement. The implementation of NCS provides a proof-of-concept for
how learning reusable abstractions might be done, which we hope inspires future work to engineer
methods like NCS for real-world settings.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work was done while MC was an intern at Meta AI. We would like to thank Leslie Kaelbling
for valuable feedback and Yash Sharma and Yilun Du for valuable discussions. This material is
supported in part by the Fannie and John Hertz Foundation, as well as with ONR grant #N00014-
18-1-2873.

REFERENCES

David Abel, D. Ellis Hershkowitz, Gabriel Barth-Maron, Stephen Brawner, Kevin O’Farrell, James
MacGlashan, and Stefanie Tellex. Goal-based action priors. In ICAPS, pp. 306–314. AAAI Press,
2015.

Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly Stachenfeld, Pushmeet Kohli, Pe-
ter Battaglia, and Jessica Hamrick. Structured agents for physical construction. In International

conference on machine learning, pp. 464–474. PMLR, 2019.

Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng, Vladlen Koltun, Sergey
Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mottaghi, et al. Rearrangement: A challenge for
embodied ai. arXiv preprint arXiv:2011.01975, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Exploiting structure in policy construc-
tion. In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume

2, IJCAI’95, pp. 1104–1111, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic programming with
factored representations. Artif. Intell., 121(1-2):49–107, 2000.

Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar.
The ycb object and model set: Towards common benchmarks for manipulation research. In 2015

international conference on advanced robotics (ICAR), pp. 510–517. IEEE, 2015.

Pablo Samuel Castro, Prakash Panangaden, and Doina Precup. Equivalence relations in fully and
partially observable markov decision processes. In Twenty-First International Joint Conference

on Artificial Intelligence. Citeseer, 2009.

Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli, Li Fei-Fei, and Juan Carlos Niebles.
Procedure planning in instructional videos. In European Conference on Computer Vision, pp.
334–350. Springer, 2020.

Michael Chang, Thomas L Griffiths, and Sergey Levine. Object representations as fixed
points: Training iterative refinement algorithms with implicit differentiation. arXiv preprint

arXiv:2207.00787, 2022.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. 2016.

Coline Devin, Payam Rowghanian, Chris Vigorito, Will Richards, and Khashayar Rohanimanesh.
Self-supervised goal-conditioned pick and place. arXiv preprint arXiv:2008.11466, 2020.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
reinforcement learning. In ICML, volume 307 of ACM International Conference Proceeding

Series, pp. 240–247. ACM, 2008.

10

Published as a conference paper at ICLR 2023

Gamaleldin F Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C Mozer,
and Thomas Kipf. Savi++: Towards end-to-end object-centric learning from real-world videos.
arXiv preprint arXiv:2206.07764, 2022.

Scott Emmons, Ajay Jain, Misha Laskin, Thanard Kurutach, Pieter Abbeel, and Deepak Pathak.
Sparse graphical memory for robust planning. Advances in Neural Information Processing Sys-

tems, 33:5251–5262, 2020.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the Replay Buffer: Bridging
Planning and Reinforcement Learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’
Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/

paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf.

Natalia Gardiol and Leslie Kaelbling. Envelope-based Planning in Relational MDPs. In S. Thrun,
L. Saul, and B. Schölkopf (eds.), Advances in Neural Information Processing Systems, volume 16.
MIT Press, 2003. URL https://proceedings.neurips.cc/paper/2003/file/

4a06d868d044c50af0cf9bc82d2fc19f-Paper.pdf.

Tejas Gokhale, Shailaja Sampat, Zhiyuan Fang, Yezhou Yang, and Chitta Baral. Cooking with
blocks: A recipe for visual reasoning on image-pairs. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition Workshops, pp. 5–8, 2019.

Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Sergey Levine, Charles Blun-
dell, Yoshua Bengio, and Michael Mozer. Object files and schemata: Factorizing declarative and
procedural knowledge in dynamical systems. arXiv preprint arXiv:2006.16225, 2020.

Anirudh Goyal, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nicolas
Heess, Michael C Mozer, and Yoshua Bengio. Neural production systems. Advances in Neural

Information Processing Systems, 34:25673–25687, 2021.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
arXiv preprint arXiv:1708.03498, 2017.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International Conference on Machine Learning,
pp. 2424–2433. PMLR, 2019.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208, 2020.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient Solution Algorithms for Factored
MDPs. Journal of Artificial Intelligence Research, 19:399–468, October 2003a. ISSN 1076-9757.
doi: 10.1613/jair.1000. URL https://jair.org/index.php/jair/article/view/

10341. tex.ids: guestrin2003EfficientSolutionAlgorithms.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans to new
environments in relational mdps. In Proceedings of the 18th International Joint Conference on

Artificial Intelligence, IJCAI’03, pp. 1003–1010, San Francisco, CA, USA, 2003b. Morgan Kauf-
mann Publishers Inc.

Philippe Hansen-Estruch, Amy Zhang, Ashvin Nair, Patrick Yin, and Sergey Levine. Bisimulation
makes analogies in goal-conditioned reinforcement learning. arXiv preprint arXiv:2204.13060,
2022.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video demon-
stration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8565–8574, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems, 32, 2019.

11

https://proceedings.neurips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/4a06d868d044c50af0cf9bc82d2fc19f-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/4a06d868d044c50af0cf9bc82d2fc19f-Paper.pdf
https://jair.org/index.php/jair/article/view/10341
https://jair.org/index.php/jair/article/view/10341

Published as a conference paper at ICLR 2023

Thomas Kipf, Gamaleldin F Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric
learning from video. arXiv preprint arXiv:2111.12594, 2021.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.
URL https://github.com/ikostrikov/jaxrl.

Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew
Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception and
control. NeurIPS, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Martina Lippi, Petra Poklukar, Michael C Welle, Anastasiia Varava, Hang Yin, Alessandro Marino,
and Danica Kragic. Latent space roadmap for visual action planning of deformable and rigid ob-
ject manipulation. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 5619–5626. IEEE, 2020.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. arXiv preprint arXiv:2006.15055, 2020a.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. In NeurIPS, 2020b. URL https://proceedings.neurips.cc/paper/2020/

hash/8511df98c02ab60aea1b2356c013bc0f-Abstract.html.

OpenAI. Robogym. https://github.com/openai/robogym, 2020.

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and Roberto Calandra. Mbrl-lib: A
modular library for model-based reinforcement learning. Arxiv, 2021. URL https://arxiv.

org/abs/2104.10159.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092, 2021.

Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL·E learns to compose. arXiv preprint

arXiv:2110.11405, 2021.

Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-e learns to compose. In Interna-

tional Conference on Learning Representations, 2022a. URL https://openreview.net/

forum?id=h0OYV0We3oh.

Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for com-
plex and naturalistic videos. arXiv preprint arXiv:2205.14065, 2022b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(11), 2008.

Sjoerd Van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural ex-
pectation maximization: Unsupervised discovery of objects and their interactions. arXiv preprint

arXiv:1802.10353, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-

tion processing systems, 30, 2017.

12

https://github.com/ikostrikov/jaxrl
https://proceedings.neurips.cc/paper/2020/hash/8511df98c02ab60aea1b2356c013bc0f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8511df98c02ab60aea1b2356c013bc0f-Abstract.html
https://github.com/openai/robogym
https://arxiv.org/abs/2104.10159
https://arxiv.org/abs/2104.10159
https://openreview.net/forum?id=h0OYV0We3oh
https://openreview.net/forum?id=h0OYV0We3oh

Published as a conference paper at ICLR 2023

Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu,
Joshua Tenenbaum, and Sergey Levine. Entity abstraction in visual model-based reinforcement
learning. In Conference on Robot Learning, pp. 1439–1456. PMLR, 2020.

C. Wang, S. Joshi, and R. Khardon. First order decision diagrams for relational mdps. Journal of

Artificial Intelligence Research, 31:431–472, Mar 2008. ISSN 1076-9757. doi: 10.1613/jair.2489.
URL http://dx.doi.org/10.1613/jair.2489.

Daniel S Weld. Solving Relational MDPs with First-Order Machine Learning. pp. 8.

Ge Yang, Amy Zhang, Ari S. Morcos, Joelle Pineau, Pieter Abbeel, and Roberto Calandra. Plan2vec:
Unsupervised Representation Learning by Latent Plans. In Proceedings of The 2nd Annual Con-

ference on Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning

Research, pp. 1–12, 2020.

Shuo Yang, Wei Zhang, Ran Song, Jiyu Cheng, and Yibin Li. Learning multi-object dense descriptor
for autonomous goal-conditioned grasping. IEEE Robotics and Automation Letters, 6(2):4109–
4116, 2021.

Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
independently controllable subgoals. In Conference on Robot Learning, pp. 384–394. PMLR,
2022.

Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, and Arthur Szlam. Composable Plan-
ning with Attributes. In Proceedings of the 35th International Conference on Machine Learning,

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80, pp. 5837–
5846. JMLR.org, 2018.

Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks
for planning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 12611–12620. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/

v139/zhang21x.html.

Daniel Zoran, Rishabh Kabra, Alexander Lerchner, and Danilo J Rezende. Parts: Unsupervised seg-
mentation with slots, attention and independence maximization. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 10439–10447, 2021.

13

http://dx.doi.org/10.1613/jair.2489
https://proceedings.mlr.press/v139/zhang21x.html
https://proceedings.mlr.press/v139/zhang21x.html

	Introduction
	Related Work
	Goal-Conditioned Reinforcement Learning with Entities
	Neural Constraint Satisfaction
	Modeling
	Control

	Experiments
	Results
	Analysis

	Discussion
	Implementation Details
	Background: SLATE backbone
	Constructing nodes by clustering states
	Action selection

	Baseline Implementation Details
	Environment Details
	Additional Results
	Analysis of key hyperparameters
	More computation time for model-based baselines
	More challenging settings

	Combinatorial Space
	Limitations and future work.
	Why the name ``Neural Constraint Satisfaction?''

