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ABSTRACT

We introduce a variational reasoning framework for language models that treats
thinking traces as latent variables and optimizes them through variational inference.
Starting from the evidence lower bound (ELBO), we extend it to a multi-trace ob-
jective for tighter bounds and propose a forward-KL formulation that stabilizes the
training of the variational posterior. We further show that rejection sampling finetun-
ing and binary-reward RL, including GRPO, can be interpreted as local forward-KL
objectives, where an implicit weighting by model accuracy naturally arises from
the derivation and reveals a previously unnoticed bias toward easier questions.
We empirically validate our method on the Qwen 2.5 and Qwen 3 model families
across a wide range of reasoning tasks. Overall, our work provides a principled
probabilistic perspective that unifies variational inference with RL-style methods
and yields stable objectives for improving the reasoning ability of language models.

1 INTRODUCTION

Reasoning has recently become a central focus for large language models (LLMs), driving advances in
tasks such as mathematics, coding, and scientific problem solving (Jaech et al., 2024; Comanici et al.,
2025; Guo et al., 2025). A common strategy is to let models generate explicit thinking traces before
producing final answers. To train such reasoning abilities, two dominant approaches are widely used:
supervised finetuning (SFT) (Guha et al., 2025; Muennighoff et al., 2025) and reinforcement learning
(RL) (Yu et al., 2025a; Liu et al., 2025; Zeng et al., 2025), both showing strong empirical success.

Despite this progress, each approach faces limitations. SFT often relies on curated long-thinking
traces, which are costly to collect and, as an offline method, may struggle to generalize (Chu et al.,
2025) or suffer from catastrophic forgetting (Shenfeld et al., 2025). Recent RL methods typically de-
pend on verifiable rewards to mitigate reward hacking, yet training can be unstable and output diversity
may collapse (Cheng et al., 2025; Cui et al., 2025b). As a result, correct answers to harder questions
become increasingly rare, leading to lower Pass@K accuracy than base models (Yue et al., 2025a).
These challenges motivate the search for a more principled objective for training reasoning models.

To this end, we propose to view reasoning through the lens of probabilistic modeling, where thinking
traces are treated as latent variables. Variational inference (Kingma & Welling, 2013) provides a
natural way to optimize the log-likelihood of producing correct answers. This perspective offers
several advantages: it replaces the intractable marginalization over thinking traces with tractable lower
bounds, enables multi-trace extensions that tighten the objective, and introduces a variational posterior
that can sample thinking paths more likely to yield correct answers. In this way, it provides a principled
objective for training reasoning models, while remaining compatible with verifiable rewards.

Building on this perspective, we develop a variational reasoning framework for language models in
Section 2. The core idea is to decompose reasoning into a thinking trace and an answer, leading to the
maximum log-likelihood estimation (MLE) objective. To make this optimization tractable, we intro-
duce an evidence lower bound (ELBO) and extend it to an IWAE-style multi-trace formulation (Burda
et al., 2015), which tightens with more rollouts. To further stabilize the training of the variational
posterior, we propose a forward-KL objective that prevents collapse and makes better use of answer
hints. Together, these components form a unified training pipeline (as shown in Algorithm 1) that
jointly improves the reasoning model and the variational posterior.

Beyond the method itself, our framework also helps interpret existing approaches, as described
in Section 3. Rejection-sampling finetuning (RFT) (Dong et al., 2023; Touvron et al., 2023) can
be re-expressed as forward-KL optimization weighted by model accuracy, and binary-reward RL,
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including GRPO (Shao et al., 2024), admits a similar form. Our analysis shows that this weighting by
accuracy arises implicitly and produces a systematic bias toward easier questions, an effect that has
not been explicitly recognized before. By placing these methods under a shared probabilistic view,
our framework provides principled objectives and clarifies the behavior of widely used methods.

We validate our framework on the Qwen2.5 and Qwen3 model families (Yang et al., 2024; Team,
2025b) and observe consistent improvements over strong baselines across diverse reasoning bench-
marks, including MATH500, AIME24&25, OlympiadBench, LiveCodeBench, GPQA-Diamond, and
MMLU-Pro. Due to space constraints, a detailed discussion of related work is deferred to Appendix B.

2  VARIATIONAL REASONING

Let V* denote the set of all prompt strings over the vocabulary ). Given an input question x € V*,

a reasoning model 7y (z, y|x) generates both a thinking process z € V* and a predicted answer

y € V*. The joint probability can be written as 7y (z, y|x) = my(y|x, z) - mp(z|z). Following a

standard format template (Guo et al., 2025), these two conditional terms are computed as!

mo (z|z) = mo( [z, </think>] | [, <think>]); o

mo(yle, z) = 71'9( [y, </answer>] | [£,<think>, z,</think>, <answer>] ),

where </think> and </answer> serve as the end-of-sequence markers for z and y, respectively.

We define the marginal distribution Py(y|x) = >, mo(z,y|x) = >, mo(y|x, z)me(2|x), where

the notation Py (y|x) highlights that this distribution is induced by my. This is different from the
non-thinking probability 7y (y|x), which does not marginalize over possible thinking traces.

2.1 EVIDENCE LOWER BOUND

Let )V, C V* denote the oracle set (possibly infinite) of correct answers to the question x. The

marginal probability that 7y generates a correct answer is Py (Vz|x) = >, ¢y, Po(y|z). Maximizing
this probability gives the maximum log-likelihood estimation (MLE) objective: maxg log Py(V|x) .
However, this MLE objective is intractable because computing Py (y|x) requires summing over all
possible thinking traces z. To make learning feasible, we apply variational inference (Kingma &

Welling, 2013) to derive an evidence lower bound (ELBO):
log Py(Vz|x) = log ZZ mo(Ve |, 2)m9 (2| )
mo(Ve |, 2)mo (2| )
qs(2|z, y') (2)
> By, (y) [Bay(zlay) l0g 1o (Va| 2, 2)] — Dio (g6(2]2, y')| 7o (2]2))] -

=logEq, (y)Eq,(2]2,y) [

EELBO(w;ymay/;ﬂ—GaQqﬁ)

In this expression, 7y (Vz|x, z) denotes the probability of producing a correct answer given the
question & and a particular thinking trace z. The distribution ¢, (z|z, y’) is the variational posterior,
which conditions not only on the question x but also on an auxiliary answer hint y':

10(z|2,Y') = qp ([z7 </think>]| [z, <hint> 4y, </hint>, <think>}). 3)
Here, <hint> and </hint> are shown as example delimiters; in experiments, we ablate different
special tokens to wrap the hint ¢’ and concatenate it after . Conditioning on ¢’ encourages the vari-
ational posterior to generate thinking traces z that are more likely to yield correct answers. A simple
yet effective design choice is to let ' come directly from the oracle set, that is, supp[ge(y’)] C Va.
In practice, y’ may be a rephrasing of a reference answer or any correct expression sampled from ).

We can further show (detailed in Appendix A.1) that maximizing the ELBO objective w.r.t. g4 in
Eq. (2) is equivalent to minimizing the reverse KL divergence between g4 (z|x, y') and Py(z|x, Vz):

L:ELBO(wv ywa y/; Ure %) = IOg Pg(ymlil}) - DKL (Q¢(Z|ma y/)|\P9(z\w7 yw)) (4)
Here Py(z|z,Ve) = W is the true posterior. Compared with the prior distribution

mg(z|x), this posterior distribution re-weights thinking traces by 7o (Ve |x, 2), thus favoring z that
are more likely to produce correct answers. According to Eq. (4), we know that the optimal solution
for max,, LeLso (T, Va, ¥'s T, 49) is: VY’ ~ q4(y’), there is q;ﬁ(z|ac, Y') = Py(z|x, Vz) .

'We will omit special tokens such as </think> and </answer> in the formulas without ambiguity.
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2.2 EXTENSION TO IWAE-STYLE LOWER BOUND

In reinforcement learning (RL), it is now common practice to perform parallel rollouts of multiple
thinking traces z and answers y for a given question @ (Shao et al., 2024). This naturally motivates
us to extend the single-trace ELBO in Eq. (4) to an importance-weighted autoencoder (IWAE) style
bound (Burda et al., 2015). By leveraging multiple K traces, this approach yields a strictly tighter
lower bound. Specifically, we obtain the following IWAE-style lower bound for log Py(YVz|x):

mo(2k, Va|T)

log — —_—
K Z ¢ (zxlx, y')
These IWAE-style bounds satisfy £ o < L 55 < log Pg(yw|a:) for any K € NT, which means
the bound becomes tighter as K increases (the proof is similar to that of Burda et al. (2015)). The
single-trace ELBO objective in Eq. (4) corresponds to the special case of K = 1,i.e., Lo = Li) po-

LE 5o Vo, U370, 08) = By gy (2l20y) ®)

Gradient estimation. We now derive the gradient of £ po (2, Vi, ¥'; 79, qp) W.I.t. the model
parameters € (see Appendix A.2 for the gradient w.r.t. the variational parameters ¢, i.e., V¢£]§LBO):

K
VeﬁﬁBo(w, Ve, y's 79, 45) = Bt kmgo(zlzy) [Z prVolog mo(zk, yw|$)] )
. ©)
where  pp = I’?ik and pj, = M
Zj:l Pj g (zklz, y')
Estimating p;.. The weight pj, in Eq. (6) can be decomposed as pj, = % o (Valz, 25) |

7o (2 |x)
> 99 (zk]2,y)
mo(Ve |, 21), is the probability of producing a correct answer given x and zj. In reasoning models,
a single trace zj;, may contain thousands of tokens. Directly computing the likelihood ratio over such
long sequences often leads to high variance, a phenomenon also reported in concurrent studies (Cetin

et al., 2025; Zheng et al., 2025). To mitigate this issue, we use the geometric mean (%) 1zl

as a surrogate for the likelihood ratio of zj. This per-token normalization reduces variance at the cost
of introducing some bias, effectively spreading the ratio evenly across the thinking tokens.

where the first term , is the likelihood ratio of the thinking trace zj, and the second term,

As for computing 7 (Ve |, 21 ), we consider two unbiased estimators: (i) likelihood-based estimator
is (Ve |, 2) = | Vo | Ey~rs(y,) [To(y|x, 2)], where |V | is cardinality of Y, and U () ) is the uni-
form distribution on z; (ii) accuracy-based estimator is 7y (Vz |, 2) = Eyr, (y|2,2) [1(Y € Va)],
where 1(+) is the indicator function. When |);| = 1, i.e., there is a unique correct answer expression
y*, Zhou et al. (2025) show that the likelihood-based estimator has lower variance (in fact, zero)
compared to the accuracy-based one. We now extend this comparison to general cases when | V| > 1:

Theorem 1. (Proof in Appendix A.3) For | Y| > 1, the worst-case variances of the likelihood-based
estimator and the accuracy-based estimator over all possible g (under fixed mg(Vs |, 2)) are

max Varige = (|Ve| —1) - mo(Vela, z)*%; max Varee = mo(Ve |2, 2) - (1 = mo(Valz, 2)). (7)

Therefore, the accuracy-based estimator has lower worst-case variance, i.e., maxy, Varg, <
maxy, Varjg, whenever the model accuracy (conditional on x, z) satisfies 7g(Ve |, 2) > ﬁ
@x

Note that for many practical questions, the space of correct answers can be quite flexible, so typically
| V2| > 1. In this regime, the accuracy-based estimator enjoys much lower worst-case variance.
Based on this insight, in our experiments we estimate the weight pj, as
1/|zkl
o = (o)™ By o s (1 € 22)), ®)
where the expectation Ey ., (y|z,z,) [1(y¥ € Vz)] is approximated by sampling multiple candidate
answers for each thinking trace 2y, similar to the implementation in Qi et al. (2025).

Estimating Vg log (2, Vz|z). When evaluating VoLE 5 in Eq. (6), we need the gradient

Vo logmg(zg, Ve |x) = Vo logme(zi|x) + Vo log mo (Ve |, 2z1). The first term, Vg log 7o (zi|2),

is straightforward to calculate. For the second term, Vg log g ()|, 21 ), we also adopt an accuracy-

Eyrrg(ylm.z;) [LYEV) Vo log mo (y|x, 21 )]
Eynmg(yle.zg) 1 (YEVa)]

expectations w.r.t. o (y|, z,) are approximated using the same samples drawn to estimate p§".

based estimator: Vglogmg(Vz|x, z1) = . In practice, the
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Algorithm 1 Training pipeline of variational reasoning

Inputs: An initial reasoning model 7, (2, y|x), variational posterior g, (z|x, y’), question-answer

dataset {x, y:} € X, where y; € ), is one of the reference answers corresponding to x
Inputs: Rollout numbers K and M, training rounds 7', steps per round Sy and .Sy, optimizer O
Qutputs: The trained model parameters 67 and variational parameters ¢

1: Initialize ¢4, (z|z, y’) o cory b 7o, ([2, </think>]|[x, <hint>,y’,</hint>, <think>])

2: Construct Y, (or its subset by rephrasing y%) and rule-based/model-based verifier 1(y € V)
3: fort =1to T do

## Updating variational parameters ¢; with V(z,ﬁg‘frward in Eq. (9); initializing ¢; <— ¢¢_1
4 for s =1to S, do
5 Sample a training batch of questions B C X
6: for all questions « € Bdo  ## Collecting z;.,; and compute weights w,,, for each m
7 Rollout z1.7s ~ 7o, (2|2), y' ~ q(y') =U(Vz)
8 Compute w, = Eyry  (yla,2,0) [1(y € Vx)] and w,,, = %

9: Update ¢; + O.step ((;St, ﬁ Y weB Ei‘f:lamv@ log gy, (zm |z, y") )

## Updating model parameters 0; with VgL 55 in Eq. (6); initializing 6; <+ 04
10: for s = 1 to Sy do

11: Sample a training batch of questions B C X

12: for all questions « € B do ## Collecting z1.x and compute weights pj, for each k

13: Rollout z1.x ~ g4, (2|2, Y), Y ~ qs(y') =U(Yz)  ## Estimate pg** by Eq. (8)
. _ (_mo (zklz) \1/|Zk] ~

14: Compute pist == (W{;’y,)) ‘]Eywﬂ-gt (y|m,zk)[]l(y S yw)] and Pk = ﬁ

Eynrg, wlm,2p) [ll(yGJ/m)Vet log g, (y‘myzk)]
Eyr\aﬂ'et (ylz,2p) [LYEV)]

16: Update 0, < O.step (Ht, ﬁ Y zeB ZszlﬁkVQt (log mg, (zk|x) + log mg, (Ve |x, 21)) )

17: return 61 and ¢

15: Compute Vg, log 7, (Ve |2, 21) =

2.3 OPTIMIZING THE VARIATIONAL POSTERIOR VIA FORWARD KL DIVERGENCE

While Eq. (5) provides IWAE-style bounds that yield tighter optimization of the MLE objective w.r.t.
the model parameters 6 (through VLXK &), our pilot experiments show unexpected behavior for the
optimization of the variational parameters ¢ (through V4 Lg1,po or V¢£§LBO). Recall from Eq. (4)
that the ELBO objective minimizes the reverse KL divergence Dky. (¢4 (2|x, y')||Po(2|x, Vz)),
where both the expectation and Monte Carlo samples are taken under ¢,(z|z,y’). In practice,
however, the policy model 7y (z|x) is often already well-trained due to pretraining of base LLMs (Liu
et al., 2025), while the variational posterior g4 (z|x, y') may struggle to effectively use hints y’ from
correct answers without collapsing into shortcut reasoning (e.g., directly leaking answer tokens into
the thinking trace). To address this imbalance, we propose to optimize ¢, (2|, y") using the forward
KL divergence , whose gradient w.r.t. ¢ can be written as:’

M
V¢DKL(P9(Z|:B3 yw)HQ¢(z|w7 yl)) = Ez1;1\4~7r9(z|m) Z@qub 1Og Q¢(zm|ma y/) é v(ﬁ‘Ci{(\){”ward?

m=1 (9)
~ W
where w,, = Tw and w,, = Wg(ym|ilf, Zm) = Eywﬂg(mm’zm) []l(y S yw)] .
j=1Wj

This approximation, V¢£f]‘04rward, follows a derivation similar to Bornschein & Bengio (2015) (see

Appendix A.4), with the sample size M not necessarily equal to K used in Vg EgLBO. Unlike IWAE,
this objective is an approximation rather than a lower bound. Optimizing Eq. (9) can be viewed as a
weighted supervised finetuning (SFT) for ¢4 (z|x, y’), where training data is sampled from 7y (z|x).

We summarize the overall training pipeline of our variational reasoning method in Algorithm 1. In our
experiments, we train for only a single round (I = 1), leaving multi-round training as an interesting
direction for future work.

>We assume that qs(y’) is a fixed prior distribution and does not involve gradients.
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3 CONNECTION TO OTHER METHODS

In prior work, the thinking trace z and the final answer y are often treated together as the full output
in the formulations (Shao et al., 2024; Guo et al., 2025; Liu et al., 2025; Wu et al., 2025). By explicitly
decomposing the output into a thinking process z and an answer y, as we have done above, we can
gain fresh perspectives on how our formulation relates to other mainstream methods.

Connection to rejection sampling finetuning (RFT). RFT methods (Dong et al., 2023; Touvron
et al., 2023) generate multiple candidate outputs for each input = using a reference model m.f, and
then select the candidate with the highest reward. The reference model may be a strong teacher model
or identical to the learner 7y (i.e., mer = 7,°, with sg denoting stop-gradient). Formally, the gradient
of RFT training objective, focusing only on the learning of the thinking trace z, can be written as:

VQERFT(:B,T('Q) £ VGEﬂmf(z|m)E7rmf(y|m,z) []l(y S y:):) ' 1Og ﬂ@(za y|213)]

= VGEﬂmf(zm) [Wref(ycckl:»z) : (IOg 7T9(Z|w) )]

ly w.rt. (10)
Z2E VB (sl) [Tret (Va|2, 2) - log 7o (2])]

wo (2]x)
= - ref(ya:‘x) : VODKL(R‘ef(Z|w7ym)||7T9(z|w))-
Here Por(Vz|x) = Zyeym Per(y|x) denotes the model accuracy on instruction x, and the true

posterior of the reference model is Pret(z|x, V) = W As seen, the RFT objective

can be viewed as maximizing a forward KL divergence weighted by Pret(Ve|x), with the optimal
solution 7} (2|x) = Pef(2|x, Vs) . In practice, this weighting downplays hard questions with small
Peet(Vz|x), biasing training toward easier ones. In contrast, our formulation in Eq. (9) treats all
questions more evenly, ensuring that the objective remains attentive to difficult cases.

Connection to binary reward RL. In the case of RL training with a O—1 binary reward, the training
objective can be written in a form similar to Eq. (10), focusing only on the thinking trace z:
V@£bi—RL<w7 779) £ V19IE7r9(z|m)E7rg(y|m,z) [1(y € y:t)]
ly w.rt. s
= VB ss 2y [T (Va|@, 2) - log mo (2]a)] (11)
o (2|x)
= = Py*(Valx) - VeDyo(P® (2|2, Vo )|Imo (2]2)).
Thus, the local gradient for 7y (z|x) in binary-reward RL is equivalent to minimizing the forward
KL divergence between g (z|x) and the true posterior P,®(z|xz, V) = W, with the
update further weighted by the model accuracy P,®(),|z). Interestingly, the RL training objective
itself is Loi.rL (T, T9) = Ery(2]2) Ery (ylz,2) [1(Y € Va)] = Po(Vz|x), whereas the MLE objective
in Eq. (2) for our variational reasoning framework instead maximizes log Py () |®).

Furthermore, in Group Relative Policy Optimization (GRPQ) (Shao et al., 2024), one of the most
widely used RL training objectives, the reward is normalized by the standard deviation of rewards
within a group of rollouts. Under O-1 binary reward, each rollout reward follows a Bernoulli distri-
bution with mean Py (Y,|z) and standard deviation \/Pp(Vz|z) - (1 — Pp(Ve|z)). The gradient of
the GRPO objective can therefore be derived as (we omit the min and clip operations for brevity)

ko)
1 — P (Valx)
which follows from Veﬁbi—GRPO(wa 779) = Vgﬁbi_R]_(:B, 7'('9)/\/]39 (yw‘a':) . (1 — Pg (yw|w)) Thus,

the local gradient for 7 (z|z) in GRPO is still equivalent to minimizing the forward KL divergence
between 7y (z|x) and the true posterior Py®(z|x, ), ). Note that the per-instruction weight becomes
V/Po(Vz|x)/(1 — Py(Ve|x)), which increases monotonically with model accuracy and therefore

also emphasizes easier questions with higher Py (), |x). In Appendix A.5, we extend these analyses
and derive gradients for more general RL reward shaping, including cases with a format reward.

Vo Loi.crpo (T, 7o) 2Ll oDk (P (2|2, Va)||mo(2]2)),  (12)

o (2|x)

4 EXPERIMENTS

Datasets. We train on the Bespoke-Stratos-17k dataset curated by Li et al. (2025a), which combines
math problems from Numina-Math (Li et al., 2024) with code problems from APPS (Hendrycks
et al., 2021a) and TACO (Li et al., 2023). The dataset contains 16,710 samples, each paired with
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Table 1: Performance of models trained from Qwen3-4B-Base. All models are trained on Bespoke-
Stratos-17k except for General-Reasoner-4B. The best and second-best results are highlighted using
bold text and underlined text, respectively.

MATHS00 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2  AVE
Qwen3-4B-Base 45.30 4.79 5.73 27.73 23.37 21.38
General-Reasoner-4B ~ 71.70 19.06 16.77 55.00 45.18 41.54
Bespoke-Stratos-4B 84.70 27.29 24.17 70.16 50.45 51.35
Ours-PB-GML-4B 87.30 33.54 26.77  74.06 54.45 55.23
Ours-PB-Acc-4B 88.30 31.67 27.29  75.63 55.71 55.72
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Avg@8 Avg@8 Avg@8 Avg@$ Avg@1 Avg
Qwen3-4B-Base 29.10 18.54 5.46 1.32 36.89 18.26
General-Reasoner-4B ~ 40.97 61.40 17.90 2.85 61.36 36.90
Bespoke-Stratos-4Bt 44,95 71.22 19.54 3.25 63.03 40.40
Ours-PB-GML-4B 45.52 79.53 31.25 6.20 65.52 45.60
Ours-PB-Acc-4B 45.33 80.29  33.68 5.79 65.53 46.12

Table 2: Performance of models trained from Qwen3-8B-Base trained on Bespoke-Stratos-17k.

MATH500 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2 Avg
Qwen3-8B-Base 6520 1146  10.10  45.00 34.72 33.30
Bespoke-Stratos-8BT  89.70 3958  28.85 7891 55.64 58.54
Ours-PB-GML-8B  91.60  44.06 31.67  83.59 58.23 61.83
Ours-PB-Acc-8B 91.80  45.63 3198 8547 58.98 62.77
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Avg@8 Avg@8 Avg@8 Avg@8  Avg@l VB
Qwen3-8B-Base 3542 4114 13.65 142 45.62 27.45
Bespoke-Stratos-8BT  53.03 8153  36.89  7.11 68.74 49.46
Ours-PB-GML-8B 5272  87.36 4551  13.82 70.76 54.03
Ours-PB-Acc-8B 53.66 8647 4933 1321 70.76 54.69

a long-thinking trace generated by DeepSeek-R1 (Guo et al., 2025) or QwQ-32B-Preview (Team,
2024). To ensure fair evaluation, all training data is strictly separated from the test sets.

Baselines. We compare against a broad set of baselines for rigorous evaluation. For Qwen2.5-Instruct
models, we include Bespoke-Stratos (Labs, 2025) and RLT (Cetin et al., 2025) at the 7B and 32B
scales, where RLT trains teachers via RL to improve distillation. For Qwen3-Base models, we com-
pare with Bespoke-Stratos—4B/8BJr and General-Reasoner-4B (Ma et al., 2025), the latter trained with
GRPO (Shao et al., 2024) and a model-based verifier. Models marked T are trained by us; others are
official releases. All Bespoke-Stratos models are distilled on Bespoke-Stratos-17k. This ensures fair
comparison, as all methods (except General-Reasoner) follow the same training recipes and datasets.

Evaluation. We assess our models on a broad set of challenging benchmarks: MATHS00 (Hendrycks
et al., 2021b), a subset of competition math curated by Lightman et al. (2024); AIME24&25 (MAA,
2025); AMC23 (MAA, 2023); OlympiadBench (He et al., 2024); LiveCodeBench (Jain et al.,
2025), with Easy, Medium, and Hard subsets (LCB-E, LCB-M, LCB-H) for fine-grained coding
evaluation; GPQA-Diamond (Rein et al., 2024) (GPQA-D), graduate-level natural science questions;
and MMLU-Pro (Wang et al., 2024), a diverse multiple-choice benchmark. Among these, GPQA-D
and MMLU-Pro are out-of-distribution (OOD) relative to our training data.

Decoding and average accuracy. Following Hochlehnert et al. (2025), we sample responses with
temperature=0.7 and report average accuracy over k responses per question (Avg@k). To
reduce randomness and ensure fair comparison, we use larger k for smaller datasets: Avg@32 for
AIME24, AIME25, and AMC23; Avg @8 for GPQA-Diamond, LCB-E, LCB-M, and LCB-H; Avg@2
for MATHS500 and OlympiadBench; and Avg@]1 for the large MMLU-Pro (12k+ questions). All
evaluations are conducted with SkyThought (Team, 2025a), with additional details in Appendix D.
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Table 3: Performance of models trained from Qwen2.5-32B-Instruct trained on Bespoke-Stratos-17k.
The best and second-best results are highlighted using bold text and underlined text, respectively.

MATH500 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2  Avg@32 Avg@32 Avg@32 Avg@2 Avg
Qwen2.5-32B-Instruct 80.70 15.83 12.08 61.95 46.96 43.51
Bespoke-Stratos-32B 92.60 55.42 46.88 92.19 64.68 70.34
RLT-32B 93.50 56.77 47.19 91.48 63.21 70.43
Ours-PA-GML-32B 93.20 56.56 48.13 93.98 64.24 71.22
Ours-PA-Acc-32B 93.50 58.85 50.31 92.97 64.39 72.01
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Avg@8  Avg@8 Avg@8 Avg@8 Avg@1 Avg
Qwen2.5-32B-Instruct 46.28 79.88 40.60 9.76 59.19 47.14
Bespoke-Stratos-32B 57.57 94.78 73.54 30.48 75.22 66.32
RLT-32B 59.09 93.20 72.15 29.78 74.88 65.82
Ours-PA-GML-32B 60.92 95.19 72.21 35.57 75.57 67.89
Ours-PA-Acc-32B 60.73 94.78 73.18 31.81 75.55 67.21
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Figure 1: Training loss and gradient norm of different methods during Qwen3-Base model training.

4.1 TRAINING DETAILS FOR VARIATIONAL REASONING

We conduct experiments on Qwen2.5-7B-Instruct, Qwen2.5-32B-Instruct (Yang et al., 2024),
Qwen3-4B-Base, and Qwen3-8B-Base (Team, 2025b). Following Algorithm 1, we first train an
initial reasoning model g, on Bespoke-Stratos-17k using the recipe from Labs (2025), and then a
variational posterior g, with the forward KL divergence (Eq. (9)) on the same dataset. These models
are later used to compute the weights p. For mp,, we adopt the prompt template from Labs (2025);
for g4, we test two alternative templates (“-PA” and “-PB”, see Appendix E). Both 7y, and g are
finetuned independently from the same base model without weight sharing (Appendix C.1).

Next, we use the trained g, to generate 8 responses (thinking traces and final answers) per training
sample. For each response, the weight p;, in Eq. (6) is computed from gy, 7y, , and, when using the
accuracy-based estimator, math/code verifiers from SkyThought. To estimate 7y ()|, z) in pi, we
compare three options: a naive likelihood method (“-L”), an accuracy-based method (“-Acc”, Sec-
tion 2.2), and a geometric mean of token-level probabilities (“-GML”), as detailed in Appendix C.2.

We train the final reasoning model my following Eq. (6) under two data settings. 17K: the full Bespoke-
Stratos-17k dataset. To enhance efficiency, we create a mixed dataset containing, for each original
sample, the g4-generated response with the highest pj, and the original sample itself. 1K: a fixed 1,000-
sample subset uniformly drawn from the full dataset, where all 8 ¢4-generated responses per sample
are used for weighted SFT with py. The same 1K subset is reused across related experiments. Main
results are reported with 17K, while ablations use both 17K and 1K configurations (Appendix C.3).

4.2 MAIN RESULTS

We evaluate our method across four model variants: Qwen3-4B/8B-Base (Tables 1 and 2) and
Qwen2.5-7B/32B-Instruct (Tables 3 and 6). Extended results are provided in Appendix F.1.

Variational reasoning performance. All methods substantially improve the reasoning ability of
the base model, but our approach consistently achieves the best results. As shown in Tables 1 and 2,
variational reasoning yields substantial improvements in math, code, and other general domains
compared to the base model (e.g., over 160% improvement in math and over 152% in other domains).
It also surpasses all baselines in average accuracy (e.g., over 8.5% higher than the strong baseline
Bespoke-Stlratos—4BT that uses the same training data, and over 14% in other domains).
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Table 4: Ablation study on the effect of conditioning the proposal distribution on y’.
MATHS500 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2  AVE
Qwen3-4B-Base 4530 479 573 2773 2337 2138
Ours-4B 8830 3167 2729  75.63 5571 5572
wioy' 8120 2344 2396  65.10 4659  48.18
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Ava@8 Ave@8 Avg@8 Avg@8  Avg@l  AYE
Qwen3-4B-Base 29.10 1854 546 132 3689 1826
Ours-4B 4533 8029 3368 579 6553  46.12
—— 4053 6793 1663 244 6149  37.80
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Figure 2: Pass@K comparison of baselines versus our method based on Qwen3-4B/8B-Base.

Notably, GPQA-Diamond and MMLU-Pro can be considered out-of-distribution test sets, as our
training data only cover math and code, whereas they are in-domain for General-Reasoner-4B. Despite
this, our method significantly outperforms General-Reasoner on these benchmarks, suggesting that
the reasoning improvements from variational reasoning generalize effectively.

Additionally, our method demonstrates robustness across different prompt templates. Performance
remains consistent between Prompt Template A and B (denoted as “-PA” and “-PB” in Table 6), with
both outperforming baselines. Across four model scales, the accuracy-based estimator (“-Acc’”) and
the geometric mean of token likelihood estimator (“~-GML”) exhibit similar performance, though the
accuracy-based variant shows a slight advantage in math-related benchmarks.

Pass@K analysis. We report Pass@K results of experiments based on Qwen3-4B/8B-Base for
different values of K. Figure 2 reveals two key trends: (1) Our method’s advantage increases with
larger K on complex benchmarks (e.g., LiveCodeBench-Hard), and (2) Performance gaps diminish
on simpler tasks (e.g., LiveCodeBench-Easy) and multiple-choice questions (e.g., GPQA-Diamond).
This aligns with expectations, as simpler tasks offer limited room for improvement, and multiple-
choice formats inherently allow high Pass@K with sufficiently large K. These results underscore the
strong potential of variational reasoning in tackling complex tasks.
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Table 5: Ablation study on effects of different my ()|, 25 ) estimators. Experiments are done in
data 1k setting. Acc: accuracy; GML: geometric mean of token likelihood; L: naive likelihood.

MATHS00 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2 Avg
Qwen2.5-7B-Instruct 75.60 10.94 7.40 51.10 3991 36.99
Bespoke-Stratos-7B-1K"  77.20 16.25 13.96 53.75 40.88 40.41
Ours-Acc-7B-1K 81.30 19.69 18.44 61.64 45.99 45.41
Ours-GML-7B-1K 81.30 19.27 18.33 62.50 45.48 45.38
Ours-L-7B-1K 79.90 17.81 14.17 59.53 43.62 43.01
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Avg@8 Avg@8 Avg@8 Avg@8  Avg@l V8
Qwen?2.5-7B-Instruct 29.99 62.50 18.20 3.35 48.20 32.45
Bespoke-Stratos-7B-1Kf  37.94 60.37 13.59 1.22 56.07 33.84
Ours-Acc-7B-1K 41.16 68.13 21.42 1.42 60.94 38.62
Ours-GML-7B-1K 41.35 68.41 23.30 2.74 61.31 39.42
Ours-L-7B-1K 39.90 66.42 19.90 1.93 58.61 37.35
AIME24 AIME25 AMC23 LiveCodeBench-Medium
20 64
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Figure 3: Effects of scaling up the number of thinking traces (X in Algorithm 1) sampled from
variational posterior g4 on the performance of the final reasoning model 7.

Training dynamics. We monitor training loss and gradient norms during training for Qwen3-4B/8B-
base models (see Figure 1). Compared to Bespoke-Stratos-4B/8BT, our method yields lower average
training loss and fewer gradient norm spikes, indicating greater training stability. We attribute this
stability to the g /g, ratio in py,. Specifically, for a reasoning trace zj, the weight py, is large when the
trace is both high-quality (high 79 ()|, 25 )) and aligned with the reasoning policy (high likelihood
ratio mp (zx|x)/qe(2k|2, y’)). This adaptive weighting promotes stable and effective training.

4.3 ABLATION STUDIES

As mentioned in Section 4.1, we conduct ablation studies on both the 17k and 1k data settings to
better analyze variational reasoning. Additional ablations are provided in Appendix F.2.

Scaling the number of thinking traces z;. We investigate the effect of increasing the number of
traces z sampled from the variational posterior g4 (i.e., K in Algorithm 1) on the performance of the
reasoning model 7g. Experiments are conducted under the 1k data setting and faithful to Algorithm 1.
We scale K exponentially from 1 to 32, adjusting the batch size to keep optimization steps consistent.
Results in Figure 3 suggest that increasing K can further enhance model performance. This implies a
practical trade-off between training computational cost and reasoning accuracy when selecting K.

Conditioning on y’. We ablate the necessity of conditioning on ¢’ in data 17k setting. The variant
w/o y’ samples thinking traces z by the initial reasoning model instead of the variational posterior.
Results (Table 4) show that removing ¢’ as the condition negatively affects the performance.

Different 7y ()z|x, z1) estimators. We ablate different estimators for 7y ()|, 1) used in the
weight py in data 1k setting (Table 5). We find estimators based on accuracy or geometric mean of
token likelihood outperform the naive likelihood by a large margin, validating our analysis in Sec. 2.2.

5 CONCLUSION

We introduced a variational reasoning framework as a principled and stable objective for training
reasoning models, while clarifying biases in existing SFT/RFT and RL methods. Beyond consistent
gains over strong baselines on diverse reasoning tasks, our analysis offers a probabilistic perspective
for interpreting current approaches. A natural future direction is extending training beyond a single
round (7" > 1 in Algorithm 1) and exploring richer posterior design for the answer hint y'.
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A DETAILED DERIVATIONS

In this section, we provide detailed derivations of the conclusions presented in the main text, along
with some additional results.

A.1 DERIVATION FOR EQ. (4)

The ELBO objective induced from Eq. (2) can be rewritten as

Lego (T, Vo, y': 0, 4s) = By, (2]a,y) 108 To(Va |, 2)] — KL (q4(2|2, y')||7e(2]x))
=Eq, (zla,y) l0g m0(2, Va|2)] + H (95(2]2,y")) (13)
=log Py(Vz|®) — Dk (g4 (2], ¥')|| Po (2|2, V),

o (Vo|Z,2)mo (2]2)

TAGAED) is the true posterior distribution.

where () is entropy function and Py (z|x, Vg) =

A.2 DERIVATION FOR EQ. (6)

Given the IWAE-style lower bound LE o (x, Ve, ¥'; 70, q4) in Eq. (5), we can derive its gradient
w.r.t. model parameters 6 as:

Volh so(@, Ve, y's 70, q5)

K
1 o m0(2k; Vo)
= VoEz i cnaszley) [log T /
k=

* qs(zk|@, y')
1 K Veme(zk,Val®)
- (| ) K k=1 q4(zx|z,y’)
z1.xk~q (2|2, Yy’ ﬂ'e(zk,ym\m)
#* Lho G (14
_Ezl K~qp(z|2,y’) [Z 910g7r9 zkay:c|53)‘|
k=
~ 2k, Ve |T
where pp = I[() and pi = g(kiym‘/)_
—1Pj q¢ (2K, y')

Using the notations of py and py, we can further derive the gradient w.r.t. ¢ as:

V¢£§_B0(w ymv yl; e, qd))

T Zk,ym|m)
=V,E, .. 1 PRCAER)
0Bz semay (zl2.y) [OgKZ 94 (2, y)]
1 =z 3
— EzLKN%(ﬂm,y’) [<IOgK ZPk) szb log% Zk|w y Z V¢ logq¢s zk‘w Y )1
k=1 k=1 =1
K 1 K
= By (2ly) lz <—ﬁk +logKZpk> -V¢log%(zk|ac,y/)] .
k=1 k=1

A.3 PROOF OF THEOREM 1

As to the computation of 7y ()|, z), there are two unbiased estimators:

Likelihood-based estimator: 74 (Vz|x, 2) = [Vz| - Eyri(y,) [To (Y|, 2)] 5 15)
Accuracy-based estimator: 7y (Vz|T, 2) = Eyr,(yla,z) [1(Y € V2], (

where | )| is the cardinal (number of elements) of V., U () is the uniform distribution on ),
and 1(-) is the indicator function. When |),| = 1, i.e., there is a unique correct answer expression
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y*, Zhou et al. (2025) show that the likelihood-based estimator has lower variance (in fact, zero)
compared to the accuracy-based one. We now extend this comparison to general cases when | V| > 1:

Varje = |Va|? - Vary (v, [mo(yl@, 2)] ;
Varyee = 7o (Ve |, 2) - (1 — mo(Va |z, 2)) .
Note that the variance Var, of accuracy-based estimator is independent of |);| and the model

distribution 7y over different elements in },. Assuming that in the worst case where only one
element y* € ), has non-zero probability under 7y, i.e., mg(y*|x, 2) = mg(Ve |z, 2), we have

(16)

Varfjor™! £ max Varjxe = (|Ve| — 1) - 7o (Va |2, 2)?;

N (17)
Var?™ £ max Var,ee = m9(Vel|®, 2) - (1 — m0(Va|z, 2)).

o

Here we slightly abuse the notation of max,,, since the maximization is taken w.r.t. all my under
fixed value Tg(V|x, z). As seen, Varir™ > Var)o™ holds when the model accuracy (condition on

x, z) satisfies

mo(Valw,2) 2 (18)

Vel
which almost always holds for |, > 1. O

A.4 DERIVATION FOR EQ. (9)

Now we derive the gradient of the forward KL divergence w.I.t. ¢:
VDo (Po (2], Va)llgs (2], y'))
= = VoEp,(2[z,y.) [l0g 44 (2|2, y')]

'/TG(ym|"B» Z)

Py Val) log g4(2|x,y )}

" (19)
~ Bt ps oo (21) [Z WV log q¢(zmlw,y’)1 2 Vo Listwaras

m=1
where w,, = Eim and  wy, = 79(Ve|T, 2m)-

j=1Wj
A.5 CONNECTION TO MORE GENERAL RL REWARD SHAPING

In the literature on reinforcement learning with verifiable rewards (RLVR), various strategies for
reward shaping have been proposed, many of which can be expressed as

a ify € Ve
R(a:,y) = 6 ify % Yz A Yy < Vrormats (20)
v  otherwise,

where «, 3,y are hyperparameters, Veoma 1S the set of answers that correctly follow required format
(e.g., \boxed{ }) and is typically independent of x. Apparently, Ve C YViormat holds for any . Then
we can derive the gradient of training objective under the general reward shaping R(x, y) as

VGLgf:neral—RL (ma Uy )
£ VeEﬂg(Zlm)Eﬂ'g(ylm,Z) [R(wa y)}
= Errg(z\a:)Eﬂ'g(y\z,z) [R(d!, y) ’ (Ve lOg 7'('9(Z|33) )}
only w.r.t.
mizlm; Ery (2]a) Erg (yl,2) [R(2, y) - Vo log mo(z|)] 21
=Erpizla) [(( = B) - 9 (Ve|, 2) + (B =) - Mo (Viormat|®, 2)) - Vg log me(z]x)]
= (o= B) - Po(Va|®) - VoDxo(Fp® (2], Vo)l mo (2] )
+ (8 - ’7) : PG (yformat‘m) : VG]DKL(P;g(Z‘wa yformat)||7r6(z|m)),
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where Py(Vrormat|®) is the probability that the output answers follow the required format. It is easy to
know that the optimal solution for Eq. (21) can be written as:

7T*<Z|£B) = (a _ ﬁ) . Pgsg(z’ ym‘m) + (ﬁ B 7) ) Pasg(zvyformal|w)
’ (@—B) PEYalz) + (B—7) B Vo)

Remark. When 5 = v, i.e., there is no format reward, the optimization problem in Eq. (21) degrades
to Eq. (11). When @ > 8 > ~, the model 7y (z|x) will tend to hack reward function on hard problems
(i.e., low Py(Yz|x)) that can easily follow format (i.e., high Py(Vormat|®)), where 7 (z|x) will seek
modes of P,®(z|&, Viormat). Besides, there may be an intuition that setting 5 < 0 could alleviate
reward hacking, however, as shown in Eq. (21), the optimization only depends on the relative values
ofa — B and B8 — 7.

Now we show that it is straightforward to debias Py () |®) and Py(Vormac|®) in Eq. (21). Specifically,
we can rewrite the reward function as (note that reward functions are equivalent up to any constant):

(22)

R(ac,y) = (Oé - B) . (y S y:c) + (ﬁ - ’Y) . (y S yformat)' (23)
Then the debiased version of reward function is
(a—5) (B=)
Ri(z,y) = Psg(ym‘ ) Ay € Vo) + m 1(y € Viormat) (24)

where in practice P,*(Vz|x) and Py®(Vormat|) can be approximated by the ratio of correct answers
(i.e., model accuracy) and the ratio of correct format for each batch of RL rollouts (larger rollout
number could lead to more accurate estimation). After using the debiased reward function R*(z, y),
the optimal solution of 7} (z|x) becomes

(a - ﬂ) : Pesg(z|maym) + (6 - ’Y) : Pesg(z|m7yformat)'
a—7y

7p(z|x) = (25)

A.6 SPECIAL CASES IN EQ. (6)

Special case I: ¢4(z|x,y’) = 7% (z|x). In this case, we can simplify the gradient estimation as

K
VoL po (@, Va; o, T58) = B\ oy (2]2) [Z w, Vg 10gﬂe(zk7yw|$)]

k=1 (26)
~ Wi
where Wy, = — and wg = 79 (Velz, 21),
j=1Wj

which can be regarded as a normalized version of VeriFree (Zhou et al., 2025).
Special case II: K = 1. In this case £} 5, = Lrrpo and we can simplify the gradient estimation as

V@‘CELBO(:E7 yw7 y/; T, %) = Ez~q¢(z|m,y/) [VG IOg 7T9(Z, ym|$)] 5

otz o) ,
———— =] - Vg loggs(z|x,
w(eiey) ) Vo EWERY)

27)
vd)['ELBO(ma Vs y/; 7o, Q¢) = IEz~q¢(z|m,y’) |:<10g

A.7 MORE DERIVATIONS FOR EQ. (11)

Now we investigate the gradient of binary reward RL w.r.t. mg (y|x, 2):

veﬁbi—RL(w77r0) £ VOEﬂg(z|m)Eﬂg(y|m,z) []l(y € ya,-)]
= Eﬂe(z|a:)E7rg(y|a:,z) []l(y € ym) ! ( Ve 10g7r9(y|ac, Z))]

(28)
Trg(z|w)E7rg(y|w,Z) []l(y € ym) -V 1Og Tl'g(y|$,2)]

only w.r.t.
mo(y|x,z)
=Er, (zl2) [Vomo Ve, 2)]
where the optimal solution is straightforward that Vz, there is 7} (Vz|x,z) = 1. However, this
optimal solution is usually unachievable, since it requires the model to return 100% correct answers
independent of the thinking process z.
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A.8 APPLYING VARIATIONAL POSTERIOR FOR RL

Recall that the objective function of binary reward RL is defined as

Ebi-RL($7 79) £ Eﬂ'g(z\m)]E‘rrg(y\m,z) []l(y € yﬂ:)] (29)
= E‘n’g(z\ac) [Wg(yw|.’13, Z)] .

Suppose the data points are drawn from a behavior policy ¢(z|x), the RL objective can be reformu-
lated using an importance sampling correction term as follows:

mo(2|T)
q(z|z)

Then, a natural question arises: what is the optimal behavior policy q(z|x) that minimizes the
variance of estimating Ly; grr(x, 79)? Specifically, we can compute

oV, )] = Voo | 22

= Py(Va|z)? - Vary(zje) [ q(z|x)

= Py(Vo|z)?- (ZW — 1) .

T (zle)

Loire(®@,70) = Eqfaia [ o (Va2 z>} . (30)

mo(z|x)

q(z|z)

Pe(ymlw)]

Vary(z|a)

(3D

which is equivalent to minimizing

, Po(zlz, Vo) _
qI(rzn|2) Z ~ozle) s.t. Zq(z|w) =1,q(z|x) > 0. (32)

z z

Using calculus of variations with a Lagrange multiplier A, we obtain

) ZW—i—)\(Zq(ﬂw)—l)] =0

T (le) a
= ¢"(z|x) = Py(z|x,Vy) and A =1 (33)

Wa(ymk&z)} .

mo(z|T)
q(z|x)

Therefore, we show that optimizing the variational posterior g4 to approximate the true posterior
Py(z|x, Vs ) in Eq. (9) naturally yields an (approximately) optimal behavior policy for RL, one that
minimizes the variance of the objective estimator. In practice, the trained variational posterior g
can thus be employed as the behavior policy to reduce variance, which is fully compatible with
actor-critic frameworks that incorporate advantage estimation with baselines.

= Py(z|x,Vz) = arg min Varg(;|s) [
q(z

(z]=)

A.9 CONNECTION TO REINFORCEMENT LEARNING TEACHERS

In the derivation of our method, the ELBO objective in Eq. (4) minimizes reverse KL divergence
Dk (g¢(z]2, y')||Po(z|2, Vs)). As analyzed in Section 2.3, we propose to optimize g, (z|x,y’)
using the forward KL divergence Dk (Py(z|x, Vz)||¢s (2|2, y’)), which shares the same optimal
solution.

Alternatively, we can also optimize the reverse KL divergence by policy gradient method as follows:

V4 LEeLBO
= VDkw (g4 (2|2, ¥)|| Py (2|2, Va))
= VEq, (zley) 108 To (2, Ve|z) — log g (2|2, y)]

=Eqy, (z|a.y) [logm(z,ym|w)v¢ log gs(2z|x,y") — log qs(2|z, y') Ve logq¢(z|:1c,y’)} (34)

qs(z|z, Y’
= ]E%(z\z,y’) l(lOg Wg(yz|£l:, z) — log (Z;T(9(|z|.’13)> > V¢ log q¢(z‘$7 y/)] .

reward
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More concisely, the reverse KL divergence can be alternatively minimized via reinforcement learning

using log mo(Va |z, ) — log 22120

mo(z]z) 38 the reward function.

This derivation establishes a connection to Reinforcement Learning Teachers (RLTs) (Cetin et al.,
2025), who focus on training reasoning LLMs to act as teachers for distilling new students. Their
approach introduces RLTs optimized specifically for effective student distillation. RLTs are trained
by GRPO using dense rewards obtained by feeding each explanation to the student and evaluating its
understanding of the solution.

Specifically, the dense reward in RLT combines two components: one measuring the student’s
likelihood of reaching the correct solution (analogous to log 7y (Vs |, 2)), and another regularizing
the teacher’s explanation to remain coherent from the student’s perspective given only its prior

knowledge and the question (analogous to — log %)'

While RLT employs an intuitively designed reward, our work provides rigorous theoretical justification
from a variational inference perspective. Furthermore, we enhance the method with a tighter IWAE-
style lower bound and an accuracy-based estimator, as detailed in Section 2.2.

B RELATED WORK

SFT and RL methods for reasoning. Reasoning has emerged as a central capability of LLMs,
driving advances in domains such as mathematics, programming, and scientific discovery (Jaech et al.,
2024; Comanici et al., 2025; Team et al., 2025). Among the approaches developed to strengthen these
abilities, SFT and RL have become the two dominant paradigms (Uesato et al., 2022; Rafailov et al.,
2023; Guha et al., 2025; Hu et al., 2025; Hochlehnert et al., 2025). Building on the DeepSeek-R1
framework (Shao et al., 2024; Guo et al., 2025), a range of new RL algorithms have been proposed,
including Dr. GRPO (Liu et al., 2025), DAPO (Yu et al., 2025a), REINFORCE++ (Hu, 2025),
VinePPO (Kazemnejad et al., 2024), and VAPO (Yue et al., 2025b). In parallel, extensive empirical
studies have explored the design space of RL for reasoning (Zeng et al., 2025; Team et al., 2025),
focusing on dimensions such as curriculum learning (Wen et al., 2025; Luo et al., 2025) and reward
design (Gao et al., 2024; Cui et al., 2025a; Ma et al., 2023; Qi et al., 2025). While early progress
has centered on mathematical reasoning, recent work has extended RL-based methods to code and
software engineering tasks (Liu & Zhang, 2025; Xie et al., 2025; Wei et al., 2025; Yang et al., 2025;
Chen et al., 2025; Li et al., 2025b), as well as to agentic problem-solving scenarios (Wang et al.,
2025; Jin et al., 2025; Jiang et al., 2025; Xue et al., 2025).

Decomposing thinking and answering processes. Traditional studies on LLM reasoning ability
often treat model responses holistically. In contrast, a recent line of research explicitly decomposes
the LLM response into a thinking trace z and a final answer y, given a question « (Chen et al., 2024;
Xiang et al., 2025; Zhou et al., 2025; Zhong et al., 2025). This decomposition offers several novel
and useful perspectives.

Zhou et al. (2025) propose VeriFree, which directly optimizes Py (y|x) = Er,(z|2)[7o(y|z, 2)] using
policy gradient. Their algorithm simultaneously optimizes 7y (z|x) via policy gradient methods with
mo(y|x, z) as a reward, and performs weighted SFT on 7y (y|x, z). This approach demonstrates
strong performance in general domains where rule-based verifiers are typically unavailable. Subse-
quent works (Yu et al., 2025b; Xu et al., 2025) further improve upon this by reshaping the reward, e.g.,
intuitively replacing the product of token probabilities with the mean when computing 7y (y|x, 2).

Chen et al. (2024) introduce LaTRO, formulating reasoning as sampling from a latent distribution
q(z|z) and optimizing log Py(y|x) via a variational manner. Their derived lower bound is:

log Py(y|z) > Eq(zja) [log 76 (y|®, 2)] — Dxe (¢(z]2) || mo(z[2)).

They set the proposal distribution ¢(z|x) to 7p(z|x), resulting in a reinforcement learning algorithm
where log g (y|x, z) serves as the reward. Tang et al. (2025) and Ruan et al. (2025) tighten this
bound using ideas similar to IWAE (Burda et al., 2015).

A more natural choice for the variational distribution is the true posterior Py(z|x, y), though it is
intractable. Hoffman et al. (2023) use MCMC to sample from the posterior, while Hu et al. (2024)
employ GFlowNets (Bengio et al., 2023) to fine-tune an LLM to approximate it. Both methods use
an EM-like algorithm to optimize the ELBO of log Py (y|x).
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Our approach uses forward KL divergence to train a variational posterior and derives a novel objective
based on a tighter IWAE-style bound. Additionally, we propose an accuracy-based estimator for
mo(Vez |, 21), instead of the likelihood-based estimator used in Zhou et al. (2025). We also build con-
nections to other mainstream finetuning algorithms that enhance reasoning, such as RFT and GRPO.

Reinforcement learning as probabilistic inference. Previous works have also explored connections
between reinforcement learning and probabilistic inference. Notably, Levine (2018) discuss RL
and control from a probabilistic inference perspective. Their approach begins from a reinforcement
learning standpoint, where the goal is to search for an optimal policy, and constructs a probabilistic
graphical model (PGM) in which the posterior distribution over actions corresponds to an optimal
policy. This is achieved by defining observations in the PGM based on rewards, and the resulting
inference problem is then solved via variational inference. This formulation differs from our approach.

In contrast, our method starts from the objective of maximizing log Py(Vs|x), treats the reasoning
process as a discrete latent variable z, and optimizes the ELBO to train the reasoning model. We
subsequently draw connections between our framework and other RL algorithms (Section 3). From
an application perspective, our work focuses on the language domain and explicitly models reasoning
traces as discrete latent variables, which further distinguishes it from the aforementioned work.

C TRAINING DETAILS

In this section, we detail the training procedure used in our method. Our framework builds on
LLaMA-Factory (Zheng et al., 2024). By default, SFT averages token-level cross-entropy over
all valid tokens in a batch. However, as shown in Section 2, our variables z and y are defined
at the sentence level. To align with this, we modify the objective: instead of normalizing by the
number of valid tokens, we sum the loss over all tokens and divide by a constant equal to the average
response length in the training set (precomputed offline). This change parallels the difference between
GRPO (Shao et al., 2024) and Dr. GRPO (Liu et al., 2025), thus we name this slight modification as
Dr. SFT. Both our models and Bespoke-Stratos-4B/8B' are trained with this modified objective. We
further extend the framework with weighted SFT, as the original LLaMA-Factory does not support
weighting. This feature is essential for parts of our method that require weighted training. All
experiments are conducted on NVIDIA H100 GPUs.

C.1 TRAINING THE INITIAL REASONING MODEL AND VARIATIONAL POSTERIOR

For training, we use the following settings:

1. Initial reasoning model 7y, (following Labs (2025)):

* batch_size=96, cutoff_len=16384

e Optimizer: AdamW (Loshchilov & Hutter, 2019) with adam_betal=0.9,
adam_beta2=0.999, adam_epsilon=1.0e-8,weight_decay=0

* Learning rate schedule: cosine with warmup_ratio=0.1
* learning_rate=1.0e-5max_grad_norm=1.0
* Training for 3 epochs
* Precision: bfloatl6
» Baselines (Bespoke-Stratos-7B/32B and Bespoke-Stratos-4B/8BT) are trained with the
same setup
2. Variational posterior ¢;:

* batch_size=16

* Optimizer: AdamW with adam_betal=0.9, adam_beta2=0.95,
adam_epsilon=1.0e-8,weight_decay=1.0e-4

* warmup_ratio=0.05

* Training for 10 epochs

All other hyperparameters follow those used for g,
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C.2 DETAILS OF SAMPLING FROM VARIATIONAL POSTERIOR

Using the trained variational posterior g4, we sample 8 reasoning traces (including final answers) for
each question in Bespoke-Stratos-17k with vLLM (Kwon et al., 2023), using temperature=0.7,
top_p=1.0, top_k=-1,max_tokens=32764, and dtype=bfloatl6. After obtaining the
sampled reasoning traces, we compute the importance weight py for each question-thinking-answer
triplet using the pre-trained initial reasoning model 7y, and the variational posterior q4. This is
done in forward mode by evaluating the log-likelihoods under both models, without requiring
backpropagation, which is efficient.

To estimate the term 7wy (),, | «, z) used in py, we adopt an accuracy-based estimator. Specifically,
for each question and each sampled thinking trace, we use 7y to generate 8 answers under the same
sampling configuration as above. The correctness of these answers is evaluated using the math/code
verifiers from SkyThought, and the average accuracy is taken as the estimate of 7y(Vz | @, 2).
Experiments utilizing the accuracy-based estimator are labeled as “-Acc”.

Additionally, we employ the geometric mean of token-level probabilities under 7y (Y | , 2) as an
alternative and intuitive estimator. This approach mitigates the inherent length bias present in the
strict definition of 7y () | @, 2), which computes the product of token probabilities and consequently
assigns excessively small values to longer reasoning traces. This estimator provides an intuitive
approximation without requiring an external verifier. Experiments utilizing the estimator based on
geometric mean are labeled as “~GML”, while those with the naive estimator are labeled as ““-L”.

This process results in a weighted dataset where each sample consists of a question-thinking-answer
triplet along with its corresponding weight py,, which will be utilized in subsequent training stages.

C.3 DETAILS OF TRAINING FINAL REASONING MODEL

To train the final reasoning model 7y, we adopt the following procedure. For the 17k data setting,
we select, for each question, the reasoning trace with the highest importance weight p; among the 8
samples sampled from the variational posterior. In experiments using the accuracy-based estimator,
we pair the selected reasoning trace with a randomly chosen verified answer generated by the initial
reasoning model. For other estimators, the original answer from the dataset is retained. The resulting
synthetic data is then mixed with the original Bespoke-Stratos-17k dataset.

We maintain the same training configuration as used for the initial reasoning model, with one
exception: the batch size is increased to batch_size=192. This adjustment ensures that the total
number of optimization steps remains consistent with baseline models (e.g., Bespoke-Stratos-32B),
as the mixed dataset is twice the size of the original.

For the 1k data setting, the baseline model (e.g., Bespoke-Stratos-7B-1K) is trained with the follow-
ing configuration: We adopt batch_size=16 and cutoff_len=32768. We use the AdamW
optimizer (Loshchilov & Hutter, 2019) with parameters adam_betal=0.9, adam_beta2=0.95,
adam_epsilon=1.0e-8,and weight_decay=1.0e-4. A cosine learning rate schedule is
applied with warmup_ratio=0. 1, alongside a learning rate of 1 . 0e—5 and gradient clipping at
max_grad_norm=1.0. Training is conducted for 5 epochs.

In our method under the 1k setting, we do not combine with the original dataset. Instead, we use
all 8 reasoning traces, weighted by py, which is faithful to Algorithm 1. To match the number of
optimization steps in the baseline, we proportionally adjust the batch size while keeping all other
hyperparameters unchanged.

D DETAILS OF EVALUATION

We conduct all evaluations using SkyThought, specifically at commit 0d190£1.> Team (2025b)
suggest avoiding greedy decoding for models with long thinking traces. Thus, responses are sam-
pled from the models using temperature=0.7 and top_p=1.0. A generous token budget of
max_tokens=38912 is allocated to accommodate lengthy outputs.

Shttps://github.com/NovaSky—-AI/SkyThought
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To maximize reproducibility, we perform inference using dtype=float32, accepting a po-
tential decrease in speed for improved consistency. For model parallelism, we configure
tensor_parallel_size=4 for 4B/7B/8B models and tensor_parallel_size=8 for the
32B models. We choose vVLLM (Kwon et al., 2023) as the inference backend. For models based
on Qwen2.5, we use v11lm==0.7.0, while for Qwen3-based models, we use v11m==0.8.4.
Although we anticipate that these version differences have negligible impact on evaluation accuracy,

we document them here to ensure full reproducibility.
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E PROMPT TEMPLATES

In Section 2, we abstractly introduced how we define the prompt patterns used in the reasoning model
mg and variational posterior . In this section, we provide details of the prompt templates used in
practice, as shown below.

Prompt template A (PA) for variational posterior g,

Your role as an assistant involves providing precise and accurate
solutions before providing detailed explanations with your full
work showing your systematic thinking process leading to each
solution. Your explanations should show how you engaged in a
comprehensive cycle of analysis, summarizing, exploration,
reassessment, reflection, backtracing, and iteration to develop
well-considered thinking process. Please structure your response
into two main sections: Solution and Explanation. In the Solution
section, present your well-thought solution that accurately
answers the question. The solution should remain a logical,
accurate, concise expression style and detail necessary step
needed to reach the conclusion, formatted as follows:
<|begin_of_solution|> {final formatted, precise, and clear
solution} <|end_of_solution|>. In the Explanation section,
comprehensively detail your reasoning process using the specified
format: <|begin_of_explanation|> {explanation with steps separated
with "\\n\\n’} <|end_of_explanation|> Each step should show
detailed considerations leading to your solutions such as
analisying questions, summarizing relevant findings, brainstorming
new ideas, verifying the accuracy of the current steps, refining
any errors, and revisiting previous steps.

Prompt template B (PB) for variational posterior g

Your role as an assistant involves reconstructing the internal
reasoning process that connects a provided question to its correct
answer. Your task is to methodically reverse-—-engineer the logical
steps, demonstrating a full cycle of analysis, summarization, idea
generation, verification, error correction, and iterative
refinement. Please structure your response into two distinct
parts: Solution and Thought. In the Solution section, present the
given correct answer in a precise and clear format:
<|begin_of_solution|> {provided correct solution}
<lend_of_solution|>. In the Thought section, articulate the
step-by-step cognitive journey that leads to the solution. Use the
specified format: <|begin_of_thought|> {detailed thought process
with steps separated by ’\\n\\n’} <|end_of_thought|>. Each step
should reflect analytical breakdowns, synthesis of key points,
generation of logical pathways, validation of each step’s
accuracy, refinement of any missteps, and reassessment of previous
conclusions. The focus is solely on depicting the internal,
structured thinking that arrives at the provided solution.

Prompt template for reasoning model 7g

Your role as an assistant involves thoroughly exploring questions
through a systematic long thinking process before providing the
final precise and accurate solutions. This requires engaging in a
comprehensive cycle of analysis, summarizing, exploration,
reassessment, reflection, backtracing, and iteration to develop
well-considered thinking process. Please structure your response
into two main sections: Thought and Solution. In the Thought
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section, detail your reasoning process using the specified format:
<|begin_of_thought|> {thought with steps separated with ’\\n\\n’}
<|lend_of_thought |> Each step should include detailed
considerations such as analyzing questions, summarizing relevant
findings, brainstorming new ideas, verifying the accuracy of the
current steps, refining any errors, and revisiting previous steps.
In the Solution section, based on various attempts, explorations,
and reflections from the Thought section, systematically present
the final solution that you deem correct. The solution should
remain a logical, accurate, concise expression style and detail
necessary step needed to reach the conclusion, formatted as
follows: <|begin_of_solution|> {final formatted, precise, and
clear solution} <|end_of_solution|> Now, try to solve the
following question through the above guidelines:
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Table 6: Performance of models trained from Qwen2.5-7B-Instruct trained on Bespoke-Stratos-17k.
The best and second-best results are highlighted using bold text and underlined text, respectively.

MATHS00 AIME24 AIME2S AMC23 OlympiadBench

Method Avg@2  Avg@32 Avg@32 Avg@32 Avg@2 Avg
Qwen2.5-7B-Instruct  75.60 10.94 740 5110 39.91 36.99
Bespoke-Stratos-7B 82.20 19.58 19.48 63.28 45.03 4591
RLT-7B 84.30 2281 1948  64.84 46.43 47.57
Ours-PA-GML-7B 85.30 2417 2042 68.20 46.88 48.99
Ours-PA-Acc-7B 83.40 2250 2083 6539 47.55 47.94
Ours-PB-GML-7B 84.00 2208 2042  66.80 46.29 47.92
Ours-PB-Acc-7B 84.80 2396  19.69  65.00 48.15 48.32
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Ave@8  Avg@8 Avg@8 Ave@8 Avg@1 Avg
Qwen2.5-7B-Instruct ~ 29.99 62.50 1820 3.35 48.2 32.45
Bespoke-Stratos-7B 39.02 69.30 2306 295 60.59 38.98
RLT-7B 41.60 7232 25.06 3.66 61.28 40.78
Ours-PA-GML-7B 43.62 7452 2779 4.8 60.88 42.32
Ours-PA-Acc-7B 43.56 7445 2943 437 60.72 42.51
Ours-PB-GML-7B 41.60 7473 2846 457 61.14 42.10
Ours-PB-Acc-7B 41.67 7507 2949  4.68 61.28 42.44

F EXTENDED RESULTS

F.1 EXTENDED MAIN RESULTS

Due to space constraints in the main paper, we present extended evaluation results in this section.

We report the evaluation results for models fine-tuned from Qwen2.5-7B-Instruct on the Bespoke-
Stratos-7B dataset in Table 6. All variants of our method outperform all baselines in terms of average
accuracy, demonstrating the superiority of the variational reasoning approach. Notably, the two
prompt templates used for the variational posterior g4 yield similar results, indicating that our method
is robust to the choice of template. We attribute this robustness to the fact that the posterior is obtained
by fine-tuning the model g, rather than through prompt engineering alone, thereby reducing the
sensitivity to specific prompt formulations.

Additionally, we plot the distributions of the thinking token length versus the log-likelihood ratio

log % and the answer token length versus the log-likelihood of the answer log 7y (Y | @, 2k)
in Figure 4. The results reveal strong correlations between these variables, indicating the presence
of length biases. This observation further justifies the use of estimators based on accuracy or the

geometric mean of token likelihood, rather than the naive likelihood.

Another noteworthy observation is that our evaluation results for General-Reasoner-4B (see Table 1)
differ from those reported by Ma et al. (2025) in their original paper, despite using their officially
released checkpoints and provided prompt template. This discrepancy can be attributed to several fac-
tors: (1) different evaluation frameworks: we employ SkyThought whereas they utilize simple-evals*;
(2) different sampling configurations: we use temperature=0.7 and max_tokens=38912,
while they primarily employ greedy decoding (i.e., temperature=0) except for AIME24 and
AIME2S, along with a more constrained token budget of max_tokens=8192.

To facilitate a fair comparison, we provide results on the common benchmarks that we and Ma et al.
(2025) both utilize, comparing our model accuracy with their officially reported values (see Table 7).
As demonstrated, our method continues to outperform General-Reasoner-4B* by a significant margin
(where * indicates their officially reported accuracy).

4https ://github.com/openai/simple-evals
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Table 7: Performance of models trained from Qwen3-4B-Base. All models are trained on Bespoke-
Stratos-17k except for General-Reasoner-4B. Here, * denotes accuracy values officially reported by
Ma et al. (2025), rather than results obtained through our own evaluation. The best and second-best
results are highlighted using bold text and underlined text, respectively.

Method MATHS500 AIME24 AIME25 AMC23
Qwen3-4B-Base 45.30 4.79 5.73 27.73
General-Reasoner-4B 71.70 19.06 16.77 55.00
General-Reasoner-4B* 80.6 20.0 154 60.0
Bespoke-Stratos-4Bf 84.70 27.29 24.17 70.16
Ours-PB-GML-4B 87.30 33.54 26.77 74.06
Ours-PB-Acc-4B 88.30 31.67 27.29 75.63
Method OlympiadBench GPQA-D MMLU-Pro
Qwen3-4B-Base 23.37 29.10 36.89
General-Reasoner-4B 45.18 40.97 61.36
General-Reasoner-4B* 47.7 429 62.8
Bespoke-Stratos-4B 50.45 44.95 63.03
Ours-PB-GML-4B 54.45 45.52 65.52
Ours-PB-Acc-4B 55.71 45.33 65.53

F.2 EXTENDED ABLATION STUDIES

This section presents extended ablation studies analyzing: the impact of different training data sources
and different ways of data usage (Appendix F.3); the effect of data overlap between variational
posterior training and reasoning model training (Appendix F.4); the comparison between Dr. SFT and
naive SFT (Appendix F.4); and the influence of cutoff length during training (Appendix F.6).

F.3 EFFECTS OF DIFFERENT FINAL DATA SOURCES AND WAYS OF DATA USAGE

In our main experiments, we prioritize training efficiency by using the 17k data setting, selecting the
variational reasoning trace zj with the highest weight p;, and mixing it with the original Bespoke-
Stratos-17k data (which results in double data sizes), rather than using all eight traces sampled from
the variational posterior. To evaluate the impact of this simplification, we conduct ablation studies
under the 1k data setting. We compare variants that either mix or do not mix with the original data,
and that use either single-best trace selection (“-S”) or weighted multiple traces (“-M”).

Results are shown in Table 8. The best performance is achieved by the variant that uses weighted
multiple reasoning traces without mixing with the original data. This suggests that, when com-
putational cost is not a constraint, the optimal approach is to utilize all reasoning traces from the
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Table 8: Ablation study on the effects of different final data sources (only sampled from variational
posterior vs. mixed) and different ways to use samples from variational posterior to train reasoning
models (single best reasoning trace selection (“-S”) vs. weighted multiple reasoning traces (“-M”)).
This ablation is done in data 1k setting. The best and second-best results are highlighted using bold
text and underlined text, respectively.

MATHS00 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2 Avg
Qwen2.5-7B-Instruct 7560 1094 740  51.10 39.91 36.99
Bespoke-Stratos-7B-1KT 7720 1625 1396  53.75 40.88 40.41
Ours-M-7B-1K 79.80  18.65 1698  60.55 44.81 44.16
w/o Mix 8130  19.69 1844  61.64 45.99 45.41
Ours-S-7B-1K 81.10  19.90 17.08  60.39 43.92 44.48
w/o Mix 8040  17.92 1781  59.06 43.18 43.67
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Avg@8 Avg@8 Avg@8 Avg@8 Avg@1 Avg
Qwen2.5-7B-Instruct 2999 6250 1820  3.35 48.2 32.45
Bespoke-Stratos-7B-1KT  37.94 60.37 13.59 1.22 56.07 33.84
Ours-M-7B-1K 4280 6573 1899  1.93 60.49 37.99
w/o Mix 4116 6813 2142 142 60.94 38.62
Ours-S-7B-1K 4034 6484 1820 2.3 59.54 37.01
w/o Mix 3996 6504 1827 132 59.87 36.89

variational posterior, weighted by py, for training the final reasoning model. Another interesting
observation is that for the single-trace method, data mixing improves performance, whereas for the
weighted multi-trace method, mixing slightly degrades performance. This may indicate that the
weighted ensemble of variational traces already provides sufficient information, making the original
data redundant in this scenario.

F.4 EFFECTS OF DATA OVERLAP

In the 17k data setting, the variational posterior g is trained on all 17k samples and generates thinking
traces for the same set of 17k samples, which are subsequently used to train the final reasoning model
mp. In other words, both the variational posterior and the final reasoning model are trained on the
same set of question—answer pairs.

An interesting question is how our method performs in the absence of data overlap. To investigate
this, we design two experimental settings: the first is the same 1k data setting introduced earlier;
the second is constructed by splitting Bespoke-Stratos-17k into two non-overlapping subsets: one
contains 15,710 samples (approximately 16k) and the other contains 1k samples. In the latter setting,
we train the variational posterior ¢4 and the initial reasoning model 7, on the 16k subset. We
then use the trained ¢4 to sample thinking traces for the 1k subset, and employ both ¢4 and 7, to
compute pg. Finally, the final reasoning model 7y is trained on the 1k subset using weighted multiple
reasoning traces. This setting is referred to as “w/o Overlap”.

The results are presented in Table 9. Both the overlap and non-overlap variants exhibit similar
performance in terms of average accuracy, and both outperform the baseline, Bespoke-Stratos-7B-
1K', This suggests that the trained variational posterior generalizes reasonably well and can be
applied to broader scenarios.

F.5 COMPARING DR. SFT WITH NAIVE SFT

As detailed in Appendix C, we employ a slightly modified objective function, Dr. SFT, where the
loss is defined as the sum of all valid token losses normalized by a constant, rather than the mean
loss across valid tokens in the batch. We conduct an ablation study comparing this Dr. SFT approach
against naive SFT when training the final reasoning model 7y.
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Table 9: Ablation study on the effects of data overlap between variational posterior training and
reasoning model training. This ablation is done in data 1k setting. The best and second-best results
are highlighted using bold text and underlined text, respectively.

MATHS500 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2 Avg
Qwen2.5-7B-Instruct 75.60 10.94 7.40 51.10 39.91 36.99
Bespoke-Stratos-7B-1KT 7720 1625  13.96  53.75 40.88 40.41
Ours-7B-1K 7980  18.65 1698  60.55 44.81 44.16
wlo Mix 8130  19.69 1844  61.64 45.99 45.41
w/o Overlap 80.60  20.83 1844  61.17 44.81 45.17
w/o Mix w/o Overlap ~ 82.00  18.75 1688  63.52 47.11 45.65
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Avg@8 Avg@8 Avg@8 Avg@8 Avg@1 Avg
Qwen2.5-7B-Instruct 2999 6250 1820  3.35 48.2 32.45
Bespoke-Stratos-7B-1Kf  37.94 60.37 13.59 1.22 56.07 33.84
Ours-7B-1K 4280 6573 1899  1.93 60.49 37.99
w/o Mix 41.16  68.13 2142 142 60.94 38.62
w/o Overlap 38.19 66.00 19.84 1.12 60.65 37.16
w/o Mix w/o Overlap ~ 39.65  68.82  19.96  2.44 60.36 38.25

The results are presented in Table 10. Both variants demonstrate comparable performance, with less
than 2% difference in average accuracy, and both outperform the baseline. This allows us to conclude
that the primary performance improvement stems from the variational reasoning mechanism rather
than from this minor modification to the objective function.

F.6  ABLATION STUDY ON THE EFFECTS OF CUTOFF LENGTH WHEN TRAINING

In our main experiments (17k data setting), we use a cutoff length of cutoff_len=16384.
To investigate the impact of this hyperparameter, we conduct an ablation study comparing two
variants: one using the default cutoff_len=16384 (denoted as “-Lenl6k”) and another with
cutoff_len=32768 (denoted as “-Len32k”).

The results are presented in Table 11. Both variants exhibit similar performance. We further analyze
the average completion token lengths on several evaluation benchmarks (see Table 12). All methods
produce significantly longer reasoning traces compared to the Qwen2.5-7B-Instruct, with our methods
generating slightly longer thinking traces. Notably, the 16k and 32k cutoff variants result in similar
generation lengths during inference. This indicates that increasing the cutoff length beyond 16k has a
minimal effect on the model’s output. Therefore, we can confidently use the 16k setting for better
training efficiency without sacrificing performance.
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Table 10: Ablation study comparing Dr. SFT and Naive SFT. This ablation is done in data 17k setting.
The best and second-best results are highlighted using bold text and underlined text, respectively.

MATHS00 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2 V8
Qwen2.5-7B-Instruct ~ 75.60 1094 740  51.10 39.91 36.99
Bespoke-Stratos-7B 8220 19.58 1948  63.28 45.03 4591
RLT-7B 8430 2281 1948  64.84 46.43 47.57
Ours-PA-GML-7B 8530 2417 2042 6820 46.88 48.99

w/ naive SFT 8400 2260 2010 6531 49.11 48.23
Ours-PA-Acc-7B 8340 2250 2083  65.39 47.55 47.94

w/ naive SFT 84.10  23.02 21.04 67.66 46.96 48.56

GPQA-D LCB-E LCB-M LCB-H MMLU-Pro

Method Avg@8 Avg@8 Avg@8 Avg@$ Avg@1 Avg
Qwen2.5-7B-Instruct  29.99  62.50 1820  3.35 482 32.45
Bespoke-Stratos-7B  39.02  69.30  23.06  2.95 60.59 38.98
RLT-7B 4160 7232 2506  3.66 61.28 40.78
Ours-PA-GML-7B 43.62 7452 2179 478 60.88 42.32

w/ naive SFT 4249 7473 2585  3.66 61.41 41.63
Ours-PA-Acc-7B 4356 7445 2943 437 60.72 42.51

w/ naive SFT 211 7569 2179 539 61.22 42.44

Table 11: Ablation study on effects of cutoff length used in training. This ablation is done in
data 17k setting. Len16k: cutoff_len=16384; Len32k: cutoff_len=32768. The best and
second-best results are highlighted using bold text and underlined text, respectively.

MATHS00 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Ave@32 Avg@32 Ave@32  Avg@2  AYE
Qwen2.5-7B-Instruct 7560 1094 740 5110 3991 3699
Bespoke-Stratos-7B 8220 1958 1948 638 4503 4591
RLT-7B 8430 2281 1948 6484 4643 4757
Ours-PA-GML-7B-Lenl6k 8530  24.17 2042  68.20 4688  48.99
Ours-PA-GML-7B-Len32k  84.10  22.08 2094  66.80 4837 4846
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Ave@8 Avg@8 Ave@8 Avg@8  Avg@l  AYE
Qwen2.5-7B-Instruct 2099 6250 1820 335 482 3245
Bespoke-Stratos-7B 3902 6930 2306 295 6059 3898
RLT-7B AL60 7232 2506 3.66 6128  40.78
Ours-PA-GML-7B-Lenl6k  43.62 7452 2779 478 6088 4232
Ours-PA-GML-7B-Len32k 4249 7493 2858 437 61.64 4240

Table 12: Average completion token length of models trained from Qwen2.5-7B-Instruct.

MATHS00 AIME24 AIME25 AMC23 MMLU-Pro

Method Avg@2  Avg@32 Avg@32 Avg@32  Avg@l
Qwen2.5-7B-Instruct 564 1270 1027 849 531

Bespoke-Stratos-7B 5801 18413 15769 10921 3889
RLT-7B 5508 18143 15769 10986 3942
Ours-PA-GML-7B 5677 18299 16471 11338 3924
Ours-PA-GML-7B-Len32k 5688 18170 16747 11531 3965
Ours-PA-Acc-7B 5688 18170 16747 11531 3965
Ours-PB-GML-7B 5803 18479 16615 11080 4052
Ours-PB-Acc-7B 5787 18651 16696 11591 3974
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F.7 EFFECTS OF WEIGHTS FOR TRAINING THE REASONING MODEL

Our framework employs weighted supervised fine-tuning (SFT) for the reasoning model, as formalized

in Eq. 6. The weight p, = % -9 (Ve |, 21) is derived from an IWAE-style evidence lower
bound (ELBO). To analyze the contribution of the weighting scheme, we conduct an ablation study
with two variants: (1) uniform weighting (p; = 1), which reduces the method to standard SFT on
traces sampled from the variational posterior; and (2) correctness-only weighting, which uses only the
final answer probability 7y (Y|, i) and omits the likelihood ratio. Results in Table 13 show that
both components of the full weighting scheme contribute positively to performance. These findings
align with our theoretical derivation and validate the design of the objective.

Table 13: Ablation study on the effects of different SFT weights for training the reasoning model.
The best and second-best results are highlighted using bold text and underlined text, respectively.

MATH500 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2 Avg
Qwen3-4B-Base 45.30 479 573 2173 23.37 21.38
General-Reasoner-4B 71.70 19.06 16.77 55.00 45.18 41.54
Bespoke-Stratos-4BT 8470 2729 2417  70.16 50.45 51.35
Ours-PB-Acc-4B 8830  31.67 2729 75.63 55.71 55.72
w/ pp, = 1 87.00  31.04 2604  72.89 52.52 53.90
wlpr = mo(Vel®,2;) 8820 3145 2656  73.43 54.45 54.82
GPQA-D LCB-E LCB-M LCB-H MMLU-Pro
Method Avg@8 Avg@8 Avg@8 Avg@$ Avg@1 Avg
Qwen3-4B-Base 29.10 1854 546  1.32 36.89 18.26
General-Reasoner-4B 40.97 61.40 17.90 2.85 61.36 36.90
Bespoke-Stratos-4B' 4495 7122 1954  3.25 63.03 40.40
Ours-PB-Acc-4B 4533 8029 3368  5.79 65.53 46.12
wl pp =1 4507  78.09 2882 538 64.24 44.32
wlpp = mo(Va|®,21) 4507 7843 3027 548 64.41 44.73

F.8 EFFECTS OF NOISY HINTS

As a sanity check, we conduct an experiment to confirm a basic expectation: sampling reasoning
traces from the well-trained variational posterior should depend critically on the quality of the
conditioning hint y’. We generate noisy hints by using an LLM (Qwen3-4B-Instruct-2507) to rewrite
the original hints, introducing errors, and and use these noisy hints for sampling reasoning traces
using the variational posterior. The results, shown in Table 14, confirm that providing noisy hints
significantly degrades the quality of the sampled reasoning traces. This outcome validates our basic
assumption, as it demonstrates the sensitivity of the posterior to its conditioning input, which is
consistent with its theoretical role.

F.9 EFFECTS OF THE VERIFIER’S ACCURACY

To estimate g (2|, y') for the weight p,, we have two options: a likelihood-based estimator (and its
variant with a geometric mean modification) and an accuracy-based estimator. The likelihood-based
approach does not require a verifier but relies on a reference answer, whereas the accuracy-based
estimator depends on a verifier.

To examine the robustness of our method to verifier accuracy, we conduct an ablation study using a
simulated, highly inaccurate “dummy verifier” by setting all g4 (2|, y) values to 0.5. As shown
in Table 15, while an inaccurate verifier can degrade performance, our method still outperforms the
baselines. We attribute this robustness to the fact that the variational posterior is conditioned on a
reasoning hint, which maintains a high overall correctness. Nevertheless, these results confirm that a
more accurate verifier is still preferable in practice.
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Table 14: Ablation study on the effects of the quality of hints used for sampling from the variational
posterior. The best and second-best results are highlighted using bold text and underlined text,
respectively.

MATHS00 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Ave@32  Avg@2  AVE
Qwen3-4B-Base 45.30 4.79 5.73 27.73 23.37 21.38
General-Reasoner-4B ~ 71.70 19.06 16.77 55.00 45.18 41.54
Bespoke-Stratos-4B 84.70 27.29 24.17  70.16 50.45 51.35
Ours-PB-Acc-4B 88.30 31.67 27.29  75.63 55.71 55.72

w/ noisy hints 86.10 27.29 24.27  70.00 50.52 51.64

GPQA-D LCB-E LCB-M LCB-H MMLU-Pro

Method Avg@8 Avg@8 Avg@8 Avg@8  Avg@l  AVE
Qwen3-4B-Base 29.10 18.54 5.46 1.32 36.89 18.26
General-Reasoner-4B ~ 40.97 61.40 17.90 2.85 61.36 36.90
Bespoke-Stratos-4BT  44.95 71.22 19.54 3.25 63.03 40.40
Ours-PB-Acc-4B 45.33 80.29 33.68 5.79 65.53 46.12

w/ noisy hints 44.82 74.24 26.21 4.98 64.18 42.88

F.10 EFFECTS OF GEOMETRIC MEAN MODIFICATION ON LIKELIHOOD RATIO

As derived in Section 2.2, the weight p; used for training the reasoning model in Eq. (6) can be
A (|2, 21), where the first term, JTEEEZ) s the likelihood

ratio of the thinking trace zj.

decomposed as py, =

The standard likelihood ratio is unbounded, which can lead to high variance, and exhibits a clear
length bias as demonstrated in Figure 4 (left). To address this, we heuristically introduce a geometric
mean modification to the likelihood ratio, as defined in Eq. 8. While this modification introduces
estimation bias, we evaluate its practical utility by comparing our method against a variant that
removes this modification. Results presented in Table 16 indicate that the geometric mean is indeed
beneficial. The principled variant (strictly derived from variational inference) performs slightly worse
than our modified version, yet still surpasses all baseline methods, confirming the overall robustness
of the framework.

F.11 COMPARISON AGAINST BASELINES WITH MATCHED COMPUTATIONAL BUDGET

Our method involves training both a variational posterior and a reasoning model, and also includes ad-
ditional sampling and forward passes to compute token probabilities, which incurs extra computational
cost. To further ensure a fair comparison, we scaled the compute of the baseline, Bespoke-Stratos-4B,
to exceed the total GPU hours used by our framework. This is achieved by increasing both its training
epochs and batch size. Consequently, the baseline’s total number of training tokens also largely
exceeds that of our method. The results, presented in Table 17, indicate that even under a similar
computational budget, our approach achieves better performance. This demonstrates the practical
value of variational reasoning.
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Table 15: Ablation study on the effects of the verifier’s accuracy. The best and second-best results are
highlighted using bold text and underlined text, respectively.

MATHS500 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2  AVE
Qwen3-4B-Base 45.30 4.79 5.73 27.73 23.37 21.38
General-Reasoner-4B ~ 71.70 19.06 16.77 55.00 45.18 41.54
Bespoke-Stratos-4Bf 84.70 27.29 24.17 70.16 50.45 51.35
Ours-PB-Acc-4B 88.30 31.67 2729  75.63 55.71 55.72

w/ dummy verifier 88.00 31.25 26.45 74.21 53.64 54.71

GPQA-D LCB-E LCB-M LCB-H MMLU-Pro

Method Avg@8 Avg@8 Avg@8 Avg@8 Avg@1 Avg
Qwen3-4B-Base 29.10 18.54 5.46 1.32 36.89 18.26
General-Reasoner-4B ~ 40.97 61.40 17.90 2.85 61.36 36.90
Bespoke-Stratos-4BT  44.95 71.22 19.54 3.25 63.03 40.40
Ours-PB-Acc-4B 45.33 80.29  33.68 5.79 65.53 46.12

w/ dummy verifier ~ 45.26 79.67 31.12 4.98 64.90 45.18

Table 16: Ablation study on the effects of geometric mean modification of the likelihood ratio. The
best and second-best results are highlighted using bold text and underlined text, respectively.

MATHS00 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2 Avg@32 Avg@32 Avg@32  Avg@2 Avg
Qwen3-4B-Base 45.30 4.79 5.73 27.73 23.37 21.38
General-Reasoner-4B 71.70 19.06 16.77 55.00 45.18 41.54
Bespoke-Stratos-4B T 84.70 27.29 24.17  70.16 50.45 51.35
Ours-PB-Acc-4B 88.30 31.67 2729  75.63 55.71 55.72

w/o geometric mean  88.00 32.60 27.60 74.14 52.30 54.93

GPQA-D LCB-E LCB-M LCB-H MMLU-Pro

Method Ave@8 Avg@8 Ave@8 Ave@8  Avg@l  AYE
Qwen3-4B-Base 29.10 18.54 5.46 1.32 36.89 18.26
General-Reasoner-4B 40.97 61.40 17.90 2.85 61.36 36.90
Bespoke-Stratos-4BT 44.95 71.22 19.54 3.25 63.03 40.40
Ours-PB-Acc-4B 45.33 80.29 33.68 5.79 65.53 46.12

w/o geometric mean  45.20 78.57 31.18 5.99 65.22 45.23

Table 17: Performance comparison under a similar computational budget. The best and second-best
results are highlighted using bold text and underlined text, respectively.

MATHS500 AIME24 AIME25 AMC23 OlympiadBench

Method Avg@2  Avg@32 Avg@32 Avg@32  Avg@2 VB
Qwen3-4B-Base 45.30 479 573 2173 23.37 21.38
Bespoke-Stratos-4BT 8470 2729  24.17  70.16 50.45 51.35

w/ scaled compute ~ 86.20 29.79 25.52 72.81 52.30 53.32
Ours-PB-GML-4B 8730 3354 2677 74.06 54.45 55.23
Ours-PB-Acc-4B 8830  31.67 2729 75.63 55.71 55.72

GPQA-D LCB-E LCB-M LCB-H MMLU-Pro

Method Avg@8 Avg@8 Avg@8 Avg@$ Avg@1 Avg
Qwen3-4B-Base 2910 1854 546 132 36.89 18.26
Bespoke-Stratos-4BT 4495 7122 1954 325 63.03 40.40

w/ scaled compute ~ 45.01 75.61 2791 4.57 63.99 43.42
Ours-PB-GML-4B 4552 7953 3125  6.20 65.52 45.60
Ours-PB-Acc-4B 4533 8029  33.68 579 65.53 46.12
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G EXAMPLES OF GENERATED RESPONSES

In this section, we provide examples of responses from the variational posterior g, and the final
reasoning model 7y trained based on Qwen3-4B-Base. The provided example of the variational
posterior gy is based on the variant with prompt template B, and the question-answer pair is one
of the samples from the Bespoke-Stratos-17k dataset. The provided example of the final reasoning
model 7y is based on one of the samples in MATHS00. See the provided examples below.

Example of variational posterior g,

Prompt:

<|im_start|>system

Your role as an assistant involves reconstructing the internal
reasoning process that connects a provided question to its correct
answer. Your task is to methodically reverse-—-engineer the logical
steps, demonstrating a full cycle of analysis, summarization, idea
generation, verification, error correction, and iterative
refinement. Please structure your response into two distinct
parts: Solution and Thought. In the Solution section, present the
given correct answer in a precise and clear format:
<|begin_of_solution|> {provided correct solution}
<|lend_of_solution|>. In the Thought section, articulate the
step-by-step cognitive Jjourney that leads to the solution. Use the
specified format: <|begin_of_thought|> {detailed thought process
with steps separated by ’‘\n\n’} <|end_of_thought|>. Each step
should reflect analytical breakdowns, synthesis of key points,
generation of logical pathways, validation of each step’s
accuracy, refinement of any missteps, and reassessment of previous
conclusions. The focus is solely on depicting the internal,
structured thinking that arrives at the provided
solution.<|im_end|>

<|im_start |>user

Return your final response within \boxed{}. A figure is an
equiangular parallelogram if and only if it is a

S\textbf{ (A)}\ \text{rectangle}\gquad \textbf{ (B)}\ \text{regular
polygon}\gquad \textbf{ (C)}\ \text{rhombus}\gquad \textbf{ (D) }\
\text {square}\gquad \textbf{ (E)}\ \text{trapezoid}$<|im_end|>
<|im_start|>assistant

<|begin_of_solution]|>

To determine the correct answer, we need to analyze the
definitions and properties of the given options in relation to an
equiangular parallelogram.

1. xxDefinitions and Propertiesxx:

- A xxparallelogramx* is a quadrilateral with both pairs of
opposite sides parallel.

- xxEquiangularxx means all angles are equal. In a quadrilateral,
this means each angle is 90 degrees (since the sum of angles in a
quadrilateral is 360 degrees, and 360/4 = 90).

— A xxrectanglexx 1s a parallelogram with all angles equal to 90
degrees.

— A xxregular polygonx** (for quadrilaterals) is a square, which is
both equiangular and equilateral.

— A xxrhombus** is a parallelogram with all sides equal, but not
necessarily equiangular.

— A xxsquarexx 1is a special case of both a rectangle and a
rhombus, being both equiangular and equilateral.

- A xxtrapezoidxx has at least one pair of parallel sides, but not
necessarily two pairs.

2. x*Analysisxx*:
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— An equiangular parallelogram must have all angles equal to 90
degrees, making it a rectangle.

— The "if and only if" condition requires that the converse is
also true: a rectangle is an equiangular parallelogram.

— A regular polygon (quadrilateral) is a square, which is too
specific since the problem does not mention sides being equal.
— A rhombus does not require all angles to be equal, so it is not
necessarily equiangular.

— A square 1is a special case of a rectangle but requires both
equiangular and equilateral properties, which are not both
specified here.

- A trapezoid does not necessarily have two pairs of parallel
sides, hence not a parallelogram.

3. xxConclusionx*x:
— The correct answer is a rectangle, as it satisfies both the
equiangular condition and the properties of a parallelogram.

\boxed{A}
<lend_of_solution|>

<|begin_of_thought |>
Response:

Okay, let me try to figure out this problem. The question is: "A
figure is an equiangular parallelogram if and only if it is a..."
with options given. The answer choices are rectangle, regular
polygon, rhombus, square, trapezoid. Hmm. So, first, let’s break
down the terms here.

An equiangular parallelogram. Let’s recall definitions. A
parallelogram is a quadrilateral with both pairs of opposite sides
parallel. Equiangular means that all the angles are equal. In a
quadrilateral, if all angles are equal, each angle must be 90
degrees because the sum of angles in a quadrilateral is 360
degrees. So, 360 divided by 4 is 90. So, an equiangular
quadrilateral has four right angles. Wait, but a parallelogram by
definition already has opposite angles equal. So, if a
parallelogram is equiangular, that forces all angles to be 90
degrees, right? So, that would make it a rectangle. Because a
rectangle is a parallelogram with all angles equal to 90 degrees.
So, then, an equiangular parallelogram is a rectangle. Then the
"if and only if" part. So, the statement is saying that a figure
is an equiangular parallelogram exactly when it is a [answer]. So,
the converse would also have to be true. That is, if it’s a
[answer], then it’s an equiangular parallelogram, and vice versa.

So, let’s check the options. Option A is rectangle. If a figure is
a rectangle, then it’s a parallelogram with all angles equal (to
90 degrees), so it’s an equiangular parallelogram. Conversely, if
it’s an equiangular parallelogram, then as we saw, all angles are
90 degrees, so it’s a rectangle. So, that seems to satisfy the "if
and only if" condition.

But wait, let’s check the other options just to be thorough.
Option B is regular polygon. A regular polygon is a polygon that
is both equiangular and equilateral. In the case of a
quadrilateral, a regular polygon would be a square. So, a square
is a regular quadrilateral. But a parallelogram that is
equiangular is a rectangle, which isn’t necessarily a square
unless it’s also equilateral (all sides equal). So, regular
polygon is too specific here. Moreover, the question is about a
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parallelogram, which is a quadrilateral, but "regular polygon"
could refer to any regular polygon, not necessarily a
quadrilateral, but in the answer choices, it’s listed as an
option. But since a regular polygon (quadrilateral) is a square,
but the question is about an equiangular parallelogram, which is a
rectangle. So, unless rectangles are considered regular polygons,
but rectangles are not regular polygons unless they are squares.
So, regular polygon is not the correct answer here. So, B is out.

Option C is rhombus. A rhombus is a parallelogram with all sides
equal. A rhombus doesn’t have to be equiangular. In fact, a
rhombus can have angles of, say, 60 and 120 degrees. So, a rhombus
is not necessarily equiangular. So, an equiangular parallelogram
is a rectangle, not necessarily a rhombus. So, C is out.

Option D is square. A square is a parallelogram that is both
equiangular (all angles 90 degrees) and equilateral (all sides
equal) . So, the problem here is that an equiangular parallelogram
is a rectangle, which is only a square if the sides are equal. But
the question doesn’t specify that the sides are equal. So, an
equiangular parallelogram is a rectangle, but a rectangle is a
square only if it’s equilateral. Since the problem is only
specifying equiangular (all angles equal) and parallelogram, the
figure is a rectangle, which is a type of parallelogram but not
necessarily a square. Therefore, the "if and only if" would
require that being a square is equivalent to being an equiangular
parallelogram. But that’s not true because a square is a special
case. So, D is not correct.

Option E is trapezoid. A trapezoid is a quadrilateral with at
least one pair of parallel sides. However, a parallelogram has two
pairs of parallel sides, so a parallelogram is a special case of a
trapezoid (depending on the definition; in some definitions,
trapezoids have exactly one pair). But even so, a trapezoid isn’t
necessarily a parallelogram. Moreover, an equiangular trapezoid
would have all angles equal, but in a trapezoid, which is not
necessarily a parallelogram, having all angles equal doesn’t
guarantee that the sides are parallel. For example, an isosceles
trapezoid can be equiangular (with two pairs of equal angles), but
that’s a different case. However, the question specifies an
equiangular parallelogram. So, if it’s a parallelogram, then it’s
already a quadrilateral with two pairs of parallel sides, and if
it’s equiangular, all angles are 90 degrees, making it a
rectangle. A trapezoid isn’t required to have two pairs of
parallel sides, so an equiangular trapezoid isn’t necessarily a
parallelogram. Therefore, E is out.

So, the only remaining option is A, rectangle. Let me just verify
again. If it’s a rectangle, then it’s a parallelogram with all
angles equal, so equiangular. Conversely, if it’s an equiangular
parallelogram, all angles are 90 degrees, hence a rectangle. The
"if and only if" holds here. So, the answer should be A.

Wait, but hold on. The problem says "a figure is an equiangular
parallelogram if and only if it is a [answer]". So, this is a
biconditional statement. So, the statement and the statement "it
is a [answer]" must be equivalent. Therefore, the [answer] must be
such that every equiangular parallelogram is a [answer], and every
[answer] 1s an equiangular parallelogram.

But as I thought earlier, a rectangle is an equiangular
parallelogram. However, the reverse - is every rectangle an
equiangular parallelogram? Well, yes, because a rectangle by
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definition has four right angles, so it’s equiangular. So, the
equivalence holds. Therefore, the if and only if is satisfied.

But wait, the answer options include square. So, maybe there’s a
confusion here. Let me think again. The question 1is asking for the
figure that is an equiangular parallelogram if and only if it is a
[answer]. So, the figure is a parallelogram that is equiangular,
and this happens exactly when it’s a [answer]. So, since we
concluded that this [answer] is rectangle, then A is correct.

But let me check if any of the other options could also satisfy
the biconditional. For example, square. So, 1s a square an
equiangular parallelogram? Yes, because a square is a
parallelogram with all sides equal and all angles equal (90
degrees) . However, the problem states "if and only if". So, the
figure is an equiangular parallelogram exactly when it is a
square. But that’s not true. Because a rectangle is also an
equiangular parallelogram, but a square is a special case of a
rectangle. So, if the statement was "if and only if it is a
square"”, then it would be too restrictive, because there are
rectangles that are equiangular parallelograms which are not
squares. Therefore, the "if and only if" with square would not
hold. Similarly, regular polygon is too broad or specific. So, the
correct answer is rectangle.

Therefore, the answer should be A. But wait, the original problem
says "equiangular parallelogram". Wait, in some contexts, a
parallelogram being equiangular is the same as being a rectangle,
so equiangular parallelogram = rectangle. Then the question is
asking, "An equiangular parallelogram is a [answer] if and only if
it is a..." Hmm, perhaps the wording is confusing. Let me parse
the sentence again.

"A figure is an equiangular parallelogram if and only if it is a
[answer]"

So, the figure is defined as an equiangular parallelogram, and
this is equivalent (if and only if) it is a [answer]. So, the
definition of an equiangular parallelogram is "it is a [answer]".
Therefore, the [answer] must be the name given to the figure that
is exactly the equiangular parallelogram. Since we’ve concluded
that an equiangular parallelogram is a rectangle, then the
definition would be "a rectangle is an equiangular parallelogram".
But the answer options have rectangle as A. However, in logic, the
if and only if is symmetric. So, saying "a figure is an
equiangular parallelogram if and only if it is a rectangle" is
correct. So, that would be answer A.

But then why is square an option? Maybe I made a mistake here.
Let’s consider that perhaps the question is from a country where
parallelogram definitions differ. For example, in some
definitions, a parallelogram is a quadrilateral with both pairs of
opposite sides parallel, and in those cases, a parallelogram is
only a rectangle if it has right angles. But in standard
definitions, a rectangle is a parallelogram with four right
angles, so that’s correct.

Alternatively, maybe there is a different interpretation. Wait,
the problem is in the "if and only if" part. So, if we take
"equiangular parallelogram" as the definition, then the "if and

only if" it is a [answer]. So, the [answer] must be co-extensive
with the equiangular parallelogram. In other words, the set of
equiangular parallelograms is the same as the set of [answer]. So,
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since we know that an equiangular parallelogram is a rectangle,
but a rectangle is not necessarily a square (since rectangles can
have sides of different lengths), then the set of equiangular
parallelograms is exactly the set of rectangles. Therefore, the
answer is rectangle.

But maybe the problem is trying to trick us into thinking that a
square 1s the answer because it’s a special case. But since the
problem doesn’t mention sides being equal, just angles being
equal, it’s a rectangle. So, the answer should be A.

Alternatively, perhaps there’s a different approach. Let’s recall
that in a parallelogram, opposite angles are equal. If it’s
equiangular, then all angles are equal. So, in a parallelogram,
this forces all angles to be 90 degrees. Therefore, it’s a
rectangle. Therefore, equiangular parallelogram is another name
for rectangle. So, if the question is asking for the term that
describes such a figure, the answer is rectangle. So, A.

But maybe the options are labeled differently. Let me check the
options again:

A) rectangle

B) regular polygon

C) rhombus

D) square

E) trapezoid

Yes. So, given that, the answer is A. But let me verify once more.
Suppose someone thinks that "equiangular" refers to both angles
and sides. But no, equiangular just means all angles are equal.
Equilateral would mean all sides are equal. So, the problem is
only mentioning angles. So, a parallelogram that is equiangular
must have all angles 90 degrees, hence a rectangle. Therefore, the
answer is A.

I think that’s solid. So, I think the answer is A, rectangle.

*+xFinal Answerxx*
\boxed{A}

Example of reasoning model 7y

Prompt:

<|im_start|>system

Your role as an assistant involves thoroughly exploring questions
through a systematic long thinking process before providing the
final precise and accurate solutions. This requires engaging in a
comprehensive cycle of analysis, summarizing, exploration,
reassessment, reflection, backtracing, and iteration to develop
well-considered thinking process. Please structure your response
into two main sections: Thought and Solution. In the Thought
section, detail your reasoning process using the specified format:
<|begin_of_thought |> {thought with steps separated with ’\n\n’}
<|end_of_thought |> Each step should include detailed
considerations such as analisying questions, summarizing relevant
findings, brainstorming new ideas, verifying the accuracy of the
current steps, refining any errors, and revisiting previous steps.
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In the Solution section, based on various attempts, explorations,
and reflections from the Thought section, systematically present
the final solution that you deem correct. The solution should
remain a logical, accurate, concise expression style and detail
necessary step needed to reach the conclusion, formatted as
follows: <|begin_of_solution|> {final formatted, precise, and
clear solution} <|end_of_solution|> Now, try to solve the
following question through the above guidelines:<|im_end]|>
<|im_start |>user

If $f(x) = \frac{3x-2}{x-2}$, what is the value of $f(-2)
+f(-1)+£(0) $? Express your answer as a common fraction.<|im_end]|>
<|lim_start|>assistant

<|begin_of_thought |>

Response:

Okay, so I need to find the value of f(-2) + f£(-1) + £(0) for the
function f(x) = (3x - 2)/(x - 2). Hmm, let me start by recalling
how to evaluate a function at a specific point. For each x-value
given, I substitute it into the function and simplify. Let me
break this dow

n step by step.

First, let’s compute f(-2). Substituting x = -2 into the function:

£(-2) = [3%x(=-2) - 21/[(=2) - 2] = [(=6) — 2]1/[-4] = (-8)/(-4) = 2.
Wait, that seems straightforward. The numerator becomes -8 and the
denominator becomes -4, and a negative divided by a negative is
positive 2. Okay, so f(-2) is 2.

Next, let’s find f(-1). Substituting x = -1:
£(-1) = [3x(-1) - 21/0(-1) = 2] = [(=3) - 2]1/[-3] = (=5)/(-3) =

5/3. Hmm, negative divided by negative is positive, so 5/3. That
makes sense.

Now, moving on to f£(0). Substitute x = 0:
£(0) = [3x0 - 2]/[0 - 2] = [0 - 2]/[-2] = (-2)/(-2) = 1. Okay, so
£(0) is 1.

Now, adding these three results together: 2 + 5/3 + 1. Let me
convert the whole numbers to fractions to make addition easier. 2
is 6/3, and 1 is 3/3. So adding them up:

6/3 + 5/3 + 3/3 = (6 + 5 + 3)/3 = 14/3.

Wait, let me double-check each calculation to make sure I didn’t
make any mistakes. Starting with f(-2):

Numerator: 3*x(-2) = -6, minus 2 is —-8. Denominator: -2 - 2 = -4,
So -8/-4 is indeed 2. Correct.

For f£(-1):

Numerator: 3% (-1) = -3, minus 2 is -5. Denominator: -1 - 2 = -3.
So -5/-3 is 5/3. Correct.

For £(0):

Numerator: 3+x0 = 0, minus 2 is -2. Denominator: 0 - 2 = -2. So
-2/-2 is 1. Correct.
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Adding them up: 2 + 5/3 + 1. Converting 2 and 1 to thirds: 2 is
6/3, 1 is 3/3. So 6/3 + 5/3 + 3/3 = 14/3. That seems right.

Alternatively, maybe I can add them in decimal form to verify. 2
is 2.0, 5/3 is approximately 1.666..., and 1 is 1.0. Adding those:
2.0 + 1.666... + 1.0 = 4.666..., which is 14/3 (since 14 divided
by 3 is approximately 4.666...). So that checks out.

I don’t think I made any errors here. Each substitution was done
correctly, and the arithmetic adds up. Therefore, the final answer
should be 14/3.

<end_of_thought>

<begin_of_solution>

To find \( £(-2) + £(-1) + £(0) \) for \( f(x) \frac{3x-2}{x-2}

\):
1. x*Calculate \( f£(-2) \):*x
\ [
f(-2) = \frac{3(-2) - 2}{-2 - 2} = \frac{-6 - 2}{-4} =
\frac{-8}{-4} = 2
\]
2. xxCalculate \( £(-1) \):*=
\ [
f(-1) = \frac{3(-1) - 2}{-1 - 2} = \frac{-3 - 2}{-3} =
\frac{-5}{-3} = \frac{5}{3}
\]
3. *xxCalculate \( £(0) \):*x*
\ [
£(0) = \frac{3(0) - 2}{0 - 2} = \frac{-2}{-2} =1
\1]

4. *xxSum the results:xx
\
2 + \frac{5}{3} + 1 = \frac{6}{3} + \frac{5}{3} + \frac{3}{3} =
\frac{14}{3}
\]

The final answer is \ (\boxed{\dfrac{14}{3}}\).

<end_of_solution>
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