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ABSTRACT

The starting point of this paper is the discovery of a novel and simple error-
feedback mechanism, which we call EF21-P, for dealing with the error introduced
by a contractive compressor. Unlike all prior works on error feedback, where
compression and correction operate in the dual space of gradients, our mecha-
nism operates in the primal space of models. While we believe that EF21-P may
be of interest in many situations where it is often advantageous to perform model
perturbation prior to the computation of the gradient (e.g., randomized smoothing
and generalization), in this work we focus our attention on its use as a key building
block in the design of communication-efficient distributed optimization methods
supporting bidirectional compression. In particular, we employ EF21-P as the
mechanism for compressing and subsequently error-correcting the model broad-
cast by the server to the workers. By combining EF21-P with suitable methods
performing worker-to-server compression, we obtain novel methods supporting
bidirectional compression and enjoying new state-of-the-art theoretical communi-
cation complexity for convex and nonconvex problems. For example, our bounds
are the first that manage to decouple the variance/error coming from the workers-
to-server and server-to-workers compression, transforming a multiplicative de-
pendence to an additive one. In the convex regime, we obtain the first bounds that
match the theoretical communication complexity of gradient descent. Even in this
convex regime, our algorithms work with biased gradient estimators, which is non-
standard and requires new proof techniques that may be of independent interest.
Finally, our theoretical results are corroborated through suitable experiments.

1 INTRODUCTION: ERROR FEEDBACK IN THE PRIMAL SPACE

The key moment which ultimately enabled the main results of this paper was our discovery of a
new and simple error-feedback technique, which we call EF21-P, that operates in the primal space
of the iterates/models instead of the prevalent approach to error-feedback (Stich & Karimireddy,
2019; Karimireddy et al., 2019; Gorbunov et al., 2020b; Beznosikov et al., 2020; Richtárik et al.,
2021) which operates in the dual space of gradients1. To describe EF21-P, consider solving the
optimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is a smooth but not necessarily convex function. Given a contractive compression
operator C : Rd → Rd, i.e., a (possibly) randomized mapping satisfying the inequality

E
[
‖C(x)− x‖2

]
≤ (1− α) ‖x‖2 , ∀x ∈ Rd (2)

for some constant α ∈ (0, 1], our EF21-P method aims to solve (1) via the iterative process
xt+1 = xt − γ∇f(wt),

wt+1 = wt + Ct(xt+1 − wt),
(3)

1Our method is inspired by the recently proposed error-feedback mechanism, EF21, of Richtárik et al.
(2021), which compresses the dual vectors, i.e., the gradients. EF21 is currently the state-of-the-art error feed-
back mechanism in terms of its theoretical properties and practical performance (Fatkhullin et al., 2021). If we
wish to explicitly highlight its dual nature, we could instead meaningfully call their method EF21-D.
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where γ > 0 is a stepsize, x0 ∈ Rd is the initial iterate, w0 = x0 ∈ Rd is the initial iterate shift,
and Ct is an instantiation of a randomized contractive compressor satisfying (2) sampled at time t.
Note that when C is the identity mapping (α = 1), then wt = xt for all t, and hence EF21-P reduces
to vanilla gradient descent (GD). Otherwise, EF21-P is a new optimization method. Note that {xt}
iteration of EF21-P can be equivalently written in the form of perturbed gradient descent

xt+1 = xt − γ∇f(xt + ζt), ζt = Ct−1(xt − wt−1)− (xt − wt−1).

Note that the model perturbation ζt is not a zero mean random variable2, and that in view of (2), the
size of the perturbation can be bounded via

E
[∥∥ζt∥∥2 | xt, wt−1

]
≤ (1− α)

∥∥xt − wt−1
∥∥2
. (4)

From now on, we will write C ∈ B(α) to mean that C is a compressor satisfying (2).

1.1 EF21-P THEORY

If f is L-smooth and µ-strongly convex, we prove that both xt andwt converge to x∗ = arg min f at
a linear rate, in O((L/αµ) log 1/ε) iterations in expectation (see Section D). Intuitively speaking, this
happens because the error-feedback mechanism embedded in EF21-P makes sure that the quantity
on the right-hand side of (4) converges to zero, which forces the size of the error ζt caused by the
perturbation to converge to zero as well. However, EF21-P can be analyzed in the smooth nonconvex
regime as well, in which case it finds an ε-approximate stationary point. The precise convergence
result, proof, as well as an extension that allows to replace∇f(wt) with a stochastic gradient under
the general ABC inequality introduced by Khaled & Richtárik (2020) (which provably holds for
various sources of stochasticity, including subsampling and gradient compression) can be found in
Section E.

1.2 SUMMARY OF CONTRIBUTIONS

We believe that EF21-P and its analysis could be useful in various optimization and machine learning
contexts in which some kind of iterate perturbation plays an important role, including randomized
smoothing (Duchi et al., 2012), perturbed SGD (Vardhan & Stich, 2022), and generalization (Orvieto
et al., 2022). In this work we do not venture into these potential application areas and instead focus
all our attention on a single and important use case where, as we found out, EF21-P leads to new
state-of-the-art methods and theory: the design of communication-efficient distributed optimization
methods supporting bidirectional (i.e., workers-to-server and server-to-workers) compression.

In particular, we use EF21-P as the mechanism for compressing and subsequently error-correcting
the model broadcast by the server to the workers. By combining EF21-P with suitable methods
(“friends” in the title of the paper) performing worker-to-server compression, in particular, DIANA
(Mishchenko et al., 2019; Horváth et al., 2022) or DCGD (Alistarh et al., 2017; Khirirat et al.,
2018), we obtain novel methods, suggestively named EF21-P + DIANA (Algorithm 1) and EF21-P
+ DCGD (Algorithm 2), both supporting bidirectional compression, and both enjoying new state-of-
the-art theoretical communication complexity for convex and nonconvex problems. While DIANA
and DCGD were not designed to work with compressors from B(α) to compress the workers-to-
server communication, and can in principle diverge if used that way, they work well with the smaller
class of randomized compression mappings C : Rd → Rd characterized by

E [C(x)] = x, E
[
‖C(x)− x‖2

]
≤ ω ‖x‖2 , ∀x ∈ Rd, (5)

where ω ≥ 0 is a constant. We will write C ∈ U(ω) to mean that C satisfies (5). It is well known that
if C ∈ U(ω), then C/(ω+1) ∈ B (1/(ω+1)), which means that the class U(ω) is indeed more narrow.

� Convex setting. EF21-P + DIANA provides new state-of-the-art convergence rates for distributed
optimization tasks in the strongly convex (see Table 1) and general convex regimes. This is the first
method enabling bidirectional compression that has the server-to-workers and workers-to-server
communication complexity better than vanilla GD. When the workers calculate stochastic gradi-
ents (see Section 3.1), we prove that EF21-P + DIANA improves the rates of the existing methods.

2In fact, this only happens in the non-interesting case when Ct−1 is identity with probability 1.
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We prove that EF21-P + DCGD has an even better convergence rate than EF21-P + DIANA in the
interpolation regime (see Section 3.2).

� Nonconvex setting. In the nonconvex setting (see Section 4), EF21-P + DCGD is the first method
using bidirectional compression whose convergence rate decouples the noises coming from the
workers-to-server and server-to-workers compression from multiplicative to additive dependence
(see Table 2). Moreover, EF21-P + DCGD provides the new state-of-the-art convergence rate in the
low accuracy regimes (ε is small or the # of workers n is large). Further, we provide examples of
optimization problems where EF21-P + DCGD outperforms previous state-of-the-art methods even
in the high accuracy regime.

� Unified SGD analysis framework with the EF21-P mechanism. Khaled & Richtárik (2020)
provide a unified framework for the analysis of SGD-type methods for smooth nonconvex problems.
Their framework helps to analyze SGD and DCGD under various assumptions, including i) strong
and weak growth, ii) samplings strategies, e.g., importance sampling. Unfortunately, the theory
relies heavily on the unbiasedness of stochastic gradients, as a result of which it is not applicable to
our methods (in EF21-P + DCGD, E [gt] = ∇f(wt) 6= ∇f(xt)). Therefore, we decided to rebuild
the theory from scratch. Our results inherit all previous achievements of (Khaled & Richtárik,
2020), and further generalize the unified framework to make it suitable for optimization methods
where the iterates are perturbed using the EF21-P mechanism. We believe that this is a contribution
with potential applications beyond the focus of this work (distributed optimization with bidirectional
compression). This development is presented in Section E; our main results from Section 4.1–4.3
which cater to the nonconvex setting are simple corollaries of our general theory.

2 DISTRIBUTED OPTIMIZATION AND BIDIRECTIONAL COMPRESSION

In this paper, we consider distributed optimization problems in strongly convex, convex and non-
convex settings. Such problems arise in federated learning (Konečný et al., 2016; McMahan et al.,
2017) and in deep learning (Ramesh et al., 2021). In federated learning, a large number of work-
ers/devices/nodes contain local data and communicate with a parameter-server that performs opti-
mization of a function in a distributed fashion (Ramaswamy et al., 2019). Due to privacy concerns
and the potentially large number of workers, the communication between the workers and the server
is a bottleneck and requires specialized algorithms capable of reducing the communication overhead.
Popular algorithms dealing with these kinds of problems are based on communication compression
(Mishchenko et al., 2019; Richtárik et al., 2021; Tang et al., 2019). We consider the distributed
optimization problem of the form

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)

}
, (6)

where n is the number of workers and fi : Rd → R are smooth (possibly nonconvex) functions for
all i ∈ [n] := {1, . . . , n}. We assume that the functions fi are stored on n workers. Each of them
is directly connected to a server that orchestrates the work of the devices (Kairouz et al., 2021), i.e.,
the workers perform some calculations and send the results to the server, after which the server does
calculations and sends the results back to the workers and the whole process repeats.

Throughput the work we will refer to a subset of these assumptions:
Assumption 2.1. The function f is L–smooth, i.e., ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ ∀x, y ∈ Rd.
Assumption 2.2. The functions fi are Li–smooth for all i ∈ [n]. L̂2 is a constant such that
1
n

∑n
i=1 ‖∇fi(x)−∇fi(y)‖2 ≤ L̂2 ‖x− y‖2 for all x, y ∈ Rd and Lmax := maxi∈[n] Li.

Assumption 2.3. The functions fi are convex and the function f is µ-strongly convex with µ ≥ 0
and attains a minimum at some point x∗ ∈ Rd.
To avoid ambiguity, the constants L, L̂, and Li are the smallest such numbers.

Lemma 2.4. If Assumptions 2.1, 2.2 and 2.3 hold, then L̂ ≤ Lmax ≤ nL and L ≤ L̂ ≤
√
nL.

2.1 COMMUNICATION COMPLEXITY OF VANILLA GRADIENT DESCENT

Solving the aforementioned optimization problem involves two key steps: i) the workers send results
to the server (server-to-workers communication), ii) the server sends results to the workers (workers-

3



Under review as a conference paper at ICLR 2023

to-server communication). Let us first consider how this procedure works in the case of GD:

xt+1 = xt − γ∇f(xt) = xt − γ 1
n

n∑
i=1

∇fi(xt).

It is well known that if the function f is L-smooth and µ-strongly convex (see Assumptions 2.1
and 2.3), then GD with stepsize γ = 1/L returns an ε-solution after O (L/µ log 1/ε) steps. In dis-
tributed setting, GD would require i) the workers to send ∇fi(xt) to the server ii) the server to
send xt+1 to the workers or, alternatively, ii) the server to send 1

n

∑n
i=1∇fi(xt) to the workers,

depending on whether the iterates xt are updated on the server or on the workers. Assuming that the
communication complexity is proportional to the number of coordinates, the server-to-workers and
workers-to-server communication complexities are equal O (dL/µ log 1/ε) .

2.2 WORKERS-TO-SERVER (=UPLINK) COMPRESSION

We now move on to more advanced algorithms that aim to improve the workers-to-server communi-
cation complexity. These algorithms assume that the server-to-workers communication complexity
is negligible and focus exclusively on sending the message from devices to the server. Such an
approach can be justified by the fact that broadcast operation may in some systems be much faster
than gather operation (Mishchenko et al., 2019; Kairouz et al., 2021). Moreover, the server can be
considered to be just an abstraction representing “all other nodes”, in which case server-to-worker
communication does not exist at all.

The primary tools that help reduce communication cost are compression operators, such as vector
sparsification and quantization (Beznosikov et al., 2020). However, compression injects error/noise
into the process, as formalized in (2) and (5). Two canonical examples of compressors belonging to
these two classes are the TopK ∈ B(k/d) and RandK ∈ U(d/k − 1) sparsifiers. The former retains
the K largest values of the input vector, while the latter takes K random values of this vector scaled
by d/k (Beznosikov et al., 2020). Further examples of compressors belonging to B(α) and U(ω) can
be found in (Beznosikov et al., 2020).

The theory of methods supporting workers-to-server compression is reasonably well developed. In
the convex and strongly convex setting, the current state-of-the-art methods are DIANA (Mishchenko
et al., 2019), ADIANA (Li et al., 2020), and CANITA (Li & Richtárik, 2021). In the nonconvex setting,
the current state-of-the-art methods are DCGD (Khaled & Richtárik, 2020) (in the low accuracy
regime) and MARINA, DASHA, FRECON, and EF21 (Gorbunov et al., 2021; Tyurin & Richtárik,
2022b;a; Zhao et al., 2021; Richtárik et al., 2021) (in the high accuracy regime).

To see that these types of algorithms can achieve workers-to-server communication complexity that
is no worse than that of GD, let us consider the DIANA method. In the strongly convex case, DIANA
(Khaled et al., 2020) has the convergence rateO (((1 + ω/n) Lmax/µ + ω) log 1/ε) .Using the RandK
compression operator with K = d/n, the workers-to-server complexity is not greater than

O
(
d
n ×

((
1 + ω

n

)
Lmax

µ + ω
)

log 1
ε

)
= O

((
dLmax

nµ + d
)

log 1
ε

)
,

meaning that DIANA’s complexity is better than GD’s complexity O (dL/µ log 1/ε) (recall that
Lmax ≤ nL). The same reasoning applies to other algorithms in the convex and nonconvex worlds.

2.3 BIDIRECTIONAL COMPRESSION

In the previous section, we showed that it is possible to improve workers-to-server communication
complexity of GD. But what about the server-to-workers compression? Does there exist a method
that would also compress the information sent from the server to the workers and obtain the workers-
to-server and server-to-workers communication complexities at least as good as with the vanilla GD
method? As far as we know, the current answer to the question is NO!

Bidirectional compression has been considered in many papers, including (Horváth et al., 2019;
Tang et al., 2019; Liu et al., 2020; Philippenko & Dieuleveut, 2020; 2021; Fatkhullin et al., 2021).
In Table 1, we provide a comparison of methods applying this type of compression in the strongly
convex setting. Let us now take a closer look at the MCM method of Philippenko & Dieuleveut
(2021). For simplicity, we assume that the server and the workers use RandK compressors with
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Algorithm 1 EF21-P + DIANA

1: Parameters: learning rates γ > 0 (for learning the model) and β > 0 (for learning the gradient shifts);
initial model x0 ∈ Rd (stored on the server and the workers); initial gradient shifts h0

1, . . . , h
0
n ∈ Rd

(stored on the workers); average of the initial gradient shifts h0 = 1
n

∑n
i=1 h

0
i (stored on the server);

initial model shift w0 = x0 ∈ Rd (stored on the server and the workers)
2: for t = 0, 1, . . . , T − 1 do
3: for i = 1, . . . , n in parallel do
4: mt

i = CDi (∇fi(wt)− ht
i) Worker i compresses the shifted gradient via the dual compressor CDi ∈ U(ω)

5: Send compressed message mt
i to the server

6: ht+1
i = ht

i + βmt
i Worker i updates its local gradient shift with stepsize β

7: end for
8: mt = 1

n

∑n
i=1m

t
i Server averages the n messages received from the workers

9: ht+1 = ht + βmt Server updates the average gradient shift so that ht = 1
n

∑n
i=1 h

t
i

10: gt = ht +mt Server computes the gradient estimator
11: xt+1 = xt − γgt Server takes a gradient-type step with stepsize γ
12: pt+1 = CP

(
xt+1 − wt

)
Server compresses the shifted model via the primal compressor CP ∈ B (α)

13: wt+1 = wt + pt+1 Server updates the model shift
14: Broadcast compressed message pt+1 to all n workers
15: for i = 1, . . . , n in parallel do
16: wt+1 = wt + pt+1 Worker i updates its local copy of the model shift
17: end for
18: end for

parameters Ks and Kw, respectively. The server-to-workers communication complexity of MCM is
not less than

Ω
(
Ks ×

(
1 + ω

3/2
s +

ωsω
1/2
w√
n

+ ωw
n

)
Lmax

µ log 1
ε

)
= Ω

(
d3/2

K
1/2
s

Lmax

µ log 1
ε

)
.

Thus, for any Ks ∈ [1, d], the server-to-workers communication complexity is worse than the GD’s
complexity O

(
dL
µ log 1/ε

)
by a factor of d1/2

/K1/2
s . The same reasoning applies to Dore (Liu et al.,

2020) and Artemis (Philippenko & Dieuleveut, 2020):

Ω
(
Ks ×

(
ωsωw
n

)
Lmax

µ log 1
ε

)
= Ω

(
d2

Kwn
Lmax

µ log 1
ε

)
.

It turns out that one can find an example of problem (6) with Lmax = nL. Therefore, in the worst
case scenario, the server-to-workers communication complexity can be up to d/Kw times worse than
the GD’s complexity for any Kw ∈ [1, d].

2.4 NEW METHODS

We are now ready to present our main method EF21-P + DIANA (see Algorithm 1), which is a
combination of our EF21-P mechanism described in Section 1 (and analyzed in Sections D and E)
and the DIANA method of Mishchenko et al. (2019); Horváth et al. (2022); Gorbunov et al. (2020a).
The pseudocode of Algorithm 1 should be self-explanatory. If the gradient shifts {hti} employed by
DIANA are initialized to zeros, and we choose β = 0, then DIANA reduces to DCGD, and EF21-P +
DIANA thus reduces to EF21-P + DCGD (see Algorithm 2). If we further choose the dual/gradient
compressors CDi to be identity mappings, then EF21-P + DCGD further reduces to EF21-P.

3 ANALYSIS IN THE CONVEX SETTING

Let us first state the convergence theorem.
Theorem 3.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, β = 1

ω+1 , set x0 = w0 and let

γ ≤ min
{

n
160ωLmax

,
√
nα

20
√
ωL̂
, α

100L ,
1

(ω+1)µ

}
. Then Algorithm 1 returns xT such that

1
2γE

[∥∥xT − x∗∥∥2
]

+ E
[
f(xT )− f(x∗)

]
≤
(
1− γµ

2

)T
V 0,

where V 0 := 1
2γE

[∥∥x0 − x∗
∥∥2
]

+
(
f(x0)− f(x∗)

)
+ 8γω(ω+1)

n2

∑n
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
.
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Table 1: Strongly Convex Case. The number of communication rounds to get an ε-solution
(E[‖x̂− x∗‖2] ≤ ε) up to logarithmic factors. To make comparison easier, if a method works with a
biased compressor, we assume that the biased compressor is formed from the unbiased compressors
and the following relations hold: ωw + 1 = 1/αw and ωs + 1 = 1/αs, where ωw and ωs are parameters
of workers-to-server and server-to-workers compressors, accordingly.

Method # Communication Rounds Limitations

DIANA
(Mishchenko et al., 2019)

(
1 + ωw

n

) Lmax
µ + ωw No server-to-worker compression.

Dore, Artemis
(Liu et al., 2020)

(Philippenko & Dieuleveut, 2020)
Ω
(
ωsωw
n

Lmax
µ

)
—

MCM
(Philippenko & Dieuleveut, 2021) Ω

((
ω3/2

s +
ωsω

1/2
w√
n

+ ωw
n

)
Lmax
µ

)
—

EF21-P + DIANA (new)
(Theorem 3.1)

(1 + ωs)
L
µ +

√
(ωs+1)ωw

n
L̂
µ + ωw

n
Lmax
µ + ωw

or presented a bit less accurately:
(1 + ωs + ωw

n )Lmax
µ + ωw

—

EF21-P + DCGD (new)
(Theorem G.3)

(1 + ωs)
L
µ +

√
(ωs+1)ωw

n
L̂
µ + ωw

n
Lmax
µ

or presented a bit less accurately:
(1 + ωs + ωw

n )Lmax
µ

Interpolation regime:
∇fi(x∗) = 0

The above result means that EF21-P + DIANA guarantees an ε-solution after

TNEW := O
((

L
αµ +

√
ω
αn

L̂
µ + ω

n
Lmax

µ + ω
)

log 1
ε

)
steps. Noting that L ≤ L̂ ≤ Lmax and

√
ωw
αn ≤

1
2α + ωw

2n , this gives

TNEW = O
(((

1
α + ω

n

)
Lmax

µ + ω
)

log 1
ε

)
.

Comparing this rate with rates achieved by the existing algorithms (see Table 1), our method is the
first one to guarantee the decoupling of noises α and ω coming from the server-to-workers and the
workers-to-server compressors. Moreover, it is more general, as the server-to-workers compression
can use biased compressors, including TopK and RankK (Safaryan et al., 2021). These can in
practice perform better than the unbiassed ones (Beznosikov et al., 2020; Vogels et al., 2019).

As promised, let us now show that EF21-P + DIANA has the communication complexity better than
GD. For simplicity, we assume that the server and the workers use TopK and RandK compressors
respectively. Since under this assumption ω = d/K − 1 and α = K/d, the server-to-workers and the
workers-to-server communication complexities equal

O
(
K ×

(
L
αµ +

√
ω
αn

L̂
µ + ω

n
Lmax

µ + ω
)

log 1
ε

)
= O

((
dLµ + d√

n
L̂
µ + d

n
Lmax

µ

)
log 1

ε

)
.

Note that Lmax ≤ nL and L̂ ≤
√
nL, so this complexity is no worse than the GD’s complexity for

any K ∈ [1, d]. The general convex case is discussed in Section F.1.

3.1 STOCHASTIC GRADIENTS

In this section, we assume that the workers in EF21-P + DIANA calculate stochastic gradients instead
of exact gradients:

Assumption 3.2 (Stochastic gradients). For all x ∈ Rd, stochastic gradients ∇̃fi(x) are unbiased
and have bounded variance, i.e., E[∇̃fi(x)] = ∇fi(x), and E[‖∇̃fi(x) − ∇fi(x)‖2] ≤ σ2 for all
i ∈ [n], where σ2 ≥ 0.

We now provide a generalization of Theorem 3.1:

Theorem 3.3. Let us consider Algorithm 1 using stochastic gradients ∇̃fi instead of exact gradients
∇fi for all i ∈ [n]. Let Assumptions 2.1, 2.2, 2.3 and 3.2 hold, β = 1

ω+1 , x
0 = w0, and γ ≤
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min
{

n
160ωLmax

,
√
nα

20
√
ωL̂
, α

100L ,
1

(ω+1)µ

}
. Then Algorithm 1 returns xT such that

1
2γE

[∥∥xT − x∗∥∥2
]

+ E
[
f(xT )− f(x∗)

]
≤
(
1− γµ

2

)T
V 0 + 24(ω+1)σ2

µn ,

where V 0 := 1
2γE

[∥∥x0 − x∗
∥∥2
]

+
(
f(x0)− f(x∗)

)
+ 8γω(ω+1)

n2

∑n
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
.

For general convex case, we refer to Theorem F.4. Note that Theorem 3.3 has the same convergence
rate as Theorem 3.1, except for the statistical term O

(
(ω+1)σ2

/µn
)

that is the same as in DIANA
(Gorbunov et al., 2020a; Khaled et al., 2020) and does not depend on α.

3.2 EF21-P + DCGD AND INTERPOLATION REGIME

We also analyze a second method, EF21-P + DCGD, which is based on DCGD (Khaled & Richtárik,
2020; Alistarh et al., 2017). One can think of DCGD as DIANA with parameter β = 0. On
one hand, the convergence of EF21-P + DCGD is faster (see Theorem G.3) comparing to EF21-
P + DIANA (see Theorem 3.1). On the other hand, we can guarantee the convergence only to a
O(1/n

∑n
i=1 ‖∇fi(x∗)‖

2
) “neighborhood” of the solution. However, this “neighborhood” disap-

pears in the interpolation regime, i.e., when ∇fi(x∗) = 0 for all i ∈ [n]. The interpolation regime
is very common in modern deep learning tasks (Brown et al., 2020; Bubeck & Sellke, 2021).

3.3 WHY DO BIDIRECTIONAL METHODS WORK MUCH BETTER THAN GD?

Our analysis of EF21-P + DIANA covers the worst case scenario for the values of Lmax and α.
Although Lmax can be equal to nL, in practice it tends to be much smaller. Similarly, the assumed
bound on the parameter α equal to k/d for the TopK compressor is also very conservative and the
“effective” α is much larger (Beznosikov et al., 2020; Vogels et al., 2019; Xu et al., 2021). Note that
Algorithm 1 does not depend on α! Our claims are also supported by experiments from Section 5.

4 ANALYSIS IN THE NONCONVEX SETTING

In the nonconvex case, existing bidirectional methods suffer from the same problem as those used in
the convex case (see Section 2.3): they either do not provide server-to-workers compression at all,
or the compressor errors/noises are coupled in a multiplicative fashion (see ωw and ωs in Table 2).

Instead of the convexity (see Assumption 2.3), we will need the following assumption:
Assumption 4.1 (Lower boundedness). There exist f∗ ∈ R and f∗1 , . . . , f

∗
n ∈ R such that f(x) ≥

f∗ and fi(x) ≥ f∗i for all x ∈ Rd and for all i ∈ [n].

As in the convex setting, the theory of methods that only use workers-to-server compression is
well examined. In the high accuracy regimes, the current state-of-the-art methods are MARINA
and DASHA (Gorbunov et al., 2021; Tyurin & Richtárik, 2022b); both return an ε-stationary point
after O

(
∆0L
ε + ∆0ωL̂√

nε

)
iterations, where ∆0 := f(x0) − f∗. In the low accuracy regimes, the

current state-of-the-art method is DCGD (Khaled & Richtárik, 2020), with an iteration complexity
O
(

∆0L
ε + ∆0(∆0+∆∗)(1+ω)LLmax

nε2

)
, where ∆∗ := f∗ − 1

n

∑n
i=1 f

∗
i . Note that DCGD has worse

dependence on ε, but it scales much better with the number of workers n.

We now investigate how EF21-P can help us in the general nonconvex case. Let us recall that in
the convex case, decoupling of the noises coming from two compression schemes can be achieved
by combining EF21-P with DIANA. In the nonconvex setting, we successfully combine EF21-P and
DCGD. Moreover, we provide analysis of some particular cases where EF21-P + DCGD can be the
method of choice in the high accuracy regimes.

Whether or not it is possible to achieve the decoupling by combining our method with MARINA or
DASHA is not yet known and we leave it to future work3.

3We did not try to get the convergence rate of EF21-P + DIANA in the nonconvex regime because it is well
known that DIANA is a suboptimal method in the nonconvex case (Gorbunov et al., 2021).
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Table 2: General nonconvex Case. The # of communication rounds to get an ε-stationary point
(E[‖∇f(x̂)‖2] ≤ ε). For simplicity, we assume that f∗i = f∗ for all i ∈ [n] and only the terms with
respect to ωw and ωs are shown. The parameters ωw and ωs have the same meaning as in Table 1.

Method # Communication Rounds Limitations

DCGD (Khaled & Richtárik, 2020)
∆2

0ωwLLmax

nε2
No server-to-worker compression.

MARINA, DASHA
(Gorbunov et al., 2021)

(Tyurin & Richtárik, 2022b)

∆0ωwL̂√
nε

No server-to-worker
compression.

MCM (Philippenko & Dieuleveut, 2021) ∆0

(
ω

3/2
s
ε +

ωsω
1/2
w√
nε

+
ωw
nε

)
Lmax

Only homogeneous case,
i.e., fi = f for all i ∈ [n].

CD-Adam (Wang et al., 2022) Ω

(√
dmax{ωs,ωw}4

ε2

)
Bounded gradient assumption.

EF21-BC (Fatkhullin et al., 2021) ∆0ωwωsL̂
ε —

NEOLITHIC (Huang et al., 2022) ∆0Lmax
ε

Does not compress vectors(a).
Bounded gradient assumption.

EF21-P + DCGD (new)
∆2

0ωwLLmax

nε2
+

∆0ωsL
ε —

EF21-P + DCGD (new) ∆0DωwL
nε +

∆0ωsL
ε

Strong-growth assumption with parameterD.
(a) In each communication round, NEOLITHIC sends the number of compressed vectors proportional to 1/α, where α is the parameter
of a biased compressor. For TopK or RandK, it means that NEOLITHIC sends Θ(d/K) sparsified vectors with K nonzero elements,
meaning that, in total, Θ(d) values are sent in each communication round.

4.1 EF21-P + DCGD IN THE GENERAL NONCONVEX CASE

Without any restrictive assumptions, we can prove the following convergence result:
Theorem 4.2. Consider Algorithm 2 and let Assumptions 2.1, 2.2 and 4.1 hold, x0 = w0, and
γ = min

{
α
8L ,

√
n√

2ωLLmaxT
, nε

32∆∗ωLLmax

}
. Then

T ≥ 48∆0L
ε max

{
8
α ,

96∆0ωLmax

nε , 32∆∗ωLmax

nε

}
⇒ min

0≤t≤T−1
E
[
‖∇f(xt)‖2

]
≤ ε.

(The proof follows from Theorem E.3 and Proposition E.4 (Part 1)).

We get the rate of DCGD (Khaled & Richtárik, 2020) plus an additional O
(

∆0L
αε

)
factor, thus ob-

taining the first method with bidirectional compression where the noises from the compressors are
decoupled. Moreover, as noted before, this method provides the state-of-the-art rates when ε is small
or the number of workers n is large.

4.2 STRONG GROWTH CONDITION

Here we analyze EF21-P + DCGD under the strong-growth condition (Schmidt & Roux, 2013).

Assumption 4.3. There exists D > 0 such that 1
n

∑n
i=1 ‖∇fi(x)‖2 ≤ D ‖∇f(x)‖2 for all x ∈ Rd.

While this assumption is restrictive and does not even hold for quadratic optimization problems,
there exist numerous practical applications when it is reasonable. These include, for example, deep
learning, where the number of parameters d is so huge that the model can interpolate the training
dataset (Schmidt & Roux, 2013; Vaswani et al., 2019; Meng et al., 2020). To train such models, en-
gineers use distributed environments, in which case communication becomes the main a bottleneck
(Ramesh et al., 2021). For these problems, our method is suitable and can be successfully applied.
Theorem 4.4. Consider Algorithm 2, let Assumptions 2.1, 2.2, 4.1 and 4.3 hold, and choose x0 =
w0 and γ = min

{
α
8L ,

n
4DωL

}
. Then

T ≥ 48∆0L
ε max

{
8
α ,

4Dω
n

}
⇒ min

0≤t≤T−1
E
[
‖∇f(xt)‖2

]
≤ ε.

(The proof follows from Theorem E.3 and Proposition E.4 (Part 2)).

Comparing to Section 4.1, the above result shows an improved dependence on ε under the strong
growth assumption.
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Figure 1: Logistic Regression with real-sim dataset. Number of workers n = 100. Sparsification
level was set to K = 100 for all compressors.

4.3 HOMOGENEOUS FUNCTIONS

Another important problem where our method can be useful is distributed optimization with ho-
mogeneous (identical) functions and stochastic gradients. In particular, we consider the case when
fi = f for all i ∈ [n] and instead of exact gradients, stochastic gradients are used. This assump-
tion holds, for instance, for distributed machine learning problems where every worker samples
mini-batches from a large shared dataset (Recht et al., 2011; Goyal et al., 2017).

Theorem 4.5. Let us consider Algorithm 2 with the stochastic gradients ∇̃f instead of the exact
gradients ∇f . Suppose that Assumptions 2.1, 2.2, 3.2 and 4.1 hold and fi = f for all i ∈ [n]. Set

x0 = w0 and let γ = min

{
α
8L ,

1

4(ωn+1)L
, nε

16(ω+1)σ2L

}
. Then

T ≥ 48∆0L
ε max

{
8
α , 4

(
ω
n + 1

)
, 16(ω+1)σ2

nε

}
⇒ min

0≤t≤T−1
E
[
‖∇f(xt)‖2

]
≤ ε.

(The proof follows from Theorem E.3 and Proposition E.4 (Part 4)).

Under exactly the same assumptions, MCM method by (Philippenko &
Dieuleveut, 2020) with bidirectional compression guarantees the convergence rate

Θ
(

∆0L
ε max

{(
ωw
n + 1

)
, ω

3/2
s ,

ωsω
1/2
w
n , (ωw+1)σ2

nε

})
. Comparing this with our result, the last

statistical term (ω+1)σ2
/nε is the same in both cases, but we significantly improve the other

communication terms (take ω = ωw and α = (ωs + 1)−1 in Theorem 4.5).

5 EXPERIMENTAL HIGHLIGHTS

We now provide a few highlights from our experiments. For more details and experiments, we refer
to Section A, where we compare our algorithms with the previous state-of-the-art method MCM
and solve a nonconvex task. We consider the logistic regression task with real-sim (# of features
= 20,958, # of samples equals 72,309) from LIBSVM dataset (Chang & Lin, 2011). Each plot
represents the relations between function values and the total number of coordinates transmitted
from and to the server. In all algorithms, the RandK compressor is used to compress information
from the workers to the server. In the case of EF21-P + DIANA and EF21-P + DCGD, we take TopK
compressor to compress from the server to the workers. The results are presented in Figure 1. The
main conclusion from these experiments is that EF21-P + DIANA and EF21-P + DCGD converge to a
solution not slower than DIANA, even though DIANA does not compress vectors sent from the server
to the workers! This means that EF21-P + DIANA and EF21-P + DCGD can send ×400 less values
from the server to the workers for free! Moreover, we see that EF21-P + DCGD converges faster
than its competitors.
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A FURTHER EXPERIMENTS

We now provide the results of our experiments on practical machine learning tasks with LIBSVM
datasets (Chang & Lin, 2011) (under the 3-clause BSD license). Each plot represents the relations
between function values and the total number of coordinates transmitted from and to the server.
The parameters of the algorithms are as suggested by the theory, except for the stepsizes γ that we
finetune from a set {2i | i ∈ [−10, 10]}.
We solve the logistic regression problem:

fi(x1, . . . , xc) := − 1

m

m∑
j=1

log

(
exp

(
a>ijxyij

)∑c
y=1 exp

(
a>ijxy

)) ,
where x1, . . . , xc ∈ Rd, c is the number of unique labels, aij ∈ Rd is a feature of a sample on the ith

worker, yij is a corresponding label and m is the number of samples located on the ith worker. In all
algorithms, the RandK compressor is used to compress information from the workers to the server.
In the case of EF21-P + DIANA and EF21-P + DCGD, we take TopK compressor to compress from
the server to the workers. The performance of algorithms is compared on w8a (# of features = 300,
# of samples equals 49,749), CIFAR10 (Krizhevsky et al., 2009) (# of features = 3072, # of samples
equals 50,000), and real-sim (# of features = 20958, # of samples equals 72,309) datasets.

The results are presented in Figures 1, 2 and 3. The conclusions are the same as in Section 5. One
can see that EF21-P + DIANA and EF21-P + DCGD converge to a solution not slower than DIANA,
even though DIANA does not compress vectors sent from the server to the workers! EF21-P + DIANA
and EF21-P + DCGD send ×100−×1000 less values from the server to the workers!
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Figure 2: Logistic Regression with w8a dataset. # of workers n = 10. K = 10 in all compressors.
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Figure 3: Logistic Regression with CIFAR10 dataset. # of workers n = 10. K = 1000 in all
compressors.

We also compare our algorithm to MCM. Since MCM does not support contractive compressors
defined in 2, we use RandK instead of the TopK compressor in the server-to-workers compression.
Figure 4 shows that our new algorithms converge faster.

Finally, we provide experiments for the nonconvex setting and compare EF21-P + DCGD against
EF21-BC (Fatkhullin et al., 2021) and DASHA (Tyurin & Richtárik, 2022b). We consider the logistic
regression with a nonconvex regularizer

r(x1, . . . , xc) := λ

c∑
y=1

d∑
k=1

[xy]2k
1 + [xy]2k

,

14
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EF21-P + DIANA: Step size: 1.0
MCM: Step size: 0.25

Figure 4: Logistic Regression with real-sim dataset. # of workers n = 100. The parameters of
workers-to-server and server-to-workers compressors are Kw = 100 and Ks = 2000.

where [·]k is an indexing operation of a vector and λ = 0.001. We use RandK and TopK com-
pressors for the workers-to-server and server-to-workers compressions, respectively. Note that in
these experiments, the server-to-workers compression is only supported by EF21-P + DCGD and
EF21-BC. In Figure 5, one can see that EF21-P + DCGD converges faster than other algorithms and
outperforms DASHA, which does not compress vectors when transmitting them from the server to
the workers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n (workers-to-server) 1e7

100

3 × 10 1

4 × 10 1

6 × 10 1

f(x
t )

DASHA: Step size: 1.0
EF21-BC: Step size: 0.5
EF21-P + DCGD: Step size: 2.0

106 107 108 109 1010

#bits / n (server-to-workers)

100

3 × 10 1

4 × 10 1

6 × 10 1

f(x
t )

DASHA: Step size: 1.0
EF21-BC: Step size: 0.5
EF21-P + DCGD: Step size: 2.0

Figure 5: Logistic Regression with the nonconvex regularizer and real-sim dataset. # of workers
n = 100. K = 100 in all compressors.
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B USEFUL IDENTITIES AND INEQUALITIES

For all x, y, x1, . . . , xn ∈ Rd, s > 0 and α ∈ (0, 1], we have:

‖x+ y‖2 ≤ (1 + s) ‖x‖2 + (1 + s−1) ‖y‖2 , (7)

‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2 , (8)

〈x, y〉 ≤ ‖x‖
2

2s
+
s ‖y‖2

2
, (9)

(1− α)
(

1 +
α

2

)
≤ 1− α

2
, (10)

(1− α)

(
1 +

2

α

)
≤ 2

α
, (11)

〈a, b〉 =
1

2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
. (12)

Tower property: For any random variables X and Y , we have

E [E [X |Y ]] = E [X] . (13)

Variance decomposition: For any random vector X ∈ Rd and any non-random c ∈ Rd, we have

E
[
‖X − c‖2

]
= E

[
‖X − E [X]‖2

]
+ ‖E [X]− c‖2 . (14)

Lemma B.1 (Nesterov (2018)). Let f : Rd → R be a function for which Assumptions 2.1 and 2.3
are satisfied. Then for all x, y ∈ Rd we have:

‖∇f(x)−∇f(y)‖2 ≤ 2L(f(x)− f(y)− 〈∇f(y), x− y〉). (15)

Lemma B.2 (Khaled & Richtárik (2020)). Let f be a function for which Assumptions 2.1 and 4.1
are satisfied. Then for all x, y ∈ Rd we have:

‖∇f(x)‖2 ≤ 2L(f(x)− f∗). (16)

16
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C PROOF OF LEMMA 2.4

Lemma 2.4. If Assumptions 2.1, 2.2 and 2.3 hold, then L̂ ≤ Lmax ≤ nL and L ≤ L̂ ≤
√
nL.

Proof. One can show (see (Nesterov, 2003)) that a convex function f is L-smooth if and only if
either of the two conditions below holds:

0 ≤ 〈∇f(x)−∇f(x), x− y〉 ≤ L ‖x− y‖2 , ∀x, y ∈ Rd,

‖∇f(x)−∇f(x)‖2 ≤ L 〈∇f(x)−∇f(x), x− y〉 , ∀x, y ∈ Rd.

For any fixed i ∈ [n], we have

〈∇fi(x)−∇fi(y), x− y〉 ≤
n∑
i=1

〈∇fi(x)−∇fi(y), x− y〉

= n
1

n

n∑
i=1

〈∇fi(x)−∇fi(y), x− y〉

= n 〈∇f(x)−∇f(y), x− y〉
≤ n ‖∇f(x)−∇f(y)‖ ‖x− y‖

(2.1)
≤ nL ‖x− y‖2 .

Thus Li ≤ nL and Lmax ≤ nL. Next,

1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖2 ≤ 1

n

n∑
i=1

Li 〈∇fi(x)−∇fi(y), x− y〉

≤ Lmax
1

n

n∑
i=1

〈∇fi(x)−∇fi(y), x− y〉

= Lmax 〈∇f(x)−∇f(y), x− y〉
≤ Lmax ‖∇f(x)−∇f(y)‖ ‖x− y‖

(2.1)
≤ LmaxL ‖x− y‖2

≤ nL2 ‖x− y‖2 ,

and hence L̂ ≤
√
nL. Using Jensen’s inequality, we have

‖∇f(x)−∇f(y)‖2 ≤ 1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖2 ≤ L̂2 ‖x− y‖2 .

Thus L ≤ L̂. Finally, L̂ ≤ Lmax follows from

1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖2 ≤ 1

n

n∑
i=1

L2
i ‖x− y‖

2 ≤ L2
max ‖x− y‖

2
.

17
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D CONVERGENCE OF EF21-P IN THE STRONGLY CONVEX REGIME

We now provide the convergence rate of EF21-P from Section 1 in the strongly convex case.
Theorem D.1. Let Assumptions 2.1 and 2.3 hold, set w0 = x0 and choose γ ≤ α

16L . Then EF21-P
returns xT such that
1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E

[
f(xT )− f(x∗)

]
≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

))
.

Moreover, E
[
‖wt − x∗‖2

]
→ 0 as t→∞.

Theorem D.1 states that EF21-P will return an ε-solution afterO
(
L
αµ log 1/ε

)
steps. Comparing to

GD’s rate O
(
L
µ log 1/ε

)
, one can see that EF21-P converges 1/α times slower.

Proof. First, let us note that∥∥xt − x∗∥∥2−
∥∥xt+1 − x∗

∥∥2 −
∥∥xt+1 − xt

∥∥2

=
〈
xt − xt+1, xt − 2x∗ + xt+1

〉
−
〈
xt+1 − xt, xt+1 − xt

〉
= 2

〈
xt − xt+1, xt+1 − x∗

〉
= 2γ

〈
∇f(wt), xt+1 − x∗

〉
. (17)

Using L-smoothness of f (Assumption 2.1), we obtain

f(xt+1) ≤ f(wt) +
〈
∇f(wt), xt+1 − wt

〉
+
L

2

∥∥xt+1 − wt
∥∥2

conv-ty
≤ f(x∗) +

〈
∇f(wt), xt+1 − x∗

〉
− µ

2

∥∥wt − x∗∥∥2
+
L

2

∥∥xt+1 − wt
∥∥2

(17)
≤ f(x∗) +

1

2γ

∥∥xt − x∗∥∥2 − 1

2γ

∥∥xt+1 − x∗
∥∥2 − 1

2γ

∥∥xt+1 − xt
∥∥2

−µ
2

∥∥wt − x∗∥∥2
+
L

2

∥∥xt+1 − wt
∥∥2
.

Using (8), we have

L

2

∥∥xt+1 − wt
∥∥2 ≤ L

∥∥xt+1 − xt
∥∥2

+ L
∥∥wt − xt∥∥2

and
µ

4

∥∥xt − x∗∥∥2 ≤ µ

2

∥∥wt − x∗∥∥2
+
µ

2

∥∥wt − xt∥∥2 ≤ µ

2

∥∥wt − x∗∥∥2
+ L

∥∥wt − xt∥∥2
,

where we used the fact that µ ≤ L. Hence

f(xt+1) ≤ f(x∗) +
1

2γ

∥∥xt − x∗∥∥2 − 1

2γ

∥∥xt+1 − x∗
∥∥2 − 1

2γ

∥∥xt+1 − xt
∥∥2

− µ

2

∥∥wt − x∗∥∥2
+
L

2

∥∥xt+1 − wt
∥∥2

≤ f(x∗) +
1

2γ

∥∥xt − x∗∥∥2 − 1

2γ

∥∥xt+1 − x∗
∥∥2 − 1

2γ

∥∥xt+1 − xt
∥∥2

+ L
∥∥wt − xt∥∥2 − µ

4

∥∥xt − x∗∥∥2
+ L

∥∥xt+1 − xt
∥∥2

+ L
∥∥wt − xt∥∥2

= f(x∗) +
1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2 − 1

2γ

∥∥xt+1 − x∗
∥∥2

−
(

1

2γ
− L

)∥∥xt+1 − xt
∥∥2

+ 2L
∥∥wt − xt∥∥2

≤ f(x∗) +
1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2 − 1

2γ

∥∥xt+1 − x∗
∥∥2

+ 2L
∥∥wt − xt∥∥2

,
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where the last inequality follows from the fact that γ ≤ 1
2L . Let us denote by Et+1 [·] the expectation

conditioned on previous iterations {0, . . . , t}. Then

Et+1

[
f(xt+1)

]
≤ f(x∗) +

1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

− 1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ 2L
∥∥wt − xt∥∥2

. (18)

It remains to bound Et+1

[∥∥wt+1 − xt+1
∥∥2
]
:

Et+1

[∥∥wt+1 − xt+1
∥∥2
]

= Et+1

[∥∥wt + Cp(xt+1 − wt)− xt+1
∥∥2
]

(2)
≤ (1− α)Et+1

[∥∥xt+1 − wt
∥∥2
]

= (1− α)
∥∥xt − γ∇f(wt)− wt

∥∥2

(7)
≤

(
1− α

2

)∥∥wt − xt∥∥2
+

2γ2

α

∥∥∇f(wt)
∥∥2

(8)
≤

(
1− α

2

)∥∥wt − xt∥∥2
+

4γ2

α

∥∥∇f(wt)−∇f(xt)
∥∥2

+
4γ2

α

∥∥∇f(xt)−∇f(x∗)
∥∥2

(2.1),(B.1)
≤

(
1− α

2
+

4γ2L2

α

)∥∥wt − xt∥∥2
+

8γ2L

α

(
f(xt)− f(x∗)

)
≤

(
1− α

4

)∥∥wt − xt∥∥2
+

8γ2L

α

(
f(xt)− f(x∗)

)
,

where in the last step we assume that γ ≤ α
4L . Adding a 16L

α multiple of the above inequality to
(18), we obtain

Et+1

[
f(xt+1)

]
+

16L

α
Et+1

[∥∥wt+1 − xt+1
∥∥2
]
≤ f(x∗) +

1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

− 1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+
16L

α

(
1− α

8

)∥∥wt − xt∥∥2
+

128γ2L2

α2

(
f(xt)− f(x∗)

)
.

Thus, taking full expectation over both sides of the inequality and considering γ ≤ α
16L ≤

α
4µ gives

E
[
f(xt+1)− f(x∗)

]
+

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+
16L

α
E
[∥∥wt+1 − xt+1

∥∥2
]

≤
(

1− γµ

2

)(
E
[
f(xt)− f(x∗)

]
+

1

2γ
E
[∥∥xt − x∗∥∥2

]
+

16L

α
E
[∥∥wt − xt∥∥2

])
.

Applying this inequality iteratively and using the assumption w0 = x0 proves the result.
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E CONVERGENCE OF EF21-P IN THE SMOOTH NONCONVEX REGIME

E.1 GENERAL CONVERGENCE THEORY

We now move on to study how the EF21-P method can be used in the nonconvex regime. The
analysis relies on the expected smoothness assumption introduced by Khaled & Richtárik (2020).
In their work, they study SGD methods, performing iterations of the form

xt+1 = xt − γgt,

where gt is an unbiased estimator of the true gradient ∇f(xt). Following Khaled & Richtárik
(2020), we shall assume that E [g(x)] = ∇f(x). However, in our case, gradients will be evaluated
at perturbed points, thus resulting in biased stochastic gradient estimators. In particular, we consider
the following general update rule, where the stochastic gradients are calculated at points evolving
according to the EF21-P mechanism, rather than at the current iterate:

xt+1 = xt − γg(wt),

wt+1 = wt + CP (xt+1 − wt). (19)

Our result covers a wide range of sources of stochasticity that may be present in g. For a detailed
discussion of the topic, we refer the reader to the original paper (Khaled & Richtárik, 2020).

Throughout this section, we will rely on the following assumptions:
Assumption E.1. The stochastic gradient g(x) is an unbiased estimator of the true gradient∇f(x),
i.e.,

E [g(x)] = ∇f(x)

for all x ∈ Rd.
Assumption E.2 (From Khaled & Richtárik (2020)). There exist constants A,B,C ≥ 0 such that:

E
[
‖g(x)‖2

]
≤ 2A(f(x)− f∗) +B ‖∇f(x)‖2 + C

for all x ∈ Rd.

We are ready to state the main theorem:
Theorem E.3. Let Assumptions 2.1, 4.1, E.1 and E.2 hold and set w0 = x0. Fix ε > 0 and choose
the stepsize

γ = min

{
α

8L
,

1

4BL
,

1√
2ALT

,
ε

16CL

}
.

Then

T ≥ 48∆0L

ε
max

{
8

α
, 4B,

96∆0A

ε
,

16C

ε

}
⇒ min

0≤t≤T−1
E
[∥∥∇f(xt)

∥∥2
]
≤ ε. (20)

Note that by taking A = C = 0 and B = 1, one recovers the convergence of EF21-P in the
nonconvex setting. Namely, under Assumptions 2.1 and 4.1, for x0 = w0 and 0 < γ ≤ α

8L , we have

min0≤t≤T−1 E
[
‖∇f(xt)‖2

]
≤ ε as soon as T ≥ 384∆0L

αε .

We now apply the above result to the combination of EF21-P perturbation of the model and DCGD
(Khaled & Richtárik, 2020) (EF21-P + DCGD). Suppose that the iterates follow the update (19) (see
also Algorithm 2), where

g(x) =
1

n

n∑
i=1

Ci (gi(x)) (21)

and each stochastic gradient gi(x) is an unbiased estimator of the true gradient ∇fi(x) (i.e.,
E [gi(x)] = ∇fi(x)).
Proposition E.4. Suppose that the gradient estimator g(x) is constructed via (21) and that Assump-
tion 2.2 holds. Let ∆∗ := 1

n

∑n
i=1(f∗ − f∗i ). Then:
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1. For gi(x) = ∇fi(x), Assumption E.2 is satisfied with A = 1
nωLmax, B = 1 and C =

2A∆∗.

2. In the same setting as in part 1, assuming additionally that Assumption 4.3 holds, Assump-
tion E.2 is satisfied with A = C = 0 and B = Dω

n + 1.

3. Assume that each stochastic gradient gi has bounded variance, (i.e.,
E
[
‖gi(x)−∇fi(x)‖2

]
≤ σ2). Then Assumption E.2 is satisfied with A = 1

nωLmax,

B = 1 and C = 2A∆∗ + ω+1
n σ2.

4. Suppose that E
[
‖gi(x)−∇fi(x)‖2

]
≤ σ2 and fi = f for all i ∈ [n]. Then Assumption

E.2 is satisfied with A = 0, B = ω
n + 1 and C = ω+1

n σ2.

In Section 4, we apply Proposition E.4 and state the corresponding theorems.

E.2 PROOF OF THE CONVERGENCE RESULT

We will need the following two lemmas:

Lemma E.5. Consider sequences (δt)t, (rt)t and (st)t such that δt, rt, st ≥ 0 for all t ≥ 0 and
s0 = 0. Suppose that

δt+1+ast+1 ≤ bδt + ast − crt + d, (22)

where a, b, c, d are non-negative constants and b ≥ 1. Then for any T ≥ 1

min
0≤t≤T−1

rt ≤ bT

cT
δ0 +

d

c
.

Proof. The proof follows similar steps as the proof of Lemma 2 of Khaled & Richtárik (2020) and
we provide it for completeness. Let us fix w−1 > 0 and define wt = wt−1

b . Multiplying (22) by wt
gives

wtδ
t+1 + awts

t+1 ≤ bwtδt + awts
t − cwtrt + dwt

≤ wt−1δ
t + awt−1s

t − cwtrt + dwt.

Summing both sides of the inequality for t = 0, . . . , T − 1, we obtain

wT−1δ
T+awT−1s

T ≤ w−1δ
0 + aw−1s

0 − c
T−1∑
t=0

wtr
t + d

T−1∑
t=0

wt.

Rearranging and using the assumption that s0 = 0 and non-negativity of st gives

c

T−1∑
t=0

wtr
t + wT−1δ

T ≤ w−1δ
0 + aw−1s

0 − awT−1s
T + d

T−1∑
t=0

wt

≤ w−1δ
0 + d

T−1∑
t=0

wt.

Next, using the non-negativity of δt and wt, we have

c

T−1∑
t=0

wtr
t ≤ c

T−1∑
t=0

wtr
t + wT−1δ

T ≤ w−1δ
0 + d

T−1∑
t=0

wt.

Letting WT :=
∑T−1
t=0 wt and dividing both sides of the inequality by WT , we obtain

c min
0≤t≤T−1

rt ≤ c

WT

T−1∑
t=0

wtr
t ≤ w−1

WT
δ0 + d.
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Using the fact that

WT =

T−1∑
t=0

wt ≥
T−1∑
t=0

min
0≤t≤T−1

wt = TwT−1 =
Tw−1

bT
,

we can finish the proof.

Lemma E.6. Let Assumptions 2.1, 4.1, E.1 and E.2 hold, set w0 = x0, and choose

γ ≤ min

{
1

4A
,

1

4BL
,
α

8L

}
.

Then

min
0≤t≤T−1

E
[∥∥∇f(xt)

∥∥2
]
≤

8
(
1 + 2ALγ2

)T
γT

∆0 + 8CLγ. (23)

Proof. First, L-smoothness of f implies that

f(wt) ≤ f(xt) +
〈
∇f(xt), wt − xt

〉
+
L

2

∥∥wt − xt∥∥2

(9)
≤ f(xt) +

1

2L

∥∥∇f(xt)
∥∥2

+ L
∥∥wt − xt∥∥2

(24)

and

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt)− γ〈∇f(xt), g(wt)〉+
Lγ2

2
‖g(wt)‖2.

Using the fact that g(x) is an unbiased estimator of the true gradient, subtracting f∗ from both sides
of the latter inequality and taking expectation given iterations {0, . . . , t}, we obtain

Et+1

[
f(xt+1)− f∗

]
≤ f(xt)− f∗ − γ〈∇f(xt),∇f(wt)〉+

Lγ2

2
Et+1

[∥∥g(wt)
∥∥2
]

(E.2),(12)
≤ f(xt)− f∗ − γ

2
‖∇f(xt)‖2 − γ

2
‖∇f(wt)‖2 +

γ

2
‖∇f(xt)−∇f(wt)‖2

+
Lγ2

2

(
2A(f(wt)− f∗) +B

∥∥∇f(wt)
∥∥2

+ C
)

(2.1)
≤ f(xt)− f∗ − γ

2
‖∇f(xt)‖2 − γ

2
‖∇f(wt)‖2 +

γL2

2
‖xt − wt‖2

+ALγ2(f(wt)− f∗) +
BLγ2

2

∥∥∇f(wt)
∥∥2

+
CLγ2

2

= f(xt)− f∗ − γ

2
‖∇f(xt)‖2 − γ

2
(1−BLγ)

∥∥∇f(wt)
∥∥2

+
L2γ

2
‖xt − wt‖2

+ALγ2(f(wt)− f∗) +
CLγ2

2
(24)
≤ f(xt)− f∗ − γ

2
‖∇f(xt)‖2 − γ

2
(1−BLγ)

∥∥∇f(wt)
∥∥2

+
L2γ

2
‖xt − wt‖2

+ALγ2

(
f(xt) +

1

2L

∥∥∇f(xt)
∥∥2

+ L
∥∥wt − xt∥∥2 − f∗

)
+
CLγ2

2

= (1 +ALγ2)
(
f(xt)− f∗

)
− γ

2
(1−Aγ)

∥∥∇f(xt)
∥∥2 − γ

2
(1−BLγ)

∥∥∇f(wt)
∥∥2

+L2γ

(
1

2
+Aγ

)∥∥wt − xt∥∥2
+
CLγ2

2
.

Hence, taking full expectation, for γ ≤ 1
4A , we have

E
[
f(xt+1)− f∗

]
≤ (1 +ALγ2)E

[
f(xt)− f∗

]
− γ

4
E
[∥∥∇f(xt)

∥∥2
]

(25)
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− γ

2
(1−BLγ) E

[∥∥∇f(wt)
∥∥2
]

+ L2γE
[∥∥wt − xt∥∥2

]
+
CLγ2

2
.

Next, variance decomposition and Assumption E.2 gives

E
[∥∥g(wt)−∇f(wt)

∥∥2
]

(14)
= E

[∥∥g(wt)
∥∥2
]
−
∥∥∇f(wt)

∥∥2

(E.2)
≤ 2A(f(wt)− f∗) + (B − 1)

∥∥∇f(wt)
∥∥2

+ C

(24)
≤ 2A

(
f(xt) +

1

2L

∥∥∇f(xt)
∥∥2

+ L
∥∥wt − xt∥∥2 − f∗

)
+(B − 1)

∥∥∇f(wt)
∥∥2

+ C

= 2A
(
f(xt)− f∗

)
+
A

L

∥∥∇f(xt)
∥∥2

+ 2AL
∥∥wt − xt∥∥2

+(B − 1)
∥∥∇f(wt)

∥∥2
+ C. (26)

Therefore, using the unbiasedness of g(x), we can bound the expected distance between wt+1 and
xt+1 as

E
[∥∥wt+1 − xt+1

∥∥2
]

= E
[∥∥wt + Cp(xt+1 − wt)− xt+1

∥∥2
]

(2)
≤ (1− α)E

[∥∥xt+1 − wt
∥∥2
]

= (1− α) E
[∥∥xt − γgt − wt∥∥2

]
(14)
= (1− α) γ2E

[∥∥gt −∇f(wt)
∥∥2
]

+ (1− α) E
[∥∥xt − γ∇f(wt)− wt

∥∥2
]

(7),(10),(11)
≤ (1− α) γ2E

[∥∥gt −∇f(wt)
∥∥2
]

+
(

1− α

2

)
E
[∥∥xt − wt∥∥2

]
+

2γ2

α
E
[∥∥∇f(wt)

∥∥2
]

(26)
≤ 2A (1− α) γ2

(
f(xt)− f∗

)
+
A (1− α) γ2

L

∥∥∇f(xt)
∥∥2

+2AL (1− α) γ2
∥∥wt − xt∥∥2

+ (B − 1) (1− α) γ2
∥∥∇f(wt)

∥∥2

+C (1− α) γ2 +
(

1− α

2

)
E
[∥∥xt − wt∥∥2

]
+

2γ2

α
E
[∥∥∇f(wt)

∥∥2
]
.

Hence, taking expectation, for γ ≤
√

α
8AL(1−α)

E
[∥∥wt+1 − xt+1

∥∥2
]
≤ 2A (1− α) γ2E

[
f(xt)− f∗

]
+
A (1− α) γ2

L
E
[∥∥∇f(xt)

∥∥2
]

+ γ2

(
2

α
+ (B − 1) (1− α)

)
E
[∥∥∇f(wt)

∥∥2
]

+
(

1− α

2
+ 2AL (1− α) γ2

)
E
[∥∥xt − wt∥∥2

]
+ C (1− α) γ2

≤ 2A (1− α) γ2E
[
f(xt)− f∗

]
+
A (1− α) γ2

L
E
[∥∥∇f(xt)

∥∥2
]

+ γ2

(
2

α
+ (B − 1) (1− α)

)
E
[∥∥∇f(wt)

∥∥2
]

+
(

1− α

4

)
E
[∥∥xt − wt∥∥2

]
+ C (1− α) γ2. (27)

Adding a 4L2γ
α multiple of (27) to (25), we obtain

E
[
f(xt+1)− f∗

]
+

4L2γ

α
E
[∥∥wt+1 − xt+1

∥∥2
]
23
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≤
(

1 +ALγ2 +
8AL2(1− α)γ3

α

)
E
[
f(xt)− f∗

]
− γ

4

(
1− 16AL (1− α) γ2

α

)
E
[∥∥∇f(xt)

∥∥2
]

− γ

2

(
1−BLγ − 8L2γ2

α

(
2

α
+ (B − 1) (1− α)

))
E
[∥∥∇f(wt)

∥∥2
]

+
4L2γ

α
E
[∥∥wt − xt∥∥2

]
+
CLγ2

2
+

4CL2(1− α)γ3

α
.

Then, provided that

γ ≤ min

{
1

4BL
,
α

8L
,

√
α

32(B − 1)(α− 1)L2
,

√
α

32AL(1− α)
,

}
= min

{
1

4BL
,
α

8L
,

√
α

32AL(1− α)
,

}
,

(where we used min{a, b} ≤
√
ab for all a, b ∈ R+), this gives

E
[
f(xt+1)− f∗

]
+

4L2γ

α
E
[∥∥wt+1 − xt+1

∥∥2
]
≤
(
1 + 2ALγ2

)
E
[
f(xt)− f∗

]
− γ

8
E
[∥∥∇f(xt)

∥∥2
]

+
4L2γ

α
E
[∥∥wt − xt∥∥2

]
+ CLγ2.

Denoting a := 4L2γ
α , b := 1 + 2ALγ2, c := γ

8 and d := CLγ2, this is equivalent to

δt+1+ast+1 ≤ bδt + ast − crt + d, (28)

where δt := E [f(xt)− f∗], rt := E
[
‖∇f(xt)‖2

]
and st := E

[
‖wt − xt‖2

]
. Hence, using

Lemma E.5, for any T ≥ 1

min
0≤t≤T−1

rt ≤ bT

cT
δ0 +

d

c
,

which proves (23). In the proof, we have the following constraints on γ:

γ ≤ min

{
1

4A
,

1

4BL
,
α

8L
,

√
α

32AL(1− α)

}
.

Using the inequality min{a, b} ≤
√
ab for all a, b ∈ R+, this can be simplified to

γ ≤ min

{
1

4A
,

1

4BL
,
α

8L

}
.

Theorem E.3. Let Assumptions 2.1, 4.1, E.1 and E.2 hold and set w0 = x0. Fix ε > 0 and choose
the stepsize

γ = min

{
α

8L
,

1

4BL
,

1√
2ALT

,
ε

16CL

}
.

Then

T ≥ 48∆0L

ε
max

{
8

α
, 4B,

96∆0A

ε
,

16C

ε

}
⇒ min

0≤t≤T−1
E
[∥∥∇f(xt)

∥∥2
]
≤ ε. (20)

Proof. By Lemma E.6, we have

min
0≤t≤T−1

E
[∥∥∇f(xt)

∥∥2
]
≤

8
(
1 + 2ALγ2

)T
γT

∆0 + 8CLγ
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provided that γ ≤ min
{

1
4A ,

1
4BL ,

α
8L

}
. Now, using the fact that 1 + x ≤ ex and the assumption

γ ≤ 1√
2ALT

, we obtain (
1 + 2ALγ2

)T ≤ exp
(
2ALTγ2

)
≤ exp(1) < 3.

Hence

min
0≤t≤T−1

E
[∥∥∇f(xt)

∥∥2
]
≤ 24

γT
∆0 + 8CLγ.

In order to obtain 24
γT ∆0 + 8CLγ ≤ ε, we require that both terms are no larger than ε

2 , which is
equivalent to

T ≥ 48∆0

γε
, (29)

γ ≤ ε

16CL
. (30)

We thus require that:

γ ≤ min

{
1

4A
,

1

4BL
,
α

8L
,

1√
2ALT

,
ε

16CL

}
.

which, combined with (29) gives:

T ≥ 48∆0

ε
max

{
4A, 4BL,

8L

α
,

96∆0AL

ε
,

16CL

ε

}
.

It remains to notice that the term 4A can be dropped, thus simplifying the constraints to

γ ≤ min

{
1

4BL
,
α

8L
,

1√
2ALT

,
ε

16CL

}
.

and

T ≥ 48∆0

ε
max

{
4BL,

8L

α
,

96∆0AL

ε
,

16CL

ε

}
.

Indeed, if
∥∥∇f(x0)

∥∥2 ≤ ε, then (20) holds for any γ > 0. Let us now assume that
∥∥∇f(x0)

∥∥2
> ε.

The above constraints imply that 1√
2ALT

≤ ε
96∆0AL

. Moreover, from Lemma B.2, we know that

ε <
∥∥∇f(x0)

∥∥2 ≤ 2L∆0. Thus 1√
2ALT

≤ 1
48A . Similarly, we see that 96∆0AL

ε ≥ 48A.

E.3 PROOF OF PROPOSITION E.4

Proof. 1. Using independence of C1, . . . , Cn, we have

E
[
‖g(x)‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci (∇fi(x))

∥∥∥∥∥
2


(14)
= E

∥∥∥∥∥ 1

n

n∑
i=1

(Ci (∇fi(x))−∇fi(x))

∥∥∥∥∥
2
+ ‖∇f(x)‖2

=
1

n2

n∑
i=1

E
[
‖Ci (∇fi(x))−∇fi(x)‖2

]
+ ‖∇f(x)‖2

(5)
≤ 1

n2

n∑
i=1

ω ‖∇fi(x)‖2 + ‖∇f(x)‖2

(B.2)
≤ ω

n2

n∑
i=1

2Li(fi(x)− f∗i ) + ‖∇f(x)‖2
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≤ 2ωLmax
n2

n∑
i=1

(fi(x)− f∗i ) + ‖∇f(x)‖2

= 2A(f(x)− f∗) + ‖∇f(x)‖2 + 2A∆∗,

where A := ωLmax
n .

2. Starting as in part 1 of the proof, we obtain

E
[
‖g(x)‖2

]
≤ 1

n2

n∑
i=1

ω ‖∇fi(x)‖2 + ‖∇f(x)‖2
(4.3)
≤
(
Dω

n
+ 1

)
‖∇f(x)‖2 .

3. First let us note that

E
[
‖gi(x)‖2

]
(14)
= E

[
‖gi(x)−∇fi(x)‖2

]
+ ‖∇fi(x)‖2 ≤ σ2 + ‖∇fi(x)‖2 .

Following steps similar to the proof of Proposition 4 of Khaled & Richtárik (2020), unbi-
asedness of the stochastic gradients gives

E
[
‖g(x)‖2

]
(13)
= E

E

∥∥∥∥∥ 1

n

n∑
i=1

Ci (gi(x))

∥∥∥∥∥
2

| g1(x), . . . , gn(x)


(14)
= E

E

∥∥∥∥∥ 1

n

n∑
i=1

(Ci (gi(x))− gi(x))

∥∥∥∥∥
2

| g1(x), . . . , gn(x)

+

∥∥∥∥∥ 1

n

n∑
i=1

gi(x)

∥∥∥∥∥
2


(14)
= E

[
1

n2

n∑
i=1

E
[
‖Ci (gi(x))− gi(x)‖2 | g1(x), . . . , gn(x)

]]

+E

∥∥∥∥∥ 1

n

n∑
i=1

(gi(x)−∇fi(x))

∥∥∥∥∥
2
+ ‖∇f(x)‖2

≤ ω

n2

n∑
i=1

E
[
‖gi(x)‖2

]
+ E

∥∥∥∥∥ 1

n

n∑
i=1

(gi(x)−∇fi(x))

∥∥∥∥∥
2
+ ‖∇f(x)‖2

≤ ω

n2

n∑
i=1

(
‖∇fi(x)‖2 + σ2

)
+

1

n2

n∑
i=1

E
[
‖gi(x)−∇fi(x)‖2

]
+ ‖∇f(x)‖2

(B.2)
≤ ω

n2

n∑
i=1

(
2Li (fi(x)− f∗i ) + σ2

)
+
σ2

n
+ ‖∇f(x)‖2

= 2A (f(x)− f∗) + ‖∇f(x)‖2 + C,

where A := 1
nωLmax and C := 2A∆∗ + ω+1

n σ2.

4. Starting as in part 3 and using the assumption fi = f , we have:

E
[
‖g(x)‖2

]
≤ ω

n2

n∑
i=1

E
[
‖gi(x)‖2

]
+ E

∥∥∥∥∥ 1

n

n∑
i=1

gi(x)−∇f(x)

∥∥∥∥∥
2
+ ‖∇f(x)‖2

(14)
=

ω

n2

n∑
i=1

(
E
[
‖gi(x)−∇f(x)‖2

]
+ ‖∇f(x)‖2

)
+

1

n2

n∑
i=1

E
[
‖gi(x)−∇f(x)‖2

]
+ ‖∇f(x)‖2

≤ ω + 1

n
σ2 +

(ω
n

+ 1
)
‖∇f(x)‖2 .
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F PROOFS FOR EF21-P + DIANA IN THE CONVEX CASE

First, we prove an auxiliary theorem:

Theorem F.1. Let us assume that Assumptions 2.1, 2.2 and 2.3 hold, β ∈
[
0, 1

ω+1

]
, and

γ ≤ min

{
n

160ωLmax
,

√
nα

20
√
ωL̂

,
α

100L
,
β

µ

}
. (31)

Then Algorithm 1 guarantees that

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥ht+1

i −∇fi(x∗)
∥∥2
]

+ νE
[∥∥wt+1 − xt+1

∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
, (32)

where κ ≤ 8γω
nβ and ν ≤ 192γωL̂2

nα + 32L
α .

Proof. From L-smoothness (Assumption 2.1) of the function f , we have

f(xt+1) ≤ f(wt) +
〈
∇f(wt), xt+1 − wt

〉
+
L

2

∥∥xt+1 − wt
∥∥2

conv-ty
≤ f(x∗) +

〈
∇f(wt), xt+1 − x∗

〉
− µ

2

∥∥wt − x∗∥∥2
+
L

2

∥∥xt+1 − wt
∥∥2

= f(x∗) +
〈
gt, xt+1 − x∗

〉
+
〈
∇f(wt)− gt, xt+1 − x∗

〉
+
L

2

∥∥xt+1 − wt
∥∥2 − µ

2

∥∥wt − x∗∥∥2
.

We now reprove a well-known equality from the convex world. Noting that xt+1 = xt − γgt, we
obtain ∥∥xt − x∗∥∥2−

∥∥xt+1 − x∗
∥∥2 −

∥∥xt+1 − xt
∥∥2

=
〈
xt − xt+1, xt − 2x∗ + xt+1

〉
−
〈
xt+1 − xt, xt+1 − xt

〉
= 2

〈
xt − xt+1, xt+1 − x∗

〉
= 2γ

〈
gt, xt+1 − x∗

〉
. (33)

Substituting (33) in the inequality gives

f(xt+1) ≤ f(x∗) +
〈
∇f(wt)− gt, xt+1 − x∗

〉
+

1

2γ

∥∥xt − x∗∥∥2 − 1

2γ

∥∥xt+1 − x∗
∥∥2 − 1

2γ

∥∥xt+1 − xt
∥∥2

+
L

2

∥∥xt+1 − wt
∥∥2 − µ

2

∥∥wt − x∗∥∥2
.

Next, by (8), we have

L

2

∥∥xt+1 − wt
∥∥2 ≤ L

∥∥xt+1 − xt
∥∥2

+ L
∥∥wt − xt∥∥2

and
µ

4

∥∥xt − x∗∥∥2 ≤ µ

2

∥∥wt − x∗∥∥2
+
µ

2

∥∥wt − xt∥∥2 ≤ µ

2

∥∥wt − x∗∥∥2
+ L

∥∥wt − xt∥∥2
,
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where we used L ≥ µ. Thus

f(xt+1) ≤ f(x∗) +
〈
∇f(wt)− gt, xt+1 − x∗

〉
+

1

2γ

∥∥xt − x∗∥∥2 − 1

2γ

∥∥xt+1 − x∗
∥∥2 − 1

2γ

∥∥xt+1 − xt
∥∥2

+ L
∥∥xt+1 − xt

∥∥2
+ L

∥∥wt − xt∥∥2 − µ

4

∥∥xt − x∗∥∥2
+ L

∥∥wt − xt∥∥2

= f(x∗) +
〈
∇f(wt)− gt, xt+1 − x∗

〉
+

1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

− 1

2γ

∥∥xt+1 − x∗
∥∥2 −

(
1

2γ
− L

)∥∥xt+1 − xt
∥∥2

+ 2L
∥∥wt − xt∥∥2

≤ f(x∗) +
〈
∇f(wt)− gt, xt+1 − x∗

〉
+

1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

− 1

2γ

∥∥xt+1 − x∗
∥∥2

+ 2L
∥∥wt − xt∥∥2

,

where we used the fact that γ ≤ 1
2L . Then, taking expectation conditioned on previous iterations

{0, . . . , t}, we obtain

Et+1

[
f(xt+1)

]
≤ f(x∗) + Et+1

[〈
∇f(wt)− gt, xt+1 − x∗

〉]
+

1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2 − 1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ 2L
∥∥wt − xt∥∥2

.

From the unbiasedness of the compressors CDi , we have

Et+1

[
gt
]

= ∇f(wt)

and

Et+1

[〈
∇f(wt)− gt, xt+1 − x∗

〉]
= Et+1

[〈
∇f(wt)− gt, xt − γgt − x∗

〉]
= −γEt+1

[〈
∇f(wt)− gt, gt

〉]
= γEt+1

[∥∥gt∥∥2
]
− γ

∥∥∇f(wt)
∥∥2

(14)
= γEt+1

[∥∥gt −∇f(wt)
∥∥2
]
.

Therefore

Et+1

[
f(xt+1)

]
≤ f(x∗) + γEt+1

[∥∥gt −∇f(wt)
∥∥2
]

+
1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2 − 1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ 2L
∥∥wt − xt∥∥2

.

(34)

Now, we separately consider Et+1

[
‖gt −∇f(wt)‖2

]
. From the independence of compressors, we

have

Et+1

[∥∥gt −∇f(wt)
∥∥2
]

= Et+1

∥∥∥∥∥ht +
1

n

n∑
i=1

CDi (∇fi(wt)− hti)−∇f(wt)

∥∥∥∥∥
2


=
1

n2

n∑
i=1

Et+1

[∥∥CDi (∇fi(wt)− hti)−
(
∇fi(wt)− hti

)∥∥2
]

≤ ω

n2

n∑
i=1

∥∥∇fi(wt)− hti∥∥2

≤ 2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2ω

n2

n∑
i=1

∥∥∇fi(wt)−∇fi(x∗)∥∥2
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≤ 2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ω

n2

n∑
i=1

∥∥∇fi(wt)−∇fi(xt)∥∥2
+

4ω

n2

n∑
i=1

∥∥∇fi(xt)−∇fi(x∗)∥∥2
,

where in the last three inequalities, we used (5) and (8). Next, using Assumption 2.2 and Lemma B.1,
we obtain

Et+1

[∥∥gt −∇f(wt)
∥∥2
]

≤ 2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ωL̂2

n

∥∥wt − xt∥∥2
+

8ωLmax

n

(
f(xt)− f(x∗)

)
. (35)

To construct a Lyapunov function, it remains to bound 1
n

∑n
i=1

∥∥ht+1
i −∇fi(x∗)

∥∥2
and∥∥wt+1 − zt+1

∥∥2
:

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

=
1

n

n∑
i=1

Et+1

[∥∥hti + βCDi (∇fi(wt)− hti)−∇fi(x∗)
∥∥2
]

=
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2β

n

n∑
i=1

〈
hti −∇fi(x∗),Et+1

[
CDi (∇fi(wt)− hti)

]〉
+
β2

n

n∑
i=1

Et+1

[∥∥CDi (∇fi(wt)− hti)
∥∥2
]

(5)
≤ 1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2β

n

n∑
i=1

〈
hti −∇fi(x∗),∇fi(wt)− hti

〉
+
β2(ω + 1)

n

n∑
i=1

∥∥∇fi(wt)− hti∥∥2

(12)
= (1− β)

1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+
β

n

n∑
i=1

∥∥∇fi(wt)−∇fi(x∗)∥∥2

+
β (β(ω + 1)− 1)

n

n∑
i=1

∥∥∇fi(wt)− hti∥∥2

≤ (1− β)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+
β

n

n∑
i=1

∥∥∇fi(wt)−∇fi(x∗)∥∥2
,

where we use that β ∈
[
0, 1

ω+1

]
. Thus, using (8), Assumption 2.2 and Lemma B.1, we have

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

≤ (1− β)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ 2βL̂2

∥∥wt − xt∥∥2
+ 4βLmax

(
f(xt)− f(x∗)

)
. (36)

It remains to bound Et+1

[∥∥wt+1 − xt+1
∥∥2
]

:

Et+1

[∥∥wt+1 − xt+1
∥∥2
]

= Et+1

[∥∥wt + Cp(xt+1 − wt)− xt+1
∥∥2
]

(2)
≤ (1− α)Et+1

[∥∥xt+1 − wt
∥∥2
]

= (1− α)Et+1

[∥∥xt − γgt − wt∥∥2
]
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(14)
= (1− α)γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+ (1− α)
∥∥xt − γ∇f(wt)− wt

∥∥2

(7)
≤ γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+
(

1− α

2

)∥∥wt − xt∥∥2
+

2γ2

α

∥∥∇f(wt)
∥∥2

(8)
≤ γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+
(

1− α

2

)∥∥wt − xt∥∥2

+
4γ2

α

∥∥∇f(wt)−∇f(xt)
∥∥2

+
4γ2

α

∥∥∇f(xt)−∇f(x∗)
∥∥2
.

Using Assumption 2.1 and Lemma B.1, we obtain

Et+1

[∥∥wt+1 − xt+1
∥∥2
]
≤ γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+

(
1− α

2
+

4γ2L2

α

)∥∥wt − xt∥∥2
+

8γ2L

α

(
f(xt)− f(x∗)

)
(35)
≤ γ2

(
2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ωL̂2

n

∥∥wt − xt∥∥2
+

8ωLmax

n

(
f(xt)− f(x∗)

))

+

(
1− α

2
+

4γ2L2

α

)∥∥wt − xt∥∥2
+

8γ2L

α

(
f(xt)− f(x∗)

)
=

(
1− α

2
+

4γ2L2

α
+

4γ2ωL̂2

n

)∥∥wt − xt∥∥2
+

2γ2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+

(
8γ2ωLmax

n
+

8γ2L

α

)(
f(xt)− f(x∗)

)
≤
(

1− α

4

)∥∥wt − xt∥∥2
+

2γ2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+

(
8γ2ωLmax

n
+

8γ2L

α

)(
f(xt)− f(x∗)

)
,

where we assume that γ ≤ α√
32L

and γ ≤
√
αn√

32ωL̂
.

Let us fix some constants κ ≥ 0 and ν ≥ 0. We now combine the above inequality with (34), (35)
and (36) to obtain

Et+1

[
f(xt+1)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ f(x∗) + γ

(
2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ωL̂2

n

∥∥wt − xt∥∥2
+

8ωLmax

n

(
f(xt)− f(x∗)

))

+
1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2 − 1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ 2L
∥∥wt − xt∥∥2

+ κ

(
(1− β)

1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ 2βL̂2

∥∥wt − xt∥∥2
+ 4βLmax

(
f(xt)− f(x∗)

))

+ ν

((
1− α

4

)∥∥wt − xt∥∥2
+

2γ2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

(
8γ2ωLmax

n
+

8γ2L

α

)(
f(xt)− f(x∗)

))
.

Rearranging the last inequality, one can get

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]
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≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

+

(
8γωLmax

n
+ κ4βLmax + ν

(
8γ2ωLmax

n
+

8γ2L

α

))(
f(xt)− f(x∗)

)
+

(
2γω

n
+ ν

2γ2ω

n
+ κ (1− β)

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+

(
4γωL̂2

n
+ 2L+ κ2βL̂2 + ν

(
1− α

4

))∥∥wt − xt∥∥2
. (37)

Our final goal is to find κ and ν such that

2γω

n
+ ν

2γ2ω

n
+ κ (1− β) = κ

(
1− β

2

)
and

4γωL̂2

n
+ 2L+ κ2βL̂2 + ν

(
1− α

4

)
≤ ν

(
1− α

8

)
.

The last inequality is equivalent to

32γωL̂2

nα
+

16L

α
+ κ

16βL̂2

α
≤ ν. (38)

From the first equality we get κ = 4γω
nβ + ν 4γ2ω

nβ . Thus

32γωL̂2

nα
+

16L

α
+ κ

16βL̂2

α
=

32γωL̂2

nα
+

16L

α
+

(
4γω

nβ
+ ν

4γ2ω

nβ

)
16βL̂2

α

=
96γωL̂2

nα
+

16L

α
+ ν

64γ2ωL̂2

nα
≤ 96γωL̂2

nα
+

16L

α
+ ν

1

2
,

where we used that γ ≤
√
nα√

128ωL̂
. It means that we can take ν = 192γωL̂2

nα + 32L
α to ensure that (38)

holds. Thus

κ =
4γω

nβ
+

(
192γωL̂2

nα
+

32L

α

)
4γ2ω

nβ
=

4γω

nβ
+

768γ3ω2L̂2

n2αβ
+

128γ2ωL

nβα
.

Let us now substitute these values of κ and ν in inequality (37):

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ κ

(
1− β

2

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ ν

(
1− α

8

)∥∥wt − xt∥∥2

+

(
8γωLmax

n
+

(
4γω

nβ
+

768γ3ω2L̂2

n2αβ
+

128γ2ωL

nβα

)
4βLmax

+

(
192γωL̂2

nα
+

32L

α

)(
8γ2ωLmax

n
+

8γ2L

α

))(
f(xt)− f(x∗)

)
=

1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ κ

(
1− β

2

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ ν

(
1− α

8

)∥∥wt − xt∥∥2

+

(
24γωLmax

n
+

4608γ3ω2L̂2Lmax

n2α
+

768γ2ωLLmax

nα
+

1536γ3ωLL̂2

nα2
+

256γ2L2

α2

)(
f(xt)− f(x∗)

)
.
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Using the assumptions on γ, we have

24γωLmax

n
≤ 1

10
,

4608γ3ω2L̂2Lmax

n2α
≤ 20γ2ωL̂2

nα
≤ 1

10
,

768γ2ωLLmax

nα
≤ 4γL

α
≤ 1

10
,

1536γ3ωLL̂2

nα2
≤ 40γ2ωL̂2

nα
≤ 1

10
,

256γ2L2

α2
≤ 1

10
.

Finally, considering γ ≤ β
µ and γ ≤ α

4µ gives

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+ ν
(

1− γµ

2

)∥∥wt − xt∥∥2
+

1

2

(
f(xt)− f(x∗)

)
.

Note that κ = 4γω
nβ + 768γ3ω2L̂2

n2αβ + 128γ2ωL
nβα ≤ 8γω

nβ .

We now prove a theorem for the general convex case:

Theorem F.2. Let us assume that Assumptions 2.1, 2.2 and 2.3 hold, the strong convexity parameter
satisfies µ = 0, β = 1

ω+1 , x0 = w0 and

γ ≤ min

{
n

160ωLmax
,

√
nα

20
√
ωL̂

,
α

100L

}
.

Then Algorithm 1 guarantees a convergence rate

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
f(x0)−∇f(x∗)

T
+

16γω(ω + 1)

Tn2

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
.

(39)

Proof. Let us bound (32):

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥ht+1

i −∇fi(x∗)
∥∥2
]

+ νE
[∥∥wt+1 − xt+1

∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
≤ 1

2γ
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ νE

[∥∥wt − xt∥∥2
]
.
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We now sum the inequality for t ∈ {0, . . . , T − 1} and obtain

1

2γ
E
[∥∥xT − x∗∥∥2

]
+

1

2
E
[
f(xT )− f(x∗)

]
+

1

2

T∑
t=1

E
[
f(xt)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hTi −∇fi(x∗)∥∥2

]
+ νE

[∥∥wT − xT∥∥2
]

≤ 1

2γ

∥∥x0 − x∗
∥∥2

+
1

2

(
f(x0)− f(x∗)

)
+ κ

1

n

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
+ ν

∥∥w0 − x0
∥∥2

≤ 1

2γ

∥∥x0 − x∗
∥∥2

+
1

2

(
f(x0)− f(x∗)

)
+

8γω

n2β

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
,

where we used the assumption x0 = w0 and the bound on κ. Using nonnegativity of the terms and
convexity, we then have

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
f(x0)−∇f(x∗)

T
+

16γω

Tn2β

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
.

We now prove a theorem for the strongly convex case:

Theorem 3.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, β = 1
ω+1 , set x0 = w0 and let

γ ≤ min
{

n
160ωLmax

,
√
nα

20
√
ωL̂
, α

100L ,
1

(ω+1)µ

}
. Then Algorithm 1 returns xT such that

1
2γE

[∥∥xT − x∗∥∥2
]

+ E
[
f(xT )− f(x∗)

]
≤
(
1− γµ

2

)T
V 0,

where V 0 := 1
2γE

[∥∥x0 − x∗
∥∥2
]

+
(
f(x0)− f(x∗)

)
+ 8γω(ω+1)

n2

∑n
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
.

Proof. Using γ ≤ α
100L ≤

1
µ , let us bound (32):

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥ht+1

i −∇fi(x∗)
∥∥2
]

+ νE
[∥∥wt+1 − xt+1

∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+
(

1− γµ

2

)
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
=
(

1− γµ

2

)( 1

2γ
E
[∥∥xt − x∗∥∥2

]
+ E

[
f(xt)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ νE

[∥∥wt − xt∥∥2
])

.

Recursively applying the last inequality and using x0 = w0, one can get that

1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E

[
f(xT )− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hTi −∇fi(x∗)∥∥2

]
+ νE

[∥∥wT − xT∥∥2
]
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≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

)
+ κ

1

n

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2

)
.

Using the nonnegativity of the terms and the bound on κ, we obtain
1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E

[
f(xT )− f(x∗)

]
≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

)
+

8γω

n2β

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2

)
.

F.1 COMMUNICATION COMPLEXITIES IN THE GENERAL CONVEX CASE

We now derive the communication complexities for the general convex case. From Theorem F.2, we
know that EF21-P + DIANA has the following convergence rate:

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
f(x0)−∇f(x∗)

T
+

16γω(ω + 1)

Tn2

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
.

Let us take h0
i = ∇fi(x0) for all i ∈ [n]. Using Assumptions 2.1 and 2.2, we have

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
L
∥∥x0 − x∗

∥∥2

2T

+
16γω(ω + 1)

Tn2

n∑
i=1

∥∥∇fi(x0)−∇fi(x∗)
∥∥2

≤ 1

γT

∥∥x0 − x∗
∥∥2

+
L
∥∥x0 − x∗

∥∥2

2T
+

16γω(ω + 1)L̂2
∥∥x0 − x∗

∥∥2

Tn
.

Using the bound on γ, we obtain that EF21-P + DIANA returns an ε-solution after

O

(
ωLmax

nε
+

√
ωL̂√
nαε

+
L

αε
+
L

ε
+
γω(ω + 1)L̂2

nε

)
steps. For simplicity, we assume that the server and the workers use TopK and RandK compressors,
respectively. Thus the server-to-workers and the workers-to-server communication complexities
equal

O

(
K ×

(
ωLmax

nε
+

√
ωL̂√
nαε

+
L

αε
+
L

ε
+
γω(ω + 1)L̂2

nε

))

= O

(
dLmax

nε
+

dL̂√
nε

+
dL

ε
+
KL

ε
+
dγωL̂2

nε

)
.

Note that γ ≤
√
nα

20
√
ωL̂

=
√
n

20
√
ω(ω+1)L̂

. Thus

O

(
K ×

(
ωLmax

nε
+

√
ωL̂√
nαε

+
L

αε
+
L

ε
+
γω(ω + 1)L̂2

nε

))

= O

(
dLmax

nε
+

dL̂√
nε

+
dL

ε
+
KL

ε
+

dL̂√
nε

)

= O

(
dLmax

nε
+

dL̂√
nε

+
dL

ε

)
.

Since Lmax ≤ nL and L̂ ≤
√
nL, this complexity is not worse than the GD’s complexity O

(
dL
ε

)
for any K ∈ [1, d].
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F.2 PROOFS FOR EF21-P + DIANA WITH STOCHASTIC GRADIENTS

First, we prove the following auxiliary theorem:

Theorem F.3. Let us consider Algorithm 1 using the stochastic gradients ∇̃fi instead of the exact
gradients ∇fi for all i ∈ [n]. Assume that Assumptions 2.1, 2.2, 2.3 and 3.2 hold, β ∈

[
0, 1

ω+1

]
,

and

γ ≤ min

{
n

160ωLmax
,

√
nα

20
√
ωL̂

,
α

100L
,
β

µ

}
.

Then Algorithm 1 guarantees that
1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥ht+1

i −∇fi(x∗)
∥∥2
]

+ νE
[∥∥wt+1 − xt+1

∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

12γ(ω + 1)σ2

n
,

(40)

where κ ≤ 8γω
nβ and ν ≤ 192γωL̂2

nα + 32L
α .

Proof. First, we bound Et+1

[
‖gt −∇f(wt)‖2

]
, 1

n

∑n
i=1 Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

and

Et+1

[∥∥wt+1 − xt+1
∥∥2
]
. Using the independence of compressors, we have

Et+1

[∥∥gt −∇f(wt)
∥∥2
]

= Et+1

∥∥∥∥∥ht +
1

n

n∑
i=1

CDi (∇̃fi(wt)− hti)−∇f(wt)

∥∥∥∥∥
2


=
1

n2

n∑
i=1

Et+1

[∥∥∥CDi (∇̃fi(wt)− hti)−
(
∇fi(wt)− hti

)∥∥∥2
]

(14)
=

1

n2

n∑
i=1

(
Et+1

[∥∥∥CDi (∇̃fi(wt)− hti)−
(
∇̃fi(wt)− hti

)∥∥∥2
]

+ Et+1

[∥∥∥∇̃fi(wt)−∇fi(wt)∥∥∥2
])

≤ ω

n2

n∑
i=1

Et+1

[∥∥∥∇̃fi(wt)− hti∥∥∥2
]

+
1

n2

n∑
i=1

Et+1

[∥∥∥∇̃fi(wt)−∇fi(wt)∥∥∥2
]

(14)
=

ω

n2

n∑
i=1

∥∥∇fi(wt)− hti∥∥2
+
ω + 1

n2

n∑
i=1

Et+1

[∥∥∥∇̃fi(wt)−∇fi(wt)∥∥∥2
]

≤ ω

n2

n∑
i=1

∥∥∇fi(wt)− hti∥∥2
+

(ω + 1)σ2

n

≤ 2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2ω

n2

n∑
i=1

∥∥∇fi(wt)−∇fi(x∗)∥∥2
+

(ω + 1)σ2

n

≤ 2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ω

n2

n∑
i=1

∥∥∇fi(wt)−∇fi(xt)∥∥2

+
4ω

n2

n∑
i=1

∥∥∇fi(xt)−∇fi(x∗)∥∥2
+

(ω + 1)σ2

n
,
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where in the last three inequalities, we used (5) and (8). Using Assumption 2.2 and Lemma B.1, we
obtain

Et+1

[∥∥gt −∇f(wt)
∥∥2
]

≤ 2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ωL̂2

n

∥∥wt − xt∥∥2
+

8ωLmax

n

(
f(xt)− f(x∗)

)
+

(ω + 1)σ2

n
.

Next, we bound 1
n

∑n
i=1

∥∥ht+1
i −∇fi(x∗)

∥∥2
to construct a Lyapunov function:

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

=
1

n

n∑
i=1

Et+1

[∥∥∥hti + βCDi (∇̃fi(wt)− hti)−∇fi(x∗)
∥∥∥2
]

=
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2β

n

n∑
i=1

〈
hti −∇fi(x∗),Et+1

[
CDi (∇̃fi(wt)− hti)

]〉
+
β2

n

n∑
i=1

Et+1

[∥∥∥CDi (∇̃fi(wt)− hti)
∥∥∥2
]

(5)
≤ 1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2β

n

n∑
i=1

〈
hti −∇fi(x∗),∇fi(wt)− hti

〉
+
β2(ω + 1)

n

n∑
i=1

Et+1

[∥∥∥∇̃fi(wt)− hti∥∥∥2
]

(14)
=

1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2β

n

n∑
i=1

〈
hti −∇fi(x∗),∇fi(wt)− hti

〉
+
β2(ω + 1)

n

n∑
i=1

Et+1

[∥∥∇fi(wt)− hti∥∥2
]

+
β2(ω + 1)

n

n∑
i=1

Et+1

[∥∥∥∇̃fi(wt)−∇fi(wt)∥∥∥2
]

≤ 1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

2β

n

n∑
i=1

〈
hti −∇fi(x∗),∇fi(wt)− hti

〉
+
β2(ω + 1)

n

n∑
i=1

Et+1

[∥∥∇fi(wt)− hti∥∥2
]

+ β2(ω + 1)σ2

(12)
= (1− β)

1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+
β

n

n∑
i=1

∥∥∇fi(wt)−∇fi(x∗)∥∥2

+
β (β(ω + 1)− 1)

n

n∑
i=1

∥∥∇fi(wt)− hti∥∥2
+ β2(ω + 1)σ2

≤ (1− β)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+
β

n

n∑
i=1

∥∥∇fi(wt)−∇fi(x∗)∥∥2
+ β2(ω + 1)σ2,

where we use the assumption β ∈
[
0, 1

ω+1

]
. Using (8), Assumption 2.2 and Lemma B.1, we have

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]
≤ (1− β)

1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+ 2βL̂2
∥∥wt − xt∥∥2

+ 4βLmax

(
f(xt)− f(x∗)

)
+ β2(ω + 1)σ2.

It remains to bound Et+1

[∥∥wt+1 − xt+1
∥∥2
]

:

Et+1

[∥∥wt+1 − xt+1
∥∥2
]

= Et+1

[∥∥wt + Cp(xt+1 − wt)− xt+1
∥∥2
]

36



Under review as a conference paper at ICLR 2023

(2)
≤ (1− α)Et+1

[∥∥xt+1 − wt
∥∥2
]

= (1− α)Et+1

[∥∥xt − γgt − wt∥∥2
]

(14)
= (1− α)γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+ (1− α)
∥∥xt − γ∇f(wt)− wt

∥∥2

(7)
≤ γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+
(

1− α

2

)∥∥wt − xt∥∥2
+

2γ2

α

∥∥∇f(wt)
∥∥2

(8)
≤ γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+
(

1− α

2

)∥∥wt − xt∥∥2

+
4γ2

α

∥∥∇f(wt)−∇f(xt)
∥∥2

+
4γ2

α

∥∥∇f(xt)−∇f(x∗)
∥∥2
.

Using Assumption 2.1 and Lemma B.1, we obtain

Et+1

[∥∥wt+1 − xt+1
∥∥2
]
≤ γ2Et+1

[∥∥gt −∇f(wt)
∥∥2
]

+

(
1− α

2
+

4γ2L2

α

)∥∥wt − xt∥∥2
+

8γ2L

α

(
f(xt)− f(x∗)

)
≤ γ2

(
2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ωL̂2

n

∥∥wt − xt∥∥2
+

8ωLmax

n

(
f(xt)− f(x∗)

)
+

(ω + 1)σ2

n

)

+

(
1− α

2
+

4γ2L2

α

)∥∥wt − xt∥∥2
+

8γ2L

α

(
f(xt)− f(x∗)

)
=

2γ2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

(
1− α

2
+

4γ2L2

α
+

4γ2ωL̂2

n

)∥∥wt − xt∥∥2

+

(
8γ2ωLmax

n
+

8γ2L

α

)(
f(xt)− f(x∗)

)
+
γ2(ω + 1)σ2

n

≤
(

1− α

4

)∥∥wt − xt∥∥2
+

2γ2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+

(
8γ2ωLmax

n
+

8γ2L

α

)(
f(xt)− f(x∗)

)
+
γ2(ω + 1)σ2

n
,

where we assume that γ ≤ α√
32L

and γ ≤
√
αn√

32ωL̂
. Let us fix some constants κ ≥ 0 and ν ≥ 0. In

the proof of (34) in Theorem F.1, we do not use the structure of gt. Hence we can reuse (34) here
and combine it with the above inequalities to obtain

Et+1

[
f(xt+1)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ f(x∗) + γ

(
2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

4ωL̂2

n

∥∥wt − xt∥∥2
+

8ωLmax

n

(
f(xt)− f(x∗)

)
+

(ω + 1)σ2

n

)

+
1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2 − 1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ 2L
∥∥wt − xt∥∥2

+ κ

(
(1− β)

1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ 2βL̂2

∥∥wt − xt∥∥2
+ 4βLmax

(
f(xt)− f(x∗)

)
+ β2(ω + 1)σ2

)

+ ν

((
1− α

4

)∥∥wt − xt∥∥2
+

2γ2ω

n2

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+

(
8γ2ωLmax

n
+

8γ2L

α

)(
f(xt)− f(x∗)

)
+
γ2(ω + 1)σ2

n

)
.

Rearranging the last inequality, one can get

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
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+ κ
1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

+

(
8γωLmax

n
+ κ4βLmax + ν

(
8γ2ωLmax

n
+

8γ2L

α

))(
f(xt)− f(x∗)

)
+

(
2γω

n
+ ν

2γ2ω

n
+ κ (1− β)

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+

(
4γωL̂2

n
+ 2L+ κ2βL̂2 + ν

(
1− α

4

))∥∥wt − xt∥∥2

+
γ(ω + 1)σ2

n
+ κβ2(ω + 1)σ2 + ν

γ2(ω + 1)σ2

n
.

Using the same reasoning as in the proof of Theorem F.1, we have
1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ ν

(
1− γµ

2

)∥∥wt − xt∥∥2

+
1

2

(
f(xt)− f(x∗)

)
+
γ(ω + 1)σ2

n
+ κβ2(ω + 1)σ2 + ν

γ2(ω + 1)σ2

n

for some κ ≤ 8γω
nβ and ν ≤ 192γωL̂2

nα + 32L
α . Thus

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ ν

(
1− γµ

2

)∥∥wt − xt∥∥2

+
1

2

(
f(xt)− f(x∗)

)
+
γ(ω + 1)σ2

n

+
8γβω(ω + 1)σ2

n
+

192γ3ω(ω + 1)L̂2σ2

n2α
+

32γ2(ω + 1)Lσ2

nα

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
+ ν

(
1− γµ

2

)∥∥wt − xt∥∥2

+
1

2

(
f(xt)− f(x∗)

)
+

12γ(ω + 1)σ2

n
,

where used the bounds on γ and β.

Theorem 3.3. Let us consider Algorithm 1 using stochastic gradients ∇̃fi instead of exact gradients
∇fi for all i ∈ [n]. Let Assumptions 2.1, 2.2, 2.3 and 3.2 hold, β = 1

ω+1 , x
0 = w0, and γ ≤

min
{

n
160ωLmax

,
√
nα

20
√
ωL̂
, α

100L ,
1

(ω+1)µ

}
. Then Algorithm 1 returns xT such that

1
2γE

[∥∥xT − x∗∥∥2
]

+ E
[
f(xT )− f(x∗)

]
≤
(
1− γµ

2

)T
V 0 + 24(ω+1)σ2

µn ,

where V 0 := 1
2γE

[∥∥x0 − x∗
∥∥2
]

+
(
f(x0)− f(x∗)

)
+ 8γω(ω+1)

n2

∑n
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
.
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Proof. Using γ ≤ α
100L ≤

1
µ , we can bound (40) as follows:

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥ht+1

i −∇fi(x∗)
∥∥2
]

+ νE
[∥∥wt+1 − xt+1

∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

12γ(ω + 1)σ2

n

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+
(

1− γµ

2

)
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

12γ(ω + 1)σ2

n

=
(

1− γµ

2

)( 1

2γ
E
[∥∥xt − x∗∥∥2

]
+ E

[
f(xt)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ νE

[∥∥wt − xt∥∥2
])

+
12γ(ω + 1)σ2

n
.

Recursively applying the last inequality and using the assumption x0 = w0, one can get that

1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E

[
f(xT )− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hTi −∇fi(x∗)∥∥2

]
+ νE

[∥∥wT − xT∥∥2
]

≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

)
+ κ

1

n

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2

)

+

T−1∑
i=0

(
1− γµ

2

)i 12γ(ω + 1)σ2

n

≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

)
+ κ

1

n

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2

)

+
24(ω + 1)σ2

nµ

Using the nonnegativity of the terms and the bound on κ, we obtain

1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E

[
f(xT )− f(x∗)

]
≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

)
+

8γω

n2β

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2

)

+
24(ω + 1)σ2

nµ
.

Theorem F.4. Let us consider Algorithm 1 using stochastic gradients ∇̃fi instead of the exact
gradients ∇fi for all i ∈ [n]. Let us assume that Assumptions 2.1, 2.2, 2.3 and 3.2 hold, the strong
convexity parameter satisfies µ = 0, β = 1

ω+1 , x0 = w0, and

γ ≤ min

{
n

160ωLmax
,

√
nα

20
√
ωL̂

,
α

100L

}
.
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Then Algorithm 1 guarantees the following convergence rate:

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
f(x0)−∇f(x∗)

T

+
16γω(ω + 1)

Tn2

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
+

24γ(ω + 1)σ2

n
.

Proof. Let us bound (40):

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥ht+1

i −∇fi(x∗)
∥∥2
]

+ νE
[∥∥wt+1 − xt+1

∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

(
1− γµ

2

) 1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

12γ(ω + 1)σ2

n

≤ 1

2γ
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
+ νE

[∥∥wt − xt∥∥2
]

+
12γ(ω + 1)σ2

n
.

Summing the inequality for t ∈ {0, . . . , T − 1} gives

1

2γ
E
[∥∥xT − x∗∥∥2

]
+

1

2
E
[
f(xT )− f(x∗)

]
+

1

2

T∑
t=1

E
[
f(xt)− f(x∗)

]
+ κ

1

n

n∑
i=1

E
[∥∥hTi −∇fi(x∗)∥∥2

]
+ νE

[∥∥wT − xT∥∥2
]

≤ 1

2γ

∥∥x0 − x∗
∥∥2

+
1

2

(
f(x0)− f(x∗)

)
+ κ

1

n

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2

+ ν
∥∥w0 − x0

∥∥2
+

12Tγ(ω + 1)σ2

n

≤ 1

2γ

∥∥x0 − x∗
∥∥2

+
1

2

(
f(x0)− f(x∗)

)
+

8γω

n2β

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
+

12Tγ(ω + 1)σ2

n
,

where we used the fact that x0 = w0 and the bound on κ. Using nonnegativity of the terms and
convexity, we have

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
f(x0)−∇f(x∗)

T

+
16γω

Tn2β

n∑
i=1

∥∥h0
i −∇fi(x∗)

∥∥2
+

24γ(ω + 1)σ2

n
.
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G PROOFS FOR EF21-P + DCGD IN THE CONVEX CASE

As mentioned before, EF21-P + DCGD arises a special case of EF21-P + DIANA if we do not
attempt to learn any local gradient shifts hti and instead set them to 0 throughout. This can be
achieved by setting β = 0.

Algorithm 2 EF21-P + DCGD

1: Parameters: learning rate γ > 0; initial iterate x0 ∈ Rd (stored on the server and the workers); initial
iterate shift w0 = x0 ∈ Rd (stored on the server and the workers)

2: for t = 0, 1, . . . , T − 1 do
3: for i = 1, . . . , n in parallel do
4: gti = CDi (∇fi(wt)) Compress gradient via CDi ∈ U(ω)

5: Send message gti to the server
6: end for
7: gt = 1

n

∑n
i=1 g

t
i Compute gradient estimator

8: xt+1 = xt − γgt Take gradient-type step
9: pt+1 = CP

(
xt+1 − wt

)
Compress shifted model on the server via CP ∈ B (α)

10: wt+1 = wt + pt+1 Update model shift
11: Broadcast pt+1 to all workers
12: for i = 1, . . . , n in parallel do
13: wt+1 = wt + pt+1 Update model shift
14: end for
15: end for

The proofs in this section almost repeat the proofs from Section F.
Theorem G.1. Let us assume that Assumptions 2.1, 2.2 and 2.3 hold and choose

γ ≤ min

{
n

160ωLmax
,

√
nα

20
√
ωL̂

,
α

100L

}
.

Then Algorithm 2 guarantees that

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ νE

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

4γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
, (41)

where ν ≤ 32γωL̂2

nα + 16L
α .

Proof. Note that EF21-P + DCGD is EF21-P + DIANA with β = 0 and hti = 0 for all i ∈ [n] and
t ≥ 0. Up to (37), we can reuse the proof of Theorem F.1 and obtain

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

+

(
8γωLmax

n
+ κ4βLmax + ν

(
8γ2ωLmax

n
+

8γ2L

α

))(
f(xt)− f(x∗)

)
+

(
2γω

n
+ ν

2γ2ω

n
+ κ (1− β)

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
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+

(
4γωL̂2

n
+ 2L+ κ2βL̂2 + ν

(
1− α

4

))∥∥wt − xt∥∥2
.

Due to β = 0, we have
1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ κ

1

n

n∑
i=1

Et+1

[∥∥ht+1
i −∇fi(x∗)

∥∥2
]

+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2

+

(
8γωLmax

n
+ ν

(
8γ2ωLmax

n
+

8γ2L

α

))(
f(xt)− f(x∗)

)
+

(
2γω

n
+ ν

2γ2ω

n
+ κ

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

+

(
4γωL̂2

n
+ 2L+ ν

(
1− α

4

))∥∥wt − xt∥∥2
.

Taking κ = 0 and ν = 32γωL̂2

αn + 16L
α , we obtain

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ ν

(
1− α

8

)∥∥wt − xt∥∥2

+

(
8γωLmax

n
+

(
32γωL̂2

αn
+

16L

α

)(
8γ2ωLmax

n
+

8γ2L

α

))(
f(xt)− f(x∗)

)
+

(
2γω

n
+ ν

2γ2ω

n

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2

=
1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+ ν

(
1− α

8

)∥∥wt − xt∥∥2

+

(
8γωLmax

n
+

256γ3ω2L̂2Lmax

n2α
+

256γ3ωLL̂2

nα2
+

128γ2ωLLmax

nα
+

128γ2L2

α2

)(
f(xt)− f(x∗)

)
+

(
2γω

n
+ ν

2γ2ω

n

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
.

Using the assumptions on γ, we have
8γωLmax

n
≤ 1

10
,

256γ3ω2L̂2Lmax

n2α
≤ 20γ2ωL̂2

nα
≤ 1

10
,

128γ2ωLLmax

nα
≤ 4γL

α
≤ 1

10
,

256γ3ωLL̂2

nα2
≤ 40γ2ωL̂2

nα
≤ 1

10
,

128γ2L2

α2
≤ 1

10
.

Considering γ ≤ α
4µ , we obtain

1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]
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≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+

1

2

(
f(xt)− f(x∗)

)
+ ν

(
1− γµ

2

)∥∥wt − xt∥∥2

+

(
2γω

n
+ ν

2γ2ω

n

)
1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
.

From the assumptions on γ, we have

2γω

n
+ ν

2γ2ω

n
≤ 2γω

n
+

(
32γωL̂2

αn
+

16L

α

)
2γ2ω

n
≤ 4γω

n

and hence
1

2γ
Et+1

[∥∥xt+1 − x∗
∥∥2
]

+ Et+1

[
f(xt+1)− f(x∗)

]
+ νEt+1

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)∥∥xt − x∗∥∥2
+

1

2

(
f(xt)− f(x∗)

)
+ ν

(
1− γµ

2

)∥∥wt − xt∥∥2

+
4γω

n

1

n

n∑
i=1

∥∥hti −∇fi(x∗)∥∥2
.

Taking the full expectation, we obtain

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ νE

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

4γω

n

1

n

n∑
i=1

E
[∥∥hti −∇fi(x∗)∥∥2

]
.

It remains to use (36) with β = 0 to finish the proof of the theorem.

Theorem G.2. Let us assume that Assumptions 2.1, 2.2 and 2.3 hold, the strong convexity parameter
satisfies µ = 0, x0 = w0 and

γ ≤ min

{
n

160ωLmax
,

√
nα

20
√
ωL̂

,
α

100L

}
.

Then Algorithm 2 guarantees that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
f(x0)−∇f(x∗)

T
+

8γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
.

Proof. Let us bound (41):

1

2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ νE

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

4γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)

≤ 1

2γ
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ νE

[∥∥wt − xt∥∥2
]

+
4γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
.

We now sum the inequality for t ∈ {0, . . . , T − 1} and obtain

1

2γ
E
[∥∥xT − x∗∥∥2

]
+

1

2
E
[
f(xT )− f(x∗)

]
+

1

2

T∑
t=1

E
[
f(xt)− f(x∗)

]
+ νE

[∥∥wT − xT∥∥2
]
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≤ 1

2γ

∥∥x0 − x∗
∥∥2

+
1

2

(
f(x0)− f(x∗)

)
+ ν

∥∥w0 − x0
∥∥2

+ T
4γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)

=
1

2γ

∥∥x0 − x∗
∥∥2

+
1

2

(
f(x0)− f(x∗)

)
+ T

4γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
.

where we used the assumption x0 = w0. Non-negativity of the terms and convexity gives

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

γT

∥∥x0 − x∗
∥∥2

+
f(x0)−∇f(x∗)

T
+

8γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
.

Theorem G.3. Let us assume that Assumptions 2.1, 2.2 and 2.3 hold, x0 = w0, and

γ ≤ min

{
n

160ωLmax
,

√
nα

20
√
ωL̂

,
α

100L

}
.

Then Algorithm 2 guarantees that

1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E

[
f(xT )− f(x∗)

]
≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

))
+

8ω

nµ

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
.

Proof. Using γ ≤ α
100L ≤

1
µ , let us bound (41):
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2γ
E
[∥∥xt+1 − x∗

∥∥2
]

+ E
[
f(xt+1)− f(x∗)

]
+ νE

[∥∥wt+1 − xt+1
∥∥2
]

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+

1

2
E
[
f(xt)− f(x∗)

]
+ ν

(
1− γµ

2

)
E
[∥∥wt − xt∥∥2

]
+

4γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)

≤ 1

2γ

(
1− γµ

2

)
E
[∥∥xt − x∗∥∥2

]
+
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1− γµ

2
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f(xt)− f(x∗)

]
+ ν
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2

)
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]
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4γω

n

(
1

n

n∑
i=1
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=
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1− γµ

2

)( 1

2γ
E
[∥∥xt − x∗∥∥2

]
+ E
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f(xt)− f(x∗)

]
+ νE

[∥∥wt − xt∥∥2
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+
4γω

n

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
.

Recursively applying the last inequality and using x0 = w0, one obtains

1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E
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f(xT )− f(x∗)

]
+ νE

[∥∥wT − xT∥∥2
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≤
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)T ( 1

2γ
E
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∥∥2
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+
(
f(x0)− f(x∗)
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2
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1
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∥∥2
]
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(
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+
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n
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n
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∥∥2
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+
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+
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1

n

n∑
i=1

‖∇fi(x∗)‖2
)

Non-negativity of E
[∥∥wT − xT∥∥2

]
gives

1

2γ
E
[∥∥xT − x∗∥∥2

]
+ E

[
f(xT )− f(x∗)

]
≤
(

1− γµ

2

)T ( 1

2γ
E
[∥∥x0 − x∗

∥∥2
]

+
(
f(x0)− f(x∗)

))
+

8ω

nµ

(
1

n

n∑
i=1

‖∇fi(x∗)‖2
)
.
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H FUTURE WORK AND POSSIBLE EXTENSIONS

In this paper, many important features of distributed and federated learning were not investigated
in detail. These include variance reduction of stochastic gradients (Horváth et al., 2022; Tyurin &
Richtárik, 2022b), acceleration (Li & Richtárik, 2021; Li et al., 2020), local steps (Murata & Suzuki,
2021), partial participation (McMahan et al., 2017; Tyurin & Richtárik, 2022a) and asynchronous
SGD (Koloskova et al., 2022). While some are simple exercises and can be easily added to our
methods, many of them deserve further investigation and separate work. Further, note that several
authors, including Szlendak et al. (2021); Richtárik et al. (2022); Condat et al. (2022), considered
somewhat different families of compressors than those we consider here. We believe that the results
and discussion from our paper can be adapted to these families.
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