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Abstract

Generative data augmentation (GDA) leverages generative models to enrich train-
ing sets with entirely new samples drawn from the modeled data distribution to
achieve performance gains. However, the usage of the mighty contemporary dif-
fusion models in GDA remains impractical: i) their thousand-step sampling loop
inflates wall-time and energy cost per image augmentation; and ii) the divergence
between synthetic and real distributions is unknown–classifier trained on synthetic
receive biased gradients. We propose DAR-GDA, a three-stage augmentation
pipeline that unites model Distillation, Adversarial alignment, and importance
Reweighting that makes diffusion-quality augmentation both fast and optimized
for improving downstream learning outcomes. In particular, a teacher diffusion
model is compressed into a one-step student via score distillation, slashing the time
per-image cost by > 100× while preserving FID. During this distillation (D), the
student model additionally undergoes adversarial alignment (A) by receiving direct
training signals against real images, supplementing the teacher’s guidance to better
match the true data distribution. The discriminator from this adversarial process
inherently learns to assess the synthetic-to-real data gap. Its calibrated probabilistic
outputs are then employed in reweighting (R) by importance weights that quantify
the distributional gap and adjust the empirical loss when training downstream
models; we show that reweighting yields an unbiased stochastic estimator of the
real-data risk, fostering training dynamics akin to those of genuine samples. Ex-
periments validate DAR-GDA’s synergistic design through progressive accuracy
gains with each D-A-R stage. Our approach not only surpasses conventional non-
foundation-model GDA baselines but also remarkably matches or exceeds the GDA
performance of large, web-pretrained text-to-image models, despite using solely
in-domain data. DAR-GDA thus offers diffusion-fidelity GDA samples efficiently,
while correcting synthetic-to-real bias to benefit downstream tasks.

1 Introduction

From early datasets of a few hundred instances [23, 22, 62] to today’s web-scale corpora [17, 56, 73],
data has always been the engine of machine learning. Discriminative models are only as good as the
quantity, quality, and diversity of the samples they see. Data augmentation eases this dependency by
synthesizing additional training examples, aiming to improve the generalization and robustness of
models by exposing them to a more varied set of training instances. Classic hand-crafted transforms,
such as geometric warps, color jitter, flips, exploit invariances of natural images [50, 77] but cannot
create entirely new content. Generative data augmentation (GDA) closes this gap by sampling fresh,
high-fidelity images that improve downstream performance and unlock learning under privacy [111,
94, 35], security [107, 87], or copyright constraints [55, 75].
∗These authors contributed equally.
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Among generative models, diffusion models [31, 84] have emerged as the state-of-the-art, delivering
unparalleled sample quality and mode coverage [18, 32]. However, two obstacles limit their practical
use for augmentation: i) diffusion sampling requires hundreds to thousands of denoising iterations,
significantly inflating computational cost per image [104]; ii) the generator distribution qG inherently
differs from the true data distribution pdata. Unmeasured discrepancies between qG and pdata can seed
spurious artifacts [19] and coverage bias [93, 68], and ultimately skew classifier gradients, leading to
biased generalization.

To overcome these challenges and unlock the potential of diffusion models for GDA, we introduce
DAR-GDA, a unified framework that renders diffusion-quality, efficient generative augmentation by
intertwining diffusion model Distillation, Adversarial alignment, and Reweighting by importance
in GDA. First, score-based Distillation compresses a full teacher diffusion model trained on the
true dataset into an efficient, single-step student generator, drastically cutting wall-time per sample
by more than two orders of magnitude while preserving the Fréchet Inception Distance. Second,
when integrated with the distillation process, Adversarial training further aligns the student model
with the underlying distribution: the student generator not only imitates the teacher’s scores but also
competes against real images, which directly minimizes the Jensen–Shannon divergence with the
true data, further narrowing the gap between qG and pdata. Crucially, the discriminator learned in
this process doubles as a density-ratio estimator; its calibrated output approximates the density ratio
between two distributions, yielding per-sample importance weights. Third, for Reweighting, these
importance weights are applied when training downstream learners on synthesized images from the
fixed student generator, for which reweighting the classification objective with these importance
weights yields an unbiased stochastic estimator of the true data risk. Furthermore, we show that
the combined effect of adversarial alignment and importance reweighting tightens an upper bound
on generalization error relative to conventional GDA. While the proposed DAR-GDA framework
is generally applicable to discriminative modeling, in this work, we focus on one specific task of
classification as the fundamental benchmark for investigating its impact on model generalization.
The source code is available at https://github.com/ruyianry/gda-dar.

Our contributions are as follows:

• We introduce DAR-GDA, a unified framework enabling practical GDA with diffusion
models by concurrently addressing i) their slow sampling speeds and ii) the synthetic-to-real
data bias, integrated via adversarial training.

• We demonstrate how integrating adversarial training with score distillation not only improves
the distilled model through real-data guidance by minimizing JS divergence, but also yields
a discriminator. This discriminator, in turn, enables a sample importance reweighting to
correct for bias present in empirical risk on synthetic samples, forming our three-stage
DAR-GDA approach.

• Experiments confirm progressive performance gains across D-A-R stages, with DAR-GDA
simultaneously demonstrating superior classification performance and efficiency for GDA
on CIFAR-10 and ImageNet-1K.

2 Related work

2.1 Generative Data Augmentation

Early GDA approaches rely on VAEs and GANs [47, 25, 9], which proved valuable for niche
scenarios such as class imbalance, low-shot recognition, and domain shifts [119, 90, 72, 76, 7,
66, 53, 114, 115, 52, 1, 36]. Their impact on large-scale, high-resolution tasks remained limited
because those models struggled to capture complex data distributions. Diffusion models overcome
that limitation: they faithfully reproduce fine detail and avoid mode collapse, enabling advances in
robustness [6, 26, 10, 61], privacy preservation [64], data imbalance [3], and self- or semi-supervised
learning [97, 89, 112, 8]. A growing line of work harnesses foundation models—diffusion generators
pre-trained on web-scale corpora such as Stable Diffusion and GLIDE [67, 63]—and then aligns
them to a downstream domain [5, 34, 98, 71, 122, 6, 29, 108]. While providing strong priors, this
strategy raises several concerns such as licensing and usage constraints and limited applicability in
fields with no web counterpart like scientific diffraction imaging [96]. Crucially, the high inference
cost of iterative diffusion sampling remains, rendering it an economically challenging solution. These
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limitations motivate a task-centric GDA pipeline that i) learns an expressive generator directly from
the classifier’s own training set; and ii) produces diffusion-quality samples at reduced cost.

2.2 Adversarial Training

GANs cast generation as a two-player game in which a discriminator learns to distinguish between real
and generated samples, outputting a probability of a sample being real [25]. This adversarial process
is recognized for minimizing the Jensen-Shannon divergence between the true data distribution and
the generator’s distribution, which is distinct from the reconstruction losses-based generative models
[21]. Beyond its role in training the generator, the GAN discriminator’s output can be interpreted as a
likelihood-free density-ratio estimator [92, 27, 80, 91], which has spurred various techniques such
as post-hoc discriminator-guided rejection sampling or weakly supervised discriminator trained on
reference set to refine generator outputs, yielding fairer or higher-fidelity sample sets [11, 43, 51, 4].
Both rely on training a GAN from scratch and therefore inherit mode-collapse and stability issues
[104] that limit their usefulness for large-scale augmentation. More recent work attaches a separately
trained, GAN-style discriminator to a diffusion backbone to steer sampling [41]; this requires a
distinct secondary training phase for the discriminator, and the valuable density-ratio information it
learns is typically not propagated to inform downstream tasks. Collectively, we see a need for a more
integrated adversarial mechanism that can be synergistically employed with diffusion models, and
applied for enhancing downstream applications.

3 Preliminaries

3.1 Diffusion Models

Diffusion (or score-based) generative models [79, 31, 84, 83] construct a latent Markov chain that
gradually corrupts a data point x0 ∈Rd into noise, and learns to reverse this process to generate new
data. In the forward diffusion, a deterministic schedule {αt, σt}Tt=1 mixes signal and Gaussian noise:

xt = αtx0 + σtϵt, ϵt ∼ N(0, I), (1)
with αt decreases and σt increases with t such that xT approaches standard Gaussian noise.

The reverse process is modeled by a parameterized conditional distribution pϕ(xt−1∣xt) whose
noise-prediction network ϵϕ is trained to predict the noise ϵt added at t [31, 84]:

L(diffusion)(ϕ) = Ex0∼P,ϵt, t[∥ϵt − ϵϕ(xt, t)∥22], (2)

The trained noise predictor ϵϕ is directly related to the score function ∇xt log pϕ(xt), often approxi-
mated as sϕ(xt, t) = −σt−1ϵϕ(xt, t). To generate a new sample, the model iteratively applies this
reverse process, starting from pure noise xT and gradually denoising it using the learned score over T
steps to reconstruct an initial data point x0. While this iterative process yields high-fidelity samples,
performing T (often hundreds to thousands) steps incurs considerable computational cost.

3.2 Score Distillation

Score distillation aims to accelerate the inference of the trained T -step teacher diffusion sampler
by condensing them into an efficient student generator, Gθ. This student, often capable of few- or
single-step synthesis, is trained to replicate the teacher’s learned data distribution, typically by using
the teacher’s score predictions to guide the student’s outputs at various noise levels. This is commonly
obtained by training an auxiliary fake diffusion model, parameterized by ψ, on student’s outputs,

yt = αtGθ(z) + σtϵt, z, ϵt∼N(0, I), (3)
via the same objective as Eq. 2 [58, 110, 121, 105], i.e., L(fake score)(ψ) = Ez,ϵt,t[∥ϵt − ϵψ(yt, t)∥22].
Let ψ∗(θ) be the minimizer w.r.t. ψ for fixed θ. The generator is then updated by minimizing the
score distill (SD) loss, the divergence D between the fake score pψ∗(θ) and the teacher score pϕ:

L(SD)(θ) = Ez,ϵt,t[D(pψ∗(θ)(yt ; t) ∥pϕ(yt ; t))]. (4)
The divergence D can be instantiated as a Kullback-Leibler (KL) divergence [100, 58, 110], Fisher
divergence [121, 120], or score-constructed trajectory-level divergence [42]. In practice, ψ and θ are
initialized from ϕ and alternately updated. This process can yield a one-step generator reproducing
the teacher’s quality at significantly reduced sampling cost [58, 121, 120], offering a promising path
to overcome the efficiency bottleneck of diffusion models in practical GDA.
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3.3 Generalization Risk in Supervised Learning

Let P be the unknown underlying data distribution over input-label pairs (x, y) ∈X ×Y . Given a
hypothesis h ∶ X →R∣Y∣ ∈ H, e.g., a ω-parameterized neural network function hω , the generalization
riskR(h;P) quantifies the expected loss on unseen data using a loss function ℓ ∶ Z × Y → R(such as
cross-entropy), quantifying the penalty for the predicted output h(x) given the true label y.

Since P is inaccessible, learning relies on a finite i.i.d. sample set SP ={(xi, yi)}ni=1 ∼ P . The true
risk is then approximated by the empirical risk, an unbiased estimationRemp(h;SP):

R(h;P) = EP[ℓ(h(x), y)] ≈ n−1
n

∑
i=1
ℓ(h(xi), yi) = Remp(h;SP). (5)

Empirical risk minimization (ERM) [95, 59] is a fundamental principle of statistical learning that
aims to find a hypothesis that minimizes this empirical risk,Remp, with the expectation that a small
empirical risk translates into low true risk and thus good generalization. The ERM principle forms
the operational basis for the vast majority of supervised learning algorithms [60].

4 Distillation, Adversarial Alignment, and Reweighting for GDA

Before presenting our unified framework in Section 4.4, we first motivate its design by detailing
the logical progression that leads to its components. This section begins with a critical reflection
on the implicit biases in conventional GDA (Section 4.1). We then establish a principled, bias-
correction mechanism via density-ratio reweighting (Section 4.2). This solution’s efficacy demands
a generator with high fidelity and mode coverage, pointing directly to state-of-the-art diffusion
models. However, their practical use is barred by prohibitive sampling cost and the lack of a built-in
density-ratio estimator. We then employ adversarial score distillation (Section 4.3) as the technique
that simultaneously resolves both challenges, providing the foundation for the DAR-GDA pipeline.

4.1 Rethinking Learning from Generated Data Augmentation

Given the unknown data distribution (x, y), the generator G defines a distribution QG, from which
we can draw sets of augmenting synthetic samples SQG

= {(xi, yi)} ∼ QG. A common practice to
train a hypothesis, e.g., a classifier, is to minimize the empirical risk on these synthetic samples:

∣SQG
∣−1 ∑
(xi,yi)∈SQG

ℓ(h(xi), yi) ≈ EQG
[ℓ(h(x), y)], (6)

This strategy implicitly assumes that the synthetic distribution QG is a faithful proxy for the true
data distribution P . However, in practice, QG inevitably differs from P . Consequently, optimizing
the objective in Eq. 6 amounts to optimizing with respect to a biased approximation of the true risk
R(h;P) = E(x,y)∼P[ℓ(h(x), y)]. This inherent bias reflects the error in the learning objective that
arises directly from the distributional misalignment between QG and P:

∆bias = EQG
[ℓ(h(x), y)] − EP[ℓ(h(x), y)]. (7)

This distributional misalignment can manifest in several ways. For instance, if certain features or
modes are overrepresented in QG relative to P–that is, in regions where qG(x) > pdata(x), the
hypothesis h may overfit to these dominant synthetic patterns, thereby neglecting rarer but potentially
crucial characteristics of the true data. This issue of imbalance is a recognized challenge, even in
today’s advanced diffusion models [93, 68, 104]. Furthermore, the deviation is exacerbated if QG
generates spurious, incoherent, or low-quality samples, i.e., samples xs for which qG(xs, y) > 0 but
pdata(xs, y) ≈ 0. Training on such artifacts, also reported in recent diffusion models [19, 37, 44], can
lead the hypothesis to learn incorrect correlations, thereby undermining the effectiveness of GDA.

Given these inherent distributional discrepancies, naively treating all synthetic samples as perfect
and equally valuable representatives of P–as implied by Eq. 6–can misguide the learning process.
Therefore, to obtain a more faithful estimate of the true riskR(h;P), and thus mitigate ∆bias(h), it
is crucial to account for variations among individual synthetic samples in their fidelity and alignment
with P . A principled approach involves reweight the contribution of each synthetic sample in the
empirical risk according to its estimated alignment. This naturally gives rise to the need for a
mechanism that can quantify the degree of alignment between each synthetic sample and the true
data distribution, enabling the corresponding correction of the loss terms ℓ(h(x), y).
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4.2 Density-Ratio Reweighting

A natural way to perform this quantification is to compare the marginal densities of synthetic samples
under the two distributions. However, since pdata(⋅) is only known through its empirical distribution
and qG(⋅) is defined implicitly by the generative process, directly quantifying their discrepancy–and
thus correcting for the induced learning bias–is challenging.

To circumvent the need for explicit likelihood estimation, we draw inspiration from the Generative
Adversarial Network (GAN) framework [25], which provides a likelihood-free mechanism for
distinguishing between real and synthetic samples. In GANs, a discriminator D and a generator G
engage in a minimax game: minGmaxD Ex∼pdata(x)[logD(x)] +Ex∼qG(x)[log(1 −D(x))]. For a
fixed generator G, the optimal discriminator D∗ satisfies [25, 113]:

D∗(x) = pdata(x)
pdata(x) + qG(x)

. (8)

This optimal discriminator D∗ captures the probability that a sample x originates from pdata(x)
rather than qG(x), thereby providing an implicit comparison between the two densities.

Leveraging this, the density ratio r(x), which compares the likelihoods of a sample x under pdata
versus qG can be derived from D∗(x):

r(x) ∶= D∗(x)
1 −D∗(x) =

pdata(x)/(pdata(x) + qG(x))
1 − pdata(x)/(pdata(x) + qG(x))

= pdata(x)
qG(x)

. (9)

This ratio acts as an importance weight briding the expectations of the two involved distributions: for
any integrable f :

E(x,y)∼P[f(x, y)] = E(x,y)∼QG
[r(x) f(x, y)], (10)

so weighting synthetic samples by r(x) converts expectations under qG into those under pdata. Intu-
itively, an r(x) > 1 amplifies regions underrepresented by qG, whereas an ratio r(x) < 1 downweights
overrepresented or atypical synthetic examples–thereby correcting distributional misalignment.

To apply this approach to GDA, we estimate r(x) via the discriminator D (denote the estimate
rD(x)) and reweight the synthetic loss contributions:

L(reweight)(h;G,D) ∶=∣SQG
∣−1 ∑

x∈SQG

rD(x)ℓ(h(x), y)

≈EQG
[rD(x)ℓ(h(x), y)] = E(x,y)∼P[ℓ(h(x), y)] (11)

Optimizing h on synthetic samples under this reweighted objective aligns training on the synthetic
distribution QG with learning directly from the true data distribution P , thereby mitigating the bias
∆bias(h) that arises from their distributional discrepancy.

In practice, r(x) is estimated using a parameterized discriminator Dη(x) ≈D∗(x) which introduces
additional variance into the loss computation. To manage the inherent bias-variance trade-off, we
employ two variance reduction techniques:

Truncation: To prevent large r(x) values from dominating the loss and destabilizing training, we
clip the importance weights as r̄(x) =min(r(x), γ), for a threshold γ ≥ 1.

Self-normalization: Within each mini-batch of k synthetic samples {xj}kj=1, we apply batch-wise
self-normalization to the truncated weight: r̃(x) = r̄(x)/∑kj=1 r̄(xj). This normalizes the sum of
weights in a mini-batch, further stabilizing the updates.

The efficacy of importance reweighting hinges on a well-behaved density ratio r(x), which requires
significant overlap between the generative (QG) and true (P) distributions [24]. Generators trained
with purely adversarial objectives often fail this prerequisite, suffering from mode collapse or support
mismatch, especially in the early, noise-producing training stages [116, 70, 85, 86, 38, 2, 48]. This
makes their discriminators poor estimators for r(x). Diffusion models, on the other hand, with
their high sample quality and excellent mode coverage [82, 46], emerge as ideal candidates for qG.
However, they present two fundamental obstacles: i) Efficiency: they are computationally prohibitive
for augmentation sampling; and ii) Mechanism: they are trained without an adversarial component,
leaving no mechanism to estimate the r(x) required for importance reweighting. These challenges
motivate a unified approach that simultaneously addresses the efficiency problem and the density-
ratio-estimation problem. We therefore bridge this by integrating adversarial training directly within
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the score distillation framework to compress a pre-trained diffusion teacher model into a fast student
generator, while concurrently learning the discriminator needed for the bias-correcting reweighting.

4.3 Adversarial Score Distillation for Diffusion Models

The Reweighting stage of our DAR-GDA framework necessitates a discriminator capable of estimat-
ing the density ratio r(x). As established, vanilla diffusion models not only lack this adversarial
component but are also prohibitively slow due to their iterative sampling process, leading to high
per-sample costs. To address both the need for a density-ratio importance estimator and the demand
for computationally efficient augmentation, we therefore bridge the score diffusion distillation proce-
dure, detailed in Section 3.2, with adversarial training, drawing inspiration from methodologies that
integrate GAN-like objectives with diffusion processes [99].

Critically, the student generator Gθ is initialized from and guided by the high-fidelity, pre-trained
teacher. This provides a powerful starting point, allowing the adversarial training to bypass the unsta-
ble, error-prone early stages–where a generator starting from noise struggles to produce informative
samples–that typically plague purely adversarially trained models [85, 86].

In this process, the trained iterative teacher parameterized by ϕ is compressed into a one-step, fast
student generator Gθ, while a discriminator Dη is learned simultaneously. This is framed as the
following minimax objective:

min
θ

max
η

λ1L(SD)
ϕ,ψ (θ) + λ2L

(adv.)(θ, η), (12)

where L(SD)
ϕ,ψ is the score-distillation loss defined in Eq. 4, compelling the student Gθ to match the

teacher’s score estimates. The adversarial loss, L(adv.)(θ, η) is defined as:
L(adv.)(θ, η) =Ex∼P, ϵ∼N(0,I)[logDη(αtx + σtϵ; t)] +Ez∼N(0,I), ϵ∼N(0,I)[log(1 −Dη(yt; t))],

(13)
where yt = αtGθ(z) + σtϵ is a noisy sample from the student generator Gθ at t, and t ∼ π is a
sampling distribution over timesteps. This design allows the discriminator to compare real and fake
samples across various noise levels–a design shown to enhance training stability [99, 106]. In the
specific case where the adversarial game operates only on the clean image space, π simplifies to
a Dirac delta distribution centered at t = 0. The adversarial gradient of the student is obtained by
minimizing the negative of the second expectation in Eq. 13, i.e., L(adv.)

G (θ) = −Ez,t[logDη(yt; t)].
The discriminator Dη can be realized as a standalone network that processes the entire input to
produce a single global probability [42], or as an integrated component sharing the student’s U-Net
encoder [118]. In this latter, integrated approach, a final probability is obtained by applying patch-
wise aggregation to the encoder’s output logits. The parameter vector η denotes all the weights of
this discriminator, including any parameters shared with the student generator.

The adversarial score distillation strategy offers several synergistic advantages. The student generator
Gθ produces samples in a single step, drastically reducing computational costs compared to its
iterative teacher and making diffusion models practical for GDA. The synergy of adversarial training
and score distillation also drives the student distribution qGθ

closer to pdata by directly minimizing
the Jensen–Shannon divergence, while preserving the teacher’s high-fidelity details. Empirically,
adversarial distillation has shown stable behaviour, with one-step students generally matching–and
frequently reported to surpass–their teachers’ quality in FID [120, 42, 109, 58]. Crucially, this process
yields the discriminator Dη as a concurrent byproduct, eliminating the need for a separate training
phase. This discriminator provides the exact mechanism required for the reweighting stage, furnishing
the density-ratio estimate in Eq. 9 needed to debias the downstream classifier’s training.

4.4 The DAR-GDA Framework

Having introduced the modular components of Distillation, Adversarial alignment, and Reweighting,
we now synergistically combine them into the DAR-GDA framework. The DAR-GDA framework
provides a unified pipeline: an efficient student generator Gθ (from Distillation) that is aligned
with pdata (via Adversarial training), and a co-trained discriminator Dη that enables bias-correcting
reweighting. This integrated design enhances generalization by mitigating the key error sources
inherent in learning from synthetic data. Furthermore, initializing Gθ from a proficient diffusion
teacher significantly stabilizes adversarial training and mitigates classic GAN pathologies such
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Figure 1: Overview of the DAR-GDA framework. (D) A multi-step teacher diffusion model is
distilled into an efficient one-step student generator. (A) The student is adversarially aligned with
the true data distribution using a discriminator. (R) The discriminator’s outputs are then used as
importance weights to train a downstream classifier.

as mode collapse and catastrophic forgetting [88]. We illustrate the overall idea in Figure 1 and
summarize the complete algorithmic procedure in Appendix B.

This integrated design enhances generalization by mitigating the key error sources inherent in learning
from synthetic data. We can formalize this improvement by analyzing the expected risk EP[ℓ(h)]
following [10, 117, 74]. This true risk can be decomposed as two summands:

EP[ℓ(h)] = [EP[ℓ(h)] −EP[ℓ(h)QGθ
]] + [EP[ℓ(h)QGθ

]] , (14)
The first summand reflects the impact of distributional mismatch. For a bounded loss ∣ℓ∣ ≤ L:

∣EP[ℓ(h)] −EP[ℓ(h)QGθ
]∣ ≤ 2LDTV(P ∥QGθ

) ≤ 2L
√

2DJS(P ∥QGθ
), (15)

by variational characterization of total variation (TV) distance and Pinsker’s inequality. Adversarial
score distillation directly minimizes the Jensen-Shannon (JS) divergence between P and QG, hence
tightening the upper bound on the distribution mismatch compared to using non-adversarially trained
generators or the original teacher diffusion model. The second term, the biased synthetic risk, is the
objective naively optimized by conventional GDA (Eq. 6). Our Reweighting stage directly corrects
this. By employing the objective in Eq. 11, we replace the minimization of this biased term with an
unbiased stochastic estimator of the true data risk, EP[ℓ(h)].
Thus, DAR-GDA enhances generalization through a dual mechanism: the Adversarial component
minimizes the distributional bias (Term 1), while the Reweighting component provides an unbiased
risk estimator for hypothesis training (correcting Term 2). Coupled with the practical benefit of
> 100× reduction in per-sample generation cost from Distillation, DAR-GDA is positioned as a
powerful and practical tool for GDA.

5 Experiments

We evaluate DAR-GDA on CIFAR-10 and ImageNet-1K, comparing it with i) standard data-
augmentation pipelines, ii) strong diffusion-based GDA baselines, and iii) a state-of-the-art GAN. The
analysis proceeds in two stages. We benchmark it against conventional data augmentation methods
and existing GDA baselines. We also assess its performance and adaptability with various underlying
generative models. We additionally probe how DAR scales under dynamic augmentation on smaller
datasets for its practical feasibility.

Datasets. We use the canonical train/val splits of CIFAR-10 [49] and ImageNet-1K [17]; no external
or test data are introduced at any stage, including teacher training, distillation, or classification.

Evaluation. Classification performance is reported as top-1 accuracy for CIFAR–10 and top-1/top-5
accuracy for ImageNet-1K. Generator quality is measured with Fréchet Inception Distance (FID)[30].

Generative Models. For diffusion-based GDA, we adopt the publicly released checkpoints of
DDPM++–EDM for CIFAR-10 [39] and DDPM++–EDM2-XXL for ImageNet-1K [40]. On CIFAR-
10 we include R3GAN [33], GAN state-of-the-art achieving the best reported FID. We omit GANs on
ImageNet because no open-source 512× 512 model matches diffusion quality, and de novo training is
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Table 1: CIFAR-10 classification accuracy with ResNet-18 and VGG-16, using training sets aug-
mented by synthetic data equal to 1× the original dataset size (additive augmentation) on various
generative models and adversarial-distillation methods under static versus dynamic data generation
schemes. ∗ indicates the use of a web-pretrained text-to-image model, such as GLIDE [63] and
Stable Diffusion (SD) [67] which are to be carefully compared to other generative models trained
only on the original data. The best result is shown in bold.

Generative Model DAR progression static (gen. once) dynamic (re-gen. each epoch)
Distill Adv. align Reweight ResNet-18 VGG-16 ResNet-18 VGG-16

Real only - - - 95.00±0.15 93.76±0.20 95.00±0.45 93.76±0.50

R3GAN [33] (FID=1.96) - " % 95.18±0.50 93.90±0.42 95.61±0.98 94.11±1.12
" " 95.32±0.47 93.86±0.39 95.72±1.00 93.73±1.26

GLIDE + real guidance [29]∗ - - - 95.77±0.25 94.50±0.41 - -
SD + ActGen [34]∗ - - - 95.92±0.42 94.68±0.39 - -

Diffusion Model [39]
(FID=1.81)

% % % 95.37±0.23 93.95±0.32 96.16±0.76 94.98±0.79

CTM [42]
(FID=1.73)

% % 95.32±0.39 93.97±0.29 95.84±0.86 95.08±1.02
" % 95.43±0.21 94.09±0.26 96.35±0.98 95.15±1.13
" " 95.88±0.22 94.28±0.24 96.57±1.01 95.33±1.07

SiDA [120]
(FID=1.39)

% % 95.48±0.25 94.18±0.28 96.29±0.68 95.22±0.79
" % 95.84±0.36 94.53±0.36 96.40±1.16 95.40±1.02
" " 96.21±0.25 94.64±0.20 96.73±1.15 95.73±1.08

notoriously unstable at that scale. We also include selected finetuned text-to-image models pre-trained
on web-scale image data. Please note that comparisons with these models may be subject to concerns
like additional information from pre-training data and potential test-set leakage.

Table 2: ImageNet-1K classification accuracy with ResNet-
50 and ViT-S/16, using training sets augmented by synthetic
data equal to 1× the original dataset size (additive augmenta-
tion) on various generative models under the static generation.
∗ denotes the use of a web-pretrained text-to-image model,
Imagen [69] or Stable Diffusion (SD) [67] which are to be
carefully compared to other generative models trained only
on the original data. The best result is shown in bold.

Generative Model DAR progression
Distill Adv. align Reweight Top-1 Acc. Top-5 Acc.

ResNet-50 classifier
Real only - - - 76.37±0.03 92.86±0.08
Imagen + finetune [5]∗ - - - 78.17 -
SD + ActGen [34]∗ - - - 78.34±0.32 94.12±0.38

Diffusion Model [40]
(FID=1.91)

% % % 77.12±0.15 93.95±0.20

SIDA [120]
(FID=1.37)

% % 77.15±0.27 93.74±0.19
" % 77.89±0.18 93.90±0.24
" " 78.03±0.23 94.13±0.32

ViT-S/16 classifier
Real only - - - 79.91±0.04 94.48±0.08
Imagen + finetune[5]∗ - - - 81.00 -
SD + ActGen [34]∗ - - - 81.17±0.51 95.32±0.31

Diffusion Model [40]
(FID=1.91)

% % % 80.50±0.18 95.18±0.25

SIDA [120]
(FID=1.37)

% % 80.46±0.23 95.19±0.23
" % 80.99±0.32 95.38±0.43
" " 81.17±0.45 95.36±0.40

Implementation Details.

We instantiate the (D) and (A) steps
of our DAR-GDA with two re-
cent leading algorithms: CTM [42],
a trajectory-based score distillation
with a standalone discriminator, and
SiDA [120], a Fisher-divergence-
minimizing score-based distillation
with encoder-sharing discriminator
operating in noise space. Both are
tested on CIFAR-10; SiDA alone
is used on ImageNet-1K owing to
CTM’s current memory footprint. On
CIFAR-10, we set α = 1.2 for SiDA
and train with Adam (lr=1e-5) [45]
optimizer. CTM is trained for 256
steps per batch with a student learn-
ing rate of 3e-4 and the discrimina-
tor learning rate 2e-3 (batch size 128).
For ImageNet-1K we distill EDM2-
XXL with SiDA across 8 A100-80GB
GPUs: α = 1.0, per-GPU batch size
64, gradient accumulation every 128
iterations using Adam (lr=5e-5) optimizer. For CIFAR-10 we train ResNet-18 [28] and VGG-16 [78];
for ImageNet-1K we use ResNet-50 [28] and ViT-S/16 [20] to evaluate the performance with and
without the (R)eweighting component with self-normalization and γ = 1. CIFAR-10 models are
trained for 300 epochs with batch size 128 using momentum SGD (lr=0.1). The hyperparameters λ1
and λ2 for the adversarial alignment objective follow the settings from prior work. On ImageNet-1K,
ResNet-50 is trained for 90 epochs with batch size 4096 and initial learning rate 1.6, while ViT-S/16
is trained for 300 epochs with batch size 1024, AdamW [57], and initial learning rate 3e-3. We
apply self-normalization and set γ to be 1 for obtaining r(x) for reweighting. Diffusion outputs
are generated at 32 × 32 for CIFAR-10 and 512 × 512 for ImageNet; the latter are down-sampled to
224 × 224 before classification to match baseline protocols. Experiments use NVIDIA A100-80GB
GPUs-single-GPU for CIFAR-10, 8-GPU (DDP) for ImageNet-1K implemented in PyTorch 2.1 [65].
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Table 4: CIFAR-10 classification accuracy with ResNet-18 and VGG-16, using training sets sub-
stituted by synthetic data equal to 1× the original dataset size on various generative models and
adversarial-distillation methods under static and dynamic data generation. The best result is in bold.

Generative Model DAR progression static (gen. once) dynamic (re-gen. each epoch)
Distill Adv. align Reweight ResNet-18 VGG-16 ResNet-18 VGG-16

Real only - - - 95.00±0.15 93.76±0.20 95.00±0.45 93.76±0.50

R3GAN [33] (FID=1.96) - " % 90.09±0.65 87.75±0.39 90.26±0.84 89.79±0.58
" " 90.29±0.71 87.97±0.58 92.91±0.72 88.03±0.61

Diffusion Model [39]
(FID=1.81)

% % % 91.78±0.25 90.60±0.22 95.88±0.19 94.26±0.21

CTM [42]
FID=1.73

% % 90.83±0.39 89.65±0.30 93.70±0.24 93.18±0.28
" % 91.03±0.44 89.78±0.46 94.00±0.70 93.27±0.67
" " 91.37±0.43 90.26±0.52 94.32±0.72 93.38±0.52

SiDA [120]
FID=1.39

% % 93.20±0.28 91.71±0.33 95.78±0.35 94.46±0.27
" % 93.50±0.35 91.88±0.38 96.39±0.60 95.25±0.52
" " 93.77±0.37 92.31±0.48 96.68±0.63 95.72±0.48

More detailed experimental setups are provided in Appendix C. DAR-GDA thus offers a practical,
drop-in GDA solution, achieving diffusion-level fidelity with efficiency bias correction.

5.1 Additive Augmentation Results

Table 3: GPU hours to generate 1:1 augmenting training data
replica. SD involves downsampling for CIFAR-10.

Dataset R3GAN EDM/EDM2 CTM-EDM SiD-EDM SD
CIFAR-10 26.0s 3102s 58.3s 39.1s 6.8h
IN1K - 291h - 8.7h 1290h

We evaluate DAR-GDA by supple-
menting the original training set with
an equal volume of synthetic samples
that replicate the original label distri-
bution, using both static (one-time)
and dynamic (per-epoch) generation strategies. Tables 1 and 2 present classification results for
CIFAR-10 and ImageNet-1K. DAR-GDA consistently boosts accuracy across both datasets and
hypothesis sets. On CIFAR-10, it improves ResNet-18 by +1.7 pp and VGG-16 by +1.9 pp. Similar
gains are observed on ImageNet-1K for ResNet-50 (+1.7 pp) and ViT-S/16 (+1.3 pp). Notably, our
in-domain DAR-GDA (trained solely on task-specific data) matches or outperforms pre-trained large
text-to-image models, particularly where baseline diffusion models without DAR are suboptimal.
Dynamic generation consistently yields better results than static, underscoring the value of increased
diversity. Also, SiDA leads to better classification performance than CTM, correlating with SiDA’s
superior FID score.

Table 5: ImageNet-1K classification accuracy with ResNet-
50 and ViT-S/16, using training sets substituted by synthetic
data equal to 1× the original dataset size on various genera-
tive models and adversarial-distillation methods under static
versus dynamic data generation schemes.

Generative Model DAR progression
Distill Adv. align Reweight Top-1 Acc. Top-5 Acc.

ResNet-50 classifier
Real only - - - 76.37±0.03 92.86±0.08

Diffusion Model [40]
( FID=1.91)

% % % 66.41±0.47 86.58±0.35

SIDA [120]
FID=1.37

% % 66.22±0.50 86.30±0.42
" % 66.42±0.59 86.54±0.38
" " 66.50±0.87 86.82±0.66

ViT-S/16 classifier
Real only - - - 79.10±0.03 94.43±0.08

Diffusion Model [40]
(FID=1.91)

% % % 67.89±0.38 85.55±0.29

SIDA [120]
FID=1.37

% % 67.54±0.43 85.09±0.39
" % 67.73±0.50 85.30±0.47
" " 68.01±0.64 85.89±0.56

Table 3 highlights the substantial GPU
time savings for synthetic data gener-
ation. Distillation achieves synthesiz-
ing speeds comparable to fast GANs,
positioning (D)istillation as a key to
achieve an economical solution for
high-quality GDA.

5.2 Substituting
Augmentation Results

We next consider evaluate DAR-GDA
in a full data replacement scenario,
where hypotheses are trained solely
on synthetic samples equivalent in vol-
ume and label distribution to the origi-
nal training set. Tables 4 and 5 report the classification performance for CIFAR-10 and ImageNet-1K,
respectively. While DAR-GDA consistently boosts accuracy over baseline synthetic data, a perfor-
mance gap to training on real data is observed, this drop being more significant on ImageNet-1K.
Notably, on ImageNet-1K, DAR-GDA enables hypotheses trained on synthetic data to match the
performance achieved with data from the original, non-distilled multi-step diffusion teacher model.

On CIFAR-10, SiDA-generated data significantly outperforms CTM data, despite both models
being distilled from the same teacher. Remarkably, fully-synthetic GDA with SiDA with dynamic
generation can surpass the performance of GDA training on the real dataset alone.
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Figure 2: Classification accuracy of SiDA-distilled EDM/EDM2 models on CIFAR-10/IN-1K with
varying synthetic dataset sizes (measured as a % of the original training set). Performance is shown
under two schemes: additive augmentation (Figs. 2a, 2b) and full data substitution (Figs. 2c, 2d).

5.3 Further Empirical Studies

We present an ablation study on augmenting size in Fig. 2. For additive augmentation, performance
increases with more synthetic data, and our method’s components yield incremental gains. Conversely,
under data substitution, performance generally declines with increasing synthetic data. This decline
is more significant for ImageNet, where generative models face greater difficulty matching the true
data distribution. Notably, on CIFAR-10, a dynamic generation schedule improves performance with
up to 75% of the synthetic data replacement, where diversity from new per-epoch samples appears to
offset the loss of real data. Additional empirical studies are presented in Appendix D.

6 Discussion and Conclusion

Limitations and Ethical Considerations. Our methodology concentrates on GDA itself, rather than
on the development of new generative models. Hence, we leveraged state-of-the-art EDM diffusion
models as the teacher. While this approach entails a high, one-time pre-training cost, our framework
does not address this; rather, our focus is on making these powerful, pre-trained models highly
efficient for low-latency applications like GDA. A related limitation is that our validation, while
rigorous, was constrained to the two large-scale datasets for which these specific teacher weights
are publicly available, though the observed patterns were consistent and supported our hypotheses.
Ethically, our GDA framework contributes positively to content safety by enabling stronger and more
reliable discriminative models for detecting and filtering harmful or NSFW material. Nevertheless,
because the generator component is trained to replicate the visual characteristics of harmful content
for the purpose of improving filtering, it inherently carries the capability to reproduce such material.
To ensure responsible use, the trained generator should be securely stored to prevent misuse.

Future Work. Looking ahead, the core principles of DAR-GDA are fundamentally domain-agnostic.
Our framework treats the teacher model as a "black box" for score predictions. This modularity
allows the framework to be applied beyond vision, for instance, to emerging diffusion models in
domains like protein [101] and molecule generation [12], simply by replacing the U-Net backbone
with a domain-specific architecture. This is particularly promising for data-scarce fields like medicine
(e.g., MRI or X-ray synthesis), where a distilled student model could be shared to enable "pseudo
data sharing" without violating patient confidentiality. Beyond new domains, the framework is
applicable to a broader range of conditional tasks. For instance, in text-to-image generation, the
discriminator component could be adapted to evaluate image quality and prompt alignment, e.g.,
assessing p(image ∣ prompt). The same principle applies to dense prediction tasks like segmentation,
where the challenge shifts towards pseudo-labeling from foundation models or other forms of weak
supervision to create the necessary training signals.

Conclusion. In this paper, we addressed two primary hindrances to the practical application of
current diffusion models in GDA: suboptimal sampling efficiency and potential misalignment be-
tween generated and target data distributions. We introduced DAR-GDA, a three-stage synergistic
framework where adversarial alignment (A) serves as a crucial bridge connecting model distillation
(D)—to enhance sampling speed—and sample reweighting (R)—to correct distributional shifts.
Our experiments demonstrated that the progressive integration of these DAR components leads to
consistent improvements in GDA performance. Beyond the class-conditional models explored, this
work may inspire the application of similar principled strategies to a wider array of diffusion-based
generative models for effective data augmentation.
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Justification: The experimental data are all from public datasets. Open access to the code is
provided.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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results?
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• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars were reported and the results are discussed comprehensively.
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• The answer NA means that the paper does not include experiments.
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information for the computational resources in
Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics with no ethical issues.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential societal impacts and negative societal
impacts of the method proposed in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve releasing models or data with high misuse risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets used are properly licensed and cited, including datasets
and model weights used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new asset is introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or human subjects research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects research involved; IRB approval not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: Large Language Models are not used as a core component of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A More Mathematical Discussions

A.1 Detailed Deriavations for Eq. 11

By the law of large numbers, the empirical reweighted loss converges to its population expectation
under QG:

∣SQG
∣−1 ∑
(x,y)∈SQG

rD(x) ℓ(h(x), y) ≈ E(x,y)∼QG
[rD(x) ℓ(h(x), y)]. (16)

Substituting the definition of the density ratio r(x) = pdata(x)/qG(x) gives

E(x,y)∼QG
[r(x) ℓ(h(x), y)] = ∫ r(x) ℓ(h(x), y) qG(x, y)dxdy

= ∫
pdata(x)
qG(x)

ℓ(h(x), y) qG(x, y)dxdy

= ∫ pdata(x) qG(y ∣ x) ℓ(h(x), y)dxdy. (17)

The term pdata(x) adjusts for the marginal discrepancy between pdata and qG, ensuring that the
contribution of each sample x in the expectation reflects its true data likelihood. Hence, Eq. (17)
represents the unbiased risk with respect to the true data marginal:

E(x,y)∼QG
[r(x) ℓ(h(x), y)] = Ex∼pdata(x)[Ey∼qG(y∣x)[ℓ(h(x), y)]]. (18)

Assume the generator is sufficiently well-trained based on the strong conditionally pre-trained
teacher and is class faithful, i.e., (x, y) ∼ QG, the inner expectation naturally approximates
Ey∼pdata(y∣x)[ℓ(h(x), y)]. Consequently, the reweighted risk converges to the true expected risk:

E(x,y)∼QG
[rD(x) ℓ(h(x), y)] ≈ E(x,y)∼P[ℓ(h(x), y)]. (19)

This establishes that the reweighting mechanism based on the discriminator-estimated ratio rD(x) cor-
rects for the marginal distributional shift between qG(x) and pdata(x), thereby aligning optimization
on QG with learning on P .

A.2 Detailed Derivation for Eq.15

Let (Ω,F , µ) be a measurable space and assume P,Q admit densities p = dP
dµ

and q = dQ
dµ

w.r.t. µ.

Define the total variational distance:
DTV(P∥Q) = 1

2 ∫
Ω
∣p − q∣dµ = 1 − ∫

Ω
min{p, q}dµ. (20)

For the bounded loss ∣ℓ∣ ≤ L,

∣EP[ℓ(h)] −EQ[ℓ(h)]∣ = ∣∫ ℓ(h(x), y)d(P −Q)∣ (21)

≤ ∫ ∣ℓ(h(x), y)∣ ∣d(P −Q)∣ (22)

≤ L∫ ∣d(P −Q)∣ (23)

= 2LDTV(P∥Q). (24)

By Pinsker’s inequality [13], for anyR,S with densities r, s,

DTV(R∥S) ≤
√

1
2
DKL(R∥S). (25)

Equivalently, DKL(R∥S) ≥ 2DTV(R∥S)2.

Fix π ∈ (0,1) and set the mixtureM= πP + (1 − π)Q with density m = πp + (1 − π)q. Define the
π-Jenson-Shannon divergence

DJS,π(P∥Q) = πDKL(P∥M) + (1 − π)DKL(Q∥M). (26)

Applying Pinsker’s to each KL term and then expressing the two TVs through DTV(P,Q):
DTV(P∥M) = 1

2 ∫ ∣p −m∣dµ =
1
2 ∫ ∣(1 − π)(p − q)∣dµ = (1 − π)DTV(P,Q),

DTV(Q∥M) = 1
2 ∫ ∣q −m∣dµ =

1
2 ∫ ∣π(q − p)∣dµ = πDTV(P,Q).

(27)
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Hence,
DJS,π(P∥Q) ≥ π ⋅ 2DTV(P∥M)2 + (1 − π) ⋅ 2DTV(Q∥M)2 (28)

= 2(π(1 − π)2 + (1 − π)π2)DTV(P∥Q)2 (29)

= 2π(1 − π)DTV(P∥Q)2. (30)

For the standard Jensen-Shannon divergence, i.e., π = 1
2

,
DJS(P∥Q) ≥ 1

2
DTV(P∥Q)2 (31)

DTV(P∥Q) ≤
√
2DJS(P∥Q) . (32)

Combining the results, we have

∣EP[ℓ(h)] −EQ[ℓ(h)]∣ ≤ 2LDTV(P∥Q) ≤ 2L
√
2DJS(P∥Q) . (33)

Lastly, since any quantity x is trivially upper-bounded by its absolute value, i.e., x ≤ ∣x∣, we relate
Eq. 33 to the first summand in Eq. 15 by ∣EP[ℓ(h)] −EQ[ℓ(h)]∣ ≥ EP[ℓ(h)] −EQ[ℓ(h)], giving a
valid upper bound for the non-absolute risk difference.

B Algorithmic Description of GDA-DAR

We summarize the overall training scheme in Algorithm 1, which illustrates a dynamic, alternating
adversarial optimization. Kindly note that the discriminator update is presented in this explicit,
separate form of alternating optimization for conceptual clarity, which corresponds to an architecture
whereDη is a standalone network [42]. In alternative formulations mentioned in Section 4.3–when the
discriminator is integrated into the student’s U-Net and shares an encoder [118, 120]–its parameters
η are shared with the student’s parameters θ. In that scenario, the separate discriminator update is
omitted, and the adversarial loss is incorporated into the total generator loss to be optimized jointly.

C Experimental Details

C.1 Details of the Datasets

CIFAR-10 consists of 60,000 RGB images, each with a resolution of 32 × 32 pixels. The dataset is
evenly distributed across 10 distinct classes, with each class containing 6,000 images. By default,
these are split into 5,000 training samples and 1,000 test samples per class, offering a balanced and
computationally efficient benchmark for evaluating machine learning algorithms.

ImageNet-1K is a dataset comprising 1.28 million images labeled across 1,000 object categories.
Each image is annotated with one or more class labels, enabling comprehensive studies of object
recognition in diverse real-world scenarios.

C.2 Details of the Metrics

We assess model performance based on accuracy. For ImageNet-1K, which contains 1,000 possible
classes, we report both Top-1 and Top-5 accuracies.

We evaluate the generative models based on the Fréchet Inception Distance (FID) [30], a widely used
metric to evaluate the quality of images generated by generative models. This is based on the distance
between the feature distributions of real and generated images in the latent space of a pretrained
Inception network.

Table 3 details the GPU hours required to generate the augmenting dataset. For CIFAR-10, computa-
tions were performed on a single 80GB-A100 GPU. For other datasets, we utilized eight 80GB-A100
GPUs, employing the maximum possible batch size that is a power of two.

C.3 Details of the Implementation

For CIFAR-10, we set α = 1.2 for SiDA and train using the Adam optimizer with a learning rate
of 1 × 10−5. CTM is trained with a batch size of 128 for 256 steps per batch, using a student
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Algorithm 1 Generative data augmentation in supervised training with GDA-DAR framework.

Input: Teacher diffusion model ϵϕ; real dataset SP ; hyperparameters: learning rates αθ, αη, αh,
loss weights λ1, λ2, λaug, truncation threshold γ; number of training iterations Ngen,Nclf.

Phase 1: Adversarial Score Distillation (D & A stages)
Initialize student generator Gθ and auxiliary score network ϵψ from teacher ϵϕ.
Initialize discriminator Dη .
for i = 1, . . . ,Ngen do

Sample real batch {xj}Bj=1 ∼ SP ; noise batch {zj}Bj=1 ∼ N(0, I).
Generate synthetic batch {x̂j = Gθ(zj)}Bj=1.
// Update Discriminator
Compute adversarial loss L(adv.)(θ, η) using Eq. 13 on real and synthetic batches.
Update discriminator: η ← η − αη∇η (−L(adv.)(θ, η)).
// Update Student Generator
Compute score distillation loss L(SD)(θ) using Eq. 4.
Compute generator’s adversarial loss L(adv.)

G (θ) = −Ez,t[logDη(yt)].
Compute total generator loss LG = λ1L(SD)(θ) + λ2L(adv.)

G (θ).
Update generator: θ ← θ − αθ∇θLG.

end for

Phase 2: Reweighted Classifier Training (R stage)
Initialize discriminative hypothesis (classifier) h.
Freeze parameters θ and η.
for i = 1, . . . ,Nclf do

// Real Data Path
Sample real batch {xj , yj}Bj=1 ∼ SP .
Compute real loss L(real) = 1

B ∑
B
j=1 ℓ(h(xj), yj).

// Synthetic Augmentation Path
Let synthetic batch size Baug = ⌊λaugB⌋.
Sample noise batch {zs, ys}Baug

j=1 ∼ N(0, I) ×Cat(Y).
Generate synthetic batch {x̂s}Baug

j=1 = Gθ({zs}
Baug
j=1 ).

// Compute Importance Weights for synthetic batch
for j = 1, . . . ,Baug do

Compute density ratio rj =Dη(x̂s,j)/(1 −Dη(x̂s,j)).
Truncate weight r̃j =min(rj , γ).

end for
if self_norm then

Self-normalize: r̃j ← r̄j/∑Baug

k=1 r̃k for j = 1, . . . ,Baug

end if
Compute reweighted loss L(reweight) = ∑Baug

j=1 r̃j ⋅ ℓ(h(x̂s,j), ys,j).
// Combined ppdate of the hypothesis h
Compute total loss Ltotal = L(real) + L(reweight).
Update hypothesis: h← h − αh∇hLtotal.

end for
Output: Trained hypothesis h.

learning rate of 3 × 10−4 and a discriminator learning rate of 2 × 10−3. For ImageNet-1K, we distill
EDM2-XXL using SiDA across 8 A100-80GB GPUs with α = 1.0, per-GPU batch size 64, and
gradient accumulation every 128 iterations, using Adam with learning rate 5 × 10−5. CIFAR-10
models are trained for 300 epochs with a batch size of 128 using momentum SGD (learning rate 0.1).
Hyperparameters λ1 and λ2 for adversarial alignment follow prior work.

For ImageNet-1K, ResNet-50 is trained for 90 epochs with batch size 4096 and initial learning rate
1.6, while ViT-S/16 is trained for 300 epochs with batch size 1024, using AdamW [57] and initial
learning rate 3 × 10−3. Self-normalization is applied with γ = 1 to obtain r(x) for reweighting.
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Diffusion outputs are generated at 32×32 resolution for CIFAR-10 and 512×512 for ImageNet, with
the latter downsampled to 224 × 224 before classification to match baseline protocols.

C.3.1 Classifier Training

The hyperparameters used for training the hypotheses, i.e., the classification models, on the CIFAR-10
and ImageNet-1K datasets are detailed in Tables A1 and A2, respectively. Models are trained using a
Stochastic Gradient Descent (SGD) optimizer across 90 epochs. The learning rate is programmed to
initially ramp up from 0.0 to 0.4 over the first five epochs, followed by decrements of 0.1 at the 30th,
60th, and 80th epochs.

For CIFAR-10 training, we utilize standard augmentation techniques including padding each image
by 4 pixels on all sides, then performing a random 32 × 32 crop from either the padded image or
its horizontal flip, following the methods described in [28]. For ImageNet-1K, the models undergo
training using a 224 × 224 random crop, applied with bilinear interpolation, from either the original
image or its horizontal flip.

The detailed recipes of the hypothesis training are reported in Table A1 and Table A2 respectively.

Table A1: Training recipes for ResNet-18 and VGG-16 on CIFAR-10.
Model ResNet-18 VGG-16
Batch size 128 128
Epochs 300 300
Optimizer Momentum SGD Momentum SGD
Learning rate 0.1 0.1
LR scheduler CosineAnnealingLR CosineAnnealingLR
Nesterov True True
Weight decay 5e-4 5e-4

Table A2: Training recipes for ResNet-50 and ViT-S/16 on ImageNet-1K.
Model ResNet-50 ViT-S/16
Batch size 4096 1024
Epochs 130 300
Optimizer Momentum SGD AdamW
Learning rate 1.6 0.003
LR scheduler CosineannealingLR CosineAnnealingLR
Weight decay 1e-4 0.3
Warmup epochs 5 30
Label smoothing 0 0.11
Mixup probability 0 0.2
Cutmix α 0 1.0

C.3.2 Generative models training

For the base diffusion model, we adopt the public weight for EDM Diffusion on CIFAR-10 and
EDM2 on ImageNet-1K for their state-of-the-art performance.

For experiments on the CIFAR-10 dataset (see Tables 1 and 4), we set α = 1.2 for SiDA and train
using the Adam optimizer with a learning rate of 1e-5. The batch size is set to 256, and gradient
accumulation is performed every iteration (i.e., accumulation round = 1). We do not use mixed
precision training (fp16) for SiDA on CIFAR-10. Dropout and data augmentation settings follow
those used in EDM for CIFAR-10. All other SiDA-specific hyperparameters are kept consistent with
the original implementation as described in [120].

For CTM, CTM is trained with batch size 128 for 256 steps per batch, using a student learning rate of
3 × 10−4 and a discriminator learning rate of 2 × 10−3 Mixed precision training (fp16) was employed
to match the original setup. The exponential moving average (EMA) decay rate is 0.999. Other
CTM-specific parameters adhere to the settings reported in [42].
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On the ImageNet-1K dataset, we distilled EDM2-XXL with a batch size of 2048 and gradient
accumulation performed every 128 iterations. train using the Adam optimizer with a learning rate of
5e-5. Mixed precision training (fp16) was used for SiDA on this dataset. Dropout parameters follow
those of EDM2 on ImageNet-1K, and all other SiDA-specific hyperparameters remain consistent
with those in the original work [120].

C.3.3 Training Procedure

In our experiments on the CIFAR-10 dataset (shown in Tables 1 and 4), we investigated two distinct
strategies for generating synthetic data: the static approach and the dynamic approach. For the
static approach, we created 50,000 synthetic samples, equivalent in size to the original dataset,
which remained consistent throughout the entire training process. In contrast, the dynamic approach
involved generating a new set of 50,000 synthetic samples at the start of each epoch, ensuring that the
synthetic dataset used for training was entirely refreshed every epoch. For the experiments on the
ImageNet-1K dataset, we generated 1.28 million synthetic samples for training, which is equivalent
to the size of the original dataset. Given the large scale of ImageNet-1K, regenerating the synthetic
dataset at each epoch would be computationally expensive and time-consuming. Therefore, we opted
for the static approach.

C.3.4 Implementation Details and Notes

While our framework comprises three stages, its implementation is manageable due to its modular
design. The (D), (A), and (R) stages are sequential and decoupled. As noted in relevant work
[120, 42], stability is observed in the adversarial distillation. This can be attributed to the design of
initializing the student with a pre-trained teacher, which bypasses the unstable early stages of typical
GAN training. Hence, for the student generator and discriminator training phase, a single, fixed set of
distillation hyperparameters was used across all datasets. For the final classifier training (R) stage,
we simply follow standard, existing recipes from the literature. In addition,

The primary tuning consideration i) balancing the loss weights λ1 and λ2 remain at a comparable
magnitude; and ii) considering truncation threshold γ and the use of self-normalization to achieve a
favorable bias-variance trade-off in the estimated importance ratios.

Additionally, a key in-process indicator of a successful D+A phase is the student generator’s own
performance. We (and others [120, 42, 109, 58]) observe that the student’s FID score remains
stable and often improves beyond that of the original teacher. This provides direct evidence that
the discriminator is providing high-quality gradients and has successfully captured the real-versus-
generated distribution gap. We recommend users monitor the student’s generation quality as a primary
check for a healthy run.

D Additional Experiment

D.1 Ablation Study of Variance Reduction Techniques

We ablate on the two variance-reducing techniques used, namely self-normalization and trucation,
with respect to the hyperparameter that controls the upper bound of γ in Table A3. Our observations
indicate that removing self-normalization generally leads to a decrease in classification performance.
This decrease is particularly significant on ImageNet-1K, likely because weight variance can be
greater with such a massive dataset. Furthermore, we observe that γ = 1 appears to be the optimal
upper bound for truncation. At this value, a synthetic image contributes equally to a real image in the
loss computation and subsequent optimization.

29



Table A3: Classification accuracies (top-1) under different weight variance reduction techniques for
additive, static augmentation using EDM/EDM2-SiD distillation.

Self-norm γ
CIFAR-10 ImageNet-1K

ResNet-18 VGG-16 ResNet-50 ViT-S/16
% 0.5 95.30 94.08 77.09 80.05
% 1 96.15 94.60 77.75 80.90
% 2 95.72 94.10 77.23 80.12
" 0.5 95.70 94.37 77.73 80.47
" 1 96.21 94.64 78.03 81.17
" 2 95.86 94.40 77.64 80.68

In addition, we conducted an empirical study reporting the sample variance of the weights for
100,000 generated ImageNet samples. As shown in Table A4, both truncation and self-normalization
progressively reduce the variance.

Table A4: Sample variance of importance weights r(x) for 100,000 generated ImageNet samples,
under different truncation (γ) and self-normalization (SN) schemes.

Truncation γ Variance of r(x) (no SN) Variance after SN
∞ (no clip) 1.21 0.42
2.0 0.37 0.12
1.0 0.18 0.05
0.5 0.07 0.02

D.2 Discriminator Noising Scheme

When employing the discriminator as the encoder for the student generator’s backbone, it’s necessary
to transform the clean input, xclean, into a noisy version, xnoisy. This is achieved by corrupting xclean
with a predetermined level of noise corresponding to a specific timestep t0. The choice of this noising
scheme, specifically the selection of t0, can influence the features learned by the discriminator-encoder
and subsequently the performance of the student generator.

We investigated several approaches for selecting t0, as detailed in Table D.2. We observe that the
uniform sampling strategy is the best among all ablated ones with t0 = 0.1T having comparable
performance on both datasets. The approach of treating the shared encoder as the discriminator offers
a trade-off: it obviates the need to tune the noising scheme, while avoiding the potential complexities
and additional computational overhead associated with employing a separate, dedicated discriminator
network.

Table A5: Classification accuracies (top-1) under different discriminator noising schemes for static
additive augmentation using EDM/EDM2-SiD distillation.

π
CIFAR-10 ImageNet-1K

ResNet-18 VGG-16 ResNet-50 ViT-S/16
δ(0.05T ) 96.08 94.48 77.87 81.02
δ(0.1T ) 96.18 94.66 77.89 81.10
δ(0.5T ) 95.33 94.07 77.23 80.51
U(0,0.5T ) 96.21 94.64 78.03 81.17

D.3 Noisy and Imbalanced Setting

While our initial goal was to focus on challenges like distribution mismatch and sampling cost in
GDA, we further investigated how our approach would be suitable for these real-world scenarios
such as on imbalanced and noisy data.

Class Imbalance We conducted experiments on CIFAR-10-LT [16] with an imbalance factor of 10
and 100 using the sa, me training protocol as in the balanced-data setting the dynamic scheme, with
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ResNet-18 as the backbone in Tables A6 and A7 respectively. We also included a long-tailed-based
method, SURE [54], for comparison. The evaluation tracks the progressive impact of each stage
in our DAR-GDA pipeline (+D), (+A), and Reweighting (+R) with SiD [121]-distilled EDM [39]
diffusion model. This performance likely stems from our method’s ability to leverage the strong
generative priors of the diffusion model teacher to populate tail classes, a different paradigm from
methods like SURE, which are designed to learn directly from the imbalanced data.

Table A6: Results on CIFAR-10-LT with Imbalance Factor = 10.

Method Augment Substitute
Baseline 86.75 86.75
SURE [54] 95.15 95.15

EDM-SID (+D) 94.88 94.47
EDM-SID (+D+A) 95.53 94.98
EDM-SID (+D+A+R) 95.78 95.02

Table A7: Results on CIFAR-10-LT with Imbalance Factor = 100.

Method Augment Substitute
Baseline 69.76 69.76
SURE [54] 86.75 86.75

EDM-SID (+D) 91.45 91.02
EDM-SID (+D+A) 91.84 91.35
EDM-SID (+D+A+R) 92.01 91.64

Noisy Label We also conducted an experiment on the CIFAR-10-N dataset [102] using the "aggre"
noise labels to simulate a real-world scenario with untrusted data. We used a ResNet-18 backbone
with the augmenting data protocol. We compare our result with a noisy-label learning method,
ProMix [103] in Table A8.

Table A8: Results on CIFAR-10-N with ResNet-18.

Method Static Dynamic
Baseline 87.77 87.77
ProMix [103] 97.65 97.65
EDM-SID (+D) 93.48 95.79
EDM-SID (+D+A) 93.80 96.26
EDM-SID (+D+A+R) 93.81 96.30

Our method contains no explicit mechanism for label correction; the discriminator is designed to
down-weight visually atypical samples, not to detect label noise. Consequently, while the strong
generative prior provides a robust foundation, the performance does not surpass that of specialist
methods like ProMix, which are explicitly architected to handle label noise.

D.4 Comparisons with Non-generative Data Augmentation Methods

Our primary work focused on challenges within the GDA paradigm. To provide a broader context,
we conducted additional experiments comparing our DAR-GDA framework against two widely-used
non-generative data augmentation baselines: AutoAugment [14] and RandAugment [15].
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Table A9: Comparison with non-generative augmentation on CIFAR-10 with ResNet-18.

Method Static Dynamic
Real-only 95.00 95.00
AutoAugment [14] 95.85 95.85
RandAugment [15] 95.79 95.79
EDM-SID (+D) 95.48 96.29
EDM-SID (+D+A) 95.84 96.40
EDM-SID (+D+A+R) 96.21 96.73
EDM-SID (+D+A+R) + RandAugment 96.48 96.97

Table A10: Comparison with non-generative augmentation on ImageNet-1K with ResNet-50.

Method Top-1
Real-only 76.37
AutoAugment [14] 77.62
RandAugment [15] 77.65
EDM-SID (+D) 77.15
EDM-SID (+D+A) 77.89
EDM-SID (+D+A+R) 78.03
EDM-SID (+D+A+R) + RandAugment 78.29

We notice that our full pipeline (DAR-GDA +D+A+R) outperforms both AutoAugment and RandAug-
ment. Furthermore, we highlight that our generative approach is complementary to these traditional,
non-generative data augmentation techniques. These transforms can be applied to synthetic images
just as they are to real ones, further diversifying the training set. To demonstrate this, we applied
RandAugment on top of our generated data, which yields further improvement.

D.5 On FFHQ Dataset

To further validate our framework’s robustness, we conducted experiments on a gender classification
task using the FFHQ 64x64 dataset [? ]. Since the EDM teacher and our student generator are
unconditional, we first created a high-quality labeled dataset by using an external classifier of ResNet-
50 pretrained on Celeb-A to generate raw predictions, which were then human-verified. We then
applied our "static" scheme with results shown in Table A11. We observe monotonic performance
gains as each stage of the DAR pipeline is applied.

Table A11: Gender classification accuracy on FFHQ 64x64. The baseline was trained on real data
with human-verified pseudo-labels.

Method ResNet-18 VGG-16
Real-only 94.08 93.10
EDM-SID (+D) 94.20 93.25
EDM-SID (+D+A) 94.63 93.62
EDM-SID (+D+A+R) 94.87 93.70

E Computational Complexity Analysis

We perform a formal analysis of the computational complexity for our framework. We define the
following computational costs:

T : The number of denoising steps in the teacher sampler, e.g., T ≈ 1000.
cf : The wall-clock cost of one forward pass of the diffusion model backbone (assumed the

same for the teacher and the one-step student).
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N : The total number of synthetic instances to be generated.
Cdistill: The one-time, upfront cost of distilling the teacher into the student generator.
Cpretrain: The cost of pre-training the teacher model, which is shared/sunk for both methods and

cancels out in the comparison.

The core of our efficiency gain comes from reducing the per-sample generation cost from the O(T )
complexity of iterative samplers, like DDPM [31] or DDIM [81], to an O(1) complexity. Table A12
contrasts these approaches.

Table A12: Comparison of sampling time complexity and theoretical speed-up.

Sampler # Reverse Steps Asymptotic Cost Theoretical Speed-up (vs. 1000-step DDPM)
DDPM 1000 O(T ) Baseline (1×)
DDIM (fast) 50 O(T ) ≈ 20×
One-step distilled 1 O(1) ≈ 1000×

With these variables, we can compare the total cost of generating N samples using a naive iterative
approach versus our DAR-GDA framework. The costs are summarized in Table A13.

Table A13: Computational cost comparison for generating N synthetic samples.

Pipeline Total Cost Equation
Naive Diffusion GDA Cnaive = N ⋅ T ⋅ cf
DAR-GDA CDAR = Cdistill +N ⋅ cf

Our framework (DAR-GDA) is faster than the naive approach whenever CDAR < Cnaive, which
implies:

Cdistill +Ncf < NTcf Ô⇒ Cdistill < Ncf(T − 1) (34)

We can estimate the one-time distillation cost as Cdistill = P ⋅N ⋅ k ⋅ cf , where P is the number of data
passes (epochs) during distillation, N is the number of data samples in the training set, and k is the
number of model evaluations per sample per pass.

Empirically, recent works [120, 42] suggest that one-step distillation converges in at most P ≤ 150
passes, with k = 3, i.e., teacher, fake, and student score network forwards. Assuming a teacher with
T = 1000 steps, the ratio of distillation cost to savings is:

Cdistill

Ncf(T − 1)
= PNkcf

Ncf(T − 1)
≈ Pk

T − 1 ≈
150 ⋅ 3
999

≈ 0.45 < 1 (35)

Thus, the inequality is comfortably satisfied. Furthermore, if synthetic data is dynamically refreshed
each epoch , i.e., the "dynamic" scheme, the savings compound. In that case, the effective N becomes
N ⋅E (where E is the number of classifier training epochs), making the efficiency gain of DAR-GDA
even more significant.
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