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Abstract

As the incidence of cardiovascular diseases continues to rise,
there is an increasing focus on the detection and treatment of
cardiovascular diseases. However, in economically disadvan-
taged areas, the scarcity of medical resources make the early
detection of cardiovascular diseases particularly challenging.
Thus, the HEART (HEART Expert Assistant with Retrieval-
augmented) model is proposed, which leverages the power-
ful logical reasoning capabilities of Large Language Models
(LLMs) to assess whether patients have heart disease. Specif-
ically, HEART operates on a dual-component structure, con-
sisting of a Diagnostic Module and a Case Retrieval Mod-
ule. For the Diagnostic Module, the LLM is pre-trained on
a cardiac ultrasound assessment dataset to master the rele-
vant evaluation techniques. As for the Case Retrieval Module,
a text encoder transforms input cases into hidden features,
which are then used to retrieve auxiliary cases. The input case
and auxiliary cases are merged through a Case Fusion Layer
to obtain the fused case features. Then, they are combined
with prompts for inference. We have tested our model on a
congenital disease dataset and achieved encouraging results.
The proposed HEART model has shown tremendous poten-
tial in becoming the foundational model for predicting car-
diovascular diseases.

Introduction
Cardiovascular diseases, which encompass coronary heart
disease, rheumatic heart disease, and congenital heart dis-
ease, among others, constitute a complex spectrum of disor-
ders impacting the heart and vascular system (Obied et al.
2023). Data from the World Health Organization (WHO) in-
dicate that cardiovascular diseases are responsible for over
17.9 million deaths annually, representing 32% of all global
deaths (Institute for Health Metrics and Evaluation (IHME)
2019). This makes cardiovascular diseases a major health
problem worldwide (Ghorbani et al. 2020). Fortunately,
early intervention can significantly reduce mortality rates as-
sociated with these diseases.

Diagnosing and managing cardiovascular diseases are
particularly challenging due to the heart’s complexity and

*These authors contributed equally.
†Corresponding author

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

variability, requiring doctors to have extensive clinical ex-
perience (Wiegers et al. 2019). However, in some econom-
ically disadvantaged regions, the mortality rates from car-
diovascular diseases are significantly higher than the aver-
age. This is mainly due to the scarcity of medical resources,
particularly the lack of cardiologists, often resulting in in-
correct diagnoses or unpredictability in early disease de-
tection, all of which endanger lives (Obied et al. 2023).
Nevertheless, the advent of artificial intelligence (AI) tech-
nologies offers promising solutions. AI can analyze vast ar-
rays of cases, providing insights that aid clinicians in mak-
ing more precise decisions. Echocardiography stands as one
of the primary modalities for cardiac examination (Kareem
and Obied 2021; Papolos et al. 2016), and current method-
ologies are significantly focused on the detailed analysis
of heart ultrasound images (Muhtaseb and Yaqub 2022;
Blaivas and Blaivas 2022; M Alaa, Philippakis, and Sontag
2022). However, these techniques generally rely on intricate
preprocessing procedures and substantial computational re-
sources. Additionally, the heart’s constant motion during its
beat cycle complicates the analysis of ultrasound images,
as subtle morphological changes, like the radial expansion
and lengthwise contraction of the left ventricle, are difficult
to discern, even by experienced clinicians (Wahlang et al.
2021). And variations in cardiac structure and function also
exist across different ethnicities and regions (Cohen et al.
2010; Havranek et al. 2015).

Remarkably, echocardiographic examination records,
which provide detailed dynamic cardiac data documented
by radiologists, have been largely overlooked in machine
learning research. These records encompass critical mea-
surements, such as the left ventricular end-systolic and end-
diastolic diameters, septal thickness, and mitral regurgitation
(as shown in Table 1), and are vital for clinicians to evalu-
ate cardiac function and diagnose cardiovascular diseases.
Building on this premise, we seek to leverage these cardiac
examination data to enable more precise disease prediction,
with the hope that these predictions can be employed in the
early screening of heart diseases. By leveraging the power-
ful logical reasoning capabilities of LLMs (Achiam et al.
2023; Touvron et al. 2023a; Chowdhery et al. 2023), we can
conduct further studies based on patients’ echocardiographic
examination records.

In this study, we introduce a novel model named HEART



(Heart Expert Assistant with ReTrieval-augmented), aimed
at the assessment of cardiac diseases. This model adopts
a dual-phase training methodology to optimize the diag-
nostic process of cardiac conditions. The initial phase is
aimed at giving the LLM a deep understanding of echocar-
diography knowledge, thereby fostering the model’s foun-
dational capability in the evaluation of echocardiographic
examination records. Following this, the second phase in-
volves task-specific fine-tuning, incorporating a retrieval-
augmented strategy, and introducing a Case Fusion Layer.
Case Fusion Layer efficiently integrates multiple related
cases, enhancing the model’s ability to recognize and ana-
lyze echocardiographic examination records. To ensure the
practical application value of our model, we constructed
and validated a real dataset consisting of echocardiographic
examination records, specifically targeting the detection of
congenital heart diseases. We believe that the proposed
model will not only play a pivotal role in the field of congen-
ital heart disease detection but also serve as a foundational
model in the domain of cardiovascular disease diagnostics,
applicable to a wide array of cardiac-related diagnostic and
therapeutic tasks.

Method
In this section, we will provide a detailed introduction to
the proposed method, HEART, which leverages knowledge
acquired from guidelines for the evaluation of echocardio-
graphy to facilitate the diagnosis of heart diseases. We will
begin by describing how we created our dataset for cardiac
ultrasound detection, followed by an introduction to the ar-
chitecture of the proposed model.

Data Preparing
Pre-training The purpose of pre-training is to enable the
foundational model to learn relevant prior knowledge from
a vast corpus of information. This process involves initially
pre-training the model on a large volume of unlabeled data,
and then applying it to tasks within specific domains to
achieve improved outcomes. In this context, we aim for
the proposed model to acquire some knowledge related to
echocardiography before engaging in specific tasks, thereby
refining its diagnostic precision using the provided data. To
this end, we have curated an echocardiography-focused pre-
training dataset, which extracts textual data from relevant
echocardiographic assessment reports (Silvestry et al. 2015;
Lai et al. 2006; Mitchell et al. 2019; Liu and Xiong 2022).
Considering the model’s limitation in processing image data,
we employ regularization to detect and omit sentences that
analyze images. Specifically, we detect the word “Figure” in
sentences and remove the corresponding sentences.

Heart disease dataset To further enhance the model’s ca-
pability in cardiovascular disease diagnosis, we collected an
additional dataset of congenital heart diseases provided by
medical institutions. In this dataset, all the cardiac condi-
tions of the patients were categorized into three distinct clas-
sifications: (1) Atrial Septal Defect, (2) Ventricular Septal
Defect, and (3) Patent Ductus Ovale. Each case presented
with at least one type of congenital cardiac anomaly. The

Left Ventricular End-Diastolic Diameter Aortic Sinus
Left Ventricular End-Systolic Diameter Aortic Annulus
Left Ventricular Posterior Wall Thickness Pulmonary Artery
Interventricular Septal Thickness Right Atrial Diameter
Right Ventricular Outflow Tract Right Ventricular Diameter
MV E (Mitral Valve E wave) MR (Mitral Regurgitation)
MV A (Mitral Valve A wave) TR (Tricuspid Regurgitation)
MVE E (Early Diastolic Velocity) AR (Aortic Regurgitation)
FS (Fractional Shortening of Left Ventricle) PR (Pulmonary Regurgitation)
EF (Ejection Fraction of Left Ventricle) CO (Cardiac Output)
Left Atrial Diameter SV (Stroke Volume)
MVE/A Ratio E/A Ratio
Ventricular Wall Motion Score

Table 1: All data in the echocardiographic examination
records.

challenge of this task lies in accurately predicting all cardiac
defects of a patient, whether singular or multiple. We have
collected a total of 1006 entries from the real echocardio-
graphic examination records of the hospital. These entries
have undergone rigorous processing, including the treatment
of missing values, standardization of units, and the elimina-
tion of outliers.

Model Architecture
As shown in Figure 1, HEART comprises two primary
components: the Diagnostic Module and the Case Retrieval
Module. Initially, the input case is processed by the Case Re-
trieval Module, which identifies the K most pertinent aux-
iliary cases. Subsequently, these cases, along with the input
case, constitute a case pair denoted as (T,R). This case pair
is then fed into the Diagnostic Module, where reasoning is
performed on the pair (T,R). In this section, we will elabo-
rate in detail on the contents of these two modules.

Case Retrieval Module We expect that when HEART is
applied to cardiovascular disease diagnosis tasks, it relies
not solely on reasoning from learned cases but utilizes re-
trieval augmentation techniques to fetch similar examples
from a historical case database, thereby assisting the model
in making more accurate inferences. The Case Retrieval
Module consists of a case database and a text-encoder.

In the construction of the case database, our objective
is for the cases in the training dataset not only to teach
the model how to predict diseases but also to guide the
model during the inference stage. The advancement in vec-
tor databases has enabled us to implement the detection
of analogous cases effectively. For this purpose, we en-
code the training dataset and store it in the vector database.
Specifically, for each training case T , HEART first tokenizes
this text into subwords {xcls, x1, ..., xn} and transforms it
into hidden representations {wcls, w1, ..., wn} using a text-
encoder, where n denotes the length of the input tokens. And
then the cases in the training dataset are stored in the Faiss
vector database (Douze et al. 2024) using wcls as the storage
vector.

During the training and inference phases, each case is first
transformed into hidden representations {wcls, w1, ..., wn}
by the text-encoder. Then, the wcls representation is then
compared with the data stored in the Faiss vector database
using cosine similarity, and the top 2K highest scoring cases



< s > System:Now you are a professional cardiologist specializing in 

congenital heart diseases, and I hope you can make corresponding 

judgments based on the results of the cardiac ultrasound. The content 

in parentheses represents the normal range of the respective cardiac 

parameters. Please choose the answer(s) from the options below, there 

can be multiple answers: (A) Presence of  Atrial Septal Defect (B) 

Presence of Ventricular Septal Defect (C) Presence of Patent Ductus  

Ovale.</s>

<s>Human:Age:Age: 14 years old\nAortic Sinus (mm): 29……
Below are some reference echocardiography results and diagnostic 

outcomes for patients:<RAG><RAGHere></RAG></s>

Diagnostic Outcomes: (A) (C)

Age: 14 years old

Aortic Sinus (mm):29 (23.26-27.41 )

Left Atrial Diameter (mm): 26 (22.52-28.18)

Left Ventricular End-Systolic Diameter (mm): 

27(23.4-28.4)  

Wall Motion Score: 1

……

Diagnostic Outcomes: Patent Ductus  Ovale

Age: 10 years old

Interventricular Septal Thickness(mm):6 (4.4-5.8)

Cardiac Output per Beat: 22 (48-82)

Mitral Regurgitation (MR): I

Tricuspid Regurgitation (TR): I

……
Diagnostic Outcomes: Atrial Septal Defect,

Ventricular Septal Defect,Patent Ductus  Ovale

Text Encoder

Case Fusion Layer

Age: 2 years old

Aortic Sinus (mm): 19 (14.98-17.07)

Aortic Annulus (mm): 12 (12.67-14.34)

Pulmonary artery (mm): 17 (16.36-17.40)

Mitral Regurgitation (MR): I

……
Diagnostic Outcomes: Patent Ductus  Ovale, 

Ventricular Septal Defect

Inference LLM

<s> :_System Now i_card_professional_a_are <RAG> <RAGHere> </RAG> </s>_you<s> :_System Now i_card_professional_a_are <RAG> <RAGHere> </RAG> </s>_you

wcls w1 wn-1 wn wcls w1 wn-1 wn wcls w1 wn-1 wn

Database

Tokenize Replace

Diagnostic Module

Case Retrieval Module

Figure 1: This picture of the proposed HEART model in detail. Upon receiving an inference case, the text-encoder encodes it
into hidden features and retrieves related cases from the database, which are also encoded into hidden features. These encoded
features are then input alongside the original case into the Case Fusion Layer. The resulting fused features replace the <
RAGHere > token in the prompt, and the combined embedding is input into the Inference LLM for answer prediction.

are retrieved. Following this, a reranker model reorders these
cases, and the top K cases with the highest scores are se-
lected as auxiliary cases for assistance. At this point, the in-
put case and the retrieved K cases are combined into a case
pair (T,R), where T denotes the input case, and R repre-
sents the retrieved cases set, with ri ∈ R, i ∈ [0,K), signi-
fying the retrieved cases.

Diagnostic Module Upon processing through the Case
Retrieval Module, a case pair (T,R) is obtained. The Di-
agnostic Module is composed of two principal components:
the Case Fusion Layer and the Inference LLM.

The extant models, limited by the pre-training window
size, face challenges in retrieving a substantial number of
cases simultaneously, which is crucial for enhancing infer-
ence accuracy. To mitigate the model’s token limitations, a
Case Fusion Layer has been integrated into the Inference
LLM. For each retrieved case, the hidden vectors is rep-
resented as wi = {wi

cls, w
i
1, ..., w

i
n}, where i denotes the

i − th retrieval vector, with earlier retrieval vectors having
higher similarity scores. The input case’s representations are
denoted as t = {tcls, t1, ..., tn}. A cross-attention mecha-
nism is employed to amalgamate these two representation
sets. The attention module in the Transformer (Vaswani et al.
2017) is defined as follows:

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Using this denotation, cross-attention is defined as:
Q = WQtcls,K = WKA, V = WKA

where A = [W 0
cls,W

0
1 ,W

0
2 , ...,W

0
n ,W

1
cls,W

1
1 , ...,W

1
n ,

WK−1
cls ,WK−1

1 , ...,WK−1
n ] represents the concatenation of

multiple retrieved sentences into one sentence according to
the order of tokens, ti, wk

i ∈ R1xh, where h denotes the
representation of hidden features of the text encoder.

Then, the input prompt and auxiliary casse are amalga-
mated. The Inference LLM deconstructs this combination
into tokens, which are then transformed into embedding
vectors P = {p<s>, pSystem, ..., p<RAGHere>, .., p</s>}.
Within the input prompt, we have added three special to-
kens, < RAG >< RAGHere >< /RAG >, to denote the
replace position in the input prompt. After obtaining the em-
bedding vectors, p<RAGHere> is replaced with the Case Fu-
sion vector, which is acquired from the Case Fusion Layer.
Following this substitution, the embeddings are inputted into
the Diagnostic Module for prediction.

During the pretraining phase, next-token prediction strate-
gies are used to train the initial model to learn the corre-
sponding task-specific knowledge, while in the fine-tuning
phase, the loss is computed solely based on the assistant’s
output, refining the model’s focus on the generated response.



All Single Double Triple

Correct F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Llama2
Few-shot5 33.46% 33.86% 0.00% 0.00% 0.00% 29.89% 72.37% 42.31% 42.11% 100.00% 59.26%
Fine-tuning 60.00% 53.80% 65.68% 73.03% 69.16% 46.75% 47.37% 47.06% 64.29% 28.12% 39.13%
w/o stanard 45.38% 37.59% 64.46% 51.32% 57.14% 29.01% 50.00% 36.71% 25.00% 6.25% 10.00%

RAG
RAG-1 71.15% 78.16% 72.57% 53.95% 61.89% 70.30% 93.42% 80.23% 80.00% 100.00% 88.89%
RAG-2 72.69% 77.51% 79.09% 57.24% 66.41% 66.04% 92.11% 76.92% 72.73% 100.00% 84.21%
RAG-3 oot oot oot oot oot oot oot oot oot oot oot

Proposed
HEART 79.23% 84.34% 79.41% 71.05% 75.00% 72.34% 89.47% 80.00% 100.00% 93.75% 96.77%

Table 2: Results for congenital heart disease detection: ‘Correct’ indicates the accuracy of completely correct answers. ‘Single/-
Double/Triple’ shows the accuracy for cases with single, double, and triple choices, respectively. ‘RAG-k’ denotes the retrieval
of k related cases per input case. ‘oot’ means ‘out of token limit’, indicating inability to the perform normal reasoning.

Experiments
In this section, we explore the specifics of our experimen-
tal model, elucidating the configuration, implementation,
and principal outcomes. Our experimental design is metic-
ulously crafted to comprehensively evaluate the efficacy of
the HEART.

Implementation Details
Pre-training Setting We employ Llama2-Chinese-13b-
Chat as our foundational model, which has been further
fine-tuned on Chinese data atop llama2-13B (Touvron et al.
2023b). The model is trained for 10 epochs with a batch size
of 64. For optimization, we utilize AdamW (Loshchilov and
Hutter 2017) with a learning rate of 1e-4. We set the warm-
up steps to 1000 and the token block size to 2048.

Fine-tuning Setting Building upon previous works, we
utilize the model obtained from the Pre-training phase as the
Inference Model. To circumvent feature fusion in the Case
Retrieval Module, the text-encoder in the Case Retrieval
Module is also configured to this model. We employ bge-
reranker-large (Xiao et al. 2023) as the reranker model to
reorder the input data. For each instance, we retrieve K = 5
cases from the database. During training, we randomly mask
m ∈ [0, 4] cases. This approach is adopted to ensure that
the model pays attention to cases positioned differently. The
model is trained for 15 epochs with a batch size of 4. For op-
timization, we utilize AdamW with a learning rate of 1e-5.
We utilize LoRA (Hu et al. 2021) to accelerate our training
process, with lora alph=32, lora r=8.

Results
As shown in Table 2, the effectiveness of our proposed
HEART model is substantiated through empirical evalua-
tion. In the realm of congenital heart disease prediction us-
ing the Llama2 model, it is observed that while the few-
shot5 inference approach is capable of generating predic-
tions, the accuracy of model inference remains markedly
low. However, a notable improvement in prediction accu-
racy, amounting to 26.54%, is witnessed upon fine-tuning

the model. In this context, the standard values (As shown in
Figure 1) of indicators in cardiac ultrasound reports play a
pivotal role. In the absence of these indicators, a significant
decline in the accuracy of Llama2 is discernible, particularly
in tasks involving triple choices.

Subsequently, the implementation of the RAG model for
case retrieval markedly enhances performance, elevating the
accuracy from 60.00% to 71.15% when a single case is re-
trieved for assistance, and gradually increases with the grow-
ing number of retrieved cases. However, retrieving three
cases poses challenges due to exceeding the token length
threshold, which hampers prediction capabilities. Contrar-
ily, the HEART model successfully overcomes token limita-
tions, achieving an impressive accuracy rate of 79.23% with
five retrieved cases.

Notably, under the few-shot5 mode, the model achieves a
recall of 100% in triple choice scenarios, yet the F1-Score
remains substantially low. Furthermore, the model demon-
strates complete incapacity for rational inference in single-
choice cases, with an F1-score of 0%. We think this is be-
cause the LLMs are too conservative in their disease rea-
soning task. The introduction of fine-tuning ameliorates this
issue, and the HEART model transcends these constraints,
exhibiting encouraging results in predicting single, double,
and triple diseases.

Conclusion
In this study, we introduce an innovative foundational med-
ical model specifically designed for cardiovascular disease
screening, named HEART. This model is focused on pro-
cessing and analyzing basic cardiac report data, which are
readily obtainable and storable during cardiac examinations,
to assist inexperienced clinicians in making more accurate
diagnoses. By employing retrieval-augmented techniques,
the HEART model significantly improves the accuracy of
cardiovascular disease prediction. In the diagnostic task for
congenital heart disease, the HEART model achieved an ac-
curacy rate of 79.23%, markedly surpassing the benchmark
model’s accuracy of 45.38%. We believe that the HEART
model can become a cornerstone in the field of cardiovascu-



lar disease screening and that its application can be extended
to a broader range of diagnostic tasks related to cardiovas-
cular diseases.
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