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Abstract
Combinatorial CRISPR screening enables large-
scale identification of synergistic gene pairs for
combination therapies, but exhaustive experimen-
tation is infeasible. We introduce NAIAD1, an ac-
tive learning framework that efficiently discovers
optimal gene pairs by leveraging single-gene per-
turbation effects and adaptive gene embeddings
that scale with the training data size, mitigating
overfitting in small-sample learning while cap-
turing complex gene interactions as more data is
collected. Evaluated on four CRISPR datasets
with over 350,000 interactions, NAIAD trained
on small datasets outperforms existing models by
up to 40%. Its recommendation system priori-
tizes gene pairs with maximum predicted effects,
accelerating discovery with fewer experiments.
We also extend NAIAD to optimal drug com-
bination identification among 2,000 candidates.
Overall, NAIAD enhances combinatorial pertur-
bation design and drives advances in genomics
research and therapeutic development in combi-
nation therapy. Our code is publicly available at:
https://github.com/NeptuneBio/NAIAD

1. Introduction
Targeting multiple genes through drug combinations or
polypharmacology offers a transformative therapeutic ap-
proach for developing effective treatments across diverse
medical fields, including oncology (Al-Lazikani et al., 2012;
Mokhtari et al., 2017), infectious diseases (Hammond et al.,
2022; Shyr et al., 2021), and metabolic disorders (Samms
et al., 2020; Jastreboff et al., 2023). Combinatorial gene per-
turbations can yield additive or synergistic effects, enhanc-
ing therapeutic outcomes beyond what is achievable with
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single-gene targeting (Nature Medicine, 2017; Hwangbo
et al., 2023). One of the most notable successes in transi-
tioning cellular phenotype is the discovery of the Yamanaka
factors—a specific combination of four transcription fac-
tors capable of reprogramming differentiated cells back to
a pluripotent state (Takahashi & Yamanaka, 2006). This
groundbreaking achievement demonstrates the significant
potential within the combinatorial perturbation space to en-
gineer cellular phenotypes.

The critical question now is how to systematically iden-
tify additional effective combinatorial perturbations that can
transform cells to achieve desired phenotypes. Comprehen-
sively exploring this huge space presents a mathematical
challenge due to the exponential growth of possible combi-
nations. With approximately 20,000 protein-coding genes
in the human genome, the total number of two-gene combi-
nations approaches 200 million, and for four-gene combina-
tions exceeds 6 quadrillion (1015). Experimentally testing
all possible combinations is infeasible. Therefore, develop-
ing computational models that can predict the most effective
gene combinations is essential for the efficient identification
of the most effective combinatorial perturbations. Notably,
active learning frameworks (Eisenstein, 2020), such as the
AI + Experiment Loop (Rood et al., 2024), have offered
promising solutions by enabling efficient exploration of this
space.

We frame the discovery of optimal gene or drug combina-
tions as a machine learning problem of active search over
a high-dimensional combinatorial space, where evaluating
each combination (via experiment) is costly. Our method
trains a neural surrogate model that predicts the effects of
unseen perturbation pairs by combining overparameterized
encodings of single-gene outcomes with a learned gene em-
bedding space that models interaction effects. The surrogate
guides new experiment selection via acquisition strategies
inspired by Bayesian optimization, with the ability to lever-
age both exploitation and exploration.

While this work is motivated by biological discovery,
similar challenges arise across machine learning do-
mains—including data augmentation policy search in vision
(Cubuk et al., 2019), cold-start item selection in recom-
mender systems (De Pessemier et al., 2021), and sample-
efficient policy learning in robotics (Anwar et al., 2025)—all
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of which involve large discrete spaces, costly evaluations,
and the need for adaptive modeling and decision making. In
such domains, discrete components (e.g., transformations,
items, actions) play a role analogous to gene or drug per-
turbations in our framework: each is embedded in a latent
space, and combinations of these embeddings are used to
represent and evaluate complex configurations. Our frame-
work shows how these components can be actively selected
via a data-adaptive surrogate to enable efficient, scalable
discovery.

In this work, we introduce NAIAD, an active learning frame-
work for identifying the most effective gene or drug combi-
nations. We initially train a model on a small dataset from
experiments, which enables it to predict unseen combina-
torial perturbation effects across the entire combinatorial
space. These predictions guide the design of subsequent
CRISPR screening libraries for targeted experiments, thus
allowing us to iteratively refine the model and converge on
optimal combinations (Figure 1A). We focus on modeling
the effects of 2-gene combinations, combining knowledge
of single-gene effects with predictions of gene-gene interac-
tions (Figure 1B). Our key contributions are:

(1) A novel combinatorial perturbation model which incor-
porates adaptive gene embeddings that scale with the train-
ing data size, along with an overparametrized representation
of single-gene perturbation effects.

(2) Maximum Predicted Effect (MPE)-based recommenda-
tion system that suggests gene combinations for subsequent
CRISPR library design, facilitating the discovery of syner-
gistic and effective gene combinations.

(3) An AI + Lab active learning framework that effectively
identifies optimal gene combinations, significantly reducing
the number of experimental iterations needed to achieve
robust results.

2. Related Work
CRISPR combinatorial perturbation technologies can be
broadly classified into two main categories (Norman et al.,
2019): single-cell combinatorial perturbation and bulk com-
binatorial perturbation. Single-cell combinatorial pertur-
bation measures the entire transcriptome, capturing com-
prehensive gene expression changes in individual cells, but
with a limited number of gene combinations. In contrast,
bulk combinatorial perturbation focuses on measuring a sin-
gle phenotype, enabling the investigation of a much broader
range of gene combinations.

Predicting combinatorial perturbations has been a significant
challenge due to non-linearity of certain gene combinations.
Various machine learning approaches have been proposed
to address this problem using single-cell combinatorial per-

turbation data. Variational Autoencoders (VAEs) (Kingma
& Welling, 2014) have been employed to model genetic and
chemical combinatorial perturbations by simultaneously
learning embeddings of single perturbations and capturing
non-linear interactions in methods such as CPA (Lotfol-
lahi et al., 2023), ComβVAE (Geiger-Schuller et al., 2023),
sVAE+ (Lopez et al., 2023), and SAMS-VAE (Bereket &
Karaletsos, 2023). These approaches facilitate the model-
ing of complex relationships between genes or compounds
within the latent space of embeddings. Methods such as
sVAE+ (Lopez et al., 2023) and SAMS-VAE (Bereket &
Karaletsos, 2023) have been developed to model sparsity
in latent variable intervention effects. By disentangling the
perturbation-related sparse latent space, these models ef-
fectively identify critical features and interactions within
high-dimensional biological data. SALT&PEPER imple-
ments a method to separately learn linear and non-linear
effects of gene perturbations (Gaudelet et al., 2024). By
using gene-embedding-based autoencoder models, they ef-
fectively decompose the interactions, enabling more inter-
pretable models of gene effects. Recently, several single-cell
foundation models, such as scGPT (Cui et al., 2024) and
scFoundation (Hao et al., 2024), trained on all publicly
available observational data, have demonstrated their ability
to predict cellular responses following perturbations after
model fine tuning. Additionally, GEARS leverages graph
neural networks (GNNs) (Kipf & Welling, 2017) to incor-
porate prior biological knowledge into the network architec-
ture (Roohani et al., 2023). GNNs facilitate the inference
of gene-gene interactions by leveraging known pathways
and interaction networks, thus enhancing the prediction of
combinatorial effects.

However, most of these methods primarily focus on pre-
dicting post-perturbation gene expression profiles and do
not extend to the prediction of phenotypic outcomes. Also,
the number of gene combinations from single-cell combi-
natorial perturbations dataset is very limited (100-200 gene
combinations), so it is difficult to evaluate if those deep
learning models are generalizable in the entire combinato-
rial perturbation space and can outperform linear models
(Ahlmann-Eltze et al., 2024).

Some existing methods (i.e. GEARS (Roohani et al., 2023)
and CPA (Lotfollahi et al., 2023)), are capable of predict-
ing combinatorial perturbations from single-cell transcrip-
tomic profiles, as well as from single measurements derived
from bulk screens (i.e. cell viability). However, these ap-
proaches generally assume the availability of sufficient data
that would allow for a substantial portion to be used for
training. In practice, we are often limited by the number of
training samples due to the exponential growth of possible
combinations in combinatorial perturbation data. This lim-
itation necessitates having methods that can perform well
with minimal data. Active learning frameworks offer a solu-
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tion by optimizing model performance while using the least
amount of training data possible. RECOVER utilizes an
active learning framework that iteratively selects the most
promising drug combinations for testing through the AI +
Lap loop (Bertin et al., 2023). RECOVER applies a bilinear
operator to create permutation-invariant representations that
integrate multiple single perturbation effects, learning the
non-linear components of drug combinations. It leverages
ensemble models to estimate uncertainty in the predictions
through deep ensembles (Lakshminarayanan et al., 2017),
guiding the selection of experiments for subsequent rounds
based on both predicted effects and associated uncertainties.

3. Methods
In this section, we present the architecture of our model
for predicting the effects of combinatorial perturbations,
along with our AI + Lab active learning framework (Figure
1A). Our NAIAD framework addresses two key objectives:
(1) achieving predictive accuracy with limited training data
from the initial experimental round; and (2) implementing a
recommendation strategy to select additional gene pairs that
maximize information gain, thereby accelerating conver-
gence with fewer AI + experimental iterations. Ultimately,
our goal is to optimize the use of limited experimental re-
sources, reducing the need for exhaustive testing of all pos-
sible combinations and efficiently identifying effective gene
combinations that drive cells toward desired phenotypes.

3.1. Model Design

Let Xgene ∈ Rk×p be the learnable gene embedding matrix,
where k is the number of unique genes perturbed within
the dataset and p is the dimension of the gene embeddings,
which is adapted to the number of training samples. Let Yi

be a scalar value representing the effects of a single-gene
(i) perturbation. In this work, we focus on the case of per-
turbing two genes simultaneously, so the value Yi+j denotes
the combined effect of the two-gene (i + j) perturbation.
The target variable Y is a scalar that can represent various
biological outcomes, such as cell fitness, marker enrichment
levels, or projected gene signatures derived from single-cell
transcriptomic data.

Our model is formulated as:

Yi+j = ϕ([Yi, Yj ]W1)A
T
1

+ f(ϕ(W2X
gene
i ), ϕ(W2X

gene
j ))AT

2

(1)

where ϕ is an activation function (ReLU or GeLU), and
W,A are learnable matrix parameters. Xgene

i and Xgene
j are

the row-vectors for gene i and j in Xgene. ϕ([Yi, Yj ]W1)A
T
1

models the over-parameterized single-gene effects, and
f(ϕ(W2X

gene
i ), ϕ(W2X

gene
j ))AT

2 models the genetic inter-

action contributions between i and j, where f applies a
permutation-invariant function to capture the interactions of
genes i and j through their embeddings Xgene.

By explicitly incorporating single-gene effects as input pa-
rameters, we condition combinatorial predictions on the
known single-gene effects, which substantially enhances
the model’s performance. The parameter W1 acts as an
over-parameterized encoder, projecting the data from k di-
mensions to a much higher-dimensional space Rm , where
m ≫ k . The projection of this data into a high-dimensional
(though finite) space allows us to capture intricate patterns
that are not discernible in the original low-dimensional
space.

To model genetic interactions, we sum the gene embeddings
of the perturbed gene combinations in the latent space to
obtain a single combined embedding. This summation is a
permutation-invariant operation, and thus independent of the
order of the multiple perturbations. The combined embed-
ding is then passed through an encoder that compresses it
into a singular interaction value. This compression reduces
the dimensionality of the data while retaining the essential
information needed to predict nonlinear interaction of genes.
Finally, the compressed representations from both the over-
parameterized single-gene effect and combined-gene em-
beddings are used to predict the phenotype. This also allows
our model to learn higher-order interactions among gene
combination perturbations, leading to improved predictive
performance.

We can interpret the model as follows: the overparameter-
ized single-gene perturbation effects tell the model how any
pair of genes additively would impact the cellular pheno-
type, and relationships between gene embeddings predict
synergistic or buffering interactions between gene pairs.

Additionally, while we focus on 2-gene perturbations in
this study, our model can naturally be extended for sets of
q > 2 simultaneously perturbed genes. For a set involving
S = {i1, i2, . . . , iq} perturbations, we can model the effect
of jointly perturbing the genes in S as:

YS = ϕ
(
[Yi1 , Yi2 , . . . , Yiq ]W1

)
AT

1

+

(∑
i∈S

ϕ
(
W2X

gene
i

))
AT

2

(2)

where we use summation as the permutation-invariant func-
tion that combines the embeddings of individual perturbed
genes.
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Figure 1. Illustration of active learning framework in CRISPR combinatorial perturbation (A) and our NAIAD model architecture with
overparameterized single-gene effects and adaptive gene embedding modules (B).

3.2. Small Sample Learning as an Important Initial Step
for Active Learning

Unlike most existing models, we propose modeling gene
embeddings within a latent space with varying dimensional-
ity tailored to the training-data size. Training large models
on small datasets can lead to overfitting. To mitigate this,
we initialize the dimension p of the latent space to a small
value at the beginning of training. As active learning itera-
tively incorporates new data, the size of the training dataset
continually increases, and we correspondingly increase p
following a predetermined schedule based on the average
number of times each gene is seen in the dataset. As the
training dataset expands, the increased dimensionality of
the latent space enables the model to capture more complex
patterns and interactions among genes without overfitting
to noisy experimental measurements. By controlling the
model complexity based on the available data, this adapt-
ability allows the gene embeddings to effectively leverage
both small and large training datasets, optimizing model
performance across different data sizes.

3.3. Recommendation System of NAIAD

A critical component of our active learning framework is the
recommendation system for selecting gene combinations in
subsequent experiment rounds to acquire new data (Figure
1A). We evaluated an ensemble-based uncertainty estima-
tion, where multiple models with different initializations are
aggregated to estimate prediction uncertainty through mea-
sures like variance and entropy (Lakshminarayanan et al.,
2017). This ensemble approach not only improves pre-
dictive performance and enhances interpretability, but also
quantifies epistemic uncertainty arising from limited data.
We investigated uncertainty calculation by maximizing the
likelihood P (Y |µ̂, σ̂) under the assumption of a conditional
Gaussian distribution (Lahlou et al., 2023) as well. How-

ever, we noted that the experimental uncertainty estimated
from the ensemble method was more stable. Thus, in this
work, we adopted the variance of ensemble predictions as
the ensemble-based uncertainty estimator.

In addition to sampling gene pairs with high uncertainty, we
incorporate maximum-predicted-effect (MPE) and residual-
based sampling strategies to diversify our experimental se-
lection. The MPE sampling focuses on gene pairs with
strong predicted effects, identifying combinations that may
yield substantial biological insights or therapeutic benefits.
Additionally, to balance the exploitation of known MPE
areas with the exploration of uncertain regions, we also
combined ensemble prediction uncertainty with residual-
based sampling. Residual-based sampling targets areas
where the model’s predictions deviate most strongly from
a linear model baseline, allowing exploration of complex
interactions that the model has not yet captured and help-
ing to uncover gene interactions that might be missed by
linear models. Combining residual-based sampling with un-
certainty estimation is equivalent to the Upper Confidence
Bound (UCB) sampling method used in RECOVER.

4. Experiments
4.1. Datasets

We evaluate our models on cell-viability measurements
across two cell types from four bulk combinatorial CRISPR
perturbation screening datasets and one drug combination
screening dataset (Norman et al., 2019; Simpson et al., 2023;
Horlbeck et al., 2018; Zheng et al., 2021; Bertin et al., 2023).
We treat each gene combination or drug combination as one
sample. Each dataset contains symmetric, pair-wise mea-
surements for its gene or drug combinations, allowing us to
comprehensively compare model predictions with ground
truth measurements. Detailed descriptions of these datasets
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are provided in Appendix A.

4.2. Downsampling Experiments

We evaluate model performance on different amounts of
training data. Since our datasets vary in number of features
and overall size, we split the data differently depending on
the experiment and dataset used. In our downsampling ex-
periments in Section 5.2, we used [100, 200, 350, 500, 750,
1000, 1250, and 1500] samples during training for the Nor-
man et al. (2019) dataset (6,328 combinations), and [100,
500, 1000, 2000, 3000, 4000, 5000, 6000] samples for train-
ing on the Simpson et al. (2023) (147,658 combinations)
and Horlbeck et al. (2018) datasets (100,576 combinations
for K562; 95,703 combinations for Jurkat T), along with
10% and 30% of each dataset for validation and testing,
respectively.

4.3. Active Learning Experiments

To mimic an active learning scenario, in Section 5.3 we
started with 100 samples from the Norman dataset in the
first round, and incrementally included an additional 100
samples each active learning round for 4 additional rounds.
For the Simpson and two Horlbeck datasets, we began with
500 samples in the first round, and incrementally included
500 more each round for 4 additional rounds.

The data for the first round is selected uniformly, and the
incremental data added in each subsequent round is selected
via an acquisition function (see Appendix C for descrip-
tion of different acquisition functions used). The iterative
data selection process allowed us to progressively improve
the models by incorporating more data based on the active
learning strategy.

In Section 5.4, we extend our active learning framework to
a different intervention modality - drug treatment. We use
the Bertin et al. (2023) drug dataset, and follow the same
sampling schedule as for the Norman gene dataset.

5. Results
5.1. Small Sample Learning and Adaptive Gene

Embeddings

One of the primary challenges in active learning is that it
typically begins with a small training dataset (Chandra et al.,
2020). When the amount of training data is limited, linear
models consistently outperform deep learning models. We
observed similar patterns in this study particularly when the
training data size is below a certain threshold (e.g., 10%
in the (Norman et al., 2019) dataset, corresponding to 20
observations per gene during training). As the training
data size increases beyond this threshold, the Multi-Layer
Perceptron (MLP) begins to surpass the linear model in

Figure 2. Performance on test data of different gene embedding
settings in NAIAD using the Norman dataset (4,429 training com-
binations) across varying training data sizes, reported as log(MSE).
The models without gene embeddings or with low-dimensional em-
beddings perform well with small training data but do not improve
as more data are added. In contrast, the MLP model with larger
gene embeddings outperforms these models when the training data
exceeds 30%. The adaptive embedding approach achieves the best
performance across all training data sizes.

performance (Figure 2).

We investigated different gene embedding configurations:
an over-parameterized single-gene effect model without
embeddings, NAIAD with fixed 4-dimensional gene em-
beddings, and NAIAD with training-data-size adaptive em-
beddings ranging from 2 to 128 dimensions. The results
suggest that adaptive embeddings consistently achieve su-
perior performance in most cases, regardless of the training
data size (Figure 2) in the Norman dataset. This adaptability
allows the model to effectively leverage the strengths of
both embedding representations and combined single-gene
effects. Of note, we observed that the compressed scalar val-
ues from the single-gene components strongly correlate with
the linear-model predicted results, demonstrating that the
NAIAD model leverages the strong baseline performance
of linear models. Moreover, the correlation between the
scalar values from the gene embedding components and the
linear residuals becomes stronger as the training data size
increases (Appendix Figure 6).

5.2. Benchmark Analysis in Small Sample Learning

We benchmarked NAIAD against the linear model, MLP,
GEARS, and RECOVER on the previously-described four
bulk combinatorial perturbation datasets that cover 6,328;
147,658; 100,576; and 95,703 gene combinations (detailed
information of benchmark models is described in Appendix
B). NAIAD consistently outperformed all other models, par-
ticularly in situations with a limited number of observed
gene pairs, as measured by log(Mean Square Error), Pear-
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Table 1. Root mean square error (RMSE) of five models on test data when each gene is observed in training data approximately 4 and 20
times. Error is standard error (SE) across three cross-fold replicates.

Dataset RMSE (×10−2 )

Gene Frequency Model Norman Simpson Horlbeck K562 Horlbeck Jurkat

4

Linear 6.2 (1.7) 3.3 (0.3) 6.4 (0.9) 3.9 (0.6)
MLP 7.7 (0.9) 4.3 (0.9) 7.8 (2.5) 5.5 (2.1)
GEARS 16.6 (19.8) 5.4 (3.4) 13.0 (11.6) 13.5 (16.1)
RECOVER 7.1 (2.8) 3.9 (0.4) 7.9 (2.0) 5.0 (0.7)
NAIAD 5.1 (1.8) 2.2 (0.1) 6.1 (1.9) 3.0 (0.6)

20

Linear 6.1 (1.1) 3.3 (0.2) 6.4 (0.9) 3.8 (0.6)
MLP 5.0 (1.4) 2.0 (0.3) 5.9 (0.1) 3.0 (0.4)
GEARS 10.7 (12.1) 3.5 (2.0) 14.0 (14.0) 20.7 (24.0)
RECOVER 4.7 (0.5) 1.9 (0.4) 5.6 (1.0) 3.0 (0.4)
NAIAD 4.7 (0.1) 1.9 (0.2) 5.4 (0.6) 2.8 (0.6)

Figure 3. Benchmark analysis comparing the NAIAD model
with GEARS and RECOVER models, evaluated using test data
log(MSE) across different numbers of gene combinations in train-
ing data. Error bars are SE across three cross-fold replicates.

son correlation coefficient, and true positive rate from the
held-out test data (Figure 3, Appendix Figure 7).

Due to variations in the total number of gene pairs measured
across these datasets, we also analyzed model performance
based on the average frequency of each gene’s occurrence
among the training data combinations. Gene occurrence
was approximated as Gene Occurrence = 2N

M , where N
is the number of gene combinations in the training set (the
factor of 2 assumes a symmetrical screen), and M is the
number of unique genes covered in the screen. We observed
that when each gene was seen on average four times, NA-

IAD’s performance was consistently the best—over 40%
better than the second-best model on average across the four
datasets (Table 1) based on root mean square error (RMSE).
As the frequency of gene occurrence increased, the perfor-
mance difference among the models gradually decreased
(Table 1, Appendix Table 6). When each gene appeared
20 times within different gene combinations in the training
dataset, all models achieved comparable performance levels
(Table 1). This suggests that as more data becomes available,
the gene embeddings learned from different deep learning
models can all largely capture the genetic interactions that
dominate performance. Notably, because Gene Occurrence
depends on the number of unique genes included in the
screen, achieving a high frequency of observations per gene
becomes increasingly challenging when the aim is to cover
a wide range of genes. For example, screening 20,000 genes
across the genome to obtain an average of 20 observations
per gene would require measuring 200,000 combinations
in the initial training dataset. This represents a substantial
experimental cost and even exceeds the size of the largest
current screen, which covers over 145,000 combinations
(Simpson et al., 2023).

These results demonstrate the robustness of NAIAD in han-
dling both small and large training datasets, making it a
valuable tool for exploring vast combinatorial spaces. This
highlights its potential for discovery of effective gene combi-
nations in settings with constrained experimental resources.

5.3. Effectiveness of Maximum Predicted Effect
Sampling in Identifying Effective Gene Pairs

The second challenge in active learning frameworks is the
design of the recommendation system or acquisition func-
tion. We explored multiple acquisition functions—including
uncertainty sampling, Maximum Predicted Effect (MPE)
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Figure 4. Comparison of different acquisition functions evaluated by top-N prediction accuracy for the strongest N perturbations across
four iteration rounds (see Appendix D for full description of accuracy metric). Error bars are SE from three cross-fold replicates.

Table 2. Number of top 200 gene combinations correctly discov-
ered at round 4 of active learning.

Norman Simpson Horlbeck K562 Horlbeck Jurkat

Uniform 92 66 39 79
MPE 144 144 94 161
UCB 97 111 55 117
Uncertainty 92 74 45 84

Table 3. Marginal gain of correctly discovered top 200 gene com-
binations at round 4 of active learning.

Norman Simpson Horlbeck K562 Horlbeck Jurkat

Uniform 1 7.5 0.5 2.5
MPE 14 27 14.25 23
UCB 2.25 18.75 4.5 12
Uncertainty 1 9.5 2 3.75

sampling, and Upper Confidence Bound (UCB) sampling
from RECOVER (Bertin et al., 2023), which combines resid-
ual and uncertainty sampling—to evaluate their impact on
overall performance (Figure 4). To simulate the active learn-
ing process using current publicly available symmetrical
screening data, we started with the same uniformly sampled
gene pairs for all acquisition functions and trained a base-

line ensemble of NAIAD models. We then used the trained
model ensemble to infer unseen combinations across the
entire combinatorial space and applied different acquisition
functions on the corresponding ensemble metric (e.g. MPE
or ensemble uncertainty) to select gene pairs for measure-
ment as the additional training data for the next round. We
repeated the sampling and retraining process across four
iterations.

We found that MPE sampling outperforms other sampling
methods by identifying a higher fraction of the globally
strongest gene pairs (Figure 4). The advantage of MPE sam-
pling becomes larger with each additional iteration, even
though all approaches show improved performance over
iterations. By the fourth iteration, across the four datasets,
we were able to uncover over twice as many strong per-
turbations using MPE sampling compared to uniform sam-
pling, and nearly 1.5 times as many as UCB, the second-best
method (Table 2). Specifically, the MPE method identified
approximately 150 out of the top 200 strongest gene pairs
in three of the datasets, achieving the highest marginal gain
in each dataset (Table 3). We found this result to be robust
under different active learning ensemble sizes, ranging from
one model per ensemble up to seven models per ensemble
(Appendix Table 5).
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Table 4. Number of top 200 gene combinations correctly discovered at round 4 of active learning using NAIAD and RECOVER with
different acquisition functions. Error is SE across three cross-fold replicates.

Model Method Norman Simpson Horlbeck K562 Horlbeck Jurkat

NAIAD Uniform 93.3 (0.7) 70.3 (5.0) 38.7 (0.3) 81.3 (0.9)
RECOVER Uniform 81.0 (0.0) 44.3 (0.3) 37.0 (0.6) 75.0 (0.6)
NAIAD MPE 143.0 (1.5) 141.7 (3.7) 99.7 (4.2) 150.0 (4.0)
RECOVER MPE 138.7 (2.7) 88.3 (28.2) 53.7 (23.7) 65.7 (10.4)
NAIAD UCB 110.3 (2.5) 102.7 (8.1) 60.3 (3.3) 96.0 (8.5)
RECOVER UCB 84.7 (3.5) 62.0 (14.1) 26.3 (1.3) 48.7 (7.1)

Although MPE sampling exhibited worse overall perfor-
mance based on the test set MSE (Appendix Figure 8), this
discrepancy is likely due to the distribution of the sam-
pled training data. MPE sampling skews the distribution
toward strong-effect gene pairs, leading to more accurate
predictions for these pairs but less accuracy across the entire
dataset, thus affecting overall MSE (Appendix Figure 9).

We also considered alternative models and acquisition func-
tions to assess their ability to identify strong pairs of per-
turbations. Additional experiments performed in an active
learning setting using the MPE acquisition function showed
that NAIAD outperformed both RECOVER and GEARS
(Appendix Table 7). We next examined the effect of com-
bining exploration and exploitation during sampling by in-
corporating an uncertainty-based score term to the MPE
sampling function (see Appendix C.5), inspired by the UCB
strategy from RECOVER. This MPE+uncertainty function
differs from UCB, which adds an ensemble uncertainty term
to the residual (subtracting ensemble prediction mean from
linear model baseline) rather than the mean of the ensemble
estimate. We found that including an uncertainty term did
not improve performance, and when assigned a high weight
in the sampling function, reduced the number of strong per-
turbations discovered during acquisition (Appendix Table
8).

Furthermore, we disentangle the contributions of the MPE
acquisition function and the NAIAD model architecture to-
ward identifying optimal gene pairs (Table 4). We found
that the MPE acquisition function robustly identifies strong
combinations when using the RECOVER model, and addi-
tionally that NAIAD outperforms RECOVER head-to-head
in an active learning context for every acquisition strategy
evaluated. The NAIAD model and MPE acquisition function
Individually increased our ability to find effective combina-
tions, and they jointly identified more top-performing gene
pairs than any other model-function pairing. Across the
four gene perturbation datasets, after four rounds of active
learning, NAIAD+MPE outperformed RECOVER+MPE by
1.7 times on average, and NAIAD+UCB by 1.5 times on
average.

The primary goal of our NAIAD active learning framework
is not to accurately predict all gene pair interactions but
to effectively select the strongest gene pairs that induce
significant phenotypic changes. Therefore, the superior per-
formance of NAIAD+MPE sampling in identifying potent
gene combinations aligns well with our objectives. By using
a model that most effectively represents genetic perturbation
interactions, and prioritizing the discovery of the strongest
gene pairs, we can accelerate the identification of gene com-
binations that are most relevant for therapeutic development.

5.4. Extending NAIAD for Drug Combination
Predictions

To assess NAIAD’s effectiveness beyond genetic interac-
tions, we applied our framework to drug combination pre-
dictions. Drug combination screening is a commonly used
approach for identifying optimal combination therapies that
can enhance treatment efficacy while minimizing toxicity.
We extended NAIAD to drug combination using the publicly
available Zheng et al. (2021) dataset, which was adapted
by the Bertin et al. (2023) RECOVER study (details in Ap-
pendix A). Starting with randomized drug embeddings for
the small molecules included in the screen, we incorporated
MPE as the acquisition strategy.

We benchmarked NAIAD against RECOVER in an active
learning framework for drug combination screening, eval-
uating performance improvements over successive experi-
mental iterations. As the number of experimental iterations
increased, all methods showed performance gains. NA-
IAD consistently outperformed RECOVER in identifying
the strongest drug combinations, and the performance gap
increased significantly starting from Round 2. This sug-
gests that NAIAD learns meaningful drug interaction rep-
resentations more efficiently than RECOVER, making it
particularly advantageous when the number of experimental
iterations is limited. In later rounds, we observed compara-
ble performance between the two models when considering
the top 50 pairs, but NAIAD more effectively identifies the
strongest combinations when considering both fewer than
50 and greater than 50 top combinations. Overall, NAIAD
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Figure 5. Comparison of NAIAD and RECOVER in drug combination screening, assessed by top-N prediction accuracy for the strongest
N perturbations across four iteration rounds. The NAIAD model with uniform sampling is used as the baseline model. Error bars are SE
from three cross-fold replicates.

is superior to RECOVER in identifying a broader range of
effective drug pairs (Figure 5).

These results demonstrate NAIAD’s robustness across both
gene and drug perturbation domains. Its generalizability,
combined with its efficiency in low-data regimes, makes
NAIAD a practical tool for discovering effective therapeutic
combinations under experimental constraints.

6. Discussion and Conclusion
In this work, we introduced NAIAD, an active learning
framework that efficiently identifies effective gene or drug
pairs by leveraging single perturbation effects, adaptive gene
embeddings, and an MPE acquisition function. Our frame-
work leverages the principles of Bayesian optimization (Fra-
zier, 2018), employing sequential experimentation and learn-
ing to enable effective decision-making with limited data.
Whereas traditional Bayesian optimization employs a fixed
surrogate model, our framework adapts to learn different
surrogate functions at varying sizes of training data. This
adaptability enables NAIAD to adjust its modeling complex-
ity based on the available data, effectively bridging the gap
between linear models and deep learning techniques.

By incorporating adaptive gene embeddings, NAIAD miti-
gates overfitting in small-sample training and captures com-
plex interactions as more data becomes available. The MPE
acquisition function further enhances the model’s efficiency
by prioritizing gene pairs with significant predicted effects,
accelerating the discovery process with fewer experimental
iterations. As a result, NAIAD outperforms existing ap-
proaches, particularly in scenarios with limited training data
when using the MPE acquisition function. We demonstrate
its effectiveness in small-sample learning and its high dis-
covery rate for identifying the top N strongest combinations
across the entire search space.

Despite its advantages, there are areas where the NAIAD
model could be further enhanced. Currently, NAIAD does
not support predicting gene expression profiles resulting

from single-cell combinatorial perturbation data. However,
when projecting single-cell expression data into one rele-
vant phenotype value, the NAIAD framework can still be
adapted to predict that specific phenotype. Another lim-
itation is that our model assumes we have knowledge of
each gene’s individual effect on the phenotype. For unseen
individual genes, the current NAIAD model cannot predict
the effects of combinations involving these genes, especially
when both genes in a pair are unseen. Incorporating properly
pre-trained gene embeddings could potentially allow us to
predict such unseen situations (Cui et al., 2024). By incor-
porating pre-trained gene embeddings, we can obtain prior
knowledge of the similarities between unseen and known
genes within relevant latent spaces. Assuming that these
gene relationships are conserved across different domains,
the model can leverage this information to infer the single-
gene effects of unseen genes, even to predict the outcomes
of combinations involving two previously unseen genes.
Additionally, refining the acquisition score function to be
a learnable component—such as employing a monotonic
submodular regularization (Alieva et al., 2020; Wei et al.,
2015; Golovin & Krause, 2010)—could enable the model to
adaptively prioritize experiments that maximize information
gain, rather than relying on a fixed heuristic.

Our model also holds significant potential for higher-order
combinatorial perturbations. With the advancement of com-
binatorial CRISPR technologies, higher-order gene combi-
nation datasets are becoming increasingly common (Tieu
et al., 2024; Hsiung et al., 2024). NAIAD is theoretically
well-suited and can be easily adapted to accommodate inter-
actions beyond gene pairs. Handling higher-order CRISPR
combinatorial perturbations would allow for the exploration
of more complex genetic interactions, potentially leading to
a more effective induction of desired cellular phenotypes.

Software and Data
The source code for NAIAD is available at
https://github.com/NeptuneBio/NAIAD.
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A. Dataset Summary
A.1. Genetic Perturbations

We utilize four bulk combinatorial perturbation datasets in our study:

Combinatorial CRISPRa on K562 cells (Norman et al., 2019): This dataset was generated using combinatorial CRISPR
activation (CRISPRa), involving 112 genes and 6,328 unique gene combinations.

Large-scale combinatorial CRISPRi on K562 cells (Simpson et al., 2023): This dataset was generated using CRISPR
interference (CRISPRi), involving 543 genes and 147,658 unique gene combinations.

Combinatorial CRISPRi on K562 cells (Horlbeck et al., 2018): This dataset was generated using combinatorial CRISPRi,
involving 448 genes and 100,576 unique gene combinations.

Combinatorial CRISPRi on Jurkat T Cells (Horlbeck et al., 2018): This dataset was generated using combinatorial CRISPRi,
involving 437 genes and 95,703 unique gene combinations.

For the bulk cell viability datasets, we calculated the log-fold change in cell viability for each CRISPR-guide combination
compared to negative control treatments. This normalization allows for the quantification of the effect size of each
perturbation on cell survival. Next, we averaged these cell viability measurements across all pairs of guides targeting
each unique pair of genes, to generate gene-level measurements of cell viability. To calculate the effect of single-gene
perturbations, we used all guide pairs consisting of gene-targeting guide and one non-targeting guide. For a deeper
explanation of calculating cell viability (also referred to as γ), we refer the reader to Simpson et al. (2023).

A.2. Drug Treatment

We utilize the drug dataset prepared by Zheng et al. (2021) and used by Bertin et al. (2023) in RECOVER to benchmark
their active learning platform. The dataset was generated by assaying 2,320 cell lines with single and two-drug treatments.
For benchmarking NAIAD, we use the 4,349 unique two-drug treatments conducted on K562 cells.

We processed the data in several ways:

1. The drug database contains different dosage treatments for each drug on the K562 cell line. Since drugs may have
dosage-dependent treatment effects, we filter the assays to only include a single dosage for each drug. For each drug,
we choose the dosage closest to the IC50 of that drug in K562 cells, and discard all measurements at other dosages.

2. We only use combinations for which the corresponding single-drug measurements (at the same dosages) are also
present in the dataset.

3. We remove conditions that saturate the cell viability measurements, i.e. combinations and individual drugs with >
80% cell viability inhibition. We rationalize that at this detection limit of the experiment, a) the measurements are
overly-noisy as a result of low cell counts, and b) there are no meaningful interactions between drugs since all cells are
dead under each individual treatment.

After these filtering steps, we are left with 1,828 unique measurements in K562 cells across combinations of 94 unique
drugs.

B. Benchmark Models
Linear model: We employed a simple linear regression model using the effects of two single-gene perturbations as
independent variables to predict their joint effect. This model involved three parameters: two coefficients for the individual
gene effects and an intercept term.

Multi-layer perceptron (MLP): We implemented an MLP model where each gene was represented by a 128-dimensional
embedding. For each two-gene perturbation, we created a joint embedding for the two genes by summing their embeddings
along each dimension and passing it through a MLP layer that projects from 128 dimensions down to a single dimension
corresponding to the phenotype value. The MLP captured non-linear interactions between gene embeddings.

GEARS: For the GEARS model, we adhered to the original settings as specified in their supplementary materials (Roohani
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et al., 2023) for cell viability prediction. This included their specific network architecture and parameters used in their
tutorial. For bulk-combinatorial datasets lacking single-cell experiments expected for GEARS, we generated synthetic
Pertub-seq datasets of normalized gene expression matrices, with a separate Gaussian N (0, 1) used for sampling the
expression of each gene.

RECOVER adaptation: RECOVER was originally developed for drug perturbations involving small molecule embeddings
and bilinear operations to combine drugs (Bertin et al., 2023). The models were trained to predict Bliss synergy scores,
which capture the non-linear components of phenotypic outcomes, instead of directly modeling the phenotypic outcomes
themselves. We adapted RECOVER for gene perturbations by incorporating a bilinear projection module to combine
128-dimensional gene embeddings. This adaptation allowed us to model gene-gene interactions using the same principles
applied to drug combinations in the original RECOVER framework. We train the model to predict the gene-equivalent of
Bliss scores, which is the difference between measured viability and the product of the viability of single-gene perturbations.
We then convert the gene-Bliss-score predictions back to overall cell viability predictions by re-adding the product of the
viability of the single-gene perturbations.

C. Active Learning Sampling Strategies
In our active learning framework, we employ several sampling strategies to select the most informative experiments for
subsequent rounds. Below, we provide the mathematical formulations for these strategies.

C.1. Uncertainty-Based Sampling

We use an ensemble of models {Mi}Ni=1, each initialized randomly. For a candidate gene combination x, each model
provides a prediction yi = Mi(x). We estimate the prediction uncertainty using the standard deviation of the ensemble
predictions:

SD(y) =

√√√√ 1

N

N∑
i=1

(yi − ȳ)
2

where ȳ is the mean prediction across the ensemble:

ȳ =
1

N

N∑
i=1

yi.

The acquisition function for uncertainty-based sampling is defined as:

auncertainty(x) = SD(y).

We select the candidate combinations with the highest auncertainty(x) values, as they represent samples where the model is
most uncertain and additional data could significantly improve the model.

C.2. Maximum Predicted Effect (MPE) Sampling

This strategy targets gene combinations predicted to have strong effects. The acquisition function is:

aMPE(x) = ȳ,

where ȳ is the mean prediction as defined above. We select candidates with the highest absolute predicted effects ȳ ,
prioritizing experiments likely to yield substantial biological insights or therapeutic benefits.

C.3. Residual-Based Sampling

To identify areas where nonlinear interactions are significant and the model may not have fully captured them, we compute
the residual between predictions from a non-linear model and a linear model. Let N(x) be the prediction from the non-linear
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model and L(x) be the prediction from a linear approximation. The residual is calculated as:

r(x) = |N(x)− L(x)| .

The acquisition function for residual-based sampling is:

aresidual(x) = r(x).

We select candidate combinations with the highest residuals aresidual(x), focusing on samples where the non-linear effects
are most pronounced and the model’s predictions differ significantly from linear expectations.

C.4. Upper Confidence Bound (UCB) Sampling

We perform UCB sampling following the strategy provided by RECOVER (Bertin et al., 2023):

aUCB(x) = aresidual(x) + κ ∗ auncertainty(x)

Where κ is a hyperparameter set to κ = 1 based on the recommendation from the RECOVER paper.

By combining these sampling strategies, we aim to efficiently explore the combinatorial space of gene interactions. The
goal is to maximize information gain with each experimental round, ultimately using a minimal number of experiments to
identify effective gene combinations that can induce desired cellular phenotypes.

C.5. Mean Upper Confidence Bound (Mean-UCB) Sampling

Inspired by the UCB acquisition function from RECOVER, we develop an exploitation-exploration balanced acquisition
function that utilizes the mean of the ensemble prediction rather than the residual relative to a linear model. We call this
sampling method Mean Upper Confidence Bound (Mean-UCB) sampling. We express the acquisition function as a weighted
combination:

score = α× ȳ + β × SD(y)

where ȳ is the mean across the ensemble predictions, and SD(y) is the standard deviation across ensemble predictions.

This unified view captures multiple acquisition strategies:

• Uniform sampling: α = β = 0

• Uncertainty-only (pure exploration): α = 0

• MPE (pure exploitation): β = 0

• UCB (balanced trade-off): α = β = 1

We evaluate the performance of the acquisition function on identifying the strongest perturbations in Appendix Table 8.

D. Model Evaluation Metrics
We use several metrics to evaluate the performance of our models.

MSE: Mean Square Error
1

Npairs

∑
i,j∈genes

(ypred
i+j − ytruth

i+j )
2

Fraction Discovered: Through active learning, we want to identify how many of the top P strong perturbations have been
identified by our model of interest. Let M be the total number of rounds of active learning, and let N = [n0, n1, . . . , nM ] be
the list that defines how many samples ni are used for each active learning round i = 0, 1, . . . ,M .
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In each round of learning, we train on the ni unmasked samples chosen depending on the acquisition function. After training,
we make predictions for the entire unseen dataset. We concatenate the predictions on the unseen data with the unmasked
measured values from the seen data, and call this combined set of predictions and measurements Xi for each round i.

Let Xi,P be the set of top P values in the set Xi. Let Yi,P be the set of top P measured (ground truth) values across all
samples in round i. Let Pi = |Xi,P ∩ Yi,P | be the number of times a perturbation from the top P predictions is also in the
top P targets for round i. Fraction Discovered is then defined as Pi

P .

Marginal Gain: The marginal gain at round 4 is P4(top=200)−P0(top=200)
4 , where P4(top = 200) is the number of top-200

perturbations correctly identified in Round 4, and P0(top = 200) is the number of top-200 perturbations correctly identified
in Round 0.

TPR: True positive rate

Let X targets be the set of top N measured combinations, and Xpreds be the set of top N predicted combinations. We find the
number of matches Nmatch = |X targets ∩Xpreds|, and calculate TPR as Nmatch

N .

E. Hardware Configuration
All model training was done on a single Paperspace A100-80G server with 100GB of RAM.

F. Hyperparameter Selection
For all training of the NAIAD and MLP models, we use learning rate = 10−2, and a batch size = 1024. We also used a
linear rate scheduler with 10% of training steps used for warm up, and weight decay = 0.

To identify these optimal hyperparameters, we testing hyperparameters across the following ranges:

n epoch: [50, 100, 200, 500, 1000, 2000]

batch size: [512, 1024, 2048, 4096]

learning rate: [10−4, 10−3, 10−2, 10−1]

d embed: [2, 4, 8, 16, 32, 64, 128, 256]

d single-gene: [8, 16, 32, 64, 128, 256, 512]

weight decay: [0, 10−4, 10−3]

For training the RECOVER model, we use a learning rate = 10−1. For GEARS, we keep all hyperparameters assigned by
default from the package.

F.1. Adaptive Model Embedding Size Selection

For the NAIAD model, we choose the embedding size hyperparameter based roughly on the number of times each gene was
seen in the training set, following the schedule shown in Table 9 . We determined these values using the idea that model
size depends on the number of times each individual gene is seen during training, and that these properties hold across all
datasets.
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G. Supplemental Figures and Tables

Figure 6. Evaluation of compressed single-gene effects and gene embeddings shows a strong correlation between the compressed single-
gene effects and the values predicted by the linear model. As the training data increases, the correlation between gene embeddings and the
residuals of the linear model predictions gradually becomes stronger.

Figure 7. Benchmark analysis comparing the NAIAD model with GEARS and RECOVER models, evaluated using test data correlation
and true positive rate (for identifying the top 200 perturbations of a 30% held-out test set) across different numbers of gene combinations
in training data. Error bars are SE across three cross-fold replicates.
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Table 5. Number of top 200 gene combinations correctly discovered at round 4 of active learning using different ensemble sizes. Error is
standard error (SE) across three cross-fold replicates.

Ensemble Size Norman Simpson Horlbeck K562 Horlbeck Jurkat
MPE Uniform MPE Uniform MPE Uniform MPE Uniform

1 140.7 (2.3) 89.3 (2.0) 149.7 (2.7) 66.7 (4.7) 105.7 (3.9) 34.3 (5.2) 153.3 (3.8) 79.7 (0.7)
3 141.3 (1.9) 91.0 (1.2) 146.3 (3.8) 67.7 (4.6) 104.3 (4.3) 37.7 (0.9) 153.3 (5.4) 79.7 (1.5)
5 141.0 (2.5) 91.0 (1.0) 143.3 (2.6) 68.0 (2.6) 103.7 (3.8) 37.0 (1.2) 150.7 (2.8) 80.7 (1.5)
7 142.7 (1.8) 91.7 (0.7) 143.3 (3.0) 71.3 (4.4) 101.7 (5.8) 38.7 (0.9) 151.7 (3.8) 81.0 (2.5)

Figure 8. Comparison of different acquisition functions evaluated by MSE across four iteration rounds. Error bars are SE across three
cross-fold replicates.
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Figure 9. Comparison of training sample distribution changes across different iterations using four acquisition functions. The X-axis
represents the linear predicted values, while the Y-axis shows the actual measured values. The plot highlights gene pairs belonging to the
top 200 gene pairs with the strongest effects in the entire dataset.
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Table 6. RMSE of five models on test data when each gene is approximately observed in training data 10 times. Error is SE across three
cross-fold replicates.

Dataset RMSE (×10−2)

Gene Frequency Model Norman Simpson Horlbeck K562 Horlbeck Jurkat

10 Linear 6.1 (1.3) 3.3 (0.2) 6.4 (0.9) 3.8 (0.6)
MLP 5.7 (1.3) 2.4 (0.4) 6.3 (1.1) 3.5 (1.0)
GEARS 15.5 (12.8) 8.7 (10.3) 12.0 (9.6) 24.2 (28.5)
RECOVER 5.9 (1.0) 2.5 (0.2) 6.1 (0.2) 3.7 (1.0)
NAIAD 4.7 (1.2) 2.0 (0.2) 5.7 (0.8) 3.0 (0.8)

Table 7. Number of top 200 gene combinations correctly discovered over four rounds of active learning by NAIAD, RECOVER, and
GEARS on the Norman dataset. Error is SE across three cross-fold replicates

Model Method Round 0 Round 1 Round 2 Round 3 Round 4

NAIAD MPE 86.0 (1.0) 100.3 (0.9) 112.3 (1.7) 128.0 (2.5) 143.0 (1.5)
RECOVER MPE 82.0 (1.0) 101.0 (1.2) 110.7 (2.0) 125.0 (2.5) 138.7 (2.7)
GEARS MPE 42.0 (2.1) 80.0 (1.5) 91.7 (0.7) 99.7 (0.3) 109.3 (1.5)
NAIAD Uniform 86.0 (1.0) 88.3 (2.0) 88.3 (0.3) 89.7 (1.2) 93.7 (0.7)

Table 8. Number of top 200 gene combinations correctly discovered at round 4 of active learning using different β values in the Mean-UCB
acquisition function. We find that the True Positive Rate (TPR) of the top 200 gene combinations remains relatively stable for small values
of β (i.e., β ≤ 1). This may be because, during early active learning rounds, the effect magnitude dominates the predictive uncertainty.
As β increases, the influence of uncertainty grows, leading to a decrease in TPR. Error is standard error (SE) across three cross-fold
replicates.

β Norman Simpson Horlbeck K562 Horlbeck Jurkat

0 138.3 (2.2) 145.7 (3.8) 99.0 (2.6) 152.3 (4.1)
0.25 139.7 (2.0) 144.7 (3.7) 97.0 (3.0) 151.0 (3.8)
0.5 138.3 (0.9) 148.0 (2.6) 98.0 (0.6) 152.0 (4.0)
0.75 138.3 (0.9) 147.3 (2.0) 98.7 (0.3) 154.7 (4.9)
1 139.3 (1.7) 144.7 (2.6) 98.0 (1.0) 154.3 (4.6)
1.5 140.7 (0.3) 144.3 (2.3) 97.7 (2.9) 153.3 (4.6)
2 138.7 (2.9) 144.0 (3.6) 95.7 (1.9) 153.7 (4.5)
5 137.0 (4.7) 144.0 (2.6) 81.3 (1.8) 143.3 (4.8)
10 133.0 (3.6) 142.3 (2.6) 72.3 (6.4) 132.0 (6.9)
25 119.7 (3.4) 124.0 (4.5) 73.0 (5.8) 107.7 (1.8)
Uniform 93.3 (2.9) 69.0 (1.1) 39.0 (0.6) 80.3 (0.3)
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Table 9. Training and model hyperparameters for each data set and data split

Dataset Train Epochs Avg. Times All Approx. Embed Single-Gene
Genes Seen Training Dataset Size Dim Dim

Norman et al. (2019) 500 2 100 2 64
4 200 4 64

10 500 16 64
20 1000 16 64
30 1500 32 64
40 2000 64 64
60 3000 64 64
80 4000 128 64

100+ 5000+ 128 64

Simpson et al. (2023) 200 2 500 2 256
4 1000 4 256

10 5000 16 256
20 10000 16 256
30 15000 32 256
40 20000 64 256
60 30000 64 256
80 40000 128 256

100+ 50000+ 128 256

Horlbeck et al. (2018) 200 2 500 4 256
4 1000 16 256

10 5000 32 256
20 10000 32 256
30 15000 64 256
40 20000 64 256
60 30000 64 256
80 40000 128 256

100+ 50000+ 128 256
Zheng et al. (2021) 800 2 100 2 256

4 200 4 256
6 300 4 256
8 400 4 256

10 500 16 256
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