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ABSTRACT

Large Language Models (LLMs) have recently driven significant advancements in
Natural Language Processing and various other applications. While a broad range
of literature has explored the graph-reasoning capabilities of LLMs, including
their use as predictors on graphs, the application of LLMs to real-world evolving
networks (or temporal graphs), remains relatively unexplored. Recent work stud-
ies synthetic temporal graphs generated by random graph models, but applying
LLMs to real-world temporal graphs remains an open question. To address this
gap, we introduce Temporal Graph Talker (TGTalker), a novel temporal graph
learning framework designed for LLMs. TGTalker utilizes the recency bias in
temporal graphs to extract relevant structural information, converted to natural
language for LLMs, while leveraging temporal neighbors as additional information
for prediction. TGTalker demonstrates competitive link prediction capabilities
compared to existing Temporal Graph Neural Network (TGNN) models. Across
five real-world networks, TGTalker performs competitively with state-of-the-art
temporal graph methods while consistently outperforming popular models such
as TGN and HTGN. Furthermore, TGTalker generates textual explanations for
each prediction, thus opening up exciting new directions in explainability and
interpretability for temporal link prediction.

1 INTRODUCTION

The field of artificial intelligence has witnessed remarkable progress through the development of
Large Language Models (LLMs), beginning with the foundational Transformer architecture (Vaswani
et al., 2017) and evolving through significant milestones including BERT (Devlin et al., 2019),
GPT-3 (Brown et al., 2020), and ChatGPT (OpenAI, 2023). These models have demonstrated
unprecedented capabilities across diverse domains, showcasing their versatility and potential for
real-world applications. In Computer Vision, models such as LLaVA (Liu et al., 2023) and GPT-
4 (OpenAI et al., 2023) have achieved remarkable multimodal understanding, while in Healthcare,
Med-PaLM (Singhal et al., 2023b) and Med-PaLM 2 (Singhal et al., 2023a) have demonstrated
expert-level performance on complex medical reasoning tasks. Beyond these domains, LLMs have
shown promising results in scientific research (Schulz et al., 2025), legal analysis (Calzolari et al.,
2024), and creative tasks (Franceschelli et al., 2025), highlighting their transformative potential across
professional and academic fields.

A key advancement in LLM capabilities is the emergence of In-Context Learning (ICL), which enables
models to adapt to new tasks without explicit fine-tuning (Dong et al., 2023; Coda-Forno et al., 2023;
Sia et al., 2024; Brown et al., 2020). This paradigm encompasses three fundamental approaches:
zero-shot learning, where models solve tasks directly from natural language instructions; one-shot
learning, which provides a single example alongside instructions; and few-shot learning, which
leverages multiple examples to demonstrate task patterns. This flexibility in learning approaches has
opened new avenues for applying LLMs to complex structured data. To harness these capabilities for
graph-structured data, recent research has explored various approaches to integrate LLMs with graph
reasoning tasks. This integration is particularly relevant given that many real-world systems—from
molecular structures (Beaini et al., 2024) and social networks (Hamilton et al., 2017) to transportation
systems (Zheng & Bashir, 2022) and web data (Broder et al., 2000)—are naturally represented as
graphs. Prior work has investigated methods for encoding graph structure for LLMs (Fatemi et al.,
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Figure 1: Overview of TGTalker framework. TGTalker utilizes pre-trained LLMs to generate link
prediction answers and explanations for real-world temporal graphs.

2024), combining graph encoders with LLMs (Fatemi et al., 2023), and fine-tuning LLMs specifically
for graph tasks (Ye et al., 2023).

However, a significant gap exists in applying LLMs to temporal graphs (TGs), which represent
evolving networks such as the Internet and social media platforms where entities and relations
change over time. While the pioneering work of LLM4DyG (Zhang et al., 2024b) has demonstrated
preliminary spatial-temporal understanding capabilities of LLMs on synthetic temporal graphs, these
insights are limited to small-scale graphs with approximately 20 nodes. The potential of LLMs for
real-world temporal graphs, which often contain thousands or millions of edges and exhibit complex
temporal dynamics, remains largely unexplored.

To bridge this gap, we introduce Temporal Graph Talker (TGTalker), the first comprehensive frame-
work that leverages LLMs for predictions on real-world temporal graphs. TGTalker employs a
pre-trained LLM as its foundation while intelligently translating temporal graph structures into natu-
ral language representations tailored to specific tasks. Figure 1 shows an overview of the TGTalker
framework where LLMs are applied for prediction and explanation on temporal graphs. TGTalker
consists of four key components: (1) a background set that captures temporal context by incorporat-
ing relevant temporal links near the target link, (2) an example set that provides in-context learning
samples through carefully selected question-answer pairs, (3) a query set that formulates prediction
tasks in natural language, and (4) a temporal neighbor sampling mechanism that ensures efficient
and relevant context selection. Our framework aligns with standard temporal link prediction tasks
in temporal graph learning (Rossi et al., 2020; Yu et al., 2023; Huang et al., 2023b; Gastinger et al.,
2024) while introducing novel capabilities for explainability and adaptability through LLM-based
reasoning. Our main contributions are as follows:

• LLM for real-world temporal graphs. We present TGTalker, a novel framework that leverages
LLMs for prediction on real-world temporal graphs. Our approach combines the recency bias
inherent in temporal graphs with temporal neighbor sampling to convert the most relevant temporal
graph structures to textual representations for LLM processing.

• Strong link prediction performance.Through extensive empirical evaluation across three open-
source LLM families and five diverse real-world temporal graphs, we demonstrate that TGTalker
achieves competitive performance with state-of-the-art Temporal Graph Neural Networks (TGNNs).
Notably, TGTalker consistently outperforms both the widely-used TGN architecture and three
snapshot-based models across all evaluated datasets.

• Temporal link explanations. TGTalker introduces a novel paradigm of temporal link explanation
by leveraging the natural language capabilities of LLMs. This enables the generation of human-
readable explanations for model predictions, opening new directions for explainable TG methods.

• Diverse explanation categories. From LLM-generated explanations, we extract ten diverse
explanation categories. Interestingly, some explanation categories are similar to existing TG
algorithms that capture recent interactions or global popular destinations. These categories shed
light on the diverse link pattern reasoning capability of LLMs.

2 RELATED WORK

Temporal Graph Learning. Temporal Graph Learning (TGL) focuses on modeling spatial and
temporal dependencies in evolving networks. Following the taxonomy in (Kazemi et al., 2020),
methods are typically classified as either Continuous-Time Dynamic Graphs (CTDGs) or Discrete-
Time Dynamic Graphs (DTDGs). CTDG methods (Longa et al., 2023), such as TGN (Rossi et al.,
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2020), EdgeBank (Poursafaei et al., 2022), TNCN (Zhang et al., 2024a), and GraphMixer (Cong
et al., 2022), operate on irregular event streams, capturing fine-grained node interactions important
for domains like social networks (Kumar et al., 2019) and financial transactions (Shamsi et al.,
2024). In contrast, DTDG methods process graph snapshots at fixed intervals, combining GNNs
with recurrent models (Yang et al., 2021; Kipf & Welling, 2016; Chen et al., 2022). While DTDGs
offer computational efficiency by processing full snapshots and retaining historical context, they may
suffer from reduced temporal fidelity (Huang et al.). The UTG framework (Huang et al.) addresses
this gap by adapting snapshot-based models to event-based datasets. In our experiments, TGTalker is
evaluated against representative CTDG and DTDG methods.

In-Context Learning on Graphs. Recent efforts have explored applying in-context learning (ICL)
to graph-structured data, where challenges arise from translating complex relational information into
linear prompts suitable for LLMs. Unlike conventional NLP tasks, effective graph ICL requires careful
encoding of substructures and relational patterns. Frameworks such as PRODIGY (Huang et al.,
2023a) propose pretraining objectives and model architectures tailored for graph-based pro3mpting.
Other work investigates the innate ability of LLMs to infer patterns from structured examples with
minimal adaptation (Li et al., 2025). A key challenge addressed by TGTalker lies in how to select,
verbalize, and sample relevant temporal graph substructures to maximize ICL effectiveness.

Graph Reasoning with Large Language Models. Beyond in-context learning, a growing body of
research examines the capacity of LLMs for more general graph reasoning tasks (Fatemi et al., 2024;
Sanford et al., 2024; Behrouz et al., 2024; Perozzi et al., 2024). While LLMs demonstrate preliminary
spatial and temporal understanding (Zhang et al., 2024b), they often struggle with dynamic graphs
and tasks requiring complex multi-hop reasoning (Dai et al., 2024; Nguyen et al., 2024). Moreover,
shortcut learning behaviors—where models produce correct outputs via flawed reasoning—have
been widely observed. Nonetheless, the ability of LLMs to reason without task-specific fine-tuning
positions them as attractive alternatives to specialized temporal graph neural networks (TGNNs).
TGTalker builds on these insights by proposing methods to structure temporal information in ways
that enhance LLMs’ robustness and reasoning depth.

LLMs for Temporal Knowledge Graphs. Recent research adapts LLMs to Temporal Knowledge
Graphs (TKGs), leveraging either ICL (Lee et al., 2023), semantic knowledge of temporal dynam-
ics (Ding et al., 2024; Xia et al., 2024; Wang et al., 2024), or fine-tuning strategies (Liao et al., 2024).
However, most TKGs encode rich textual descriptions for nodes and edges, allowing LLMs to rely
on surface-level semantics rather than deeper structural reasoning. In contrast, TGTalker focuses
on general temporal graphs where entities are represented abstractly (e.g., by identifiers), requiring
models to reason over raw temporal-structural patterns without external semantic clues. This is
crucial for evaluating the true relational reasoning abilities of LLMs at fine temporal granularities.

3 PRELIMINARY ON TEMPORAL GRAPH LEARNING

Following the formulation of Continuous Time Dynamic Graphs (CTDGs) in (Huang et al., 2023b;
Rossi et al., 2020; Poursafaei et al., 2022; Luo & Li, 2022), we represent temporal graphs as
timestamped streams of edges and formally defined as:

Definition 1 (Temporal Graph). A temporal graph G can be represented as G =
{(s1, d1, t1), (s2, d2, t2), . . . , (sT , dT , T )}, where the timestamps are ordered (0 ≤ t1 ≤ t2 ≤
... ≤ T ) and si, di, ti denote the source node, destination node and timestamp of the i-th edge.

Note that G can be directed or undirected, and weighted or unweighted. Gt is the cumulative graph
constructed from all edges in the stream before time t with nodes Vt and edges Et. We consider a
fixed chronological split to form the training, validation and test set.

Definition 2 (k-hop neighborhood in a temporal graph). Given a timestamp of interest t, denote
Gt as the cumulative graph constructed by all temporal links before t. Given a node u, the k-hop
neighborhood of u before time t is denoted by N t,k

u and it is defined as the set of all nodes v where
there exists at least a single walk of length k from u to v in Gt.

In this work, we follow the standard streaming setting (Rossi et al., 2020) for evaluation in Continuous
Time Dynamic Graphs (CTDGs). In this setting, the test set information is available for updating the
model representation (i.e. via a memory module or via temporal neighbor sampling); however, no
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gradient or weight updates are allowed at test time. In this way, the models can adapt to incoming
data without expensive gradient updates.

4 METHODOLOGY

In this section, we present our Temporal Graph Talker (TGTalker) framework for applying Large
Language Models on real-world temporal graphs. We start by discussing how to encode the temporal
network structure into discrete text tokens for interfacing with LLMs.

4.1 APPLYING LLMS ON TEMPORAL GRAPH

LLM Notation. Consider a pre-trained Large Language Model (LLM) as an interface function
f where discrete tokens are received as input and generated as output via the token space W, i.e.
f : W → W. Therefore, many tasks with LLM can be formulated as question and answer pairs, i.e.,
A = f(Q) where Q ∈ W is the question or query and A ∈ W is the answer of interest.

Temporal Link Prediction with LLMs. Given a temporal graph observed until time t, i.e. Gt, the
goal of temporal link prediction is to predict the destination node d of a given source node s at a
future timestamp t′. Therefore, we can formulate temporal link prediction as a question-and-answer
task for LLMs as follows:

A = f(g(Gt), q(Qs,?,t′)) (1)
where Qs,?,t′ is the link query, g : G → W is a temporal graph encoding function and q : W → W
is the query encoding function. Thus, it is important to identify the appropriate temporal graph
encoding function g and query encoding function function q such that the LLMs can provide the
correct answer A while respecting the constraints from the LLM architecture such as maximum
input size lmax. Note that in practice, standard temporal graph learning methods treat the temporal
link predicting problem as a ranking problem (Huang et al., 2023b; You et al., 2022) where the
model outputs a probability for each considered node pair and then selects the node pair with the
highest probability. With LLMs, it is possible to directly ask the model which destination node is the
most probable and avoid the need to predict probability for all node pairs for ranking. Therefore, in
TGTalker, the LLM directly outputs the destination node.

Temporal Link Explanation with LLMs. LLMs have been shown as powerful tools for explan-
ability for tasks such as medical diagnosis analysis (Zhao et al., 2024), financial decision trans-
parency (Limonad et al., 2024) and educational feedback (Seo et al., 2025). With LLMs directly
interfacing with discrete language tokens, it is possible to generate temporal link explanations in
natural language. The temporal link explanation task can also be formulated as a question-and-answer
task for LLMs as follows:

R = f∗(A, g(Gt), q(Qs,?,t′)) (2)
where A = f(g(Gt), q(Qs,?,t′)) is the answer to query q(Qs,?,t′) and R is the explanation or the
reasoning for the answer. Note that the LLM f∗ used for the explanation R does not necessarily have
to be the same LLM f used for prediction. Explaining predictions on temporal graphs is inherently
challenging due to the spatial and temporal dependencies between entities (Xia et al., 2022; Chen &
Ying, 2023). Unlike standard TGNNs where only a prediction probability is produced, LLMs provide
an alternative approach for contextualizing structural interactions via natural language.

Pre-trained LLMs. The TGTalker framework can be applied to any pre-trained LLM model.
In this work, we consider 5 families of LLM models include Qwen3 (Yang et al., 2024b),
Qwen2.5 (Yang et al., 2024b;a), Mistral (Chaplot et al., 2023), Llama3 (Dubey et al., 2024) and
GPT-4.1-mini (Achiam et al., 2023). Unlike temporal graph neural networks (TGNNs) that are
trained from scratch for each dataset, pre-trained LLMs have high adaptability. With TGTalker, LLMs
can be directly adapted to new TG datasets without any training or fine-tuning steps, significantly
reducing the overhead for manual model selection and hyperparameter tuning. Lastly, TGTalker can
inherently benefit from future improvements in language models’ reasoning capacities.

4.2 TEMPORAL GRAPH TALKER (TGTALKER)

Here, we discuss how TGTalker encodes a temporal graph for LLMs. TGTalker provides effective
temporal graph encoding function g and query encoding function q for LLMs. Note that LLMs
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Your task is to predict the next interaction 
(i.e. Destination Node) given the ‘Source Node’ 
and ‘Timestamp’. 
Description of the temporal graph is provided below.

Figure 2: TGTalker framework has four core components: a background set, an example set, a query
set and temporal neighbor sampling.

each have a fixed maximum input size lmax, which limits the amount of temporal graph structural
information that a LLM can receive. To tackle this issue, we leverage the strong recency bias in
temporal graph (Cornell et al., 2025; Souza et al., 2022; Huang et al., 2023b; Poursafaei et al., 2022)
to subsample the edges that are closest to the time of interest.

Figure 2 shows the overview of TGTalker which contains four core components: a background set,
a example set, a query set, and temporal neighbor sampling. The background set contains recent
temporal graph structures and acts as the context for the LLM. The example set shows matching
question and answer pairs that instructs the LLM to follow the text correctly. The query set contains
the current batch of edges for prediction and then converts them to LLM queries via the query
encoding function q. Importantly, temporal neighbor sampling identifies the most recent neighbors
for each source node in the query and retrieves them to provide the LLM with additional context. We
provide an example prompt in Appendix C.

Temporal Neighbor Sampling. Both TGNNs (Xu et al., 2020; Rossi et al., 2020) and temporal graph
transformers (Yu et al., 2023) utilize temporal neighbor sampling as a key component in architecture
design. In TGTalker, we also augment LLMs with temporal neighborhood information, following
Definition 2. For a given node of interest u, we implement a one-hop neighbor sampler which tracks
its neighborhood information N t,1

u and includes the most recent m neighbors in relation to the current
timestamp t. In practice, we observe that the inclusion of temporal neighbor information significantly
boosts LLM performance as it directly retrieves the most relevant information for LLM.

Background Set. The background set contains b most recent edges in Gt where t is the timestamp of
prediction and acts as the temporal graph encoding function g(Gt). The LLM is instructed to be a
temporal graph learning agent, and then each node is encoded with an integer encoding, directly stated
with its node ID. Edges are represented with parentheses as (src node ID, dst node ID, timestamp).
The timestamps are represented with integer encoding as well. Note that on continuous time dynamic
graphs, novel nodes are slowly introduced over time via their first edge interaction. Thus, assigning
node IDs to nodes based on their chronological sequence of appearance provides a principled way to
encode nodes with integer encoding. It is possible that multiple nodes are introduced at the same
timestamp; in this case, the node IDs are assigned based on the order of edges from the original
dataset. For bipartite graphs, it is common to assign non-overlapping node IDs for nodes in different
partitions. We follow this convention and nodes within each partition are assigned an ID based on
chronological order.

Query Set and Example Set. Following the convention in (Huang et al., 2023b; Rossi et al., 2020),
TGTalker predicts test edges in a fixed size batch. Each test edge for evaluation is then converted
to text via the query encoding function q(Qs,?,t′) where s and t are the source node and timestamp
of interest, respectively. Similar to the background set, we encode the edges with parentheses and
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state nodes with their integer node ID. To provide additional context on the source node as input to
LLM, we utilize temporal neighbor sampling here to also include m most recent neighbors of the
source node in the prompt. This retrieves the most relevant information of the source node from past
history. The example set provides in-context learning examples for LLMs to follow. Each example is
a question and answer pair i.e. (A,Q), instructing the model to follow the same question and answer
patterns. The examples are selected as the most recent k observed edges before the prediction time,
also incorporating the recency bias. In this way, the example set also reflect any recent changes in
the graph distribution. For our experiments, we consider the example set size of 5, thus conducting
5-shot prompting on LLM.

5 EXPERIMENTS

Datasets. Here, we evaluate TGTalker across five continuous-time dynamic graph datasets. Dataset
details are described in Appendix E. The number of nodes in our experiments are up to 500x larger
than the synthetic graphs used in prior work (Zhang et al., 2024b). The surprise index is defined
as surprise = |Etest\Etrain|

Etest
(Poursafaei et al., 2022) which measures the proportion of unseen edges

in the test set when compared to the training set. The tgbl-wiki dataset is from the Temporal
Graph Benchmark (TGB) (Huang et al., 2023b) while the rest of datasets are from (Poursafaei et al.,
2022). We follow the evaluation protocol in TGB where the link prediction task is treated as a
ranking problem and the goal is to rank the true positive edge higher than all negative samples.
For tgbl-wiki, we use the TGB negative samples, while for other datasets, we follow TGB
procedure (Huang et al., 2023b) to generate negative samples for evaluation, including 50% historical
negatives and 50% random negatives.

Variants and Baselines. We test five families of LLMs with varying sizes as pre-trained LLMs
in TGTalker, including the following open-source LLM models: Qwen3-1.7B, Qwen3-8B,
Qwen2.5-7B-Instruct (Yang et al., 2024b;a), Mistral-7B-Instruct-v0.3 (Chaplot
et al., 2023) and Llama3-8B-instruct (Dubey et al., 2024). We also include the closed-source
model: GPT-4.1-mini (Achiam et al., 2023). All of the LLMs are instruct models thus better fit
for in-context learning. We drop the instruct suffix later for brevity. By default, we use background set
size b = 300, batch size 200, example set size 5, and two 1-hop temporal neighbors for each source
node during prediction. An ablation study for TGTalker is found in Appendix G, we observe that the
inclusion of temporal neighbors has the strongest impact on model performance. We also report the
inference time for LLM models in Appendix H, we observe that on all datasets, the inference time of
LLMs is less than a day. For temporal graph methods, we compare TGTalker with SOTA event-based
methods including TNCN (Zhang et al., 2024a), TGN (Rossi et al., 2020), GraphMixer (Cong et al.,
2022) and two variants of EdgeBank (Poursafaei et al., 2022). Following the implementation in
UTG (Huang et al.), we also include three SOTA event-based methods, HTGN (Yang et al., 2021),
GCLSTM (Chen et al., 2022) and GCN (Kipf & Welling, 2016).

5.1 TEMPORAL LINK PREDICTION RESULTS

In this section, we evaluate the efficacy of TGTalker for temporal link prediction against established
TGL methods. Table 1 presents the test Mean Reciprocal Rank (MRR) for all models across five
temporal networks. As TGTalker leverages pre-trained LLMs without task-specific fine-tuning, we
report its results from a single inference run. For conventional TGL methods, which are trained
from scratch for each dataset, we report the mean and standard deviation across five random seeds.
The deterministic EdgeBank baseline is reported by a single run. In Table 1, TGTalker consistently
achieves top-two performance on three out of five datasets and secures a top-three rank on the Enron
and LastFM datasets when compared with SOTA TGL methods. This highlights the significant
potential of leveraging LLMs for complex temporal graph prediction tasks. In addition, TGTalker
requires no fine-tuning or training when compared to existing methods.

Another key observation is that increased model size within the same LLM family boosts performance.
For instance, Qwen3-8B generally outperforms Qwen3-1.7B across multiple datasets. However,
this trend does not universally apply when comparing across different LLM families; for example,
GPT-4.1-mini, despite its larger parameter count compared to some open-source models, exhibits
notably lower performance than Qwen3-1.7B on several datasets. Intriguingly, the closed-source
GPT-4.1-mini often underperforms its open-source counterparts of comparable or even smaller
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Table 1: Test MRR comparison for temporal link prediction, results reported from 5 runs for TGNNs
and a single run for pre-trained LLMs. All LLMs are instruct models. Top results are highlighted by
first, second, third.

Method tgbl-wiki Reddit LastFM UCI Enron

T
G

Ta
lk

er
(o

ur
s) Qwen3-1.7B 0.607 0.606 0.066 0.166 0.166

Qwen3-8B 0.651 0.626 0.069 0.189 0.192
Qwen2.5-7B 0.648 0.617 0.079 0.220 0.200
Mistral-7B-v0.3 0.604 0.612 0.067 0.212 0.184
Llama3-8B 0.604 0.613 0.069 0.213 0.193
GPT-4.1-mini 0.679 0.623 0.078 0.232 0.207

E
ve

nt

TGN 0.396 ± 0.060 0.499 ± 0.011 0.053 ± 0.015 0.051 ± 0.011 0.130 ± 0.066

TNCN 0.711 ± 0.007 0.696 ± 0.020 0.156 ± 0.002 0.245 ± 0.040 0.379 ± 0.081

GraphMixer 0.118 ± 0.002 0.136 ± 0.078 0.087 ± 0.005 0.034 ± 0.062 0.014 ± 0.002

EdgeBank∞ 0.495 0.485 0.020 0.079 0.101
EdgeBanktw 0.600 0.589 0.026 0.222 0.141

Sn
ap

sh
ot HTGN (UTG) 0.464 ± 0.005 0.533 ± 0.007 0.027 ± 0.007 0.038± 0.005 0.107± 0.009

GCLSTM (UTG) 0.374 ± 0.010 0.467 ± 0.004 0.019 ± 0.001 0.013± 0.001 0.157± 0.019

GCN (UTG) 0.336 ± 0.009 0.242 ± 0.005 0.024 ± 0.001 0.022± 0.001 0.232± 0.005
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Figure 3: Explanation category composition (top row) and test MRR per category (bottom row)
plots for Llama3-8B and GPT-4.1-mini on tgbl-wiki and UCI datasets. Note that empty
explanation categories are not shown in bar plots.

sizes, particularly on datasets like tgbl-wiki and Reddit. Among the LLM models, Qwen2.5-7B
achieves the best overall performance. TGTalker processes only a recent subset of the temporal
graph’s history due to maximum token length limitations on LLMs. In contrast, conventional TGL
methods are typically exposed to the entire graph history up to the prediction time. The competitive
performance of TGTalker suggests that LLMs utilize the most salient recent structural and temporal
information from the background set, example set and temporal neighbors in the TGTalker prompts.

5.2 TEMPORAL LINK EXPLANATION RESULTS

Designing Explanation Categories. To systematically analyze the diverse explanations, we first
establish a set of reasoning categories. We first use Qwen3-8B and GPT-4.1-mini to generate
example link explanations, and we also ask them to design appropriate categories for explanations.
Then we retrieve the categories and perform human annotation to ensure a set of ten reasonable and
comprehensive categories. These categories, along with their detailed descriptions, are shown in
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Table 2: Categories of Temporal Link Explanations of LLMs with example explanations.

Category & Description GPT-4.1-mini Example
Most Recent Interaction: the model predicts the
destination node as the one with which the source
node had its most recent interaction before (or clos-
est to) the given timestamp.

Considering the latest timestamp 2249408 is close in temporal sequence to the previous
interactions, the most likely destination node remains 9180.

Repeated Interaction Pattern: if a source node
has repeatedly interacted with the same destination
node at multiple timestamps, the model predicts
that this pattern will continue.

The source node 415 has two past interactions, both with the destination node 9180 at
timestamps 2129703 and 2218092. This indicates a strong and consistent pattern of interaction
with the destination node 9180.

Most Frequent Past Destination: when multiple
past interactions exist, the explanation chooses the
destination node that appears most frequently in
the interaction history.

Identify the most frequent Destination Nodes that 4946 has interacted with close to the query
timestamp 2237653. Based on past interaction frequency and recency, predict the next likely
Destination Node for Source Node 4946 at the given timestamp 2237653.

Pattern Continuation: The model infers the next
likely destination by extrapolating from observed
interaction patterns, even when the exact match
isn’t present.

There is no direct information about interactions involving Source Node 969 in the given
temporal graph dataset. However, analyzing the dataset, node 1546 connected to node 2093
repeatedly suggests that node 2093 is a likely target for nodes connected with 1546, an adjacent
node to 969 in the provided history. Given no other direct interactions for 969, the best estimate
based on similar patterns is that 969 will interact with destination node 2093 at timestamp
7554157, consistent with historical interactions of the related node 1546.

Sequence or Alternation Logic: the model uses
the order of interactions (e.g., alternating between
nodes) to predict the next likely destination.

The most recent interactions for node 431 are at timestamps 9168862 (to 3662) and 9168862
(approx) to 2461. Both are recent and close in time, and both destination nodes appear
recurrently. Given that node 431 alternates between these two destination nodes, and there
is no recent interaction indicating a new destination, the most likely next destination node
at timestamp 9259228 is one of these two. Between 2461 and 3662: Given that there are
slightly more occurrences of interactions to 3662, including one of the most recent timestamps
(9168862), it is more likely the next interaction will also be to node 3662.

Default or Most Common Node: in the absence
of a clear match, the explanation may default to
the most common or logical node, or state that any
node could be chosen.

Since no direct interactions for Source Node 1741 are present, and no pattern can be derived,
we consider the most frequent Destination Node overall or a default prediction. The most
frequent Destination Node connected to various sources in the temporal graph is 3692.

Lack of Data: when no clear pattern or sufficient
data is available, the model defaults to a plausible
guess, sometimes stating the lack of information.

No interactions are shown in the provided temporal graph for node 1624, so we have no
historical interactions for node 1624 to infer from.

New Node: the model infers that the next interac-
tion might be with a new node that hasn’t appeared
in the source node’s history, especially if all previ-
ous interactions are exhausted.

The ‘Source Node‘ 997 is not present in the provided TEMPORAL GRAPH. Thus, we must
infer based on the context: The ‘Source Node‘ 997 likely behaves similarly to node 1546, as
their historical interactions from the user mention are similar.

Ambiguous Candidates: the explanation dis-
cusses more than one plausible destination (e.g.,
similar timestamps), and may use additional heuris-
tics to select among them.

Analyze the frequency and recency of destination nodes for Source Node 1543. The latest
interactions for Source Node 1543 before timestamp 10383318 are (1543, 3115, 10286093)
and (1543, 2539, 10286406). Among these, 3115 and 2539 are recent and likely candidates.

Others: use this only if none of the above apply.
Include a proposed new category name and brief
justification in the required format.

Examine the provided past interactions for Source Node 2115. Both interactions are from
node 6545 to 9180 at different timestamps. There’s no direct interaction from 2115 in the
given data, but observing the pattern for 6545 might help. Since there’s no direct data on 2115
in the provided temporal graph, we look at the past interactions’ pattern for node 6545 to infer
the destination node for 2115 at the given timestamp.

Table 2. We also provide concise example explanations from GPT-4.1-mini for each category. 1.
Due to space constraints, full examples are provided in Appendix I. Our analysis reveals that LLMs
can construct interesting explanations. The category of ‘Most Recent Interaction’ is similar to the
well-known EdgeBank algorithm (Poursafaei et al., 2022) where the model simply uses recent past
neighbors of a node for prediction. The ‘Default or Most Common Node’ category is analogous
to the TG algorithm named PopTrack (Daniluk & Dabrowski) which captures recently globally
popular destination nodes. In the provided reasoning, GPT-4.1-mini also defaults to the most
frequent destination node. Another interesting set of explanations, such as ‘Pattern Continuation’ and
‘sequence logic’ involves pattern extrapolation and analyzing alternating interactions from a given
source node to various destination nodes. These explanations show that LLMs can naturally discover
algorithms on a temporal graph and provide insight into link pattern discovery on temporal networks.

Quantitative Analysis of Explanation Categories. To quantify the prevalence of these reasoning
categories, we prompted the same LLM that generated the prediction to classify its explanation into
one of the ten established categories, including an ‘Others’ option for unclassifiable explanations.
The same LLM is used for prediction and explanation classification because only the prediction LLM
knows the reasoning for its prediction, while other LLMs might not give the same reasoning. We study
the first 5,000 test predictions for LLama3-8B and GPT-4.1-mini on the tgbl-wiki and UCI
datasets. Figure 3 top row illustrates the distribution of these explanation categories. A key finding is
the adaptability of LLM reasoning to dataset characteristics: the composition of explanations varies
significantly across datasets. For example, when comparing GPT-4.1-mini’s explanations on

1We show GPT-4.1-mini examples because its explanations cover all the explanation categories.
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Table 3: Human Annotation Experiment Results.

Metric tgbl-wiki UCI
Avg. Correctness Rating (1–3) 2.854 2.835
Human–LLM Category: Raw Agreement 70.83% 72.00%
Intra-Annotator Agreement (Correctness Rating) 75.00% 74.00%
Intra-Annotator Agreement (Category Attribution) 45.83% 62.00%
Avg. Count of hallucination behaviour instances 3% 5.5%

tgbl-wiki versus UCI, there is a marked increase in the ‘Lack of Data’ category for UCI. This
aligns with UCI’s known characteristic of introducing more novel nodes and interactions over time,
contrasting with tgbl-wiki’s higher prevalence of repeating edges. This demonstrates that LLMs
can tailor their reasoning strategies to the underlying data distribution.

Further comparison between LLMs in Figure 3 reveals distinct reasoning profiles. For instance,
LLama3-8B explanations feature a higher proportion of the ‘Pattern Continuation’ category com-
pared to GPT-4.1-mini, which, in turn, exhibits a greater percentage of explanations in the
‘Repeated Interaction Pattern’ category. These differences offer insights into the varying intrinsic
reasoning capabilities and biases of different LLM architectures when applied to temporal graphs.
Interestingly, this categorization also surfaces model-specific behaviors and potential limitations.
For example, Llama3-8B puts none of the explanations in the ‘Sequence or Alternation Logic’
and ‘Ambiguous Candidates’ categories, and in some cases, explanations classified under ‘Most
Common Node’ appeared to be hallucinations. Conversely, GPT-4.1-mini occasionally produced
explanations categorized as ‘Others’ that suggested novel reasoning patterns, such as ‘Analogy-Based
Inference from Similar Node,’ highlighting the potential for LLMs to uncover reasoning patterns.

Correlating Explanation Categories with Predictive Performance. To assess whether the ex-
planation was hallucinated or aligned with the predictive outcomes, we analyzed the test MRR
performance within each category in Figure 3 bottom row. For GPT-4.1-mini, the results largely
align with expectations: the ‘Lack of Data’ category consistently shows low MRR, validating that the
LLM recognizes instances with insufficient evidence. Conversely, categories such as ‘Most Recent
Interaction’ and ‘Most Frequent Past Destination’ exhibit high MRR, reinforcing the importance
of recency and frequency heuristics in these temporal graphs. In comparison, Llama3-8B shows
the strongest performance in ‘Repeated Interaction Pattern’ and ‘Ambiguous Candidates’ as well
as surprisingly high performance in ‘Lack of Data’ categories, suggesting that Llama3-8B is less
capable of correlating its explanation with likely predictive outcomes.

Human Annotation Experiment. To empirically validate the correctness of generated explanations,
we conducted a human annotation experiment. Four independent annotators were asked to assess the
correctness of the explanations and categorize them, as well as flag any instances of hallucinations.
Table 3 details the results of this experiment. Notably we find LLM-generated explanations are rated
very correct with a low hallucination rate, and considerable agreement between human-attributed
categories and those generated by LLMs. We overall find high intra-annotator agreement to support
these findings, though it is lower for category attribution, which we attribute to the high number of
categories which induce higher variance.

6 CONCLUSION

In this work, we introduced TGTalker, a novel framework that leverages LLMs for prediction on real-
world temporal graphs. TGTalker utilizes the recency bias inherent in temporal graphs and temporal
neighbor sampling to extract the most relevant temporal graph structures to textual representations for
LLM reasoning. TGTalker achieves competitive performance with state-of-the-art TGNNs across five
temporal networks without any fine-tuning. Beyond prediction accuracy, our framework introduces
novel temporal link explanations via LLMs’ natural language generation capabilities, providing
human-readable explanations for predicted temporal links. The framework’s ability to identify
various reasoning patterns - from temporal relations to repeated patterns and sequence identification -
opens new possibilities for explainability in temporal graph learning.
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REPRODUCIBILITY STATEMENT

We provide a complete, anonymized codebase to enable full reproducibility at https://
anonymous.4open.science/r/TGTalker-3FDB/README.md. We also include the code-
base in the supplementary materials. Access links to all open-source LLMs are included in Ap-
pendix F. Dataset details and download links are provided in Appendix E. Compute resources needed
to reproduce the experiments are detailed in Appendix D.

ETHICS STATEMENT

In this work, we propose the TGTalker framework to explore the use of LLM for temporal link
prediction on real-world temporal graphs. It is well-known that LLMs can hallucinate and provide
unreliable explanations (Ji et al., 2023; McKenna et al., 2023). As TGTalker framework utilizes
pre-trained LLM, any hallucination or errors from the base LLM might also affect the output from
TGTalker. Therefore, practitioners should be aware of the limitations of LLMs when adapting
TGTalker. In addition, if the link explanation categories become widely-used in the field, it might
limit novel categories to be discovered. We also expect that with novel temporal networks, more
explanation categories will be discovered as LLMs adapts to more diverse link patterns.
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A LLM USAGE

We acknowledge the use of LLMs to assist in polishing the writing of this paper. All content, ideas,
figure and experimental results are our own. The LLM helped improve clarity and grammar.

B LIMITATIONS

First, the process of converting temporal graphs into textual representations is inherently constrained
by the context window size of the underlying LLM. Given that the context window of LLMs are often
limited to around 32k (small models) or 128k (larger models) for common open-source models such
as Qwen (Yang et al., 2024b;a), it is not feasible to use entire temporal graphs with millions of edges
as input. TGTalker is designed with this limitation in mind where we provide recent edges to the
LLM in the input prompt. However, this strategy may overlook long-range dependencies(Dwivedi
et al., 2022), which may lead to lower performance on datasets where relevant links span longer
durations. Second, TGTalker is a framework for adapting LLMs for predictions on temporal graphs.
Thus, the speed and efficiency of TGTalker are inherently tied to the characteristics of the base LLM
model it employs. In addition, the choice of the base model affects link prediction performance as
well as the explanations generated. Therefore, more LLM base models can be explored for evaluation
as well.

C EXAMPLE TGTALKER PROMPT

System: You are You are an expert temporal graph learning agent. Your task is to predict 
the next interaction (i.e. Destination Node) given the Source Node and Timestamp. 

Description of the temporal graph is provided below, where each line is  a tuple of 
(Source Node, Destination Node, Timestamp).

 TEMPORAL GRAPH:
(1478, 8773, 2270982)
(1555, 8789, 2270993)
…
# omitting edges due to space

# add example question answer pairs here

user: Source Node 179 has the following past interactions:
(179, 8994, 2129703)
(179, 8994, 2218092)

Please predict the most likely Destination Node for Source Node 179 
at Timestamp 2272475

Figure 4: Example Prompt for TGTalker.

Figure 4 shows an example prompt for TGTalker.
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Table 4: Dataset statistics.

Dataset # Nodes # Edges # Unique Edges # Unique Steps Surprise Duration

tgbl-wiki 9,227 157,474 18,257 152,757 0.108 1 month
Reddit 10,984 672,447 78,516 669,065 0.069 1 month
LastFM 1,980 1,293,103 154,993 1,283,614 0.35 1 month
UCI 1,899 26,628 20,296 58,911 0.535 196 days
Enron 184 10,472 3,125 22,632 0.253 3 years

D COMPUTE RESOURCES

For our experiments, we used the following compute resources. The TGTalker (LLM experiments)
were conducted on a single NVIDIA A100-SXM4 GPU (80GB memory) paired with 4 AMD Milan
7413 CPU nodes (2.65 GHz, 128MB L3 cache), each equipped with 128GB RAM. For CTDGs and
DTDGs experiments, we used a Quadro RTX 8000 GPU paired with 4 CPU nodes, each with 64GB
RAM. Each experiment had a five-day time limit and was repeated five times, with results reported
as averages and standard deviations across runs. For GPT-4o-mini and GPT-4.1-mini experiments,
we used OpenAI’s batch processing API https://platform.openai.com/docs/guides/
batch. Aside from methods based on PyTorch Geometric, several baseline models, tested using
their original code or the DyGLib repository, failed with out-of-memory or timeout errors on larger
datasets, even under generous configurations.

E DATASET DETAILS

In this work, we conduct experiments on tgbl-wiki, Reddit, LastFM, UCI and Enron datasets.
These datasets span a variety of real-world domains, providing a broad testbed for evaluating temporal
graph models. Table 4 shows the statistics for each dataset. Our experiments cover a wide range of
datasets with up to 1.2 million edges and timestamps.

• tgbl-wiki (Huang et al., 2023b) is a bipartite interaction network that captures temporal
editing activity on Wikipedia over one month. The nodes represent Wikipedia pages and
their editors, and the edges indicate timestamped edits. Each edge is a 172-dimensional
LIWC feature vector derived from the edited text.

• Reddit (Poursafaei et al., 2022) models user-subreddit posting behavior over one month.
Nodes are users and subreddits, and edges represent posting requests made by users to
subreddits, each associated with a timestamp. Each edge is also a 172-dimensional LIWC
feature vector based on post contents.

• LastFM (Poursafaei et al., 2022) is a bipartite user–item interaction graph where nodes
represent users and songs. Edges indicate that a user listened to a particular song at a given
time. The dataset includes 1000 users and the 1000 most-listened songs over a one-month
period. It contains no node or edge attributes.

• UCI (Poursafaei et al., 2022) is an anonymized online social network from the University
of California, Irvine. Nodes represent students, and edges represent timestamped private
messages exchanged within an online student community. The dataset does not contain
node or edge attributes.

• Enron (Poursafaei et al., 2022) is a temporal communication network that is based on email
correspondence over a period of three years. Nodes represent employees of the ENRON
energy company, while edges correspond to timestamped emails. The dataset does not
include node or edge features.

Tgbl-wiki is obtained from the Temporal Graph Benchmark (Huang et al., 2023b), where the
dataset can be downloaded along with the package, see TGB website for details. Reddit, LastFM,
UCI and Enron are obtained from (Poursafaei et al., 2022) and can be downloaded at https:
//zenodo.org/records/7213796#.Y8QicOzMJB2.
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Figure 5: Explanation category composition plots for Qwen2.5-7B on tgbl-wiki and UCI datasets.

F CODE AND MODEL ACCESS

Code for reproducing TGTalker is available at https://anonymous.4open.science/r/
TGTalker-3FDB/README.md. We use various pre-trained LLMs in TGTalker. For reproducibil-
ity, the Hugging Face link to all the open-source LLMs are available below:

• Qwen3-1.7B: https://huggingface.co/Qwen/Qwen3-1.7B

• Qwen3-8B: https://huggingface.co/Qwen/Qwen3-8B

• Qwen2.5-7B-Instruct: https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

• Mistral-7B-Instruct-v0.3: https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

• Llama3-8B-instruct: https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

G ABLATION STUDY

Here we conduct ablation studies on the components of TGTalker. Table 5 shows the link prediction
performance of the Qwen3.8b model with respect to in context learning, the number of temporal
neighbors, and the size of the background set – as well as the performance of TGTalker with none
of these components. Notably, the exclusion of temporal neighbours has a significant reduction in
model performance – and the exclusion of all three components drastically nullifies the model’s
performance. This emphasizes the importance of extracting relevant structural information specific to
the node of interest (i.e. the recent neighbours of the source node).

Table 5: Ablation Study Results for TGTalker with Qwen3.8b as base model where test MRR is
reported.

Configuration tgbl-wiki Reddit

TGTalker (All components) 0.649 0.613

– w/o In Context Learning 0.645 0.612
– w/o Temporal Neighbours 0.322 0.122
– w/o Background Set 0.648 0.618

– with no components 0.008 0.002

In comparison, removing either the In-context learning and background set seems to have minor
impact on the model performance. Their importance is however put forth by the drop in performance
with no components. Table 6 offers more detailed insights into the effect of temporal neighbours.
While the absence of such neighbours drastically plummets TGTalker’s performance, the increase in
number of neighbours also has a strong positive effect.
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Table 6: Ablation Study Results for TGTalker with Qwen3.8b on the number of temporal neighbors

Configuration tgbl-wiki Reddit

TGTalker (nbr = 2) 0.649 0.613

– Number of temporal neighbours = 0 0.322 0.122
– Number of temporal neighbours = 1 0.646 0.520
– Number of temporal neighbours = 5 0.652 0.635
– Number of temporal neighbours = 10 0.656 0.643

H LLM INFERENCE TIME

Table 7 report the inference time of both Qwen3-8B and Llama3-8B across our benchmark datasets.
We report directly the inference time on the test set for temporal link prediction with an NVIDIA
Quadro RTX 8000 GPU (48GB). We observe that on all datasets, the inference time of LLMs is less
than a day. In particular, most datasets like tgbl-wiki, UCI and Enron only have inference time
of a few hours.

Table 7: Inference time cost of LLM models

Dataset Model Inference Time (secs) Approx. Hours
tgbl-wiki Qwen3-8B 10773 3
tgbl-wiki Llama3-8B 10377 3
Reddit Qwen3-8B 50297 14
Reddit Llama3-8B 45137 13
LastFM Qwen3-8B 86025 23
LastFM Llama3-8B 84341 23
UCI Qwen3-8B 4046 1
UCI Llama3-8B 3839 1
Enron Qwen3-8B 7755 2
Enron Llama3-8B 7304 2
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I MODEL EXPLANATIONS

Here we provide further details on the temporal link explanations generated by LLMs. Table 2
presents all ten categories of explanations along with their corresponding descriptions. The ‘Other’
category is left open for the LLM to propose novel categories if desired. Figure 5 illustrates the
distribution of explanations generated by Qwen2.5-7B, highlighting the model’s preference for
the Repeated Interaction Pattern category. Example explanations from Llama3-8B-instruct,
GPT-4.1-mini, and Qwen2.5-7B are shown in Table 8, Table 10, and Table 9, respectively.
Notably, Llama3-8B-instruct omits explanations in certain categories such as ‘Ambiguous
Candidates’ and exhibits hallucinations in the ‘Default or Most Common Node’ category. Similarly,
Qwen2.5-7B often misclassifies its ’Default’ hallucinations, which more accurately reflect ’Lack
of Data’ descriptions.

Table 8: Full Examples of ‘GPT-4.1-mini’ explanations for each category.

Category Description GPT-4.1-mini Example
Most Recent Interaction: The model pre-
dicts the destination node as the one with
which the source node had its most recent
interaction before (or closest to) the given
timestamp.

Given the past interactions of Source Node 5124, it has had interactions only with Destination Node
9180 at timestamps 2129703 and 2218092. There is no evidence of any other destination node for this
source node. Considering the latest timestamp 2249408 is close in temporal sequence to the previous
interactions, the most likely destination node remains 9180.

Repeated Interaction Pattern: if a source
node has repeatedly interacted with the
same destination node at multiple times-
tamps, the model predicts that this pattern
will continue.

The source node 415 has two past interactions, both with the destination node 9180 at timestamps
2129703 and 2218092. This indicates a strong and consistent pattern of interaction with the destination
node 9180.The latest past interaction timestamp 2218092 is earlier than the query timestamp 2238574,
so the pattern is likely to continue.

Most Frequent Past Destination: When
multiple past interactions exist, the expla-
nation chooses the destination node that ap-
pears most frequently in the interaction his-
tory.

Analyze the historical interactions for Source Node 4946 in the provided temporal graph data to
identify any patterns or repeated Destination Nodes. Identify the most frequent Destination Nodes that
4946 has interacted with close to the query timestamp 2237653. Based on past interaction frequency
and recency, predict the next likely Destination Node for Source Node 4946 at the given timestamp
2237653.

Pattern Continuation: The model infers
the next likely destination by extrapolating
from observed interaction patterns, even
when the exact match isn’t present.

The interaction history of Source Node 969 shows edges from node 1546 to node 2093 at timestamps
5074383 and 5116440. There is no direct information about interactions involving Source Node 969
in the given temporal graph dataset. However, analyzing the dataset, node 1546 connected to node
2093 repeatedly suggests that node 2093 is a likely target for nodes connected with 1546, an adjacent
node to 969 in the provided history. Given no other direct interactions for 969, the best estimate
based on similar patterns is that 969 will interact with destination node 2093 at timestamp 7554157,
consistent with historical interactions of the related node 1546.

Sequence or Alternation Logic: The
model uses the order of interactions (e.g.,
alternating between nodes) to predict the
next likely destination.

Given the provided temporal graph, we search for interactions involving Source Node 431. We
observe multiple interactions from node 431 to destination nodes 2461 and 3662 at various times,
e.g. (431, 2461, 9031465), (431, 3662, 9041425), (431, 3662, 9090133), (431, 2461, 9090545), (431,
3662, 9168862). This indicates that node 431 interacts mainly with nodes 2461 and 3662. Comparing
the timestamp 9259228 to the latest interactions, the most recent interactions for node 431 are at
timestamps 9168862 (to 3662) and 9168862 (approx) to 2461. Both are recent and close in time,
and both destination nodes appear recurrently. Given that node 431 alternates between these two
destination nodes, and there is no recent interaction indicating a new destination, the most likely next
destination node at timestamp 9259228 is one of these two. Between 2461 and 3662: Given that there
are slightly more occurrences of interactions to 3662, including one of the most recent timestamps
(9168862), it is more likely the next interaction will also be to node 3662.

Default or Most Common Node: In the
absence of a clear match, the explanation
may default to the most common or logical
node, or state that any node could be cho-
sen.

Check the temporal graph for interactions involving Source Node 1741. None are found in the
given data, so no direct pattern exists for this node. Examine the given past interactions of Source
Node 1741: (1546, 2093, 5074383) and (1546, 2093, 5116440). These involve Source Node 1546
connecting to Destination Node 2093, but Source Node 1741 itself is not involved. Possibly a
misunderstanding or misstatement of data. Since no direct interactions for Source Node 1741 are
present, and no pattern can be derived, we consider the most frequent Destination Node overall or a
default prediction. The most frequent Destination Node connected to various sources in the temporal
graph is 3692.

Lack of Data: When no clear pattern or suf-
ficient data is available, the model defaults
to a plausible guess, sometimes stating the
lack of information.

The given past interactions for Source Node 1624 are (1546, 2093, 5074383) and (1546, 2093,
5116440). However, these are for Source Node 1546, not 1624. No interactions are shown in the
provided temporal graph for node 1624, so we have no historical interactions for node 1624 to infer
from.

New Node: The model infers that the next
interaction might be with a new node that
hasn’t appeared in the source node’s history,
especially if all previous interactions are
exhausted.

The ‘Source Node‘ 997 is not present in the provided TEMPORAL GRAPH. Instead, the user
mentioned past interactions with (1546, 2093) at lower timestamps, but these do not relate to ‘Source
Node‘ 997 directly in the current temporal graph data. Thus, we must infer based on the context: The
‘Source Node‘ 997 likely behaves similarly to node 1546, as their historical interactions from the user
mention are similar.

Ambiguous Candidates: The explanation
discusses more than one plausible destina-
tion (e.g., similar timestamps), and may use
additional heuristics to select among them.

Check the temporal graph for interactions where Source Node is 1543. Analyze the frequency and
recency of destination nodes for Source Node 1543. The latest interactions for Source Node 1543
before timestamp 10383318 are (1543, 3115, 10286093) and (1543, 2539, 10286406). Among these,
3115 and 2539 are recent and likely candidates.

Others: Use this only if none of the above
apply. Include a proposed new category
name and brief justification in the required
format.

Examine the provided past interactions for Source Node 2115. Both interactions are from node
6545 to 9180 at different timestamps. There’s no direct interaction from 2115 in the given data,
but observing the pattern for 6545 might help. Check the temporal graph to see any interactions
involving 2115. Since there’s no direct data on 2115 in the provided temporal graph, we look at the
past interactions’ pattern for node 6545 to infer the destination node for 2115 at the given timestamp.
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Table 9: Examples of Qwen2.5-7B explanations for each category.

Category Description Qwen2.5-7B Example
Most Recent Interaction: The model pre-
dicts the destination node as the one with
which the source node had its most recent
interaction before (or closest to) the given
timestamp.

I used the temporal graph provided to analyze the movement
patterns between Node 775 and its recorded neighbors in the
graph. Given that Node 775’s movement has been predominately
towards Node 8529, and aiming to predict next interaction’s node,
the Node 8529 is predicted as the most plausible neighbor based
on past interactions.

Repeated Interaction Pattern: If a source
node has repeatedly interacted with the
same destination node at multiple times-
tamps, the model predicts that this pattern
will continue.

I used the temporal graph provided to analyze the movement
patterns between Node 7326, Node 400, and Node 2517. Based
on previous interactions, I determined the two most frequent Des-
tination Nodes for each Source Node. Therefore, my prediction
for Node 7326 is 8491, and my prediction for Nodes 400 and
2517 is 8817 respectively.

Most Frequent Past Destination: When
multiple past interactions exist, the expla-
nation chooses the destination node that ap-
pears most frequently in the interaction his-
tory.

I predict that the most likely ’Destination Node’ for ’Source
Node’ 2196 at ’Timestamp’ 2220367 is ’8471’ because it has
been connected to this node more frequently in the temporal
graph observations. The adjacency relationships between these
nodes is the key factor in my prediction.

Pattern Continuation: The model infers
the next likely destination by extrapolating
from observed interaction patterns, even
when the exact match isn’t present.

I predict that the most likely destination node for Source Node
1282 at Timestamp 7206287 is 3185 based on its previous inter-
actions. It has visited two other nodes, 1285 and 2315, around
79 times in Temporal Graph. This visit distribution across these
three nodes is discovered by revisiting the Temporal Graph which
fits well with a triadic closure of nodes 1282, 1285 and 2315
and highlights potential strength of three nodes to communicate
with each other, indicating that 1282 might be looking to create
new connections. Therefore, considering the node co-occurrence,
node strength and high triadic closure, I predict Render Tree to
be the destination node of 1282 at Timestamp 7206287.

Sequence or Alternation Logic: The
model uses the order of interactions (e.g.,
alternating between nodes) to predict the
next likely destination.

I used the temporal graph provided to analyze the movement
patterns between Node 775 and its recorded neighbors in the
graph. Given that Node 775’s movement pattern changes between
Node 9180 and Node 8529, I predict Node 8529 as the most likely
next destination because it represents a different pattern from the
one represented by Node 9180.

Default or Most Common Node: In the
absence of a clear match, the explanation
may default to the most common or logical
node, or state that any node could be cho-
sen.

The only explanation generated in this category is a hallucination
confounded with the Lack of Data category.

Lack of Data: When no clear pattern or suf-
ficient data is available, the model defaults
to a plausible guess, sometimes stating the
lack of information.

I used the temporal graph provided to analyze the movement
patterns between Node 312 and its recorded neighbors in the
graph. Given that Node 390 has existed in previous time-steps
but is not seen connected to Node 2032, it can be inferred that
Nodes 390 and 2032 are not directly connected to one another at
this point. Therefore, predicting a connection between 312 and
2032 might not be accurate, and choosing them as a destination
could be a random guess without further context.

New Node: The model infers that the next
interaction might be with a new node that
hasn’t appeared in the source node’s history,
especially if all previous interactions are
exhausted.

I predict that the most likely destination node for Source Node
1285 at Timestamp 7198235 is 3213 based on its previous inter-
actions. It has visited two other nodes, 1282 and 3547, around
7091387. Since 3213 is not discovered in these past interactions
and its occurrence in Temporal Graph is less than these two nodes,
I believe it has not been visited yet.

Ambiguous Candidates: The explanation
discusses more than one plausible destina-
tion (e.g., similar timestamps), and may use
additional heuristics to select among them.

No explanations fall within this category (None).

Others: Use this only if none of the above
apply. Include a proposed new category
name and brief justification in the required
format.

I predict that the most likely destination node for Source Node
447 at Timestamp 7138932 is 3567 due to my analysis of the
temporal graph data, in which Source Node 447 has not interacted
with any other Node in the provided data. Since Temporal Graph
Learning is based on historical patterns, historical data discovered
in the past, and interactions between nodes over time, I predict
that no further interaction is likely to occur. Please note that
this prediction is based purely on the pattern of absence in the
provided data and Temporal Graph Learning best practices, and
not on any other external factors. This prediction should be taken
as a stochastic exercise and may not be entirely accurate always.
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Table 10: Examples of Llama3-8B-instruct explanations for each category.

Category Description Llama3-8B-instruct Example
Most Recent Interaction: The model pre-
dicts the destination node as the one with
which the source node had its most recent
interaction before (or closest to) the given
timestamp.

The source node 131 has a past interaction with destination node
220, which is a relatively strong signal. Since there is no other
strong signal in the data, I predict that the most likely destination
node for source node 131 at timestamp 94823623 is node 276,
which is the node that is closest to node 220 in the graph.

Repeated Interaction Pattern: If a source
node has repeatedly interacted with the
same destination node at multiple times-
tamps, the model predicts that this pattern
will continue.

The temporal graph model learns patterns and relationships based
on the past interactions. When we look at the past interactions
for ‘Source Node‘ 6, we see that it typically interacts with nodes
237 and 314. Considering the timestamp 94969339, it’s possi-
ble that the pattern of interactions is maintained, and the most
likely destination node for ‘Source Node‘ 6 would be ‘Node 314‘.
However, please note that this prediction is based on a limited set
of past interactions and may not generalize to all possible future
interactions.

Most Frequent Past Destination: When
multiple past interactions exist, the expla-
nation chooses the destination node that ap-
pears most frequently in the interaction his-
tory.

Based on the given temporal graph, which includes multiple inter-
actions across different timestamps, I can see that ‘Source Node‘
147 has a history of interactions with several nodes, including 280,
293, 314, and 367. The predicted timestamp (95227379) is in
the same time range as the majority of interactions. Therefore, I
predict that the most likely ‘Destination Node‘ for ‘Source Node‘
147 at ‘Timestamp‘ 95227379 is node 367, given that this node
has a high frequency of interactions with node 147 in the past.

Pattern Continuation: The model infers
the next likely destination by extrapolating
from observed interaction patterns, even
when the exact match isn’t present.

The temporal graph model learns to predict the likelihood of a
future interaction based on past interactions. Since ‘Source Node‘
117 has only two past interactions, both with ‘Destination Node‘
64, which is not present in the general interaction list, it’s difficult
to determine a pattern or relationship. However, the closest pair
to ‘Source Node‘ 117 is ‘Source Node‘ 125 with a time difference
of 18, and its closest pair is a repetition of the same interaction.
Therefore, I predicted ‘Destination Node‘ 299 as it is similar
in structure to the past interaction of ‘Source Node‘ 125, even
though it may not be the exact same node.

Sequence or Alternation Logic: The
model uses the order of interactions (e.g.,
alternating between nodes) to predict the
next likely destination.

No explanations fall within this category. (None)

Default or Most Common Node: In the
absence of a clear match, the explanation
may default to the most common or logical
node, or state that any node could be cho-
sen.

The only explanation in this category is a hallucination.

Lack of Data: When no clear pattern or suf-
ficient data is available, the model defaults
to a plausible guess, sometimes stating the
lack of information.

Unfortunately, since there is no past interaction data available
for ‘Source Node‘ 2134, I cannot provide a reliable prediction.
The graph learning model relies heavily on past interactions to
make predictions, so without any relevant data, it’s challenging to
make an accurate prediction. If more data was available, I could
train the model to predict the most likely ‘Destination Node‘ for
‘Source Node‘ 2134 at ‘Timestamp‘ 2479023.

New Node: The model infers that the next
interaction might be with a new node that
hasn’t appeared in the source node’s history,
especially if all previous interactions are
exhausted.

The source node 1546 is not available in the previous network
as we moved to source node 1548. The name sequences of the
source node may differ but all other procedures remain same.

Ambiguous Candidates: The explanation
discusses more than one plausible destina-
tion (e.g., similar timestamps), and may use
additional heuristics to select among them.

No explanations fall within this category. (None)

Others: Use this only if none of the above
apply. Include a proposed new category
name and brief justification in the required
format.

Unfortunately, since you provided a random input with fake in-
teractions, I don’t have enough real data to accurately predict the
destination node. The interactions you provided have no existing
pattern or correlation with any actual node or timestamp, so I
would recommend trying with real data for a more accurate pre-
diction.
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