
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Universal Approximation Theorem of Networks Activated by Normalization

Anonymous Authors1

Abstract

Universal approximation theorem (UAT) is the
fundamental theory for deep neural networks
(DNNs), showing the powerful representation ca-
pacity of DNNs in approximating any function.
The analyses and proofs of UAT are based on a
traditional network with only linear and nonlinear
activation layers, but omitting normalization lay-
ers which are commonly used for benefiting the
training of modern networks. This paper conducts
research on UAT of DNNs with normalization lay-
ers for the first time. We theoretically prove an
infinitely wide network—with parallel layer nor-
malizations (PLN) and linear layers only—has
universal approximation capacity. We further in-
vestigate the minimum neurons required for ap-
proximate L-Lipchitz continuous functions, with
a single hidden-layer network. We compare the
approximation capacity of PLN with traditional
activation functions, both in theory and by exper-
iments. We also show PLN’s approximation ca-
pacity in CNN and Transformer by experiments.

1. Introduction
Deep neural networks (DNNs) are widely used and have
achieved excellent performance in various fields. One key
theorem is that DNN is proved to have universal approxima-
tion capabilities. Cybenko (1989) proved a single hidden-
layer neural network with infinite widths using sigmoidal
functions has universal approximation ability. It was then
extented to arbitrary bounded and nonconstant activation
function (Hornik, 1991). Based on the work about the den-
sity of superpositions of a sigmoidal function in [0, 1]n (Cy-
benko, 1989), Barron (1993) analyzed the approximation
bound of these superpositions. It was then extended to the
cases of arbitrary depth (Gripenberg, 2003), bounded depth
and bounded width (Maiorov & Pinkus, 1999), and the ques-
tion of minimal possible width (Park et al., 2020). Besides,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1. Illustration of a network with linear layer and Parallel
layer normalizations (PLN). PLN is used on hidden neurons and di-
vides the neurons into different partitions and conducts LN within
each partition.

there were previous work studying the expressive power
of neural networks form the perspective of linear regions
(Montufar et al., 2014) and VC dimension (Bartlett et al.,
2019).

While a DNN is able to perform excellently with its powerful
representation capacity in theory, it is hard to train a DNN
in practice. Normalization (Ioffe & Szegedy, 2015; Ba
et al., 2016) is a ubiquitous technique in DNN, proposed
for enabling varies neural networks to train effectively. The
main theoretical arguments for normalization are that it can
stabilize the training by its scale-invariant property (Ba et al.,
2016; Arora et al., 2019; Huang et al., 2023) and accelerate
the training by improve the conditioning of the optimization
problem (Cai et al., 2019; Santurkar et al., 2018; Karakida
et al., 2019; Ghorbani et al., 2019; Daneshmand et al., 2020;
Lyu et al., 2022). However, theoretically analyzing the
complexity measure (e.g., VC dimensions or the number
of linear regions) of the representation capacity of neural
networks with normalization is a challenging task, because
normalized networks do not follow the assumptions for
calculating linear regions or VC dimensions (Huang et al.,
2021).

As a recent work, Ni et al. (2024) revealed that layer normal-
ization (LN) contains nonlinearity itself. They constructed a
network with layerwise composition of linear and LN trans-
formations, referred to as LN-Net. They theoretically show
that, given m samples with any label assignment, an LN-
Net with only 3 neurons in each layer and O(m) LN layers
can correctly classify them. Furthermore, they figured out
that given an LN-Net fθ(·) with width 3 and depth L, its

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Universal Approximation Theorem of Networks Activated by Normalization

VC dimension V Cdim(fθ(·)) is lower bounded by L+ 2.
All the work above revealed one interesting conjecture—
normalization is possible for representation directly, rather
than for optimization only in the previous DNNs.

Inspired by the work in (Ni et al., 2024), we shift our per-
spective from deep networks for classification, to wide net-
works for approximation. We focus on parallel layer normal-
izations (PLN) rather than serial LN-Net, as shown in Figure
1. We theoretically prove an infinitely wide network—with a
"linear-PLN-linear" structure—has universal approximation
ability on [0, 1]n. This theorem has given us new inspi-
rations: can we take normalization as activation layers in
DNNs? When we discuss about activation layers, is there
something interesting about optimization?

Considering the width-bounded networks, one interesting
question is that: can normalization reach the comparable ex-
pressive capacity of the traditional activations with limited
neurons? The answer is yes. We consider approximating
any L-Lipchitz function on [0, 1] by the L∞ error ε, with a
single hidden-layer network. We mathematically find the
minimum of the required neurons using PLN is no more
than d(⌊L/2ε⌋+ 1), where d is the size of each LN in PLN.
This width can decrease to only twice that of using ReLU.
The results above are obtained in theory, it is not the same
in practical training, for the optimization process is also of
great importance. We also conduct approximation exper-
iments to identify this multiple relationship. Beyond our
prediction, we find that PLN performs better than ReLU in
approximation. We conclude that taking PLN as an activa-
tion layer is feasible completely.

We also conduct experiments to apply PLN in CNN and
Transformer architectures. To begin with, we verify that
PLN can replace the combination of activation functions
and normalizations in DNNs. PLN can perform well with
only linear layers, for it has ability of both representation
and optimization. Then we take PLN as Normalization and
explore the performances of different activation functions.
We find that activation functions may not be necessary in
classification task when using CNN with PLN as Normal-
ization. As for machine translation task using Transformer
with PLN as Normalization, activation functions remain
important, for translation may require stronger nonlinear
representation capacity. Besides, we find that the combina-
tion of PLN and ReLU performs exceptionally well in our
experiment settings.

2. Preliminary and Notation
We use a lowercase letter x ∈ R to denote a scalar, boldface
lowercase letter x ∈ Rn for a vector and boldface uppercase
letter for a matrix X ∈ Rd×n, where R is the set of real-
valued numbers, and d, n are positive integers. Following
(Cybenko, 1989), the definition of a sigmoidal function is

shown as below.
Definition 1 (Sigmoidal function). σ is a sigmoidal function,
if σ(−∞) = 0, and σ(+∞) = 1.

Here we show one version of universal approximation
theorem—Theorem 4 in (Cybenko, 1989) as follows.
Theorem 1 (Universal Approximation Theorem). Let σ be
bounded measurable sigmoidal function. The finite sums of
the form

G(x) =

N∑
j=1

αjσ(w
⊤
j x+ bj) (1)

are dence in C([0, 1]n). In other words, given any f ∈
C([0, 1]n) and ε > 0, there is a sum, G(x), of the above
form, for which

|G(x)− f(x)| < ε,∀x ∈ [0, 1]n. (2)

Layer Normalization. Layer Normalization (LN) is an
essential layer in modern deep neural networks mainly for
stabilizing training. Given a single sample of layer input
x = [x1, x2, · · · , xd] ∈ Rd with d neurons in a neural
network, LN standardizes x within the neurons as 1:

x̂j = LN(xj) =
xj − µ

σ
, j = 1, 2, · · · , d, (3)

where µ = 1
d

d∑
i=1

xj , σ =

√
1
d

d∑
i=1

(xj − µ)2 are the mean

and variance for each sample respectively.

Parallel Layer Normalizations. Given x1 ∈ Rd1 ,x2 ∈
Rd2 , · · · ,xN ∈ RdN , and each di ≥ 2. For the input
[x⊤

1 , · · · ,x⊤
N]⊤, we define a calculation as parallel layer

normalizations (PLN), if the output [x̂⊤
1 , · · · , x̂⊤

N]⊤ satisfies
x̂i = LN(xi) for 1 ≤ i ≤ N . Specially, if d1 = d2 = · · · =
dN = d, we refer such PLN as PLN-d. We say d is the
norm size of PLN-d.

3. Normalization for Universal Approximation
In this section, we will first show how to approximate any
continuous function on [0, 1]n by taking LN as an activation
layer. We then extend the result to a neural network with
PLN and linear layers only. Finally, we further disocuss
the approximation on LN without centering, namely Layer
Scaling (LS) or RMSNorm (Zhang & Sennrich, 2019).

3.1. LN for Universal Approximation Theorem

Definition 2 (Representable function class). Given φ :
Rd → Rd, we define G(N ;φ) as a representable function

1LN usually uses extra learnable scale and shift parame-
ters (Ioffe & Szegedy, 2015), and we omit them for simplifying
discussion as they are affine transformation in native

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Universal Approximation Theorem of Networks Activated by Normalization

class—we say G(x) ∈ G(N ;φ) where x ∈ Rn, if there are
some αj , bj ∈ Rd,Wj ∈ Rd×n for each j, such that

G(x) =

N∑
j=1

α⊤
j φ(Wjx+ bj). (4)

Here we show how to apply LN to approximate any contin-
uous function on [0, 1]n.

Theorem 2 (LN for Universal Approximation Theorem).
Let LN(·) be Layer Normalization on Rd, d ≥ 2. Given any
f ∈ C([0, 1]n) and ε > 0, there is a sum G(x) ∈ G(N ;LN)
when N is large enough, subjected to |G(x) − f(x)| < ε
for x ∈ [0, 1]n.

To prove the theorem, we first give Lemma 1 as follows.

Lemma 1. There is a G(x) ∈ G(N + 1; LN), subjected to
that G(x) is a linear combination with N bounded measur-
able sigmoidal functions.

Proof. Here we give the proof at the case d = 2.

Assume that G(x) =
N+1∑
j=1

α⊤
j LN(Wjx + bj). Let αj =

[α̂j , 0]
⊤,Wj = [wj ,−wj]

⊤ and bj = [bj ,−bj]
⊤ for

1 ≤ j ≤ N . Besides, let αN+1 = [(α̂1 + · · · +
α̂N), 0]⊤,WN+1 = O and bN+1 = [1,−1]⊤. Then by
Eqn.3, it is easy to identify that Wjx + bj = [w⊤

j x +

bj ,−(w⊤
j x + bj)]

⊤ for 1 ≤ j ≤ N , while [1,−1]⊤ for
j = N + 1. Here we have

G(x) =

N∑
j=1

α̂j ·
w⊤

j x+ bj√
(w⊤

j x+ bj)2
+

N∑
j=1

α̂j

=

N∑
j=1

2α̂j

[
w⊤

j x+ bj

2|w⊤
j x+ bj |

+
1

2

]

=

N∑
j=1

2α̂jσ(w
⊤
j x+ bj),

(5)

where σ(x) = (x/|x|+1)/2 is easy to identify as a bounded
measurable sigmoidal function.

Lemma 1 also holds for the case d > 2, please refer to
Appendix A.1 for more details. By Lemma 1 and Theorem
1, we can prove Theorem 2.

In this subsection, we have shown how to approximate any
continuous function on [0, 1]n by taking LN as an activation
function. In the next subsection, we will provide details on
how to apply PLN in a neural network.

(a) Traditional Activation. (b) PLN as Activation.

Figure 2. Tradition activations act on each neuron, while PLN
requires a group of neurons to activate, where. Besides, the norm
sizes in PLN can be different.

3.2. Parallel LNs in Networks

Theorem 1 describes a neural network with single hidden-
layer, so does ours. Different from the traditional activation
functions, PLN activate each group of neurons, rather than
neuron. The intuitive difference is shown in Figure 2.

General Activation Functions. As shown in Figure 2, tra-
ditional activation functions act on single neuron. Based on
Theorem 2, we believe that a more general activation func-
tion can be defined on more neurons. There will be some
meaningful interactions within these neurons. In fact, there
is already such an activation function—softmax—which
is widely used in attention layers (Vaswani et al., 2017).
Softmax is first used for multi-class classification tasks,
coming from binary classification tasks with sigmoid. Layer
Normalization (Ba et al., 2016) is also such an activation
function, but its nonlinearity is clearly figured out eight
years after its proposition (Ni et al., 2024). We think such
general activation functions are also of great importance in
a neural network.

Connection with LN-G. Specially, when the norm size
of each LN equals to d, namely when we get PLN-d, it
has the same structure as LN-G (Ni et al., 2024)—which
divides neurons of a layer into groups and performs LN in
each group in parallel. LN-G focuses on grouping from
a wide LN, while PLN focuses on filling narrow LNs to
reach the network width. Although PLN-d has the same
structure as LN-G, its concept leans more towards activation
functions. Like ReLU, we are not concerned about the width
of a network, but treat each neuron or each d neurons as an
activation unit.

Based on the discussion above, we find that PLN comes
from normalizations, but behaves like an activation function
more. We then extend Theorem 2 to neural networks with
PLN and linear layers only.

Corollary 1 (Universal Approximation Theorem of Neural
Networks Activated by PLN). Any continuous function on
[0, 1]n can be approximated at any precision, by an infinitely
wide network with only linear layers and PLN.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Universal Approximation Theorem of Networks Activated by Normalization

However, PLN indeed requires more neurons for once ac-
tivation than the traditional activation functions. Can we
activate the neurons more efficiently than LN? Scaling only
is a feasible choice to replace LN, as discussed in the next
subsection.

3.3. RMSNorm for Universal Approximation Theorem

Ni et al. (2024) show the nonlinearity of LN exists only
in scaling. When focusing exclusively on representation
capacity, centering is not a necessary part when PLN serves
as the activation function. Therefore, scaling only—namely
RMSNorm (Zhang & Sennrich, 2019)—may suffice for
universal approximation.

Here, we remove the centering in LN to obtain Layer Scaling
(LS)—LS standardizes x across the neurons as:

x̂j = LS(xj) =
xj√
x2

, j = 1, 2, · · · , d, (6)

where x2 = 1
d

d∑
i=1

x2
j is the second-order moment for each

sample, rather than the variance.

Similarly, we can also construct parallel LSs (PLS) for the
universal approximation theorem.

Corollary 2 (LS for Universal Approximation Theorem).
Let LS(·) be Layer Scaling (or RMSNorm) on Rd, d ≥ 1.
Given any f ∈ C([0, 1]n) and ε > 0, there is a sum G(x) ∈
G(N ;LS) when N is large enough, subjected to |G(x) −
f(x)| < ε for x ∈ [0, 1]n.

The proof is similar to that of Theorem 2, please refer to
Appendix A.2 for details. By Corollary 2, we point out that
centering is not necessary for approximation. Therefore, the
extreme case of PLS is PLS-1, which activates each neuron
similarly to traditional activation functions.

Conclusion In this section, we have proved the universal
approximation theorem for an infinitely wide neural network
with one hidden-layer, whose activation function is based
on normalizations (PLN or PLS). One practical question
is: What is the representation capacity of bounded-width
networks? This will be discussed in the following section,
where we will also compare it with other traditional activa-
tion functions.

4. Approximation by Bounded-wide Networks
In this section, we will compare the representation capac-
ity of different activation functions in single hidden-layer
networks. We focus on approximating L-Lipschitz contin-
uous functions on [0, 1] rather than arbitrary functions on
Rn, for simplification and visualization. We will show the
comparison results both theoretically and experimentally.

4.1. Approximation Bound

Given a single hidden-layer neural network, how many neu-
rons are required for universal approximation with different
activation functions? We will answer this question in this
subsection, including sigmoid, tanh, ReLU, PLN, and PLS.

Definition 3 (Approximation Bound). We denote F(I;L)
as a set consisting of all the L-Lipschitz continuous func-
tions f ∈ C(I). Given G(N ;φ), where φ : Rd → Rd. Here
we define

N (φ) = inf
N

{
N : sup

f∈F
inf
g∈G

∥f − g∥ < ε

}
, (7)

as the minimum N to approximate F by G on I with error
bound ε. Here ∥f − g∥ = sup

x∈I
|f(x)− g(x)|.

Besides, we define dmin(φ) as the minimum d, subjected
to that φ can be defined on Rd. For example, we have
dmin(ReLU) = 1 and dmin(LN) = 2. Then we denote
W(φ) = dmin(φ)N (φ) as the minimum width of the corre-
sponding network.

Without loss of generality, we set I = [0, 1] as default. Here
we give the approximation bound of LN and LS.

Proposition 1 (Approximation Bound of LN). Given F =
F([0, 1];L) and G = G(N ;LN), where LN(·) denotes LN
on Rd, d ≥ 2. Given the error bound ε > 0, we have

N (LN) ≤ ⌊L/2ε⌋+ 1. (8)

Furthermore, we have W(LN) ≤ 2(⌊L/2ε⌋+ 1).

For N (LS), it has the same upper bound with N (LN)—but
W(LS) ≤ ⌊L/2ε⌋ + 1, for dmin(LS) = 1. Please refer to
Appendix A.3 for the detailed proof.

As one of the initial functions for universal approximation,
we show the upper bound of sigmoid in Proposition 2.

Proposition 2 (Approximation Bound of Sigmoid). Given
F = F([0, 1];L) and G = G(N ;σ), where σ(x) = 1/(1 +
e−x) denotes the sigmoid function. Given the error bound
ε > 0, we have

N (σ) ≤ ⌊L/2ε⌋+ 1. (9)

Furthermore, we have W(σ) ≤ 2⌊L/2ε⌋+ 1.

As for tanh, we can easily get that tanh(x) = 2σ(2x)− 1,
it has the same conclusion with sigmoid. Please refer to
Appendix A.4 for detailed proof.

ReLU has been one of the most widely used activation in
neural networks. For its simplicity, we can get both its upper
bound and lower bound easily in Proposition 3.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Universal Approximation Theorem of Networks Activated by Normalization

32 64 128 256 512
Width

-8

-5

-2

Lo
ga

rit
hm

ic
Lo

ss PLN-2
PLN-4
PLN-8
PLN-16
PLN-32

(a) PLN Approximation.

32 64 128 256 512
Width

-8

-5

-2

Lo
ga

rit
hm

ic
Lo

ss PLS-2
PLS-4
PLS-8
PLS-16
PLS-32

(b) PLS Approximation.

Figure 3. The results of logarithmic loss of PLN and PLS varying
with width, using different norm sizes.

Proposition 3 (Approximation Bound of ReLU). Given
F = F([0, 1];L) and G = G(N ;ReLU), where
ReLU(x) = max(0, x) denotes the ReLU function. Given
the error bound ε > 0, we have

⌊L/2ε⌋ − 1 ≤ N (ReLU) ≤ ⌊L/2ε⌋+ 2. (10)

Similarly, we have ⌊L/2ε⌋−1 ≤ W(ReLU) ≤ ⌊L/2ε⌋+2.

By Proposition 3, we find the bound of N (ReLU) is tight.
It seems that ReLU can be seen as a "unit of measurement"
under our approximation settings. For example, given a
one hidden-layer network with fixed width, we can say the
representation capacity of sigmoid is at least "one ReLU",
while that of PLN-4 is at least "a quarter of ReLU".

However, in the practical training process, optimization is
also an important factor for a good result. We thus conduct
experiments to explore how width and norm size affect
approximation in practice, in the following subsection.

4.2. Approximation Experiments

We conduct experiments to approximate a unary function on
[−5, 5] with different nonlinear layers (including sigmoid,
tanh and ReLU) and PLN, PLS. We use a one-layer network
with width ranging in 8, 16, · · · , 4096. We define the target
function as f(x) = sin(2x+1)+cos(x). For each activation
function, we conduct experiments using two optimizers,
Adam and SGD, with six learning rates (0.1, 0.01, ..., 1e-6),
three random seeds (0, 10, 100), and four batch sizes (4,
8, 16). Among these configurations, the best experimental
results were selected. Each experiment was trained for 1000
epochs.

4.2.1. NORM SIZE ANALYSIS

We first show the results using PLN and PLS with different
widths and norm sizes, as shown in Figure 3.

By Figure 3(b), we find that PLS performs better with the
smaller norm size, which is consistent with Proposition
1. While PLN is slightly different—PLN performs best at
d = 4 rather than d = 2. We give two reasons as follows.

The first reason is that PLN-2 will output ±1 only by Eqn.3,
which may block the gradient back propagation. While the

8 16 32 64 128 256 512
Width

-8

-6

-4

-2

Lo
ga

rit
hm

ic
Lo

ss

PLS-2
PLN-4
ReLU
Sigmoid
Tanh

Figure 4. The results of logarithmic loss of different activation
functions varying with width.

second linear layer will not suffer from this, ensuring that
PLN-2 does not perform too badly.

The second reason is that Proposition 1 only gives the upper
bound of the required neurons. As d increases, we are not
sure whether additional nonlinearity will be introduced.

Trade-off between Representation and Optimization.
PLN-2 may have more representation capacity than PLN-4
in theory, but the optimization capacity is less. The same
conclusion holds for PLS-1 and PLS-2 as well. Based on
our analysis in subsection 4.1, PLS-1 has at least the same
representation capacity as ReLU, but may suffer from gradi-
ent vanishing. We believe that there must be some trade-off
between representation and optimization.

4.2.2. COMPARISON WITHIN DIFFERENT ACTIVATIONS

In this subsection, we will compare PLN and PLS with other
activation functions by experiment, including sigmoid, tanh
and ReLU. Here are the results, as shown in Figure 4.

Specifically, here we show how different activations approx-
imate the target function intuitively in Figure 5. We find that
both sigmoid and tanh perform better than ReLU, although
ReLU is much more widely used at present. PLN-4 also
performs well.

Actually, Maiorov & Meir (2000) denotes the lower bound
of sigmoid satisfies that N logN = C/ε, where C is a
constant. Combining with Proposition 3, we find that sig-
moid may perform better than ReLU when approximating
a Lipschitz continuous function in theory. However, as the
networks get deeper, ReLU is more recommended for re-
lieving gradient vanishing, to some extent. We can conclude
that, we use ReLU in deep networks more than sigmoid or
tanh for the optimization property, rather than its better ex-
pressive power. This is another finding reminding us—there
may be an important correlation between representation and
optimization.

We also conduct the experiments on random function. The
conclusion is similar to what we obtain above. Please refer
to Appendix B.1.2 for more details.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Universal Approximation Theorem of Networks Activated by Normalization

5.0 2.5 0.0 2.5 5.0
X

1

0

1

2
Y

Y-Real
Y-Predict

(a) Activated by sigmoid.

5.0 2.5 0.0 2.5 5.0
X

1

0

1

2

Y

Y-Real
Y-Predict

(b) Activated by tanh.

5.0 2.5 0.0 2.5 5.0
X

1

0

1

2

Y

Y-Real
Y-Predict

(c) Activated by ReLU.

5.0 2.5 0.0 2.5 5.0
X

1

0

1

2
Y

Y-Real
Y-Predict

(d) Activated by PLN-4.

Figure 5. The intuitive performance of approximating f(x) =
sin(2x+1)+cos(x) on [−5, 5] with networks of width 16, using
different activation functions.

Conclusion In this section, we explore the approxima-
tion performance of different activation functions for one
hidden-layer network, both in theory and by experiment. We
identify that the results of the experiments are nearly corre-
sponded to the propositions in section 4.1. This section also
reveals there may be potential correlation between represen-
tation and optimization. As we all know, normalization is
crucial especially in deep networks. Since PLN and PLS can
activate the deep neural networks, we will further explore
what role normalization plays, in the following section.

5. Normalization or Activation?
Current deep neural networks usually consist of three parts:
linear layers (store the parameters), nonlinear layers (usually
the activation functions) and normalization (control the data
distribution and stable training). Based on the preceding
discussion, we pose the following question: Are both nor-
malization and traditional activation functions (e.g. ReLU)
necessary? We conduct experiments in different scenarios
and attempt to answer this question.

5.1. PLN as Activation in DNNs

In this subsection, we investigate the performance of PLN
as an activation function within both CNN and Transformer
architectures.

5.1.1. NETWORKS WITHOUT NORMALIZATION

We trace back to a past scenario, when normalization tech-
niques had not been introduced into DNNs. One of the
methods that improve training is weight initialization (He
et al., 2015; LeCun et al., 2002) . Differently, our idea is

(a) Channel based PLN. (b) Height based PLN.

Figure 6. The figures shows how Channel-PLN and Height-PLN
compute on neurons, where we conduct LN within each region of
the same color. Width-PLN can be similarly defined.

(a) (b) (c) (d)

Figure 7. Figure (a) is the original image, and the size is 3×90×90.
Figures (b), (c), and (d) are processed from Figure (a) by channel,
height, and width based PLN-3, respectively. Among them, Figure
(b), which uses Channel-PLN, seems retain more of the original
information compared to Figures (c) and (d).

to replace the activation function, akin to the progression
from sigmoid (McCulloch & Pitts, 1943) to tanh (Graves
& Graves, 2012) and then ReLU (Krizhevsky et al., 2012).
We conduct experiments on VGG, ResNet without BN, and
Transformer without LN.

Image Classification with CNN. To apply PLN on im-
ages, we design Channel-PLN. Channel-PLN calculates the
mean/variance along only the channel dimension and use
separate statistics over each position (a pair of height and
width), as shown in Figure 6(a). In fact, we can also define
Height-PLN (shown in Figure 6(b)) and Width-PLN. All of
them are nonlinear layers, but Channel-PLN is the one we
recommend and use in this paper, since it can retain more
information of the original image after the normalization2 as
shown in Figure 7. Besides, Channel-PLN follows the cal-
culation like MLP. The width in MLP is regarded equilent
to the channels in CNN. Therefore, we use Channel-PLN as
default, and note it PLN for simplification.

We apply the origin VGG structure (without Batch Nor-
malization) in our experiments to compare with different
activation functions (please see Appendix B.2.1 for the de-
tailed experiment settings). In the meanwhile, we record
the average norm of the gradient of the initial parameters.
We recommend 8 as the norm size of PLN in CNN, please
see Appendix B.2.2 for the experiments on norm sizes. We

2When we apply PLN on an image, we will get negative outputs.
Therefore, we conduct a reversed-LN on the output, to ensure it
has the same mean and variance as the origin photo, among all the
pixel points.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Universal Approximation Theorem of Networks Activated by Normalization

Table 1. Results on VGG-16 using different activation functions.

Activation Train Acc(%) Test Acc(%) Gradient
PLN-8 88.76 89.45 0.0068

Sigmoid 9.81 10.00 0.0026
Tanh 9.76 10.00 0.0006
ReLU 9.76 10.00 0.0006

20 56 110
ResNet Depth

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Sigmoid
Tanh
ReLU
PLN-8

(a) Train Accuracy.

20 56 110
ResNet Depth

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Sigmoid
Tanh
ReLU
PLN-8

(b) Test Accuracy.

Figure 8. Results on ResNet of different depths without BN, using
different activation functions.

show the results on VGG-16 in Table 1.

We find that the traditional activation functions are hard to
train using origin VGG architectures. However, PLN-8 can
keep its optimization property and perform well. By analyz-
ing the gradients, we conjecture that gradient vanishing is
probable the reason traditional activations do not work.

We further conduct experiments on ResNet architectures
without BN, where the residual connection can avoid gra-
dient vanishing. We change the learning rate to 0.01 on
ResNet-20, ResNet-56 and ResNet-110. The other exper-
iment settings are the same. Please see Figure 8 for the
detailed results and Table 2 for the gradient information.

Different from the results of VGG, we find that we can
easily train sigmoid and tanh in ResNet architectures. How-
ever, as the depth increases, ReLU becomes hard to train
without normalization. We deduct ReLU suffers from gra-
dient explosion in deep ResNet architectures withoutBN,
according to the gradient norms in Table 2. As for PLN-8,
it performs well in such settings, for its good property both
in representation and optimization.

Time-series Tasks. We conducted sequence prediction
experiments on the Traffic dataset, enhanced through data
extension, using a Transformer architecture. Specifically,
we extended the sequence length processed in a single step
from 96 to 720, while adhering to the remaining configura-
tions of the Time Series Benchmark (Wang et al., 2024).

We find that while PLN-16 does not outperform other meth-
ods in the Transformer architecture, it achieves compara-
ble performance to ReLU. When no other normalization
is present, PLN demonstrates the strongest optimization
capability as an activation function. Furthermore, when
PLN16 serves as a normalization layer, it achieves good
performance even without activation functions.

Table 2. Initial gradients on ResNet without BN.

Activation ResNet-20 ResNet-56 ResNet-110
Sigmoid 0.13 0.533 170.3

Tanh 0.04 0.101 27.06
ReLU 1.68 2.5× 104 1.2× 1013

PLN-8 0.08 0.179 41.01

Table 3. Results on the Traffic Dataset using Transformer without
LN. We record the MSE using different activation functions, where
lower MSE indicates better performance.

MSE PLN-16 ReLU Tanh GeLU Sigmoid Identity
Identity 0.7391 0.7602 0.7716 0.7802 0.7939 0.7551

In this subsection, we conclude that PLN with proper norm
size can perform well using only linear modules. This is
because PLN shows good property both in representation
and optimization.

5.1.2. NETWORKS WITH OTHER NORMALIZATIONS

We also conduct experiments by replacing the activation
functions with PLN and PLS, in networks with normaliza-
tions. We fix the norm size d = 8 for PLN and PLS, while
width ranges in 16, 32, 64, 128, 256. Besides, we compare
the performance with sigmoid, tanh and ReLU. We conduct
experiments on CIFAR-10 using VGG-16 with BN. The
results are shown in Figure 9.

We find that in VGG-16 with BN, PLN-8 performs bet-
ter than sigmoid and tanh, but slightly worse than ReLU.
We posit that BN provides a more substantial boost to the
representation capacity of ReLU compared to sigmoid and
tanh.This conclusion is supported by the findings in Sec-
tion 4.1, which indicate that the representation capacity of
sigmoid and tanh is not inferior to that of ReLU.

Although the representation capacity of PLN-8 is not par-
ticularly strong, it still performs better than sigmoid and
tanh. The results indicate that the optimization property of
an activation function is also important. Although PLN does
not outperform ReLU, we believe that PLN holds potential
as an activation function, given its ease of training in deep
neural networks.

5.2. PLN as Normalization in Networks

Although PLN possesses strong representation capacity,
it evolves from normalization in the final analysis. This
prompts us to pose the following question: when PLN is
used as a normalization method, do we still require acti-
vation functions? We conduct experiments to answer the
question.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Universal Approximation Theorem of Networks Activated by Normalization

16 32 64 128 256
Width

70
75
80
85
90
95

100
Ac

cu
ra

cy
(%

)

ReLU
PLN-8
Sigmoid
Tanh
PLS-8

(a) Training accuracy.

16 32 64 128 256
Width

70
75
80
85
90
95

100

Ac
cu

ra
cy

(%
)

ReLU
PLN-8
Sigmoid
Tanh
PLS-8

(b) Test accuracy.

Figure 9. Results of different activation functions with different
widths on CIFAR-10 using VGG-16 with BN.

84 86 88 90 92 94
Accuracy

ReLU

Identity

PLN-8

Tanh

89.91

89.25

89.10

88.78

(a) VGG-16 with BN.

84 86 88 90 92 94
Accuracy

ReLU

Identity

PLN-8

Tanh

92.22

91.81

91.80

90.92

(b) ResNet-20.

Figure 10. The results using PLN as Normalization. The term
"Identity" means there is "no activation function" in the network,
as a reference.

5.2.1. REPLACE BN WITH PLN IN CNN

We follows the experiment settings in section 5.1.1 using
PLN-8 as normalization rather than BN, with different acti-
vation functions. We record the test accuracy(%) on CIFAR-
10 using VGG-16 and ResNet-20 in Figure 10.

When using PLN-8 for normalization, we observe that the
accuracy improves only marginally with the addition of
ReLU. Sigmoid and tanh even reduce the accuracy. This
indicates that when normalization itself has strong repre-
sentation power, extra activation functions might not be
essential.

5.2.2. TRANSFORMER NORMALIZED BY PLN

We conduct experiments using Transformer on machine
translation tasks. We employed the Transformer model and
evaluated it on the Multi30K dataset (please see Appendix
B.3.1 for the detailed experiment settings).We compared the
experimental results obtained using PLN-8 as the normaliza-
tion method across various activation functions. The BLEU
scores (where higher values indicate better performance) for
the test set are shown as the orange columns in Figure 11.
In contrast to the results in CNNs, we find that the use of
GELU or ReLU leads to a substantial improvement in the
model’s performance relative to the Identity function.We
also conduct experiments using the original normalization
(LN). We find the results of using LN is worse than that
of PLN-8. Given that PLN-8 exhibits stronger nonlinearity
than LN, we conjecture that translation tasks demand greater

Identity PLN-8 GELU ReLU
Activation Function

20

25

30

35

40

45

BL
EU

 S
co

re

31.1930.82

37.37

34.70

38.82

32.34

42.91

39.00
PLN-8
LN

Figure 11. Test BLEU Score of Transformer on Multi30k.The or-
ange histogram represents the use of PLN-8 as the normalization
layer, while the blue histogram represents the use of LN as the nor-
malization layer. The horizontal axis denotes different activation
functions.

representation capacity. This may explain why introducing
ReLU significantly enhances performance in networks with
PLN as normalization layers.Besides, we figure out that the
combination of PLN-8 and ReLU performs exceptionally
well, achieving a score of 42.91.

6. Conclusion
We mathematically proved that a network with parallel layer
normalizations (PLN) and linear layers only has universal
approximation ability. We also theoretically measured the
ability by discussing on approximating L-Lipchitz contin-
uous functions. We also apply this measuring method for
other activation functions (e.g., ReLU). We find that PLN
has a little weaker representation capacity with sigmoid and
ReLU, but stands out for its excellent optimization property
as normalization itself. We believe it meaningful to research
on the optimization property of activation functions, and
even any nonlinear layers in neuron networks.

Limitation and Future Work. The effectiveness of par-
allel layer normalizations (PLN) is only verified on small-
scale networks and datasets, and more results on large-scale
networks and datasets are required to support the practical-
ity of PLN. There are much empirical tricks on training a
network, but it may be not suitable for a network without
traditional activation functions. We have not fully utilized
the potential capabilities of PLN. Nevertheless, we still be-
lieve the combination of representation and optimization in
PLN will refresh and improve our understandings of DNNs.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential social con-
sequences of our work, none of which feels it must be specif-
ically highlighted here.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Universal Approximation Theorem of Networks Activated by Normalization

References
Arora, S., Li, Z., and Lyu, K. Theoretical analysis of auto

rate-tuning by batch normalization. In ICLR, 2019.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,
2016.

Barron, A. R. Universal approximation bounds for super-
positions of a sigmoidal function. IEEE Transactions on
Information theory, 39(3):930–945, 1993.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight vc-dimension and pseudodimension bounds
for piecewise linear neural networks. Journal of Machine
Learning Research, 20(63):1–17, 2019.

Cai, Y., Li, Q., and Shen, Z. A quantitative analysis of
the effect of batch normalization on gradient descent. In
ICML, 2019.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Daneshmand, H., Kohler, J. M., Bach, F. R., Hofmann, T.,
and Lucchi, A. Batch normalization provably avoids
ranks collapse for randomly initialised deep networks. In
NeurIPS, 2020.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investiga-
tion into neural net optimization via hessian eigenvalue
density. In ICML, 2019.

Graves, A. and Graves, A. Long short-term memory. Super-
vised sequence labelling with recurrent neural networks,
pp. 37–45, 2012.

Gripenberg, G. Approximation by neural networks with
a bounded number of nodes at each level. Journal of
approximation theory, 122(2):260–266, 2003.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Hornik, K. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

Huang, L., Zhou, Y., Liu, L., Zhu, F., and Shao, L. Group
whitening: Balancing learning efficiency and represen-
tational capacity. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
9512–9521, 2021.

Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., and Shao, L.
Normalization techniques in training dnns: Methodology,
analysis and application. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In ICML, 2015.

Karakida, R., Akaho, S., and Amari, S.-i. The normalization
method for alleviating pathological sharpness in wide
neural networks. In NeurIPS, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. Effi-
cient backprop. In Neural networks: Tricks of the trade,
pp. 9–50. Springer, 2002.

Lyu, K., Li, Z., and Arora, S. Understanding the generaliza-
tion benefit of normalization layers: Sharpness reduction.
In NeurIPS, 2022.

Maiorov, V. and Meir, R. On the near optimality of the
stochastic approximation of smooth functions by neural
networks. Advances in Computational Mathematics, 13:
79–103, 2000.

Maiorov, V. and Pinkus, A. Lower bounds for approximation
by mlp neural networks. Neurocomputing, 25(1-3):81–91,
1999.

McCulloch, W. S. and Pitts, W. A logical calculus of the
ideas immanent in nervous activity. The bulletin of math-
ematical biophysics, 5:115–133, 1943.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. On
the number of linear regions of deep neural networks.
Advances in neural information processing systems, 27,
2014.

Ni, Y., Guo, Y., Jia, J., and Huang, L. On the nonlinearity
of layer normalization. arXiv preprint arXiv:2406.01255,
2024.

Park, S., Yun, C., Lee, J., and Shin, J. Minimum
width for universal approximation. arXiv preprint
arXiv:2006.08859, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 2019.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Universal Approximation Theorem of Networks Activated by Normalization

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. How
does batch normalization help optimization? In NeurIPS,
2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In NeurIPS, 2017.

Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M., and Wang, J.
Deep time series models: A comprehensive survey and
benchmark. arXiv preprint arXiv:2407.13278, 2024.

Zhang, B. and Sennrich, R. Root mean square layer normal-
ization. In NeurIPS, 2019.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Universal Approximation Theorem of Networks Activated by Normalization

A. Mathematical Proofs
A.1. Proof of Lemma 1 at the case d > 2

Lemma 1. There is a G(x) ∈ G(N + 1;LN), subjected to that G(x) is a linear combination with N bounded measurable
sigmoidal functions.

Proof. Here we give the proof at the case d > 2.

Assume that G(x) =

N+1∑
j=1

α⊤
j LN(Wjx+ bj). For 1 ≤ j ≤ N , let αj = [α̂j , 0, 0, · · · , 0]⊤,Wj = [wj ,−wj ,0, · · · ,0]⊤

and bj = [bj ,−bj , 0, · · · , 0]⊤. Let αN+1 = [(α̂1+ · · ·+ α̂N), 0, 0, · · · , 0]⊤,WN+1 = O and bN+1 = [1,−1, 0, · · · , 0]⊤.
According to Eqn.3, it is easy to identify that for 1 ≤ j ≤ N , Wjx+ bj = [w⊤

j x+ bj ,−(w⊤
j x+ bj), 0, · · · , 0]⊤, while

WN+1x+ bN+1 = [1,−1, 0, · · · , 0]⊤. Here we have:

G(x) =

N∑
j=1

α̂j ·
w⊤

j x+ bj√
2
d (w

⊤
j x+ bj)2

+

N∑
j=1

√
d

2
α̂j

=

N∑
j=1

√
2dα̂j

[
w⊤

j x+ bj

2|w⊤
j x+ bj |

+
1

2

]

=

N∑
j=1

√
2dα̂jσ(w

⊤
j x+ bj),

(11)

where σ(x) = (x/|x|+1)/2 is obvious a bounded measurable sigmoidal function, even though it is not defined at x = 0.

A.2. Proof of Corollary 2

Corallary 2. (LS for Universal Approximation Theorem.) Let LS(·) be Layer Scaling (i.e. RMSNorm) on Rd, d ≥ 1. Given
any f ∈ C([0, 1]n) and ε > 0, there is a sum G(x) ∈ G(N ;LS) when N is large enough, subjected to |G(x)− f(x)| < ε
for x ∈ [0, 1]n.

Proof. The proof is similar to that of LN. Assume that G(x) =

N+1∑
j=1

α⊤
j LS(Wjx + bj). For 1 ≤ j ≤ N , let αj =

[α̂j , 0, · · · , 0]⊤,Wj = [wj ,0, · · · ,0]⊤ and bj = [bj , 0, · · · , 0]⊤. Let αN+1 = [(α̂1+ · · ·+α̂N), 0, · · · , 0]⊤,WN+1 = O
and bN+1 = [1, 0, · · · , 0]⊤. According to Eqn.6, it is easy to identify that for 1 ≤ j ≤ N , Wjx + bj = [w⊤

j x +

bj , 0, · · · , 0]⊤ while WN+1x+ bN+1 = [1, 0, · · · , 0]⊤. Here we have:

G(x) =

N∑
j=1

α̂j ·
w⊤

j x+ bj√
1
d (w

⊤
j x+ bj)2

+

N∑
j=1

√
dα̂j

=

N∑
j=1

2
√
dα̂j

[
w⊤

j x+ bj

2|w⊤
j x+ bj |

+
1

2

]

=

N∑
j=1

2
√
dα̂jσ(w

⊤
j x+ bj),

(12)

where σ(x) = (x/|x|+ 1)/2 is obvious a bounded measurable sigmoidal function, even though it is not defined at x = 0.

Furthermore, by Theorem 1, we can prove Corallary 2.

A.3. Proof of Proposition 1

Proposition 1. (Approximation Bound of LN)

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Universal Approximation Theorem of Networks Activated by Normalization

Given F = F([0, 1];L) and G = G(N ;LN), where LN(·) denotes LN on Rd, d ≥ 2. Given the error bound ε > 0, we have

N (LN) ≤ ⌊L/2ε⌋+ 1. (13)

Furthermore, we have W(LN) ≤ 2(⌊L/2ε⌋+ 1).

Here, we consider the case there is a small number δ > 0 in practical LN. δ is a small number for numerical stability in LN.
Specifically, we rewrite Eqn.3 as

x̂j =
xj − µ

σ + δ
. (14)

In the following section, we first prove Lemma 2 and Lemma 3 and then proceed with the formal proof.

A.3.1. REQUIRED LEMMAS

Lemma 2. Given a Ĝ(x) ∈ G(N ; sign), there is a G(x) ∈ G(N ;LN), subjected to lim
δ→0+

G(x) = Ĝ(x). Here sign(x) is

the sign function, which outputs −1, 0, 1 when x < 0, x = 0, x > 0 respectively.

Proof. Assume G(x) =

N∑
j=1

α⊤
j LN(wjx + bj). Let αj = [α̂j

√
2/d, 0, · · · , 0]⊤, wj = [ŵj ,−ŵj , 0, · · · , 0]⊤ and bj =

[b̂,−b̂j , 0, · · · , 0]⊤, for 1 ≤ j ≤ N . It is easy to identify that:

lim
δ→0+

α⊤
j LN(wjx+ bj) = lim

δ→0+
α̂j

√
2/d · ŵjx+ b̂j√

2(ŵjx+ b̂j)2/d+ δ

= lim
δ→0+

α̂j(ŵjx+ b̂j)

|ŵjx+ b̂j |+ δ
√

d/2

= α̂j sign(ŵjx+ b̂j),

(15)

even if ŵjx+ b̂j = 0.

Given Ĝ(x) ∈ G(N ; sign), we have:

Ĝ(x) =

N∑
j=1

α̂j sign(ŵjx+ b̂j)

= lim
δ→0+

N∑
j=1

α⊤
j LN(wjx+ bj)

= lim
δ→0+

G(x),

(16)

where αj ,wj and bj can be determined by α̂j , ŵj , b̂j for each j.

Therefore, we have the conclusion that there is a G(x) ∈ G(N ;LN), subjected to lim
δ→0+

G(x) = Ĝ(x).

Lemma 3. Given any L-Lipschitz continuous function f ∈ [0, 1] and the error ε > 0, there is some Ĝ(x) ∈ G(⌊L/2ε⌋+
1; sign), subjected to |Ĝ(x)− f(x)| < ε for x ∈ [0, 1].

Proof. Given Ĝ(x) =

N∑
j=1

α̂j sign(ŵjx+ b̂j), where N = ⌊L/2ε⌋+ 1. For 1 ≤ j ≤ N − 1, we set

α̂j =
1

2

[
f

(
2j + 1

2N

)
− f

(
2j − 1

2N

)]
; (17)

while

α̂N =
1

2

[
f

(
1

2N

)
+ f

(
2N − 1

2N

)]
. (18)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Universal Approximation Theorem of Networks Activated by Normalization

Besides, we set ŵj = 1 for 1 ≤ j ≤ N , b̂j = − j

N
for 1 ≤ j ≤ N − 1, and b̂N = 1.

This case, for
j − 1

N
< x <

j

N
where 1 ≤ j ≤ N , we obtain that:

Ĝ(x) =

j−1∑
k=1

α̂k −
N−1∑
k=j

α̂k + α̂N

=
1

2

[
f

(
2j − 1

2N

)
− f

(
1

2N

)]
− 1

2

[
f

(
2N − 1

2N

)
− f

(
2j − 1

2N

)]
+

1

2

[
f

(
1

2N

)
+ f

(
2N − 1

2N

)]
= f

(
2j − 1

2N

)
.

(19)

As for x =
j

N
where 1 ≤ j ≤ N − 1, we have:

Ĝ(x) =

j−1∑
k=1

α̂k −
N−1∑

k=j+1

α̂k + α̂N

=
1

2

[
f

(
2j − 1

2N

)
− f

(
1

2N

)]
− 1

2

[
f

(
2N − 1

2N

)
− f

(
2j + 1

2N

)]
+

1

2

[
f

(
1

2N

)
+ f

(
2N − 1

2N

)]
=

1

2

[
f

(
2j − 1

2N

)
+ f

(
2j + 1

2N

)]
.

(20)

Besides, we have Ĝ(0) = f

(
1

2N

)
, and Ĝ(1) = f

(
2N − 1

2N

)
.

Since ⌊L/2ε⌋ ≤ L/2ε < ⌊L/2ε⌋+ 1, we have N > L/2ε. Then we obtain that:

1) If x = 0, we have:

|Ĝ(0)− f(0)| =
∣∣∣∣f(0)− f

(
1

2N

)∣∣∣∣
≤ L

2N
< ε.

(21)

2) If x = 1, we have:

|Ĝ(1)− f(1)| =
∣∣∣∣f(1)− f

(
2N − 1

2N

)∣∣∣∣
≤ L

2N
< ε.

(22)

3) If x =
j

N
, we have:

∣∣∣∣Ĝ(
j

N

)
− f

(
j

N

)∣∣∣∣ = ∣∣∣∣12
[
f

(
2j − 1

2N

)
+ f

(
2j + 1

2N

)]
− f

(
j

N

)∣∣∣∣
≤ 1

2

∣∣∣∣f (
2j − 1

2N

)
− f

(
j

N

)∣∣∣∣+ 1

2

∣∣∣∣f (
2j + 1

2N

)
− f

(
j

N

)∣∣∣∣
≤ L

4N
+

L

4N
< ε.

(23)

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Universal Approximation Theorem of Networks Activated by Normalization

4) If
j − 1

N
< x <

j

N
, we have: ∣∣∣Ĝ (x)− f (x)

∣∣∣ = ∣∣∣∣f (
2j − 1

2N

)
− f (x)

∣∣∣∣
≤ L

∣∣∣∣2j − 1

2N
− x

∣∣∣∣
<

L

2N
< ε.

(24)

Therefore, for x ∈ [0, 1] belongs to one of the four cases above, fulfilling |Ĝ(x)− f(x)| < ε.

A.3.2. FORMAL PROOF.

Proof. We prove Proposition A.3 based on the proof above.

According to the proof of Lemma 2, we denote that G(x) =

N∑
j=1

α̂jsj(x), where sj(x) =
x+ b̂j

|x+ b̂j |+ δ
and δ > 0 is the

small number in LN for numerical stability.

In the proof here, based on Eqn.15, we simplify δ
√

d/2 as δ, since they are almost the same for δ → 0. On the other hand,
this simplification can be also seen as the proof of the case d = 2, which is easy to extend to d > 2.

Next, we discuss |Ĝ(x)−G(x)| for x ∈ [0, 1] in the following two cases. We set δ0 ∈
(
0,

1

2N

)
.

1) If x satisfies: ∀j = 1, 2, · · · , N , we have |x+ b̂j | > δ0. Based on the proof of Lemma 3, we have |Ĝ(x)− f(x)| < ε.
Furthermore, there is some ε1 > 0, subjected to |Ĝ(x)− f(x)| ≤ ε− ε1. Here we obtain:

|Ĝ(x)−G(x)| =

∣∣∣∣∣∣
N∑
j=1

α̂jsign(x+ b̂j)−
N∑
j=1

α̂j
x+ b̂j

|x+ b̂j |+ δ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
j=1

α̂j

[
x+ b̂j

|x+ b̂j |
− x+ b̂j

|x+ b̂j |+ δ

]∣∣∣∣∣∣
≤

N∑
j=1

|α̂j |

∣∣∣∣∣ x+ b̂j

|x+ b̂j |
− x+ b̂j

|x+ b̂j |+ δ

∣∣∣∣∣
=

N∑
j=1

|α̂j |

∣∣∣∣∣ δ(x+ b̂j)

|x+ b̂j |(|x+ b̂j |+ δ)

∣∣∣∣∣
=

N∑
j=1

|α̂j | ·
δ

|x+ b̂j |+ δ
.

(25)

Given α∗ = max
1≤j≤N

|α̂j | and δN =
ε1δ0
Nα∗ , for δ ≤ δN , we have:

|Ĝ(x)−G(x)| ≤
N∑
j=1

|α̂j | ·
δ

|x+ b̂j |+ δ

<

N∑
j=1

α∗ · ε1δ0
Nα∗ · 1

δ0 + δ

=
ε1δ0
δ0 + δ

< ε1.

(26)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Universal Approximation Theorem of Networks Activated by Normalization

Therefore, we have:
|G(x)− f(x)| ≤ |G(x)− Ĝ(x)|+ |Ĝ(x)− f(x)|

< ε1 + ε− ε1

= ε.

(27)

2) If there exists some k that satisfied |x + b̂k| ≤ δ0—for x ∈ [0, 1] and δ0 ∈
(
0,

1

2N

)
, we have 1 ≤ k ≤ N − 1 and

b̂k = − k

N
. Since N = ⌊L/2ε⌋+ 1, we have N >

L

2ε
. Hence, there is some ε2 > 0, subjected to that

L

2N
≤ ε− ε2. Here

we rewrite:

|G(x)− f(x)| = |G(x)− f(x) + Ĝ(x)− Ĝ(x)|

=

∣∣∣∣∣∣
∑
j ̸=k

α̂jsj(x) + α̂ksk(x)− f(x) + Ĝ(x)−
∑
j ̸=k

α̂jsign(x+ b̂j)− α̂ksign(x+ b̂k)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j ̸=k

α̂jsj(x)−
∑
j ̸=k

α̂jsign(x+ b̂j)

∣∣∣∣∣∣+
∣∣∣Ĝ(x) + α̂ksk(x)− α̂ksign(x+ b̂k)− f(x)

∣∣∣ .
(28)

For the first term, similar to case 1, we set α∗
k = max

j ̸=k
|α̂j | and δk =

ε2δ0
(N − 1)α∗

k

. For δ ≤ δk, we have:

∣∣∣∣∣∣
∑
j ̸=k

α̂jsj(x)−
∑
j ̸=k

α̂jsign(x+ b̂j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j ̸=k

α̂j

[
x+ b̂j

|x+ b̂j |+ δ
− x+ b̂j

|x+ b̂j |

]∣∣∣∣∣∣
≤
∑
j ̸=k

|α̂j |

∣∣∣∣∣ x+ b̂j

|x+ b̂j |+ δ
− x+ b̂j

|x+ b̂j |

∣∣∣∣∣
=
∑
j ̸=k

|α̂j |

∣∣∣∣∣ δ(x+ b̂j)

|x+ b̂j |(|x+ b̂j |+ δ)

∣∣∣∣∣
=
∑
j ̸=k

|α̂j | ·
δ

|x+ b̂j |+ δ

<
∑
j ̸=k

α∗
k · ε2δ0

(N − 1)α∗
k

· 1

δ0 + δ

=
ε2δ0
δ0 + δ

<ε2.

(29)

For the second term, notice that when
k

N
− δ0 ≤ x ≤ k

N
+ δ0, we have

Ĝ(x) =



f

(
2k − 1

2N

)
,

k

N
− δ0 ≤ x <

k

N
1

2
f

(
2k − 1

2N

)
+

1

2
f

(
2k + 1

2N

)
, x =

k

N

f

(
2k + 1

2N

)
,

k

N
< x ≤ k

N
+ δ0,

(30)

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Universal Approximation Theorem of Networks Activated by Normalization

and

α̂ksign(x+ b̂k) =



1

2

[
f

(
2k − 1

2N

)
− f

(
2k + 1

2N

)]
,

k

N
− δ0 ≤ x <

k

N

0, x =
k

N
1

2

[
f

(
2k + 1

2N

)
− f

(
2k − 1

2N

)]
,

k

N
< x ≤ k

N
+ δ0.

(31)

We thus have

Ĝ(x)− α̂k sign(x+ b̂k) =
1

2

[
f

(
2k + 1

2N

)
+ f

(
2k − 1

2N

)]
, for

k

N
− δ0 ≤ x ≤ k

N
+ δ0. (32)

As for

α̂ksk(x) =
1

2

[
f

(
2k + 1

2N

)
− f

(
2k − 1

2N

)]
·

x− k
N

|x− k
N |+ δ

, (33)

since sk(x) ∈ (−1, 1) and sk(x)

(
k

N
− x

)
≤ 0, we obtain that:

∣∣∣Ĝ(x)− α̂ksign(x+ b̂k) + α̂ksk(x)− f(x)
∣∣∣

=

∣∣∣∣1 + sk(x)

2
f

(
2k + 1

2N

)
+

1− sk(x)

2
f

(
2k − 1

2N

)
− f(x)

∣∣∣∣
≤
∣∣∣∣1 + sk(x)

2

∣∣∣∣ ∣∣∣∣f (
2k + 1

2N

)
− f(x)

∣∣∣∣+ ∣∣∣∣1− sk(x)

2

∣∣∣∣ ∣∣∣∣f (
2k − 1

2N

)
− f(x)

∣∣∣∣
≤1 + sk(x)

2
· L ·

(
2k + 1

2N
− x

)
+

1− sk(x)

2
· L ·

(
x− 2k − 1

2N

)
=
1

2
L · 1

N
+

sk(x)

2
· L ·

(
2k + 1

2N
− x

)
+

sk(x)

2
· L ·

(
2k − 1

2N
− x

)
=

L

2N
+ Lsk(x)

(
k

N
− x

)
≤ L

2N
≤ε− ε2.

(34)

Accordingly, we have:

|G(x)− f(x)| ≤

∣∣∣∣∣∣
∑
j ̸=k

α̂jsj(x)−
∑
j ̸=k

α̂j sign(x+ b̂j)

∣∣∣∣∣∣+
∣∣∣Ĝ(x) + α̂ksk(x)− α̂ksign(x+ b̂k)− f(x)

∣∣∣
< ε2 + ε− ε2

= ε.

(35)

Therefore, given δ∗ = min(δ1, δ2, · · · , δN), when δ ≤ δ∗, we have |G(x)− f(x)| < ε,∀x ∈ [0, 1].

Consequently, we have proved that N (LN) ≤ ⌊L/2ε⌋+ 1 and W(LN) ≤ 2(⌊L/2ε⌋+ 1).

A.4. Proof of Proposition 2

Proposition 2. (Approximation Bound of Sigmoid) Given F = F([0, 1];L) and G = G(N ;σ), where σ(x) = 1/(1+e−x)
denotes the sigmoid function. Given the error bound ε > 0, we have

N (σ) ≤ ⌊L/2ε⌋+ 1. (36)

Furthermore, we have W(σ) ≤ 2(⌊L/2ε⌋+ 1).

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Universal Approximation Theorem of Networks Activated by Normalization

A.4.1. SIGMOID

We give the similar proof: we use sign as a bridge of our proof, with limitation notation. Then the idea of the proof is almost
the same as LN. Here is the proof.

Proof. We denote G(x) ∈ G(N ;σ) as G(x) =

N∑
j=1

αjσ(wjx + bj), specialized as G(x) =

N∑
j=1

αjσ[λ(x + bj)], where

σ(x) = 1/(1 + e−x). Here we have:

lim
λ→+∞

G(x) = lim
λ→+∞

N∑
j=1

αjσ[λ(x+ bj)]

=

N∑
j=1

1

2
αj [sign(x+ bj) + 1].

(37)

Similarly, let bj = − j

N
for 1 ≤ j ≤ N − 1, and bN = 1. We have:

lim
λ→+∞

G(x) =

N−1∑
j=1

1

2
αj sign(x+ bj) +

N−1∑
j=1

1

2
αj + αN . (38)

Let

αj = f

(
2j + 1

2N

)
− f

(
2j − 1

2N

)
, (39)

for 1 ≤ j ≤ N − 1, and αN = f

(
1

2N

)
.

Similar to the proof of Lemma 3, we obtain that | lim
λ→+∞

G(x)− f(x)| < ε in [0, 1].

Furthermore, with almost the same method of proving Proposition A.4, we can prove that G(x)− f(x) < ε.

With the two above conclusion, we can finish the proof. In the proof of Proposition A.4, sj(x) in Eqn.34 denotes
x+ b̂j

|x+ b̂j |+ δ
, while sj(x) here denotes 2σ[λ(x+ bj)]− 1 =

1− e−λ(x+bj)

1 + e−λ(x+bj)
, such that

lim
λ→+∞

N∑
j=1

αjsj(x) =

N∑
j=1

sign(x+ bj). (40)

Similarly, we consider two cases upon x:

1) If x satisfies: ∀j = 1, 2, · · · , N , we have |x+b̂j | > δ0 > 0. We also transfer |Ĝ(x)−f(x)| < ε to |Ĝ(x)−f(x)| ≤ ε−ε1.

Following Eqn.25, we replace with the new sj , we have:

|Ĝ(x)−G(x)| =

∣∣∣∣∣∣
N∑
j=1

1

2
[αjsign(x+ bj) + 1]−

N∑
j=1

αjσ[λ(x+ bj)]

∣∣∣∣∣∣
=

N∑
j=1

∣∣∣∣12αj [sign(x+ bj)− sj(x)]

∣∣∣∣
≤

N∑
j=1

1

2
|αj |

∣∣∣∣ x+ bj
|x+ bj |

− 1− e−λ(x+bj)

1 + e−λ(x+bj)

∣∣∣∣
≤

N∑
j=1

1

2
α∗

∣∣∣∣ (x+ bj) + |x+ bj |
|x+ bj |

− 2

1 + e−λ(x+bj)

∣∣∣∣ .

(41)

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Universal Approximation Theorem of Networks Activated by Normalization

One different thing to do is to discuss the cases x + bj > δ0 and x + bj < −δ0 separately. Let λN =
1

δ0
ln

Nα∗ − ε1
ε1

where α∗ = max
1≤j≤N

|α̂j |. Here we will show that |Ĝ(x)−G(x)| < ε1 for λ ≥ λN .

1.1) for the case x+ bj > δ0 > 0, we have:∣∣∣∣ (x+ bj) + |x+ bj |
|x+ bj |

− 2

1 + e−λ(x+bj)

∣∣∣∣
=

∣∣∣∣2− 2

1 + e−λ(x+bj)

∣∣∣∣
=2− 2

1 + e−λ(x+bj)

<2− 2

1 + e−λNδ0

=2− 2

1 + eln[ε1/(Nα∗−ε1)]

=2− 2(Nα∗ − ε1)

Nα∗ − ε1 + ε1

=
2ε1
Nα∗ .

(42)

1.2) for the case x+ bj < −δ0 < 0, we have:∣∣∣∣ (x+ bj) + |x+ bj |
|x+ bj |

− 2

1 + e−λ(x+bj)

∣∣∣∣
=

∣∣∣∣− 2

1 + e−λ(x+bj)

∣∣∣∣
=

2

1 + e−λ(x+bj)

<
2

1 + eλNδ0

=
2

1 + eln[(Nα∗−ε1)/ε1]

=
2ε1

Nα∗ − ε1 + ε1

=
2ε1
Nα∗ .

(43)

Then, we have:

|Ĝ(x)−G(x)| ≤
N∑
j=1

1

2
α∗

∣∣∣∣ (x+ bj) + |x+ bj |
|x+ bj |

− 2

1 + e−λ(x+bj)

∣∣∣∣
<

N∑
j=1

1

2
α∗ · 2ε1

Nα∗

= ε1.

(44)

Therefore, we have:
|G(x)− f(x)| ≤ |G(x)− Ĝ(x)|+ |Ĝ(x)− f(x)|

< ε1 + ε− ε1

= ε.

(45)

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Universal Approximation Theorem of Networks Activated by Normalization

2) If there exists some k that satisfied |x + b̂k| ≤ δ0—for x ∈ [0, 1] and δ0 ∈
(
0,

1

2N

)
, we have 1 ≤ k ≤ N − 1 and

b̂k = − k

N
. Similarly, here we construct

L

2N
≤ ε− ε2 also. We can rewrite:

|G(x)− f(x)| = |G(x)− f(x) + Ĝ(x)− Ĝ(x)|

=

∣∣∣∣∣∣
N∑
j=1

1

2
αj [sj(x) + 1]− f(x) + Ĝ(x)−

N∑
j=1

1

2
αj [sign(x+ bj) + 1]

∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣
∑
j ̸=k

αjsj(x)−
∑
j ̸=k

αjsign(x+ bj)

∣∣∣∣∣∣+
∣∣∣∣Ĝ(x) +

1

2
αksk(x)−

1

2
αksign(x+ bk)− f(x)

∣∣∣∣ .
(46)

Similarly, for the first term, we set α∗
k = max

j ̸=k
|αj | and λk =

1

δ0
ln

(N − 1)α∗
k − ε2

ε2
. For λ ≥ λk, we have:

1

2

∣∣∣∣∣∣
∑
j ̸=k

αjsj(x)−
∑
j ̸=k

αjsign(x+ bj)

∣∣∣∣∣∣ < ε2. (47)

For the second term, notice that when
k

N
− δ0 ≤ x ≤ k

N
+ δ0, we have:

Ĝ(x) =



f

(
2k − 1

2N

)
,

k

N
− δ0 ≤ x <

k

N
1

2
f

(
2k − 1

2N

)
+

1

2
f

(
2k + 1

2N

)
, x =

k

N

f

(
2k + 1

2N

)
,

k

N
< x ≤ k

N
+ δ0,

(48)

and

αksign(x+ bk) =



[
f

(
2k − 1

2N

)
− f

(
2k + 1

2N

)]
,

k

N
− δ0 ≤ x <

k

N

0, x =
k

N[
f

(
2k + 1

2N

)
− f

(
2k − 1

2N

)]
,

k

N
< x ≤ k

N
+ δ0.

(49)

We thus have

Ĝ(x)− 1

2
αk sign(x+ bk) =

1

2

[
f

(
2k + 1

2N

)
+ f

(
2k − 1

2N

)]
, for

k

N
− δ0 ≤ x ≤ k

N
+ δ0. (50)

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Universal Approximation Theorem of Networks Activated by Normalization

Following Eqn.34, we replace with the new sj(x). We obtain that:

∣∣∣∣Ĝ(x)− 1

2
αksign(x+ bk) +

1

2
αksk(x)− f(x)

∣∣∣∣
=

∣∣∣∣1 + sk(x)

2
f

(
2k + 1

2N

)
+

1− sk(x)

2
f

(
2k − 1

2N

)
− f(x)

∣∣∣∣
≤
∣∣∣∣1 + sk(x)

2

∣∣∣∣ ∣∣∣∣f (
2k + 1

2N

)
− f(x)

∣∣∣∣+ ∣∣∣∣1− sk(x)

2

∣∣∣∣ ∣∣∣∣f (
2k − 1

2N

)
− f(x)

∣∣∣∣
≤1 + sk(x)

2
· L ·

(
2k + 1

2N
− x

)
+

1− sk(x)

2
· L ·

(
x− 2k − 1

2N

)
=
1

2
L · 1

N
+

sk(x)

2
· L ·

(
2k + 1

2N
− x

)
+

sk(x)

2
· L ·

(
2k − 1

2N
− x

)
=

L

2N
+ Lsk(x)

(
k

N
− x

)
≤ L

2N
≤ε− ε2,

(51)

for the new sk(x) also satisfies that sk(x) ∈ (−1, 1), and sk(x)

(
k

N
− x

)
≤ 0.

Then we get |G(x)− f(x)| < ε,∀x ∈ [0, 1].

Therefore, given λ∗ = max(λ1, λ2, · · · , λN), when λ ≥ λ∗, we have |G(x)− f(x)| < ε,∀x ∈ [0, 1].

A.4.2. TANH

Since tanh(x) = 2σ(2x)− 1, the proof is almost the same as that of sigmoid.

A.5. Proof of Proposition 3

Proposition 3. (Approximation Bound of ReLU) Given F = F([0, 1];L) and G = G(N ;ReLU), where ReLU(x) =
max(0, x) denotes the ReLU function. Given the error bound ε > 0, we have

⌊L/2ε⌋ − 1 ≤ N (ReLU) ≤ ⌊L/2ε⌋+ 2. (52)

Similarly, we have ⌊L/2ε⌋ − 1 ≤ W(ReLU) ≤ ⌊L/2ε⌋+ 2.

A.5.1. UPPER BOUND

Proof. Given G(x) =

N∑
j=1

αjReLU(wjx+ bj) ∈ G(N ;ReLU), where N = ⌊L/2ε⌋+ 2. To begin with, we give the target

function of G(x) as Ĝ(x). Here we denote Ĝ(x) as

Ĝ(x) = N

[
f

(
j

N

)
− f

(
j − 1

N

)](
x− j − 1

N

)
+ f

(
j − 1

N

)
, for

j − 1

N
≤ x <

j

N
, (53)

where j satisfies that 1 ≤ j ≤ N . Meanwhile, we let Ĝ(1) = f(1).

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Universal Approximation Theorem of Networks Activated by Normalization

Here we prove that |Ĝ(x)− f(x)| < ε for x ∈ [0, 1]. For
j − 1

N
≤ x <

j

N
where 1 ≤ j ≤ N , we have:

|f(x)− Ĝ(x)| =
∣∣∣∣f(x)−N

[
f

(
j

N

)
− f

(
j − 1

N

)](
x− j − 1

N

)
− f

(
j − 1

N

)∣∣∣∣
=

∣∣∣∣f(x)− f

(
j − 1

N

)
−N

[
f(x)− f

(
j − 1

N

)](
x− j − 1

N

)
−N

[
f

(
j

N

)
− f(x)

](
x− j − 1

N

)∣∣∣∣
=

∣∣∣∣N [
f(x)− f

(
j − 1

N

)](
j

N
− x

)
+N

[
f(x)− f

(
j

N

)](
x− j − 1

N

)∣∣∣∣
≤ N

∣∣∣∣f(x)− f

(
j − 1

N

)∣∣∣∣ (j

N
− x

)
+N

∣∣∣∣f(x)− f

(
j

N

)∣∣∣∣ (x− j − 1

N

)
.

(54)
Both f(x) and Ĝ(x) are L-Lipchitz continuous functions. Therefore, we obtain that:

|f(x)− Ĝ(x)| ≤ N · L
(
x− j − 1

N

)
·
(

j

N
− x

)
+N · L

(
j

N
− x

)
·
(
x− j − 1

N

)
≤ 2NL

(
x− j − 1

N

)(
j

N
− x

)
≤ 2NL · 1

4N2

< ε.

(55)

Now we prove that, there is a G(x) ∈ G(⌊L/2ε⌋+2;ReLU), such that G(x) = Ĝ(x). For G(x) =

N∑
j=1

αjReLU(wjx+ bj),

we set 

α1 = Nf(0)

αj = N

[
f

(
j − 1

N

)
− f

(
j − 2

N

)]
−

j−1∑
i=1

αi, for 2 ≤ j ≤ N

wj = 1, for 1 ≤ j ≤ N

bj = −j − 2

N
, for 1 ≤ j ≤ N.

(56)

Therefore, we have G(x) = Ĝ(x). Then we further get that |G(x)− f(x)| < ε for x ∈ [0, 1].

A.5.2. LOWER BOUND

Proof. To prove that ⌊L/2ε⌋ − 1 ≤ N (ReLU), we can just prove that: there is a f(x) ∈ F([0, 1];L), that can not ensure
that |G(x)− f(x)| < ε in [0, 1] for all G(x) ∈ G(⌊L/2ε⌋ − 2;ReLU).

We construct f(x) as follows:

f(x) =


−ε+ 2εNx, if 0 ≤ x <

1

N
,

3ε− 2εNx, if
1

N
≤ x <

2

N
,

f

(
x− 2

N

)
, if

2

N
≤ x ≤ 1.

(57)

Here N = ⌊L/2ε⌋. For N ≤ L/2ε, it is easy to identify that f(x) is L-Lipchitz continuous in [0, 1].

Now, we assume that there is a G(x) ∈ G(⌊L/2ε⌋ − 2;ReLU), subjected to |f(x) − G(x)| < ε for x ∈ [0, 1]. Then for

x = 0,
1

N
,
2

N
, · · · , 1, they all satisfy that |f(x) − G(x)| < ε. Specially, we obtain that f(0) = f(2/N) = f(4/N) =

· · · = −ε, and f(1/N) = f(3/N) = · · · = ε. We further obtain that G(0), G(2/N), G(4/N), · · · are all negative, while
G(1/N), G(3/N), · · · are all positive. Conclusively, we have (−1)kG(k/N) < 0.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Universal Approximation Theorem of Networks Activated by Normalization

Here we analysis G(x) on each interval
(
k − 1

N
,
k

N

)
with Lagrange’s Mean Value Theorem.

Since G(x) =

N−2∑
j=1

αjReLU(wjx + bj), we know G(x) is differentiable except x = −bj/wj(wj ̸= 0) where j =

1, 2, · · · , N − 2.

Here we prove that: there is some xk ∈
(
k − 1

N
,
k

N

)
, such that (−1)kG′(xk) < 0.

1) If G(x) is differentiable in
(
k − 1

N
,
k

N

)
, for (−1)kG

(
k − 1

N

)
> 0, (−1)kG

(
k

N

)
< 0, we obtain

G′(xk) =

[
G

(
k

N

)
−G

(
k − 1

N

)]
/(1/N). (58)

for some xk ∈
(
k − 1

N
,
k

N

)
, by Lagrange’s Mean Value Theorem.

Furthermore, we have:

(−1)kG′(xk) = (−1)kN

[
G

(
k

N

)
−G

(
k − 1

N

)]
= N

[
(−1)kG

(
k

N

)
− (−1)kG

(
k − 1

N

)]
< 0.

(59)

2) If G(x) is not differentiable, there must be Θ ⊆ {−bj/wj : wj ̸= 0, j = 1, 2, · · · , N − 2}, such that Θ ∈
(
k − 1

N
,
k

N

)
.

At least, we know G(x) is continuous in
(
k − 1

N
,
k

N

)
, and not differentiable only in Θ. We assume Θ = {b′1, b′2, · · · , b′m}

(they are different from each other), and
k − 1

N
< b′1 < b′2 < · · · < b′m <

k

N
. Then one of the following formulas holds—

(−1)kG

(
k − 1

N

)
− (−1)kG(b′1) > 0,

(−1)kG(b′1)− (−1)kG(b′2) > 0,

· · · ,
(−1)kG(b′m−1)− (−1)kG(b′m) > 0,

(−1)kG(b′m)− (−1)kG

(
k

N

)
> 0

(60)

—otherwise we will obtain that (−1)kG

(
k − 1

N

)
≤ (−1)kG

(
k

N

)
, which contradicts the assumption.

Therefore, we can apply Lagrange’s Mean Value Theorem with the established formula above, we can find some xk ∈(
k − 1

N
,
k

N

)
, such that (−1)kG′(xk) < 0.

Next, we show one important property of G(x). If a < b and G′(a) ̸= G′(b), we will find some j, such that a < −bj/wj < b.
This is because that G′′(x) = 0 holds almost everywhere, except x ∈ {−bj/wj : wj ̸= 0, j = 1, 2, · · · , N}—if there is no
j satisfying that a < −bj/wj < b, we will have G′(a) = G′(b).

Furthermore, since we have obtained that G′(x1) > 0, G′(x2) < 0, G′(x3) > 0, · · · , for each interval
(x1, x2), (x2, x3), · · · , (xN−1, xN), there must be some N − 1 different jk, such that −bjk/wjk ∈ (xk, xk+1) for

k = 1, 2, · · · , N − 1. However, only N − 2 different j are available in G(x) =

N−2∑
j=1

αjReLU(wjx + bj). By the

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Universal Approximation Theorem of Networks Activated by Normalization

pigeonhole principle, we can not find a G(x) ∈ G(⌊L/2ε⌋ − 2;ReLU), subjected to |f(x)−G(x)| < ε for x ∈ [0, 1].

Therefore, we get the minimum N (ReLU) ≥ ⌊L/2ε⌋ − 1.

B. Experiments
B.1. Approximation Experiments

B.1.1. APPROXIMATION LANDSCAPES

In this section, we will conduct a detailed analysis of the experimental results mentioned in Section 4.2. The experimental
setup remains consistent with that described in Section 4.2.

Tables I and II present how the fitting performance of the PLN and PLS activation functions varies with changes in network
width under different norm sizes. From these tables, it can be observed that as the network width increases, the model’s
approximation performance gradually improves. These results indicate that increasing the network width can enhance the
model’s approximation capabilities.

Table III further compares the two best-performing activation functions, PLN-4 and PLS-2, with other activation functions.
It can be seen that sigmoid and tanh perform better in approximating the target function, while ReLU’s performance is
relatively poor. PLN-4 also exhibits good approximation ability, especially at smaller network widths. These results suggest
that different activation functions have varying approximation performances at different network widths.

Table I. Approximation landscapes with PLN.
Width PLN-2 PLN-4 PLN-8 PLN-16 PLN-32

8

16

32

64

128

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Universal Approximation Theorem of Networks Activated by Normalization

Table II. Approximation landscapes with PLS.
Width PLS-2 PLS-4 PLS-8 PLS-16 PLS-32

8

16

32

64

128

Table III. Approximation landscapes with different activation functions.
Width Sigmoid Tanh ReLU PLN-4 PLS-2

8

16

32

64

128

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Universal Approximation Theorem of Networks Activated by Normalization

32 64 128 256 512
Width

-8

-5

-2

Lo
ga

rit
hm

ic
Lo

ss PLN-2
PLN-4
PLN-8
PLN-16
PLN-32

(a) PLN Approximation.

32 64 128 256 512
Width

-8

-5

-2

Lo
ga

rit
hm

ic
Lo

ss PLS-2
PLS-4
PLS-8
PLS-16
PLS-32

(b) PLS Approximation.

Figure A1. The results of logarithmic loss of PLN and PLS on
random functions varying with width.

B.1.2. APPROXIMATION RESULTS

In the main text Figure 3, we presented the best logarithmic
loss of PLN and PLS with different norm sizes when fitting
trigonometric functions. Here, we provide the fitting results
in Figure A1 for random functions as a supplement, and the
target function is

y(x) = 2 · rand(x)− 1, x ∈ {−5,−4.5, . . . , 5} (61)

where rand(·) follows a uniform distribution in the range
[0, 1].

Analyzing the figures readily reveals that in the fitting task
of random functions, PLN-4 and PLS-2 perform the best,
which is consistent with the results presented in the main
text.

B.2. Classification with CNN

B.2.1. EXPERIMENT SETTINGS

Experiment Settings. We conduct the classification ex-
periments on CIFAR-10 dataset using VGG-16. We set the
width (or the channel number) of each hidden layer to be
the same for simplification. Here we set the width as 64.
We vary the activation functions in sigmoid, tanh, ReLU,
PLN and PLS. We train a total of 240 epochs using SGD
with a mini-batch size of 128, momentum of 0.9 and weight
decay of 0.0001. The initial learning rate is set to 0.1, and
divided by 2.5 at the 60th, 100th, 140th, 180th and 220th
epochs. We use warmup in the first 20 epochs. We also use
data augmentation. We record the average results among
three random seeds.

B.2.2. EXPERIMENTS ON NORM SIZE

Experiments on norm size. Norm size (d) is a hyperpa-
rameter in PLN-d and PLS-d. We fix the width as 128, d
ranges in 2, 4, 8, 16, 32, 64, 128. The results are shown in
Figure A2.

Figures A2 and A3 in the appendix detail the performance
of PLN and PLS activation functions with varying norm
sizes on the CIFAR-10 dataset using two different CNN
architectures: VGG-16 and ResNet20. Both figures are
split into training and test accuracy plots, with the x-axis

2 4 8 16 32 64 128
Norm Size

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

PLN
PLS

(a) Training

2 4 8 16 32 64 128
Norm Size

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

PLN
PLS

(b) Test

Figure A2. Results of PLN and PLS with width 128 and different
norm sizes on CIFAR-10 using VGG-16 with BN.

2 4 8 16 32 64 128
Norm Size

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

PLN
PLS

(a) Training

2 4 8 16 32 64 128
Norm Size

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

PLN
PLS

(b) Test

Figure A3. Results of PLN and PLS with width 128 and different
norm sizes on CIFAR-10 using ResNet-20.

representing the norm size and the y-axis showing accuracy
percentage. For both architectures, PLN and PLS show
a sharp increase in accuracy as the norm size increases
from 2 to 4, after which accuracy plateaus. This indicates
that a norm size of 4 or greater is sufficient for optimal
performance, and increasing the norm size further does not
significantly improve accuracy.

The results demonstrate that PLN and PLS perform simi-
larly across different norm sizes, achieving high accuracy
with both VGG-16 and ResNet20 on CIFAR-10. These
findings suggest that larger norm sizes are not necessary for
achieving good performance with these activation functions
in CNNs.

B.2.3. EXPERIMENTS ON WIDTH

In this section, we supplement the experimental results us-
ing the ResNet-20 network architecture on the CIFAR-10
dataset to further verify the performance of different ac-
tivation functions across varying network widths. Figure
A5 illustrates how the accuracy of ReLU, PLN-8, Sigmoid,
Tanh, and PLS-8 activation functions changes with network
width on both the training and test sets. The ReLU ac-
tivation function demonstrates higher accuracy across all
widths, with PLN-8 and PLS-8 showing comparable perfor-
mance. The Sigmoid and Tanh activation functions exhibit
relatively lower performance. The overall performance rank-
ing is ReLU > PLN-8 ≈ PLS-8 > Tanh > Sigmoid, which is
consistent with the results presented in the main text.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Universal Approximation Theorem of Networks Activated by Normalization

16 32 64 128 256
Width

70
75
80
85
90
95

100
Ac

cu
ra

cy
(%

)

ReLU
PLN-8
Sigmoid
Tanh
PLS-8

(a) Training accuracy.

16 32 64 128 256
Width

70
75
80
85
90
95

100

Ac
cu

ra
cy

(%
)

ReLU
PLN-8
Sigmoid
Tanh
PLS-8

(b) Test accuracy.

Figure A4. Results of different activation functions with different
widths on CIFAR-10 using resnet20.

B.3. Experiments on Transformer

B.3.1. MACHINE TRANSLATION WITH TRANSFORMER

In the translation task training process, each task is trained
for 100 epochs, with the first 10 epochs utilizing a warmup
strategy and the remaining 90 epochs following a cosine
decay learning rate schedule. The maximum learning rate is
set to 5e-4, and the optimizer used is Adam with a weight
decay of 5e-4. Each task is conducted using three different
random seeds (10, 20, and 30), and the final results are
averaged. All experiments are conducted on an NVIDIA
RTX 3090 GPU, with each task taking approximately 50
minutes to complete.

B.3.2. LONG TIME SERIES PREDICTION TASKS WITH
TRANSFORMER

All the experiments are implemented in PyTorch (Paszke
et al., 2019) and conducted on a single NVIDIA A40 40GB
GPU. We utilize ADAM (Kingma & Ba, 2014) with an
initial learning rate at 5× 10−4 and L2 loss for the model
optimization. The batch size is uniformly set to 32 and the
number of training epochs is fixed to 10. We set the number
of Transformer encoder layers to 3 and decoder layers to
2. In order to more accurately determine the impact of the
normalization layer and activation layer on the network, we
used the Traffic dataset with a data dimension of 862 and a
total length of 17544 for the experiment. We extended the
sequence length that the model needs to process at a time
from 96 to 720, and the prediction sequence length is still
set to 720.

26

