
COMET: FINE-GRAINED COMPUTATION-COMMUNICATION OVERLAPPING
FOR MIXTURE-OF-EXPERTS

Shulai Zhang * 1 2 Ningxin Zheng * 1 Haibin Lin 1 Ziheng Jiang 1 Wenlei Bao 1 Chengquan Jiang 1 Qi Hou 1

Weihao Cui 2 Size Zheng 1 Li-Wen Chang 1 Quan Chen 2 Xin Liu 1

ABSTRACT
Mixture-of-experts (MoE) has been extensively employed to scale large language models to trillion-plus parameters
while maintaining a fixed computational cost. The development of large MoE models in the distributed scenario
encounters the problem of large communication overhead. The inter-device communication of a MoE layer can
occupy 47% time of the entire model execution with popular models and frameworks. Therefore, existing methods
suggest the communication in a MoE layer to be pipelined with the computation for overlapping. However, these
coarse grained overlapping schemes introduce a notable impairment of computational efficiency and the latency
concealing is sub-optimal.

To this end, we present COMET, an optimized MoE system with fine-grained communication-computation
overlapping. Leveraging data dependency analysis and task rescheduling, COMET achieves precise fine-grained
overlapping of communication and computation. Through adaptive workload assignment, COMET effectively
eliminates fine-grained communication bottlenecks and enhances its adaptability across various scenarios. Our
evaluation shows that COMET accelerates the execution of a single MoE layer by 1.96× and for end-to-end
execution, COMET delivers a 1.71× speedup on average. COMET has been adopted in the production environment
of clusters with ten-thousand-scale of GPUs, achieving savings of millions of GPU hours. COMET is available at
https://github.com/bytedance/flux.

1 INTRODUCTION

Recent advancements in large language models have rev-
olutionized multiple domains, including natural language
processing (Vaswani, 2017; Touvron et al., 2023), computer
vision (Liu et al., 2021) and multi-modal perception (Liu
et al., 2024; Cao et al., 2023). These achievements demon-
strate that scaling up model size can significantly enhance
model capacity. However, the growth in model parameters
poses substantial challenges for the deployment of such
giant models, as computational resources increasingly con-
strain model capacity (Sharir et al., 2020).

To this end, Mixture-of-Experts (MoE) (Shazeer et al., 2017)
introduces a sparse structure, within which only part of the
parameters is activated. Instead of interacting with all pa-
rameters in dense models, MoE models allow each input to
interact with only a few experts. For example, the Mixtral-

*Equal contribution 1ByteDance Seed 2Shanghai
Jiao Tong University. Correspondence to: Ningxin
Zheng <zhengningxin@bytedance.com>, Haibin Lin
<haibin.lin@bytedance.com>, Quan Chen <chen-
quan@sjtu.edu.cn>, Xin Liu <liuxin.ai@bytedance.com>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

8x7B model (Jiang et al., 2024) comprises 45 billion param-
eters in total, while only 14 billion parameters are active
during runtime. Nowadays, MoE has emerged as a key
architecture for scaling models to trillion-plus parameters.

The increase in parameter size in MoE models allows for
the integration of greater amounts of information, but it
poses challenges in expert placement. A typical approach
is to distribute the experts across different GPUs as a sin-
gle GPU cannot store all experts (Lepikhin et al., 2020).
Consequently, during the execution of MoE layers, there
is an intensive need for data exchange among GPUs. In
the forward pass of several popular MoE models, the com-
munication among devices accounts for 47% of the total
execution time on average, as shown in Figure 1(a).

In a distributed environment, executing an MoE layer in-
volves data reception, expert computation, and data trans-
mission, as depicted in in Figure 1(b). To reduce commu-
nication overhead, one effective strategy is to pipeline the
process, overlapping communication with expert computa-
tion (Hwang et al., 2023; He et al., 2022; Shi et al., 2023;
2024). This approach involves partitioning input data into
smaller data chunks, allowing decomposed communication
and computation phases to overlap. In the example in Fig-
ure 1(b), the received input data is divided into two chunks,

https://github.com/bytedance/flux

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

Qwen2
-MoE

4096

Phi3.5
-MoE

Mixtral
-8x7B

8192

4096

8192

4096

8192

Sequence
Length =

(b) Coarse-grained communication-computation overlap.

(a) Time breakdown analysis of typical MoE models.

Data receive Data sendExpert computation

Time

Stream0

Comm.-comp. pipelining

➀ ➁

t1 t2

t

➀ ➁
➀ ➁

Time

Comm. kernels
Comp. kernels

Stream0
Stream1

Figure 1. Analysis of the execution of MoE. (a) Time breakdown
of MoE models executed on 8 H800 GPUs using Megatron-LM.
(b) An illustration of communication-computation overlap by par-
titioning an expert computation kernel into two.

and this coarse-grained overlapping reduces the overall exe-
cution time relative to non-pipelined execution.

The overlapping in existing mechanisms remains subopti-
mal due to two primary inefficiencies. First, the efficiency
of partitioned experts declines as the data chunks assigned
to each expert become smaller, potentially leading to under-
utilization of GPU computational resources (e.g., the total
compute time of experts after partitioning t1 + t2 exceeds
the original time t). The coarse-grained partitioning re-
sults in unavoidable GPU idle time during the initial and
final communication phases, such as when receiving data
for chunk 1 and sending data for chunk 2, which do not
overlap with computation. Consequently, minimizing the
non-overlapping time in these phases while maintaining
computational efficiency is crucial. This is challenging be-
cause the data dependency between communication and
computation is complex and it is hard to be overlapped
in a fine-grained granularity efficiently. Second, due to
the dynamic nature of MoE, the input shapes for experts
are various at runtime, thereby posing diverse communi-
cation and computation burdens on GPUs. Encapsulating
communication and computation tasks into separate kernels
on different streams, like almost all the prior researches
do, restricts control over hardware resources and results in
non-deterministic kernel performance, thereby hindering
seamless overlap (e.g., the computation of chunk 1 and the

receiving of chunk 2 are misaligned). The second challenge,
therefore, is to dynamically ensure precise allocation of
hardware resources between computation and communica-
tion workloads at runtime.

The complex data dependency, and the dynamic computa-
tion and communication workloads in MoE impede exist-
ing systems to realize efficient communication-computation
overlap. We therefore propose COMET, a system that en-
ables fine-grained communication-computation overlapping
for efficient MoE execution. COMET introduces two key
designs: 1) A dependency resolving method that identi-
fies complex data dependencies between communication
and computation operations in MoE, enabling optimized
computation-communication pipeline structuring. 2) An
adaptive workload assignment method that dynamically al-
locates GPU thread blocks to different workloads within a
kernel, balancing communication and computation to im-
prove latency concealment.

COMET facilitates fine-grained overlapping in MoE by an-
alyzing shared data buffers between communication and
computation operations, referred to as shared tensor. By
decomposing the shared tensors along specific dimensions
and reorganizing tensor data along with intra-operator exe-
cution order, COMET eliminates the granularity mismatches
between communication and computation, thereby enabling
fine-grained overlapping. To ensure precise resource al-
location and effective latency concealment, COMET inte-
grates communication and computation tasks within fused
GPU kernels. Through thread block specialization, COMET
isolates the impact of communication on computation per-
formance , maintaining high computational efficiency. By
adjusting the number of thread blocks allocated to each
workload, COMET effectively balances communication and
computation latencies and reduces bubbles in overlapping.

We have integrated COMET into Megatron-LM (Shoeybi
et al., 2019) and verified the capability of COMET with
various parallel strategies. Our extensive experiments on
Nvidia H800 and L20 clusters show that COMET deliv-
ers 1.96× speedup for typical MoE layers, and 1.71×
speedup for end-to-end MoE model execution (Mixtral-
8x7B (Jiang et al., 2024), Qwen2-MoE (Bai et al., 2023),
Phi3.5-MoE (Abdin et al., 2024)) on average, compared
with the SOTA MoE systems. COMET has been deployed
to accelerate training and inference of large MoE mod-
els in production clusters comprising over ten thousand
GPUs, achieving savings of millions of GPU hours. COMET
introduces a fine-grained pipelined programming model
for computation and communication. COMET is available
at https://github.com/bytedance/flux, aim-
ing to inspire further optimizations, such as implementing
the programming model in COMET using compilers like
Triton (OpenAI, 2022) or TVM (Chen et al., 2018).

https://github.com/bytedance/flux

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

GPU0

Inputs

GPU1

Outputs

Tile of GEMM Ops in layer0

token routing

Expert 1

Di
sp

at
ch

Di
sp

at
ch

Expert 1

Expert 2 Expert 2

Expert 0 Expert 0

Expert 3 Expert 3

layer0

Ops in layer1

Co
m

bi
ne

GEMMs GEMMs

Tensors

Co
m

bi
ne

Ac
tiv

at
io

n
fu

nc
tio

n

Shared
tensors

layer1

Token A

Shared
tensors

Token B

Input token number for each expert

Figure 2. Example of an MoE layer across two GPUs, with two
experts reside on GPU0 and two reside on GPU1. The MoE layer
is composed of two feed-forward layers. In this example, for
each token in the input buffer, it is dispatched to three experts
(topk = 3) in layer0 and then the results are combined in layer1.
The shape of experts is N ×K in layer0 and K ×N in layer1.

2 BACKGROUND AND MOTIVATION

2.1 MoE Structure

Table 1. Description of symbols.
Symbol Description

L Number of transformer layers
E Total number of experts
topk Number of experts that each token is routed to
TP Tensor parallel size
EP Expert parallel size
W Total parallel world size (TP× EP)
M Input token length × Batch size
N Embedding size of a token
K Hidden size of the feed-forward layer in experts

Mixture of Experts (MoE) is critical for efficiently scaling
models. By enabling sparse activation of parameters, MoE
allows for the integration of more parameters without in-
creasing execution costs, thereby enhancing performance.
The key idea of MoE is that it consists of multiple small
models, namely experts and tokens are only routed to partial
experts for computation. Figure 2 shows the typical execu-
tion flow of an MoE layer and Table 1 explains symbols to
describe the execution of an MoE model.

Each input token is assigned to one or more experts for
computation, with assignments determined by various algo-
rithms (Zuo et al., 2021; Zhou et al., 2022b; Liu et al., 2022).
A common method involves a gate network (Shazeer et al.,
2017) that selects the topk experts for each token, as shown
in Figure 2, where token A is routed to Expert0, Expert1
and Expert3. After passing through two feed-forward layers

of General Matrix Multiply (GEMM), the topk outputs are
gathered and reduced to produce the final result.

The operations in MoE’s layer0 comprise token commu-
nication (dispatch) across GPUs and the first layer of ex-
pert computations (GEMM operations), thereby establish-
ing a communication-computation pipeline. MoE’s layer1
includes the second layer of expert computations, token
undispatch and the topk reduction (combine), forming a
computation-communication pipeline.

MoE employs two primary parallelization strategies: Ex-
pert parallelism (Lepikhin et al., 2020) and Tensor par-
allelism (Shoeybi et al., 2019). In expert parallelism, the
weights of different experts are distributed across separate
GPUs, with each expert’s weights being fully intact. Tokens
are routed to the corresponding devices of their respective
experts. Figure 2 shows a case for expert parallelism, with
Expert0 and Expert1 reside on GPU0 and others reside on
GPU1. In contrast, tensor parallelism partitions the weights
of all experts along the hidden dimension, with each GPU
hosting a portion of the weights from all experts. Both
expert and tensor parallelism are essential for the efficient
execution of MoE. In practical deployment of MoE models,
a hybrid parallelism approach combining both expert and
tensor parallelism is often applied.

2.2 Computation and Communication Overlapping

As the MoE architecture grows larger and sparser, the pro-
portion of time spent on communication in MoE models
becomes increasingly significant, as shown in Figure 1(a).
As illustrated in section 1, coarse-grained overlapping of
computation and communication offers limited optimiza-
tion potential, and kernel-level scheduling is not efficient
for dynamic workloads. Thus, it is more efficient to per-
form the overlapping at a fine-grained granularity (such as
token-wise) and integrates computation and communica-
tion workloads into fused GPU kernels. Adopting such a
finer-grained overlapping could extremely unleash further
optimization opportunities. However, achieving such fine-
grained overlapping in MoE is non-trivial and there are two
primary obstacles in our observation.

2.2.1 Granularity mismatch between computation and
communication

In MoE systems, the token serves as the fundamental unit
of data movement, illustrated by the movement of Token A
in Figure 2. To maximize GPU compute efficiency, high-
performance GEMM(GroupGEMM) kernels typically or-
ganize rows into tiles for processing. The purple block in
Figure 2 represents such a computation tile in GEMM ker-
nels, exemplified by a 128x128 tile. Therefore, the GEMM
computations associated with a single expert may require
128 tokens distributed across multiple GPUs. When fusing

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

GPU SMs

Comp.
thread blocks

Comm.
thread blocks

Adaptive Workload Assignment

Shared Tensor
Based

Dependency
Resolving

to
ke
ns

Comm. Comp. Comp. Comm.

Shared tensor Shared tensor
Layer0 Layer1

➁reschedule ➁reschedule

MoE layer pipeline

Optimizing path of Comet

➀decompose ➀decompose

Figure 3. Design overview of COMET. COMET is composed of a shared tensor-based dependency resolving method and an adaptive
workload assignment mechanism.

computation and communication at fine granularity, the dis-
parity between token-level data transfer and tile-level com-
putation introduces considerable challenges: The complex
data dependency adversely affects the efficiency of overlap,
prompting the use of fine-grained communication, while
integrating fine-grained communication with computation
within fused kernels is also challenging.

Complex data dependency. The tokens needed for each
computation tile, determined by the MoE’s gate at runtime,
are randomly distributed across multiple devices. Com-
putation for a tile cannot start until all required tokens are
available. As shown in Figure 2, Expert0’s tile does not initi-
ate processing until both Token A and Token B are received.
Thus, with coarse-grained data communication, data prepa-
ration time for each computational tile may be prolonged
because of this irregular and complicated data dependency.
To mitigate this, we should employ fine-grained communi-
cation, where each computational tile reads or writes only
the data it requires directly through the Unified Virtual Ad-
dress (Nvidia, 2017), and leverage the data reorganization
and rescheduling to hide it with computation efficiently.

Fine-grained communication. The integration of token-
wise communication with tile-wise computation for over-
lapping is non-trivial. Remote I/O operations between
GPUs exhibit significantly higher latency compared to lo-
cal GPU memory access. Therefore, executing numerous
fine-grained read and write operations on remote data tokens
within computation thread blocks can block subsequent com-
putational tasks, leading to a significant decline in kernel
efficiency. This challenge is especially evident in the Hop-
per architecture, where computation kernels leverage Tensor
Memory Accelerator (TMA) hardware instructions (Nvidia,
2022b) to establish asynchronous compute pipelines. The
integration of long-latency remote I/O operations within
these asynchronous pipelines can considerably prolong the
overall execution time, adversely affecting performance.
Thus, it is critical to constrain the impact of fine-grained

communication on computation kernels.

Our first insight is that resolving the granularity mismatch
between computation and communication in MoE models
is the key to enable efficient overlap of these two processes.

2.2.2 Diverse loads of computation and communication

Another characteristic of MoE is the dynamic routing of
tokens to different experts, resulting in varying input shapes
for experts at runtime (e.g., the token number received by
Expert0 and Expert1 are different as shown in Figure 2).
This variability imposes differing communication and com-
putation demands on GPUs. Besides, the hardware envi-
ronments can also have various compute architectures or
network topologies, providing different compute capacities
and communication bandwidths. Achieving seamless over-
lap between computation and communication thus requires
dynamically adjusting the allocation of GPU resources to
different workloads, which is hard to be realized through
wrapping workloads into separate kernels.

Our second insight is that the resource allocation should
be adaptive within kernels at runtime to further achieve
seamless communication-computation overlapping.

3 DESIGN OF COMET

In this section, we present the core design of COMET, a
Mixture of Experts (MoE) system optimized for efficient
execution of MoE layers through pipelined execution and
fine-grained overlapping of communication and computa-
tion. Our analysis reveals that the MoE architecture has two
distinct producer-consumer pipelines: the communication-
computation pipeline and the computation-communication
pipeline, as illustrated in Figure 3. Tokens traverse the
pipelines as depicted and the operations within each pipeline
are linked through a shared buffer, referred to as the shared
tensor, serving as both the producer’s output buffer and the
consumer’s input buffer. To minimize overall latency and

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

enhance pipeline performance, COMET introduces two key
mechanisms aimed at overlapping computation and commu-
nication workloads effectively.

1. Shared tensor based dependency resolving: As previ-
ously mentioned, the intricate data dependencies between
communication and computation pose a challenge to achiev-
ing seamless overlap between these operations. To address
this, we examine the data dependencies by analyzing the
shared tensor. Our analysis reveals that the shared tensor
can be decomposed, and the associated computations can
be rescheduled to overlap more effectively with commu-
nication. Accordingly, the dependency resolving process
employs two key optimization strategies on the shared ten-
sors as shown in Figure 3: ① Decomposing the shared ten-
sors along specific dimensions to break the coarse-grained
data dependencies and, ② rescheduling the computations to
enhance efficiency while ensuring effective overlapping.

2. Adaptive workload assignment: Following pipeline
optimization by the dependency resolving, the pattern of
communication-computation overlap becomes more con-
sistent and regular. To effectively hide the fine-grained
communication latency, it is essential to allocate appropriate
hardware resources to both communication and computation
workloads. Given that these workloads exhibit different per-
formance characteristics depending on input shapes, model
configurations, and hardware environments, the adaptive
workload assignment scheme dynamically balances compu-
tation and communication. This approach generates highly
efficient horizontally-fused kernels for the MoE system,
thereby optimizing latency concealment.

As shown in Figure 3, COMET first leverages the shared
tensor based dependency resolving method to optimize
the pipelines in the MoE structure by decomposing and
rescheduling the shared tensors. According to the reformed
pipelines, COMET then provides highly-efficient fused ker-
nels through the adaptive workload assignment mechanism.

3.1 Shared Tensor Based Dependency Resolving

We now introduce how to resolve the complex data depen-
dency between computation and communication in MoE. It
aims to bridge the granularity of communication and compu-
tation operations to sustain high efficiency by decomposing
and rescheduling shared tensors.

3.1.1 How to decompose the shared tensor?

Shared tensors, as the bridge between the producer operator
and the consumer operator, is the key to enable overlapping.
Notably, overlapping can occur only when the producer and
consumer operate on independent data within the shared
tensor, as illustrated in Figure 4. Thus, we analyze the access
pattern of operators on the shared tensor and decompose it

N
Shared
tensor

GEMM

Independent
along M

All2all/AllGather

Shared
tensor

TopK-reduce +
All2all/ReduceScatter

Independent
along N

GEMM

M

N

M

Producer:

Consumer:

Figure 4. The producer-consumer modeling of layer0 (left) and
layer1 (right) of an MoE layer. The global size of the shared tensor
is (M × topk,N) for both layer0 and layer1.

along a specific dimension where data remain independent
for the consumer operator.

For example, in the communication-computation pipeline in
layer0, the consumer operator is a GEMM, with the shared
tensor serving as its input matrix. In this case, tokens are
independent with each other alongside the M (token) di-
mension, allowing for decomposition of the shared tensor
along M . However, since the computation of a GEMM
tile involves multiplication and reduction along the token
embedding dimension to produce the final outputs, decom-
posing the shared tensor along this dimension is not feasible.

As for the computation-communication pipeline in layer1,
the consumer operator contains a top-K reduction, which
reduces tokens along the M dimension, leading to signifi-
cant interdependencies between tokens along this dimension.
Thus, the shared tensor can only be decomposed along the
N dimension where elements are independent.

3.1.2 How to reschedule the decomposed shared tensor?

At the finest granularity, the shared tensor can be split into
individual rows or columns, enabling the consumer to be-
gin computation as soon as a single row or column is re-
ceived. However, this level of granularity results in low
computational efficiency, particularly in pipelines involving
compute-intensive GEMMs, which are typically organized
and processed in tiles to achieve high utilization. Therefore,
after decomposing shared tensors along specific dimensions,
the resulting sub-tensors must be reorganized and resched-
uled into tiles for computation. The rescheduling of shared
tensors follows two principles: ① Rescheduled sub-tensors
should align with the original computation tile granular-
ity for computational efficiency. ② The scheduling policy
should prioritize portions of the producer that can be im-
mediately used by the consumer, allowing the consumer to
begin execution as early as possible.

COMET leverages GroupGEMM (Grouped General Ma-
trix Multiply) to perform the computations for all ex-
perts on current rank. In the communication-computation

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

Local data
(Rank0)

Remote data
(Rank1)

De
co

m
po

se
d

al
on

g
M

Re
sc

he
du

le

(s
or

t t
ok

en
s b

y
so

ur
ce

 ra
nk

)original
shared tensor

Expert #0

Expert #1

Expert #2

GEMM #0

GEMM #1

GEMM #2MoE Layer0 execution (Rank0) G
ro

up
G

EM
M

 c
om

pu
te

 se
qu

en
ce

Figure 5. Decompose and reschedule the shared tensor in MoE
layer0. In this illustration, three experts are located on Rank 0,
each requiring both local and remote data for computation.

Expert #0

Expert #1
M

N

Top-3
token

reduceExpert #2

𝑇!

Decomposed shared tensors

Figure 6. Rescheduled compute sequence for MoE layer1 (E = 3
and topk = 3). The execution order of the GroupGEMM is
indicated by color (yellow → green → blue → grey). Here, TN

denotes the tile size of a GroupGEMM along the N dimension.

pipeline (MoE layer0), the shared tensor, consumed by
GroupGEMM, is decomposed along the M dimension. To
enable early computation by the experts, tokens are sorted
based on their source rank, as shown in Figure 5. The com-
pute sequence of tiles in the GroupGEMM is then designed
to minimize dependency on remote data, with computation
beginning from tiles containing local tokens while the trans-
fer of other remote tokens proceeds concurrently.

In the computation-communication pipeline (MoE layer1),
the shared tensor undergoes a top-k reduction after process-
ing by the GroupGEMM of experts. As analyzed previously,
the shared tensor is decomposed along the N dimension.
The tile computation sequence is adjusted (Figure 6) to en-
able the consumer operator to start processing before expert
computations are fully completed. Instead of computing
each expert sequentially, GroupGEMM operations are ex-
ecuted column-wise. This approach allows the reduction
and communicate operations to proceed as soon as the first
TN columns of the shared tensors are computed. Without
rescheduling, tokens could only be reduced after all experts
have completed their computations.

3.2 Adaptive Workload Assignment

With the decomposition and rescheduling of shared tensors,
the pipelines in MoE can now achieve fine-grained overlap.

Producer
warp

Consumer
warp

Shared memory

Comm.
warp

Global memory

Shared memory

Comp. thread block Comm. thread block
SMs for compute SMs for communication

Local/remote

Figure 7. Kernel design for the MoE layer1 on Hopper architecture.
Each SM only accommodate one thread block. The red arrows
indicates the route of data movement.

To ensure effective latency hiding, the durations of fine-
grained communication and computation must be closely
aligned to minimize pipeline bubbles. Achieving this re-
quires adaptive resource allocation for both computation
and communication, tailored to specific tasks involved.

3.2.1 Thread block specialization

A straightforward approach to achieve communication-
computation overlap in Mixture of Experts (MoE) is to
encapsulate the entire pipeline within homogeneous thread
blocks in a GPU kernel, integrating communication I/O into
the prologue or epilogue of the computation (GEMM), a
strategy referred to here as vertical fusion. Through vertical
fusion, thread blocks execute concurrently, but the overlap
occurs irregularly, leading to non-deterministic latencies
of communication and computation, making it challenging
to balance their durations for latency hiding. Furthermore,
token-level fine-grained I/O in MoE can significantly re-
duce the computational efficiency of the underlying kernels,
particularly on advanced architectures such as Hopper. To
address this, we implement thread block-level isolation be-
tween communication and computation workloads. This
isolation enables precise control over hardware resource
allocation for each workload, facilitating a balanced distri-
bution between computation and communication that maxi-
mizes latency hiding.

Figure 7 depicts the details of the thread block specialized
kernel on Hopper, with the critical data path highlighted
in red. Due to the isolation between communication and
computation, the GEMM thread blocks in COMET utilize
the same implementation as the default GEMM before fu-
sion. In the scenario depicted in Figure 7, where the GEMM
is compiled using CUTLASS on the Hopper architecture,
the GEMM execution is distributed across different warps.
Specifically, the producer warp loads data from global mem-
ory into a shared memory buffer with the async TMA in-
structions, while the consumer warp initiates tensor core
MMA operations (Nvidia, 2024a). The communication
thread blocks subsequently read the results produced by the
consumer warp from global memory. Following the top-

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

K reduction, the warps within the communication blocks
either write tokens to the local global memory or transmit
them to remote destinations. This thread block-specialized
programming model is easily portable to other architectures,
such as Ampere and Volta, requiring only a substitution of
the respective compute thread block implementation.

Hardware resource restriction. The proposed thread
block-specialized kernel is designed with the primary ob-
jective of minimizing data movement costs. However, this
design must also contend with hardware resource limita-
tions. For instance, it is theoretically feasible to integrate
communication warps with computation warps within the
same thread block to eliminate redundant global memory
accesses. However, the thread number restriction of warps
constrict the communication operator to fully utilize the
communication bandwidth. From another perspective, the
warps for communication also interfere with the computa-
tion warps within the same thread block.

3.2.2 Adaptive thread block assignment

Suppose that there are n thread blocks for the fused kernel,
within which np blocks serve as producers in the pipeline
and nc blocks serve as consumers. Identifying an optimal
division point np/nc is crucial for maximizing overall effi-
ciency. We demonstrate that the optimal division point is
influenced by the shape of input and specific model config-
urations in an MoE layer. To investigate this, we measure
the duration of MoE layer1 across various input sequence
lengths and parallelization strategies, as shown in Figure 8.
It is observed that there exist an optimal division point under
different configurations.

When the input token length changes, although the data
sizes processed by communication and computation oper-
ations both scale with input length, the scalability of the
respective resource requirements differs. Consequently, the
optimal division point shifts with changes in input length.
For example, when TP = 8, the optimal nc changes from
18 to 26 when M is changed from 4096 to 16384. When
the model configuration (parallel strategy) is modified, the
optimal division point undergoes a significant alteration. For
instance, when TP is adjusted from 8 to 4, the optimal nc is
transformed from 26 to 46 with M = 16384.

COMET’s library comprises multiple pre-compiled kernels,
each with a distinct division point. Prior to deployment, the
optimal configuration for each setup is profiled and stored
as metadata. During runtime, COMET utilizes this metadata
to select the kernel with the shortest latency for execution.

4 IMPLEMENTATION

COMET consists of approximately 12k lines of C++ and
CUDA code and 2k lines of Python. COMET provides

nc=26

nc=18

nc=46
TP=8, EP=1 TP=4, EP=2

TP=2, EP=4 TP=1, EP=8

Figure 8. Duration of the MoE layer1 kernel with varying num-
ber of thread blocks assigned for communication (nc). The total
number of thread blocks is identical to the number of SMs on Hop-
per(132). The figure shows four cases with different parallelisms.

a suite of user-friendly Python APIs and developers can
seamlessly integrate the APIs into their frameworks. In
production environment, COMET has been implemented in
Megatron-LM for large-scale MoE training. The source
code will be available on GitHub.

Optimized GEMM kernels for MoE. COMET extensively
utilizes the programming templates provided by CUTLASS
to generate highly efficient GEMM kernels. Additionally, it
incorporates various optimizations to minimize data move-
ment overhead. For instance, in MoE layer 0, the row indices
of the input matrix for GEMM operations must be accessed
from global memory at each K iteration. By caching these
row indices in registers, COMET significantly reduces the
global memory access cost.

NVSHMEM as communication library. We employ
NVSHMEM (Nvidia, 2024d) within kernels to support fine-
grained communication. NVSHMEM is a communication
library designed for NVIDIA GPUs. It creates a global ad-
dress space for data that spans the memory of multiple GPUs
and can be accessed with fine-grained GPU-initiated opera-
tions and CPU-initiated operations. Unlike NCCL (Nvidia,
2024c), which targets high-level communication operations,
NVSHMEM offers a more composable, low-level API that
facilitates finer data access granularity within kernels.

5 EVALUATION

5.1 Experimental Setup

Testbed. We evaluate COMET on a server equipped with 8
Nvidia H800 GPUs (80 GB memory each). These GPUs are
interconnected through NVLink. Our software environment
includes CUDA 12.3, NVSHMEM 2.11, Pytorch 2.4.0 and
Megatron-LM (git-hash 6dbe4c).

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

Figure 9. End-to-end MoE model latency. For the computation of MoE layers, the number of token on each device before permutation
is M ×W/TP. The hatched region represents the identical duration of non-MoE (attention) layers in different mechanisms. Note that
FASTERMOE only supports expert parallelism for MoE layers.

Table 2. Configuration of MoE models used in experiments. The
models are open-sourced on Hugging Face (Huggingface, 2022).
The meaning of symbols are explained in Table 1.

L E topk N K
Mixtral 8x7B 32 8 2 4096 14336
Qwen2-MoE-2.7B 24 64 4 2048 1408
Phi-3.5-MoE 32 16 2 4096 6400

Comparing targets. We then compare COMET with several
baselines. All baselines are implemented on Megatron-LM,
which is a widely adopted framework for high-performance
model execution, integrating hybrid parallel strategies.

The baselines are: (a) MEGATRON-CUTLASS: Megatron
with MoE experts that are implemented through CUTLASS
grouped GEMM (Nvidia, 2024b). (b) MEGATRON-TE:
Megatron with experts that use transformer engine (Nvidia,
2024e). Transformer Engine is Nvidia’s library for acceler-
ating transformer models on NVIDIA GPUs. (c) FASTER-
MOE (He et al., 2021; 2022): FasterMoE is an MoE sys-
tem that customizes All-to-All communication to overlap
the communication and computation operations of experts.
(d) TUTEL (Hwang et al., 2023): Tutel delivers several
optimization techniques for efficient and adaptive MoE, in-
cluding adaptive parallelism, the 2-dimensional hierarchical
All-to-All algorithm and fast encode/decode with sparse
computation on GPU.

5.2 Overall Performance

We evaluate the end-to-end performance of COMET in multi-
ple large MoE models, including Mixtral 8x7B (Jiang et al.,
2024), Qwen2-MoE (Bai et al., 2023) and Phi3.5-MoE (Ab-

din et al., 2024). The configurations of these models are
shown in Table 2. The experiment is conducted with various
input token lengths and diverse hybrid parallel strategies.
The experimental details and results are shown in Figure 9.
Note that when TP < W , Megatron-LM enables data par-
allelism for non-MoE layers to improve overall throughput
and the data parallel size is W/TP. The computation of
attention layers are identical with different mechanisms us-
ing Megatron-LM, and only the MoE layer is implemented
differently with diverse mechanisms.

As observed, the end-to-end latencies of the benchmarks are
reduced by 34.1%, 42.6%, 44.4% and 31.8% with COMET
compared with MEGATRON-CUTLASS, MEGATRON-TE,
FASTERMOE and TUTEL respectively. The performance
gain is more prominent with the identical attention compu-
tation apart. COMET outperforms other baselines in all con-
figurations because it realizes sufficient overlapping and the
scheduling inside high-performance fused kernels greatly
reduce the the overhead at CPU side.

Besides, we can also observe that MEGATRON-CUTLASS
and MEGATRON-TE perform similar. This is because
they are identical except from the implementation of
GEMM/GroupGEMM. Neither of them supports overlap-
ping, while MEGATRON-TE performs worse in some cases
because of the overhead in transformer engine API calls.
TUTEL performs better than other baselines because it incor-
porates communication into experts’ computation through
delicate scheduling. Although communication and compu-
tation is overlapped partially, when the number of experts
is large (Qwen2), the advantage of TUTEL diminishes be-
cause of the large scheduling overhead. FASTERMOE only
supports expert parallelism (EP = W) and it also does not

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

2048 4096 8192 16384 32768
E=8, topk=2

2

4

6

D
ur

at
io

n
(m

s)

Megatron-TE Megatron-Cutlass FasterMoE Tutel Comet

2048 4096 8192 16384 32768
E=32, topk=4

5

10

15

Figure 10. Single MoE layer duration with expert parallelism
(EP = 8). The x-axis represents the total input token length
M . Each device has M/W tokens before token dispatching. The
shape of experts are identical to that of Mixtral 8x7B.

perform well on Qwen2 because the experts are small in
Qwen2 and the kernel invoking time for experts dominates
the MoE layer.

5.3 Detailed Evaluation on a Single MoE Layer

We then conduct an in-depth examination of a single MoE
layer to perform a detailed analysis.

Handling varying input token lengths. The latency of a
single MoE layer with varying input token lengths is shown
in Figure 10. With the input token number varying, COMET
experiences a shorter duration compared with baselines and
the improvement is stable. COMET achieves a 1.28× to
2.37× speedup compared with the baselines on average. It is
noted that the advantage of COMET is prominent especially
when M is small. This is because the scheduling time
on the host side predominates the overall duration when
M is small and COMET reduces such overhead through
kernel scheduling within the fused kernel. The scheduling
overhead increases with topk and E for mechanisms with
kernel-level scheduling (FASTERMOE and TUTEL) because
the experts to manage become more complicated, inducing
more kernels to be scheduled.

Time breakdown analysis of an MoE layer. The time
breakdown of a specific MoE layer is shown in Figure 11.
Note that the communication part only consists of the GPU-
to-GPU communication time, and the operations of token
indexing, dispatching and combining on local device are
regarded as the computation part. As revealed, MEGATRON-
TE and MEGATRON-CUTLASS experience no overlapping
between communication and computation. FASTERMOE
reduces the communication latency through customized
Scatter and Gather operators, while the introduced local
indexing extends the computation time. TUTEL reduces the
communication overhead through the optimized all-to-all
primitive design. However, its optimized all-to-all also ex-
acerbates the burden of local computation. MEGATRON-TE

0.0 1.0 2.0 3.0 4.0
Duration (ms)

Comet

Tutel

Fastermoe

Megatron-
Cutlass

Megatron-
TE Gating

Layer0-comm.
Layer0-comp.
Activation
Layer1-comp.
Layer1-comm.

Figure 11. Time breakdown of an MoE layer with expert paral-
lelism. (EP = 8, TP = 1, E = 8, topk = 2 and M = 16384).

Expert
parallel

Tensor
parallel

Figure 12. Single MoE layer duration under various parallelism
strategies with E = 8, topk = 2,M = 8192,EP × TP = 8.

has no communication overlapped. COMET hides 86.5% of
communication latency on average and the computational
efficiency of experts is not influenced, while FASTERMOE
and TUTEL hide only 29.2% and 68.6% respectively.

Parallelism within the MoE layer. Because of the intro-
duction of expert parallelism, the parallel strategy within
the MoE layer can be different from the model’s overall par-
allel strategy. Figure 12 shows the performance of methods
applying diverse parallel strategies. Among all baselines,
FASTERMOE unfortunately does not support tensor paral-
lelism. For other baselines (MEGATRON-TE, MEGATRON-
CUTLASS and TUTEL), the MoE layer latency increases
when TP grows. This is because that tensor parallelism splits
each expert onto multiple devices, triggering more frag-
mented small GEMMs for experts and resulting in a degra-
dation of computational efficiency. Nevertheless, COMET
maintains low latency in diverse parallelisms as the shared
tensor is rescheduled to maintain computational efficiency
and the weight switching overhead is eliminated.

5.4 Adaptiveness to Different Configurations

We further inquire into the performance of COMET when
adapting different model configurations, runtime workloads
and system environments.

Performance with various MoE parameters. We adjust
the number of experts E as well as topk to evaluate the per-
formance of COMET in various MoE structures. The results

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

E=8 E=16

topk= topk=

Figure 13. Duration of a single MoE layer (M = 8192,EP =
8, TP = 1) with various number of experts E and topk.

Practical
std=0.032

Expert
parallel

Tensor
parallel

Figure 14. Performance of a MoE layer when scaling to different
scenarios. Left: Duration with various token distribution with
expert parallelism (E = 8, topk = 2,M = 8192, TP = 1,EP =
8). Right: Duration on a L20 Cluster with diverse parallelisms
(E = 8, topk = 4,M = 8192,EP × TP = 8).

are shown in Figure 13. With the increasing of topk, the
duration of the MoE layer is increased because the compu-
tation amount at runtime is scaled up. COMET consistently
demonstrates superior performance across different values
of topk and E, yielding a speedup in the range of 1.52× to
2.23× compared to baseline implementations.

Performance with varying token distribution. When
using expert parallelism, the number of tokens routed to
different devices varies. We evaluate the performance of
COMET in scenarios with imbalanced token distribution.
The standard deviation of the token distribution across dif-
ferent experts is denoted as std. As shown in the left panel
of Figure 14, 8192 tokens are distributed across various
experts with differing distributions. When std = 0, to-
kens are uniformly distributed and each expert receives
M × topk/E = 2048 tokens. At std = 0.05, the least-
loaded expert is assigned only a few hundred tokens. In a
typical training job in production, the average std is 0.032.
When the load imbalance problem is exacerbated, the la-
tency of the MoE layer in all systems is prolonged. COMET
consistently outperforms other MoE systems.

Scaling to distinct clusters. We carry out the experiments
on another distinct cluster with a different network environ-
ment. The cluster is equipped with 8 Nvidia L20 GPUs (46
GB memory) and the GPUs are connected via PCIe bridges.

Table 3. Required device memory size for NVSHMEM.
Mem(MB) Mixtral 8x7B Qwen2-MoE Phi3.5-MoE
M=4096 32 16 32
M=8192 64 32 64

The GPU-to-GPU bandwidth is around 25 GB/s as tested,
which is much lower than the H800 cluster. The experi-
ments on the L20 cluster represents a bandwidth-limited
environment. As shown in the right panel of Figure 14, the
average speedup of COMET compared with other baselines
is from 1.19× to 1.46×. The results manifest the superiority
of COMET under different cluster environments.

5.5 Overhead Analysis

COMET leverages NVSHMEM to allocate a shared memory
buffer for communication on each device. The buffer size is
dependent on the model configuration and equals to MN ,
where M is the input sequence length and N is the model
hidden size. For datatype of BF16 or FP16, the allocated
memory size is 2MN . The communication buffer is global
for the execution of the entire model, which means that it is
shared across layers and experts. We list the device memory
consumption of COMET in Table 3, and it is negligible
compared with the large device memory on current GPUs.

6 RELATED WORK

With the successful application of MoE in large-scale dis-
tributed training and inference, there are plenty of works
focusing on the system-level optimizations of reducing the
communication overhead inherited in the MoE structure.

Communication optimization. To reduce the commu-
nication overhead in MoE execution, a straight-forward
approach is to leverage efficient communication algo-
rithms (Nvidia, 2022a; Shen et al., 2022) for faster data
transmission. Recent works (Hwang et al., 2023; Rajbhan-
dari et al., 2022; Nie et al., 2022) also propose the 2D-
hierarchical all-to-all algorithm to better utilize intra-node
bandwidth and accelerate MoE communication. Some other
works propose to reduce communication volume by data
compression. For example, ScheMoE (Shi et al., 2024) and
Zhou et al., (Zhou et al., 2022a) propose to apply data com-
pression technologies to reduce the all-to-all communication
volume while preserving the model convergence.

Computation-communication overlapping. The tech-
niques of overlapping of computation and communication
for dense models have been extensively employed in dis-
tributed training and inference (Chen et al., 2024; Jangda
et al., 2022; Song et al., 2023; Wang et al., 2022; 2023;
Chang et al., 2024). For the MoE structure, recent studies

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

also try to identify the pipelining opportunities for com-
munication tasks of all-to-all operations and computing
tasks of GEMMs. FasterMoE (He et al., 2022) allows a
pipeline degree of 2 to pipeline the expert computations
and all-to-all communications. Tutel (Hwang et al., 2023)
enables a manually set degree of pipelining or a heuristic
search under limited searching space, which may be sub-
optimal. PipeMoE (Shi et al., 2023) and ScheMoE (Shi
et al., 2024) aim to schedule MoE operators to better utilize
intra- and inter-connect bandwidths. These solutions realize
overlapping through kernel-level scheduling and do not fully
resolve the fine-grained data dependency in MoE.

7 CONCLUSION

In this paper, we propose COMET, a MoE system that aims
to achieve fine-grained communication and computation
overlapping for MoE. COMET features two key designs to
achieve seamless overlapping without impact the computa-
tional efficiency: Shared tensor based dependency resolving
that enables fine-grained overlapping, while eliminating
the bottleneck caused by fine-grained communication I/O;
The workload assignment mechanism that promises precise
and adaptive overlapping of operators, inducing maximal
latency concealing. COMET achieves 1.96× speedup in a
single MoE layer and 1.71× speedup in the end-to-end exe-
cution of MoE models, compared with existing literature.

REFERENCES

Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,
A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J.,
Zhou, C., and Zhou, J. Qwen-vl: A frontier large vision-
language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 2023.

Cao, B., Sun, Y., Zhu, P., and Hu, Q. Multi-modal gated
mixture of local-to-global experts for dynamic image
fusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 23555–23564, 2023.

Chang, L., Bao, W., Hou, Q., Jiang, C., Zheng, N., Zhong,
Y., Zhang, X., Song, Z., Jiang, Z., Lin, H., et al. Flux: Fast
software-based communication overlap on gpus through
kernel fusion. arXiv preprint arXiv:2406.06858, 2024.

Chen, C., Li, X., Zhu, Q., Duan, J., Sun, P., Zhang, X.,
and Yang, C. Centauri: Enabling efficient scheduling for
communication-computation overlap in large model train-
ing via communication partitioning. In Proceedings of the

29th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Volume 3, pp. 178–191, 2024.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pp. 578–594,
2018.

He, J., Qiu, J., Zeng, A., Yang, Z., Zhai, J., and Tang, J.
Fastmoe: A fast mixture-of-expert training system. arXiv
preprint arXiv:2103.13262, 2021.

He, J., Zhai, J., Antunes, T., Wang, H., Luo, F., Shi, S., and
Li, Q. Fastermoe: modeling and optimizing training of
large-scale dynamic pre-trained models. In Proceedings
of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 120–134, 2022.

Huggingface. Hugging face. https://huggingface.
co/, 2022.

Hwang, C., Cui, W., Xiong, Y., Yang, Z., Liu, Z., Hu, H.,
Wang, Z., Salas, R., Jose, J., Ram, P., et al. Tutel: Adap-
tive mixture-of-experts at scale. Proceedings of Machine
Learning and Systems, 5:269–287, 2023.

Jangda, A., Huang, J., Liu, G., Sabet, A. H. N., Maleki, S.,
Miao, Y., Musuvathi, M., Mytkowicz, T., and Saarikivi, O.
Breaking the computation and communication abstraction
barrier in distributed machine learning workloads. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pp. 402–416, 2022.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in neural information processing systems,
36, 2024.

Liu, R., Kim, Y. J., Muzio, A., and Hassan, H. Gat-
ing dropout: Communication-efficient regularization for
sparsely activated transformers. In International Confer-
ence on Machine Learning, pp. 13782–13792. PMLR,
2022.

https://huggingface.co/
https://huggingface.co/

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 10012–10022, 2021.

Nie, X., Zhao, P., Miao, X., Zhao, T., and Cui, B. Hetumoe:
An efficient trillion-scale mixture-of-expert distributed
training system. arXiv preprint arXiv:2203.14685, 2022.

Nvidia. Unified memory for cuda beginners.
https://developer.nvidia.com/blog/
unified-memory-cuda-beginners/, 2017.

Nvidia. Doubling all2all performance with
nvidia collective communication library 2.12.
https://developer.nvidia.com/blog/
doubling-all2all-performance-with/
nvidia-collective-communication/
library-2-12/, 2022a.

Nvidia. Nvidia hopper architecture in-depth.
https://developer.nvidia.com/blog/
nvidia-hopper-architecture-in-depth/,
2022b.

Nvidia. Cutlass. https://github.com/NVIDIA/
cutlass, 2024a.

Nvidia. Grouped gemm for moe. https://github.
com/fanshiqing/grouped_gemm, 2024b.

Nvidia. Nccl. https://developer.nvidia.com/
nccl, 2024c.

Nvidia. Nvshmem. https://developer.nvidia.
com/nvshmem, 2024d.

Nvidia. Transformer engine. https://github.com/
NVIDIA/TransformerEngine, 2024e.

OpenAI. Introducing triton: Open-source gpu program-
ming for neural networks. https://openai.com/
index/triton/, 2022.

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi,
R. Y., Awan, A. A., Rasley, J., and He, Y. Deepspeed-moe:
Advancing mixture-of-experts inference and training to
power next-generation ai scale. In International con-
ference on machine learning, pp. 18332–18346. PMLR,
2022.

Sharir, O., Peleg, B., and Shoham, Y. The cost of train-
ing nlp models: A concise overview. arXiv preprint
arXiv:2004.08900, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shen, L., Wu, Z., Gong, W., Hao, H., Bai, Y., Wu, H., Wu,
X., Bian, J., Xiong, H., Yu, D., et al. Se-moe: A scal-
able and efficient mixture-of-experts distributed training
and inference system. arXiv preprint arXiv:2205.10034,
2022.

Shi, S., Pan, X., Chu, X., and Li, B. Pipemoe: Accelerat-
ing mixture-of-experts through adaptive pipelining. In
IEEE INFOCOM 2023-IEEE Conference on Computer
Communications, pp. 1–10. IEEE, 2023.

Shi, S., Pan, X., Wang, Q., Liu, C., Ren, X., Hu, Z., Yang, Y.,
Li, B., and Chu, X. Schemoe: An extensible mixture-of-
experts distributed training system with tasks scheduling.
In Proceedings of the Nineteenth European Conference
on Computer Systems, pp. 236–249, 2024.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Song, J., Yim, J., Jung, J., Jang, H., Kim, H.-J., Kim, Y., and
Lee, J. Optimus-cc: Efficient large nlp model training
with 3d parallelism aware communication compression.
In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, pp. 560–573, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, S., Wei, J., Sabne, A., Davis, A., Ilbeyi, B., Hecht-
man, B., Chen, D., Murthy, K. S., Maggioni, M., Zhang,
Q., et al. Overlap communication with dependent compu-
tation via decomposition in large deep learning models.
In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 1, pp. 93–106, 2022.

Wang, Y., Feng, B., Wang, Z., Geng, T., Barker,
K., Li, A., and Ding, Y. {MGG}: Accelerat-
ing graph neural networks with {Fine-Grained}{Intra-
Kernel}{Communication-Computation} pipelining on
{Multi-GPU} platforms. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
23), pp. 779–795, 2023.

Zhou, Q., Kousha, P., Anthony, Q., Shafie Khorassani, K.,
Shafi, A., Subramoni, H., and Panda, D. K. Accelerating
mpi all-to-all communication with online compression

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/doubling-all2all-performance-with/nvidia-collective-communication/library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with/nvidia-collective-communication/library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with/nvidia-collective-communication/library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with/nvidia-collective-communication/library-2-12/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://github.com/fanshiqing/grouped_gemm
https://github.com/fanshiqing/grouped_gemm
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nvshmem
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
https://openai.com/index/triton/
https://openai.com/index/triton/

COMET: Fine-grained Computation-communication Overlapping for Mixture-of-Experts

on modern gpu clusters. In International Conference on
High Performance Computing, pp. 3–25. Springer, 2022a.

Zhou, Y., Lei, T., Liu, H., Du, N., Huang, Y., Zhao, V.,
Dai, A. M., Le, Q. V., Laudon, J., et al. Mixture-of-
experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022b.

Zuo, S., Liu, X., Jiao, J., Kim, Y. J., Hassan, H.,
Zhang, R., Zhao, T., and Gao, J. Taming sparsely
activated transformer with stochastic experts. CoRR,
abs/2110.04260, 2021. URL https://arxiv.org/
abs/2110.04260.

A ARTIFACT APPENDIX

A.1 Abstract

COMET is an optimized MoE system characterized by fine-
grained communication-computation overlapping. Lever-
aging data dependency analysis and task rescheduling,
COMET attains precise fine-grained overlapping of commu-
nication and computation and provides high-performance
and pluggable kernels for MoE. The artifact at https:
//github.com/bytedance/flux demonstrates the
availability and functionality of the COMET system.

A.2 Artifact check-list
• Program: The artifact of the program is located at https:
//github.com/bytedance/flux.

• Compilation: The installation guide is located at
https://github.com/bytedance/flux/blob/
main/README.md.

• Binary: We provide binary wheels for installation lo-
cated at https://github.com/bytedance/flux/
releases

• Hardware: A server equipped with 8 Nvidia GPUs, which
can be of either Hopper, Ada Lovelace, or Ampere architec-
ture.

• Execution: The execution guide is located at
https://github.com/bytedance/flux/blob/
main/docs/mlsys_comet_ae.md

• How much disk space required (approximately)?: Less
than 500MB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

• Code licenses: Apache License v2.0

A.3 Description

A.3.1 How delivered

The artifact is hosted by Github, located at https://github.
com/bytedance/flux.

A.3.2 Hardware dependencies

A server with a 8 Nvidia Hopper/Ada lovelace/Ampere GPUs.

A.3.3 Software dependencies

It is recommended to prepare a virtual environment (e.g., conda)
with CUDA12.4, torch2.6.0 and python3.11.

A.4 Installation and Evaluation

Please follow the instructions in https://github.com/

bytedance/flux/blob/main/docs/mlsys_comet_

ae.md for installation and further evaluation.

https://arxiv.org/abs/2110.04260
https://arxiv.org/abs/2110.04260
https://github.com/bytedance/flux
https://github.com/bytedance/flux
https://github.com/bytedance/flux
https://github.com/bytedance/flux
https://github.com/bytedance/flux/blob/main/README.md
https://github.com/bytedance/flux/blob/main/README.md
https://github.com/bytedance/flux/releases
https://github.com/bytedance/flux/releases
https://github.com/bytedance/flux/blob/main/docs/mlsys_comet_ae.md
https://github.com/bytedance/flux/blob/main/docs/mlsys_comet_ae.md
https://github.com/bytedance/flux
https://github.com/bytedance/flux
https://github.com/bytedance/flux/blob/main/docs/mlsys_comet_ae.md
https://github.com/bytedance/flux/blob/main/docs/mlsys_comet_ae.md
https://github.com/bytedance/flux/blob/main/docs/mlsys_comet_ae.md

