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Understanding and Minimising Outlier Features in Neural Network Training
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Abstract
Outlier Features (OF) are neurons whose acti-
vation magnitudes significantly exceed the aver-
age over a neural network’s (NN) width. They
are well known to emerge during standard trans-
former training and have the undesirable effect
of hindering quantisation in afflicted models. De-
spite their practical importance, little is known
behind why OFs emerge during training, nor how
one can minimise them.

Our work focuses on the above questions, first
identifying several quantitative metrics, such as
the kurtosis over neuron activation norms, to mea-
sure OFs. With these metrics, we study how
architectural and optimisation choices influence
OFs, and provide practical insights to minimise
OFs during training. As highlights, we emphasise
the importance of controlling signal propagation
throughout training and propose the Outlier Pro-
tected transformer block, which removes standard
Pre-Norm layers to mitigate OFs, without loss of
convergence speed or training stability. Overall,
our findings shed new light on our understanding
of, our ability to prevent, and the complexity of
this important facet in NN training dynamics.

1. Introduction
Despite their widespread use, our understanding of deep
neural networks (NNs) and their training dynamics is very
much incomplete. This, in part, reflects the complexity of
traversing high-dimensional non-convex loss landscapes but
is also symptomatic of the myriad design choices, such as
NN architecture and optimiser hyperparameters, that a prac-
titioner must take before training. While standard choices
of architecture and optimiser exist, it is often unclear how
these choices affect performance or the emergence of vari-
ous empirically observed phenomena during NN training.

Outlier Features (OF) are one such NN training phe-
nomenon. Intuitively, OFs are neurons whose activation
magnitudes are significantly larger than the average in the
same NN layer, i.e. across NN width (Kovaleva et al., 2021;
Timkey & van Schijndel, 2021; Bondarenko et al., 2021).
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Figure 1. Outlier Features emerge in open-source transformers (Bi-
derman et al., 2023) during training, measured by our kurtosis,
Eq (1). Our work studies factors that influence OF emergence.

They have been widely observed in pre-trained transformer
models (Devlin et al., 2018; Radford et al., 2019; Zhang
et al., 2022b), as we verify in Fig 1, and are of practical
interest because their existence hinders quantisation (Bon-
darenko et al., 2021; Wei et al., 2022; Dettmers et al., 2022;
Zeng et al., 2023; Wortsman et al., 2023; Ashkboos et al.,
2024; Nrusimha et al., 2024). In particular, OFs cause large
dynamic ranges in activations across NN width, which lead
to high quantisation errors in low-precision matrix multi-
plications. As a result, Outlier Feature Emergence (OFE)
hinders low-precision training and inference, and minimis-
ing OFE could yield significant potential efficiency gains.

In this paper, we tackle OFE from two related angles: by
(1) proposing interventions to minimise OFE without affect-
ing model convergence or training stability, using insights
motivated through (2) enhancing our understanding of why
OFs appear during training. We argue that it is important
to first understand why OFs appear during standard NN
training dynamics in order to identify which design choices
influence OFE, and how. Though progress has been made
(Kovaleva et al., 2021; Puccetti et al., 2022; Wortsman et al.,
2023; Bondarenko et al., 2023), the mechanisms behind
OFE remain largely unknown.

Our contributions Overall, we show that OFE can be
mitigated relative to standard practices, and highlight key
design choices to do so. In Sec 3, we study the role of nor-
malisation layers for OFE, and find that existing hypotheses
do not fully capture the OF phenomenon. We proceed to
show that removing normalisation through our Outlier Pro-
tected transformer block minimises OFs, without loss of
convergence speed. In Sec 4, we consolidate our findings by
identifying signal propagation as a key object that predicts
OFs during training, and that choices that improve signal
propagation during training also minimise OFE. In interest
of space, in Apps A and E we discuss additional related
work and optimisation choices respectively.
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2. Problem Setting
Consider an activation matrix X ∈ Rn×d obtained from
some neural network layer, where n is the number of batch
inputs/sequence positions, and d is the number of neurons
across NN width. In a typical NN layer, we matrix multiply
X by a weight matrix W ∈ Rd×d to give XW ∈ Rn×d,
with (α, j)th element:

∑d
k=1 Xα,kWk,j . This fundamental

operation is central to NN computation and can be seen as a
sum over d terms, one for each neuron.
Several works have established that if the magnitudes of
the summands {Xα,kWk,j}dk=1 have large variance, it
becomes difficult to compute their sum in low precision,
thereby precluding potential efficiency gains from “vector-
wise” quantised training or inference (though significant
progress has been made on the latter, (Dettmers et al., 2022;
Xiao et al., 2023; Ashkboos et al., 2024)). These works
have shown that trained transformer (Vaswani et al., 2017)
models possess such a deficiency, which is attributed to the
existence of Outlier Features (OFs) whose activations are
much larger in magnitude compared to the other neurons.

Measuring OFs We use two metrics to measure OFs in X:

1. Kurtosis of neuron activation RMS: Let s ∈ Rd,
such that sj =

√
1
n

∑n
α=1 X

2
α,j , be the vector of root

mean-squared activations across inputs.1 Then, let
Kurt(X) be the ratio of the fourth moment m4 to the
squared second moment m2 over s:

Kurt(X) =
m4(X)

m2(X)2
def
=

1
d

∑d
j=1 s

4
j(

1
d

∑d
j=1 s

2
j

)2 (1)

We see that min(Kurt(s)) = 1 when all sj are equal
and no outlier features exist, and max(Kurt(X)) = d,
which is the limit when d− 1 neurons have activation
magnitudes dominated by a single outlier feature.

2. Max-Median Ratio (across neurons): A metric for
OFs more aligned with the original motivation of study-
ing variation in summand magnitudes, described in
App B for space considerations.

Bondarenko et al. (2023) show that activation kurtosis is
a suitable metric for OFs, but define a different form of
kurtosis. We aggregate over inputs first in Eq (1), which
allows us to link OFs and signal propagation in Sec 4.

Exp details Our smaller scale setting uses 130M autore-
gressive transformers trained on CodeParrot,2 with a similar
setup to He & Hofmann (2024). Our larger transformer
experiments are on the Languini dataset (Stanić et al., 2023).
Further details and results in Apps G and H respectively.

1We do not centre X in sj for ease of exposition. Fig 13 shows
that centring does not make a qualitative difference for OFE.

2https://huggingface.co/datasets/
transformersbook/codeparrot-train.

3. Normalisation Layers and Outlier Features
Several works have highlighted Layer Normalisation (LN)
(Ba et al., 2016) as a cause of OFE (Kovaleva et al., 2021;
Wei et al., 2022; Bondarenko et al., 2023). LN belongs to a
family of normalisation (Norm) layers commonly used in
sequence models, which normalise a representation vector
x ∈ Rd across the width dimension independently for dif-
ferent sequence positions. In general, for a centring scalar
c ∈ {0, 1}, a Norm layer maps x to:

Norm (x) =
x− cµ(x)

σ(x)
⊙ γ + β, where: (2)

µ(x) =
1

d

d∑
i=1

xi, σ(x)2 =
1

d

d∑
i=1

(xi − cµ(x))2 (3)

LN is when c = 1, with a trainable scale γ and bias β
vectors initialised to all 1s and 0s respectively.

Previous works have attributed OFE in standard architec-
tures to the γ,β parameters of LN incurring outliers dur-
ing training (Kovaleva et al., 2021; Wei et al., 2022). It
is therefore natural to ask if simpler Norms with different
formulations of Eq (2) remove OFE. In particular, Root
Mean Square Normalisation (RMSNorm) (Zhang & Sen-
nrich, 2019) is a commonly used Norm known to be as
performant as LN in Transformer training (Rae et al., 2021;
Touvron et al., 2023). Compared to LN, RMSNorm fixes
the bias β = 0 and removes the centring by setting c = 0.
One step further would be to remove trainable parameters
entirely by fixing γ = 1, thus simply projecting x to the
hypersphere of norm

√
d. This is dubbed Simple RMSNorm

(SRMSNorm) by Qin et al. (2023), who find that SRM-
SNorm has minimal performance degradation but is more
computationally efficient than LN and RMSNorm.
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Figure 2. Kurtosis becomes
large (i.e. OFE) when train-
ing with different Norms at
130M scale. We plot the
residual stream entering the
2nd of 6 blocks. Other lay-
ers in Fig 12.

Fig 2 shows that Transform-
ers trained with RMSNorm
and SRMSNorm, alongside
LN, incur OFE: peak kurtosis
during training across Norms
is over 4 orders of magni-
tude larger than initialisation.
In fact, the Pre-SRMSNorm
model has the highest Kurto-
sis, despite its lack of trainable
Norm weights.

This result demonstrates that the previous explanations for
OFE relating to trainable scales and biases in Norms cannot
fully explain why OFs emerge during training. Furthermore,
we show OFE in both Pre-Norm (Baevski & Auli, 2018;
Child et al., 2019) and Post-Norm (Vaswani et al., 2017)
architectures, which are the two most popular ways to place
Norm layers relative to residual connections (Xiong et al.,
2020). This further highlights that OFE occurs independent
of the standard choices of Norm location.

2
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Figure 3. Our OP block mitigates OFE. We plot activation kurtosis
of the inputs before Query/Key/Value weights in a layer. Experi-
ments are at 1.2B scale using a max learning rate of 0.001. The
OP model removes the final LN before unembedding; the effect of
the final LN on OFE is shown in Fig 17.

Having established that removing trainable weights in
Norms still results in OFE, the next question we ask is: how
does removing standard Norms entirely influence Outlier
Feature emergence?

Recovering training benefits in unnormalised Transform-
ers This is a challenging question, not least because it is
not fair to compare OFE in architectures that converge at
different speeds: Norms are well known to be an impor-
tant component in most NN architectures, providing various
benefits for initialisation, convergence speed, and training
stability. Thus, to answer the above question, in App C
we review different hypotheses for the benefits of Norms
in Transformer training dynamics in order to motivate a
novel Transformer Block in Fig 5, which we call the Outlier
Protected (OP) block, that matches the Pre-Norm block in
convergence speed, while eschewing standard Norm layers.

Removing Norms mitigates Outlier Features In Fig 2
we see that the Outlier Protected (OP) Block greatly reduces
OFE compared to standard blocks. Fig 3 presents the corre-
sponding plots in our 1.2B parameter experiments using our
kurtosis metric, across layers. We draw several consistent
insights: 1) the peak kurtosis across the course of training is
consistently higher in Pre-LN, sometimes by over 2 orders
of magnitude, across different layers; 2) the kurtosis across
training is usually higher in Pre-LN (up to 4 orders of mag-
nitude here), especially at early training times and in earlier
layers; 3) OFE need not be monotonic in training time, at
least when measured by our proposed metrics. Tab 3 ablates
the effect of Norm positioning on OFE.
Nevertheless, we observe in Fig 3 that kurtosis still slightly
increases in our OP blocks (to relatively modest values;
around 20), usually monotonically throughout training.
Moreover, the question of why normalisation layers cause
outlier features is still unanswered despite the clear evidence
that removing them mitigates OF prevalence.

Sec 3 key takeaways: normalisation layers and OFE.

• OFE still occurs for weight-less or uncentred Norms,
& both Pre/Post-Norm (Figs 2, 12 and 15).

• The OP Block (Fig 5) matches Pre-LN training
speed/stability (Tabs 1 and 2), without standard Norms.

• The OP Block greatly reduces OFE compared to stan-
dard blocks (Figs 2, 3 and 11).

4. Signal Propagation and Outlier Features
To better understand why OFs appear (albeit greatly re-
duced) in the OP block, and why Norms cause OFs, we
examine Signal Propagation behaviour during training and
its effect on OFE. This will also clarify why modifications
that improve Signal Propagation reduce OFE (Wortsman
et al., 2023). Signal Propagation (Poole et al., 2016; Schoen-
holz et al., 2017; Hayou et al., 2019; 2021; Martens et al.,
2021; Noci et al., 2022; He et al., 2023) studies the input-
wise Gram matrix ΣI = XX⊤ ∈ Rn×n, & how ΣI evolves
in deep NNs for different layer features X ∈ Rn×d.

On the other hand, our kurtosis metric, Eq (1), is related to
the feature-wise Gram ΣF

def
=X⊤X∈Rd×d. Recall our kurto-

sis is the 4th moment of X ∈ R normalised by the square sec-
ond moment m2(X)= 1

nd

∑
α≤n,j≤d X

2
α,j=

1
nd∥X∥

2
F . As

kurtosis is scale-invariant we can consider the setting where
m2(X) = 1 and the average squared activation is 1 without
loss of generality3. In this case, Tr(ΣI) = Tr(ΣF) = nd by
the cyclic trace property.

Then, Kurt(X)= 1
d

∑d
j

(
1
n

∑n
α X2

α,j

)2
= 1

d

∑d
j=1(

1
nΣF)

2
j,j ,

which is simply a second moment (or average of squares) of
diagonal entries of the feature-wise Gram ΣF. At the same
time, again by the cyclic property of the trace, we have:

Tr(ΣFΣF)=Tr(X⊤XX⊤X)=Tr(XX⊤XX⊤)=Tr(ΣIΣI)

=⇒ n2d·Kurt(X) +

d∑
i ̸=j

(
ΣF
)2
i,j

=
∑

α,β≤n

(
ΣI
)2
α,β

(4)

In words, Eq (4) tells us that the sum of squared elements
of ΣF is equal to the sum of squared elements of ΣI. On
the left of Eq (4) we decompose Eq (4) into our feature-
wise kurtosis (Eq (1), of interest for OFE), plus the sum
of squared off-diagonal elements of ΣF, equal to the sum
of squared elements of ΣI on the right. Hence, it is clear
that Signal Propagation is relevant for OFE. Contrary to
most existing works in Signal Propagaton, Eq (4) is true
throughout training, not only at initialisation.

In particular, we see that the right-hand side of Eq (4) cap-
tures both the (normalised) activation norms across inputs∑

α≤n

(
ΣI
)2
α,α

from the diagonal terms, and inner products

between inputs
∑

α,β≤n;α ̸=β

(
ΣI
)2
α,β

in the off-diagonals.
If X is the output of a Norm layer, then 1

dΣI becomes a
cosine similarity matrix with diagonals equal to 1. Deep
NNs, and Transformers in particular, are well known to be
susceptible to a particular Signal Prop defect called rank
collapse (Dong et al., 2021; Martens et al., 2021) where this
cosine similarity matrix 1

dΣI degenerates to the all ones ma-

3In all experiments concerning signal propagation (i.e. input-
wise correlations or equivalently, the elements of ΣI), we first
scale X down by

√
m2(X) to give m2(X) = 1 and make X

scale invariant.

3
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Figure 4. Pre-LN layers at 1.2B scale with extreme OFE (left) are those with bad Signal Prop close to rank collapse during training (centre
left). (Right vs. left two plots) Downweighting residual branches improves signal propagation during training and results in less extreme
OFE, particularly in early layers. Respective plots for OP (with & without final LN before unembedding) in Fig 17.

trix and all inputs look identical to a deep layer. Noci et al.
(2022) and He et al. (2023) demonstrate that, at least at ini-
tialisation, the off-diagonals of ΣI are positive and increase
monotonically with depth in deep Transformers towards
rank collapse, even with Signal Prop inspired modifications
that ensure a non-degenerate deep limit exists.

Bad Signal Prop encourages OFE For OFE, the upshot
of these observations is that poor Signal Propagation (in
terms of large off-diagonal values of ΣI, close to rank col-
lapse) will make the right-hand side of Eq (4) large (the rank
collapsed limit has RHS n2d2, compared to nd2 when the
inputs are orthogonal and ΣI is diagonal). In turn, this puts
pressure on the LHS, which contains the feature kurtosis,
to be large, hence OFE. This argument is not fully rigorous
because the off-diagonals

∑
i,j≤d,i̸=j

(
ΣF
)2
i,j

, which cap-
tures correlations between different neuron features, could
increase on the LHS to allow the kurtosis to remain low.
Having said that, we formalise the intuition of bad Signal
Prop leading to larger feature kurtosis in the context of
Gaussian features in Prop J.1.

In any case, we can empirically study the link between bad
signal propagation and OFEs, which we do in Figs 4 and 17
for Pre-LN and OP blocks at 1.2B scale. For each layer
in different architectures, we plot both the evolution of the
kurtosis on the left and the average off-diagonal entry of
1
dΣI =

1
dXX⊤ (i.e. the average input-wise correlation) on

the right, normalised so that m2(X) = 1.

As implied by Eq (4), we see a strong association between
kurtosis and Signal Propagation: the layers with larger kur-
tosis tend to be the ones with larger input correlations, and
vice versa. In particular, in Fig 4, we see that the Pre-LN
layer (2 in this case) with the most extreme OFE (kurto-
sis peaking over 1000) is precisely the one with the worst
Signal Propagation closest to rank collapse (average input
correlation peaking over 0.8) during training. Moreover, the
trajectory of kurtosis closely tracks the trajectory of input
correlations throughout training, with their peaks appearing
at similar training steps, across layers.

Given that Signal Propagation characteristics during training
depict how a model creates structure (through increasing or
decreasing the inner product for different inputs) in its layer

representations to best learn the task at hand, our results
suggest that OFs occur partly due to the inherent nature of
the task that the model is trained on, particularly in archi-
tectures that are less prone to OFs, such as our OP block.
In Transformers, this is most apparent in the inputs to the
final unembedding layer, which are linearly projected to the
predictions: they tend to have similar kurtosis levels in both
OP and Pre-Norm blocks, and the most extreme OFE rarely
occurs in the final layers, (Figs 1, 3, 12 and 16). We hypoth-
esise this is because extreme OFE in late layers would imply
high kurtosis which would imply representations close to
rank collapse by Eq (4), from which it would be hard to
make useful linear predictions.
The correlation between OFE and bad Signal Propagation
also allows us to observe that interventions that worsen
Signal Propagation during training cause increased OFE.
Likewise, methods improving Signal Propagation through-
out training help to mitigate OFE, as seen for downscaled
residuals in Fig 4. We explore this link further in App D, and
discuss the effect of optimiser choices on OFE in App E.

Sec 4 key takeaways: Signal Propagation and OFE.

• Signal Propagation is fundamentally connected to
OFE: worse Signal Prop generally implies higher
kurtosis and vice versa, throughout training (Eq (4),
Prop J.1, and Figs 4, 17 and 16).

• The OP block’s mild OFs can be traced to increasing
input correlations while training (Fig 17).

• Choices that improve Signal Prop during training (e.g.
scaled residuals) also reduce OFs (Fig 4).

• Removing standard Norms can improve Signal Prop,
& OFE, during training (Figs 4 and 17).

5. Discussion
The goal of this work was to better understand the emer-
gence of Outlier Features during standard NN training, and
propose architectural and optimisation (App E) interven-
tions that minimise their prevalence. Our main contributions
include identifying signal propagation as a key quantity to
predict OFE during training, and the Outlier Protected block
to reduce OFE. Future work is discussed in App F. Overall,
our results complement and further existing works on OFs,
& our understanding of NN training dynamics in general.
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A. Additional Related Work
Understanding Outlier Features Kovaleva et al. (2021); Timkey & van Schijndel (2021) first identified Outlier Features
in trained Transformers and demonstrated that OFs are critical for representational quality and performance. Puccetti et al.
(2022) highlight the importance of token frequency (Kunstner et al., 2024) for OFs in transformers trained on language
data, which is related to the representation degeneration phenomenon of Gao et al. (2019), and certain “vertical” structures
appearing in attention matrices during training. Bondarenko et al. (2023) term this vertical structure “no-op” behaviour,
where uninformative tokens are given high attention weights, and show that modifying attention to encourage no-op
behaviour can mitigate OFs. Dettmers et al. (2022) show that the effect of OFs is more pronounced at larger parameter
scales, and Wortsman et al. (2023) suggest that OFs are related to increasing activation scales during training, motivating
their use of downweighted residuals. Kovaleva et al. (2021); Wei et al. (2022) attribute OFs to the trainable parameters in
Layer Normalisation. Nrusimha et al. (2024) show that OFs occur early in training, and are stronger in residual stream
layers. Sun et al. (2024) demonstrate the existence of “massive activations” and show they act as bias terms in transformers.
Allen-Zhu & Li (2020); He & Ozay (2022) study a theoretical framework where sparse activations naturally appear and
grow with gradient descent, owing to certain “lucky” neurons being correlated with useful features at initialisation, in order
to study ensembling and knowledge distillation in two-layer convolutional NNs.

Outlier Features and Quantisation Wei et al. (2022); Bondarenko et al. (2021) identified Outlier Features as an issue for
quantised NNs. Most work in this area has focused on (weight) quantisation of already trained transformers (Dettmers et al.,
2022; Xiao et al., 2023; Ashkboos et al., 2024), for efficiency gains at inference time. Dettmers et al. (2022) keep outlier
features in full precision to avoid their quantisation errors, while Xiao et al. (2023) propose to migrate the quantisation
difficulty of outlier features to their corresponding weights using some scaling factors. Ashkboos et al. (2024) apply the
elegant idea of rotating the feature vectors with a random orthogonal matrix, which removes OFs in the rotated features.
In terms of quantised training, Bondarenko et al. (2023) show that encouraging “no-op” behaviour can mitigate OFs and
enable low-precision training, while Wortsman et al. (2023) employ downweighted residuals (among other techniques) for
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quantised CLIP training. We discuss how our findings relate and extend these insights in the main text. Nrusimha et al.
(2024) propose to regularise the kurtosis of the outputs of a linear layer for low-precision training, which the authors argue
prevents migrating quantisation difficulty to the weights. We employ kurtosis to measure OFs, but focus on the kurtosis of
the inputs to a linear layer.

Normalisation Layers Normalisation Layers have been near ever-present in NNs since their introduction (Ioffe & Szegedy,
2015; Ba et al., 2016), owing to their training benefits. Many works since have considered removing Normalisation layers,
by finding alternative mechanisms that keep their benefits. De & Smith (2020) identify an implicit effect of Normalisation
layers in Pre-Norm is to downweight residual branches, which enables training deep NNs without Normalisation. Hayou
et al. (2021) show this theoretically using Signal Propagation theory, and propose downweighting residuals with a scale
factor O(1/

√
depth) to do so, which Noci et al. (2022) corroborate in the transformer setting. Martens et al. (2021);

Zhang et al. (2022a) demonstrate how to remove residual connections alongside normalisation layers in convolutional NNs
using “transformed” activations, which He et al. (2023) extend to the Transformer architecture by making attention more
identity-like (see also “shaped” attention, Noci et al. (2023)). Brock et al. (2021); Smith et al. (2023) propose NFNets,
and achieve state of the art performance on the ImageNet benchmark in an unnormalised residual convolution architecture,
highlighting that Normalisation layers are not necessary for best performance in convolutional models. NFNets employ
downweighted residual branches to fix Signal Propagation at initialisation, among other techniques including adaptive
gradient clipping. However, He et al. (2023); He & Hofmann (2024) find that removing Normalisation Layers, even with
Signal Propagation modifications like downweighting residuals, leads to a loss of performance in simplified Transformer
blocks, implying that transformer training has different instabilities to convolutional models, and Normalisation layers have
other training benefits in transformers.

Entropy Collapse Zhai et al. (2023) identify entropy collapse as a key training instability in transformers, where attention
logits grow large during training. This causes the rows of the post-softmax attention matrix to become one-hot vectors
and the attention weights are non-zero on only a single sequence position. To remedy entropy collapse, it is important to
control the logits entering softmax from growing too large, and Zhai et al. (2023) propose σReparam which regularises
the spectrum of Query-Key weights in order to do so. As an alternative, Query-Key Normalisation (Henry et al., 2020a),
where the Queries and Keys are normalised using e.g. LayerNorm or RMSNorm after the Query/Key weight matrix (c.f.
Post-QK Norm in Fig 40) has seen growing popularity, particularly in ViT-22B (Dehghani et al., 2023) where it was crucial
for stable training. Other “entropy regulating” mechanisms include tanh thresholding (Grok-1) and clamping attention logits
(DBRX). The training stability benefits of controlling attention entropy through QK-Norm were shown at smaller scales in
Wortsman et al. (2023), who argue that the quadratic dependence in the attention logits (on the queries and keys), causes
large attention logits to appear during training, hence entropy collapse. This is as opposed to convolutional/MLP models
which depend linearly on their inputs. Tian et al. (2024) propose joint MLP/Attention dynamics to predict attention entropy
during training. We note that the “vertical” or “no-op” attention structures discussed in previous OF works (Puccetti et al.,
2022; Bondarenko et al., 2023) have collapsed attention entropy, and can be thus be seen as undesirable from the perspective
of other existing works.

Signal Propagation Signal Propagation studies how different inputs evolve through a deep NN, and how their activation
magnitudes and cosine similarities evolve with depth.

For an input activation matrix X ∈ Rn×d of n inputs and width d, mapped to an activation matrix Xl ∈ Rn×d at layer l,
signal propagation theory studies the evolution of the input-wise Gram matrix Σl

I = XlX
⊤
l ∈ Rn×n for increasing depths

l. This is a key object in an NN, as it tracks the “geometric information” that is conveyed in a deep layer, through inner
products between different inputs. The diagonal elements of Σl

I indicate the activation norms, and the off-diagonal elements
indicates how similar a deep layer views two inputs to be.

At initialisation, Σl
I can be tracked through its large d limits (Lee et al., 2018; Matthews et al., 2018; Yang, 2019). By

studying Σl
I, one can see several issues that will afflict badly designed NNs (Schoenholz et al., 2017; Hayou et al., 2019;

Yang et al., 2019; Dong et al., 2021; Martens et al., 2021), that affect either the diagonal elements, the off-diagonal elements
or both at large depths. For example, the diagonal elements of ΣI could blow up, which indicates exploding activation
norms. For transformers, a particular degeneracy, known as rank collapse (Dong et al., 2021), can appear where the
off-diagonals of Σl

I become positive and large, and Σl
I becomes proportional to the all ones matrix if activation norms

are constant. Rank collapse is also possible in MLPs/CNNs Schoenholz et al. (2017); Hayou et al. (2019); Xiao et al.
(2020); Martens et al. (2021), and is equivalent to the over-smoothing phenomenon in graph NNs (Oono & Suzuki, 2019).
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Martens et al. (2021) argue that rank collapse will lead to vanishing gradients, which Noci et al. (2022) show specifically
for query and key parameters in transformers. As a result, when we refer to bad signal propagation, we mean that the
off-diagonals of ΣI are large and positive, close to rank collapse. This can be either through the RMS of input correlations,√

1
n(n−1)

∑n
α̸=β

(
1
dΣI
)2
α,β

, as we show in the appendix, or the mean, 1
n(n−1)

∑n
α̸=β

(
1
dΣI
)
α,β

as we show in Figs 4 and 17.

By applying Signal Propagation theory at initialisation, it is possible to design modifications to NN architectures and
initialisations that correct potential degeneracies and/or yield simpler and/or more scalable architectures (Xiao et al., 2018;
Hayou et al., 2021; Martens et al., 2021; Zhang et al., 2022a; Noci et al., 2022; He et al., 2023; He & Hofmann, 2024). But
the vast majority of existing works in the literature do not theoretically study training beyond initialisation, and those that do
are usually restricted to the NTK (Jacot et al., 2018) regime (Hayou et al., 2021; Martens et al., 2021), which precludes
feature learning, and OFs. Lou et al. (2022) suggest that the feature alignment (Baratin et al., 2021) phenomenon during
training is correlated to the rate at which signal propagation converges to its limit in a deep NN. Even at initialization, the
distribution of the neurons becomes more heavy-tailed with depth (Vladimirova et al., 2019), thus making outliers more
likely. Noci et al. (2021) gives a precise description of the kurtosis for ReLU networks, showing that it grows exponentially
with depth. Together with the results presented in this work, there is empirical and theoretical evidence that depth has
the double effect of increasing both the correlations and making large activations more likely, which we observe to be
detrimental to outliers. However, the theoretical treatment of the emergence of outliers during training is still an open
question.
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B. Max Median Ratio metric
In the interests of space, we present a second metric, the Max Median Ratio (MMR), for measuring OFs here. MMR is more
aligned with the original motivation for studying OFs due to large dynamic ranges in activation vectors. Specifically, we
compute:

MMR(X)
def
= Aggregateα

(
maxj |Xα,j |

medianj |Xα,j |

)
, (5)

or in words, the max neuron divided by the median absolute neuron, aggregated in some permutation invariant way across
inputs. We typically use the mean to aggregate over inputs, but could also take e.g. median or max. MMR takes a minimum
value 1 when all activations are identical in magnitude, and is unbounded when a dominant outlier feature exists.

MMR is shown to be highly correlated with feature Kurtosis in Figs 9, 11 and 15. Note that MMR(X) is invariant to
normalisation layers like RMSNorm without trainable parameters (Qin et al., 2023).
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C. Motivating the Outlier Protected block
Several works (Zhang et al., 2018; De & Smith, 2020; Huang et al., 2020; Brock et al., 2021; Bachlechner et al., 2021;
Touvron et al., 2021; Hayou et al., 2021; Noci et al., 2022; He et al., 2023; He & Hofmann, 2024) have observed that the
initialisation benefits of Pre-Norm architectures can be recovered in unnormalised residual models using downweighted
residual branches, through a theory known as Signal Propagation (Signal Prop) (Poole et al., 2016; Schoenholz et al., 2017;
Hayou et al., 2019). Notably, Brock et al. (2021) achieve state of the art performance on the ImageNet benchmark using
unnormalised convolutional architectures. However, it has been observed that fixing Signal Prop at initialisation is not
sufficient to fully capture the benefits of Norms for training dynamics in unnormalised transformers (He et al., 2023; He &
Hofmann, 2024), which implies that Norms have training benefits specific to the self-attention based transformer model.

H x

V

Proj

MLP Out

NonLin

OP (ours)

Q K

Attention
+ EntReg

×α

×β

×β

MLP In

Figure 5. The Outlier Protected Trans-
former Block. We remove Pre-Norms
and replace them with an Entropy Regu-
lation mechanism to prevent entropy col-
lapse, as well as downscaling residuals
with β < 1.

At the same time, Zhai et al. (2023) show Entropy Collapse, where the Stochastic
attention matrix has rows with low entropy (or in words, each sequence position
attends to only one position, instead of many), to be a key training instability in
softmax attention. Entropy collapse occurs because large attention logits saturate
the softmax, and several Entropy Regulation (EntReg) mechanisms have been
proposed to control the attention logits and thus prevent entropy collapse. Existing
entropy regulating methods include QK-Norm (Henry et al., 2020b; Dehghani et al.,
2023), tanh thresholding (Grok-1), σReparam (Zhai et al., 2023) and clamping
the QK logits (DBRX). In standard Pre/Post-Norm attention blocks, a Norm layer
appears before Query and Key weights and implicitly regulates attention entropy,
to an extent.

Our key insight is to combine ideas from Signal Propagation and Entropy Collapse
prevention to remove Normalisation layers while keeping their training benefits.
This brings us to our Outlier Protected Block (OP), which replaces the Pre-Norm
block by removing its normalisation layers in both Attention and MLP sub-blocks,
and making three additional changes: 1) downweighting residual branches with
some β = O(1/

√
depth) < 1 to recover Signal Prop benefits of Pre-Norms (De

& Smith, 2020; Hayou et al., 2021; Noci et al., 2022; He & Hofmann, 2024), 2)
adding an Entropy Regulation mechanism to prevent Entropy Collapse; we mainly
use QK-Norm as it is relatively simple and performed well in all of our settings,
but present experiments with tanh in App H.1, and 3) (optionally) scaling the
inputs before the MLP nonlinearity by a scalar α to ensure the nonlinearity inputs
are of order 1, as derived by Brock et al. (2021) using straightforward Signal Prop
arguments.

Table 1. OP matches Pre-LN perfor-
mance at scales up to 1.2B params,
on Languini Books (Stanić et al.,
2023).4

Params Block Eval PPL

100M Pre-LN 19.1
OP 18.9

320M Pre-LN 16.2
OP 16.2

1.2B Pre-LN 14.9
OP 14.6

In Tab 1, we show that our Outlier Protected block matches the standard Pre-LN block
in terms of convergence speed at scales up to 1.2B parameters when trained with next
token prediction on the Languini books dataset (Stanić et al., 2023) for nearly 4.5B
tokens.4 In App H.1, we ablate our OP block and show that the lack of an entropy
regulation mechanism without normalisation layers causes training instabilities. This
demonstrates that preventing entropy collapse is necessary to match training stability
and convergence speed in unnormalised Transformers.

We note that independent of OFs, the OP block (Fig 5) is interesting in its own right
because it shows that the initialisation-time Signal Prop and Entropy Collapse benefits
of Norms in Transformers can be disentangled, and also reveals what was missing in
previous methods that used Signal Prop arguments to correct initialisation defects in
simplified unnormalised Transformers (He et al., 2023; He & Hofmann, 2024).

4We train for 4.2B tokens at 1.2B scale as this took 24 hours on 4 A100 80GB GPUs; we were unable to train for longer due to
compute constraints. Scales under 1B were trained on a single A5000 or RTX-2080Ti GPU, taking around 2 days for 3.3B tokens (or
equivalently, 50K steps at batch size 128 and sequence length 512).
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D. Modifications That Affect Signal Prop During Training Affect OFE
To the best of our knowledge, in the Signal Propagation literature, most works have focused on characterising and improving
Signal Propagation at initialisation due to analytic convenience. In particular, a practical focus of such works is to design
architectural modifications that allow non-degenerate deep limits for models whose input cosine similarities can be well
approximated by their large-width limits at initialisation (Pennington et al., 2017; Xiao et al., 2018; Hayou et al., 2021;
Martens et al., 2021; He et al., 2023; He & Hofmann, 2024). Those considering training dynamics often reside in the kernel
regime (Jacot et al., 2018) and are thus not compatible with feature learning (Chizat et al., 2019; Yang & Hu, 2020) which is
necessary for OFE and Signal Prop dynamics during training. Our results connecting Signal Prop and OFE highlight the
importance to the community of understanding Signal Prop dynamics during training in feature learning regimes, beyond
initialisation. We note Tian et al. (2024) predict attention entropy dynamics through joint MLP/Attention. In any case,
we empirically study the impact of initialisation-inspired Signal Prop architectural modifications in terms of OFE during
training.
Downweighted residuals Of initialisation-inspired Signal Prop modifications, the most prevalent is downweighting
residual branches h(x) = x+ βf(x) with some β ≪ 1 (De & Smith, 2020; Hayou et al., 2021; Noci et al., 2022).5 In Fig 4,
we see that downweighting residuals (with a trainable scalar β initialised to 0.1) improves Signal Propagation in a 24-block
1.2B Pre-LN model, not only at initialisation but also during training, thereby reducing OFE (peak kurtosis is an order of
magnitude lower). Having said that, Pre-LN with downscaled residuals still leads to higher kurtosis across layers than our
OP block in Fig 17. Downscaling Pre-LN residuals leads to a small loss in performance of 0.2 perplexity. We show the
corresponding results at 130M scale in Figs 18 to 20. Our results are consistent with previous work by Wortsman et al.
(2023) who observe that downweighted residuals help for low precision training in CLIP models, motivated as a way to
prevent OFs arising through increasing activations scales ∥X∥F during training. Given that standard models have Norm
layers that are scale invariant (as are our OFE and Signal Prop metrics), we complement this argument by highlighting
that the feature learning process of OFE is not only associated with increasing activation scales but also worsening Signal
Propagation during training. Figs 14 and 41 show that ∥X∥F does not always correlate with OFs.

Normalisation layers On the other hand, for Norms, the difference between OP and standard blocks with Norms in Figs 4,
17 and 16 respectively is already clear evidence that standard Norm placements can lead to worse Signal Propagation (and
OFE) during training. To the best of our knowledge, this observation has not been made previously. To test this further,
we reintroduce the final LN right after the final OP block (just before the unembedding layer) into an OP model, with no
Pre-Norms, in Fig 17. We see that the final LN causes some layers to see increases in both kurtosis and input correlations,
and these layers correspond precisely to the final few blocks immediately preceding the LN. On the other hand, earlier layers
further away from the final LN are largely unchanged in terms of both Signal Propagation and OFE during training. The
model with a final LN performed slightly worse (0.1 perplexity difference).

Several works have discussed the effect of Norms on Signal Propagation theory at initialisation. The Deep Kernel Shaping
(Martens et al., 2021) framework is compatible with LN (and also RMSNorm) layers, but makes other modifications (in
weight initialisation and activation functions) that mean LN has no effect at initialisation in the wide limit. Other works show
centred Norms in fact improve Signal Propagation at initialisation in MLPs by correcting imbalances in input activation
norms to improve Isometry (Joudaki et al., 2023; Meterez et al., 2023) but consider non-standard architectures that are not
residual and have Norm immediately following nonlinear activations, whereas standard Norms take the residual stream as
input. Our work shows that initialisation and training can have very different Signal Prop behaviours.

Other Signal Prop modifications In Figs 21 and 23, we consider the effect of other initialisation-inspired Signal
Propagation modifications in terms of OFE. In particular, we consider “transforming” activations to be more linear (Martens
et al., 2021; Zhang et al., 2022a; Li et al., 2022), and “shaping” attention to be more identity-like (He et al., 2023; Noci
et al., 2023; He & Hofmann, 2024). Although not predicted by initialisation theory, we find that these modifications mostly
also reduce OFE and improve Signal Prop during training as well as initialisation. The latter finding is related to the work of
Bondarenko et al. (2023) who show that “no-op” heads that place large attention weights on shared uninformative tokens
encourage OFs: large attention weights on shared tokens also worsen signal propagation,6 compared to identity-dominated
attention, which can be seen as a “no-op” that instead encourages a token to attend to itself.

5Typically, the theory indicates that β = O( 1√
depth

) enables a well-behaved infinite-depth limit.
6Consider the extreme case when all attention weights are placed onto a single token (say the first one): all attention outputs will be

equal to the first token’s value representation so all token-wise cosine similarities are 1.
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E. Optimisation Choices and OFE
So far, we have considered the impact of architectural hyperparameters for OFE, as the primary focus of our work. As OFE
is a training phenomenon, it is important to also consider the role of optimsation choices, which we now explore.
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Figure 6. Smaller LRs lead to smaller OFs
across different blocks.

Learning Rate Perhaps unsurprisingly, we find that using smaller LRs
leads to reduced OFE during training, (Figs 6, 24 and 25), across different
architectures. In these cases, slightly reducing the maximum LR in our
scheduler (e.g. 0.001 → 0.0003 in Fig 6) did not lead to a loss in conver-
gence speed (Fig 26), highlighting that one should use a smaller LR to avoid
OFs if convergence is not affected. A direction for future work could be to
explore the trade-off where one trains for more steps, but at lower LRs and
precision.

Adaptivity As far as we are aware, the vast majority of modern NN
architectures rely on the Adam optimiser (Kingma & Ba, 2014), which uses
adaptive LRs for each parameter.
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Figure 7. Larger Adam ϵ reduce OFs for 130M
scale transformers.

Given the importance of LR for OFs, we assess the effect of adaptive
LRs through the ϵ hyperparameter in Adam, where the Adam update is
−ηmt/(

√
vt+ ϵ), for learning rate η, and mt and vt denote first and second-

moment estimates of each parameter’s gradient, respectively. ϵ acts as a
dampener to adaptive LRs, with larger ϵ reducing adaptivity for parameters
with smaller vt. In Figs 7, 28 and 30 we show that increasing ϵ also reduces
OFE. Thus, one should increase Adam’s ϵ to reduce OFE, if it does not
impact convergence (like in Fig 27).
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Figure 8. SGD has much reduced OFs, even
when it can match Adam convergence speed (c.f.
Fig 32).

Adam vs. SGD To push the question of adaptivity to the extreme, we
consider the effect of replacing Adam with SGD in terms of OFE. As
transformers are difficult to train (fast) with SGD, we consider OFs in a
much simpler architecture and task: an MLP on CIFAR-10. In Figs 8 and 33
we see that SGD is not as susceptible to OFs, even with architectural changes
that are OF prone, like Normalisation layers. In fact, with SGD the kurtosis
can actually decrease during training. The model is a 6-layer Pre-Norm
residual MLP with width 1024; we remove Pre-Norms for normless models.
This also highlights that OFs are not specific to the Transformer model.

The findings in this section, identifying key optimisation hyperparameters,
point to the importance of (adaptive) LRs for OFE. This motivates us to
break down the updates to kurtosis into terms of different powers in the
learning rate η, in App I. There, we also consider settings without momen-
tum, highlighting that momentum is not essential for OFE. We find that sub-leading order updates (in terms of LR) are the
key driver in increasing kurtosis, providing a consistent mechanism for OFE that encapsulates our different observations
concerning the roles of optimiser and architecture.
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F. Limitations and future work
Though our work focuses on minimising Outlier Features (OFs) through understanding their emergence, in future work it
would be interesting to assess if our suggested architectural and optimisation interventions do lead to practical improvements
in low-precision training. Another practical limitation is the fact that while our experimental settings are sufficient to
demonstrate and study the emergence of OFs, it remains to be seen if our Outlier Protected block continues to match
Pre-Norm performance at larger scales beyond 1.2B parameters. Although we have no reason to believe otherwise, we are
currently unable to test this due to compute constraints. Additional directions for future work could be to study OFs in other
sequence modelling blocks besides the standard Transformer (such as those with gating (Gu & Dao, 2023)), combining
our unnormalised Outlier Protected block with other simplified transformer blocks (He & Hofmann, 2024), as well as
designing new optimisers with minimising OFs in mind. Our work also opens many new theoretical research questions for
the community. Perhaps the most important is understanding how signal propagation evolves during training, and which
factors affect this. Our results in App E indicate that this is a complex problem that depends not only on the architecture,
like at initialisation, but also on the choice of optimiser.
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G. Experimental Details
CodeParrot As discussed, all of our experiments at 130M scale (6 layers, width 768 transformers) are on next token
prediction with the CodeParrot dataset, with 50K vocabulary size. We use a similar setup to He & Hofmann (2024), including
their codebase.7 We train with AdamW optimiser (Loshchilov & Hutter, 2017) and weight decay 0.1, betas=(0.9, 0.999),
and ϵ = 1e− 8 unless otherwise stated. We do not tie embeddings, and remove the final layer norm before unembedding
layer. When we plot metrics (kurtosis, signal propagation, MMR etc) we plot the residual stream entering the attention
sub-block (plots for the residual stream before the MLP sub-block are qualitatively the same). The only exception is the
last layer, which is the input to the unembeddings. When we downweight residuals we set β = 0.3 in both attention and
MLP sub-blocks unless otherwise stated. We do not train residual scalings β. Unless otherwise stated, we train with
sequence length 128 and batch size 32 for 80K steps, with linear warmup to maximum learning rate 1e − 3, for 5% of
the steps, before linear decay. We keep the standard parameter initialisations to N (0, std = 0.02) but upweight the input
embeddings by a factor of 50 in order to make the average squared input 1 at initialisation, similar to considerations made
by the Gemma model (Team et al., 2024). We use ReLU activations and do not scale inputs with an α, c.f. Fig 5, because
ReLU is 1-homogeneous.

Languini For Languini (Stanić et al., 2023) our 100M, 320M, and 1.2B model sizes follow the “small” (depth 12, width
768), “medium” (depth 24, width 1024), and “XL” (depth 24, width 2048) model sizes provided by the authors, respectively.
Our setup follows the authors in terms of codebase and tokeniser. We train with sequence length 512 and batch size 128,
again with a maximum learning rate of 1e− 3 unless otherwise stated. We warm up the LR for the first 1.5% steps before
linear decay. This learning rate was the largest stable and best performing choice on a logarithmic grid. We use linear
warmup and linear decay after 1000 steps. We additionally use RoPE (Su et al., 2024), with GeLU nonlinearities in the
MLPs. We use the same method as Brock et al. (2021) to calculate α to scale inputs to the GeLU. When we downweight
residuals, we initialise β = 0.1 and allow them to be trainable. When we plot layer-wise metrics like kurtosis, we plot
the outputs of the Pre-Normalisation layer (if there is one), otherwise, we treat the Normalisation layer as the identity and
plot the residual stream going into the attention sub-block. We use tied embeddings. We also keep the standard parameter
initialisations toN (0, std = 0.02) but upweight the input embeddings by a factor of 50 in order to make the average squared
input 1 at initialisation.

CIFAR-10 For our MLP experiments on CIFAR-10, we train using batch size 2048 for 200 epochs. As described in
App E, the model has 6 Pre-Norm layers with width 1024, giving 15M parameters. We zero initialise the last layer, and
additionally downweight the output layer by

√
width akin to µP (Yang & Hu, 2020), to encourage feature learning. We

train with MSE loss and use LR 3 for SGD and 3e-3 for Adam. We use standard betas and epsilon for Adam and we do not
use weight decay. We warm up the LR for 200 steps before cosine decay. We additionally found that it was important to
whiten the inputs in order to observe OFE in the residual stream. We note that transformer embeddings are independently
initialised, which can be thought of as implicitly whitening the embeddings for different tokens. Whitened inputs correspond
to signal propagation with zero input correlations. This again suggests that signal propagation (and properties of the data)
are important for OFs, but we leave further understanding of this to future work. We use PCA to whiten inputs.

7https://github.com/bobby-he/simplified_transformers
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H. Additional Experiments
In this section, we include all additional experiments not included in the main paper.
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Figure 9. Max Median Ratio metric for Pythia, equivalent to Fig 1. We take the mean to aggregate over inputs
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Figure 10. Signal Prop for Pythia, equivalent to Fig 1.
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Figure 12. Kurtosis dynamics in different layers using different Norms and Norm locations on CodeParrot at 130M scale. Equivalent of
Fig 2 but for the remaining layers. Fig 2 corresponds to the 2nd block.
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Figure 13. Equivalent of Fig 12 but with centred activations (centred along the width dimension). Notice there is no qualitative difference
to kurtosis dynamics when centring activations.
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Figure 14. Equivalent of Fig 12 but for activation scale ∥X∥F trajectories through training. We see that activation scales do not correlate
as well with OFs (Fig 12) as signal propagation (Fig 16). For example, Post-LN has smaller activation scales than the OP block in all
blocks besides the first one, but much worse kurtosis in Fig 12.
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Figure 15. Equivalent of Fig 12 but for the MMR metric (aggregated using maximum over the batch).
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Figure 16. Equivalent of Fig 12 but for Signal Propagation (in terms of RMS of input correlations).
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Figure 17. OP layers at 1.2B scale with worse Signal Propagation (i.e. higher input correlations) during training (centre left) have higher
feature kurtosis (left). (Right vs. left two plots) Introducing a final LN before unembedding causes larger input correlations and feature
kurtosis in later layers, even with the OP block. NB: y-axes values here are significantly smaller than Fig 4 with Pre-LN.
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Figure 18. Downweighted residual scalings, h(x) = x + βf(x) with β < 1, reduce OFs at 130M scale. All models are Pre-LN. We
downweight both the MLP and Attention residuals.
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Figure 19. Residual scalings improve Signal Prop at 130M scale. Equivalent to Fig 18.
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Figure 20. Residual scalings reduce activation scales at 130M scale. Equivalent to Fig 18.
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Figure 21. Increasing LeakyReLU slope, s, so that the nonlinearity is more linear mostly improves kurtosis during training, as one might
expect from Signal Prop initialisation theory (Zhang et al., 2022a; Li et al., 2022). Here our notation is LeakyReLU(x) = max(x, sx) for
slope s < 1. The exception is when the slope is 0, i.e. ReLU, the kurtosis is actually better during training, but this is reflected in the
signal propagation during training too (Fig 22). We hypothesise this is because zero neurons get no gradient with ReLU, and this behaves
fundamentally differently to a non-zero LeakyReLU slope. The plots show the average over 5 seeds, and we plot the first 20K steps (of
80K). The models are Pre-LN and we downweight the attention residual branch with a factor β = 0.2 to reduce kurtosis contributions
from the attention sub-block, but do not downweight the MLP residual. Note we do not use a log-scaled y-axis to make the differences
between LeakyReLU slopes clearer. Experiment is at 130M scale on CodeParrot.
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Figure 22. Effect of different LeakyReLU slopes on signal propagation during training, equivalent to Fig 21. Surprisingly, ReLU (i.e.
slope 0) has the best signal propagation (lowest input-wise correlations) during training in this setting, even though it has the worst signal
prop at initialisation in later layers, compared to all other LeakyReLU variants. This initialisation effect was predicted by Zhang et al.
(2022a), but our findings regarding training were previously unknown and require further research.
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Figure 23. Reducing β in Value-SkipInit (He et al., 2023), which replaces Attention matrix A← αI+ βA and makes attention more
identity-like also reduces OFs. We do not train β in Value-SkipInit and fix α = 1. The models are Pre-LN and we downweight the MLP
residual branch with a factor 0.2 to reduce kurtosis contributions from the MLP sub-block, but do not downweight the attention residual.
Each curve is an average over 5 seeds and we plot only the first 20K steps (of 80K). Experiment is at 130M scale on CodeParrot.
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Figure 24. Smaller LR (max value from 0.001→ 0.0006) reduces OFE in a Pre-LN model at 1.2B scale on Languini (Stanić et al., 2023).
Models are slightly different from the Pre-LN model in Fig 3 as we do not upweight the input embeddings as described in App G. Still,
we do also observe large increases in kurtosis during training, and that a smaller LR reduces this. In this experiment, reducing the max LR
to 0.0006 did not impact convergence speed.
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Figure 25. Smaller LRs means reduced OFs, for different Norms and Norm locations. Equivalent of Fig 6, but with all layers. Experiment
is on CodeParrot at 130M scale.
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Figure 26. Convergence speed for the runs in Figs 6 and 25 comparing the effect of reduced LRs.
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Figure 27. Train loss plot with different Adam epsilon, equivalent to Fig 28. There is not a noticeable difference in convergence speed for
ϵ < 3e− 4 in this experiment.
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Figure 28. Kurtosis plot with different Adam epsilons on CodeParrot at 130M scale. Each curve is an average over 3 seeds. We see that
increasing ϵ from 1e− 6 to 3e− 4 monotonically decreases OFE. At values of ϵ smaller than 1e− 6 there is less of a difference in OFE
between different ϵ values.
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Figure 29. Signal Prop plot with different Adam epsilon. Equivalent of Fig 28.

27



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

0 1K 2K 3K 4K 5K
Training Step

10 2

10 1

100

101

Ac
tiv

at
io

n 
Ku

rto
sis

1st Layer
Adam eps 

1e-10
1e-08
1e-07
1e-06
1e-05
1e-04

0 1K 2K 3K 4K 5K
Training Step

2nd Layer

0 1K 2K 3K 4K 5K
Training Step

3rd Layer

0 1K 2K 3K 4K 5K
Training Step

10 2

10 1

100

101

Ac
tiv

at
io

n 
Ku

rto
sis

4th Layer

0 1K 2K 3K 4K 5K
Training Step

5th Layer

0 1K 2K 3K 4K 5K
Training Step

6th Layer

Figure 30. Kurtosis plot with different Adam ϵ with an MLP on CIFAR-10. The model uses Pre-Norm structure with SRMSNorm
normalisation. Like in Fig 28, we see that larger ϵ generally leads to smaller OFs.
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Figure 31. Train accuracy plot with different Adam ϵ of MLP on CIFAR-10, equivalent to Fig 30. In this experiment, milder values of
ϵ ∈ {1e− 5, 1e− 6} converge fastest.
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Figure 32. Train accuracy plot with SGD vs Adam of MLP on CIFAR-10, corresponding to Fig 8. Adam ϵ is the default value of 1e− 8.
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Figure 33. OFs of SGD vs Adam in an MLP on CIFAR-10. Although normalisation layers lead to higher kurtosis for a given optimiser,
Adam always has higher OFs than SGD. Fig 8 corresponds to the 6th layer.
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Figure 34. Effect of SGD vs Adam on Signal Prop, for models plotted in Fig 33.

30



1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

H.1. Ablating the components of the OP block

In Tabs 2 and 3 and Fig 35 we ablate the components of our OP block. Tab 2 assesses the impact of not having an EntReg
mechanism on training stability and convergence speed on the Languini dataset (Stanić et al., 2023) at 320M scale. Fig 35
confirms the loss of EntReg causes entropy collapse on CodeParrot at 130M scale, which is shown to lead to unstable
training in Fig 36. In these experiments, we also try the tanh thresholding as an alternative EntReg mechanism to QK-Norm.
Tab 3 goes from Pre-LN to OP one step at a time, assessing the impact of different norms and downweighted residuals, in
terms of OFE.

Table 2. Ablating the convergence and training benefits of the OP block. The asterisk * denotes that training failed without Flash Attention
(Dao et al., 2022), which centres pre-softmax logits based on their max value and is therefore more stable. This highlights the training
instability of not having some entropy regulating (EntReg) mechanism, where smaller LRs are required for stability. At a smaller (but
stable) LR, the naive unnormalised model without EntReg converges much slower (17.4 vs 16.2 ppl) in this example. Even with larger LR,
the EntReg mechanism in the OP block improves convergence (16.6 vs 16.2 ppl for QK-RMSNorm) compared to the naive unnormalised
model. Tanh thresholding (from Grok-1) also works as an example of an alternative EntReg mechanism to QK-Norm. Because Pre-Norms
appear before Query/Key weights, they already provide an implicit EntReg mechanism. As a result, adding EntReg to Pre-Norm models
results in only minor changes to convergence speed in this experiment (though ViT-22B shows in other settings Pre-Norm alone is not
enough (Dehghani et al., 2023)). Models are 320M parameters, trained also for 3.3B tokens on Languini (Stanić et al., 2023) as in Tab 1.

Model MLP/Attn Pre-Norm EntReg Scaled Residual LR Eval PPL

Pre-LN LN None Implicit 1e-3 16.2
Pre-RMSNorm RMS None Implicit 1e-3 16.3

Pre-LN+QK-Norm LN QK-RMS Implicit 1e-3 16.0
Pre-LN+Tanh LN Tanh Implicit 1e-3 16.2

Naive unnormalised None None Yes 3e-4 17.4
Naive unnormalised None None Yes 1e-3 16.6*

OP (QK-Norm) None QK-RMS Yes 1e-3 16.2
OP (Tanh) None Tanh Yes 1e-3 16.4
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Figure 35. No EntReg leads to entropy collapse without Pre-Norms, which means training fails (as seen in Fig 36).
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Figure 36. Entropy collapse leads to failed training. OP with tanh does not fail but does converge slower in this setting. Note this is a
different task (Code prediction) to language modelling in Tab 2 and we use learnt positional encodings in the input embedding layer,
not RoPE, which may account for this difference. We tuned a few values of the max_attn_val hyperparameter with tanh thresholding:
f(x) = max_attn_val · tanh(x/max_attn_val), which is set by default to 30 in Grok-1, but they did not close the convergence speed
loss.
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Figure 37. OP with Tanh still has reduced peak OFs compared to Pre-LN. This plot corresponds to the models shown in Fig 35.
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Figure 38. Signal Prop plot with OP Tanh. This plot corresponds to the models shown in Fig 35.
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Table 3. Going from Pre-Norm to OP step by step. We remove or add Norms one by one, with different Norm locations depicted in Fig 40.
All models trained well (at similar speeds), as they all have some form of entropy regulation (either explicit or implicit) and downweighted
residuals. We present the peak Kurtosis (Eq (1)), Signal Propagation (RMS of input-wise correlations), and activation RMS (∥X∥F )
over the training run, with mean and standard deviation over three seeds. We present results where activations X are the input to the
second transformer block. We see that that preventing attention entropy collapse through QK-Norm helps reduce OFs (which we see
coincides with improved signal propagation). On the other hand, peak activation RMS does not correlate well as a metric with peak
kurtosis, across the different models. In addition, the 2 best models in terms of OFs (our OP and also the third last row, which has no Pre-V
or Pre-MLP Norms) are 1-homogeneous (at least at initialisation), which implies that the fact that Pre-V or Pre-MLP Norms make the
residual stream scale independent is detrimental for OFE. This is corroborated by Fig 39, which plots the trajectories for the three models
(1. Post-QK+Pre-V, 2. QK Norms only and 3. OP) that achieved peak kurtosis lower than 10. Fig 39 shows that the non-homogeneity
(due to a Pre-V Norm) leads to a large initial increase in kurtosis and signal propagation in this setting, like we consistently see with
Pre-Norm blocks e.g. Fig 4. Models are 130M scale on CodeParrot.

Model Norm Scaled Resid Homog.? Act RMS Signal Prop Kurtosis

Post-QK Pre-QK Pre-V Pre-MLP
Pre-RMS None RMS RMS RMS Implicit No 5.45±0.13 0.72±0.03 131.8±21.2

Scaled Resids None RMS RMS RMS Yes No 3.97±0.09 0.47±0.04 46.4±14.0

All Norms RMS RMS RMS RMS Yes No 3.92±0.07 0.24±0.05 12.7±10.2

Attn Norms only RMS RMS RMS None Yes No 4.38±0.07 0.29±0.04 11.8±8.03

Post-QK+Pre-V RMS None RMS None Yes No 4.40±0.06 0.27±0.01 6.4±1.32

QK Norms only RMS RMS None None Yes Yes 4.32±0.06 0.15±0.01 2.5±0.93

Pre-QK only None RMS None None Yes Yes 4.38±0.01 0.37±0.05 64.0±49.5

OP (ours) RMS None None None Yes Yes 4.46±0.09 0.17±0.01 4.3±1.49
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Figure 39. Training trajectories of kurtosis, signal propagation and activation scales for the three best configurations in Tab 3. The setting
with Pre-V Norm (which is not 1-homogeneous) sees a large initial increase in all metrics, with kurtosis and input correlations peaking
within 10K steps before reducing during training.
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Figure 40. A transformer block with many different Norm layers depicted, to help parse the ablations we consider in Tab 3. Note we break
down the standard attention Pre-Norm into Pre-QK Norm and Pre-V Norm because removal of Pre-V Norm makes the attention sub-block
homogeneous (i.e. f(x) is homogeneous if f(kx) = kf(x) for some scalar k > 0), hence acts differently to Pre-QK Norm, which acts
as an implicit regulator for attention entropy.
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I. Orders of Activation Updates for Kurtosis
To better appreciate the effect of different optimiser hyperparameters on OFs, we now consider how the updates that arise
during training to a representation matrix X ∈ Rn×d can lead to increasing kurtosis (and OFs). In general, a training
step (e.g. with a gradient/Adam update on trainable parameters earlier in the forward pass than X) will lead to an update
X← X+∆X.

Recall that Kurt(X) is an defined through comparing the fourth m4(X) and second m2(X) moments of neuron RMS√
1
n

∑n
α=1 X

2
α,j for different j. As such, it is natural to ask how updating X← X+∆X updates these moment statistics.

We first study the second moment update u2:

u2
def
= m2(X+∆X)−m2(X) =

1

d

d∑
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(
1

n

n∑
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X2
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α,jXα,j , u2,2

def
=

d∑
j=1

n∑
α=1

(∆X
α,j)

2. (8)

Likewise for the fourth moment update u4:

u4
def
= m4(X+∆X)−m4(X) =
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Above, we have broken down the pth moment update up into (up,l)l, where up,l denotes the contribution to up that is order l
in ∆X. The reason for this is that, typically, a learning rate parameter η is used such ∆X is linear in η, and so up,l is order l
in η.8 Usually, η is chosen to be small such that ∆X is small elementwise relative to X. Note that the quadratic update terms
up,2 are always positive,9 whereas the linear terms up,1 are not necessarily positive, so we might expect quadratic terms to
drive any increase in the pth moment mp.

In Fig 41, we plot the cumulative sum of these (up,l) terms, for our OP block, a default Pre-LN block, and also two
modifications that reduce OFs in Pre-LN (increasing Adam epsilon from 1e− 8 to 1e− 4 and also reducing maximum LR
from 1e− 3 to 3e− 4) trained on CodeParrot. We see indeed that the cumulative u4,2 quadratic term dominates the update
to u4 and drives the increase in m4 in the default Pre-LN model. Both reducing LR and also increasing Adam ϵ reduce this
term, which also reduces the growth in fourth moment and kurtosis. In particular, in the small LR η → 0 limit the linear first
order term u4,1 will dominate and the effect of quadratic u4,2 can be ignored. The impact of sub-leading order terms like
u4,2 in OFE is related to the discretisation drift between discrete-time gradient descent and continuous-time gradient flow
(Rosca, 2023). Fig 42 plots the non-cumulative version of Fig 41.

On the other hand, in Fig 41 the OP block has a large increase in u4 that is matched by a large increase in u2, which means
the kurtosis (which is the ratio m4/m

2
2) does not increase as much as Pre-LN. Fig 43 shows that u4,2 dominates the cubic

u4,3 and quartic u4,4 update terms to the fourth moment, so we can focus on studying u4,2. We plot the moment updates for
the input to the second attention block (out of six).

8For example, if we have X = HW for a previous layer H that is fixed (e.g. embedding layer in a transformer). Then we usually
update weights W +∆W linearly in η, and so ∆X = H∆W is also linear in η. For other layers we need to consider the change in H too,
but this will also be linear in η to leading order.

9This is straightforward to see for u2,2. For u4,2 the second summand can be factorised as
∑

j

(∑
α Xα,j∆α,j

)2 which is positive.
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The models presented in Figs 41 to 43 were trained using Adam without momentum, akin to RMSProp (Tieleman & Hinton,
2012): we set β1 = 0 and β2 = 0.95 in Adam. The reason for this was to separate out the contribution of individual training
steps on the kurtosis updates. If instead we re-introduce momentum with β1 = 0.9, then the different update steps become
mixed and the leading order u4,1 dominates the updates to the kurtosis for the Pre-LN model, as seen in Fig 44.
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Figure 41. Cumulative metrics to track kurtosis updates. Models were trained without momentum. We see that the quadratic u4,2 term
dominates updates to the fourth moment.
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Figure 42. Non-cumulative metrics to track kurtosis updates. Models were trained without momentum.
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Figure 43. Sub-leading order terms are dominated by u4,2.
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Figure 44. Cumulative metrics to track kurtosis updates. Models trained with momentum. The leading order u4,1 term now dominates the
updates to the fourth moment.
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J. Worse Signal Prop Means Higher Activation Kurtosis in Gaussian Features
Proposition J.1 (Bad Signal Propagation implies higher kurtosis for Gaussian features). Suppose we have X ∈ Rn×d

zero-mean Gaussian distributed with all inputs uniformly correlated with some ρ > 0, and independent features (across
columns). That is: E[X] = 0 and E[Xα,jXβ,k] = ρ · 1{j = k}+ (1− ρ) · 1{j = k} · 1{α = β}.10

Then, if we consider the feature-wise Gram matrix ΣF = 1
nX

⊤X, we have that the expected squared diagonal entry of
ΣF is E[(ΣF)

2
1,1] = 1 + 2ρ2 + on(1) increases as ρ increases, whereas the expected diagonal entry is E[(ΣF)1,1] = 1 is

independent of ρ.

Proof. As Gaussians are determined by their first two moments, let us suppose that Xα,j =
√
1− ρuα,j +

√
ρvj , where

(uα,j)α,j and (vj)j are independent standard Gaussians. Then, for two neuron indices k, l ≤ d we have:

(
XTX

)
k,l

=(1− ρ)
∑
α≤n

uα,kuα,l (13)

+ ρnvkvl (14)

+
√

ρ(1− ρ)
∑
α≤n

uα,kvk + uα,lvl. (15)

We are interested in the diagonal elements of ΣF = 1
nX

⊤X, when k = l above. In this case, we have (u2
α,k)α and v2k are all

independent chi-squared χ2 distributed with 1 degree of freedom. For Z ∼ χ2
1, we have E[Z] = 1 and E[Z2] = 3.

For the first moment, we take the expectation above and note that the summands of Eq (15) are products of independent
zero-mean Gaussians (so zero mean). This gives E[XTXk,k] = n and hence E[(ΣF)1,1] = 1, as required.

For the second moment, we note that all cross products in
(
XTX

)2
k,k

will disappear in expectation when we square besides
the one involving Eqs (13) and (14), as both terms will be χ2

1 distributed (hence not zero-mean). On the other hand, all cross
products involving Eq (15) will be an odd order in at least one zero-mean independent Gaussian (hence zero-mean).

The square of Eq (13) is (1− ρ)2n(n+ 2) in expectation, which can be seen by the fact that
∑

α≤n u
2
α,k is actually a χ2

n

distribution, with mean n and variance 2n. Hence for Z ∼ χ2
n, we have E[Z2] = E[Z]2 + Var(Z) = n2 + 2n.

The square of Eq (14) is 3ρ2n2 in expectation, again by properties of χ2
1 random variables.

The square of Eq (15) is O(n) (in fact 4ρ(1− ρ)n) in expectation and will be dominated by the O(n2) terms. To see this,
we note that Eq (15) is a sum of n zero mean i.i.d. random variables, so one can use the additive property of variances for
independent random variables.

Finally, the cross term between Eqs (13) and (14) is 2ρ(1− ρ)n2 in mean. One factor of n comes from the sum of inputs
α ≤ n and the other comes from Eq (14) already. The product of two independent χ2

1 random variables is 1 in expectation.

Putting this all together, we have

E[XTX2
k,k] =(1− ρ)2n(n+ 2) + 3ρ2n2 + 4ρ(1− ρ)n+ 2ρ(1− ρ)n2 (16)

=
(
(1− ρ)2 + 3ρ2 + 2ρ− 2ρ2

)
n2 +O(n) (17)

=(1 + 2ρ2)n2 +O(n) (18)

As ΣF = 1
nX

TX, we divide Eq (16) by n2, and obtain our desired result.

Above, we note that E[(ΣF)
2
1,1] is equivalent to the fourth moment m4 in our feature-wise kurtosis definition Eq (1), while

E[(ΣF)1,1] corresponds to the second moment m2. Hence, Prop J.1 demonstrates that worse signal propagation (in terms of
higher ρ) leads to higher kurtosis.

10Note this covariance gives a “uniform” correlation structure E[ 1
d
XX⊤] = (1− ρ)In + ρ1n1

⊤
n , which has been studied before in

Noci et al. (2022); He et al. (2023) as a way to study signal propagation in sequences. Rank collapse (Dong et al., 2021) is when ρ = 1.
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We note that the result is restricted to a Gaussian setting with independent features. This is an accurate description of
large-width NN initialisation (Matthews et al., 2018; Lee et al., 2018; Yang, 2019), but does not capture training dynamics
as we discuss in the main paper. Indeed, the maximum kurtosis (1 + 2ρ2) is 3 when ρ = 1, whereas in our experiments we
obtain much higher values during training (and the maximum is the width d, which is considerably larger than 3 in practice).
This represents a gap in our theoretical understanding and practice, which we leave for future study.
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