
Under review as a conference paper at ICLR 2024

BOOSTED LONG SHORT-TERM MEMORY WITH
ADDITIONAL INNER LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Long Short-Term Memory (LSTM) is widely known as a powerful type of Recur-
rent Neural Network, allowing it to achieve great results on many difficult sequen-
tial data tasks. Numerous experiments have shown that adding more complexity
to neural network architectures may lead to a significant increase in performance
that outweighs the incurred costs of an upgraded structure. In this paper, we pro-
pose a Boosted LSTM model created by adding layers inside the LSTM unit to
optimize the model by enhancing its memory and reasoning capabilities. We eval-
uated the performance of different versions of Boosted LSTM architectures using
three empirical tasks, studying the impact of different placements of additional
layers, the activation functions used in the additional layers, and the model’s hid-
den units. The experiments have shown that the Boosted LSTM unit, which uses
Exponential Linear Unit as its boosted layers activation function, performs better
than the similar models created from the simple LSTM units while often taking
fewer epochs to achieve similar or better results, usually in a smaller number of
training epochs.

1 INTRODUCTION

Recurrent Neural Networks (RNNs) are devoted to processing sequential data. Since input order is
crucial for this kind of data, networks that tackle this problem must have mechanisms to memorize
sequential relationships through possibly many periods of time. Long Short-Term Memory (LSTM)
was created specifically to allow for learning long-term dependencies by eliminating the vanishing
gradient problem, which hindered the simple RNNs’ ability to work efficiently (Bengio et al., 1994;
Hochreiter, 1991; Hochreiter & Schmidhuber, 1997).

LSTMs have a more complex architecture, with a constant error carousel, internal memory, and
multiplicative gates, which all enhance unit capacity to store information efficiently. To this day, they
find numerous applications in tasks such as handwriting (Lopez-Rodriguez et al., 2022), (Misgar
et al., 2022) and speech recognition (Abdelhamid et al., 2022), text analysis tasks (Zhao et al., 2022),
price forecasting (Bukhari et al., 2020), (Zha et al., 2022) and even epidemic dynamic modeling
(Shahid et al., 2020).

When considering architecture-related LSTM modifications, there are two apparent approaches. The
first is to trim, rewire, and reduce it in the hope of achieving better results, or at least not degrading
the network performance while reducing the training time (Greff et al., 2017), (Lu, 2016). One of
the most prominent results of this approach is the Gated Recurrent Unit (GRU) (Cho et al., 2014).
The second is to add and stack more depth to the existing architecture, a way which, among others,
resulted in the appearance of Bidirectional LSTMs (Graves & Schmidhuber, 2005), Grid LSTMs
(Kalchbrenner et al., 2015), and Nested LSTMs (Moniz & Krueger, 2017).

We took the second path by adding more layers and more depth and creating a new LSTM architec-
ture called Boosted LSTM. This structure enhanced by additional layers allows for more memory
depth and sophisticated reasoning when processing information. We tested different versions of
the proposed model on three empirical tasks to discover the one with the greatest potential to im-
prove efficiency. Our experiments demonstrated that the final Boosted LSTM architecture not only
performs better but also often achieves better results in fewer epochs than the classic LSTM.

1



Under review as a conference paper at ICLR 2024

2 METHODS

Since 1997, when LSTM was introduced by Hochreiter & Schmidhuber (1997), its architecture has
undergone numerous changes, such as the addition of a forget gate so that the network state could
be reset (Gers et al., 2000), the addition of peephole connections to allow LSTM gates to access
the Cell State (Gers et al., 2003), nesting LSTM units to add multiple levels of memory (Moniz &
Krueger, 2017) and many others.

2.1 ARCHITECTURE

As a base for further experiments, we used the LSTM architecture that was often used in the literature
(Greff et al., 2017), (Lu, 2016), (Moniz & Krueger, 2017), with units similar to those defined by
Graves (2013). We will refer to it as the Vanilla LSTM cell (Fig. 1a), defined by the following
internal operations:

it = σ(Wihht−1 +Wixt + bi) (1)

ft = σ(Wfhht−1 +Wfxt + bf ) (2)

ot = σ(Wohht−1 +Woxt + bo) (3)

c̄t = tanh(Wchht−1 +Wcxt + bc) (4)

ct = ft ⊗ ct−1 + it ⊗ c̄t (5)

ht = ot ⊗ tanh(ct) (6)

where it, ft, and ot are the input, forget, and output gate activation vectors respectively, c̄t is the
candidate vector, ct is the Cell State vector, ht is the hidden unit signal vector, and t is a time step.
W represents the weight matrix, where the subscript denotes its association, e.g., Wih being the
weight matrix for the incoming hidden unit in the input gate equation. A similar rule applies for
biases, which are denoted as bi, bf , bo, and bc. Operator ⊗ denotes the Hadamard (element-wise)
multiplication of the vectors.

xt

ht-1

ct-1

ht

ht

ctX

X

X

+

tanh

tanh

ft
it ct

ot

(a)
xt

ht-1

ct-1

ht

ht

ctX

X

X

+

tanh

tanh

elu elu elu

elu

ftb
itb ctb

otb

(b)

Figure 1: Comparison of (a) Vanilla LSTM and (b) Boosted LSTM Units using Exponential Linear
Unit (ELU) as the activation function for the additional boosting layers.

Boosting of the LSTM unit (Fig. 1b) was performed by introducing additional layers to its archi-
tecture. Fig. 1 illustrates a comparison of classic and boosted LSTM memory units, where the
additional boosting layers are placed just before the base ones, as presented in the following formu-
las:

itb = σ(Wib(elu(Wihht−1 +Wixt + bi)) + bib) (7)

ftb = σ(Wfb(elu(Wfhht−1 +Wfxt + bf )) + bfb) (8)

otb = σ(Wob(elu(Wohht−1 +Woxt + bo)) + bob) (9)

c̄t = tanh(Wcb(elu(Wchht−1 +Wcxt + bc)) + bcb) (10)

ctb = ftb ⊗ ct−1 + itb ⊗ c̄t (11)

ht = otb ⊗ tanh(ctb) (12)

2



Under review as a conference paper at ICLR 2024

The main change in equations (7), (8), (9), and (10) is the introduction of the boosting layers with
their own weights (Wib, Wfb, Wob, Wcb) and biases (bib, bfb, bob, bcb). Based on this change, several
different architectures, using ELU (Exponential Linear Unit), SELU (Scaled Exponential Linear
Unit), and ReLU (Rectified Linear Unit) before one or more base layers, as potential activation
functions were considered.

Inevitably, such architecture modifications result in a change in the computational complexity of
these boosted units in comparison to the classic LSTM unit. Considering the time complexity of
Vanilla LSTM, we can calculate it by computing the time complexity of the input gate using equation
1, since it will be identical for the rest of the gates. Assuming that k is the size of the input vector
and h is the size of the hidden layer, we may estimate the time complexities inside the equation:

• Wihht−1 has a time complexity of O(h2),

• Wixt has a time complexity of O(kh),

• Wixt + bi has a time complexity of O(h),

• applying activation function (sigmoid/tanh) has a time complexity of O(h).

After taking all these factors into consideration, we obtained the computational complexity of the
Vanilla LSTM gates:

O(4(h2 + kh+ 2h)) = O(4h(h+ k + 2)) (13)

Summing up, by considering the equation 5 and 6, each adding the O(2h) complexity, we obtain the
computational efficiency of the Vanilla LSTM cell equal to

O(4h(h+ k + 3)) (14)

For the Boosted LSTM, the internal part is identical as in the case of the Vanilla LSTM, but we need
to add in the complexity of the added boosted layers:

• Wib multiplication with the inner layer output has a time complexity of O(h2),

• adding the biases to the result has a time complexity of O(h),

• applying ELU activation function has a time complexity of O(h).

Considering all four gates and equations 11 and 12 the time complexity of the Boosted LSTM is

O(4h(2h+ k + 5)) (15)

Therefore, Boosted LSTM requires more resources to run, both memory and computational time-
wise and its performance must justify the additional commitment.

2.2 DATASETS AND MODELS

The performance of the architecture was verified on three datasets: the IMDB sentiment classifica-
tion dataset (Maas et al., 2011), the Permuted Sequential MNIST dataset (Lecun et al., 1998), and
the Reuters Newswire classification dataset (Apté et al., 1994). This allowed us to test different
capabilities of the architecture while maintaining focus on the text inference tasks. For all tested
models, train and test subsets were obtained via the Keras API, while the validation subset was cre-
ated by taking 20% of the training subset. Other hyperparameters were adapted accordingly to the
dataset considered, taking the Vanilla LSTM performance as a reference point for their refinement.

IMDB (Internet Movie Database) introduced by Maas et al. (2011) dataset consists of 50,000 movie
reviews, labeled according to the reviewer’s sentiment (positive or negative). Both training and
testing sets consist of 25,000 reviews encoded as sequences of word indexes. From the training
set 20% of all examples were removed to create the validation set. We experimentally choose the
top 4000 most common words with a maximum sequence length of 300, leading to zero-padding
of shorter sequences and truncating of longer ones. The RMSprop optimizer with a learning rate
of 1e−4 and binary cross-entropy loss was used. The model consisted of an embedding layer, an
appropriate LSTM layer, a dense layer of 8 units with a ReLU activation function, and a final dense
layer with 1 unit and a sigmoid activation function. Both after the embedding layer and after the
LSTM layer, 0.25 dropouts were used, and the l2 regularization with the factor 1e−4 was applied

3



Under review as a conference paper at ICLR 2024

to this LSTM layer. A batch size of 512 was chosen for the experiments carried out. Tests were
performed for models with 2, 4, and 8 hidden units.

The MNIST (Modified National Institute of Standards and Technology) dataset by Lecun et al.
(1998) contains 70,000 examples of handwritten digits, where 48,000 images were used for training,
12,000 for validation and 10,000 images for testing. Each image in the dataset is in grayscale of
28x28 pixel size. Additionally, a fixed random permutation was applied to each image pixel before
feeding it to the model (hence we will refer to it as Permuted MNIST). This results in the dislocation
of patterns, the removal of any local spatial correlations, and an overall increase in task difficulty.
This shifts the focus more on testing the models’ ability to handle long-term dependencies, making it
more appropriate for RNN performance evaluation tasks. Based on Zhou et al. (2016), there are two
approaches to the organization of the LSTM input for these data. The first is to flatten the image to a
sequence of length 784; and the second treats each row of the image as an individual 28-pixel-long
vector, yielding 28 input sequences. During the tests, the RMSprop optimizer with a learning rate of
1e−3 was used alongside the sparse categorical cross-entropy as a loss function. In the LSTM unit,
the regularization l2 with the probability of 1e−4 and 0.25 dropout was used. The final classification
was performed by a simple dense layer of 10 units with a softmax activation function. A batch size
of 512 was used during the training process. Hidden units of 32, 64, and 128 sizes were used during
the experiments.

The Reuters Newswire dataset (Apté et al., 1994) consists of 11,228 newswires from the Reuters
news agency, labeled over 46 different topics. The training dataset has 8,982 encoded newswires
(as sequences of word indices), while 2,246 are used in the test dataset. We took 1,796 examples
from the training set to create a validation set. In our experiments, we considered 2,000 words as
features and set the maximum sequence length to 300. A simple model, consisting of the input
embedding layer, the appropriate LSTM layer, the dense output layer of 46 units, and the softmax
activation function, was complied with the RMSprop optimizer with the 1e−3 learning rate and the
sparse categorical cross-entropy loss function. A dropout of 0.25 was applied after the embedding
and LSTM layers, where for the latter, the regularization of l2 of 1e−4 was also applied. A batch
size of 512 and a variable number of hidden units (8, 16, 32) were assumed.

3 EXPERIMENTS AND RESULTS

Initial experiments focused on checking the performance of five different architectures, specifically,
Fully Boosted LSTM, LSTM with Boosted Input Gate, LSTM with Boosted Forget Gate, LSTM
with Boosted Output Gate, and LSTM with Boosted Cell Gate. All results were compared with the
reference models (Vanilla LSTM, GRU, and Bidirectional LSTM) and each other. After testing, the
architectures where only one of the gates was boosted appeared to be the worst of the group. Just
increasing the complexity of the gating mechanism on its own did not produce better results.

For the most promising architectures, the influence of the boosted activation function was evaluated,
and in the end, the Boosted LSTM with ELU boosted activation function, the Boosted Cell State
LSTM with ReLU boosted activation function, and the Boosted Cell State LSTM with ELU boosted
activation function emerged as the best candidates for further experiments. The final precision of
the models was evaluated with the dedicated test datasets, independent of both the train and the
validation datasets.

3.1 IMDB DATASET

Assessment of the best candidates for the IMDB dataset was hindered by the appearance of over-
fitting during the 300-epoch training process. As seen in Fig. 3, this was problematic when the
considered architectures were based on ELU as a boosted activation function, as they were con-
stantly converging at a faster rate (30.15% on average) than the rest of the models. The most severe
case of this was for 8 hidden unit-based models. After analyzing the training histories, we decided
to apply early stopping criteria to preserve the best results for each architecture.

4



Under review as a conference paper at ICLR 2024

Table 1: The best accuracies and losses achieved for the final models of the IMDB sentiment classi-
fication task.

LSTM Architecture Accuracy Loss
2 Units 4 Units 8 Units 2 Units 4 Units 8 Units

Vanilla LSTM 0.8713 0.8719 0.8646 0.3127 0.3322 0.3569
GRU 0.8730 0.8715 0.8754 0.3086 0.3177 0.3102

Bidirectional LSTM 0.8732 0.8690 0.8807 0.3097 0.3322 0.2955
Boosted LSTM ELU 0.8778 0.8798 0.8816 0.2982 0.3494 0.2984

Boosted Cell State ReLU 0.8665 0.8616 0.8798 0.3310 0.3539 0.2975
Boosted Cell State ELU 0.8704 0.8728 0.8714 0.3209 0.3209 0.3206

0 50 100 150 200 250 300
Epochs

0.5

0.6

0.7

0.8

0.9

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 2 cells model

0 50 100 150 200 250 300
Epochs

0.5

0.6

0.7

0.8

0.9

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 4 cells model

0 25 50 75 100 125 150 175
Epochs

0.5

0.6

0.7

0.8

0.9

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 8 cells model

0 50 100 150 200 250 300
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 2 cells model

0 50 100 150 200 250 300
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 4 cells model

0 25 50 75 100 125 150 175
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 8 cells model

Vanilla LSTM
Boosted LSTM (Elu)

Boosted LSTM (Cell Relu)
Boosted LSTM (Cell Elu)

GRU
Bidirectional LSTM

Figure 2: Accuracy vs. epochs for the train and validation datasets for all considered IMDB senti-
ment classification task architectures. The difference in epochs is due to the response to the imple-
mented early stopping criterion.

The final results are summarized in Table 1. The fully boosted model based on the ELU-boosted
activation function managed to outperform all the other candidates in terms of its accuracy on the
test datasets. Its final loss for 2 and 8 units is also relatively small, being only worse than for
Bidirectional LSTM and LSTM with Cell State boosted with ReLU boosted activation function.

5



Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Lo

ss

Train Loss of 2 cells model

0 50 100 150 200 250 300
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Lo

ss

Train Loss of 4 cells model

0 25 50 75 100 125 150 175
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Lo

ss

Train Loss of 8 cells model

0 50 100 150 200 250 300
Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Va
lid

at
io

n 
Lo

ss

Validation Loss of 2 cells model

0 50 100 150 200 250 300
Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Va
lid

at
io

n 
Lo

ss

Validation Loss of 4 cells model

0 25 50 75 100 125 150 175
Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Va
lid

at
io

n 
Lo

ss

Validation Loss of 8 cells model

Vanilla LSTM
Boosted LSTM (Elu)

Boosted LSTM (Cell Relu)
Boosted LSTM (Cell Elu)

GRU
Bidirectional LSTM

Figure 3: Loss vs. epochs for the train and validation datasets for all considered IMDB sentiment
classification task architectures. The difference in epochs is due to the response to the implemented
early stopping criterion.

3.2 PERMUTED MNIST DATASET

The row-wise training of candidate models on the MNIST dataset lasted for 500 epochs. Looking at
the plots in Fig. 5, we found that the Boosted LSTM with the ELU-boosted activation function man-
aged to constantly score the best validation results while maintaining one of the fastest convergence
rates.

0 100 200 300 400 500
Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 32 cells model

0 100 200 300 400 500
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 64 cells model

0 100 200 300 400 500
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 128 cells model

0 100 200 300 400 500
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 32 cells model

0 100 200 300 400 500
Epochs

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 64 cells model

0 100 200 300 400 500
Epochs

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 128 cells model

Vanilla LSTM
Boosted LSTM (Elu)

Boosted LSTM (Cell Relu)
Boosted LSTM (Cell Elu)

GRU
Bidirectional LSTM

Figure 4: Accuracy vs. epochs for the train and validation datasets for all the considered permuted
MNIST classification task architectures.

The improvement in accuracy is, seemingly, not by a large margin, as shown in Table 2, the greatest
increase of 0.72% in relation to the Vanilla LSTM occurred for the 32-unit architecture, but since
we are operating so close to 100%, it is still a valuable improvement. For all tests, Boosted LSTM
with ELU-boosted activation function scored the best results, both accuracy and loss-wise, losing
marginally with the GRU for the 128-unit architecture. Boosting the LSTM Cell State with neither
ReLU nor ELU yields non-negligibly better results.

6



Under review as a conference paper at ICLR 2024

Table 2: Best accuracy and losses for the final models of the permuted MNIST classification task.

LSTM Architecture Accuracy Loss
32 Units 64 Units 128 Units 32 Units 64 Units 128 Units

Vanilla LSTM 0.9639 0.9774 0.9803 0.1312 0.0858 0.0873
GRU 0.9625 0.9772 0.9811 0.1365 0.0861 0.0830

Bidirectional LSTM 0.9704 0.9789 0.9805 0.1065 0.0842 0.0953
Boosted LSTM ELU 0.9708 0.9794 0.9810 0.1026 0.0786 0.0841

Boosted Cell State ReLU 0.9667 0.9760 0.9805 0.1246 0.0887 0.0873
Boosted Cell State ELU 0.9632 0.9759 0.9783 0.1273 0.0958 0.0869

0 100 200 300 400 500
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n 
Lo

ss

Train Loss of 32 cells model

0 100 200 300 400 500
Epochs

0.1

0.2

0.3

0.4

Tr
ai

n 
Lo

ss

Train Loss of 64 cells model

0 100 200 300 400 500
Epochs

0.1

0.2

0.3

0.4

Tr
ai

n 
Lo

ss

Train Loss of 128 cells model

0 100 200 300 400 500
Epochs

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Va
lid

at
io

n 
Lo

ss

Validation Loss of 32 cells model

0 100 200 300 400 500
Epochs

0.10

0.15

0.20

0.25

0.30

0.35

Va
lid

at
io

n 
Lo

ss

Validation Loss of 64 cells model

0 100 200 300 400 500
Epochs

0.10

0.15

0.20

0.25

Va
lid

at
io

n 
Lo

ss

Validation Loss of 128 cells model

Vanilla LSTM
Boosted LSTM (Elu)

Boosted LSTM (Cell Relu)
Boosted LSTM (Cell Elu)

GRU
Bidirectional LSTM

Figure 5: Loss vs. epochs for the train and validation datasets for all the considered permuted
MNIST classification task architectures.

3.3 REUTERS DATASET

The training process on the Reuters dataset, shown in Fig. 7, consisted of 400 training epochs.
The Boosted LSTM with the ELU-boosted activation function managed to constantly score the best
results during the training process. It was also the fastest to converge for the 32-unit architecture,
outperforming the Vanilla LSTM by 49,76%, to the point of overfitting, so it was necessary to apply
an early stopping criterion to preserve its performance.

Table 3: The best accuracies and losses for final models of the Reuter’s topics classification task.

LSTM Architecture Accuracy Loss
8 Units 16 Units 32 Units 8 Units 16 Units 32 Units

Vanilla LSTM 0.6950 0.7039 0.7239 1.3237 1.3865 1.6182
GRU 0.7231 0.7012 0.7102 1.1817 1.3276 1.5412

Bidirectional LSTM 0.7346 0.7070 0.7320 1.1058 1.4588 1.6347
Boosted LSTM ELU 0.7462 0.7204 0.7516 1.1606 1.2544 1.5681

Boosted Cell State ReLU 0.7017 0.6670 0.7155 1.2255 1.4812 1.6875
Boosted Cell State ELU 0.7244 0.6768 0.7026 1.1843 1.5659 1.7077

7



Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300 350 400
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 8 cells model

0 50 100 150 200 250 300 350 400
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 16 cells model

0 50 100 150 200 250 300 350 400
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

n 
Ac

cu
ra

cy

Train Accuracy of 32 cells model

0 50 100 150 200 250 300 350 400
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 8 cells model

0 50 100 150 200 250 300 350 400
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 16 cells model

0 50 100 150 200 250 300 350 400
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n 
Ac

cu
ra

cy

Validation Accuracy of 32 cells model

Vanilla LSTM
Boosted LSTM (Elu)

Boosted LSTM (Cell Relu)
Boosted LSTM (Cell Elu)

GRU
Bidirectional LSTM

Figure 6: Accuracy vs. epochs for the train and validation datasets for all the considered Reuters
topics classification task architectures. The difference in epochs is due to the response to the imple-
mented early stopping criterion.

0 50 100 150 200 250 300 350 400
Epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n 
Lo

ss

Train Loss of 8 cells model

0 50 100 150 200 250 300 350 400
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n 
Lo

ss

Train Loss of 16 cells model

0 50 100 150 200 250 300 350 400
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n 
Lo

ss

Train Loss of 32 cells model

0 50 100 150 200 250 300 350 400
Epochs

1.5

2.0

2.5

3.0

3.5

Va
lid

at
io

n 
Lo

ss

Validation Loss of 8 cells model

0 50 100 150 200 250 300 350 400
Epochs

1.5

2.0

2.5

3.0

3.5

Va
lid

at
io

n 
Lo

ss

Validation Loss of 16 cells model

0 50 100 150 200 250 300 350 400
Epochs

1.0

1.5

2.0

2.5

3.0

Va
lid

at
io

n 
Lo

ss

Validation Loss of 32 cells model

Vanilla LSTM
Boosted LSTM (Elu)

Boosted LSTM (Cell Relu)
Boosted LSTM (Cell Elu)

GRU
Bidirectional LSTM

Figure 7: Loss vs. epochs (right) for the train and validation datasets for all the considered Reuters
topics classification task architectures. The difference in epochs is due to the response to the imple-
mented early stopping criterion.

After the final evaluation, which results are presented in Table 3, we found that the Boosted LSTM
with ELU achieved an overall 8.81% better performance than Vanilla LSTM for the 8-units archi-
tecture, 2.34% better for the 16-units architecture, and 3,82% better for the 32-units architecture.
When comparing holistically, the fully-boosted LSTM always achieved the best results in accuracy,
and in most cases when considering loss. It is worth noting that models with only Cell State boosted
performed tangibly worse in comparison to their competitors, being able to only beat the Vanilla
LSTM and only for the 8-unit architecture.

8



Under review as a conference paper at ICLR 2024

4 DISCUSSION

The presented experiments have shown that the addition of extra layers with the ELU activation
functions improved and accelerated the performance of the models tested on the three datasets men-
tioned.

We conducted research on many variations of differently boosted LSTM units, but the one that
uses ELU as the boosted activation function for additional inside layers managed to consistently
outperform the baseline LSTM and other compared architectures in nearly all of the experiments.
This variation also exhibited a very fast convergence rate.

From all of the other architectures, only LSTMs with boosted Cell State using the ReLU and ELU
function were able to perform close enough to the Vanilla LSTM, and only the ELU function was
able to perform better in isolated cases.

The main limitation of the proposed boosted architectures is the increase in the computational com-
plexity since it has more parameters and takes a longer time to train for the same number of epochs
compared to a simple LSTM. Yet, due to their properties, their use can actually result in a fewer
number of epochs overall required to obtain the same results, thus leading to faster training.

The new Boosted LSTM units introduced could form a good basis for more sophisticated models.
This may lead to a boost in performance on more difficult tasks and datasets when using recurrent
neural networks. Since the results achieved by the boosted architecture were already comparable to
those of Bidirectional LSTM, adding solutions similar to the BiLSTM Forward and Backward States
could be a promising direction in an attempt to further refine the Boosted LSTM. A great research
opportunity could also lie in assessing the impact of similar changes applied to the Gated Recurrent
Unit (Cho et al., 2014).

5 CONCLUSIONS

In this paper, we have introduced Boosted LSTM units, which enhanced Vanilla LSTM units by
using additional inner layers to increase their performance. The presented experiments have shown
that the Exponential Linear Units (ELU) used in these extra layers as activation functions allow the
Boosted LSTM to outperform the baseline LSTM by even 7.37% while often reducing the number
of epochs required to achieve similar results by 30.15–49.76%. This Boosted LSTM is also able to
compete and succeed against other architectures, such as GRU and Bidirectional LSTM. We hope
that our research could allow for the development of more efficient LSTM architectures, increasing
model performance on many different tasks related to sequential data processing.

REFERENCES

Abdelaziz A. Abdelhamid, El-Sayed M. El-Kenawy, Bandar Alotaibi, Ghada M. Amer, Mahmoud Y.
Abdelkader, Abdelhameed Ibrahim, and Marwa Metwally Eid. Robust speech emotion recogni-
tion using cnn+lstm based on stochastic fractal search optimization algorithm. IEEE Access, 10:
49265–49284, 2022. doi: 10.1109/ACCESS.2022.3172954. URL https://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=9770097.

Chidanand Apté, Fred Damerau, and Sholom M. Weiss. Automated learning of decision rules for
text categorization. ACM Trans. Inf. Syst., 12(3):233–251, jul 1994. ISSN 1046-8188. doi:
10.1145/183422.183423. URL https://doi.org/10.1145/183422.183423.

Y. Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks / a publication of the IEEE Neural Net-
works Council, 5:157–66, 02 1994. doi: 10.1109/72.279181. URL https://ieeexplore.
ieee.org/document/279181.

Ayaz Hussain Bukhari, Muhammad Asif Zahoor Raja, Muhammad Sulaiman, Saeed Islam, Muham-
mad Shoaib, and Poom Kumam. Fractional neuro-sequential arfima-lstm for financial market
forecasting. IEEE Access, 8:71326–71338, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.
2020.2985763. URL https://ieeexplore.ieee.org/document/9057460.

9

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9770097
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9770097
https://doi.org/10.1145/183422.183423
https://ieeexplore.ieee.org/document/279181
https://ieeexplore.ieee.org/document/279181
https://ieeexplore.ieee.org/document/9057460


Under review as a conference paper at ICLR 2024

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, 10
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https:
//aclanthology.org/D14-1179.

Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual Prediction
with LSTM. Neural Computation, 12(10):2451–2471, 10 2000. ISSN 0899-7667. doi: 10.1162/
089976600300015015. URL https://doi.org/10.1162/089976600300015015.

Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmidhuber. Learning precise timing with
lstm recurrent networks. J. Mach. Learn. Res., 3:115–143, mar 2003. ISSN 1532-4435. doi:
10.1162/153244303768966139. URL https://cse-lab.seas.harvard.edu/files/
cse-lab/files/gers2003a.pdf.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.
URL https://doi.org/10.48550/arXiv.1308.0850.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional lstm and
other neural network architectures. Neural Networks, 18(5):602–610, 2005. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2005.06.042. URL https://www.sciencedirect.
com/science/article/pii/S0893608005001206. IJCNN 2005.

Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, and Jurgen Schmidhuber.
LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems,
28(10):2222–2232, oct 2017. doi: 10.1109/tnnls.2016.2582924. URL https://doi.org/
10.1109%2Ftnnls.2016.2582924.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Technische Univer-
sität München, 04 1991. URL https://www.researchgate.net/publication/
243781690_Untersuchungen_zu_dynamischen_neuronalen_Netzen.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9
(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. CoRR,
abs/1507.01526, 2015. URL https://doi.org/10.48550/arXiv.1507.01526.

Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86:2278 – 2324, 12 1998. doi: 10.1109/5.
726791. URL https://ieeexplore.ieee.org/document/726791.

Pedro Lopez-Rodriguez, Juan Gabriel Avina-Cervantes, Jose Luis Contreras-Hernandez, Rodrigo
Correa, and Jose Ruiz-Pinales. Handwriting recognition based on 3d accelerometer data by deep
learning. Applied Sciences, 12(13), 2022. ISSN 2076-3417. doi: 10.3390/app12136707. URL
https://www.mdpi.com/2076-3417/12/13/6707.

Yuzhen Lu. Empirical evaluation of A new approach to simplifying long short-term memory
(LSTM). CoRR, abs/1612.03707, 2016. URL https://doi.org/10.48550/arXiv.
1612.03707.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies, pp. 142–
150. Association for Computational Linguistics, 2011. URL https://www.aclweb.org/
anthology/P11-1015.

Muzafar Misgar, Faisel Mushtaq, Surinder Khurana, and Munish Kumar. Recognition of offline
handwritten urdu characters using rnn and lstm models. Multimedia Tools and Applications,
82, 06 2022. doi: 10.1007/s11042-022-13320-1. URL https://doi.org/10.1007/
s11042-022-13320-1.

10

https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://doi.org/10.1162/089976600300015015
https://cse-lab.seas.harvard.edu/files/cse-lab/files/gers2003a.pdf
https://cse-lab.seas.harvard.edu/files/cse-lab/files/gers2003a.pdf
https://doi.org/10.48550/arXiv.1308.0850
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://doi.org/10.1109%2Ftnnls.2016.2582924
https://doi.org/10.1109%2Ftnnls.2016.2582924
https://www.researchgate.net/publication/243781690_Untersuchungen_zu_dynamischen_neuronalen_Netzen
https://www.researchgate.net/publication/243781690_Untersuchungen_zu_dynamischen_neuronalen_Netzen
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1507.01526
https://ieeexplore.ieee.org/document/726791
https://www.mdpi.com/2076-3417/12/13/6707
https://doi.org/10.48550/arXiv.1612.03707
https://doi.org/10.48550/arXiv.1612.03707
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1007/s11042-022-13320-1
https://doi.org/10.1007/s11042-022-13320-1


Under review as a conference paper at ICLR 2024

Joel Ruben Antony Moniz and David Krueger. Nested lstms. In Min-Ling Zhang and Yung-
Kyun Noh (eds.), Proceedings of the Ninth Asian Conference on Machine Learning, volume 77
of Proceedings of Machine Learning Research, pp. 530–544, Yonsei University, Seoul, Repub-
lic of Korea, 15–17 Nov 2017. PMLR. URL https://proceedings.mlr.press/v77/
moniz17a.html.

Farah Shahid, Aneela Zameer, and Muhammad Muneeb. Predictions for covid-19 with deep learning
models of lstm, gru and bi-lstm. Chaos, Solitons & Fractals, 140:110212, 2020. ISSN 0960-0779.
doi: https://doi.org/10.1016/j.chaos.2020.110212. URL https://www.sciencedirect.
com/science/article/pii/S0960077920306081.

Wenshu Zha, Yuping Liu, Yujin Wan, Ruilan Luo, Daolun Li, Shan Yang, and Yanmei Xu.
Forecasting monthly gas field production based on the cnn-lstm model. Energy, 260:124889,
2022. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2022.124889. URL https:
//www.sciencedirect.com/science/article/pii/S0360544222017923.

Weidong Zhao, Xiaotong Liu, Jun Jing, and Rongchang Xi. Re-lstm: A long short-term memory
network text similarity algorithm based on weighted word embedding. Connection Science, 34
(1):2652–2670, 2022. doi: 10.1080/09540091.2022.2140122. URL https://doi.org/10.
1080/09540091.2022.2140122.

Guo-Bing Zhou, Jianxin Wu, Chen-Lin Zhang, and Zhi-Hua Zhou. Minimal gated unit for
recurrent neural networks. International Journal of Automation and Computing, 13:226–
234, 2016. doi: 10.1007/s11633-016-1006-2. URL https://doi.org/10.1007/
s11633-016-1006-2.

11

https://proceedings.mlr.press/v77/moniz17a.html
https://proceedings.mlr.press/v77/moniz17a.html
https://www.sciencedirect.com/science/article/pii/S0960077920306081
https://www.sciencedirect.com/science/article/pii/S0960077920306081
https://www.sciencedirect.com/science/article/pii/S0360544222017923
https://www.sciencedirect.com/science/article/pii/S0360544222017923
https://doi.org/10.1080/09540091.2022.2140122
https://doi.org/10.1080/09540091.2022.2140122
https://doi.org/10.1007/s11633-016-1006-2
https://doi.org/10.1007/s11633-016-1006-2

	Introduction
	Methods
	Architecture
	Datasets and Models

	Experiments and Results
	IMDB Dataset
	Permuted MNIST Dataset
	Reuters Dataset

	Discussion
	Conclusions

