
Self-Supervised Learning of Motion Concepts by Optimizing Counterfactuals

Stefan Stojanov*
Stanford University

David Wendt*
Stanford University

Seungwoo Kim*
Stanford University

Rahul Mysore Venkatesh*
Stanford University

Kevin Feiglis
Stanford University

Klemen Kotar
Stanford University

Khai Loong Aw
Stanford University

Jiajun Wu
Stanford University

Daniel L.K. Yamins
Stanford University

Abstract

Estimating motion primitives from video (e.g., optical flow and occlusion) is a critically important computer vision problem with many downstream applications, including controllable video generation and robotics. Current solutions are primarily supervised on synthetic data or require tuning of situation-specific heuristics, which inherently limits these models’ capabilities in real-world contexts. A natural solution to transcend these limitations would be to deploy large-scale, self-supervised video models, which can be trained scalably on unrestricted real-world video datasets. However, despite recent progress, motion-primitive extraction from large pretrained video models remains relatively underexplored. In this work, we describe Opt-CWM, a self-supervised flow and occlusion estimation technique from a pretrained video prediction model. Opt-CWM uses “counterfactual probes” to extract motion information from a base video model in a zero-shot fashion. The key problem we solve is optimizing the quality of these probes, using a combination of an efficient parameterization of the space counterfactual probes, together with a novel generic sparse-prediction principle for learning the probe-generation parameters in a self-supervised fashion. Opt-CWM achieves state-of-the-art performance for motion estimation on real-world videos while requiring no labeled data.¹

1 Introduction

Extracting “low-level” scene motion properties such as optical flow [13, 40], occlusions [28], and point or object tracks [19, 10] is important for video understanding applications such as automated video filtering [54, 55], action recognition [26, 38] and motion prediction [5, 53]. Recently, scene motion primitives have also been critical for increasing the controllability and consistency of video generation models [15], and have gained an important role in robotics applications [43, 4].

Optical flow and occlusion are two core primitives in this domain. The most common approach to optical flow estimation uses supervised learning from labeled flow data. However, because densely annotating flow in real-world scenes is prohibitively expensive, supervised methods usually rely on synthetic data [31, 32]. Methods trained on synthetic data have proven to be robust in real-world video [40, 50]. However, relying on this approach has limited flow estimation methods from taking

^{*}Equal contribution.

¹Project website: https://neuroailab.github.io/opt_cwm_page/

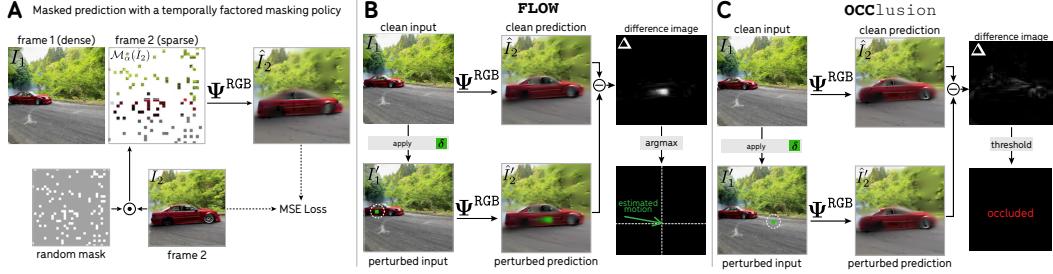


Figure 1: **Counterfactual probing for flow and occlusion:** (A) CWMs learn to predict the next frame with a temporally factored masking policy [3]. (B) The motion of a point can be estimated using a counterfactual probing program FLOW: the model predicts the next frame with and without a perturbation placed on the point, and the difference image between the clean and perturbed predictions reveals the estimated motion. (C) Occlusion is estimated using a related probe OCC: a diffuse and low magnitude difference indicates that the perturbed point has been occluded.

advantage of recent advances in self-supervised visual representation learning from massive video datasets [41, 35, 14] and inherently has to contend with a sim-to-real domain gap.

In contrast, self-supervised motion-estimation methods are typically based on *photometric loss* – learning frame-pair feature correspondences to warp pixels from one RGB frame to corresponding locations in future frames. However, pure photometric loss is a weak constraint, in part because correspondences are often ill-defined (e.g., objects with homogeneous textures). Existing state-of-the-art methods use various nearest neighbor or clustering procedures [21, 6], or complement photometric loss with strong task-specific regularizations like smoothness [23, 39]. Because these heuristics are often only correct in narrow scenarios, performance is limited in cases where the heuristics fail.

In this work, we show how to extract high-quality self-supervised flow and occlusion estimates without the use of such heuristics. A promising initial approach to this problem comes from Counterfactual World Modeling (CWM) [3, 44], a method that constructs zero-shot estimates of a variety of visual properties (flow, segments, shape, etc) from an underlying pre-trained multi-frame model (Figure 1). CWM begins with a *sparse RGB-conditioned next frame predictor* Ψ^{RGB} , a two-frame masked autoencoder trained with a highly asymmetric masking policy [3]. This forces the model to encode scene dynamics in a small number of patch feature tokens that *factor* temporal dynamics from visual appearance. Motion properties can then be extracted from the base model in a zero-shot fashion via simple “counterfactual probes”, acting as a kind of test-time inference procedure. For example, to compute flow from a given point in the first frame, a perturbation is made to the image at that point, and flow is computed by comparing the difference between Ψ^{RGB} ’s prediction on the perturbed (counterfactual) condition with its prediction in the original unperturbed (factual) condition (see Figure 1B). Intuitively, this corresponds to placing a visual marker on the point, predictively flowing it forward, and then analyzing where it gets “carried” in the predicted next frame.

In principle, the CWM approach circumvents the key limitation of the heuristic-based methods by replacing situation-specific fixed heuristics (e.g., motion smoothness) with a general-purpose predictive model. The quantity of interest, in our case flow, is defined as the outcome of probing the model’s predictions [44]. However, while CWM is an intriguing conceptual proposal, it has a conceptual drawback that substantially limits its real-world performance: the probes that it relies on are hand-designed and can be out-of-domain in real-world video. Perturbations are often not properly “carried along” with moving objects, resulting in suboptimal counterfactual motion extractions (Figure 2B). As a result, the accuracy of the flows extracted by the originally proposed CWM method has remained inferior to state-of-the-art flow estimation solutions.

Here we present Opt-CWM, a generic solution to this problem. Opt-CWM introduces two conceptual innovations that leverage the advantages of the CWM idea while making it highly performant in real-world settings. The first of these innovations is a method for *parameterizing* a counterfactual probe policy generator with a learnable neural network (Figure 2A). This network can predict situation-specific probes that take into account the appearance context (both local and global) around target points to be tracked, and thus can be less out-of-distribution than hand-coded probes. The second innovation is an approach for *learning* the probe generator in a principled fashion without relying

on any supervision from labeled data or heuristics. The main insight behind this learning procedure is to construct a task-agnostic generalization of the asymmetric masking principle used to train the base model Ψ^{RGB} itself. In particular, Opt-CWM connects sparse outputs of the parameterized flow prediction function to a randomly initialized sparse flow-conditioned next-frame predictor Ψ^{flow} and performs joint optimization (Figure 3) of both Ψ^{flow} and the probe generator. This forces Ψ^{flow} to predict a future frame based on a present frame and sparse (putative) flow, creating an information bottleneck that generates useful gradients back on the probe generator’s parameters.

We find that Opt-CWM achieves strong performance when compared with existing motion estimation methods (both supervised and self-supervised) that are purposely built for this task [39, 37, 50, 33], as well as recent adaptations of large-scale self-supervised visual representations for motion estimation [23], when evaluated on real-world benchmarks [10]. The success of our approach reveals a promising direction for scalable counterfactual extraction of a variety of visual properties.

2 Related Work

Supervised flow estimation. Supervised methods like RAFT [40, 50] approach optical flow as a dense regression problem and learn from synthetic optical flow datasets [7, 31]. They also typically use task-specific architectures that are tailor-made for optical flow estimation, with strong inductive biases (e.g., iterative flood-filling) and task-specific regularizations to ensure learning from limited training datasets. While these methods show strong performance in many contexts, their reliance on synthetic supervision and specialized architectures limits their generalizability. It is for this reason that our self-supervised Opt-CWM, which can be trained on unlimited in-the-wild videos, can outperform even supervised methods in certain key contexts.

Self-supervised flow with photometric loss. Methods for self-supervised flow learning [24, 39, 27], such as SMURF [39], learn dense visual correspondence by optimizing photometric loss. Because of the weakness of pure photometric loss alone as supervision, these methods rely on a complex variety of heuristically chosen regularization losses (e.g., spatial smoothness of flow, among others) to achieve reasonable performance levels. Because these heuristics need to be tuned in a dataset-specific manner, these methods have failure models in complex dynamic scenes, especially with variable and large time-frame gaps. In contrast to these methods, Opt-CWM does not rely on such heuristics, as the quality of the flow extraction is directly correlated with the prediction learning objective.

Augmenting self-supervised flow with visual pre-training. A variety of methods augment photometric loss using features derived from self-supervised visual pre-training [2, 6, 51, 23]. For example, the recent state-of-the-art Doduo method [23] uses DINOv2 features as a basis on which to compute feature correspondences for downstream photometric loss. This approach allows the extension of these methods to wider video training datasets (such as Kinetics) and thereby improves performance and generalizability. However, even when backed by strong image features, photometric loss is a weak constraint, requiring additional heuristic regularizers to improve performance. Opt-CWM, by avoiding scenario-specific heuristics, compares favorably to these methods.

Point tracking. Point tracking across multiple frames is a related problem to flow and occlusion estimation. The majority of solutions for point tracking are supervised [19, 10] or semi-supervised [25, 11], and as such are further out of scope for this work. However, several recent works propose self-supervised approaches to finding temporal correspondence, typically relying on pre-trained representations [6, 21]. These methods then extract point tracks through consistency objectives such as cycle consistency [6, 21, 37] or heuristics like softmax-similarity [45] applied at the frame pair level. Tumanyan et al. [42] take a related approach, performing test-time optimization on individual videos using pre-trained DINO features and short-term supervision from RAFT. The current state-of-the-art self-supervised method in this domain, GMRW [37], which is the main baseline comparison for our proposed Opt-CWM, uses cycle consistency to build tracks based on frame pair-level predictions.

Real-world motion benchmarks. The TAP-Vid benchmark [10] provides a critical set of metrics for measuring the accuracy of motion-estimation systems in real-world video. This is critical for ensuring that potential advances in motion estimation are tested against the challenges of real-world motion complexities, covering scenarios not encountered in synthetic benchmarks (e.g., non-rigid, highly articulated, deformable and breakable objects, fluids, inelastic collisions, animate objects, and human interactions). While originally intended for the supervised point tracking domain, recent

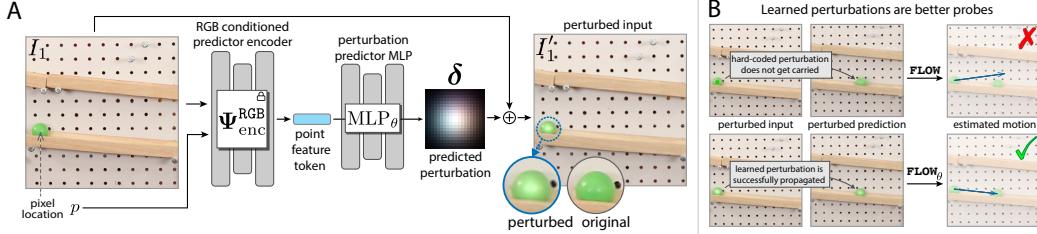


Figure 2: **Parameterizing the counterfactual probe generator as an input-conditioned function.** (A) Building on a pre-trained RGB-conditioned predictor Ψ^{RGB} , Opt-CWM uses an image-conditioned perturbation prediction function δ_θ containing a small MLP_θ . As illustrated in B, δ_θ can learn to predict image-conditioned perturbations that blend naturally with the underlying scene, potentially allowing for the perturbation to be accurately carried over to the next frame prediction. But how should the parameters of δ_θ be learned without any flow supervision labels? See Figure 3.

self-supervised tracking works have begun to utilize TAP-Vid as a main benchmark for motion estimation [23, 37]. In this work, we also follow this practice.

3 Methods

3.1 Counterfactual World Modeling

RGB-Conditioned Next Frame Predictor. A Counterfactual World Model (CWM) is an RGB-conditioned next frame predictor Ψ^{RGB} , consisting of an encoder $\Psi^{\text{RGB}}_{\text{enc}}$ and decoder $\Psi^{\text{RGB}}_{\text{dec}}$, similar to a VideoMAE [41], but trained with a highly asymmetric masking policy that reveals all patches of the first frame and a small fraction of patches of the second frame [3] (and see Figure 1A). Specifically, let $I_1, I_2 \in \mathbb{R}^{3 \times H \times W}$ be two frame pairs in a video, and define \mathcal{M}_α as a masking function that randomly masks some fraction, α , of patches in an image. Given a fully visible first frame I_1 and a partially visible second frame $\mathcal{M}_\alpha(I_2)$, Ψ^{RGB} is trained to predict I_2 by minimizing

$$\mathcal{L} = \text{MSE}(\hat{I}_2, I_2), \text{ where } \hat{I}_2 = \Psi^{\text{RGB}}(I_1, \mathcal{M}_\alpha(I_2)). \quad (1)$$

Here we train CWM with $\alpha = 0.1$ on publicly available video data with a frame gap of 150ms. (See the supplement for more details.) The asymmetric masking training policy forces Ψ^{RGB} to separate scene appearance—which is wholly available in the first frame—from scene dynamics, the information of which is now concentrated in the sparse set of visible next frame patches. In other words, Ψ^{RGB} is “temporally factored”.

Motion Estimation With Counterfactual Probes. Because it induces strong dependence on the appearance and position of the revealed patches from I_1 and I_2 , temporal factoring allows the zero-shot extraction of visual structure through applying counterfactual probes: small changes to the appearance or the position of visible patches. By measuring the predictor’s response to these counterfactuals, we can easily extract useful information like object motion, segments, or shape from its representation [3]. As shown in Figure 1B, using the FLOW procedure, a colored patch is placed on a moving object, and its motion can be determined by finding its location in the predicted frame. To track some pixel location $p_1 = (\text{row}_1, \text{col}_1)$ from one frame to the next, input image I_1 is perturbed by adding a colored patch δ at pixel location p_1 to create the counterfactual input image $I'_1 = I_1 + \delta$. Then, the next frames with and without the counterfactual perturbation are predicted:

$$\hat{I}'_2 = \Psi^{\text{RGB}}(I_1 + \delta, \mathcal{M}_\alpha(I_2)) = \Psi^{\text{RGB}}(I'_1, \mathcal{M}_\alpha(I_2)), \text{ and } \hat{I}_2 = \Psi^{\text{RGB}}(I_1, \mathcal{M}_\alpha(I_2)). \quad (2)$$

Subtracting these two predicted frames and taking an L_1 -norm across the color channels produces the difference image $\Delta = |\hat{I}'_2 - \hat{I}_2|_1$. Finally, the next-frame pixel location \hat{p}_2 can be computed by finding the peak in the difference image: $\hat{p}_2 = \arg \max \Delta$. FLOW is essentially a kind of test-time inference applied to the pretrained CWM base model. To extract occlusion information, the OCC procedure is identical to FLOW up to computation of the difference image Δ (See Figure 1). However, if a patch in the first frame gets occluded in the second frame, the response to the perturbation in the difference image Δ will be small in magnitude and diffuse in shape. Applying a simple threshold to the maximum value of Δ creates an occlusion binary indicator.

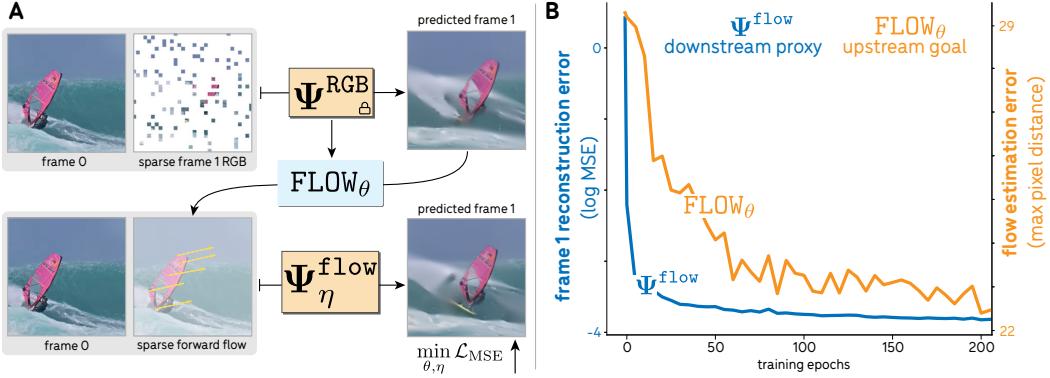


Figure 3: **A generic sparse-prediction principle for learning optimized counterfactuals.** **A)** The parameterized counterfactual flow function FLOW_θ extracts motion from a frozen RGB-conditioned predictor Ψ^{RGB} through counterfactual perturbation (details in Figure 2). Its parameters θ are trained using gradients from a flow-conditioned predictor Ψ^{flow} that is jointly trained to perform next-frame prediction. The predictor Ψ^{flow} *can only learn to predict future frames if it is given correct flow-like vectors*, a form of information bottleneck that ensures useful gradients are passed back to FLOW_θ . We thus exploit the pre-trained Ψ^{RGB} predictor by bootstrapping a flow-conditioned predictor Ψ^{flow} , using an extension of the principle of sparse next-frame prediction. **(B)** There is tight coupling between the flow-conditioned predictor Ψ^{flow} and the learned flow estimation function FLOW_θ , so both pixel reconstruction (the proxy goal) and motion estimation (our real goal) simultaneously improve.

3.2 Optimizing Counterfactual Perturbations

The problem with hand-designed perturbations. While the CWM approach of using fixed hand-designed probes (e.g., additive colored squares) can sometimes be effective in probing motion with Ψ^{RGB} , they are often suboptimal. First, this is because they are *out of domain* for the base predictor, and second, by being image- and position-independent, they can be unsuited to the local image context. Anecdotally, this results in visually obvious failure cases, such as the perturbation not moving with the object or being suppressed entirely.

Using the challenging TAP-Vid benchmark (see Section 4 for more details), we empirically quantified that the original fixed hand-designed perturbations are insufficient for self-supervised motion estimation performance (see CWM results in Table 1). The main requirement for a “good” perturbation is that it is sufficiently in-distribution and image/point specific to cause meaningful context-dependent changes for probing the base predictor. But how can probes be designed for this purpose? Our solution has two basic novel components: *parameterizing* an image-conditioned and differentiable counterfactual probe generator, and formulating a general-purpose self-supervised loss objective for *learning* the probe generation policy parameters.

Parameterized Perturbations. We re-formulate the motion extraction procedure from Section 3.1 to make it a parameterized differentiable policy function and introduce the functional form of a sum of colored Gaussians as a natural perturbation class. (See Figure 2A)

Let $\text{FLOW}_\theta : (I_1, I_2, p_1) \mapsto \hat{\varphi}$ be a per-pixel motion estimation function with learnable parameters θ that takes an image pair (I_1, I_2) and a pixel location p_1 in I_1 and outputs the predicted flow $\hat{\varphi} = \hat{p}_2 - p_1$. Here, \hat{p}_2 is the estimated second frame pixel location. The procedure FLOW_θ involves multiple components: the counterfactual perturbation function, $\delta_\theta(I_1, \mathcal{M}_\alpha(I_2), p_1)$, which now produces variable counterfactual perturbations as a function of the frame pair and pixel location (as opposed to a fixed perturbation δ , used in the standard CWM); the pre-trained, frozen, RGB-conditioned predictor, Ψ^{RGB} , as utilized within the FLOW_θ program; and a “softargmax” module to predict a pixel location using a differentiable approximation to the argmax function.

Gaussian Perturbations. We choose to parameterize the counterfactual perturbations as Gaussians because this function class presents a natural method of forming in-domain counterfactual input images. To compute the Gaussian parameters for a given counterfactual perturbation, we use the

encoder of the RGB-conditioned predictor, $\Psi_{\text{enc}}^{\text{RGB}}$. This outputs a sequence of feature tokens from its last transformer block, which encode global and local scene content for each patch and thus form a natural basis from which Gaussian parameters can be computed using a shallow MLP. Given a pixel location p_1 , we find its corresponding patch embedding token, t_{p_1} , and use it as an input to an MLP that outputs a parameter vector which is in turn used to compute the Gaussian perturbation:

$$\delta_\theta(I_1, \mathcal{M}_\alpha(I_2), p_1) = \text{Gaussian}(\text{MLP}_\theta(t_{p_1})) \text{ where } t_{p_1} = \Psi_{\text{enc}}^{\text{RGB}}(I_1, \mathcal{M}_\alpha(I_2))_{p_1}. \quad (3)$$

Then, FLOW_θ computes the difference image, Δ , similar to the FLOW program, using $\hat{I}'_2 = \Psi^{\text{RGB}}(I_1 + \delta_\theta, \mathcal{M}_\alpha(I_2))$. To make FLOW_θ differentiable, we use a softargmax over Δ to estimate \hat{p}_2 .

Softargmax Module. We follow the softargmax formulation proposed in [48]. Given a difference image, $\Delta = |\hat{I}'_2 - \hat{I}_2|^c$, we apply a temperature-scaled 2D softmax and then take the expectation to find $\hat{p}_2 = \mathbb{E}_{p_2 \sim \text{softmax}(\Delta/\tau)}[p_2]$. The predicted flow is then computed as $\hat{\varphi} = \hat{p}_2 - p_1$.

Learning Optimized Counterfactuals. Now that the perturbation generator is parameterized, the question arises: how can its parameters be learned? What type of self-supervised objective will cause the perturbation generator function to be context-specific and result in accurate flow vectors? Our main insight is that this problem can be “bootstrapped” in a robust fashion by generalizing the sparse asymmetric mask learning paradigm to encompass a coupled and mixed-mode RGB-Flow prediction problem without using labeled data (see Figure 3). Specifically, we jointly train the parameterized counterfactual motion prediction function, FLOW_θ , which estimates a set of flow vectors; together with a sparse flow-conditioned predictor, Ψ^{flow} , which takes a single frame along with sparse flow vectors to predict the next frame. We constrain FLOW_θ by passing its outputs as inputs to Ψ^{flow} and training end-to-end using final RGB reconstruction loss on the predictions of Ψ^{flow} . As Ψ^{flow} has no access to any RGB patches from the second frame I_2 , it is only if the putative flows are correct that it be possible for Ψ^{flow} to use them to minimize the next-frame reconstruction loss.

Specifically, given an image pair (I_1, I_2) , we estimate the motion for a set of pixels $\mathcal{P} = \{p_1^{(1)}, p_1^{(2)}, \dots, p_1^{(n)}\}$ using FLOW_θ , obtaining a set of estimated forward flow vectors $\hat{\mathcal{F}} = \{\hat{\varphi}^{(1)}, \hat{\varphi}^{(2)}, \dots, \hat{\varphi}^{(n)}\}$. Let $\Psi_\eta^{\text{flow}}: (I_1, \hat{\mathcal{F}}) \mapsto \hat{I}_2$ be a flow-conditioned next frame predictor with parameters η that takes the first frame RGB input I_1 and predicts the next frame \hat{I}_2 , conditioned on the flow input $\hat{\mathcal{F}}$. We jointly optimize θ and η , by minimizing $\min_{\theta, \eta} \mathcal{L}_{\text{MSE}}(\hat{I}_2, I_2)$. Figure 3B shows that optimizing end-to-end reconstruction does indeed couple tightly to upstream flow accuracy, as required for effective bootstrapping.

In this work, we investigate two Ψ^{RGB} base predictors, with 175M and 1B learnable parameters. For optimizing the counterfactuals and ablations, we use the 175M model, and report benchmark results by applying the learned counterfactual probes to the 1B model.

Inference-time Enhancements. A simple random masking strategy may inadvertently reveal the ground truth RGB at the next frame location we are trying to predict for a particular point. In this event, the model will not carry over the counterfactual perturbation to the future frame, leading to an erroneous flow prediction. A simple yet effective inference-time solution is *multi-mask* (MM), in which we apply multiple random masks and average across the resulting delta images to reduce the influence of sub-optimal masks. Following prior work [13, 22], we also perform an iterative multiscale refinement of flow predictions by recursively applying FLOW_θ to smaller crops centered on the predicted point location, \hat{p}_2 of the previous iteration. We observe that FLOW_θ is able to generate good initial flow predictions, and thus benefits from refinement (Table 2).

4 Experiments

Evaluation Protocol. Our main datasets for evaluation are TAP-Vid DAVIS and TAP-Vid Kinetics [10], the DAVIS [34] and Kinetics [26] datasets with human flow and occlusion annotations, along with the synthetic Kubric [18] dataset where ground-truth flows and occlusions are known. All the methods we test output direct two-frame flow (point-to-point correspondence) predictions. Some of them output occlusion predictions, which we use when available. For flow methods without an existing implementation of occlusion prediction, we use cycle consistency to compute occlusion estimates: occlusion is the event of inconsistency between forward and backward predictions greater than 6 pixels. Models that can accept variable resolution inputs are run with the resolution closest to native that can be fit into memory, ensuring that each is run optimally. Metrics for both procedures

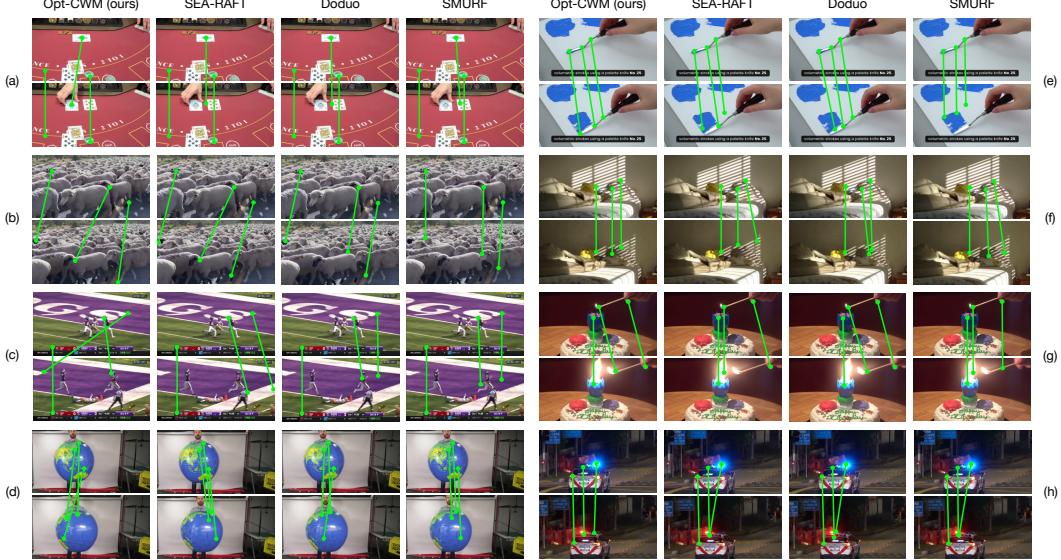


Figure 4: **Qualitative comparisons on real-world videos.** These examples show the failure modes of methods reliant on visual similarity. We observe that the baseline models struggle against subtle but functionally important changes in largely homogeneous scenes depicting objects of similar color and texture ((a) - (e)). Further, the use of photometric loss in self-supervised methods such as SMURF can also be susceptible to differences in light intensity across frame pairs ((f) - (h)). In contrast, as a visual world model, Opt-CWM possesses a holistic understanding of scene transformations and object dynamics, and is able to find correspondence without arbitrary heuristics.

are always computed after rescaling predictions to 256×256 resolution, as in [37]. Following the TAP-Vid First protocol proposed in [10], for each point, we take the frame in which it is first visible and track its motion only forward in time. We also use the first frame a point is visible as the reference frame, and track points in future time steps with reference to this frame. This is a challenging setting as it involves tracking points across variable and often large frame gaps. It is also most comparable to many real-world use-case scenarios where the frame gap may be unknown or uncontrollable. We show additional results for the TAP-Vid Constant five-Frame Gap (CFG) protocol in the supplementary material, which is more favorable to standard optical flow methods.

Metrics. We use the official metrics from the TAP-Vid evaluation protocol [10]: 1) *Average Jaccard* (AJ), a precision metric measuring a combination of point tracking and occlusion prediction; 2) *Average Distance* (AD) between the estimated pixel and ground truth locations; 3) $\langle \delta_{avg}^x \rangle$, which measures the average percentage of points predicted correctly within a variety of pixel distance thresholds; and 4) *Occlusion Accuracy* (OA), the fraction of points correctly predicted as either occluded or visible. Additionally, to account for the relative lack of occlusion events in the dataset, we also evaluate 5) *Occlusion F1* (OF1), which computes the F1 score of the occlusion predictions.

Baselines. Our evaluation protocol requires tracking points in videos through occlusion by finding temporal correspondence: given a frame pair, determine where the point went or whether it was occluded. Therefore, the appropriate baselines are supervised and self-supervised optical flow methods, and self-supervised temporal correspondence methods. We run the following baselines:

CWM [3, 44] represents motion estimated through counterfactual extractions with a fixed hand-designed perturbation. This comparison shows how the innovations introduced by Opt-CWM lead to very substantial performance improvements.

GMRW [37] is a self-supervised video correspondence approach that trains a transformer using cycle consistency on contrastive random walks. GMRW is designed for temporal correspondence-based long-range tracking and is the SOTA baseline for comparison on TAP-Vid First.

SMURF [39] is an unsupervised method specifically designed for optical flow estimation. SMURF tailors the RAFT [40] architecture so it can be trained using a combination of optical flow-specific

Table 1: **Quantitative results on TAP-Vid dataset.** In the TAP-Vid First protocol, a point is tracked from when it is first visible to the end of the video, requiring motion estimation across large frame gaps. Opt-CWM outperforms both supervised and unsupervised baselines. “S” and “U” indicate supervised and unsupervised, respectively. Doduo is not strictly unsupervised as it uses segmentation labels. GMRW is trained on the Kubric dataset, (marked with \dagger), making it a more favorable evaluation setting for that method because of the minimal domain gap. Best performing supervised models (shaded) are considered separately.

Method	DAVIS						Kinetics						Kubric					
	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow			
S	CoTracker-v3 [25]	39.85	19.04	57.96	76.87	47.33	38.11	25.00	53.41	77.29	59.43	76.41	5.10	87.79	90.48	71.06		
	RAFT [40]	41.77	25.33	54.37	66.40	56.12	41.92	23.00	53.49	74.67	70.62	71.93	5.60	82.15	88.54	68.34		
	SEA-RAFT [50]	43.41	20.18	58.69	66.34	56.23	33.40	30.72	46.11	64.55	64.39	75.06	6.54	84.63	89.50	70.92		
	DPFlow [33]	49.20	16.86	62.51	71.51	60.15	47.33	17.65	58.74	81.98	77.00	78.45	5.05	86.81	90.86	74.53		
U \dagger	Doduo [23]	23.34	13.41	48.50	47.91	49.43	31.51	15.05	46.87	66.71	66.01	54.98	5.31	72.20	73.56	52.67		
U	GMRW [37]	36.47	20.26	54.59	76.36	42.85	25.58	29.28	41.63	71.05	33.57	58.36 \dagger	3.84 \dagger	79.27 \dagger	80.70 \dagger	32.18 \dagger		
	SMURF [39]	30.64	27.28	44.18	59.15	46.91	33.33	32.56	44.37	66.60	60.90	65.81	6.81	80.57	87.91	58.42		
CWM [3, 44]	15.00	23.53	26.30	76.63	18.22	17.60	26.43	29.61	72.59	28.95	28.77	11.64	41.63	84.93	11.35			
	Opt-CWM 1B (ours)	51.88	7.70	68.63	80.44	68.43	47.03	11.25	61.31	80.74	76.21	79.98	3.36	89.40	90.11	72.56		

heuristic losses like photometric loss and a variety of types of smoothness regularizations. SMURF is trained on synthetic datasets often used for optical flow estimation learning.

Doduo [23] applies a SMURF-like combination of self-supervised photometric and smoothness losses, scaling them to larger model architectures and in-the-wild training videos [52]. It leverages the DINoV2 [8] encoder to incorporate strong image priors. The Doduo model and training dataset are comparable in size to Opt-CWM, providing a control to ensure that the improved performance of Opt-CWM relative to SMURF is not solely due to model or dataset training size.

SEA-RAFT [50] is a supervised flow method building on RAFT [40] by adding additional pretraining on TartanAir [49], a novel mixture of Laplace loss, and improved initialization of the flow estimation.

DPFlow [33] is a very recent supervised method that leverages architectural advances to train against high-resolution flow data, leading to improvements relative to SEA-RAFT in many evaluations.

CoTracker-v3 [25] is a supervised multi-frame model. We evaluate it as a two-frame model, since the multi-frame evaluation protocol is not comparable to Opt-CWM or the other baselines.

Results. We present our main results in Table 1. Opt-CWM outperforms all other self-supervised baselines for all datasets, as well as the supervised methods in most cases. In particular, Opt-CWM especially improves upon AD, demonstrating robustness even in difficult (though more realistic) cases with long frame gaps or high motion. The gap is especially large on real-world datasets such as DAVIS, where the baselines struggle with videos violating the heuristic assumptions for which they were optimized. Our experiments on the synthetic Kubric dataset [18], which is more favorable to methods trained on synthetic data, demonstrate that Opt-CWM has the best performance in this out-of-domain scenario.

Qualitatively, Opt-CWM makes strong use of its underlying world model, allowing it to accurately track a point’s movement through long frame gaps and complex dynamics, including changes of lighting conditions. SEA-RAFT, Doduo, and SMURF, which lack an explicit dynamic world model, often lose track when the tracked object rotates, when lights turn on or off, or when shadows move (Figure 4). Further qualitative examples, including videos, can be found in the supplement.

Ablations and Hyperparameter Analysis. We perform several ablation studies of Opt-CWM. First (Table 2, left), we compare Opt-CWM with a spectrum of types of hard-coded perturbations, representing various forms of unoptimized CWM baseline, and find that learned interventions perform substantially better (see Table 2, left). The highly image-dependent nature of the optimized predicted perturbations is illustrated in the supplement. Increasing input resolution, the multi-mask inference (MM), and multiscale refinement (MS) procedures all improve performance.

We also study the effect of the core hyperparameters of our procedure both in training and inference (Table 3). We find that asymmetric masking during training is critical (which is likely why masked video models with standard masking procedures, such as VMAE [47], do not perform well at flow extraction), but that our model is highly stable to parameter choices at inference time.

Table 2: **(Left) Ablations.** We evaluate multi-mask (MM) and multiscale (MS), in addition to comparing our optimized perturbations (“learned”) with the fixed ones (“red square”/“green square”) [3, 44]. MM and MS columns indicate the number of masking or zooming iterations. We observe a clear improvement on all metrics, highlighting the need for bespoke, in-distribution counterfactual perturbations, multi-mask inference and multi-scale refinement. **(Right) Distillation into DPFlow.** For fast inference, we distill Opt-CWM into the small and efficient DPFlow architecture by sparsely pseudo-labeling Kinetics with Opt-CWM. This approach outperforms the self-supervised SMURF and is competitive with the supervised models, while requiring no labeled training data.

				TAP-Vid CFG		AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow
Type	MM	MS	Res.	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow		
learned	10	4	512	47.53	8.73	64.83	80.87	60.74		
learned	1	4	512	42.85	9.82	59.72	78.55	60.20		
learned	10	0	512	32.71	11.98	49.20	79.28	41.45		
learned	3	2	512	40.51	9.72	58.57	80.34	50.06		
red square	3	2	512	21.37	18.25	36.31	75.38	27.21		
green square	3	2	512	30.44	12.72	47.37	76.89	19.10		
learned	3	2	256	37.00	11.62	52.82	81.10	57.84		
learned	1	0	256	21.85	20.55	34.34	78.03	53.10		
red square	1	0	256	15.00	23.53	26.30	76.63	18.22		
green square	1	0	256	19.91	19.61	32.73	78.31	36.53		
<hr/>										
<i>TAP-Vid First — Main Benchmark</i>										
S	RAFT [40]			69.69	1.43	83.83	81.98	46.08		
SEA-RAFT [50]				69.89	1.44	84.82	82.00	47.52		
DPFlow [33]				78.09	0.99	87.86	90.19	68.57		
U	SMURF [39]			65.75	2.40	79.45	82.26	42.65		
Opt-CWM 175M				69.53	1.19	83.15	88.85	44.17		
Opt-CWM Distilled				74.77	1.46	85.03	88.74	55.39		
<hr/>										

				TAP-Vid First — Main Benchmark		AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow
S	RAFT [40]			41.77	25.33	54.37	66.40	56.12		
SEA-RAFT [50]				43.41	20.18	58.69	66.34	56.23		
DPFlow [33]				49.20	16.86	62.51	71.51	60.15		
U	SMURF [39]			30.64	27.28	44.18	59.15	46.91		
Opt-CWM 175M				47.53	8.73	64.83	80.87	60.74		
Opt-CWM Distilled				45.55	15.68	59.36	69.27	58.41		

Table 3: **Mask hyperparameter variants.** **(Left) At training time.** We train Ψ^{RGB} with non-temporally factored masking policies similar to Video-MAE [41, 47]. The notation of 55-55 indicates 55% of patches are masked in the first frame and 55% are masked in the second frame. Tube masking selects patches at the same spatial location over time, whereas random independently samples patches in each frame. MAE-style masking during training is strictly worse than the temporally-factored masking policy we use as the standard in this paper (shown for reference in the bottom row). All experiments here use 256x256 resolution, MM-3 and MS-2. **(Right) At inference.** We evaluate a 512 resolution Ψ^{RGB} across various masking ratios for the second frame using the MM-3 and MS-2 setting. The standard masking ratio for all results in this work is included as 90% (Ref.) in this table.

Mask	Train	Test	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow	Masking Ratio	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OF1 \uparrow
tube	55-55	0-90	23.94	15.61	36.90	72.19	52.36	50%	42.78	10.52	58.78	79.18	60.68
tube	75-75	0-90	22.55	15.86	39.63	58.20	52.27	60%	43.28	10.12	59.56	80.33	60.80
tube	90-90	0-90	15.23	18.57	32.12	51.98	49.20	70%	43.25	9.72	59.95	81.24	59.68
random	75-75	0-90	29.09	14.64	42.57	73.51	57.06	80%	42.68	9.44	59.76	81.64	57.53
random	75-75	0-75	34.06	12.79	47.54	76.07	60.81	85%	41.99	9.57	59.58	80.92	54.06
random	0-90	0-90	37.00	11.62	52.82	81.10	57.80	90% (Ref.)	40.51	9.72	58.57	80.34	50.06
								95%	37.68	10.57	55.87	79.63	45.00
								98%	32.85	13.15	50.48	78.19	41.42

Distillation into efficient architectures RAFT, SEA-RAFT, SMURF, and DPFlow use a highly efficient but special-purpose flow architecture, rather than large general-purpose ViTs [12]. To isolate the effect of this specific architecture design, we train the DPFlow architecture with pseudo-labels generated by Opt-CWM. Specifically, we take a frame pair for each clip, pseudo-label the motion for 1% of the pixels, and train a DPFlow architecture on this pseudo-labeled dataset. We find that this distilled model outperforms the equivalent self-supervised baseline SMURF and is competitive with the supervised techniques (Table 2, right). This outcome pinpoints that the core reason for Opt-CWM’s improved performance is our contribution of the novel optimized counterfactual extraction scheme, and the flexible ability to train on unrestricted data that this approach enables, rather than the ViT architecture as such. It is also a practically useful result, since it enables highly efficient inference using the lightweight DPFlow network.

Limitations and Negative Societal Impact The main limitation of our work is the high compute requirements and long training times of video vision transformers. These models are also costly at inference time, which can limit deployment in resource-constrained environments. We demonstrate a pathway to resolving this by distilling the trained Opt-CWM into small and efficient architectures.

This limitation also carries a potential negative societal impact due to the significant environmental footprint associated with large-scale training on compute clusters.

5 Conclusion & Future Work

We have demonstrated the effectiveness of Opt-CWM in learning motion concepts, achieving state-of-the-art performance on real-world benchmarks. Our paper takes an essential first step in demonstrating the strong quantitative potential of optimized counterfactuals for probing pre-trained video predictors. An important extension of the current work within the domain of scene motion understanding will be to train a multi-frame version of Opt-CWM to create the next generation of scalable self-supervised point trackers, as it has been shown that combining information from three or more frames can help improve flow and occlusion estimation substantially [25]. We plan to scale Opt-CWM’s training data, leveraging the wide availability of videos; and explore various alternatives to the masked autoencoder architecture, such as autoregressive or diffusion-based generative video models.

Equally importantly, our twin ideas – parameterizing an input-conditioned counterfactual probe generator and bootstrapping the learning of the probe-generator parameters with an end-to-end sparse prediction task – are task-generic rather than flow-specific. A key next step will thus be to explore the use of these Opt-CWM methods to create self-supervised estimators for a wide variety of visual quantities, including object segments, depth maps, and 3D shape [3, 44].

Acknowledgments and Disclosure of Funding

This work was supported by the following awards: Simons Foundation grant SFI-AN-NC-GB-Culmination-00002986-05, National Science Foundation CAREER grant 1844724, National Science Foundation Grant NCS-FR 2123963, National Science Foundation Grant RI 2211258, Office of Naval Research grant N00014-20-1-2589, ONR MURI N00014-21-1-2801, ONR MURI N00014-24-1-2748, and ONR MURI N00014-22-1-2740. We also thank the Stanford HAI, Stanford Data Sciences, the Marlowe team, and the Google TPU Research Cloud team for computing support.

References

- [1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. *arXiv preprint arXiv:2106.08254*, 2021.
- [2] Adrien Bardes, Jean Ponce, and Yann LeCun. Mc-jepa: A joint-embedding predictive architecture for self-supervised learning of motion and content features. *arXiv preprint arXiv:2307.12698*, 2023.
- [3] Daniel M Bear, Kevin Feigl, Honglin Chen, Wanhee Lee, Rahul Venkatesh, Klemen Kotar, Alex Durango, and Daniel LK Yamins. Unifying (machine) vision via counterfactual world modeling. *arXiv preprint arXiv:2306.01828*, 2023.
- [4] Homanga Bharadhwaj, Debidatta Dwibedi, Abhinav Gupta, Shubham Tulsiani, Carl Doersch, Ted Xiao, Dhruv Shah, Fei Xia, Dorsa Sadigh, and Sean Kirmani. Gen2act: Human video generation in novel scenarios enables generalizable robot manipulation. *arXiv preprint arXiv:2409.16283*, 2024.
- [5] Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani. Track2act: Predicting point tracks from internet videos enables generalizable robot manipulation. In *European Conference on Computer Vision*, pages 306–324. Springer, 2024.
- [6] Zhangxing Bian, Allan Jabri, Alexei A Efros, and Andrew Owens. Learning pixel trajectories with multiscale contrastive random walks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6508–6519, 2022.
- [7] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In A. Fitzgibbon et al. (Eds.), editor, *European Conf. on Computer Vision (ECCV)*, Part IV, LNCS 7577, pages 611–625. Springer-Verlag, October 2012.

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 9650–9660, 2021.

[9] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. In *International conference on machine learning*, pages 1691–1703. PMLR, 2020.

[10] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens, Lucas Smaira, Yusuf Aytar, Joao Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a video. *Advances in Neural Information Processing Systems*, 35:13610–13626, 2022.

[11] Carl Doersch, Pauline Luc, Yi Yang, Dilara Gokay, Skanda Koppula, Ankush Gupta, Joseph Heyward, Ignacio Rocco, Ross Goroshin, João Carreira, et al. Bootstrap: Bootstrapped training for tracking-any-point. In *Proceedings of the Asian Conference on Computer Vision*, pages 3257–3274, 2024.

[12] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

[13] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional networks. In *Proceedings of the IEEE international conference on computer vision*, pages 2758–2766, 2015.

[14] Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Girshick, and Kaiming He. A large-scale study on unsupervised spatiotemporal representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 3299–3309, 2021.

[15] Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, et al. Motion prompting: Controlling video generation with motion trajectories. *arXiv preprint arXiv:2412.02700*, 2024.

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

[17] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz MuellerFreitag, Florian Hoppe, Christian Thurau, Ingo Bax, and Roland Memisevic. The “Something Something” Video Database for Learning and Evaluating Visual Common Sense. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 5843–5851, 2017. URL <https://20bn.com/datasets/something-something/v2>. Dataset: 20BN-Something-Something V2.

[18] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset generator. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 3749–3761, 2022.

[19] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking through occlusions using point trajectories. In *European Conference on Computer Vision*, pages 59–75. Springer, 2022.

[20] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 16000–16009, 2022.

[21] Allan Jabri, Andrew Owens, and Alexei Efros. Space-time correspondence as a contrastive random walk. *Advances in neural information processing systems*, 33:19545–19560, 2020.

[22] Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi, and Kwang Moo Yi. Cotr: Correspondence transformer for matching across images. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 6207–6217, 2021.

[23] Zhenyu Jiang, Hanwen Jiang, and Yuke Zhu. Doduo: Learning dense visual correspondence from unsupervised semantic-aware flow. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pages 12420–12427. IEEE, 2024.

[24] Rico Jonschkowski, Austin Stone, Jonathan T Barron, Ariel Gordon, Kurt Konolige, and Anelia Angelova. What matters in unsupervised optical flow. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pages 557–572. Springer, 2020.

[25] Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. *arXiv preprint arXiv:2410.11831*, 2024.

[26] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The kinetics human action video dataset, 2017.

[27] Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao Wang, Ying Tai, Donghao Luo, Chengjie Wang, Jilin Li, and Feiyue Huang. Learning by analogy: Reliable supervision from transformations for unsupervised optical flow estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6489–6498, 2020.

[28] Shuaicheng Liu, Kunming Luo, Nianjin Ye, Chuan Wang, Jue Wang, and Bing Zeng. Oiflow: Occlusion-inpainting optical flow estimation by unsupervised learning. *IEEE Transactions on Image Processing*, 30:6420–6433, 2021.

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv preprint arXiv:1608.03983*, 2016.

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

[31] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In *IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016. URL <http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16>. arXiv:1512.02134.

[32] Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nalivayko, and Andrés Bruhn. Spring: A high-resolution high-detail dataset and benchmark for scene flow, optical flow and stereo. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4981–4991, 2023.

[33] Henrique Morimitsu, Xiaobin Zhu, Roberto M Cesar Jr, Xiangyang Ji, and Xu-Cheng Yin. Dpflow: Adaptive optical flow estimation with a dual-pyramid framework. *arXiv preprint arXiv:2503.14880*, 2025.

[34] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation, 2018. URL <https://arxiv.org/abs/1704.00675>.

[35] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge Belongie, and Yin Cui. Spatiotemporal contrastive video representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6964–6974, 2021.

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 8748–8763. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/radford21a.html>.

[37] Ayush Shrivastava and Andrew Owens. Self-supervised any-point tracking by contrastive random walks. In *European Conference on Computer Vision (ECCV)*, 2024. URL <https://arxiv.org/abs/2409.16288>.

[38] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

[39] Austin Stone, Daniel Maurer, Alper Ayvaci, Anelia Angelova, and Rico Jonschkowski. Smurf: Self-teaching multi-frame unsupervised raft with full-image warping. In *Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition*, pages 3887–3896, 2021.

[40] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pages 402–419. Springer, 2020.

[41] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training. *Advances in neural information processing systems*, 35:10078–10093, 2022.

[42] Narek Tumanyan, Assaf Singer, Shai Bagon, and Tali Dekel. Dino-tracker: Taming dino for self-supervised point tracking in a single video. *arXiv preprint arXiv:2403.14548*, 2024.

[43] Mel Vecerik, Carl Doersch, Yi Yang, Todor Davchev, Yusuf Aytar, Guangyao Zhou, Raia Hadsell, Lourdes Agapito, and Jon Scholz. Robotap: Tracking arbitrary points for few-shot visual imitation. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pages 5397–5403. IEEE, 2024.

[44] Rahul Venkatesh, Honglin Chen, Kevin Feigl, Daniel M Bear, Khaled Jedoui, Klemen Kotar, Felix Binder, Wanhee Lee, Sherry Liu, Kevin A Smith, et al. Understanding physical dynamics with counterfactual world modeling. *arXiv preprint arXiv:2312.06721*, 2023.

[45] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin Murphy. Tracking emerges by colorizing videos. In *Proceedings of the European conference on computer vision (ECCV)*, pages 391–408, 2018.

[46] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment networks for action recognition in videos. *IEEE transactions on pattern analysis and machine intelligence*, 41(11):2740–2755, 2018.

[47] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14549–14560, 2023.

[48] Qianqian Wang, Xiaowei Zhou, Bharath Hariharan, and Noah Snavely. Learning feature descriptors using camera pose supervision. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16*, pages 757–774. Springer, 2020.

[49] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In *2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 4909–4916. IEEE, 2020.

[50] Yihan Wang, Lahav Lipson, and Jia Deng. Sea-raft: Simple, efficient, accurate raft for optical flow. *arXiv preprint arXiv:2405.14793*, 2024.

[51] Jiarui Xu and Xiaolong Wang. Rethinking self-supervised correspondence learning: A video frame-level similarity perspective. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 10075–10085, 2021.

[52] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and Thomas Huang. Youtube-vos: A large-scale video object segmentation benchmark. *arXiv preprint arXiv:1809.03327*, 2018.

- [53] Chengbo Yuan, Chuan Wen, Tong Zhang, and Yang Gao. General flow as foundation affordance for scalable robot learning. In *8th Annual Conference on Robot Learning*, 2024.
- [54] Miao Zhang, Jie Liu, Yifei Wang, Yongri Piao, Shunyu Yao, Wei Ji, Jingjing Li, Huchuan Lu, and Zhongxuan Luo. Dynamic context-sensitive filtering network for video salient object detection. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 1553–1563, 2021.
- [55] Yi Zhou, Guillermo Gallego, Xiuyuan Lu, Siqi Liu, and Shaojie Shen. Event-based motion segmentation with spatio-temporal graph cuts. *IEEE transactions on neural networks and learning systems*, 34(8):4868–4880, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: In the Abstract and Introduction we claim that we achieve “state-of-the-art” performance for motion estimation on real-world videos while requiring no labeled data.” This is evident in Table 1 of our Experiments section (4).

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: We have discussed the limitations in the paper, including a section at the end of the Experiments section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide thorough implementation details in the method section and in the supplement. The accompanying code we will provide in the supplement can ensure reproducibility. We use standard publicly available data.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[Yes]**

Justification: We use standard datasets that are publicly available. We include code and instructions in the supplement, and will make this code publicly available.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: These details are included in the Method section, Experiment section, and the Training section of the Supplement document.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[No]**

Justification: The computational cost of training self-supervised video models prohibits us from running multiple experiments and calculating error bars.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: The compute resources needed to reproduce the experiments are reported in the Supplementary document.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The paper conforms with the Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discuss this in a section at the end of the Experiments section.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not pose such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We do not release any new data assets with this paper, and appropriately credit the data sources we use for training.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: We do not include crowdsourced answers.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: We did not use any human subjects in our research.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use LLMs in this paper.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Implementation Details

A.1 Architecture Details

A.1.1 Ψ^{RGB}

The input video is first divided into non-overlapping spatiotemporal patches of size 8×8 , with a subset of patches masked. Unlike MAE, we train with both revealed input patches and mask tokens provided to the encoder. We train with the ViT-B architecture [20] with each transformer block consisting of a multi-head self-attention block and an MLP block, both using LayerNorm (LN). The CWM decoder has the same architecture as the encoder. Each spatiotemporal patch has a learnable positional embedding, which is added to both the encoder and decoder inputs. CWM does not use relative position or layer scaling [1, 20]. Please refer to [44, 3] for more details on the architecture. The 175M CWM model is based on ViT-B [12] but has twice the number of total layers. The 1B CWM model is similar to the 175M model, but has 48 layers with an embedding dimension of 2048 and 16 heads.

Default settings We show the default pre-training settings in Table 4. CWM does not use color jittering, drop path, or gradient clip. Following ViT’s official code, Xavier uniform is used to initialize all transformer blocks. The learnable masked token is initialized as a zero tensor. Following MAE, we use the linear lr scaling rule: $lr = \text{base_lr} \times \text{batch_size} / 256$ [20].

Table 4: **Default pre-training setting of CWM**

config	value
optimizer	AdamW [30]
base learning rate	1.5e-4
weight decay	0.05
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.95$ [9]
accumulative batch size	4096
learning rate schedule	cosine decay [29]
warmup epochs [16]	40
total epochs	800
flip augmentation	no
augmentation	MultiScaleCrop [46]

A.1.2 Ψ^{flow}

The architecture of the flow-conditioned predictor, Ψ^{flow} , is a vision transformer with 16 layers and 132M parameters. Input images are resized to 224x224, and the patch size is 8. Sinusoidal positional encodings are used. For the encoder, the embedding dimension is 768, and 12 attention heads are used. For the decoder, the embedding dimension is 384, and 6 attention heads are used.

This model has two parallel “streams”, the first of which takes RGB input and the second of which takes sparse flow, concatenated with RGB (which is masked to have the same sparsity as the flow), as input. All RGB inputs are from the first frame only; this requires the model to depend solely on flow to modify the RGB and predict the next frame.

The transformer architecture then applies self-attention to each stream and cross-attention between streams. The encoder has 12 layers, split into three groups of 4. In each group, there is one layer with self-attention on each stream and cross-attention from each stream to the other, followed by three layers with only self-attention on the first stream. The decoder has 4 layers; the first applies self-attention to each stream and cross-attention from each stream to the other; the second applies self-attention to the first stream and cross-attention from the second stream to the first; and the final two only apply self-attention to the first stream.

A.2 Training Details

A.2.1 Ψ^{RGB}

We train CWM at 256 resolution for 800 epochs and finetune at 512 resolution for 100 epochs by interpolating the positional embeddings. It takes approximately 4 days to train 800 epochs on a TPU

v5-128 pod. We pre-train CWM on the Kinetics-400 dataset [26], without requiring any specialized temporal downsampling.

We train CWM 1B at 256 resolution for 200,000 iterations with a batch size of 512 on a custom video dataset called BVD (approximately equivalent to 400 kinetics epochs). We use the AdamW optimizer, with norm clipping 1.0 and weight decay 0.1. We warmup the learning rate over 2,000 steps to a peak of 3e-4, then linearly decay to 0 over the next 198,000 steps. Training takes approximately 1 day on 64 H100 GPUs.

A.2.2 Ψ^{flow} and FLOW_θ

We train Ψ^{flow} and FLOW_θ jointly using an AdamW optimizer with weight decay of 0.05, betas of (0.9, 0.95), and a learning rate schedule with max learning rate 1.875×10^{-5} , 40 warmup epochs (10% of total training epochs), and cosine decay. We used a batch size of 32, training on the Kinetics-400 dataset [26].

A.3 Training Data

We construct a training dataset called BVD (Bid Video Dataset) which consists of publicly available datasets such as Kinetics400 [26] and SomethingSomethingV2 [17] along with other publicly available videos. We filter the videos based on CLIP [36] categories to remove thumbnails and videos with a lot of text in the frame. We additionally filter the videos based on optical flow to remove videos with little motion such as slide shows, or mostly static videos.

A.4 Inference Techniques

A.4.1 Multi-Mask

In the process of computing flows in FLOW_θ , at inference time, we take an argmax over the difference between the predicted next frame with and without the counterfactual perturbation. This difference image, Δ , depends on the choice of the random mask as this mask is used by Ψ^{RGB} for the next-frame reconstruction. As discussed in the main text, if a random mask reveals patches too close to where the perturbation should be reconstructed, the predictor Ψ^{RGB} may not reconstruct the perturbation properly, and the difference image will be noisy and diffuse, preventing the model from accurately predicting the next-frame location. Additionally, the reconstructed pixels will not necessarily be the same across different random samplings of visible patches, which may add random noise to the difference image. Both of these issues are ameliorated by our multi-mask technique, in which we compute difference images for a variety of sampled random masks (we found 10 to be a good number of masks for multi-masking), average over the difference images, and then take the argmax of this averaged Δ_{avg} to compute next-frame location for determining flow.

A.4.2 Multiscale

Multiscale refinement of the original flow prediction improves Opt-CWM’s performance, as observed in Figure 5. Given an input frame pair and an initial flow prediction, we perform iterative multiscaling through the following procedure. At each “zoom iteration”, we take a $0.75H \times 0.75W$ crop of the input frames with original height H and width W . We center the second frame crop on the location predicted by the previous iteration.

The transformer-based architecture of the next frame predictor Ψ^{RGB} imposes a limit to the input resolution, which may occasionally prevent small objects or minute features of the input frame from being accurately reconstructed in great detail. Multiscale refinement of the initial flow prediction can be greatly beneficial under these circumstances. However, Figure 5 suggests that the improvement is not monotonic; indeed, excessive cropping may lead to the loss of global context that is necessary to accurately reconstruct the scene. Opt-CWM is run on 4 zoom iterations, which we have empirically found to be optimal.

A.4.3 Occlusion Estimation

The difference image Δ can also be used to predict whether a visible point becomes occluded in the next frame. Conceptually, as described in Section 3 in the main text, when a point becomes occluded,

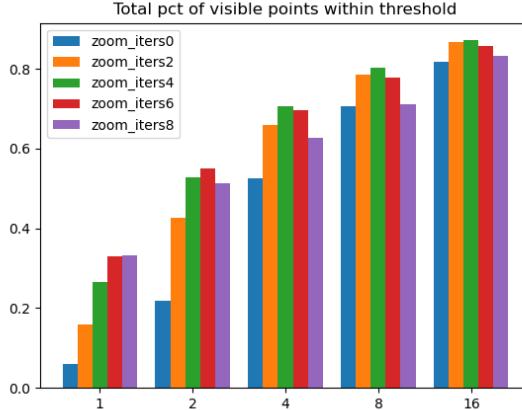


Figure 5: $< \delta_{\text{avg}}$ broken down across thresholds (x-axis). Fraction of points with error less than a fixed threshold, as a function of number of multiscale (MS) iterations, for pixel thresholds 1, 2, 4, 8, and 16. We find that 4 zoom iterations tends to perform the best, especially for robustness on difficult examples (evidenced by better performance on higher thresholds).

the counterfactual perturbation placed on the object should not be reconstructed in the second frame. Thus, while we take $\text{argmax } \Delta$ to compute flow, we can instead use $\max \Delta$ as a signal for occlusion. In particular, we compare $\max \Delta$ to some threshold t_{occ} to predict occlusion (i.e., we consider the model to have predicted that a point becomes occluded if and only if $\max \Delta < t_{\text{occ}}$).

In the multi-masking setting with 10 masking iterations, we have 10 difference images: $\Delta_1, \Delta_2, \dots, \Delta_{10}$. Instead of thresholding the average, Δ_{avg} , we can get an improved signal by considering $\max \Delta_i$ for each $i = 1, \dots, 10$. In this setting, we found that checking $\frac{1}{10} \sum_{i=1}^{10} \max \Delta_i < 0.05$ provided a good signal for predicting occlusion, and this prediction criterion is what was evaluated in the OA and OF1 metrics of Table 1 in the main paper.

B Additional Quantitative Results

B.1 Constant Frame Gap Protocol

TAP-Vid Constant Frame Gap (CFG). For fair comparison with optical flow models, we also propose an additional protocol with fixed frame gaps that is more advantageous for these baselines (see supplementary for the effect of frame gap on flow baselines). In particular, a fixed 5-frame gap is used: metrics are computed on all frame-pairs that are 5 frames apart (and the point is visible in the first).

We show results for this protocol in Table 5. We observe that in this setting, which is favorable to optical-flow based models, Opt-CWM largely outperforms all unsupervised methods and is competitive with state-of-the-art fully supervised methods.

B.2 Precision Analysis

Figure 6 attempts to explain the high performance of Opt-CWM on TAP-Vid First through a similar analysis done in Section A.4.2. Our best-performing model (with optimal inference-time configurations) is able to predict the next frame location within 16 pixels of the ground truth for over 85% of the total number of visible points. Unlike baseline models, Opt-CWM is able to predict most points within a reasonable boundary. Further, Opt-CWM predictions are precise; it predicts the majority of the query points within 2 pixels of the ground truth. While SEA-RAFT, which is supervised, is also precise for lower thresholds, the magnitude of the error for wrong predictions is evidently higher, as its performance quickly plateaus for higher thresholds.

As discussed in Section 4 in the main paper, we further evaluate on a custom constant-frame gap protocol (CFG) for fairer comparison with optical flow baselines. As shown here in Figure 7, all models improve significantly under this less challenging setup. In particular, optical flow baselines

Table 5: **Quantitative results on TAP-Vid dataset (Constant five-Frame Gap (CFG)).** In the CFG protocol, point tracking is evaluated at fixed gaps of 5 frames, making it an easier setting that is more favorable to optical flow methods. “S” and “U” indicate supervised and unsupervised, respectively. Doduo is not strictly unsupervised as it uses segmentation labels. GMRW is trained on the Kubric dataset, (marked with \dagger), making it a more favorable evaluation setting for that method because of the minimal domain gap. Best performing supervised models (shaded) are considered separately.

Method	DAVIS						Kinetics						Kubric					
	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OFI \uparrow	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OFI \uparrow	AJ \uparrow	AD \downarrow	$< \delta_{\text{avg}}^x \uparrow$	OA \uparrow	OFI \uparrow			
S	CoTracker-v3 [25]	74.49	1.21	86.59	90.74	73.08	79.45	0.82	87.86	95.65	74.12	78.15	1.02	89.07	92.59	79.92		
	RAFT [40]	69.69	1.43	83.83	81.98	46.08	79.01	0.86	87.59	92.73	49.49	73.38	1.24	83.73	91.00	63.17		
	SEA-RAFT [50]	69.89	1.44	84.82	82.00	47.52	75.12	1.07	85.82	88.90	39.42	77.53	1.00	87.02	92.50	68.65		
	DPFlow [33]	78.09	0.99	87.86	90.19	68.57	80.07	0.82	87.62	95.86	75.09	87.19	0.77	93.60	93.12	79.18		
U \dagger	Doduo [23]	25.61	1.61	72.56	37.49	22.59	35.26	1.19	77.62	43.00	11.63	56.57	1.74	68.63	87.26	55.01		
U	GMRW [37]	61.28	3.11	72.28	73.01	40.31	75.44	1.23	83.54	88.89	40.96	75.54 \ddagger	1.61 \dagger	84.30 \dagger	83.92 \ddagger	53.97 \ddagger		
	SMURF [39]	65.75	2.40	79.45	82.26	42.65	78.76	0.97	87.16	93.13	47.69	69.05	1.59	82.38	90.84	53.49		
		27.56	4.65	38.55	88.90	5.41	34.00	3.93	43.37	95.17	5.95	30.72	4.05	42.33	88.44	4.27		
		75.26	0.96	87.84	88.09	54.82	78.15	0.95	87.68	92.10	43.80	82.89	0.80	92.43	91.42	65.43		

exhibit strong sub pixel precision. However, we see that in general, compared to self-supervised baselines, Opt-CWM make reasonable predictions of a point’s next frame location more often, at a rate comparable to the fully supervised SEA-RAFT.

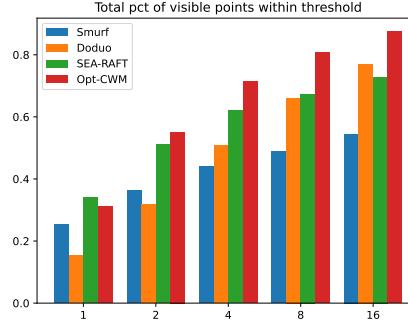


Figure 6: **TAP-Vid First: comparing baseline models on $< \delta_{\text{avg}}$ broken down across thresholds (x-axis).** Fraction of points with error less than a fixed threshold, as a function of baseline model. Compared to baseline models, Opt-CWM maintains high performance on all thresholds even when making predictions across large frame gaps, as is necessary for TAP-Vid First.

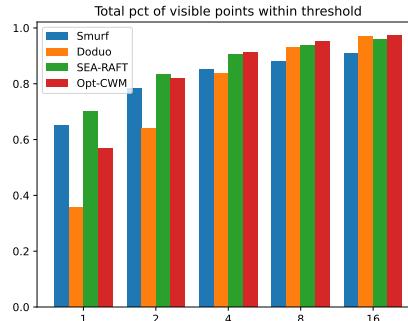


Figure 7: **TAP-Vid CFG: comparing baseline models on $< \delta_{\text{avg}}$ broken down across thresholds (x-axis).** Fraction of points with error less than a fixed threshold, as a function of baseline model. For fair comparison, we also evaluate on a constant frame gap setting that is more favorable to optical flow baselines. While baseline methods show strong performance for very low thresholds (< 2 pixels), we see that in general Opt-CWM outperforms self-supervised methods and is comparable with SEA-RAFT in predicting more points within a reasonable boundary.

B.3 Perturbation Across Epochs

The performance of FLOW_θ is greatly dependent on the quality of its learned Gaussian perturbations. In Figure 8, we see that the appearance of the perturbation evolves alongside the training of Opt-CWM. As the perturbation converges into an optimal patch bespoke for the input frame, the quality of the flow prediction improves in tandem.

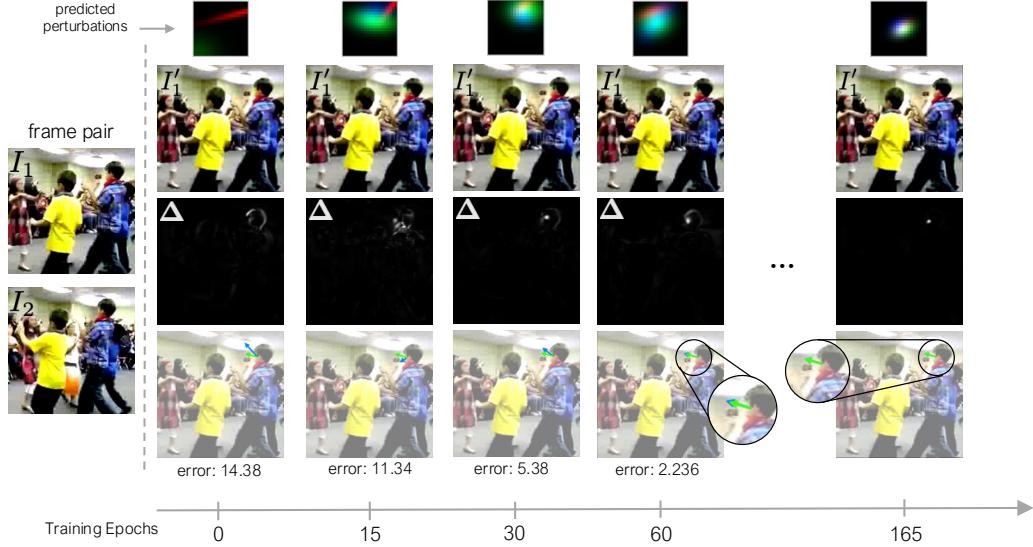


Figure 8: Evolution of perturbations across training epochs: We observe how the predicted perturbations change as the model trains. The perturbation starts as a disjoint streak of colors and converges to a localized peak. This in turn increasingly concentrates the difference image Δ and leads to better flow prediction. Green is the ground truth flow obtained from the TAP-Vid dataset, and blue is our model’s prediction.

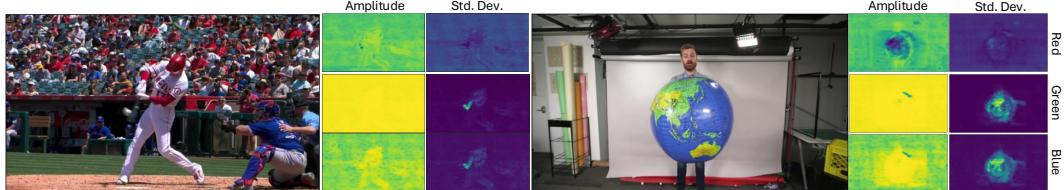


Figure 9: Perturbation maps reflect scene properties. For two example frame pairs, we show the amplitudes and standard deviations, at each spatial position and for each color channel, of the optimal Gaussian perturbations predicted by MLP_θ . These “perturbation maps” emergently reflect scene properties, with perturbation parameters varying in size and magnitude depending on where they are located in the image, corresponding to the presence of foreground objects and their parts.

B.4 Comparison with DINO-Tracker

We compare our results with DINO-Tracker [42], a test-time training approach using pre-trained DINO features that shows promising results on real-world videos. For fair comparison with Opt-CWM and other baselines, we constrain DINO-Tracker, a multi-frame tracker, to run under the same two-frame constraint. Compared with Opt-CWM on TAP-Vid DAVIS, DINO-Tracker obtains an average distance ($\text{AD} \downarrow$) of 5.91 (vs. 7.70) and a score of 72.17 (vs. 68.63) on the $\langle \delta_{\text{avg}}^x \uparrow \rangle$ metric. However, note that DINO-Tracker is not directly comparable as a baseline for Opt-CWM, as it requires per-video test-time optimization and relies on flow predictions from RAFT [40], which is supervised. In contrast to this, Opt-CWM is feed-forward and completely self-supervised.