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Abstract

Estimating motion primitives from video (e.g., optical flow and occlusion) is
a critically important computer vision problem with many downstream applica-
tions, including controllable video generation and robotics. Current solutions are
primarily supervised on synthetic data or require tuning of situation-specific heuris-
tics, which inherently limits these models’ capabilities in real-world contexts. A
natural solution to transcend these limitations would be to deploy large-scale, self-
supervised video models, which can be trained scalably on unrestricted real-world
video datasets. However, despite recent progress, motion-primitive extraction from
large pretrained video models remains relatively underexplored. In this work, we
describe Opt-CWM, a self-supervised flow and occlusion estimation technique
from a pretrained video prediction model. Opt-CWM uses “counterfactual probes”
to extract motion information from a base video model in a zero-shot fashion. The
key problem we solve is optimizing the quality of these probes, using a combination
of an efficient parameterization of the space counterfactual probes, together with a
novel generic sparse-prediction principle for learning the probe-generation parame-
ters in a self-supervised fashion. Opt-CWM achieves state-of-the-art performance
for motion estimation on real-world videos while requiring no labeled data. 1

1 Introduction

Extracting “low-level” scene motion properties such as optical flow [13, 40], occlusions [28], and
point or object tracks [19, 10] is important for video understanding applications such as automated
video filtering [54, 55], action recognition [26, 38] and motion prediction [5, 53]. Recently, scene
motion primitives have also been critical for increasing the controllability and consistency of video
generation models [15], and have gained an important role in robotics applications [43, 4].

Optical flow and occlusion are two core primitives in this domain. The most common approach to
optical flow estimation uses supervised learning from labeled flow data. However, because densely
annotating flow in real-world scenes is prohibitively expensive, supervised methods usually rely on
synthetic data [31, 32]. Methods trained on synthetic data have proven to be robust in real-world
video [40, 50]. However, relying on this approach has limited flow estimation methods from taking
advantage of recent advances in self-supervised visual representation learning from massive video
datasets [41, 35, 14] and inherently has to contend with a sim-to-real domain gap.

In contrast, self-supervised motion-estimation methods are typically based on photometric loss –
learning frame-pair feature correspondences to warp pixels from one RGB frame to corresponding
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Figure 1: Counterfactual probing for flow and occlusion: (A) CWMs learn to predict the next
frame with a temporally factored masking policy [3]. (B) The motion of a point can be estimated
using a counterfactual probing program FLOW: the model predicts the next frame with and without a
perturbation placed on the point, and the difference image between the clean and perturbed predictions
reveals the estimated motion. (C) Occlusion is estimated using a related probe OCC: a diffuse and low
magnitude difference indicates that the perturbed point has been occluded.

locations in future frames. However, pure photometric loss is a weak constraint, in part because
correspondences are often ill-defined (e.g., objects with homogeneous textures). Existing state-of-the-
art methods use various nearest neighbor or clustering procedures [21, 6], or complement photometric
loss with strong task-specific regularizations like smoothness [23, 39]. Because these heuristics are
often only correct in narrow scenarios, performance is limited in cases where the heuristics fail.

In this work, we show how to extract high-quality self-supervised flow and occlusion estimates without
the use of such heuristics. A promising initial approach to this problem comes from Counterfactual
World Modeling (CWM) [3, 44], a method that constructs zero-shot estimates of a variety of visual
properties (flow, segments, shape, etc) from an underlying pre-trained multi-frame model (Figure 1).
CWM begins with a sparse RGB-conditioned next frame predictor ΨRGB, a two-frame masked
autoencoder trained with a highly asymmetric masking policy [3]. This forces the model to encode
scene dynamics in a small number of patch feature tokens that factor temporal dynamics from visual
appearance. Motion properties can then be extracted from the base model in a zero-shot fashion
via simple “counterfactual probes”, acting as a kind of test-time inference procedure. For example,
to compute flow from a given point in the first frame, a perturbation is made to the image at that
point, and flow is computed by comparing the difference between ΨRGB’s prediction on the perturbed
(counterfactual) condition with its prediction in the original unperturbed (factual) condition (see
Figure 1B). Intuitively, this corresponds to placing a visual marker on the point, predictively flowing
it forward, and then analyzing where it gets “carried” in the predicted next frame.

In principle, the CWM approach circumvents the key limitation of the heuristic-based methods
by replacing situation-specific fixed heuristics (e.g., motion smoothness) with a general-purpose
predictive model. The quantity of interest, in our case flow, is defined as the outcome of probing
the model’s predictions [44]. However, while CWM is an intriguing conceptual proposal, it has a
conceptual drawback that substantially limits its real-world performance: the probes that it relies on
are hand-designed and can be out-of-domain in real-world video. Perturbations are often not properly
“carried along” with moving objects, resulting in suboptimal counterfactual motion extractions
(Figure 2B). As a result, the accuracy of the flows extracted by the originally proposed CWM method
has remained inferior to state-of-the-art flow estimation solutions.

Here we present Opt-CWM, a generic solution to this problem. Opt-CWM introduces two conceptual
innovations that leverage the advantages of the CWM idea while making it highly performant in real-
world settings. The first of these innovations is a method for parameterizing a counterfactual probe
policy generator with a learnable neural network (Figure 2A). This network can predict situation-
specific probes that take into account the appearance context (both local and global) around target
points to be tracked, and thus can be less out-of-distribution than hand-coded probes. The second
innovation is an approach for learning the probe generator in a principled fashion without relying
on any supervision from labeled data or heuristics. The main insight behind this learning procedure
is to construct a task-agnostic generalization of the asymmetric masking principle used to train the
base model ΨRGB itself. In particular, Opt-CWM connects sparse outputs of the parameterized flow
prediction function to a randomly initialized sparse flow-conditioned next-frame predictor Ψflow and
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performs joint optimization (Figure 3) of both Ψflow and the probe generator. This forces Ψflow to
predict a future frame based on a present frame and sparse (putative) flow, creating an information
bottleneck that generates useful gradients back on the probe generator’s parameters.

We find that Opt-CWM achieves strong performance when compared with existing motion estimation
methods (both supervised and self-supervised) that are purposely built for this task [39, 37, 50,
33], as well as recent adaptations of large-scale self-supervised visual representations for motion
estimation [23], when evaluated on real-world benchmarks [10]. The success of our approach reveals
a promising direction for scalable counterfactual extraction of a variety of visual properties.

2 Related Work

Supervised flow estimation. Supervised methods like RAFT [40, 50] approach optical flow as a
dense regression problem and learn from synthetic optical flow datasets [7, 31]. They also typically
use task-specific architectures that are tailor-made for optical flow estimation, with strong inductive
biases (e.g., iterative flood-filling) and task-specific regularizations to ensure learning from limited
training datasets. While these methods show strong performance in many contexts, their reliance
on synthetic supervision and specialized architectures limits their generalizability. It is for this
reason that our self-supervised Opt-CWM, which can be trained on unlimited in-the-wild videos, can
outperform even supervised methods in certain key contexts.

Self-supervised flow with photometric loss. Methods for self-supervised flow learning [24, 39, 27],
such as SMURF [39], learn dense visual correspondence by optimizing photometric loss. Because
of the weakness of pure photometric loss alone as supervision, these methods rely on a complex
variety of heuristically chosen regularization losses (e.g., spatial smoothness of flow, among others) to
achieve reasonable performance levels. Because these heuristics need to be tuned in a dataset-specific
manner, these methods have failure models in complex dynamic scenes, especially with variable and
large time-frame gaps. In contrast to these methods, Opt-CWM does not rely on such heuristics, as
the quality of the flow extraction is directly correlated with the prediction learning objective.

Augmenting self-supervised flow with visual pre-training. A variety of methods augment photo-
metric loss using features derived from self-supervised visual pre-training [2, 6, 51, 23]. For example,
the recent state-of-the-art Doduo method [23] uses DINOv2 features as a basis on which to compute
feature correspondences for downstream photometric loss. This approach allows the extension of
these methods to wider video training datasets (such as Kinetics) and thereby improves performance
and generalizability. However, even when backed by strong image features, photometric loss is a
weak constraint, requiring additional heuristic regularizers to improve performance. Opt-CWM, by
avoiding scenario-specific heuristics, compares favorably to these methods.

Point tracking. Point tracking across multiple frames is a related problem to flow and occlusion
estimation. The majority of solutions for point tracking are supervised [19, 10] or semi-supervised [25,
11], and as such are further out of scope for this work. However, several recent works propose
self-supervised approaches to finding temporal correspondence, typically relying on pre-trained
representations [6, 21]. These methods then extract point tracks through consistency objectives such
as cycle consistency [6, 21, 37] or heuristics like softmax-similarity [45] applied at the frame pair
level. Tumanyan et al. [42] take a related approach, performing test-time optimization on individual
videos using pre-trained DINO features and short-term supervision from RAFT. The current state-of-
the-art self-supervised method in this domain, GMRW [37], which is the main baseline comparison for
our proposed Opt-CWM, uses cycle consistency to build tracks based on frame pair-level predictions.

Real-world motion benchmarks. The TAP-Vid benchmark [10] provides a critical set of metrics
for measuring the accuracy of motion-estimation systems in real-world video. This is critical for
ensuring that potential advances in motion estimation are tested against the challenges of real-world
motion complexities, covering scenarios not encountered in synthetic benchmarks (e.g., non-rigid,
highly articulated, deformable and breakable objects, fluids, inelastic collisions, animate objects,
and human interactions). While originally intended for the supervised point tracking domain, recent
self-supervised tracking works have begun to utilize TAP-Vid as a main benchmark for motion
estimation [23, 37]. In this work, we also follow this practice.
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Figure 2: Parameterizing the counterfactual probe generator as an input-conditioned function.
(A) Building on a pre-trained RGB-conditioned predictor ΨRGB, Opt-CWM uses an image-conditioned
perturbation prediction function δθ containing a small MLPθ. As illustrated in B, δθ can learn to
predict image-conditioned perturbations that blend naturally with the underlying scene, potentially
allowing for the perturbation to be accurately carried over to the next frame prediction. But how
should the parameters of δθ be learned without any flow supervision labels? See Figure 3.

3 Methods

3.1 Counterfactual World Modeling

RGB-Conditioned Next Frame Predictor. A Countefactual World Model (CWM) is an RGB-
conditioned next frame predictor ΨRGB, consisting of an encoder ΨRGB

enc and decoder ΨRGB
dec , similar to a

VideoMAE [41], but trained with a highly asymmetric masking policy that reveals all patches of the
first frame and a small fraction of patches of the second frame [3] (and see Figure 1A). Specifically,
let I1, I2 ∈ R3×H×W be two frame pairs in a video, and define Mα as a masking function that
randomly masks some fraction, α, of patches in an image. Given a fully visible first frame I1 and a
partially visible second frame Mα(I2), ΨRGB is trained to predict I2 by minimizing

L = MSE(Î2, I2), where Î2 = ΨRGB(I1,Mα(I2)
)
. (1)

Here we train CWM with α = 0.1 on publicly available video data with a frame gap of 150ms.
(See the supplement for more details.) The asymmetric masking training policy forces ΨRGB to
separate scene appearance—which is wholly available in the first frame—from scene dynamics, the
information of which is now concentrated in the sparse set of visible next frame patches. In other
words, ΨRGB is “temporally factored”.

Motion Estimation With Counterfactual Probes. Because it induces strong dependence on the
appearance and position of the revealed patches from I1 and I2, temporal factoring allows the
zero-shot extraction of visual structure through applying counterfactual probes: small changes to
the appearance or the position of visible patches. By measuring the predictor’s response to these
counterfactuals, we can easily extract useful information like object motion, segments, or shape from
its representation [3]. As shown in Figure 1B, using the FLOW procedure, a colored patch is placed on
a moving object, and its motion can be determined by finding its location in the predicted frame. To
track some pixel location p1 = (row1, col1) from one frame to the next, input image I1 is perturbed
by adding a colored patch δ at pixel location p1 to create the counterfactual input image I ′1 = I1 + δ.
Then, the next frames with and without the counterfactual perturbation are predicted:

Î ′2 = ΨRGB(I1 + δ,Mα(I2)
)
= ΨRGB(I ′1,Mα(I2)

)
, and Î2 = ΨRGB(I1,Mα(I2)

)
. (2)

Subtracting these two predicted frames and taking an L1-norm across the color channels produces
the difference image ∆ = |Î ′2 − Î2|c1. Finally, the next-frame pixel location p̂2 can be computed by
finding the peak in the difference image: p̂2 = argmax∆. FLOW is essentially a kind of test-time
inference applied to the pretrained CWM base model. To extract occlusion information, the OCC
procedure is identical to FLOW up to computation of the difference image ∆ (See Figure 1). However,
if a patch in the first frame gets occluded in the second frame, the response to the perturbation in the
difference image ∆ will be small in magnitude and diffuse in shape. Applying a simple threshold to
the maximum value of ∆ creates an occlusion binary indicator.
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Figure 3: A generic sparse-prediction principle for learning optimized counterfactuals. A) The
parameterized counterfactual flow function FLOWθ extracts motion from a frozen RGB-conditioned
predictor ΨRGB through counterfactual perturbation (details in Figure 2). Its parameters θ are trained
using gradients from a flow-conditioned predictor Ψflow

η that is jointly trained to perform next-frame
prediction. The predictor Ψflow can only learn to predict future frames if it is given correct flow-like
vectors, a form of information bottleneck that ensures useful gradients are passed back to FLOWθ.
We thus exploit the pre-trained ΨRGB predictor by bootstrapping a flow-conditioned predictor Ψflow,
using an extension of the principle of sparse next-frame prediction. (B) There is tight coupling
between the flow-conditioned predictor Ψflow and the learned flow estimation function FLOWθ, so
both pixel reconstruction (the proxy goal) and motion estimation (our real goal) simultaneously
improve.

3.2 Optimizing Counterfactual Perturbations

The problem with hand-designed perturbations. While the CWM approach of using fixed hand-
designed probes (e.g., additive colored squares) can sometimes be effective in probing motion with
ΨRGB, they are often suboptimal. First, this is because they are out of domain for the base predictor,
and second, by being image- and position-independent, they can be unsuited to the local image
context. Anecdotally, this results in visually obvious failure cases, such as the perturbation not
moving with the object or being suppressed entirely.

Using the challenging TAP-Vid benchmark (see Section 4 for more details), we empirically quantified
that the original fixed hand-designed perturbations are insufficient for self-supervised motion estima-
tion performance (see CWM results in Table 1). The main requirement for a “good” perturbation is
that it is sufficiently in-distribution and image/point specific to cause meaningful context-dependent
changes for probing the base predictor. But how can probes be designed for this purpose? Our
solution has two basic novel components: parameterizing an image-conditioned and differentiable
counterfactual probe generator, and formulating a general-purpose self-supervised loss objective for
learning the probe generation policy parameters.

Parameterized Perturbations. We re-formulate the motion extraction procedure from Section 3.1 to
make it a parameterized differentiable policy function and introduce the functional form of a sum of
colored Gaussians as a natural perturbation class. (See Figure 2A)

Let FLOWθ : (I1, I2, p1) 7→ φ̂ be a per-pixel motion estimation function with learnable parameters
θ that takes an image pair (I1, I2) and a pixel location p1 in I1 and outputs the predicted flow
φ̂ = p̂2 − p1. Here, p̂2 is the estimated second frame pixel location. The procedure FLOWθ involves
multiple components: the counterfactual perturbation function, δθ(I1,Mα(I2), p1), which now
produces variable counterfactual perturbations as a function of the frame pair and pixel location
(as opposed to a fixed perturbation δ, used in the standard CWM); the pre-trained, frozen, RGB-
conditioned predictor, ΨRGB, as utilized within the FLOWθ program; and a “softargmax" module to
predict a pixel location using a differentiable approximation to the argmax function.

Gaussian Perturbations. We choose to parameterize the counterfactual perturbations as Gaussians
because this function class presents a natural method of forming in-domain counterfactual input
images. To compute the Gaussian parameters for a given counterfactual perturbation, we use the
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encoder of the RGB-conditioned predictor, ΨRGB
enc . This outputs a sequence of feature tokens from its

last transformer block, which encode global and local scene content for each patch and thus form a
natural basis from which Gaussian parameters can be computed using a shallow MLP. Given a pixel
location p1, we find its corresponding patch embedding token, tp1

, and use it as an input to an MLP
that outputs a parameter vector which is in turn used to compute the Gaussian perturbation:

δθ(I1,Mα(I2), p1) = Gaussian (MLPθ (tp1)) where tp1 = ΨRGB
enc (I1,Mα(I2))p1 . (3)

Then, FLOWθ computes the difference image, ∆, similar to the FLOW program, using Î ′2 = ΨRGB(I1 +
δθ,Mα(I2)

)
. To make FLOWθ differentiable, we use a softargmax over ∆ to estimate p̂2.

Softargmax Module. We follow the softargmax formulation proposed in [48]. Given a difference
image, ∆ = |Î ′2 − Î2|c1, we apply a temperature-scaled 2D softmax and then take the expectation to
find p̂2 = Ep2∼softmax(∆/τ)[p2]. The predicted flow is then computed as φ̂ = p̂2 − p1.

Learning Optimized Counterfactuals. Now that the perturbation generator is parameterized, the
question arises: how can its parameters be learned? What type of self-supervised objective will cause
the perturbation generator function to be context-specific and result in accurate flow vectors? Our
main insight is that this problem can be “bootstrapped” in a robust fashion by generalizing the sparse
asymmetric mask learning paradigm to encompass a coupled and mixed-mode RGB-Flow prediction
problem without using labeled data (see Figure 3). Specifically, we jointly train the parameterized
counterfactual motion prediction function, FLOWθ, which estimates a set of flow vectors; together
with a sparse flow-conditioned predictor, Ψflow, which takes a single frame along with sparse flow
vectors to predict the next frame. We constrain FLOWθ by passing its outputs as inputs to Ψflow and
training end-to-end using final RGB reconstruction loss on the predictions of Ψflow. As Ψflow has
no access to any RGB patches from the second frame I2, it is only if the putative flows are correct
that it be possible for Ψflow to use them to minimize the next-frame reconstruction loss.

Specifically, given an image pair (I1, I2), we estimate the motion for a set of pixels
P = {p(1)1 , p

(2)
1 , . . . , p

(n)
1 } using FLOWθ, obtaining a set of estimated forward flow vectors

F̂ = {φ̂(1), φ̂(2), . . . , φ̂(n)}. Let Ψflow
η :

(
I1, F̂

)
7→ Î2 be a flow-conditioned next frame predictor

with parameters η that takes the first frame RGB input I1 and predicts the next frame Î2, conditioned
on the flow input F̂ . We jointly optimize θ and η, by minimizing minθ,η LMSE(Î2, I2). Figure 3B
shows that optimizing end-to-end reconstruction does indeed couple tightly to upstream flow accuracy,
as required for effective bootstrapping.

In this work, we investigate two ΨRGB base predictors, with 175M and 1B learnable parameters. For
optimizing the counterfactuals and ablations, we use the 175M model, and report benchmark results
by applying the learned counterfactual probes to the 1B model.

Inference-time Enhancements. A simple random masking strategy may inadvertently reveal the
ground truth RGB at the next frame location we are trying to predict for a particular point. In this
event, the model will not carry over the counterfactual perturbation to the future frame, leading to
an erroneous flow prediction. A simple yet effective inference-time solution is multi-mask (MM),
in which we apply multiple random masks and average across the resulting delta images to reduce
the influence of sub-optimal masks. Following prior work [13, 22], we also perform an iterative
multiscale refinement of flow predictions by recursively applying FLOWθ to smaller crops centered on
the predicted point location, p̂2 of the previous iteration. We observe that FLOWθ is able to generate
good initial flow predictions, and thus benefits from refinement (Table 2).

4 Experiments

Evaluation Protocol. Our main datasets for evaluation are TAP-Vid DAVIS and TAP-Vid Kinet-
ics [10], the DAVIS [34] and Kinetics [26] datasets with human flow and occlusion annotations, along
with the synthetic Kubric [18] dataset where ground-truth flows and occlusions are known. All the
methods we test output direct two-frame flow (point-to-point correspondence) predictions. Some
of them output occlusion predictions, which we use when available. For flow methods without an
existing implementation of occlusion prediction, we use cycle consistency to compute occlusion
estimates: occlusion is the event of inconsistency between forward and backward predictions greater
than 6 pixels. Models that can accept variable resolution inputs are run with the resolution closest to
native that can be fit into memory, ensuring that each is run optimally. Metrics for both procedures
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Figure 4: Qualitative comparisons on real-world videos. These examples show the failure modes
of methods reliant on visual similarity. We observe that the baseline models struggle against subtle
but functionally important changes in largely homogeneous scenes depicting objects of similar color
and texture ((a) - (e)). Further, the use of photometric loss in self-supervised methods such as SMURF
can also be susceptible to differences in light intensity across frame pairs ((f) - (h)). In contrast, as
a visual world model, Opt-CWM possesses a holistic understanding of scene transformations and
object dynamics, and is able to find correspondence without arbitrary heuristics.

are always computed after rescaling predictions to 256 × 256 resolution, as in [37]. Following
the TAP-Vid First protocol proposed in [10], for each point, we take the frame in which it is first
visible and track its motion only forward in time. We also use the first frame a point is visible as
the reference frame, and track points in future time steps with reference to this frame. This is a
challenging setting as it involves tracking points across variable and often large frame gaps. It is also
most comparable to many real-world use-case scenarios where the frame gap may be unknown or
uncontrollable. We show additional results for the TAP-Vid Constant five-Frame Gap (CFG) protocol
in the supplementary material, which is more favorable to standard optical flow methods.

Metrics. We use the official metrics from the TAP-Vid evaluation protocol [10]: 1) Average Jaccard
(AJ), a precision metric measuring a combination of point tracking and occlusion prediction; 2)
Average Distance (AD) between the estimated pixel and ground truth locations; 3) < δxavg, which
measures the average percentage of points predicted correctly within a variety of pixel distance
thresholds; and 4) Occlusion Accuracy (OA), the fraction of points correctly predicted as either
occluded or visible. Additionally, to account for the relative lack of occlusion events in the dataset,
we also evaluate 5) Occlusion F1 (OF1), which computes the F1 score of the occlusion predictions.

Baselines. Our evaluation protocol requires tracking points in videos through occlusion by finding
temporal correspondence: given a frame pair, determine where the point went or whether it was
occluded. Therefore, the appropriate baselines are supervised and self-supervised optical flow
methods, and self-supervised temporal correspondence methods. We run the following baselines:

CWM [3, 44] represents motion estimated through counterfactual extractions with a fixed hand-
designed perturbation. This comparison shows how the innovations introduced by Opt-CWM lead to
very substantial performance improvements.

GMRW [37] is a self-supervised video correspondence approach that trains a transformer using cycle
consistency on contrastive random walks. GMRW is designed for temporal correspondence-based
long-range tracking and is the SOTA baseline for comparison on TAP-Vid First.

SMURF [39] is an unsupervised method specifically designed for optical flow estimation. SMURF
tailors the RAFT [40] architecture so it can be trained using a combination of optical flow-specific
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Table 1: Quantitative results on TAP-Vid dataset. In the TAP-Vid First protocol, a point is
tracked from when it is first visible to the end of the video, requiring motion estimation across
large frame gaps. Opt-CWM outperforms both supervised and unsupervised baselines. “S” and “U”
indicate supervised and unsupervised, respectively. Doduo is not strictly unsupervised as it uses
segmentation labels. GMRW is trained on the Kubric dataset, (marked with ‡), making it a more
favorable evaluation setting for that method because of the minimal domain gap. Best performing
supervised models (shaded) are considered separately.

Method DAVIS Kinetics Kubric
AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑ AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑ AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑

S CoTracker-v3 [25] 39.85 19.04 57.96 76.87 47.33 38.11 25.00 53.41 77.29 59.43 76.41 5.10 87.79 90.48 71.06
RAFT [40] 41.77 25.33 54.37 66.40 56.12 41.92 23.00 53.49 74.67 70.62 71.93 5.60 82.15 88.54 68.34
SEA-RAFT [50] 43.41 20.18 58.69 66.34 56.23 33.40 30.72 46.11 64.55 64.39 75.06 6.54 84.63 89.50 70.92
DPFlow [33] 49.20 16.86 62.51 71.51 60.15 47.33 17.65 58.74 81.98 77.00 78.45 5.05 86.81 90.86 74.53

U† Doduo [23] 23.34 13.41 48.50 47.91 49.43 31.51 15.05 46.87 66.71 66.01 54.98 5.31 72.20 73.56 52.67

U GMRW [37] 36.47 20.26 54.59 76.36 42.85 25.58 29.28 41.63 71.05 33.57 58.36‡ 3.84‡ 79.27‡ 80.70‡ 32.18‡

SMURF [39] 30.64 27.28 44.18 59.15 46.91 33.33 32.56 44.37 66.60 60.90 65.81 6.81 80.57 87.91 58.42

CWM [3, 44] 15.00 23.53 26.30 76.63 18.22 17.60 26.43 29.61 72.59 28.95 28.77 11.64 41.63 84.93 11.35
Opt-CWM 1B (ours) 51.88 7.70 68.63 80.44 68.43 47.03 11.25 61.31 80.74 76.21 79.98 3.36 89.40 90.11 72.56

heuristic losses like photometric loss and a variety of types of smoothness regularizations. SMURF is
trained on synthetic datasets often used for optical flow estimation learning.

Doduo [23] applies a SMURF-like combination of self-supervised photometric and smoothness
losses, scaling them to larger model architectures and in-the-wild training videos [52]. It leverages
the DINOv2 [8] encoder to incorporate strong image priors. The Doduo model and training dataset
are comparable in size to Opt-CWM, providing a control to ensure that the improved performance of
Opt-CWM relative to SMURF is not solely due to model or dataset training size.

SEA-RAFT [50] is a supervised flow method building on RAFT [40] by adding additional pretraining
on TartanAir [49], a novel mixture of Laplace loss, and improved initialization of the flow estimation.

DPFlow [33] is a very recent supervised method that leverages architectural advances to train against
high-resolution flow data, leading to improvements relative to SEA-RAFT in many evaluations.

CoTracker-v3 [25] is a supervised multi-frame model. We evaluate it as a two-frame model, since the
multi-frame evaluation protocol is not comparable to Opt-CWM or the other baselines.

Results. We present our main results in Table 1. Opt-CWM outperforms all other self-supervised
baselines for all datasets, as well as the supervised methods in most cases. In particular, Opt-CWM
especially improves upon AD, demonstrating robustness even in difficult (though more realistic)
cases with long frame gaps or high motion. The gap is especially large on real-world datasets such
as DAVIS, where the baselines struggle with videos violating the heuristic assumptions for which
they were optimized. Our experiments on the synthetic Kubric dataset [18], which is more favorable
to methods trained on synthetic data, demonstrate that Opt-CWM has the best performance in this
out-of-domain scenario.

Qualitatively, Opt-CWM makes strong use of its underlying world model, allowing it to accurately
track a point’s movement through long frame gaps and complex dynamics, including changes of
lighting conditions. SEA-RAFT, Doduo, and SMURF, which lack an explicit dynamic world model,
often lose track when the tracked object rotates, when lights turn on or off, or when shadows move
(Figure 4). Further qualitative examples, including videos, can be found in the supplement.

Ablations and Hyperparameter Analysis. We perform several ablation studies of Opt-CWM.
First (Table 2, left), we compare Opt-CWM with a spectrum of types of hard-coded perturbations,
representing various forms of unoptimized CWM baseline, and find that learned interventions perform
substantially better (see Table 2, left). The highly image-dependent nature of the optimized predicted
perturbations is illustrated in the supplement. Increasing input resolution, the multi-mask inference
(MM), and multiscale refinement (MS) procedures all improve performance.

We also study the effect of the core hyperparameters of our procedure both in training and inference
(Table 3). We find that asymmetric masking during training is critical (which is likely why masked
video models with standard masking procedures, such as VMAE [47], do not perform well at flow
extraction), but that our model is highly stable to parameter choices at inference time.
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Table 2: (Left) Ablations. We evaluate multi-mask (MM) and multiscale (MS), in addition to compar-
ing our optimized perturbations (“learned”) with the fixed ones (“red square”/“green square”) [3, 44].
MM and MS columns indicate the number of masking or zooming iterations. We observe a clear
improvement on all metrics, highlighting the need for bespoke, in-distribution counterfactual pertur-
bations, multi-mask inference and multi-scale refinement. (Right) Distillation into DPFlow. For
fast inference, we distill Opt-CWM into the small and efficient DPFlow architecture by sparsely
pseudo-labeling Kinetics with Opt-CWM. This approach outpeforms the self-supervised SMURF
and is competitive with the supervised models, while requiring no labeled training data.

Type MM MS Res. AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑
learned 10 4 512 47.53 8.73 64.83 80.87 60.74
learned 1 4 512 42.85 9.82 59.72 78.55 60.20

learned 10 0 512 32.71 11.98 49.20 79.28 41.45

learned 3 2 512 40.51 9.72 58.57 80.34 50.06

red square 3 2 512 21.37 18.25 36.31 75.38 27.21

green square 3 2 512 30.44 12.72 47.37 76.89 19.10

learned 3 2 256 37.00 11.62 52.82 81.10 57.84

learned 1 0 256 21.85 20.55 34.34 78.03 53.10

red square 1 0 256 15.00 23.53 26.30 76.63 18.22

green square 1 0 256 19.91 19.61 32.73 78.31 36.53

TAP-Vid CFG AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑

S RAFT [40] 69.69 1.43 83.83 81.98 46.08
SEA-RAFT [50] 69.89 1.44 84.82 82.00 47.52
DPFlow [33] 78.09 0.99 87.86 90.19 68.57

U SMURF [39] 65.75 2.40 79.45 82.26 42.65
Opt-CWM 175M 69.53 1.19 83.15 88.85 44.17
Opt-CWM Distilled 74.77 1.46 85.03 88.74 55.39

TAP-Vid First — Main Benchmark

S RAFT [40] 41.77 25.33 54.37 66.40 56.12
SEA-RAFT [50] 43.41 20.18 58.69 66.34 56.23
DPFlow [33] 49.20 16.86 62.51 71.51 60.15

U SMURF [39] 30.64 27.28 44.18 59.15 46.91
Opt-CWM 175M 47.53 8.73 64.83 80.87 60.74
Opt-CWM Distilled 45.55 15.68 59.36 69.27 58.41

Table 3: Mask hyperparmeter variants. (Left) At training time. We train ΨRGB with non-
temporally factored masking policies similar to Video-MAE [41, 47]. The notation of 55-55 indicates
55% of patches are masked in the first frame and 55% are masked in the second frame. Tube masking
selects patches at the same spatial location over time, whereas random independently samples patches
in each frame. MAE-style masking during training is strictly worse than the temporally-factored
masking policy we use as the standard in this paper (shown for reference in the bottom row). All
experiments here use 256x256 resolution, MM-3 and MS-2. (Right) At inference. We evaluate a
512 resolution ΨRGB across various masking ratios for the second frame using the MM-3 and MS-2
setting. The standard masking ratio for all results in this work is included as 90% (Ref.) in this table.

Mask Train Test AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑
tube 55-55 0-90 23.94 15.61 36.90 72.19 52.36

tube 75-75 0-90 22.55 15.86 39.63 58.20 52.27

tube 90-90 0-90 15.23 18.57 32.12 51.98 49.20

random 75-75 0-90 29.09 14.64 42.57 73.51 57.06

random 75-75 0-75 34.06 12.79 47.54 76.07 60.81

random 0-90 0-90 37.00 11.62 52.82 81.10 57.80

Masking Ratio AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑

50% 42.78 10.52 58.78 79.18 60.68
60% 43.28 10.12 59.56 80.33 60.80
70% 43.25 9.72 59.95 81.24 59.68
80% 42.68 9.44 59.76 81.64 57.53
85% 41.99 9.57 59.58 80.92 54.06
90% (Ref.) 40.51 9.72 58.57 80.34 50.06
95% 37.68 10.57 55.87 79.63 45.00
98% 32.85 13.15 50.48 78.19 41.42

Distillation into efficient architectures RAFT, SEA-RAFT, SMURF, and DPFlow use a highly
efficient but special-purpose flow architecture, rather than large general-purpose ViTs [12]. To isolate
the effect of this specific architecture design, we train the DPFlow architecture with pseudo-labels
generated by Opt-CWM. Specifically, we take a frame pair for each clip, pseudo-label the motion
for 1% of the pixels, and train a DPFlow architecture on this pseudo-labeled dataset. We find that
this distilled model outperforms the equivalent self-supervised baseline SMURF and is competitive
with the supervised techniques (Table 2, right). This outcome pinpoints that the core reason for Opt-
CWM’s improved performance is our contribution of the novel optimized counterfactual extraction
scheme, and the flexible ability to train on unrestricted data that this approach enables, rather than
the ViT architecture as such. It is also a practically useful result, since it enables highly efficient
inference using the lightweight DPFlow network.

Limitations and Negative Societal Impact The main limitation of our work is the high compute
requirements and long training times of video vision transformers. These models are also costly at
inference time, which can limit deployment in resource-constrained environments. We demonstrate a
pathway to resolving this by distilling the trained Opt-CWM into small and efficient architectures.
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This limitation also carries a potential negative societal impact due to the significant environmental
footprint associated with large-scale training on compute clusters.

5 Conclusion & Future Work

We have demonstrated the effectiveness of Opt-CWM in learning motion concepts, achieving state-of-
the-art performance on real-world benchmarks. Our paper takes an essential first step in demonstrating
the strong quantitative potential of optimized counterfactuals for probing pre-trained video predictors.
An important extension of the current work within the domain of scene motion understanding will be
to train a multi-frame version of Opt-CWM to create the next generation of scalable self-supervised
point trackers, as it has been shown that combining information form three or more frames can help
improve flow and occlusion estimation substantially [25]. We plan to scale Opt-CWM’s training data,
leveraging the wide availability of videos; and explore various alternatives to the masked autoencoder
architecture, such as autoregressive or diffusion-based generative video models.

Equally importantly, our twin ideas – parameterizing an input-conditioned counterfactual probe
generator and bootstrapping the learning of the probe-generator parameters with an end-to-end sparse
prediction task – are task-generic rather than flow-specific. A key next step will thus be to explore
the use of these Opt-CWM methods to create self-supervised estimators for a wide variety of visual
quantities, including object segments, depth maps, and 3D shape [3, 44].
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the Abstract and Introduction we claim that we achieve “state-of-the-art
performance for motion estimation on real-world videos while requiring no labeled data."
This is evident in Table 1 of our Experiments section (4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in the paper, including a section at the end
of the Experiments section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide thorough implementation details in the method section and in
the supplement. The accompanying code we will provide in the supplement can ensure
reproducibility. We use standard publicly available data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use standard datasets that are publicly available. We include code and
instructions in the supplement, and will make this code publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are included in the Method section, Experiment section, and the
Training section of the Supplement document.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The computational cost of training self-supervised video models prohibits us
from running multiple experiments and calculating error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources needed to reproduce the experiments are reported in
the Supplementary document.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this in a section at the end of the Experiments section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We do not release any new data assets with this paper, and appropriately credit
the data sources we use for training.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not include crowdsourced answers.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not use any human subjects in our research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

A.1 Architecture Details

A.1.1 ΨRGB

The input video is first divided into non-overlapping spatiotemporal patches of size 8 × 8, with a
subset of patches masked. Unlike MAE, we train with both revealed input patches and mask tokens
provided to the encoder. We train with the ViT-B architecture [20] with each transformer block
consisting of a multi-head self-attention block and an MLP block, both using LayerNorm (LN). The
CWM decoder has the same architecture as the encoder. Each spatiotemporal patch has a learnable
positional embedding, which is added to both the encoder and decoder inputs. CWM does not use
relative position or layer scaling [1, 20]. Please refer to [44, 3] for more details on the architecture.
The 175M CWM model is based on ViT-B [12] but has twice the number of total layers. The 1B
CWM model is similar to the 175M model, but has 48 layers with an embedding dimension of 2048
and 16 heads.

Default settings We show the default pre-training settings in Table 4. CWM does not use color
jittering, drop path, or gradient clip. Following ViT’s official code, Xavier uniform is used to initialize
all transformer blocks. The learnable masked token is initialized as a zero tensor. Following MAE,
we use the linear lr scaling rule: lr = base_lr × batch_size / 256 [20].

Table 4: Default pre-training setting of CWM

config value

optimizer AdamW [30]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95 [9]
accumulative batch size 4096
learning rate schedule cosine decay [29]
warmup epochs [16] 40
total epochs 800
flip augmentation no
augmentation MultiScaleCrop [46]

A.1.2 Ψflow

The architecture of the flow-conditioned predictor, Ψflow, is a vision transformer with 16 layers and
132M parameters. Input images are resized to 224x224, and the patch size is 8. Sinusoidal positional
encodings are used. For the encoder, the embedding dimension is 768, and 12 attention heads are
used. For the decoder, the embedding dimension is 384, and 6 attention heads are used.

This model has two parallel “streams", the first of which takes RGB input and the second of which
takes sparse flow, concatenated with RGB (which is masked to have the same sparsity as the flow), as
input. All RGB inputs are from the first frame only; this requires the model to depend solely on flow
to modify the RGB and predict the next frame.

The transformer architecture then applies self-attention to each stream and cross-attention between
streams. The encoder has 12 layers, split into three groups of 4. In each group, there is one layer
with self-attention on each stream and cross-attention from each stream to the other, followed by
three layers with only self-attention on the first stream. The decoder has 4 layers; the first applies
self-attention to each stream and cross-attention from each stream to the other; the second applies
self-attention to the first stream and cross-attention from the second stream to the first; and the final
two only apply self-attention to the first stream.

A.2 Training Details

A.2.1 ΨRGB

We train CWM at 256 resolution for 800 epochs and finetune at 512 resolution for 100 epochs by
interpolating the positional embeddings. It takes approximately 4 days to train 800 epochs on a TPU
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v5-128 pod. We pre-train CWM on the Kinetics-400 dataset [26], without requiring any specialized
temporal downsampling.

We train CWM 1B at 256 resolution for 200,000 iterations with a batch size of 512 on a custom video
dataset called BVD (approximately equivalent to 400 kinetics epochs). We use the AdamW optimizer,
with norm clipping 1.0 and weight decay 0.1. We warmup the learning rate over 2,000 steps to a peak
of 3e-4, then linearly decay to 0 over the next 198,000 steps. Training takes approximately 1 day on
64 H100 GPUs.

A.2.2 Ψflow and FLOWθ

We train Ψflow and FLOWθ jointly using an AdamW optimizer with weight decay of 0.05, betas of
(0.9, 0.95), and a learning rate schedule with max learning rate 1.875×10−5, 40 warmup epochs (10%
of total training epochs), and cosine decay. We used a batch size of 32, training on the Kinetics-400
dataset [26].

A.3 Training Data

We construct a training dataset called BVD (Bid Video Dataset) which consists of publicly available
datasets such as Kinetics400 [26] and SomethingSomethingV2 [17] along with other publicly avail-
able videos. We filter the videos based on CLIP [36] categories to remove thumbnails and videos with
a lot of text in the frame. We additionally filter the videos based on optical flow to remove videos
with little motion such as slide shows, or mostly static videos.

A.4 Inference Techniques

A.4.1 Multi-Mask

In the process of computing flows in FLOWθ, at inference time, we take an argmax over the difference
between the predicted next frame with and without the counterfactual perturbation. This difference
image, ∆, depends on the choice of the random mask as this mask is used by ΨRGB for the next-frame
reconstruction. As discussed in the main text, if a random mask reveals patches too close to where
the perturbation should be reconstructed, the predictor ΨRGB may not reconstruct the perturbation
properly, and the difference image will be noisy and diffuse, preventing the model from accurately
predicting the next-frame location. Additionally, the reconstructed pixels will not necessarily be
the same across different random samplings of visible patches, which may add random noise to the
difference image. Both of these issues are ameliorated by our multi-mask technique, in which we
compute difference images for a variety of sampled random masks (we found 10 to be a good number
of masks for multi-masking), average over the difference images, and then take the argmax of this
averaged ∆avg to compute next-frame location for determining flow.

A.4.2 Multiscale

Multiscale refinement of the original flow prediction improves Opt-CWM’s performance, as observed
in Figure 5. Given an input frame pair and an initial flow prediction, we perform iterative multiscaling
through the following procedure. At each “zoom iteration”, we take a 0.75H × 0.75W crop of the
input frames with original height H and width W . We center the second frame crop on the location
predicted by the previous iteration.

The transformer-based architecture of the next frame predictor ΨRGB imposes a limit to the input
resolution, which may occasionally prevent small objects or minute features of the input frame from
being accurately reconstructed in great detail. Multiscale refinement of the initial flow prediction can
be greatly beneficial under these circumstances. However, Figure 5 suggests that the improvement is
not monotonic; indeed, excessive cropping may lead to the loss of global context that is necessary to
accurately reconstruct the scene. Opt-CWM is run on 4 zoom iterations, which we have empirically
found to be optimal.

A.4.3 Occlusion Estimation

The difference image ∆ can also be used to predict whether a visible point becomes occluded in the
next frame. Conceptually, as described in Section 3 in the main text, when a point becomes occluded,
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Figure 5: < δavg broken down across thresholds (x-axis). Fraction of points with error less than a
fixed threshold, as a function of number of multiscale (MS) iterations, for pixel thresholds 1, 2, 4, 8,
and 16. We find that 4 zoom iterations tends to perform the best, especially for robustness on difficult
examples (evidenced by better performance on higher thresholds).

the counterfactual perturbation placed on the object should not be reconstructed in the second frame.
Thus, while we take argmax ∆ to compute flow, we can instead use max∆ as a signal for occlusion.
In particular, we compare max∆ to some threshold tocc to predict occlusion (i.e., we consider the
model to have predicted that a point becomes occluded if and only if max∆ < tocc).

In the multi-masking setting with 10 masking iterations, we have 10 difference images: ∆1, ∆2,
..., ∆10. Instead of thresholding the average, ∆avg, we can get an improved signal by considering
max∆i for each i = 1, ..., 10. In this setting, we found that checking 1

10

∑10
i=1 max∆i < 0.05

provided a good signal for predicting occlusion, and this prediction criterion is what was evaluated in
the OA and OF1 metrics of Table 1 in the main paper.

B Additional Quantitative Results

B.1 Constant Frame Gap Protocol

TAP-Vid Constant Frame Gap (CFG). For fair comparison with optical flow models, we also
propose an additional protocol with fixed frame gaps that is more advantageous for these baselines
(see supplementary for the effect of frame gap on flow baselines). In particular, a fixed 5-frame gap is
used: metrics are computed on all frame-pairs that are 5 frames apart (and the point is visible in the
first).

We show results for this protocol in Table 5. We observe that in this setting, which is favorable
to optical-flow based models, Opt-CWM largely outperforms all unsupervised methods and is
competitive with state-of-the-art fully supervised methods.

B.2 Precision Analysis

Figure 6 attempts to explain the high performance of Opt-CWM on TAP-Vid First through a similar
analysis done in Section A.4.2. Our best-performing model (with optimal inference-time configura-
tions) is able to predict the next frame location within 16 pixels of the ground truth for over 85% of
the total number of visible points. Unlike baseline models, Opt-CWM is able to predict most points
within a reasonable boundary. Further, Opt-CWM predictions are precise; it predicts the majority of
the query points within 2 pixels of the ground truth. While SEA-RAFT, which is supervised, is also
precise for lower thresholds, the magnitude of the error for wrong predictions is evidently higher, as
its performance quickly plateaus for higher thresholds.

As discussed in Section 4 in the main paper, we further evaluate on a custom constant-frame gap
protocol (CFG) for fairer comparison with optical flow baselines. As shown here in Figure 7, all
models improve significantly under this less challenging setup. In particular, optical flow baselines
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Table 5: Quantitative results on TAP-Vid dataset (Constant five-Frame Gap (CFG). In the CFG
protocol, point tracking is evaluated at fixed gaps of 5 frames, making it an easier setting that is more
favorable to optical flow methods. “S” and “U” indicate supervised and unsupervised, respectively.
Doduo is not strictly unsupervised as it uses segmentation labels. GMRW is trained on the Kubric
dataset, (marked with ‡), making it a more favorable evaluation setting for that method because of the
minimal domain gap. Best performing supervised models (shaded) are considered separately.

Method DAVIS Kinetics Kubric
AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑ AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑ AJ ↑ AD ↓ < δxavg ↑ OA ↑ OF1 ↑

S CoTracker-v3 [25] 74.49 1.21 86.59 90.74 73.08 79.45 0.82 87.86 95.65 74.12 78.15 1.02 89.07 92.59 79.92
RAFT [40] 69.69 1.43 83.83 81.98 46.08 79.01 0.86 87.59 92.73 49.49 73.38 1.24 83.73 91.00 63.17
SEA-RAFT [50] 69.89 1.44 84.82 82.00 47.52 75.12 1.07 85.82 88.90 39.42 77.53 1.00 87.02 92.50 68.65
DPFlow [33] 78.09 0.99 87.86 90.19 68.57 80.07 0.82 87.62 95.86 75.09 87.19 0.77 93.60 93.12 79.18

U† Doduo [23] 25.61 1.61 72.56 37.49 22.59 35.26 1.19 77.62 43.00 11.63 56.57 1.74 68.63 87.26 55.01

U GMRW [37] 61.28 3.11 72.28 73.01 40.31 75.44 1.23 83.54 88.89 40.96 75.54‡ 1.61‡ 84.30‡ 83.92‡ 53.97‡

SMURF [39] 65.75 2.40 79.45 82.26 42.65 78.76 0.97 87.16 93.13 47.69 69.05 1.59 82.38 90.84 53.49

CWM [3, 44] 27.56 4.65 38.55 88.90 5.41 34.00 3.93 43.37 95.17 5.95 30.72 4.05 42.33 88.44 4.27
Opt-CWM 1B (ours) 75.26 0.96 87.84 88.09 54.82 78.15 0.95 87.68 92.10 43.80 82.89 0.80 92.43 91.42 65.43

exhibit strong sub pixel precision. However, we see that in general, compared to self-supervised
baselines, Opt-CWM make reasonable predictions of a point’s next frame location more often, at a
rate comparable to the fully supervised SEA-RAFT.
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Figure 6: TAP-Vid First: comparing baseline models on < δavg broken down across thresholds
(x-axis). Fraction of points with error less than a fixed threshold, as a function of baseline model.
Compared to baseline models, Opt-CWM maintains high performance on all thresholds even when
making predictions across large frame gaps, as is necessary for TAP-Vid First.
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Figure 7: TAP-Vid CFG: comparing baseline models on < δavg broken down across thresholds
(x-axis). Fraction of points with error less than a fixed threshold, as a function of baseline model. For
fair comparison, we also evaluate on a constant frame gap setting that is more favorable to optical
flow baselines. While baseline methods show strong performance for very low thresholds (< 2
pixels), we see that in general Opt-CWM outperforms self-supervised methods and is comparable
with SEA-RAFT in predicting more points within a reasonable boundary.
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B.3 Perturbation Across Epochs

The performance of FLOWθ is greatly dependent on the quality of its learned Gaussian perturbations. In
Figure 8, we see that the appearance of the perturbation evolves alongside the training of Opt-CWM.
As the perturbation converges into an optimal patch bespoke for the input frame, the quality of the
flow prediction improves in tandem.
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…
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predicted
perturbations
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Figure 8: Evolution of perturbations across training epochs: We observe how the predicted
perturbations change as the model trains. The perturbation starts as a disjoint streak of colors and
converges to a localized peak. This in turn increasingly concentrates the difference image ∆ and
leads to better flow prediction. Green is the ground truth flow obtained from the TAP-Vid dataset,
and blue is our model’s prediction.
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Figure 9: Perturbation maps reflect scene properties. For two example frame pairs, we show the
amplitudes and standard deviations, at each spatial position and for each color channel, of the optimal
Gaussian perturbations predicted by MLPθ. These “perturbation maps” emergently reflect scene
properties, with perturbation parameters varying in size and magnitude depending on where they are
located in the image, corresponding to the presence of foreground objects and their parts.

B.4 Comparison with DINO-Tracker

We compare our results with DINO-Tracker [42], a test-time training approach using pre-trained
DINO features that shows promising results on real-world videos. For fair comparison with Opt-
CWM and other baselines, we constrain DINO-Tracker, a multi-frame tracker, to run under the same
two-frame constraint. Compared with Opt-CWM on TAP-Vid DAVIS, DINO-Tracker obtains an
average distance (AD ↓) of 5.91 (vs. 7.70) and a score of 72.17 (vs. 68.63) on the < δxavg ↑ metric.
However, note that DINO-Tracker is not directly comparable as a baseline for Opt-CWM, as it
requires per-video test-time optimization and relies on flow predictions from RAFT [40], which is
supervised. In contrast to this, Opt-CWM is feed-forward and completely self-supervised.
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