
PHYSICAL REVIEW RESEARCH 4, 023048 (2022)

Regimes of cavity QED under incoherent excitation: From weak to deep strong coupling
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The prototypical system constituted by a two-level atom interacting with a quantized single-mode electromag-
netic field is described by the quantum Rabi model (QRM). The QRM is potentially valid at any light-matter
interaction regime, ranging from the weak (where the decay rates exceeds the coupling rate) to the deep strong
coupling (where the interaction rate exceeds the bare transition frequencies of the subsystems). However, when
reaching the ultrastrong coupling regime, several theoretical issues may prevent the correct description of the
observable dynamics of such a system: (i) the standard quantum optics master equation fails to correctly describe
the interaction of this system with the reservoirs; (ii) the correct output photon rate is no longer proportional to
the intracavity photon number; and (iii) they appear to violate gauge invariance. Here, we study the photon flux
emission rate of this system under the incoherent excitation of the two-level atom for any light-matter interaction
strength and consider different effective temperatures. The dependence of the emission spectra on the coupling
strength is the result of the interplay between energy levels, matrix elements of the observables, and the density
of states of the reservoirs. Within this approach, we also study the occurrence of light-matter decoupling in the
deep strong-coupling regime and show how all of the obtained results are gauge invariant.

DOI: 10.1103/PhysRevResearch.4.023048

I. INTRODUCTION

The quantum Rabi model (QRM) provides the simplest full
quantum description of light-matter interaction. It is also one
of the most well studied models in quantum optics, and a
cornerstone of cavity quantum electrodynamics (cavity QED).
The quantum Rabi Hamiltonian describes the dipolar inter-
action of a two-level system (TLS) or qubit with a single
quantized mode of an electromagnetic resonator. It was first
introduced by Jaynes and Cummings [1] in order to compare
the semiclassical model, previously introduced by Rabi [2],
with a full quantum model. To solve the model, the rotat-
ing wave approximation (RWA) is commonly introduced. In
this approximation, known as the Jaynes-Cummings model
(JCM), the counter-rotating terms are neglected. This is a
valid approximation for the near-resonance case and when the
light-matter coupling rate is much smaller than the resonance
frequency of the TLS or, equivalently, of the quantized cavity
mode. These conditions are fulfilled in several experimental
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settings [3,4]. The RWA may also fail for describing the
optical pumping, when the excitation field is sufficiently
strong or for a nonlinear short pulse excitations with several
carrier cycles [5].

Despite its simplicity, the QRM is able to describe a
wide variety of light-matter quantum systems and gives rise
to a great diversity of behaviors and effects, depending on
the relative magnitude of the light-matter coupling strength.
However, the description and the analysis of experiments on
systems which can be potentially modeled by the quantum
Rabi Hamiltonian require additional theoretical tools. For ex-
ample, it is necessary to take into account the interaction of
both the TLS and cavity photons with the external environ-
ment (thermal reservoirs) [6]. Of course, in the absence of
such interactions, basic features such as the excitation of the
system components, dissipation and decoherence effects, and
the detection of photons outside the cavity cannot be described
properly. Even the definition of the different light-matter in-
teraction regimes requires one to include the interaction of the
system components with their reservoirs.

In weak-coupling regime of cavity QED, dissipation is
stronger than the intrinsic coherent coupling between matter
and the light. Such a regime has led to various applica-
tions, e.g., exploiting the well-known Purcell effect [7] has
allowed for breakthroughs in quantum technologies such
as low-threshold solid-state lasers [8] and single-photon
emitters [9,10]. These effects allow for the engineering of
the spontaneous emission rate of an emitter, by tailoring
its photonic environment. Indeed, resonant electromagnetic
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resonators with a narrow density of states can greatly en-
hance the efficiency of photonic devices. Going beyond
weak coupling, the strong-coupling regime is characterized
by lower losses in the system, allowing for the observation
of effects such as vacuum Rabi oscillations [11], manifested
by the coherent oscillatory exchange of energy between
light and matter. Such effects are already being exploited
in second-generation quantum technologies [12,13]. In this
strong-coupling regime, however, the light-matter coupling
rate, remains much lower than the bare resonance frequencies,
so that both the weak and the strong-coupling regime can be
adequately described by the JCM.

If the quantum light–matter interaction strength reaches a
non-negligible fraction of the transition frequency of the com-
ponents, the system enters the so-called ultrastrong coupling
(USC) regime. In this regime, the interaction can significantly
change the system properties. For example, the ground state
of the system contains non-negligible virtual photons and
virtual matter excitations. In the past decade, USC effects be-
tween light and matter has transitioned from a theoretical idea
to an experimental reality. Nowadays, this regime has been
achieved in a great variety of systems and settings [3,4]. The
experimental progress in USC physics has motivated many
theoretical studies showing interesting new effects enabled
or boosted by this regime [14–42]. Several studies explore
higher-order processes in the USC regime, where the number
of excitations is not conserved [43–48], such as multiphoton
Rabi oscillations [49] and a single photon exciting multiple
atoms [50,51].

When the light-matter interaction strength increases even
further, a regime where the coupling strength exceeds the
resonant frequencies of the material and/or of the quantized
light modes can be achieved [30]—the deep strong-coupling
(DSC) regime. One of the most interesting effects predicted
in this regime is the effective decoupling between light and
matter [52,53]. A striking consequence of such a counterin-
tuitive phenomenon is that the Purcell effect is reversed and
the spontaneous emission rate, usually thought to increase
with the light-matter coupling strength, tends to vanish for
sufficiently large couplings. Such a result has been predicted
considering bosonic matter excitations interacting with a mul-
timode optical resonator (generalized Hopfield model), and
using the Coulomb gauge. Recently, the decoupling effect has
been predicted for any light-matter system obtained with the
minimal-coupling replacement of the electronic momentum
[53]. Adopting the so-called asymptotic decoupling frame,
the authors showed that the electronic system tends to lo-
calize when the coupling increases, since the effective mass
tends to increase. A first confirmation of this prediction has
been obtained using three-dimensional crystals of plasmonic
nanoparticles [54].

In subsequent work [55], this effect has also been studied
considering a single superconducting qubit interacting with a
multimode electromagnetic resonator. In circuit QED, for a
qubit interacting with a superconducting waveguide, a micro-
scopic treatment of the light-matter coupling gives rise to a
diamagnetic term, analogous to the A2 term of the minimal-
coupling Hamiltonian. Using this spin-boson Hamiltonian, it
has been shown that the spontaneous emission rate of the
two-level system decreases with the intensity of the A2 term,

without the need to be in the DSC regimes. The results in
Refs. [52,55] suggest that the diamagnetic term plays a key
role in determining the light-matter decoupling effect. How-
ever, some questions remains open. Indeed, the presence of
the diamagnetic term is gauge relative (e.g., it disappears in
the dipole gauge); moreover, the validity of the Coulomb
gauge when describing truncated atomic systems has been
questioned [56–58].

Recently, some gauge issues have been solved. In partic-
ular, it has been shown how to obtain the correct quantum
Rabi and Dicke Hamiltonians in the Coulomb gauge [59–62].
It has also been shown how to derive a gauge-invariant master
equation and obtain gauge-invariant emission spectra [63].
Throughout this article, we will use these recent develop-
ments. Specifically, we provide a unified picture of light
emission under incoherent pumping of the QRM, from the
weak to the deep strong light-matter interaction. When the
light-matter coupling strength spans from the very weak to
the deep strong-coupling regimes, the spectrum of the QRM,
while initially quasiharmonic, becomes strongly anharmonic
at higher couplings. Then, after reaching the deep strong limit,
its behavior tends back towards harmonicity.

While in the weak-coupling regime, neglecting the
counter-rotating terms and using the standard quantum optics
master equation typically provides accurate results, in the
USC regime this master equation fails to describe correctly
the emission spectra. This problem can be partly solved by
introducing the master equation in the dressed basis [64], an
approach which includes the interaction between the system
components in the derivation of the dissipators. However, this
powerful approach can also fail in describing the emission of
the QRM in both the weak and deep strong-coupling regimes.
To solve these problems, we study the incoherent emission
of the system at any coupling strength, using a dressed-
state generalized master equation (GME) working for systems
displaying both harmonic, quasiharmonic, and anharmonic
spectra [65]. Moreover, we take particular care to derive a
gauge-invariant GME, to ensure the gauge invariance of the
obtained emission rates and spectra [63].

In Sec. II, we first provide a description of the QRM in
both the Coulomb and multipolar gauges, and then present
the GME approach which we will use for all the calculations.
A detailed description of the derivation is provided in the
Appendixes (see also Ref. [63]). The numerical calculations
and their analysis are presented in Sec. III. There, we show
numerically calculated cavity and qubit photon flux emission
rates and spectra as a function of the normalized light-matter
coupling strength, obtained for different effective tempera-
tures and considering also the cavity-qubit detuning. Finally,
in Sec. IV, we give our conclusions.

In addition, the main theoretical framework used to de-
velop all the results is fully explained in the Appendixes.
In Appendix A we model the cavity- and qubit-bath inter-
action by using the gauge principle, while in Appendix B
we provide a demonstration of the gauge invariance of the
GME. The positive cavity-qubit detuning case can be found
in Appendix C, while, in order to highlight the differences
between our results based on a gauge-consistent GME, and
some other standard methods, in Appendix D, we present
(i) results obtained using the JC model and the standard
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quantum optics master equation, and (ii) results obtained
using a dressed master equation with the post-trace rotating-
wave approximation [64].

II. DISSIPATIVE QUANTUM RABI MODEL

In this section, we describe the open QRM, thus includ-
ing the interaction of the light and matter components with
their respective reservoirs. We consider models in both the
Coulomb and the multipolar gauge (within the dipole ap-
proximation), to show equivalence and verify gauge-invariant
observables.

A. Quantum Rabi model in the Coulomb gauge

The quantum Rabi Hamiltonian in the Coulomb gauge can
be written as (h̄ = 1) [59]

ĤR = ωcâ†â + ωq

2
{σ̂z cos[2η(â + â†)]

+ σ̂y sin[2η(â + â†)]}. (1)

where â (â†) is the photon annihilation (creation) operator
and σ̂x,y,z are Pauli matrices. The parameters ωc and ωq

represent the cavity and the qubit resonance frequencies,
respectively, while η = g/ωc is the normalized light-matter
coupling strength.

The Hamiltonian ĤR can be obtained starting from
the light-matter Hamiltonian in the absence of interac-
tion Ĥ0 = Ĥq + Ĥph, where Ĥq = ωqσ̂z/2 and Ĥph = ωcâ†â,
by applying a suitable unitary transformation (generalized
minimal-coupling transformation) to Ĥq only [59,61]. Specif-
ically,

ĤR = ÛĤqÛ † + Ĥph, (2)

where

Û = exp[iη(â + â†)σ̂x]. (3)

We observe that, in the Coulomb gauge, the canonical field
momentum is not modified by the interaction with the matter
component, i.e., � = −ε0Ê (ε0 is the vacuum permittivity),
such that, in this framework, the electric-field operator can be
written as

Ê = iωcA0(â − â†), (4)

where A0 is the zero-point-fluctuation amplitude of the
field coordinate. For simplicity we assume a simple one-
dimensional model, but the formalism can be easily general-
ized to three dimensions.

Regardless of the chosen gauge, when the normalized cou-
pling strength becomes significantly large, all the eigenstates
become dressed by virtual excitations (owing to the presence
of the counter-rotating terms) [66], and complications arise
in the theoretical description [3]. Consequently, dissipation
effects, input-output relationships, and photodetection rates
[67,68] cannot be introduced adequately by using the standard
tools of quantum optics in the usual fashion. For example,
considering a given quantum state of the system ρ̂(t ) (i.e.,
the density operator of the light-matter system at time t), the
photon rate measured by a broadband point-like detector in
the resonator is different from 〈â†â〉t ≡ Tr[â†âρ̂(t )]. Instead,

it is proportional to the expectation value Wc(t ) = 〈Ê−Ê+〉t ≡
Tr[Ê−Ê+ρ̂(t )]. Here, Ê+ [Ê− = (Ê+)†] is proportional to the
positive-frequency (negative-frequency) electric-field opera-
tor, and the expectation value is taken considering quantum
states calculated in the Coulomb gauge (dressed-state repre-
sentation).

Specifically, the positive-frequency electric-field operator
is obtained from

Ê+ = i
∑
k> j

〈 j|(â − â†)|k〉| j〉〈k|, (5)

where | j〉 are the energy eigenstates of the Hamiltonian in
Eq. (1) with eigenvalues ω j ordered so that k > j for ωk > ω j .
Using the relationship [69]

ωc〈 j|(â − â†)|k〉 = ωk j〈 j|(â + â†)|k〉, (6)

where ωk j = ωk − ω j , it is also possible to rewrite Eq. (5) as

Ê+ = i
∑
k> j

ωk j

ωc
〈 j|(â + â†)|k〉| j〉〈k|. (7)

Note that Eq. (6) remains valid even in the presence of very
strong light-matter interactions and/or optical nonlinearities.

By using the simple input-output theory [70], results anal-
ogous to Wc(t ) can be obtained for the rate W out

c (t ) of emitted
photons detected by a detector placed outside the cavity
[71,72]. However, the output field operators can display a
different dependence on ωk j , arising from the density of states
of the output modes and from the frequency dependence of
the coupling coefficient, which (for example) depends on the
mirror reflectivity in a standard microcavity. More generally,
the output field operator, in the Coulomb gauge, can be written
as

Ê+
out = i

∑
k> j

α(ωk j )〈 j|(â + â†)|k〉| j〉〈k|, (8)

where the function α(ω) encodes the specific, model-
dependent dependence on the frequency. A more rigorous
input-output theory can be formulated in terms of quantized
quasinormal modes [73–75].

Analogously, it is possible to define the field operators
describing the qubit emission Wq(t ) = 〈Ŝ−Ŝ+〉t , where

Ŝ+ = i
∑
k> j

αq(ωk j )〈 j|σx|k〉| j〉〈k|. (9)

Considering a standard cavity QED system, for example, the
cavity emission rate corresponds to the photon flux escaping
one of the mirrors, while the qubit emission rate corresponds
to the spontaneous emission directly from the qubit, which
can be collected by a detector placed orthogonally to the axis
connecting the two mirrors [76,77].

In the following, we assume both αc(ωk j ) = ωk j/ωc (cor-
responding to Ê+

out = Ê+) and αq(ωk j ) = ωk j/ωq to be linearly
dependent on the transition frequencies. A different choice
will give rise to similar spectra with different relative heights
of the spectral lines. Notice that photodetection is an energy
absorption process, thus it is reasonable to assume photon
detection rates which tend to zero with frequencies ω → 0.
Naturally, any realistic analysis covering a very large fre-
quency range should also include dispersion in the material
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model. Including the latter, however, would make the study
system dependent going beyond the aim of the present general
framework.

B. Quantum Rabi model in the dipole gauge

The quantum Rabi Hamiltonian can also be expressed in
the dipole gauge, which yields the form

Ĥ′
R = ωcâ†â + ωq

2
σ̂z − iηωc(â − â†)σ̂x + ωcη

2σ̂ 2
x , (10)

where σ̂ 2
x = Î gives the identity operator. Hence, the last term

induces only a rigid shift of all the energy levels . To be
clear, by dipole gauge, we mean the multipolar gauge after
the dipole approximation [78,79]. Light-matter Hamiltonians
in the multipolar or dipole gauge can be obtained from the
Coulomb gauge (minimal-coupling replacement), after a uni-
tary Power–Zienau–Woolley (PZW) transformation [80].

The last term in Eq. (10) is often disregarded, since it has
no dynamical consequences. In the following, when needed,
as for the Hamiltonian in the dipole gauge Ĥ′

R, we will
use primed symbols to indicate gauge-relative quantities in
the dipole gauge. By considering a fixed polarization in the
single-mode approximation, the field coordinate correspond-
ing to the vector potential can be expressed as Â = A0(â +
â†). In the dipole gauge, the field conjugate momentum is
modified by the interaction with the matter system, and it is
proportional to the electric displacement (induction) field,

�̂′ = −D̂ = −iε0ωcA0(â − â†). (11)

Thus, the electric-field operator cannot be expanded in
terms of photon operators only. Indeed, due to the fact that
D̂ = ε0Ê ′ + P̂ (for a dipole in free space), where P̂ is the
electric polarization, the electric-field operator in the dipole
gauge has to be expanded as

Ê ′ = iωcA0(â′ − â′†), (12)

where (see Ref. [62])

â′ = R̂âR̂† = â + iησ̂x, (13)

and

R̂ = Û † = exp[−iη(â + â†)σ̂x]. (14)

This unitary operator essentially implements the PZW
transformation for a truncated TLS model and in the dipole
approximation [61]. Of course, the different representations
provide the same energy levels for the light-matter system.
They also provide identical expectation values if operators
and quantum states are both properly transformed [62]. We
observe that the operators â′ and â′† satisfy the same commu-
tation relations of the bosonic operators â and â†. Moreover,
since â′ + â′† = â + â†, the vector potential can also be ex-
pressed as Â = A0(â′ + â′†). We observe that, in the dipole
gauge, â′ and â′† (instead of â and â†) describe the creation
and annihilation of the field quanta, as is clear from Eq. (12).

The quantum Rabi Hamiltonians in Eqs. (1) and (10) are
related by a gauge transformation, implemented by the unitary
operator in Eq. (14):

Ĥ′
R = R̂ĤRR̂†. (15)

The photon rate measured by a broadband point-like de-
tector in the resonator can be expressed also in the dipole
gauge as W ′

c (t ) = 〈Ê ′−Ê ′+〉′t , where the expectation values are
calculated using the eigenstates | j′〉 of Eq. (10). Therefore,
Ê ′+ is now proportional to the positive-frequency electric-field
operator in the dipole gauge,

Ê ′+ = i
∑
k> j

〈 j′|(â′ − â′†)|k′〉| j′〉〈k′|. (16)

From Eq. (13), clearly we see that the photon operators are not
gauge invariant. Thus, in order to obtain correct results in the
dipole gauge [62], it is essential to properly take into account
how these operators change under the Û transformation [see
Eq. (13)].

Choosing the dipole gauge, without transforming the
photonic operators accordingly, can lead to an erroneous
evaluation of the emitted photon rate, as shown in Sec. III.
Specifically, an incorrect photon rate is obtained by using â
(â†) instead of â′ (â′†) in the dipole gauge. In this case, the
photon rate becomes

W̃ ′
c = 〈Ê ′−

w Ê ′+
w 〉′, (17)

where

Ê ′+
w = i

∑
k> j

〈 j′|(â − â†)|k′〉| j′〉〈k′|. (18)

Also note, W̃ ′
c �= W ′

c = Wc (see Sec. III).
The useful relationship shown by Eq. (6) can be appropri-

ately transformed in the dipole gauge as

ωc〈 j′|(â′ − â′†)|k′〉 = ωk j〈 j′|(â′ + â′†)|k′〉, (19)

such that

Ê ′+ = i
∑
k> j

ωk j

ωc
〈 j′|(â′ + â′†)|k′〉| j′〉〈k′|, (20)

and we also have

〈 j′|(â′ + â′†)|k′〉 = 〈 j|(â + â†)|k〉. (21)

C. Theoretical description of losses and quantum noise

To calculate emission rates and emission spectra of the
QRM, from the weak to the DSC regime, we describe the dis-
sipative system dynamics considering a GME in the dressed
basis [65],

˙̂ρ = −i[ĤR, ρ̂] + Lgρ̂, (22)

where the dissipator Lg contains two contributions Lg = Lc
g +

Lq
g, arising from the cavity-bath (c) and the qubit-bath (q)

interaction [see Appendix B and in particular Eq. (B2)]. It
remains valid at any light-matter coupling strength. By using
this approach, we also include the interaction of the matter
and light components of the system with individual reservoirs
that can be at different temperatures [see Eq. (B3)].

Starting from a gauge-invariant approach (see
Appendix B), the obtained photonic and atomic decay
rates associated with given system transitions can be written
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as

	c
k j = κ

ωk j

ωc
|〈 j|â + â†|k〉|2, 	

q
k j = γ

ωk j

ωq
|〈 j|σ̂x|k〉|2,

(23)

where κ and γ are the bare (in the absence of cavity-atom
coupling) loss rates for the photon and the atom, and Ohmic
reservoirs have been considered (i.e., the rates scale linearly
with frequency). Since the matrix elements in Eq. (23) are
gauge invariant, then 	

c(q)
k j = 	

c(q)
k′ j′ . As done before, we label

the quantum states and operators in the dipole gauge with the
prime superscript.

These gauge-invariant decay rates have been derived start-
ing from cavity and qubit reservoir interactions obtained by
invoking the gauge principle (see Appendix A). This also
gives rise to a gauge-invariant GME (see Appendix B), which,
in turns, provides gauge-invariant emission rates and spectra
(see Sec. II D).

D. Formulas for cavity and qubit emission spectra

In addition to cavity and qubit emission rates, we also
present emission spectra, which allows one to obtain informa-
tion on the frequency of the emitted photons and, indirectly,
on the system dynamics under incoherent excitation (for ex-
ample). The steady-state cavity and qubit emission spectra
(obtained from the steady-state density operator ρ̂ss by ap-
plying the quantum regression theorem [70,76,81]) can be
defined as

S̃c(ω) = Re
∫ ∞

0
dτe−iωτ 〈Ê−(t + τ )Ê+(t )〉ss,

S̃q(ω) = Re
∫ ∞

0
dτe−iωτ 〈Ŝ−(t + τ )Ŝ+(t )〉ss. (24)

Note that the above definition is valid only when consid-
ering steady state (ss). In the USC regime, true steady state
is achieved only under incoherent pumping. Under coherent
drive, the counter-rotating terms often determine the presence
of oscillations in the signals, even for times much longer than
coherence times. In this case the spectra have to be defined
introducing an additional time integration [63].

Instead of Eq. (24), we adopt slightly different formulas for
the spectra. Actually, the frequency of photons detected after
a spectrum analyzer tuned at a frequency ω is just ω and not
ωk j , even if they originate from a specific downward transition
|k〉 → | j〉 (which, however, is broadened by the interaction
of the system with the reservoirs). Hence, it is somewhat
more accurate to replace ωk j with ω in the emission spectra
formulas. In this way, in the low-frequency limit, the spectra
goes to zero as expected. However, this replacement can affect
the high-frequency behavior of the spectra, especially when
some cutoff mechanism is not introduced.

By making use of Eqs. (6) and (19), and by applying the
replacement ωk j → ω, we obtain

Sc(ω) = ω2

ω2
c

Re
∫ ∞

0
dτe−iωτ 〈Ê−

(t + τ )Ê+
(t )〉ss,

Sq(ω) = ω2

ω2
q

Re
∫ ∞

0
dτe−iωτ 〈Ŝ−

(t + τ )Ŝ+
(t )〉ss, (25)

where

Ê− = −i
∑
k> j

〈k|(â† + â)| j〉|k〉〈 j|,

Ŝ− = −i
∑
k> j

〈k|σ̂x| j〉|k〉〈 j|. (26)

The results obtained using Eqs. (24) and (25) are very similar,
and small differences can emerge only on a logarithmic scale.

III. NUMERICAL RESULTS

In this section, we present numerical calculations for the
photon emission rates and spectra for both the cavity and the
qubit, under qubit incoherent pumping, as a function of the
normalized coupling strength η. A similar analysis has been
carried out in the strong-coupling regime using the JC model
and the standard quantum optics master equation, which are
appropriate in this regime [77].

The incoherent excitation of the qubit is described by
coupling it with a thermal reservoir at a given effective
temperature Tq ≡ KBT/ωq �= 0 (here KB is the Boltzmann
constant). All the results have been obtained assuming a
zero-temperature (Tc = 0) cavity reservoir, so that the cavity
emission originates from the interaction with the qubit.

The eigenstates of the quantum Rabi Hamiltonian are
obtained by standard numerical diagonalization in a trun-
cated, but sufficiently large, finite-dimensional, Hilbert space.
Specifically, we consider the Hilbert space resulting from the
tensor product of the qubit basis {|g〉, |e〉}, and the basis con-
stituted by the N + 1 photonic Fock states up to the N-photon
state |N〉. The truncation number N is chosen in order to en-
sure that the lowest M energy eigenvalues and corresponding
eigenvectors of interest are not appreciably modified when
increasing N . All the results are obtained solving the GME
in Eq. (22), for the density matrix of the cavity-qubit in the
dressed basis, including the lowest M energy levels. The trun-
cation number M is chosen to reach convergence. Specifically,
we check that the results (emission rates and spectra) do not
notably change when increasing M.

In the following, where more convenient, we use a different
notation for the eigenstates of the QRM, in analogy with the
notation used to label the eigenstates of the JCM. At zero
detuning [ ≡ (ωc − ωq)/ωq = 0], the excited eigenstates of
the JC Hamiltonian can be written as |n±〉 = (|n, g〉 ± |n −
1, e〉)/

√
2. The eigenstates of the QRM, beyond the strong-

coupling regime do not display the same simple structure.
Here, when useful, we indicate them by generalizing the
above JC notation by introducing a tilde. With this notation,
the state |0̃〉 denotes the ground state, and |ñ±〉 describes an
eigenstate of the quantum Rabi Hamiltonian. Note that |ñ±〉
tends to the corresponding JC state |n±〉 for η 
 1. With this
notation, the energy eigenstates maintain their parity (corre-
sponding to the parity of the integer number ñ) independently
of the value of η.

All the numerical calculations involving the master equa-
tion have been obtained using γ /ωq = 10−4 and κ/ωq = 10−3

and using QUTIP under Python [82,83].
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FIG. 1. Numerically calculated cavity and qubit steady-state
photon emission flux rates (normalized with respect to the qubit
emission rate W 0

q calculated for η = 0) Wc = Wc/W 0
q (blue continu-

ous curves), and Wq = Wq/W 0
q (red dashed) versus the light-matter

normalized coupling strength η. We used  = 0 (zero cavity-qubit
detuning). Black-point-dashed curves indicate the cavity emission
rates W̃ ′

c = W̃ ′
c /W 0

q calculated in the dipole gauge, using the wrong
positive-frequency electric-field operator in Eq. (18). The upper
panel (a) has been obtained for Tq = 5 × 10−2, the lower one (b) for
Tq = 5 × 10−1.

A. Zero cavity-qubit detuning

Here, we present the results obtained analyzing emission
rates and spectra at zero cavity-qubit detuning  ≡ (ωc −
ωq)/ωq = 0.

1. Cavity and qubit emission rates

Figure 1 shows the numerically calculated cavity and qubit
steady-state photon emission flux rates (normalized with re-
spect to the qubit emission rate W 0

q for η = 0) Wc = Wc/W 0
q

(blue continuous curve), and Wq = Wq/W 0
q (red dashed

curve) versus the light-matter normalized coupling strength η,
calculated at two different effective temperatures of the qubit
reservoir. The black-point-dashed curve indicates the cavity
emission rates W̃ ′

c = W̃ ′
c /W 0

q calculated in the dipole gauge,
using the wrong positive-frequency electric-field operator in
Eq. (18). We first observe that, the methods discussed in
Sec. II allow us to calculate emission rates for very different
values of η, within a unified theoretical framework from the
weak to the DSC regimes.

Figure 1 clearly shows that, at low coupling strengths
(i.e., weak-coupling regime), a continuous increase of the
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η

(a) (1̃−, 0̃)

(1̃+, 0̃)

(2̃−, 0̃)

(2̃+, 0̃)

(3̃−, 0̃)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ω/ωq
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0.5

1.0

1.5

2.0

2.5

η

(b) (1̃−, 0̃)

(1̃+, 0̃)

(2̃−, 1̃−)

(2̃−, 1̃+)

(2̃+, 1̃−)

(2̃+, 1̃+)

(3̃−, 2̃−)

(3̃−, 0̃)

FIG. 2. Normalized energy levels and transition energies ver-
sus η, for  = 0. (a) Lowest normalized energy levels (with the
ground-state energy as reference) |ω j̃± − ω0̃|/ωq of the QRM.
(b) Normalized parity-allowed transition energies |ωk − ω j |/ωq for
the lowest eigenstates of the QRM.

cavity-emission rate with increasing η occurs for both, very
low and higher effective temperatures (Purcell effect). When
the system approaches the SC regime [ωqη � (κ + γ )/4] a
plateau is reached, in which the emission rate is equally
shared between the atom and the cavity. By increasing further
the coupling beyond the onset of USC (η > 0.1), a strong
enhancement of both the cavity and qubit emission can be
observed at low temperature Tq = 5 × 10−2 [Fig. 1(a)]. It
originates from the decrease of the transition frequency ω1̃−,0̃
between the lowest excited state and the ground state for
increasing values of η [see Fig. 2(b)]. The strong decrease of
ω1̃−,0̃ enables the increase of the occupancy of the state |1̃−〉
at very low effective temperatures. Such a population growth
determines an increase in the emission rate (of photons at fre-
quency ω1̃−,0̃), which can be observed in Fig. 1(a). The same
behavior is not observed at a significantly higher temperature
[Fig. 1(b)]. In this case, the state |1̃−〉 can already be populated
at small values of η.

When increasing η to values beyond the DSC regime (η >

1), then both Wc and Wq decrease rapidly. This behavior
can be understood by looking at the energy eigenvalues in
Fig. 2(a) in the large-η limit. Indeed, in this regime, all the
transition frequencies tend to become flat, equally spaced, and
two-by-two quasidegenerate. Theoretical analysis [62] shows
that, beyond the DSC regime, the quasidegenerate light-matter
eigenstates tend to factorize as |n, g〉 and |n, e〉, so that the

023048-6



REGIMES OF CAVITY QED UNDER INCOHERENT … PHYSICAL REVIEW RESEARCH 4, 023048 (2022)

10−5

10−3

10−1 (a) Tq = 0.05

Wc/Wq
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FIG. 3. (a) Ratio of the cavity to the qubit emission rates
Wc/Wq, for detuning  = 0, Tq = 5 × 10−2, as a function of the
normalized coupling strength η. The blue continuous curve describes
the numerically calculated ratio, while the red-dashed one is the
corresponding analytical approximated result Wc/Wq � |〈1̃−|(â +
â†)|0̃〉|2/|〈1̃−|σ̂x|0̃〉|2 [see Eq. (27)]. The two curves tend to coincide
for η > 5 × 10−3. In panel (b), the square modules of the matrix
elements that determine the approximate ratio in panel (a) are shown.

system tends to decouple from the qubit reservoir (	q
k j → 0)

and cannot be significantly excited. Specifically, the matrix
elements 〈 j|σ̂x|k〉 are different from zero only for states such
that ωk j → 0. As a consequence, 	

q
k j → 0.

We also notice that, in the large-η limit, especially at low
temperatures [see Fig. 1(a)], the cavity emission rate Wc

goes to zero more rapidly than Wq. This feature is shown
more clearly in Fig. 3(a), where the ratio Wc/Wq is dis-
played (blue continuous curve). The figure shows the standard
Purcell-like dependence in the weak-coupling regime, while
Wc saturates to 0.5 in the strong coupling and up to the
onset of the USC regime. Still increasing η, the ratio Wc/Wq

then decreases dramatically: the Purcell effect is reversed.
A similar behavior has been predicted in a polariton sys-
tem arising from the interaction of photons in a multimode
cavity with collective electronic (bosonic) excitations [52],
and experimentally confirmed in three-dimensional crystals
of plasmonic nanoparticles interacting with light in the DSC
regime [54].

It is interesting to explore the impact on the photon emis-
sion rate of not taking into account the proper transformation
of the photon operators, when adopting the dipole gauge (W̃ ′

c).

The dot-dashed black curves in Fig. 1 displays such a wrong
result. The differences with respect to the correct results Wc

become evident at the onset of the USC regime (η ≈ 0.1). In
the DSC regime, the impact of this mistake becomes very
relevant: W ′

c does not go to zero and becomes orders of
magnitudes larger than the qubit emission rate Wq.

In Fig. 3(a) it is also displayed an approximate analytical
derivation of the ratio Wc/Wq. When the coupling rate η

is strong enough to split sufficiently the two lowest-energy
excited levels (so that, at very low effective temperatures,
only the system ground state and the first-excited level are
populated) the higher energy levels can be neglected (effective
dressed two-level system). For these values of η, the cavity
and emission rates can be simplified to

Wc �
ω2

1̃−,0̃

ω2
c

|〈1̃−|(â + â†)|0̃〉|2 ρss
1̃−,1̃−

,

Wq �
ω2

1̃−,0̃

ω2
q

|〈1̃−|σ̂x|0̃〉|2 ρss
1̃−,1̃−

, (27)

where ρss indicates the steady-state density operator. It is
interesting to note that the ratio Wc/Wq in Eq. (27) is indepen-
dent of the density matrix. This approximate value of the ratio
(red-dashed curve), shown in Fig. 3(a), is able to reproduce
accurately the numerically calculated values of Wc/Wq for
η > 10−3. In Fig. 3(b) it is shown the square modules of the
transition matrix elements |〈1̃−|(â + â†)|0̃〉|2 and |〈1̃−|σ̂x|0̃〉|2
as a function of the normalized coupling η. In the high-η limit,
the first one goes to 0 and the second to 1.

In summary, the scenario in the high-η and low-qubit-
temperature limit is the following: the qubit spontaneous
emission rate Wq goes to zero because 	

q
1̃−,0̃

→ 0 (qubit
decoupling from its reservoir) and the cavity emission rate
Wc goes to zero even more rapidly (at increasing η) because
|〈1̃−|(â + â†)|0̃〉|2 → 0 and |〈1̃−|σ̂x|0̃〉|2 → 1 (light-matter
decoupling).

2. Cavity and qubit emission spectra

Figure 4 shows the cavity and qubit emission spectra un-
der incoherent weak excitation of the qubit (Tq = 5 × 10−2)
in the weak and strong-coupling regimes (2 × 10−5 < η <

4 × 10−2). All the presented spectra are individually nor-
malized, so that, in each spectral image the highest value is
set to one. The transition from the weak (a single spectral
line) to the strong (split lines) is clearly visible in the upper
panel of Fig. 4. The two lines correspond to the transitions
|1̃±〉 → |0̃〉 indicated as (1̃−, 0̃) and (1̃+, 0̃) in Fig. 2. In the
weak-coupling regime, the emission line becomes brighter at
increasing values of η. In the strong-coupling regime, when
the two lines are sufficiently split, an asymmetry in their
relative intensity can be observed. This is a direct conse-
quence of the higher population of the lower-energy excited
state |1̃−〉 with respect to the higher-energy state |1̃+〉 at
Tq = 5 × 10−2. This behavior cannot be reproduced using the
standard quantum-optics master equation where the reservoir
occupations are calculated at the bare (in the absence of light-
matter interaction) transition frequencies (see Sec. D). Across
the transition from the weak to the strong-coupling regime,
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FIG. 4. Cavity Sc(ω) and qubit Sq(ω) emission spectra in the
weak and strong-coupling regimes, calculated for 2 × 10−5 < η <

4 × 10−2, and for  = 0. The spectra have been obtained under
weak incoherent excitation of the qubit. We used an effective qubit
temperature Tq = 5 × 10−2. The spectra have been normalized, so
that the highest peak in each density plot is set at 1.

the qubit emission (lower panel) decreases approximately by
an order of magnitude (see also Fig. 1).

Figure 5 displays logarithmic cavity emission spectra
ln [Sc(ω)] as a function of the normalized coupling strength
η, calculated for four different temperatures, showing the evo-
lution of the emission spectra from the strong to the DSC
regimes. In contrast with the case of light-matter systems
described by a harmonic Hamiltonian (see, e.g., Ref. [84]), in
the present highly anharmonic case, the spectra become very
rich, if the system is adequately excited. On this scale, the
weak-coupling regime (already shown in Fig. 4) is confined to
a negligible portion of the y axis and is not visible. At very low
temperature (Tq = 5 × 10−2), only two spectral lines emerge,
corresponding to the transitions (1̃±, 0̃) [see Fig. 2(b)].

Notice that the transition (1̃+, 1̃−) is forbidden owing to
parity symmetry [3]. As expected, at such a low tempera-
ture, the emission from the lowest excited level at frequency
ω1̃−,0̃ dominates. Moreover, the line at ω1̃+,0̃ is visible only
for η � 0.3. When η increases (up to η � 1), the inten-
sity of the line ω1̃−,0̃ increases, due to the lowering of the
ratio ω1̃−,0̃/(ωqTq) which causes an increase of the excited-
state population ρ1̃−,1̃− . Then, for η � 1, the population starts
decreasing as a consequence of both light-matter and qubit-

reservoir decoupling. This behavior is in agreement with the
corresponding emission rate in Fig. 1(b).

At T = 0.1, the transition at frequency ω1̃+,0̃ becomes
visible for all the values of η in the plot, although in the
DSC regime, it tends to dissolve, owing to the qubit-reservoir
decoupling which prevents the excitation of the excited energy
levels. We also notice that a new resonance line at frequency
ω2̃−,1̃− appears [see Fig. 2(b)].

When further increasing the temperature (Tq = 0.2), ad-
ditional energy levels get populated and additional spectral
lines appear. Most of these correspond to transitions indicated
in Fig. 2(b). In the low-frequency range, in addition to the
transition (1̃−, 0̃), a new spectral line at |ω2̃−,1̃−| appears. This
transition is forbidden in the JCM, since 〈1+|(â + â†)|2−〉 =
0, at  = 0. The crossing between the energy levels ω2̃− and
ω1̃− , occurring at η ≈ η̄ = 0.43, manifests as a low spec-
tral line approaching ω = 0 as η → η̄, and then (after the
crossing), moving away from ω = 0. At higher frequencies
(ω/ωq ≈ 1), other two crossing spectral lines become clearly
visible. As shown in Fig. 2(b), they correspond to the tran-
sitions (2̃+, 1̃+) and (3̃−, 1̃−), both forbidden in the JCM
at zero detuning. Still at higher frequencies, other two lines
are observable for η � 0.4: they correspond to the transitions
(2̃+, 1̃−) and (3̃−, 0̃) [see Fig. 2(b)]. In the latter, the involved
states differ by a number of excitations ñ = 3. This transi-
tion is enabled by the presence of the counter-rotating terms in
the QRM (10) and represents a clear example of USC physics
[3], beyond the JCM. The spectra obtained at Tq = 0.5 display
still richer structures with the appearance of additional lines
originated by higher energy levels that get populated at this
effective temperature.

The qubit emission spectra Sq(ω) calculated at Tq = 0.2
are shown in Fig. 6. As expected, emission lines correspond-
ing to those observed for Sc(ω) at the same temperature are
shown. However, several differences emerge. In particular
the spectral lines as a function of η display different relative
intensities. For example, (i) two of the four lines around ω ≈ 1
in Sc(ω) are not visible in Sq(ω); (ii) the line corresponding to
the transition (2̃−, 1̃+) is more visible at small values of η;
(iii) at increasing values of η, Sq(ω), in contrast with Sc(ω),
exhibits an increasing background emission and a faster dis-
solving of the spectral lines at increasing values of η. All
these differences originate from the different matrix elements
in Eq. (26) [〈 j|(â + â†)|k〉 and 〈 j|σ̂x|k〉] entering Sc(ω) and
Sq(ω), respectively. In particular, the most peculiar feature
(iii) is a direct consequence of the fact that, for η � 1.5,
the matrix elements 〈 j|σ̂x|k〉 → 0 for transitions with ωk j

which are significantly different from zero. Therefore, for
large values of η, the qubit spectra Sq(ω) [see Eq. (25)] can be
approximated by a Lorentzian lineshape (times ω2) centered
at ω ≈ 0:

Sq(ω) ∝ ω2 γ 2

ω2 + γ 2
, (28)

which, for ω � γ , provides an almost constant background.
Such behavior can be clearly observed in Fig. 7(h). Notice that
this high-frequency behavior can be an artifact originating
from the assumption in Eq. (25) and from the absence of
any cutoff mechanism. Of course, a realistic behavior in a
so wide spectral range should include the specific frequency
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FIG. 5. Logarithmic two-dimensional plots of cavity emission spectra Sc(ω) for values of η reaching the USC and DSC regimes obtained
using four different effective qubit temperatures Tq, and  = 0. The spectra have been normalized so that the highest peak in each density plot
is set at 1. Increasing the temperature, additional lines originating from transitions involving higher energy levels appear. Most of the emission
lines correspond to transition energies shown in Fig. 2.
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FIG. 6. Logarithmic two-dimensional plots of qubit emission
spectra Sq(ω) for values of η reaching the USC and DSC regimes,
obtained at Tq = 0.2 and  = 0. The spectra have been normalized
so that the highest peak is set at 1. The visible lines correspond to
transition energies shown in Fig. 2. The origin of the flat (red) signal
background for η > 1.5 is explained in the text [see Eq. (28)].

dispersion of the resonator materials, which in general is
system dependent and goes beyond the present general
treatment.

Figure 7 displays cavity and qubit emission spectra Sc(q)(ω)
for four values of the normalized coupling strength η, cal-
culated at Tq = 0.5. The plots on the left correspond to
horizontal line cuts of the bottom-right density plot in Fig. 5.
For a more accurate comparison, the spectra in Fig. 7 are re-
ported all on the same x and y scale and have been normalized
by the same amount, so that the highest peak in the figure is
set to 1. Each spectral line in Fig. 7 originates from a specific
transition between pairs of energy levels of the QRM [see
Fig. 2].

These spectra show more in detail several features already
present in the density plots. In particular, the six peaks in
Figs. 7(a) and 7(b) originate from the following transitions
(from the left): (2̃−, 1̃+), (1̃−, 0̃), (2̃−, 1̃−), (2̃+, 1̃+), (1̃+, 0̃),
(2̃+, 1̃−). In Figs. 7(e) and 7(f) at η = 1, the highest peak for
both the cavity and qubit spectrum is the one at the lowest
frequency and corresponds to the transition (1̃−, 0̃). More-
over, at this coupling strength, higher-energy peaks around
ω/ωq ≈ 2, due to transitions from states differing by two
excitations ñ = 2, can be observed. At η = 2, well in the
DSC regime, the intensity of the emission spectra decreases.
Now Sc(ω) shows bunches of peaks centered at ω ≈ 0, 1, 2,
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FIG. 7. Cavity Sc(ω) and qubit Sq(ω) emission spectra (logarithmic), obtained at four different values of η, increasing from the top to
the bottom (detuning  = 0). The cavity spectra are on the left, while the qubit ones on the right side. We used an effective temperature
for the qubit reservoir Tq = 0.5. The cavity and qubit spectra have been normalized to the highest peak which appears in panels (c) and (d),
respectively. The plots show the evolution of the cavity and qubit emission spectra when increasing the normalized coupling strength η. Panel
(h) reveals the flat background appearing in the qubit emission spectra in the DSC regime.

due to the tendency of the energy levels of the system to-
wards a harmonic spectrum in the large-η limit (see Fig. 2).
In Fig. 7(h) is displayed a very different behavior consist-
ing of the constant emission background explained above
[see Eq. (28)].

B. Cavity-qubit interaction in the presence of detuning

We now present numerically calculated emission rates and
spectra obtained in the case of significant qubit-cavity de-
tuning  ≡ (ωc − ωq)/ωq, in normalized units. In particular,
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FIG. 8. Cavity and qubit emission rates (normalized with respect
to the qubit emission rate W 0

q calculated for η = 0) Wc = Wc/W 0
q

(blue continuous curve), and Wq = Wq/W 0
q (red dashed) versus the

light-matter normalized coupling strength η. We used  = −0.3,
corresponding to ωc/ωq = 0.7. The upper panel has been obtained
for Tq = 5 × 10−2, the lower one for Tq = 5 × 10−1.

here we consider the cases of  = − 0.3, while in Appendix C
we analyze the positive-detuning case.

We start from a detuning value of  = −0.3. Figure 8
shows the normalized cavity and qubit emission rates, ob-
tained with the same parameters used to calculate the results
in Fig. 1, except the finite detuning. At very low effective
temperature Tq = 5 × 10−2, and at low coupling strengths,
the cavity emission rate Wc increases linearly (on this log-log
scale) as the zero-detuning case, but it is some orders of mag-
nitude smaller. As expected, the large detuning significantly
reduces the energy transfer from the qubit to the cavity for
ωqη 
 . However, the cavity emission rate becomes of the
same order of magnitude of the qubit emission at η ≈ 0.05,
when ωqη < .

Moreover, the plateau in the strong-coupling regime is no
longer present, hence the standard Purcell behavior continues
in the USC regime. In the η region 5 × 10−2 � η � 0.5, the
cavity emission rate exceeds that of the qubit (Wc > Wq). The
qubit emission rate is almost constant from the weak-coupling
regime to the onset of the USC, where it reaches values which
are more than five orders of magnitude greater than the qubit
emission rate at zero coupling W 0

q . As in the zero-detuning
case, the strong enhancement of both the emission rates in
the USC regime and at low effective temperature originates
from the decrease of the transition frequency ω1̃−,0̃, and, as
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FIG. 9. Cavity Sc(ω) and qubit Sq(ω) emission spectra in the
weak and strong-coupling regime, calculated for 10−3 < η < 10−1,
and for  = −0.3 (ωc/ωq = 0.7). The spectra have been obtained
under weak incoherent excitation of the qubit. We used an effective
qubit temperature Tq = 5 × 10−2. The spectra have been normalized,
so that the highest peak in each density plot is set at 1.

stated above, it is not present at higher effective tempera-
tures. Moreover, beyond the DSC regime onset (η > 1), both
Wc and Wq decrease rapidly because of the light-matter and
qubit-reservoir decoupling.

Figure 9 shows the low-temperature (Tq = 5 × 10−2) cav-
ity and qubit emission spectra in the weak and strong-coupling
regimes (10−5 � η � 3 × 10−2), in analogy with the zero-
detuning case in Fig. 4. As can be seen in Fig. 10, in the
weak-coupling regime ω1̃−,0̃ ≈ ωc and ω1̃+,0̃ ≈ ωq. Moreover,
at low values of the coupling strength and at low incoherent
excitation rates (low temperature), the cavity cannot emit at
the qubit frequency ωq, and the qubit cannot emit at ωc. Thus,
Fig. 9 shows only the (1̃+, 0̃) transition, while the (1̃−, 0̃)
transition is absent. Another difference between Fig. 9 and
Fig. 4 is the intensity of the Purcell effect, which is much more
effective in the zero-detuned case. Here the cavity starts to
emit at η ≈ 10−2, a value which is three orders of magnitude
greater than the zero-detuning case.

Figure 11 shows a logarithmic plot of the cavity emis-
sion spectra Sc(ω) as a function of the normalized coupling
strength η ranging from the strong to the DSC regimes. As
in the zero-detuning case, at very low effective temperature
(Tq = 5 × 10−2), the transition (1̃−, 0̃) is the brightest, while
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FIG. 10. Normalized energy levels and transition energies ver-
sus η for  = −0.3 (ωc/ωq = 0.7). (a) Lowest normalized energy
levels (with the ground-state energy as reference) (ω j̃± − ω0̃ )/ωq of
the QRM. (b) Normalized parity-allowed transition energies |ω j̃± −
ωk̃± |/ωq for the lowest eigenstates of the QRM.

the atom-like transition (1̃+, 0̃) is visible only for η � 0.4. We
also notice that the line at frequency ω2̃−,1̃− becomes slightly
visible only for 0.7 � η � 1.7.

At Tq = 0.5, additional energy levels get populated and
additional spectral lines appear. As in the zero-detuning case,
most of these transitions can be found in Fig. 10(b). The
line at frequency ω2̃−,1̃+ becomes sufficiently intense only for
η � 0.35, which is when the (1̃+, 0̃) frequency transition be-
comes greater than (2̃−, 0̃). We also observe that, at the higher
effective temperature and at low coupling strengths (but with
η � 0.05), the cavity can also emit significantly at the qubit
frequency ωq. It is worth noting that at very high coupling
strengths, all the spectral lines tend to be at frequencies which
are multiple integer of the cavity frequency ωc.

Figure 12 displays the logarithmic qubit emission spectra
Sq(ω), which present features similar to those in the cavity
emission spectrum but with a background emission above the
onset of the deep USC regime.

IV. CONCLUSIONS

We have investigated how the QRM emits light under inco-
herent excitation of the two-level atom, considering coupling
strengths ranging from the weak coupling to the USC and
DSC regimes. We analyzed both the cavity and the qubit
emission, for both the resonant and detuned cases, considering
different effective qubit temperatures. In particular, by using a
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FIG. 11. Cavity emission spectra Sc(ω) on logarithmic scale for
values of η reaching the USC and DSC regimes, obtained for two
different effective qubit temperatures Tq = 0.05, 0.2. We used  =
−0.3 (ωc/ωq = 0.7). The spectra have been normalized, so that
the highest peak in each density plot is set at 1. Increasing the
temperature, additional lines originating from transitions involving
higher energy levels appear, where the majority of these correspond
to transition energies shown in Fig. 10.

GME approach, we were able to calculate numerically cavity
and qubit emission rates and spectra versus the normalized
light-matter coupling strength and for different incoherent
qubit excitation strengths (effective temperature). Following
the work in Ref. [63], the obtained results are gauge indepen-
dent. The theoretical framework allows us to investigate the
light-matter decoupling and the fate of the Purcell effect in the
QRM when the normalized coupling strength η is significantly
larger than one. In this case, we found that the cavity and qubit
emission rates are affected both by light-matter decoupling
and qubit-reservoir decoupling.

Reaching the USC and DSC regimes with individual quan-
tum emitters, whose interaction with light is implemented via
the minimal-coupling replacement, is currently very difficult,
although progress is being made, especially with plasmonic
cavity systems [54]. However, this theoretical framework can
be easily generalized to include N qubits (Dicke model) [60].
Moreover, coupling strengths ranging from the weak to the
DSC regime can be achieved with individual qubits using
superconducting circuits (see, e.g., Refs. [31,85]). In this case,
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FIG. 12. Logarithmic qubit emission spectra Sq(ω) for values of
η reaching the USC and DSC regimes, obtained at Tq = 0.2. We used
 = −0.3. The spectra have been normalized so that the highest
peak is set at 1. The visible lines correspond to transition energies
shown in Fig. 2. The origin of the flat (red) signal background for
η > 1.5 is explained in the text [see Eq. (28)].

however, the light-matter interaction is not described by the
minimal-coupling replacement and specific calculations for
these systems would have to be carried out, where the gen-
eral approach described here and these results can provide a
precise guide.
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APPENDIX A: CAVITY- AND QUBIT-BATH
INTERACTIONS FROM THE GAUGE PRINCIPLE

A simple and widely adopted way to model the interaction
of a quantum system with its environment consists in writing
the interaction Hamiltonian in a quadratic form involving the
product of system- and bath-degrees of freedom:

ĤI =
∑

k

λkŜB̂k, (A1)

where the coefficients λk represent the coupling strengths
(assumed real, one for any bath-degree of freedom), while Ŝ
and B̂k are Hermitian system- and bath-operators. The specific
values of the coupling strengths and the choice of the system
and bath operators in Eq. (A1) is model dependent. In the next
sections, we present arguments to guide and to make these
choices consistent (taking care of gauge issues). Specifically,
we present a consistent derivation for the QRM, describing
the interaction of the cavity mode and the qubit with their
respective baths.

The approach followed here is close to that recently de-
veloped in Ref. [63] and gives rise to analogous results. The
only difference is that here we introduce the interaction of
the photonic and matter components with their reservoirs
by invoking the gauge principle. This approach provides a
rather fundamental model of systems-baths interactions and
connects more with quantum field theory.

1. Cavity-Bath Interaction in the Coulomb and Dipole Gauges

Here, we introduce the cavity-bath coupling by regarding
the environment as collective bosonic excitations of matter
so that we can introduce such interaction by invoking the
fundamental gauge principle, which determines the form of
light-matter coupling.

a. Cavity-bath interaction in the Coulomb gauge

As a consequence of the gauge principle (minimal-
coupling replacement), in the Coulomb gauge, the only
degrees of freedom of the electromagnetic field interacting
with matter are the field coordinates. For a single-mode res-
onator, there is a single coordinate x̂, which can be expressed
as x̂ = â + â†. This fact not only leads to the useful relation in
Eq. (6), but it also allows us to obtain a Thomas-Reiche-Kuhn
(TRK) sum rule for the electromagnetic field [69].

Usually, input-output frameworks, which are used to model
the interaction of cavity modes with the external modes, adopt
as bath operators a continuum of bosonic electromagnetic
modes, rather than a collection of bosonic matter excitations.
However, the field-bath coupling ultimately originates from
the interaction of the cavity electromagnetic field with matter
(e.g., cavity mirrors). Due to this fact, even if such matter
degrees of freedom can be adiabatically eliminated, it is rea-
sonable to require that the general relationship (6) and the
TRK sum rule remain valid. To ensure this, it is sufficient to
start from the free bosonic Hamiltonian for the bath, Ĥb =∑

k ωkb̂†
kb̂k , and to apply the generalized minimal-coupling

replacement, which corresponds to transforming each matter
operator of the bath by a suitable unitary transformation (see
Ref. [60]):

b̂k → Ûcb b̂k Û†
cb = b̂k − iηc

k (â + â†), (A2)

where

Ûcb = exp

[
i(â + â†)

∑
k

ηc
k (b̂k + b̂†

k )

]
. (A3)

Assuming a coupling constant (effective charge q) indepen-
dent on the matter mode k, Ûcb can be written as

Ûcb = exp[iqx̂ Q̂b], (A4)
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where the coordinate of the reservoir field reads

Q̂b =
∑

k

α√
ωk

(b̂k + b̂†
k ). (A5)

Here α is a constant. The resulting adimensional coupling in
Eq. (A3) can be expressed as

ηc
k = qα/

√
ωk . (A6)

Of course, depending on the specific model, the effective
charge can be frequency dependent, implying a different fre-
quency dependence of ηc

k than that in Eq. (A6). By neglecting
the diamagnetic term [of the second order ηc

k
2(ωk )], we obtain

the interaction Hamiltonian for the cavity field and the reser-
voir

Ĥcb = i(â + â†)
∑

k

ωkη
c
k (b̂k − b̂†

k ). (A7)

A comparison between Eq. (A1) and Eq. (A7) clearly shows
that Ŝ = (â + â†) and B̂k = iωk (b̂k − b̂†

k ).
Equation (A7) represents a consistent starting point to

study the interaction of the cavity mode with its bath. To
derive the GME (see Appendix B), it is useful to expand the
cavity-field coordinate in the dressed basis,

Ĥcb = i
∑
l,m

xlmP̂lm

∑
k

ωkη
c
k (b̂k − b̂†

k ), (A8)

where P̂lm = |l〉〈m| are the transition operators and xlm =
〈l|(â + â†)|m〉 are the matrix elements for the cavity-field
coordinate, with |l〉 being the energy eigenstates of the Hamil-
tonian in the Coulomb gauge [Eq. (1) in Sec. II A]. In terms
of cavity-photon operators with positive and negative frequen-
cies [71], Eq. (A8) can be written as

Ĥcb = i
∑
l>m

(xlmP̂lm + x∗
ml P̂ml )

∑
k

ωkη
c
k (b̂k − b̂†

k ). (A9)

Note that
∑

l>m xlmP̂lm = (
∑

l<m x∗
ml P̂ml )†.

Since the system-bath interaction is assumed to be weak, it
is reasonable to apply to Eq. (A9) the rotating wave approxi-
mation:

Ĥcb = −i
∑
l>m

x∗
ml P̂ml

∑
k

ωkη
c
kb̂†

k + H.c. (A10)

b. Cavity-bath interaction in the dipole gauge

The cavity-bath interaction Hamiltonian in the dipole
gauge could be obtained by simply performing the gauge
transformation of the cavity operators in Eq. (A7): â →
R̂âR̂† = â + iηcσ̂x = â′, where

R̂ = exp[−iη(â + â†)σ̂x]. (A11)

Therefore, Ĥ ′
cb in the dipole gauge is equivalent to Ĥcb in

the Coulomb gauge, because x̂′ = R̂x̂R̂†. In doing so, we are
neglecting the action of the gauge transformation on the reser-
voir operators b̂k (b̂†

k), which is possible because, as shown
in Ref. [59], gauge transformations affect significantly ladder
operators only when the coupling is rather strong. Neverthe-
less, it remains interesting and instructive to derive directly
the cavity-bath reservoir in the dipole gauge.

In general, for a light-matter system whose light com-
ponent (in the absence of interaction) is described by the

Hamiltonian Ĥph, and matter component by Ĥm, the total
Hamiltonian (in the dipole approximation) in the presence of
interaction can be obtained in the Coulomb gauge by applying
a suitable unitary transformation Û to the matter Hamiltonian
only:

Ĥ = Û ĤmÛ † + Ĥph. (A12)

The dipole gauge Hamiltonian is obtained from the above as

Ĥ ′ = Û †ĤCÛ = Ĥm + Û †ĤphÛ , (A13)

which corresponds to applying a unitary transformation to
the bare photonic Hamiltonian only: a sort of generalized
minimal-coupling replacement for the photonic Hamiltonian.
Of course, the dipole-gauge Hamiltonian can also be written
using the unitary operator R̂ = Û †:

Ĥ ′ = Ĥm + R̂ĤphR̂†. (A14)

In the present case, the generalized minimal-coupling re-
placement for a single-mode photonic system interacting with
a two-level atom and with a bosonic matter field can be im-
plemented by the following unitary operator:

R̂cqb = exp

{
−i

(
â + â†

)[
ησx +

∑
k

ηc
k (b̂k + b̂†

k )

]}
.

(A15)

The dipole-gauge Hamiltonian for the system constituted by a
cavity-mode interacting with a qubit and with a bosonic matter
reservoir can be directly obtained applying the generalized
gauge transformation [see Eq. (A15)] to the photon operators
in the bare cavity Hamiltonian Ĥph = ωcâ†â:

â → R̂cqbâR̂†
cqb = â + iησ̂x + i

∑
k

ηc
k (b̂k + b̂†

k ). (A16)

The resulting cavity-bath interaction Hamiltonian in the
dipole gauge becomes

Ĥ ′
cb = −iωc(â − â† + 2iησ̂x )

∑
k

ηc
k (b̂k + b̂†

k )

+ωc

∣∣∣∣∣∑
k

ηc
k (b̂k + b̂†

k )

∣∣∣∣∣
2

, (A17)

which includes an effective interaction of the bath with the
qubit, and a bath self-interaction term. The result in Eq. (A17)
differs from what has been obtained above adopting a less
rigorous approach (Ĥ ′

cb = Ĥcb). However, in Appendix B we
show that the two approaches, after the Markov and Born
approximations, give rise to the same dissipators in the master
equation. Neglecting the bath self-interaction term [of second
order η2

k (ωk )] and using the dipole-gauge photon operators in
Eq. (13) (see Sec. II B), the cavity-bath interaction Hamilto-
nian in Eq. (A17) can be written as

Ĥ ′
cb = −iωc(â′ − â′†)

∑
k

ηc
k (b̂k + b̂†

k ). (A18)

A comparison between Eq. (A1) and Eq. (A18) clearly shows
that Ŝ = −iωc(â′ − â′†) and B̂k = b̂k + b̂†

k .
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By expanding in Eq. (A18), the cavity operators in the
dressed basis, we obtain

Ĥ ′
cb = −iωc

∑
m,l

p′
lmP̂′

lm

∑
k

ηc
k (b̂k + b̂†

k ), (A19)

where p′
lm = 〈l ′|(â′ − â′†)|m′〉, and P̂′

lm = |l ′〉〈m′|, with |l ′〉
being the energy eigenstates of the Rabi Hamiltonian in dipole
gauge [Eq. (10) in Sec. II B]. Looking at Eq. (19) in the
main text, the above matrix element can also be written as
p′

lm = ωlmx′
lm/ωc, with x′

lm = 〈l ′|(â′ + â′†)|m′〉. In terms of
cavity-photon operators with positive and negative frequen-
cies, we obtain

Ĥ ′
cb = −i

∑
l>m

ωlm(x′
lmP̂′

lm − x′∗
ml P̂

′
ml )

∑
k

ηc
k (b̂k + b̂†

k ). (A20)

Note that
∑

l>m ωlmx′
lmP̂′

lm = (
∑

l<m ωml x′∗
ml P̂

′
ml )

†.
Finally, applying the RWA, Eq. (A20) becomes

Ĥ ′
cb = −i

∑
m>l

ωlmx′
lmP̂′

lm

∑
k

ηc
kb†

k + H.c. (A21)

2. Modeling the qubit-bath interaction in the Coulomb
and dipole gauges

Due to the fact that atoms interact with the electromag-
netic field, here we model (as usual) the qubit-bath interaction
considering the environment field as a free-space electromag-
netic field described by a collection of harmonic oscillators.
We indicate with ĉk and ĉ†

k the bosonic photon destruction
and creation operators for the kth mode of the reservoir, so
that the free reservoir Hamiltonian can be expressed as Ĥc =∑

k ωk ĉ†
k ĉk .

a. Qubit-bath interaction in the Coulomb gauge

In the Coulomb gauge, in contrast with the field momenta,
the matter momenta are modified by the light-matter interac-
tion. In particular, the canonical momenta of the matter field
differ from the kinetic momenta (see, e.g., Ref. [62]). Hence,
this gauge is not the more convenient one to study the qubit
properties.

The qubit-bath interaction Hamiltonian in the Coulomb
gauge can be obtained by applying the generalized minimal-
coupling replacement including, in addition to the qubit
interaction with the cavity field, also the interaction with the
environment. Specifically, the interaction of the qubit with
the cavity and the bath fields can be directly obtained by
applying to the qubit bare Hamiltonian Ĥq = ωqσ̂z/2 a unitary
transformation defined by the following unitary operator:

Ûqb = exp

{
iσ̂x

[
η(â + â†) +

∑
k

η
q
k (ĉk + ĉ†

k )

]}
. (A22)

Keeping only the linear terms in the qubit-bath coupling
strength η

q
k , the resulting qubit-bath interaction Hamiltonian

in the Coulomb gauge becomes (see Ref. [62])

Ĥqb = ωq�̂y

∑
k

η
q
k (ĉk + ĉ†

k ), (A23)

where

�̂y ≡ R̂†
qbσ̂yR̂qb = σ̂ycos[2η(â + â†)] − σ̂zsin[2η(â + â†)]

(A24)
is the Pauli y operator in the dipole gauge, transformed in the
Coulomb gauge, and R̂qb = Û†

qb. Analogously, we have

�̂z ≡ R̂†
qbσ̂zR̂qb

= σ̂zcos[2η(â + â†)] + σ̂ysin[2η(â + â†)], (A25)

�̂x ≡ R̂†
qbσ̂xR̂qb = σ̂x. (A26)

A comparison between Eq. (A1) and Eq. (A23) clearly shows
that Ŝ = ωq�̂y and B̂k = ĉk + ĉ†

k .
By expanding the qubit operator �̂y in Eq. (A23) in the

dressed representation, we obtain

Ĥqb = ωq

∑
m,l

(�y)lmP̂lm

∑
k

η
q
k (ĉk + ĉ†

k ), (A27)

where (�y)lm = 〈l|�̂y|m〉 are the matrix elements of the Pauli
y operator, with |l〉 being the energy eigenstates of the Rabi
Hamiltonian in the Coulomb gauge [Eq. (1) in Sec. II A]. The
matrix elements in Eq. (A27) satisfy the relation

ωq(�y)lm = iωml (�x )lm. (A28)

As done for the previous cavity-bath interaction Hamil-
tonian, we can expand the qubit dressed-operators in terms
of positive and negative frequencies operators, such that, by
applying the RWA, Eq. (A27) can be written as

Ĥqb = i
∑
m>l

ωml (�x )lmP̂lm

∑
k

η
q
k ĉ†

k + H.c. (A29)

b. Qubit-bath interaction in the dipole gauge

In the dipole gauge, the qubit-bath interaction Hamiltonian
can be obtained by applying the generalized minimal-
coupling replacement to the bosonic Hamiltonian for the bare
field-bath Ĥb = ∑

k ωk ĉ†
k ĉk . This corresponds to transforming

the bath operators as follows:

ck → R̂qbĉkR̂†
qb = ĉk + iηq

k σ̂x, (A30)

where R̂qb = Û†
qb. The resulting qubit-bath Hamiltonian in the

dipole gauge becomes

Ĥ ′
qb = iσx

∑
k

ωkη
q
k (ĉ†

k − ĉk ). (A31)

A comparison between Eq. (A1) and Eq. (A31) clearly shows
that Ŝ = −i�̂x and B̂k = ωk (ĉk − ĉ†

k ).
By expanding σ̂x in the dressed representation, we obtain

Ĥ ′
qb = −i

∑
m,l

(σx )′lmP̂′
lm

∑
k

ωkη
q
k (ĉk − ĉ†

k ), (A32)

where (σx )′lm = 〈l ′|σ̂x|m′〉 are the matrix elements of the Pauli
x operator, with |l ′〉 being the energy eigenstates of the Rabi
Hamiltonian in dipole gauge [Eq. (10) in Sec. II B].

Finally, in terms of positive and negative frequencies of the
qubit dressed-operators and applying the RWA, Eq. (A32) can
be written as

Ĥ ′
qb = i

∑
m′>l ′

(σx )′lmP̂′
lm

∑
k

ωkη
q
k ĉ†

k + H.c. (A33)
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APPENDIX B: GAUGE INVARIANCE OF THE
GENERALIZED MASTER EQUATION

The GME [65] for strongly interacting hybrid quantum
systems is developed using the basis of the system eigenstates
(dressed states). Moreover, it does not makes use of the sec-
ular approximation (post-trace rotating wave approximation).
Thus, unlike the dressed master equation in Ref. [64], suitable
for anharmonic systems, it is also valid for systems displaying
harmonic or quasiharmonic spectra. This feature is essential to
describe the system dynamics and the resulting spectra both at
small and at very large (deep strong) values of the normalized
coupling strength η. Here, we provide a demonstration of the

GME gauge invariance. Within this approach, we guarantee
the gauge invariance of matrix elements of the density matrix
and expectation values, as well as the obtained emission rate
and spectra.

We start by considering the GME in the Coulomb gauge
for the Rabi model, which can be written as

˙̂ρ = −i[ĤR, ρ̂] + Lgρ̂, (B1)

where the dissipator Lg contains two contributions, Lg =
Lc

g + Lq
g, arising from the cavity-bath (c) and the qubit-bath

(q) interaction, respectively:

Lc(q)
g ρ̂ = 1

2

∑
j>k
l>m

{
	

c(q)
lm nml (Tc(q) )[P̂lmρ̂P̂k j − P̂k j P̂lmρ̂] + 	

c(q)
k j n jk (Tc(q) )[P̂lmρ̂P̂k j − ρ̂P̂k j P̂lm]

+	
c(q)
lm [nml (Tc(q) ) + 1][P̂k j ρ̂P̂lm − ρ̂P̂lmP̂k j] + 	

c(q)
k j [n jk (Tc(q) ) + 1][P̂k j ρ̂P̂lm − P̂lmP̂k j ρ̂]

}
, (B2)

with

nk j (Tc(q) ) = {exp[ωk j/(ωc(q)Tc(q) )] − 1}−1, (B3)

which is the thermal populations of the cavity and qubit reser-
voirs calculated at the transition frequencies ωk j .

The cavity- and qubit-bath coupling rates determine both
the losses and the incoherent pumping of the system. These
rates depend on the specific interaction Hamiltonian (which
describe the coupling between the system component and its
bath) and on the density of the states of the relative bath.

For the cavity-bath rate, following the general derivation in
Appendix A1a, and using Eq. (A10), we obtain

	c
k j = 2πdc(ωk j )|ωk jη

c(ωk j )|2|〈k|(â + â†)| j〉|2, (B4)

where dc(ωk j ) is the density of states of the bath calculated at
the transition frequency ωk j . For any numerical calculations
in the main text, we assume ηc

k ∝ 1/
√

ωk , and dc independent
of ω. Taking these assumptions into account and including all
the constants in the rate κ , the cavity-bath coupling rate can
be expressed as

	c
k j = κ

ωk j

ωc
|〈 j|(â + â†)|k〉|2. (B5)

It is clear that the cavity-bath interaction rates in Eq. (B4) and
Eq. (B5) are gauge invariant. Analogously, from the general
derivation in Appendix A2a, and using Eq. (A29) we obtain

	
q
k j = 2πdq(ωk j )|ωk jη

q(ωk j )|2|〈k|σ̂x| j〉|2. (B6)

Assuming η
q
k ∝ 1/

√
ωk , dc independent of ω, and including

all the constants in the rate γ , the qubit-bath coupling rate can
be expressed as

	
q
k j = γ

ωk j

ωq
|〈 j|σ̂x|k〉|2. (B7)

1. Gauge invariance

In any coherent description of the light-matter interaction,
the expectation value of any Hermitian operator Ô that char-

acterizes a property of the optical system has to be gauge
invariant. Since the correct gauge transformation is described
by a unitary operator Û , if |ψ〉 is a quantum state in the
Coulomb gauge, it is trivial to see that

〈ψ |Ô|ψ〉 = 〈ψ ′|Ô′|ψ ′〉, (B8)

where Ô′ = ÛÔÛ† and |ψ ′〉 = Û |ψ〉 are a generic Hermitian
operator and a ket state in the dipole gauge, respectively. In
particular, by considering the definition of the density operator
ρ̂ = ∑

m pm|ψm〉〈ψm| one can clearly see that, while the ma-
trix elements pm are gauge-invariant probabilities the quantum
states |ψm〉 are gauge dependent. If |ψm〉 are obtained in the
Coulomb gauge, in the dipole gauge we have

ρ̂ ′ =
∑

m

pm|ψ ′
m〉〈ψ ′

m| = Û ρ̂ Û†. (B9)

Here, we show that the master equation in Eq. (B2) does
not break gauge invariance. As done so far, we are labeling
quantum states and operators in the dipole gauge with a prime
apex primed superscript.

Due to the Eq. (B8), we want to show that the time evolu-
tion of any system operator is gauge invariant, namely,

d

dt
〈Ô〉 = TrÔ ˙̂ρ = TrÔ′ ˙̂ρ ′′. (B10)

In terms of Eq. (B1), we can write Eq. (B10) in the Coulomb
gauge as

TrÔ ˙̂ρ = −iTrÔ[ĤR, ρ̂] + TrÔLgρ̂

= −i
∑

j

〈 j|Ô[ĤR, ρ̂]| j〉 +
∑

j

〈 j|ÔLgρ̂| j〉. (B11)

Let us next consider separately the two terms on the
right-hand side of Eq. (B11). By means of the unitary gauge
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transformation Û , we obtain∑
j

〈 j|Ô(ĤRρ̂ − ρ̂ĤR)| j〉 =
∑

j

〈 j′|[Û Û†(ÛÔÛ†)[(ÛĤRÛ†)(Û ρ̂Û†) − (Û ρ̂Û†)(ÛĤRÛ†)Û Û†]| j′〉

=
∑

j

〈 j′|Ô′(Ĥ ′
Rρ̂ ′ − ρ̂ ′Ĥ ′

R)| j′〉 = TrÔ′[Ĥ ′
R, ρ̂ ′]′. (B12)

To deal with the second term on the right-hand side of Eq. (B11), we first observe that 	
c(q)
ml = 	

c(q)
m′l ′ and nml (Tc(q) ) = nm′l ′ (Tc(q) )

in Eq. (B2) are gauge invariant. Thus, it is sufficient to show that the terms in the square brackets (involving the transition
operators P̂lm) in Eq. (B2), provide gauge-invariant contributions in Eq. (B10). Considering the first of these terms, we have

TrÔP̂lmρ̂P̂k j =
∑

n

〈 j|ÔP̂lmρ̂P̂k j | j〉 =
∑

n

〈 j′|Û Û†(ÛÔÛ†)(Û P̂lmÛ†)(Û ρ̂Û†)(Û P̂k jÛ†)Û Û†| j′〉

=
∑

n

〈 j′|Ô′P̂lmρ̂ ′P̂k j | j′〉 = TrÔ′P̂′
lmρ̂ ′P̂′

k j
′
. (B13)

It is easy to see that the other similar terms transform exactly
in the same way. This proves that

TrÔLgρ̂ = TrÔ′L′
gρ̂

′′,

and, as a consequence, Eq. (B10) is gauge invariant.

APPENDIX C: CAVITY AND QUBIT EMISSION RATES
AND SPECTRA AT POSITIVE DETUNING (� = 0.3)

We now present numerically calculated emission rates and
spectra obtained in the case of significant qubit-cavity detun-
ing , in normalized units. In particular, here we consider the
cases of  = 0.3.

The emission rates versus the normalized coupling strength
η, for the positive-detuning case and for both the cavity and
the qubit, are shown in Fig. 13 at both low and higher effective
temperatures. For both the considered temperatures, the cavity
emission rate never exceeds the qubit one. At Tq = 5 × 10−2,
the peak qubit emission rate exceeds the cavity peak by more
than two orders of magnitude. The increase of the cavity emis-
sion rate at increasing values of η (Purcell effect) continues
until the onset of the USC regime, and the plateau in the
strong-coupling regime, observed at zero detuning, is here ab-
sent. At Tq = 5 × 10−2, the qubit emission rate reaches in the
USC regime values, which are about six orders of magnitude
larger than W 0

q .
Looking at Fig. 14, we observe that, at weak-coupling

strengths the (1̃−, 0) transition almost coincides with the qubit
transition frequency, while the (1̃+, 0) almost coincides with
the resonance frequency of the cavity mode. Figure 15 shows
the cavity emission spectrum, obtained at the effective tem-
perature Tq = 5 × 10−2, in the weak- and strong-coupling
regimes. In the frequency region displayed in Fig. 15, the only
visible emission line corresponds to the transition (1̃−, 0̃).
As in the negative-detuning case (see Fig. 9), in the weak-
coupling regime, the emission originates from the qubit-like
transition (1̃−, 0), which, however, now is the lowest-energy
transition.

Figure 16 shows the logarithmic cavity emission spectra
Sc(ω) as a function of the normalized coupling strength η,
ranging from the strong to the DSC regimes. At very low
effective temperatures, the emission originates almost only

from the lowest energy transition (1̃−, 0), because the photon-
like transition (1̃+, 0) is at higher energy and, owing to the
detuning, is poorly hybridized with the qubit excited state,
at least for moderate coupling strengths. Increasing the ef-
fective temperature (Tq = 0.2) higher energy levels start to
get populated, thus determining the appearance of several
additional emission lines [see Fig. 14(b)]. The qubit emission
spectra versus η, at Tq = 0.2 are shown in Fig. 17. The line
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FIG. 13. Cavity and qubit emission rates (normalized with re-
spect to the qubit emission rate W 0

q calculated for η = 0) Wc =
Wc/W 0

q (blue continuous curve), and Wq = Wq/W 0
q (red dashed)

versus the light-matter normalized coupling strength η. We used
 = 0.3, corresponding to ωc/ωq = 1.3. The upper panel is for
Tq = 5 × 10−2, the lower panel is for Tq = 5 × 10−1.
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FIG. 14. Normalized energy levels and transition energies versus
η for  = 0.3 (ωc/ωq = 1.3). (a) Lowest normalized energy levels
(with the ground-state energy as reference) ω j̃± − ω0̃ of the QRM.
(b) Normalized parity-allowed transition energies |ω j̃± − ωk̃± | for the
lowest eigenstates of the QRM.

corresponding to the transition (1̃+, 0) is the brightest at any
coupling strength where emission lines are visible. Also in this
case, the flat background qubit emission in the DSC regime
dominates.

APPENDIX D: COMPARISON WITH OTHER MODELS

In this section, we present examples of calculations of
cavity and qubit emission spectra, (using the same parameters
adopted in the previous section) obtained using different mod-
els and/or dissipators for the master equation. In particular,
we present (i) some spectra obtained by using the JCM and the
standard master equation for cavity QED, with the dissipators
obtained by neglecting the light-matter interaction [64]. (ii)
We also present spectra obtained with the same model used in
Sec. III by using a master equation where the dissipators have
been obtained taking into account the light-matter interaction,
but applying the post-trace RWA [64].

1. Jaynes-Cummings model

The JCM is the simplest model describing a two-level
system interacting with a quantized single-mode of an elec-
tromagnetic resonator. It is obtained applying the RWA to the
QRM in the dipole gauge. Therefore, it is expected to be valid
only for coupling strengths below the USC regime. The JC
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ω/ωq
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η

Tq = 0.05

Qubit

0.0 0.2 0.4 0.6 0.8 1.0

S(ω)

FIG. 15. Cavity Sc(ω) and qubit Sq(ω) emission spectra in the
weak- and strong-coupling regime, calculated for 10−3 < η < 10−1

and for  = 0.3 (ωc/ωq = 1.3). The spectra have been obtained
under weak incoherent excitation of the qubit. We used an effective
qubit temperature Tq = 5 × 10−2. The spectra have been normalized
so that the highest peak in each density plot is set at 1.

Hamiltonian is

ĤJC = ωcâ†â + ωq

2
σ̂z + ηωc

2
(âσ̂+ + â†σ̂−). (D1)

In addition, to describe the interaction of the qubit-cavity
system with the environment, we used the standard quantum
optical master equation

˙̂ρ = −i[ĤJC, ρ̂] + Lc
bareρ̂ + Lq

bareρ̂, (D2)

where Lc
bare and Lq

bare are the standard dissipators for the cavity
and the qubit respectively:

Lc
bareρ̂ = κ[1 + nc(Tc)]D[â]ρ̂

+ κnc(Tc)D[â†]ρ̂,

Lq
bareρ̂ = γ [1 + nq(Tq)]D[σ̂−]ρ̂

+ γ nq(Tq)D[σ̂+]ρ̂. (D3)

The term nc(q)(Tc(q) ) = [exp(1/Tc(q) ) − 1]−1 is the thermal
population, and D[Ô] indicates the generic dissipator

D[Ô]ρ̂ = 1

2
(2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂ ). (D4)

In this case, the cavity and qubit emission rates are simply
proportional to Wc(t ) = 〈â†â〉t and Wq(t ) = 〈σ̂+σ̂−〉t , respec-
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FIG. 16. Cavity emission spectra Sc(ω) for values of η reaching
the USC and DSC regimes obtained for two different effective qubit
temperatures Tq = 0.05, 0.2. We used  = 0.3 (ωc/ωq = 1.3). The
spectra have been normalized so that the highest peak in each density
plot is set at 1. Increasing the temperature, additional lines originat-
ing from transitions involving higher energy levels appear. Most of
them correspond to transition energies shown in Fig. 10.

tively. Analogously, the steady-state cavity and qubit emission
spectra can be defined as

S̃c(ω) = Re
∫ ∞

0
dτe−iωτ 〈â†(t + τ )â(t )〉ss,

S̃q(ω) = Re
∫ ∞

0
dτe−iωτ 〈σ̂+(t + τ )σ̂−(t )〉ss. (D5)

Figure 18 describes the normalized emission spectra of the
cavity in the weak- and strong-coupling range. As mentioned
above, the JCM is a good approximation in this range of
coupling strengths. The only difference with respect to the
results obtained using the full QRM (see Fig. 4) is the lack
of any intensity difference between the split lines originating
from the transitions (1−, 0) and (1+, 0). Actually, the reason
is not directly due to the use of the JCM, but is a consequence
of using the standard master equation which does not include
bath populations calculated at the system transition frequen-
cies. Of course such a model cannot provide reliable results
beyond the strong-coupling regime (see Fig. 19).

0.0 0.5 1.0 1.5 2.0 2.5
ω/ωq

0.0

0.5
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1.5

2.0

2.5

η

Tq = 0.2

10−13 10−11 10−9 10−7 10−5 10−3 10−1

S(ω)

FIG. 17. Qubit emission spectra Sq(ω) for values of η reaching
the USC and DSC regimes obtained at Tq = 0.2. We used  = 0.3
(ωc/ωq = 1.3). The spectra have been normalized so that the highest
peak is set at 1. The visible lines correspond to transition energies
shown in Fig. 2. The origin of the flat (red) signal background for
η > 1.5 is explained in the text [see Eq. (28)].

2. Dressed master equation with post-trace
rotating-wave approximation

The standard quantum-optics master equation has several
weaknesses, and one of the most relevant is that the interaction
between the subsystems is not considered when deriving the
dissipators [86]. One of the main drawbacks is that, owing
to the presence of counter-rotating terms in the Hamiltonian
describing the interaction between the light and matter com-
ponents of the system, unphysical excitations are generated

0.96 0.98 1.00 1.02 1.04
ω/ωq

10−4

10−3

10−2

η

Tq = 0.05

0.0 0.2 0.4 0.6 0.8 1.0

S(ω)

FIG. 18. Cavity emission spectra Sc(ω) in the weak- and strong-
coupling regime for the JCM, calculated for 2 × 10−5 < η < 4 ×
10−2 and for  = 0. The spectra have been obtained under weak
incoherent excitation of the qubit. We used an effective qubit tem-
perature Tq = 5 × 10−2. The spectra have been normalized, so that
the highest peak in each density plot is set at 1.
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FIG. 19. Cavity emission spectra Sc(ω) for values of η reaching
the USC and DSC regimes with the JCM, obtained with an effective
qubit temperature Tq = 0.5. We used  = 0. The spectra have been
normalized, so that the highest peak in each density plot is set at 1.
As predicted, the model drastically fails above the USC regime.

in the system even by a zero-temperature reservoir. For this
reason, a dressed master equation was developed [64]. This
model takes into account that transitions in the hybrid system
occur between dressed eigenstates, and not between the eigen-
states of the free Hamiltonians of the components.

The dressed-state master equation is

˙̂ρ = −i[ĤR, ρ̂] + Ldressedρ̂, (D6)

where Ldressed is of the form

Ldressedρ̂ =
∑
i=c,q

∑
k> j

{
	i

k j[1 + nk j (Ti )]D[| j〉〈k|]ρ̂

+	i
k jnk j (Ti )D[|k〉〈 j|]ρ̂}

. (D7)
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FIG. 20. Cavity emission spectra Sc(ω) in the weak- and strong-
coupling regime using the dressed master equation, calculated for
2 × 10−5 < η < 4 × 10−2 and for  = 0. The spectra have been
obtained under weak incoherent excitation of the qubit. We used an
effective qubit temperature Tq = 5 × 10−2. The spectra have been
normalized, so that the highest peak in each density plot is set at 1.

The terms nk j (Ti ) are the thermal reservoir populations [see
Eq. (B3)], calculated at the system transition frequencies ωk j ,
and 	

c(q)
k j are the cavity and qubit decay [see Eq. (B5) and

Eq. (B7)].
As mentioned above, this dissipation model is valid only

with anharmonic systems and, as can be noticed in Fig. 20,
it returns incorrect results when the coupling is very weak
and the system displays a quasiharmonic spectrum—that is, a
nonzero cavity photon emission at negligible couplings [com-
pare with Fig. 4(a)].

Beyond the strong-coupling regime, this model shows no
significant differences, since the energy spectrum of the sys-
tem becomes anharmonic in this coupling regime.
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