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ABSTRACT

In real world, graph-structured data is pervasive, operating as an abstraction of
data containing nodes and interactions between nodes. There are numerous ways
dedicated to excavate structure information explicitly or implicitly, but whether
structural information has been adequately exploited remains an unanswered ques-
tion. This work incorporates a geometric descriptor, Discrete Ricci Curvature
(DRC), in order to uncover more structural information. We present a Curvature-
based topology-aware Graphormer, termed as Curvphormer, that integrates
DRC into a powerful graph-based Transformer architecture to build a more ex-
pressive graph-based model. This work expands the expressive to use more illu-
minating geometric descriptors to quantify the connections in graphs in modern
models, and to extract desired structural information, such as inherent commu-
nity structure in graphs with homogeneous information. We conduct extensive
experiments on a variety of scaled datasets, including PCQM4M-LSC, ZINC and
MolHIV, and obtain remarkable performance gain on various graph-level tasks
and finetune tasks. Codes will be released upon acceptance.

1 INTRODUCTION

Graph data include considerable structural information, however existing graph-based algorithms
do not fully use the inherent structural information of graphs. Real-word datasets such as citation
networks (Sen et al., 2008), molecules (Joh, 2012) and the Internet (Ni et al., 2015) with inherent
node-edge structure, can be naturally represented by graphs.

The vast majority of GNNs use a Message Passing (MP) mechanism to explore the graph structure
information by aggregating neighborhood information (Kipf & Welling, 2017; Veličković et al.,
2018; Hamilton et al., 2017), however they will unavoidably run into over-smoothing and over-
squashing issues. Due to MP mechanism, most graph convolution of GNNs may be considered
as a special case of Laplacian smoothing (Li et al., 2018). Analogy to random walk on graphs,
smoothing operation on graphs will result in the mixing of the personalities of individual nodes.
Multiple processes will be taken to smooth the characteristics of individual nodes, culminating in
the reduction of variability across nodes from diverse groups. This phenomenon of incapability to
classify nodes when the network goes deeper is the most widely discussed defect of GNNs, i.e., over-
smoothing (Li et al., 2018; Rong et al., 2020). Another newly discussed problem of GNNs is over-
squashing (Alon & Yahav, 2021; Topping et al., 2022), which indicates information flows between
long-distant nodes will encounter unavoidable distortion. Over-smoothing and over-squashing are
inevitable side effect of MP GNNs. Rong et al. (2020) alleviate over smoothing by randomly drop a
percentage of edges in the graph. Alon & Yahav (2021) try to tackle with over-squashing by adding
a fully-adjacent layer. However, these approaches cannot totally resolve these issues (Chen et al.).

Graph-based Transformers is another line of recent research. The Transformers are originally pro-
posed as a powerful solver for Natural Language Processing(NLP) tasks (Vaswani et al., 2017),
and soon became prevailing in many domains, such as computer vision (Han et al., 2022), time se-
ries (Wen et al., 2022) and graph represent learning (Chen et al., 2019; Kim et al., 2022; Dwivedi
& Bresson, 2020a). For graph-based transformers, current work mainly focus on how to integrate
graph structure into positional encoding(PE) in transformers (Zhang et al., 2020a; Dwivedi & Bres-
son, 2020a). Since graph data do not have a canonical position like images and sequences, the
most widely used PE is the graph Laplacian eigenvectors, which preserve the global structure with
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permutation invariance. (Dwivedi et al., 2022). Different from working on different PE methods,
Graphormer (Ying et al., 2021a) adds structural encodings to the self-attention module as a structure-
aware bias of attention weights. It is experimentally proved that Graphormer is exempted from the
problem of over-smoothing. Moreover, because of the self-attention mechanism in the Transformer
architecture, each node in the network attends to the others as if they were entirely nearby nodes.
Consequently, Transformer-based graph learners can efficiently avoid the issue of overs-quashing.
However, current structural descriptors, such as node degrees and shortest path distances(SPD), have
limited expressiveness. Rich information in the topology of the graphs still remains unexplored.

DRC = 1.33

DRC = -0.6

DRC = 0.53

Figure 1: Illustration of
DRC on a small graph.
Edges in the same color
have the same DRC value
because of symmetry.
Dense connections(yellow
edges) are corresponding to
positive DRC, while sparse
connections(green edges)
have negative DRC.

Graph-based tasks rely heavily on structural information. The basic
distinction between graph data and other data types, such as pictures
or sequences, is the non-Euclidean node-edge structure. Graphs can
be treated as a discretized manifold (Ni et al., 2019) from the topo-
logical view. Based on the homophily assumption of most graphs,
the mainstream graph-based tasks, such as node classification, link
prediction and graph classification/regression, are in essence tend to
strengthen the connection between nodes with the same property, and
discriminate nodes with different properties. To describe the geomet-
ric relationships of nodes from intra-/inter-communities, we draw in-
spiration from a recent research focus on developing community de-
tection algorithms (Ni et al., 2019; Sia et al., 2019; Lai et al., 2022)
in aid of a geometric notion, i.e., discrete Ricci curvature(DRC) (Ol-
livier, 2009; Lin et al., 2011).

DRC quantifies the intensity of connections between nodes and their
neighborhood with regard to the local graph topology. Node pairs be-
ing densely connected are associated to positive DRC values, while
sparsely connected pairs give rise to negative DRC values. As illus-
trated in Figure 1, the nodes connected by yellow edges are in the
same community and have densely connected/overlapped neighbor-
hoods, while the nodes connected by green edges are from distinct
communities with few connections/overlaps between their neighbor-
hoods. Therefore, the DRC value of yellow edges is 1.33, which is
obviously larger than -0.6 of the green edges. Purple edges are corresponding to a scenario be-
tween two extremes, thus they have a DRC between -0.6 and 1.33. Intuitively, DRC measures the
connectiveness of nodes and their neighborhoods, thus it can be integrated to graph Transformers.

In this paper, we propose a novel curvature-based topology-aware graph Transformer architecture,
namely Curvphormer, to exploit advanced structural information from a topological view. We
evaluated the performance of our proposed algorithms on widely used testbeds such as MolHIV,
PCQM4M-LSC, and ZINC. Curvphormer exceeds previous benchmarks by a significant margin.

2 METHOD

In this section, we elaborate the formulation of Discrete Ricci Curvature(DRC), and how to incor-
porate it in Curvphormer. Firstly, the basic settings are stated in Section. 2.1. Then, we carefully
identify the Ricci curvature on graphs in Section 2.2. In Section 2.3, we propose the curvature-based
topology-aware Curvphormer.

2.1 PRELIMINARIES

Let G = (V, E) be a simple connected graph. n = |V| and m = |E| are the number of nodes and
edges, respectively. There are two kinds of information from G, i.e.,

• Attribute Information: It means the attribute features carried by the datasets. Such as the
signal intensity of a signal tower, which can be abstracted as a node in the network. Ac-
tually, not only nodes, but also edges in graphs can contain attributes information. For
example, the bonds between molecule pairs can have different types, which can be in-
cluded in the edge features. We denote the node features by X = (x1, . . . ,xn)

T ∈ Rn×d

2



Under review as a conference paper at ICLR 2023

and edge features by E = (xe1 , . . . ,xem)T ∈ Rm×q , where d and q are the dimension of
node and edge features, respectively.

• Structure Information: It means the positions and interactions of nodes. The positions of
nodes is the relative position of nodes with regard to a reference or other nodes. Without
loss of generality, position information can be viewed as relations between nodes due to
coordinate transformation. Thus, in graphs, structure information is usually encoded by the
adjacency matrix of the entire graph or subgraphs. Let A = {aij} ∈ Rn×n denote the
adjacency matrix, where aij = 1 when ij ∈ E and aij = 0 otherwise.

2.2 DISCRETE RICCI CURVATURE

The Ricci curvature is originally a geometric notion, which plays a very important role on Rie-
mannian manifold analysis. It quantifies the degree of space bending. For its discrete counterpart,
disreteized Ricci curvature measures the connectiveness of the neighborhood of two nodes. For
the discretization of Ricci curvature, there are two mainstream forms, i.e., the Ollivier Ricci curva-
ture (Lin & Yau, 2010; Lin et al., 2011) and the Forman Ricci curvature (Sreejith et al., 2016). Since
the Ollivier Ricci curvature has more theoretical foundations and depicts inherent structure more
intrinsically (Samal et al., 2018), we apply a limit-free Ollivier Ricci curvature (Bai et al., 2021; Lai
et al., 2022) as the definition of DRC.

The Ollivier Ricci curvature is defined on the base of the transportation distance. Firstly, we define
the probability distribution of nodes on the graph, which indicates the connections or information
flow between one node and others, especially its adjacent neighbors.

Definition 1 Probability distribution: For ∀α ∈ [0, 1] and ∀x ∈ V , the information flow from node
x to other nodes y ∈ V can be defined as a probability distribution on V by

mα
x(y) :=


α, y = x,

(1− α)
γ(wxy)∑
z∼x wxz

, y ∼ x,

0, otherwise.

(1)

where wxy denotes the edge weight on xy ∈ E, and γ(·) is an arbitrary non-negative real-valued
one-to-one function.

The distance between any two node x and y and their neighborhood can be defined as the transporta-
tion distance between two distributions mα

x and mα
y .

Definition 2 Transportation distance: Let A(x, y) : V × V → [0, 1] be a coupling satisfying∑
y∈V

A(x, y) = mα
x and

∑
x∈V

A(x, y) = mα
y . (2)

Then the transportation distance between two probability distribution mα
x and mα

y is defined as

W (mα
x ,m

α
y ) := inf

A

∑
x,y∈V

A(x, y)d(x, y), (3)

where d(·, ·) is a distance function.

Here we leverage Dijkstra’s Shortest Path Distance as d(·, ·) in this work. In order to differentiate
topology structures on the base of graph geometry, DRC is defined as below:

Definition 3 α-Ricci curvature:

κα(x, y) = 1−
W (mα

x ,m
α
y )

d(x, y)
, ∀α ∈ [0, 1]. (4)

Ollivier Ricci curvature (Lin et al., 2011):

κ(x, y) = lim
α→1

κα(x, y)

1− α
. (5)
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Note that, in the computation of Ollivier Ricci curvature, when the node pair x and y connect
densely, κ(x, y) will be larger than the sparsely connected pairs. When computing Ollivier Ricci
curvature, in order to avoid limit operation, former works set α to 0.5 (Ni et al., 2015; 2019) and
utilize κα as an approximation of α. In this work, we leverage another limit-free version of Ol-
livier Ricci curvature for computation convenience. Let B is a ∗-coupling between two probability
distribution m0

x and m0
y (See A.1).

Theorem 1 The ∗-coupling based Ricci curvature is formulated by

κ∗(x, y) =
1

d(x, y)
sup
B

∑
u,v∈V

B(u, v)d(u, v). (6)

Then for any x, y ∈ V , x ̸= y, the following equation holds:

κ∗(x, y) = κ(x, y). (7)

Thus κ∗ illustrates the topological characteristic of a graph as Ollivier Ricci curvature, and exempts
from limit calculation. In our implementation, we leverage this κ∗ curvature when computing DRC,
and denote DRC by κ for simplicity. The proof of Theorem 1 can refer to Bai et al. (2021). Algo-
rithm 1 in A.2 formulates the computation of DRC.

2.3 CURVPHORMER

Curvphormer incorporates the advanced geometric information represented by DRC, and encodes
it into the Graphormer architecture. The overall architecture of Curvphormer is demonstrated in
Figure 2.
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Figure 2: Illustration of Curvphormer with attribute/structure encodings. The input is a combination
of two types of node level information, i.e., node features and node degree encoding. Edge level
information, i.e., encodings of edge features and curvatures, describes interactions between node
pairs, therefore these two encodings are added to the multi-head self-attention module as a bias of
the attention weights.

2.3.1 ATTRIBUTE ENCODING

As mentioned before, in graph data, attribute information is the features carried by nodes and edges,
describing some specific information in dataset. Node features are the most important information
characterizing a dataset. In Curvphormer, we leverage node features without any affine transforma-
tion. In many graphs, edges also have attribute features, which is essential for understanding the
underlying graph structure. Although edge features are provided by the dataset, they usually indi-
cate the type or intensity of interactions between nodes. Thus, for any node pair (vi, vj) in a graph,
the correlation between vi and vj have to attend to the edges connecting them. Let vi and vj are
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connected by a shortest path denoted by vi
e1∼ · · · eN∼ vj . The correlation between vi and vj can be

formulated by the mean of the embedded edge features along the path.

γ(vi, vj) =
1

N

N∑
k=1

EdgeEmbeddingk(xek), (8)

where xek ∈ Rq is the edge feature of ek. EdgeEmbeddingk(xek) = xT
ek

· wk, wk ∈ Rq is a
learnable vector.

2.3.2 STRUCTURAL ENCODING

Structural information here refers to the knowledge of the graph that induced by the connectiveness.
As demonstrated in Figure 2, we consider two dimensions of structural information. One is the node
level information to quantify the importance of nodes in the graph. Take the citation network as
an example, the more influential a paper is, the more citations it has, and vice versa. Thus, in an
abstract graph, an important node must connect to more neighbors. The node degree is an intuitive
choice to describe this node property as in (Ying et al., 2021a). Let di =

∑
j∈V aij be the degree

of node vi. Then we embed di to a vector:

η(vi) = di ·wi, (9)

where wi ∈ Rd is a learnable vector. Then incorporate node degree embedding matrix D =
(η(v1), . . . , η(vn))

T ∈ Rn×d with the node features as the input of the subsequent module, i.e.,
H(0) = X +D.

The other is the edge level information which can be interpreted by the positional relationship be-
tween any node pairs via the edges connecting them. Former works encode position information
on graphs by simple Shortest Path Distance (SPD) (Ying et al., 2021a; Chen et al., 2019; Cai &
Lam, 2020). However, SPD can only provide a relative distance on graphs. Graphs can be viewed
as a discretized manifold in Riemannian spaces. Thus the topology structure of the manifold de-
termines the foundation of graphs. Pure SPD neglects the topology structure of the spaces where
graphs embedded in. As we stated in Section 2.2, DRC depicts the connectiveness on the basis of
the node’s neighborhoods. Nodes with positive DRC connect densely, while negative DRC is related
to sparsely connected nodes. By virtue of the expressive power of DRC, we encode the relations of
nodes on graph topology with

φ(vi, vj) = κ(vi, vj) · wij , (10)
where wij is a learnable scalar.

2.3.3 SELF-ATTENTION MECHANISM

Self-attention module is the main part of the Transformer architecture, which captures the global
information by connecting all positions (Vaswani et al., 2017; Ying et al., 2021a). It computes
the weighted sum of values, where the weights of values is obtained by a query-key function. Let
H = (h1, . . . ,hn)

T ∈ Rn×d be the input of the module. In Curvphormer, when a node attends
other nodes in the graph, the edge attribute information Γ = {γ(vi, vj)} as well as the DRC-based
structural information Φ = {φ(vi, vj)} are added to the attention weights to provide more topology-
aware ability. Therefore, the self-attention can be formulated by

Attention(H) = softmax

(
QKT

√
dK

+ Γ+Φ

)
V , (11)

where Q = HWQ,K = HWK ,V = HWV , and WQ,WK ∈ Rd×dK ,WV ∈ Rd×dV . Thus the
corrlation between nodes vi and vj is

Aij = softmax

(
(hiWQ)(hjWK)T√

dK
+ γ(vi, vj) + φ(vi, vj)

)
V . (12)

For multi-head self-attention is obtained by

MHA(H) = Concat (Attention1(H), . . . ,Attentionh(H))WO, (13)

where WO ∈ Rhd×dmodel .
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2.3.4 CURVPHORMER STRUCTURE

Curvphormer follows the basic architecture of Graphormer (Ying et al., 2021a), which is a variant
of the vanilla Transformer encoder (Vaswani et al., 2017). Each layer of Curvphormer is consist
of a multi-head attention module(MHA) and a feed-forward network(FFN) module. The detailed
implementation of a Curvphormer layer is formulated as

Ĥ(l+1) = MHA(LayerNorm(H(l))) +H(l) (14)

H(l+1) = FFN(LayerNorm(Ĥ(l+1))) + Ĥ(l+1) (15)

Besides, in order to enhance the ability of Curvphormer to capture the representation of the entire
graph, like in (Ying et al., 2021a), a virtual node is applied, which is connected to all nodes in
the graph by virtual edges, and the corresponding structural encodings are set to distinct learnable
variables.

The training procedure of Curvphormer is mainly based on a Transformer encoding module. The
self-attention mechanism has a complexity of O(n2 · d) per layer, where n is the number of nodes,
and d is the dimension of node features. Before training, Curvphormer computes DRC as the input
of structural encoding. The computing complexity of DRC is O(m · d̄3), where m is the number of
edges, and d̄ is the average degree of nodes. It is time consuming for DRC computing on very large
graphs, thus we utilize this valuable structural information as a preprocess of graphs before training.

3 EXPERIMENTS

In this section, we conduct three experiments to intuitively clarify the motivation as well as effective-
ness of Curvphormer. Firstly, we illustrate the importance of the topology information in Section 3.1
on a small dataset, i.e., the Zachary’s Karate Club Network (Zachary, 1977), indicating the impor-
tance of our inclusion of curvature as a factor. Then, we intuitively show the expressiveness of DRC
on graph structures comparing with the widely used graph structure descriptor SPD in Section 3.2.
Finally, we perform experiments on three different scaled real-world datasets to test the performance
of Curvphormer in Section 3.3.

3.1 STRUCTURAL INFORMATION IS CRUCIAL IN GRAPH-BASED TASKS

To illustrate the importance of graph structure information, we devise a binary node classification
experiment on the small Karate Club Network(Karate). Karate is composed of two communities
with 34 nodes(members of the club). The edges between nodes indicate interactions between club
members. We apply a simple two-layer GCN model (Kipf & Welling, 2016) to learn the underlying
graph structure. And the node features is provided by three designed cases, i.e., random numbers,
SPD and DRC, for testing the influence of different kinds of information in a simple NN-based
model.

The accuracy of these three scenarios is shown in Table 1(best performance in 10 runs). For random
features, even though they cannot provide any useful information, the classification accuracy is still
better than random guess because of the utilization of adjacency matrix in the model. Notice that
when more structure information is provided, the performance of the model improves remarkably.
Moreover, DRC outperforms SPD in this experiment setting. It indicates that advanced topology
information can excavate more effective structural information than simple distance information.

Feature type Feature Description Accuracy(%)
Random numbers no useful information. 78
SPD provides distance information for nodes. 95
DRC provides an advanced topology information. 97

Table 1: Test different types of structure information on the Karate dataset with a 2-layer GCN.
Structural information yields better results, and advanced topological DRC outperforms SPD.
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3.2 WHY DRC DEPICTS STRUCTURAL INFORMATION BETTER THAN SPD?

Now we intuitively show the expressiveness of DRC comparing with SPD by a small graph with
two small communities bridging by an edge as shown in Figure 3. Though both SPD and DRC have
the ability to know there are two communities, DRC depicts more in-depth structure information
than SPD. Note the interactions between nodes 1, 3 and nodes 1, 5. Node 1 and 3 are from the
same community, while node 1 and 5 are from different communities. The relationships of these
two pairs are different, while SPD13 = SPD15 = 2 (highlighted by orange circles in Figure 3(c)).
Besides, edge e45 is the only bridge edge connecting two communities. However, SPD45 = 1 (red
dotted circle in Figure 3(c)) can not differentiate e45 from other 1-hop pairs. SPD is incapable to
describe these differences in structure. Fortunately, DRC can amend these defect because it attends
to the nodes’ neighborhoods. The tightly interacted pairs are tend to have larger DRC than sparsely
interacted pairs. DRC13 = 1 is apparently larger than DRC15 = 0.08 for the first case. Meanwhile,
DRC45 = −0.83 highlights the difference of this edge from others.
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Figure 3: A small graph demonstrates the structural expresiveness of SPD v.s. DRC. The difference
between (1) inter-/intra-community relations, i.e., 1&3 and 1&5, (2) the bridge edge e45 and other
1-hop pairs, can not be captured by SPD, but well described by DRC.

3.3 EXPERIMENTS ON REAL-WORD DATASETS

In this part, we build up our experiments on three different scaled datasets, i.e., MolHIV(small),
ZINC(medium) and PCQM4M-LSC(large). Refer to A.3 for details about the datasets.

3.3.1 EXPERIMENTAL SET-UP

We benchmark Curvphormer with the non-topology-aware Graphormer baseline Ying et al. (2021a).
Basic setting of Curvphormer follows (Ying et al., 2021b) but modified some parameters for model
finetune. The number of attention heads and the dimension of node/edge features are set to 16. We
use AdamW as the optimizer, and set the hyper-parameter Adam-ϵ to 1e-8 and Adam-(β1, β2) to
(0.99, 0.999). The learning rate is set to 2e-4 with a lower-bound 1e-9. The batch size is set to 512.
All models and tasks are trained on 8 NVIDIA 3080ti GPUs for about three days. Other settings
are the same as the baseline. We train Curvphormer on PCQM4M-LSC and ZINC from scratch
and To test the finetune the pre-trained model on ZINC with the small dataset MolHIV to test the
transferable ability of Curvphormer. In addition, in order to test if Curvphormer can effectively
resist the performance drop caused by over-smoothing, we test Curvphormer on MolHIV dataset
with varying number of layers up to 20.
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Datasets Scale Task Model #Layers #Param validMAE

PC
Q

M
4M

-L
SC

Large Regression

GCN (Brossard et al., 2020) 12 2.0M 0.1691
GIN (Xu et al., 2018) 12 3.8M 0.1537

DeeperGCN (Li et al., 2020) 12 25.5M 0.1398
GT (Dwivedi & Bresson, 2020b) 12 0.6M 0.1400

GraphormerSMALL (Ying et al., 2021b) 12 12.5M 0.1264
Graphormer (Ying et al., 2021b) 12 47.1M 0.1234

Curvphormer 8 34.1M 0.1024
Model #Layers #Param testMAE

Z
IN

C

Medium Regression

GIN (Xu et al., 2018) 2 510K 0.526
GraphSage (Hamilton et al., 2017) 2 505K 0.398

GAT (Veličković et al., 2017) 2 531K 0.384
GCN (Brossard et al., 2020) 2 505K 0.367

GatedGCN-PE (Bresson & Laurent, 2017) 2 505K 0.367
PNA (Corso et al., 2020) 16 387K 0.214

GraphormerSLIM (Ying et al., 2021b) 12 47.0M 0.122
Curvphormer 8 34.1M 0.080

Model #Layers #Param AUC(%)

M
ol

H
IV

Small Classification

GCN-GraphNorm (Brossard et al., 2020) 12 526K 78.83
PNA (Corso et al., 2020) 12 326K 79.05

PHC-GNN (Le et al., 2021) 12 111K 79.34
DeeperGCN–FLAG (Li et al., 2020) 12 532K 79.42

DGN (Beaini et al., 2021) 12 114K 79.70
Graphormer-FLAG (Ying et al., 2021b) 12 47.0M 80.51

Curvphormer 12 47.1M 83.93

Table 2: Results on the PCQM4M-LSC, ZINC and MolHIV datasets. Performance metric for re-
gression task on PCQM4M-LSC and ZINC is MAE, and for classification task on MolHIV is AUC.
Curvphormer outperforms the benchmarks on all these datasets.

3.3.2 RESULTS

Table 2 summarizes the performance of Curphormer and other baselines on PCQM4M-LSC, ZINC
and MolHIV. The metrics are mean absolute error(MAE) for regression task and AUC for classi-
fication task. Curvphormer achieves the best results and noticeably surpasses the previous state-
of-art GNNs as well the recent graph-Transformer model GT (Dwivedi & Bresson, 2020a) and
Graphormer (Ying et al., 2021a).

(12, 83.93)

(16, 70.70)

(16, 84.14)

(12, 80.51)

~0.2

~10

Figure 4: Testing the performance of Curvphormer on MolHIV for different number of layers.
Curvphormer surpasses the baseline Graphormer by a significant margin, and attains stable satisfac-
tory performance for varying number of layers.

Next, we test deeper Curvphormer’s performance on the MolHIV dataset comparing with the base-
line Graphormer. Figure 4 shows that both models are capable of resisting over-smoothing. Mean-
while, Curvphormer surpasses Graphormer by a noticeable margin for all layer configurations. it is
noteworthy that when the model layer changes from 12 to 16, the performance of Graphormer drops
from 80.51 to 70.70. In contrast, Curvphormer achieves a comparable result after a slight drop.
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4 RELATED WORK

In this section, we highlight the most recent approaches on NN-based models working on demystify
the structural information of graph data. And then we give prominence to some related applications
of DRC in finding the underlying structure of graphs.

4.1 STRUCTURAL ENCODINGS

On MP-GNNs GNN methods to processing graph data have natural merits for the theoretical
basis. Most GNNs follow the scheme of MP mechanism, and leverage random walk algorithms to
explore the underlying structure of graphs in aid of stochastic process (Li et al., 2018; Gasteiger
et al., 2019). Some other GNN methods try to incorporate local structure information by utilizing
a local k-hop subgraph as the structural fingerprint of its central node (Zhang et al., 2020b; Wang
et al., 2021). Moreover, some methods propose to introduce some additional structural information
encoded by geometric notions such as DRC to GNNs explicitly or implicitly (Ye et al., 2020; Li
et al., 2022). However, due to the inevitable over-smoothing and over-squashing problem and limited
expressiveness of GNNs, the increment of structural information does not yield much improvement
in performance.

On graph-based Transformers The challenge of powerful Transformer architecture in graph
representation is how to properly encode structural information into a positional encoding mod-
ule (Dwivedi & Bresson, 2020a) or the self-attention module (Ying et al., 2021a). (Dwivedi &
Bresson, 2020a) exploit graph structure by pre-computing Laplacian eigenvectors of the adjacency
matrix as positional encoding(PE) in the vanilla Transformer architecture to provide a distance-
aware information. Graph-BERT (Zhang et al., 2020a) operates on sampled linkless subgraphs for
local structural information and enhance the capability on extremely large graphs. What’s more,
Graph-BERT introduces three PE embeddings to take in positional information on local subgraphs.
Specifically, a Weisfeiler-Lehman(WL) absolute PE is leveraged to capture the global information,
an intimacy-based and a hop-based relative PE are introduced to extract the local information in
subgraphs. It is notable that TokenGT (Kim et al., 2022) puts forward that pure Transformers can
attain impressive performance on graphs by a orthonormal node identifier and a type identifier. It
suggests that the Transformer architecture itself has the potential to fit in the graph structure. Fur-
ther involving an advanced geometric descriptor into the Transformer architecture is a promising
direction.

4.2 DRC IN FINDING GRAPH STRUCTURE

In light of the property of Ricci curvature in Riemannian geometry, the discrete version of Ricci
curvature is an instinct choice as a topological descriptor. (Ni et al., 2015) leverages DRC to analyze
the Internet topologies. (Sia et al., 2019) constructs a community detection algorithm by removing
negative curved edges step-by-step. (Ni et al., 2019; Lai et al., 2022) leverage a DRC-based Ricci
flow to deform a graph, then intra-community nodes get closer and inter-community nodes disperse.
DRC is capable of finding the underlying relationship between nodes, characterizing them to clusters
with identical or distinct properties.

5 CONCLUSION AND DISCUSSION

This work introduces Curvphormer, a topology-aware graph Transformer that incorporate an ad-
vanced structural information into expressive Graphormer architecture. DRC effectively differenti-
ate topology structure of graphs with homophily property, and helps our model achieve remarkable
performance improvements on different scaled datasets in graph classification/regression tasks. It
shows that applying more geometric descriptors to expressive graph models is rewarding. Mean-
while, the exploration of graph structural information is still challenging. For example, discovering
the topology information of heterogeneous graphs still needs future endeavor. Moreover, the com-
putation complexity of DRC restricts its application in large dynamic systems. Curvphormer brings
a inspiration on a better understanding of graph structure, and encourages more future works.
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graph neural networks for graph classification. In International Conference on Artificial Neural
Networks, pp. 204–216. Springer, 2021.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

Haifeng Li, Jun Cao, Jiawei Zhu, Yu Liu, Qing Zhu, and Guohua Wu. Curvature graph neu-
ral network. Information Sciences, 592:50–66, 2022. ISSN 0020-0255. doi: https://doi.
org/10.1016/j.ins.2021.12.077. URL https://www.sciencedirect.com/science/
article/pii/S0020025521012986.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In AAAI, pp. 3538–3545. AAAI Press, 2018.

Y. Lin and S. T. Yau. Ricci curvature and eigenvalue estimate on locally finite graphs. Mathematical
Research Letters, 17(2):343–356, 2010. ISSN 1073-2780. doi: 10.4310/MRL.2010.v17.n2.a13.

Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. Tohoku Mathematical
Journal, 63(4):605–627, 2011. ISSN 0040-8735. doi: 10.2748/tmj/1325886283.

C. C. Ni, Y. Y. Lin, F. Luo, and J. Gao. Community detection on networks with ricci flow. Scientific
Reports, 9(1):9984, 2019. ISSN 2045-2322 (Electronic)2045-2322 (Linking). doi: 10.1038/
s41598-019-46380-9.

Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Xianfeng David Gu, and Emil Saucan. Ricci curvature of the
internet topology. In 2015 IEEE Conference on Computer Communications (INFOCOM), pp.
2758–2766, 2015. doi: 10.1109/INFOCOM.2015.7218668.

Y. Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis, 256
(3):810–864, 2009. ISSN 0022-1236. doi: 10.1016/j.jfa.2008.11.001.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Hkx1qkrKPr.

Areejit Samal, R. P. Sreejith, Jiao Gu, Shiping Liu, Emil Saucan, and Jürgen Jost. Comparative
analysis of two discretizations of ricci curvature for complex networks. Scientific Reports, 8(1):
1–16, Jun 2018. ISSN 2045-2322. doi: 10.1038/s41598-018-27001-3.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi:
10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/index.php/aimagazine/
article/view/2157.

J. Sia, E. Jonckheere, and P. Bogdan. Ollivier-ricci curvature-based method to community detection
in complex networks. Scientific Reports, 9(1):9800, 2019. ISSN 2045-2322 (Electronic) 2045-
2322 (Linking). doi: 10.1038/s41598-019-46079-x.

11

https://arxiv.org/abs/2207.02505
https://www.sciencedirect.com/science/article/pii/S0378437122002242
https://www.sciencedirect.com/science/article/pii/S0378437122002242
https://www.sciencedirect.com/science/article/pii/S0020025521012986
https://www.sciencedirect.com/science/article/pii/S0020025521012986
https://openreview.net/forum?id=Hkx1qkrKPr
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157


Under review as a conference paper at ICLR 2023

R. P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and A. Samal. Forman curvature for complex net-
works. Journal of Statistical Mechanics Theory and Experiment, 2016(6):063206, 2016. doi:
10.1088/1742-5468/2016/06/063206.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=7UmjRGzp-A.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
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A APPENDIX

A.1 A LIMIT-FREE OLLIVIER RICCI CURVATURE (BAI ET AL., 2021)

Definition 4 Let B : V × V → R be a coupling function. We simply denote µ0
x as µx. For any

x, y ∈ V , if B satisfies:

1. B(x, y) > 0, while B(u, v) ≤ 0 for u ̸= x or v ̸= y;

2.
∑

u,v∈V B(x, y) = 0;

3.
∑

v∈V B(u, v) = −µx(u) for all u ̸= x;

4.
∑

u∈V B(u, v) = −µy(v) for all v ̸= y.

Then we call B as a ∗-coupling between µx and µy .

A.2 DISCRETE RICCI CURVATURE(DRC) ALGORITHM

Algorithm 1: Computation of Discrete Ricci Curvature(DRC).
Input: A graph G = (V, E).
Output: A weighted graph G = (V, E , w, κ), where w and κ are the weights and discrete Ricci

curvature on edges, respectively.
1 Initialization. Edge weights we = 1,∀e ∈ E ;
2 Compute the Shortest Path Distance(SPD) of each pair of nodes, i.e., d(u, v)∀u, v ∈ V;
3 for e = (x, y) ∈ E do
4 Compute the discrete Ricci curvature. κe =

1
d(x,y) supB

∑
u,v∈V B(u, v)d(u, v);

5 end

A.3 DETAILS OF DATASETS

We summarize the datasets used in this work in Table 1, Table 2 and Figure 4.

DATASETS Scale #Graphs #Nodes #Edges Task Type
Karate Very small 1 33 78 Binary classification
ZINC(sub-set) Small 12,000 277,920 597,960 Regression
MolHIV Medium 41,127 1,048,738 1,130,993 Binary classification
PCQM4M-LSC Large 3,803,453 53,814,542 55,399,880 Regression

Table 3: Statistics of the datasets.

Next we state detailed information of the four datasets we used, including their features and the
reasons we choose them.

• The Karate Club complex network is a network commonly used for community detection
studies in complex networks. The network has 34 nodes and 78 edges, where 34 nodes
represent 34 members of a karate club and the edges between nodes represent two members
who know each other, and the dataset is a real dataset that corresponds to a study of the
relationships of people in a karate club in the United States. This dataset is a real dataset
that corresponds to a study of the relationships of people in a karate club in the United
States. It is of extraordinary interest for community discovery studies in complex networks
3.
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• The Open Graph Benchmark (OGB1) is a collection of realistic, large-scale, and diverse
benchmark datasets for machine learning on graphs. OGB datasets are automatically down-
loaded, processed, and split using the OGB Data Loader. The model performance can be
evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven ini-
tiative in active development.

• ZINC is a free database of commercially-available compounds for virtual screening. ZINC
contains over 230 million purchasable compounds in ready-to-dock, 3D formats. ZINC
also contains over 750 million purchasable compounds that can be searched for analogs.

• OGB Large-Scale Challenge (OGB-LSC2) is a collection of three real-world datasets for
advancing the state-of-the-art in large-scale graph ML. OGB-LSC provides graph datasets
that are orders of magnitude larger than existing ones and covers three core graph learning
tasks – link prediction, graph regression, and node classification.

The task of Karate is to distinguish the type of community a person belongs to. And we employ an-
other popular leaderboard, i.e., benchmarking-gnn (Dwivedi et al., 2020). We use the ZINC datasets,
which is the most popular real-world molecular dataset to predict graph property regression for con-
trained solubility, an important chemical property for designing generative GNNs for molecules.
Different from the scaffold spliting in OGB, uniform sampling is adopted in ZINC for data split-
ting. In addition, the task of PCQM4M-LSC is to predict DFT(density functional theory)-calculated
HOMO-LUMO energy gap of molecules given their 2D molecular graphs, which is one of the most
practically-relevant quantum chemical properties of molecule science. PCQM4M-LSC is unprece-
dentedly large in scale comparing to other labeled graph-level prediction datasets, which contains
more than 3.8M graphs.

1https://ogb.stanford.edu/
2https://ogb.stanford.edu/docs/lsc/
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