MULTIPLE PHYSICS PRETRAINING
FOR PHYSICAL SURROGATE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce multiple physics pretraining (MPP), an autoregressive task-agnostic
pretraining approach for physical surrogate modeling. MPP involves training large
surrogate models to predict the dynamics of multiple heterogeneous physical sys-
tems simultaneously by learning features that are broadly useful across diverse
physical tasks. In order to learn effectively in this setting, we introduce a shared
embedding and normalization strategy that projects the fields of multiple systems
into a single shared embedding space. We validate the efficacy of our approach
on both pretraining and downstream tasks over a broad fluid mechanics-oriented
benchmark. We show that a single MPP-pretrained transformer is able to match
or outperform task-specific baselines on all pretraining sub-tasks without the need
for finetuning. For downstream tasks, we demonstrate that finetuning MPP-trained
models results in more accurate predictions across multiple time-steps on new
physics compared to training from scratch or finetuning pretrained video foun-
dation models. We open-source our code and model weights trained at multiple
scales for reproducibility and community experimentation. Video examples are
included in the supplementary materials.

1 INTRODUCTION

In recent years, the fields of natural language processing and computer vision have been revolu-
tionized by the success of large models pretrained with task-agnostic objectives on massive, diverse
datasets (Chen et al., 2020; Devlin et al., 2018; He et al., 2021). This has, in part, been driven by
the use of self-supervised pretraining methods which allow models to utilize far more training data
than would be accessible with supervised training (Balestriero et al., 2023). These so-called “foun-
dation models” have enabled transfer learning on entirely new scales. Despite their task-agnostic
pretraining, the features they extract have been leveraged as a basis for task-specific finetuning, out-
performing supervised training alone across numerous problems especially for transfer to settings
that are insufficiently data-rich to train large models from scratch (Bommasani et al., 2021).

Deep learning for computational science has begun to see first steps in this direction. Large domain-
specific pretrained models have emerged in diverse fields such as chemistry (Bran et al., 2023;
Chithrananda et al., 2020), medicine (Jiang et al., 2023; Tu et al., 2023), astrophysics (Leung &
Bovy, 2023; Nguyen et al., 2023a), and climate (Nguyen et al., 2023b) and the trend only seems
to be growing as more and more models are developed for new fields both as refined versions of
existing large language models and as new models trained entirely on field-specific data.

In this work, we demonstrate that similar approaches can be extended to the surrogate modeling
of spatiotemporal physical systems. Spatiotemporal prediction tasks, like those found in fluids,
solids, or general continuum mechanics, have attracted significant attention from the deep learning
community. From direct prediction methods (Dang et al., 2022; Li et al., 2020; Lusch et al., 2018;
Pfaff et al., 2021; Stachenfeld et al., 2022) to neural PDE solvers (Bruna et al., 2022; Raissi et al.,
2019), researchers have sought to develop fast, accurate models for physics either as faster surrogates
for the partial differential equation (PDE) solvers that dominate the field or to simulate systems that
cannot be exactly described or resolved by current mechanistic models and available hardware.
While directly outperforming PDE solvers is difficult (Grossmann et al., 2023), deep learning has
already begun to impact fields like atmospheric science (Ben-Bouallegue et al., 2023; Bi et al., 2023;
Pathak et al., 2022) and cosmology (Cranmer et al., 2021; He et al., 2019; Jamieson et al., 2023),
where the systems are too large or too imprecisely described to be simulated exactly.

https://anonymous.4open.science/r/anonymous_multi_physics_pretraining-F1C0

Unfortunately, outside of a few observation-rich outliers, settings where numerical simulation is
expensive or unreliable also tend to be settings where the difficulty of acquiring training data makes
it impractical to train surrogates conventionally. Most deep learning-based surrogates thus far have
focused on specific problems or individual families of parameterized PDEs. However, for these low-
data settings, it would be valuable to have large, task-agnostic models with a broad understanding
of common physical behavior to act as a foundation for finetuning.

Contributions We introduce Multiple Physics Pretraining (MPP), a new approach for task-
agnostic pretraining of physical surrogate models. Our method enables large-scale pretraining for
transfer across diverse physics, studied using fluid benchmarks. Our specific contributions are:

* We develop MPP, a pretraining approach in which we embed multiple hetereogeneous
physical systems into a shared embedding space and learn to autoregressively predict the
dynamics of all systems simultaneously.

* We show that single transformer models pretrained with MPP are able to match or sur-
pass modern baselines trained only on specific pretraining sub-tasks without applying task-
specific finetuning to the MPP models.

* We demonstrate the transfer capabilities of models trained with MPP on systems with lim-
ited training examples (referred to as low-data systems thereafter).

* We evaluate the usefulness of the pretrained representations for entirely different tasks such
as inferring simulation parameters and forcing functions.

* We open-source our code and provide our pretrained models at a variety of sizes for the
community to experiment with on their own tasks.

2 BACKGROUND

Notation Let S be an arbitrary physics-driven spatiotemporal dynamical systems, either described
by a parameterized family of PDEs with fixed parameters, or where snapshots are gathered from
observation of a unique physical phenomenon. To simplify notation, we discuss systems with a
single state variable in one spatial dimension. A continuous state variable for system .S is represented
as u®(x,t) : [0,Lg] x [0,00) — R. We discretize the system uniformly in space and time at
resolutions Ng, Tg respectively. A snapshot utS € RNs represents the value of state variable u° at
all Ng spatial discretization points at time t. Our pretraining task is then to learn a single model M
that can take a uniformly spaced sequence of T's snapshots U;> = [ufﬁTS At ,u?’] from system

S sampled from some distribution over systems and predict M (U;%) such that M(U?) ~ u; ' Ats

Autoregressive Pretraining In vision and language, the dominant pretraining strategies include
autoregressive prediction (Radford et al., 2018), masked reconstruction (Devlin et al., 2018; He
et al., 2021), and contrastive learning (Chen et al., 2020). In language, autoregressive generation
emerged as a convenient self-supervised task. In surrogate modeling of dynamical systems, next-
step prediction is often a primary goal. This makes autoregressive pretraining a natural choice of
objective for training time-dependent surrogate models.

We note that it is common to use the simulation parameters to condition the predictions of models
operating on PDE-generated data (Gupta & Brandstetter, 2022; Subramanian et al., 2023; Takamoto
et al., 2023). In MPP, the model must instead implicitly infer the impact of these parameters on the
dynamics from the history provided in U;’.

Surrogate Modeling for Spatiotemporal Physical Systems We are primarily concerned with
modeling dynamical systems varying in both time and space, where the time evolution of the system
is intrinsically tied to spatial relationships amongst the state variables according to physical laws.
Partial differential equations (PDEs) are one of the primary modeling tools for this setting. They
are often derived from fundamental conservation laws of properties such as mass, momentum, and
energy (Farlow, 1993). Many PDEs describe variations of the same physical laws, which is why
concepts like diffusion, advection, reactivity, and connections between time and spatial gradients
appear in many different PDEs. These shared underlying principles suggest we can extract features
relevant to multiple physical systems.

3 RELATED WORK

Foundation models Massive pretrained models dubbed “foundation models” (Bommasani et al.,
2021), particularly large transformer-based architectures (Vaswani et al., 2017), have recently at-
tracted significant attention. The most prevalent foundation models are pretrained language models
like GPT (Brown et al., 2020; Radford et al., 2018; 2019) and BERT (Devlin et al., 2018). Emer-
gent abilities (Wei et al., 2022) demonstrated by large language models highlight the importance
of scale in manifesting higher-order capabilities absent at smaller scales. Vision has seen similar
developments with the growth of masked (He et al., 2021; Tong et al., 2022) and contrastive (Chen
et al., 2020) pretraining. The data in this work is insufficiently diverse to call the resulting models
“foundational”. However, we provide the first large-scale implementation of successful multiple
nonlinear physics pretraining for spatiotemporal systems.

Scientific machine learning While a wide range of architectures have been employed for physical
surrogate modeling (Bar & Sochen, 2019; Han et al., 2018; Sirignano & Spiliopoulos, 2018; Yu
et al., 2018; Zang et al., 2020), we position our work with respect to three three major classes. One
prominent class is the neural-network-as-PDE-solution approach (Bruna et al., 2022; Raissi et al.,
2019) which requires the PDE to be known and solves a single system on a single domain. Other
methods do not learn the solution directly, but instead augment a PDE-solver as learned corrections
(Dresdner et al., 2023; Rackauckas et al., 2021; Um et al., 2021), learned closures (Duraisamy
et al., 2019; Sirignano & MacArt, 2023), or learned algorithmic components (Bar & Sochen, 2019;
Kochkov et al., 2021). A broader, but less physically constrained approach, is learning a solution
operator from the data without knowledge of the governing equations (Cao, 2021; Kovachki et al.,
2023; Li et al., 2020; 2021; Lu et al., 2019). While these methods are often evaluated using PDE-
generated benchmarks, these are designed to learn directly from data rather than learning to solve a
PDE. Neural operators typically do not reach the accuracy of numerical PDE solvers, but they are
applicable for domains without explicitly provided equations. This last family is the most similar
to our approach, especially Cao (2021) as we use a transformer-based architecture. However, our
pretraining procedure is developed for training across multiple operators.

The high cost of training scientific models from scratch has led to significant exploration of trans-
fer learning. Prior work has explored transfer learning in operator networks in such scenarios as
conditional shift (Goswami et al., 2022) or new domains, boundary conditions, or distributions over
parameters (Li et al., 2021; Subel et al., 2023; Wang et al., 2022a; Xu et al., 2023). However, these
too need to be retrained from scratch for new differential operators in the PDE. More recently, efforts
have been made to explore transfer across operators and benefits from training on multiple physi-
cal systems simultaneously. Subramanian et al. (2023) explores how transfer scales in this setting.
However, their study is limited to steady-state linear systems with periodic boundary conditions.
Other works have explored similarly restricted classes or low dimensional, low resolution systems
(Desai et al., 2022; Yang et al., 2023).

4 SCALABLE MULTIPLE PHYSICS PRETRAINING

4.1 COMPOSITIONALITY AND PRETRAINING

Many specialized PDEs demonstrate a form of compositionality, as a range of physical phenomena
can be described by core components like nonlinear advection or diffusion, but then are augmented
or restricted by specialized terms representing concepts like buoyancy or system constraints. To
motivate a useful pretraining procedure from this compositionality, we want to show two things:

1. Learning partially overlapping physics is beneficial for transfer learning
2. Single models can simultaneously learn many types of physics
If both of these are true, then we could train a single model which could transfer effectively to many

types of physics. We start by examining the first assertion in a very simple spatiotemporal setting:
constant-coefficient advection-diffusion. Let ¢)(x, t) be a scalar defined on a periodic spatial domain,

v a constant one-dimensional velocity coefficient and a constant diffusion coefficient, then:

Advection: ()—; +V-(v)=0 (1a)
O -

Diffusion: % LV (V) =0 (1b)

Advection-Diffusion: % TV - (0p—8VY) = 0. (Ic)

If our first assertion is true, we would expect pretraining on the advection and diffusion terms indi-
vidually could be beneficial for transfer to advection-diffusion equations.

We find that this is indeed the case. We pretrain
a spatiotemporal transformer model on a large
amount of trajectories (100,000 each) with uni-
formly sampled coefficients (v € [—3,3], 6 €
[1072,1.]) generated from the advection and
diffusion equations while finetuning on re-
stricted samples from advection-diffusion sim-
ulations. The pretrained model is able to
achieve much lower error with far fewer sam-
ples (Figure 1) despite the fact that it never saw S . ..
advection and diffusion occurring in the same 102 103 104 105
trajectory during pretraining.

== == Zero Shot
== Pretrained

10-1 _:____ _______ =@~ Scratch

Test RMSE

10~2 E

Number of samples

To address question two, we must handle Figure 1: Finetuning a model pretrained on large
much larger spatial resolutions, varying scales, amounts of advection and diffusion data outper-
and heterogeneous relationships between fields. forms models trained from scratch on advection-
Over the rest of this section, we develop an ap- diffusion data across a wide range of data avail-
proach for handling these challenges. ability (16-100K examples).

4.2 ARCHITECTURE

Axial Attention Given the success of large transformer models in other domains, we employ a
scalable axial attention (Dong et al., 2022; Ho et al., 2019; Huang et al., 2019) transformer backbone.
For a (2+1)-dimensional system with 7" x H x W tokens, conventional dense attention attends over
all tokens simultaneously and has cost O((HWT)?). Axial attention instead performs a series of
attention operations over each axis in turn, limiting the cost to O(H? + W? 4 T?). In Figure 2,
it can be seen that while we perform attention on each axis independently, spatial attention utilizes
one set of linear projections for both the height (y) and width (x) axes.

Axial attention has been used in video transformers (Arnab et al., 2021; Bertasius et al., 2021) due
to the improved scalability in higher dimensions. While the tools used in our transformer backbone
were introduced in prior work, our choice of using fully axial attention differs from ViViT which
opted to only separate space and time attention. We favor scalability over maximizing accuracy and
so chose fully axial attention. In the following, we refer to this architecture as an Axial ViT (AViT).

Field Embedding and Normalization Embedding multiple physical systems into a single shared
representation is complicated by the fact that fields from different systems may operate on entirely
different scales in terms of both magnitude and resolution. This is one of the primary challenges
that must be addressed for multiple-physics pretraining.

To unify magnitudes, we use Reversible Instance Normalization (Kim et al., 2022, RevIN). We
compute the mean and standard deviation of each channel over space-time dimensions and use
them to normalize input fields. These statistics are saved and used to denormalize model outputs.
While this approach was initially developed for time-series forecasting, the effect is similar to that
reported in Subramanian et al. (2023), where it was found to be beneficial to rescale inputs to a
fixed norm during training.

After rescaling, the data is projected into a shared embedding space. This is the only com-
ponent with unique weights for each source system. Given a system S with state variables

. Field
Mult'lple Phys'lcs Ifrgrammg ----» De-RevIN Prediction Embedding
applied to Axial Vision

Transformer (AViT) for training E Field . .
Physical Surrogates ! Reconstruction %
:]

:

Data M’ UE . g
----------------- spatiotemporal (fixed | =

transformer U time) (%

e block =

e(x,t) = p(x,t)e, + p(x,t)e,
+o(x,t)e, + u(x,t)e,

Spatial
self-attention

fmmmm e mmmm e m——————

Surppaquid
A1quuasse 1033

Temporal field
self-attention 1x1 conv filters
*
{Field Indices}

Figure 2: (Left) MPP works by individually normalizing each example using Reversible Instance
Normalization (RevIN) then embedding each field individually into a shared, normalized space. A
single transformer backbone can then predict the next step for multiple sets of physics. We use an
AVIT backbone which attends over space and time axis sequentially. Spatial attention is further split
by axis, though these share linear projection weights. (Right) The embedding and reconstruction
matrices are formed by subsampling a larger 1 x 1 convolutional filter using unique field indices
passed with the input data.

u(z,t), v(x,t), p(z,t) € R, we project each point or “pixel” into a space of dimension D™P:
e(x,1) = u(z, ey + v(z, ey + plz, e, @)

where e are embedding vectors in R” " This can be seen as a convolution with 1 x 1 filters where
the input channels of the filter are sub-selected to correspond to the fields present within a given
dataset. On the right side of Figure 2, the filter is assembled by sub-selected columns of the larger
filter corresponding to the provided fields. It is important to note that this initial projection setup
is amenable to fine-tuning to unseen field types. This can be achieved by adding new channels to
the initial embeddings, and training them from random initialization. In our models, the shared full
resolution space is converted into patched tokens by a sequence of strided convolutions separated by
pointwise nonlinearities as in Touvron et al. (2022).

The predictions are reconstructed from the processed tokens by reversing this process. The tokens
are decoded by a sequence of transposed convolution blocks and projected onto the output fields by
taking coordinate-wise inner products with reconstruction vectors 7:

u(x,t + At) = (e(z,t + At), 7). 3)

This can similarly be implemented as a 1 x 1 convolution with the output channels of the convolution
filter sub-selected. The mean and standard deviation computed from the inputs are then applied to
these normalized outputs to produce the final de-normalized predictions as in Kim et al. (2022).

Position Biases and Boundaries While in most cases, we would like the model to infer boundary
conditions from the provided history, we make an exception to this policy for periodic boundaries
as they change the continuity of the domain. Transformers are inherently permutation equivariant,
and it is essential to include position biases so that the model can learn locality.

With a slight modification, we can use our position biases to capture the change in locality imposed
by periodic boundaries. T5-style (Raffel et al., 2020) relative position encodings (RPE) utilize a
lookup table to access learned embeddings corresponding to ranges of “relative distance”. For pe-
riodic boundary conditions, we modify the relative distance computation to account for neighbors

across the periodic boundary. In Appendix C.1, we examine simple systems that differ only in
boundary conditions and find that this minor change improves generalization in the case where we
must learn both periodic and non-periodic conditions.

4.3 BALANCING OBJECTIVES DURING TRAINING

Task Sampling Our pretraining procedure operates on multiple levels of sampling. The
task distribution varies in system S, spatial resolution Ng, and time resolution T
and we want diverse batches that accurately capture the signal this provides. = How-
ever, sampling a full batch from multiple systems at different resolutions simultaneously
would be inefficient on modern hardware as it would require batch processing of differ-
ently shaped tensors. Multi-GPU training adds an additional complication as the vari-
ance in execution time due to unbalanced workloads can lead to inefficient hardware usage.
We mitigate both of these concerns with a sim-

ple randomization scheme involving gradient Varying native resolutions Gradient accumulation
accumulation. Gradient accumulation utilizes for different physics lead to with interspersed physics
multip{; baﬁkwﬁrd passesl per §yn(1:hr0nizati0; high utilization variance. reduces variance.
step. ¢ therefore sample a single system
uniformly from S for each micro-batch. With
m micro-batches per synchronization step, we
reduce the work-per-GPU variance 0223 to %0123,
significantly reducing the average lost cycles
due to work discrepancies. This could likely All-
be further reduced by an approximate packing reduce Unused cycles
problem solution (Cormen et al., 2022), but we _ﬂccumulate
found the random approach was sufficient for 74
our needs. As we employ gradient accumula- All-
tion in order to increase our batch sizes, this reduce
sampling procedure incurs no additional cost.
V.

T
Fewer dead
cycles on
average

Scaled Training Objective The simplest ap-
proach to obtaining updates from the different All-
tasks is to add their gradients. However, as the reduce

magnitudes of the state variables can vary sig-)) o

nificantly between systems, unweighted losses Figure 3: Processing different physics (indicated
will result in the gradients from the problems by color) with different native resolutions incur
with the largest scales drowning out losses on Varying wall-clock times (arrow lengths). To re-
smaller scales (Yu et al., 2020). To partially duce the loss of GPU-cycles, we use gradient ac-

control this behavior, we train using the normal- cumulation as a stochastic load-balancing mecha-
ized MSE (NMSE) defined as: nism, reducing the variance in work between all-
reduce synchronizations.

) IMTUP) — ufy I3

Huf+1 ||§+€

1
LNMsSE = E 4)

ses
where B C S denotes the micro-batch and € is a small number added for numerical stability. This
does not account for the full variation in difficulty. Even if sub-task losses have similar magnitudes
at the start of training, it is possible for some systems to converge quickly while other losses remain
high. Nonetheless, we found that this allows our training process to produce strong results on
multiple systems simultaneously.

5 EXPERIMENTS

We design our experiments to probe three vital questions about the utility of MPP:

1. Can large transformer models learn the dynamics of multiple physical systems simultane-
ously?

2. Does MPP provide a finetuning advantage over existing spatiotemporal foundation models
for new autoregressive prediction tasks?

3. Are these learned representations useful for more than the autoregressive next-frame pre-
diction task?

Table 1: NRMSE comparison between MPP-pretrained models and dedicated baselines on the shal-
low water equations (SWE), a 2D Diffusion-Reaction (DiffRe2D), and compressible Navier-Stokes
(CNS) at Mach numbers M = .1 and M = 1. Top performing within size range and overall are
bolded. Dashes indicate precision not available. © While PINNSs are smaller, they are fit per-example.

MODEL #PARAM SWE DIFFRE2D CNSMI1.0 CNS MO0.1
MPP-AVIT-TI 7.6M 0.0066 0.0168 0.0442 0.0312
UNET 7.7TM 0.083- 0.84— 0.4725 1.6650
FNO 466K 0.0044 0.12— 0.1685 0.2425
PINN 8.5K" 0.017- 1.6— — —
ORCA-SWIN-B 88M 0.00600 0.82— — —
AVIT-B

TASK-SPECIFIC 116M 0.00047 0.0110 0.0316 0.0261

MPP 116M 0.00240 0.0106 0.0281 0.0172

MPP + FINETUNED 116M 0.00043 0.0087 0.0187 0.0079
MPP-AVIT-S 29M 0.0039 0.0112 0.0319 0.0213
MPP-AVIT-L 409M 0.0022 0.0098 0.0208 0.0147

Data We use the full collection of two-dimensional time-dependent simulations from PDEBench
(Takamoto et al., 2022) as our primary source for diverse pretraining data. This includes systems
governed by four unique nonlinear PDEs at a variety of state variables available, resolutions, initial
conditions, boundary conditions, and simulation parameters. The specific PDEs are the compress-
ible and incompressible Navier-Stokes equations, the shallow-water equations, and a 2D Diffusion-
Reaction equation. Full details on the data used can be found in Appendix A.1.

Training settings 7' is fixed at 16 for all experiments as our VideoMAE comparison in Section
5.2 was unable to scale to larger sizes without gradient checkpointing. Autoregressive training is
performed only one step ahead—no longer rollouts, noise corruption, or post-processing are in-
cluded for stability. Training from scratch and MPP pretraining are always performed on the AViT
architecture described in section 4.2. Full training details including data splits, optimization details,
and hardware are documented in Appendix B.

5.1 PRETRAINING PERFORMANCE

First, we compare MPP-pretrained models to “Near” “Far”
dedicated baselines from prior work across all
available systems. The models are pretrained at
a variety of sizes so we can begin to explore to
benefits of scaling our approach. Precise model
sizes can be found in Appendix B.1. Unlike the
baselines which are trained on only one system

and so must only learn one parameter regime, our

Training

models (denoted by MPP-AViT-*) must handle
all systems and regimes without finetuning. The
effect of physical parameters, forcing, and simu-
lation parameters must be inferred from context
U?. The PINN (Raissi et al., 2019), UNet (Ron-
neberger et al., 2015), and FNO (Li et al., 2020)

Figure 4: Kinetic energy for representative in-
compressible training and compressible finetun-
ing data. The “near” compressible snapshot re-
sembles the training snapshot while “far” dis-
plays turbulent small scales not seen in the in-
compressible simulation.

results are sourced from Takamoto et al. (2022)

while the results from Shen et al. (2023) with a finetuned SWIN (Liu et al., 2021) are used for
ORCA. Results are reported in terms of Normalized RMSE (NRMSE, the square root of Equation 4)
averaged over fields and examples, as in Takamoto et al. (2023). Our Compressible Navier-Stokes
results are aggregated based on the mach number here for space concerns. Fully granular results can
be found in Appendix C.2.

Our pretrained models are able achieve high-end performance on all datasets (Table 1) despite the
difficulty of multi-task training (Yu et al., 2020). In fact, there is only one case where our pretrained

—s— MPP-AViT-B V-MAE (K400)-ViT-B - FNO

—— Scratch-AViT-B —— V-MAE (SSV2)-ViT-B = UNet
|
m 027 i e 1 LR Gy
=2 N e < S~e
= O Ss o> Rk
= 017 BN ~C ke e ~=d|
=, ~is bt . i S
- e S, ~<yl ~el =]
2 0.05 4 1 T . W egmmin g
= -
0.02 4
B B B B B B B B B B B - B B B -
200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800
Number of samples Number of samples Number of samples Number of samples
(a) “Near” Transfer (b) “Far” Transfer

Figure 5: NRMSE for transfer learning tasks. Solid lines are one-step error. Dashed lines are
averaged error over five step rollouts. The MPP model shows clear performance benefits in both
cases. The more turbulent behavior of “far” seems to be difficult to learn from scratch or from video
data, but pretraining on physical data leads to much stronger results.

models do not outperform all baselines. In some cases, the improvement over the baselines is nearly
an order of magnitude in NRMSE and the performance improves with scale. However, we clarify
that we are not claiming these results are optimal-—we can, for instance, improve upon them by
finetuning our own models on specific tasks. It is also true that these models are, on average,
slightly slower than the similarly sized baselines (Appendix Table 5), but are not outliers. What
this experiment answers affirmatively is that large transformers can learn multiple sets of dynamics
simultaneously. Trajectories from pretrained models are displayed in Appendix C.4.

5.2 TRANSFER TO LOW-DATA DOMAINS

We remove all compressible fluid data from the training corpus and pretrain on the three remaining
spatiotemporal systems. We evaluate transfer to two specific compressible Navier-Stokes datasets:

* “Near”: M = 0.1, viscosity= 10~2, Random Periodic Initial Conditions

o “Far”: M = 1.0, viscosity= 108, Turbulent Initial Conditions

Snapshots of the kinetic energy for the finetuning systems and
incompressible training data are visualized in Figure 4. While
quantitatively evaluating the physics gap is an unsolved prob- Table 2: Memory usage during
lem, the names reflect both prior physical knowledge and qual- finetuning on 16x3x512x512 in-
itative evaluation. “Near” features a low Mach number, the di- puts for batch size 1 using mixed
mensionless quantity that correlates with compressible behav- precision.

ior, and viscosity similar to that of the incompressible simula-

tion. ”Far* has wildly different turbulent behavior that induces MoODEL MAX MEMORY
small scale structure never seen during training. However, de- VIDEOMAE 79.3 GB
spite the similarity in physical behavior, the simulations are AVIT-B 24.7 GB
still quite different: the compressible and incompressible sim- AVIT-TI 6.7 GB
ulations in PDEBench differ in spatial and temporal resolution, AVIT-S 11.5 GB
initial condition distribution, boundary conditions, viscosity, AVIT-L 597 GB

and velocity range in addition to the difference in compress-
ibility. We use these sets to compare the finetuning perfor-
mance of MPP, training from scratch, and an existing pretrained spatiotemporal transformer, Video-
MAE (Tong et al., 2022) pretrained on both K400 (Kay et al., 2017) and SSV2 (Goyal et al., 2017)
datasets.

Figure 5 shows that the MPP models outperform VideoMAE and training from scratch by a large
margin in the low-data regime. Numerical results are listed in Appendix B. VideoMAE displays
surprisingly strong finetuning performance given that the pretraining data is conventional video, but
it is unable to match the much lower memory (Table 2) MPP-AViT-B in either setting. Predictably,
both pretraining approaches are less accurate in the long-run on the turbulent “far” dataset. However,
in the short-term the physical pretraining seems to provide an even larger advantage in this regime
compared to the far smoother “near” data. Rollout visualizations are included in Appendix C.5.

8

5.3 BROADER USAGE OF PRETRAINED REPRESENTATIONS

One of the fascinating aspects of large pretrained models is the utility of their learned features for
entirely new types of prediction problems. We explore this behavior by comparing the ability of a
pretrained MPP-AViT-B model to one trained from scratch to solve the inverse problem of parameter
estimation for two parameters:

Forcing Identification for Incompressible Navier-Stokes The two sources of variation in the In-
compressible Navier-Stokes simulations (Equation 8) are the initial conditions and the spatially vary-
ing forcing f applied to the velocity evolution at each step. We compare the performance between
the pretrained the constant forcing term used in the incompressible Navier-Stokes simulation from
an input trajectory U,;°. We divide the validation set from pretraining, taking 1,000 trajectories as
the new training set and using the rest for validation. Results are reported on the original test set.

Buoyancy for Incompressible Navier-Stokes For this, we turn to an additional fluid mechanics
benchmark, PDEArena (Gupta & Brandstetter, 2022). This benchmark includes an incompressible
Navier-Stokes simulation with variable buoyancy (b from Equation 14). Since this set was not used
during training, we take 1,000 randomly sampled trajectories for train, 100 for validation, and a
further 1,000 for testing. Since we are now predicting a scalar, we train a linear probe on top of the
final hidden representation consisting of global average pooling and a linear head.

We observe mixed results (Table 3). Pre-
training reduces the error in the forcing task
by nearly half, but shows no improvement Table 3: RMSE for inverse problem tasks. Error
over training from scratch in the scalar pre- from constant prediction included for context.

diction. Prior work (Mialon et al., 2023) was
able to achieve better performance on buoyancy

through Lie-transformation based contrastive TRAINING FORCING BUOYANCY
pretraining using a convolutional architecture. .008 T .006
MPP does not seem to hurt performance on MPP 0'201,012 0'0781,005
this task, as the AViT trained from scratch also SCRATCH 0.43 0.077

’ MIALON ET AL. (2023) — 0.062%010

barely outperforms a mean prediction. How-

ever, we would expect the scalar prediction task ~ PREDICT MEAN 1.00%:9°0 0.088+:000

to be easier. It is plausible that the dense pre-

diction pretraining task is not well-suited for scalar inference, but the comparison of performance on
this non-generative task also echoes prior work in NLP (Wang et al., 2022b) where autoregressive
training has underperformed on non-generative tasks.

6 CONCLUSION

We introduced an autoregressive pretraining strategy, Multiple Physics Pretraining, for the devel-
opment of multi-use physical surrogates. Through per-sample normalization, field embeddings,
appropriately scaled losses, and efficient task sampling, we are able to train scalable transformer
models capable of predicting multiple sets of independent dynamics simultaneously. We evaluated
several sizes of model and observed that the approach benefits from scale. MPP models were able
to match modern baselines on benchmarks containing fluid and reaction simulations derived from
multiple equations, simulation parameters, and boundary conditions from pretraining alone. Given
previously unseen physics, finetuning our pretrained models demonstrated positive transfer and out-
performed both existing video models and training from scratch.

Limitations and Future Work Many interesting questions remain. While MPP did very well on
autoregressive prediction, it struggled on parameter inference when compared to contrastive pre-
training. Additionally, while we showed transfer benefits from pretraining, more work remains to
identify how far away from the training distribution these benefits persist. There is also the question
of model capacity. Is there a point where incorporating new physics into pretraining hurts? To truly
develop foundation models for the field, we must answer these questions and more. It will take
more diverse data and architectures capable of handling the geometries and non-uniform structure
of spatiotemporal dynamics data today. MPP opens up many new research directions and paves the
way for this development in the future.

REFERENCES

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Luci¢, and Cordelia Schmid.
Vivit: A video vision transformer, 2021.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Flo-
rian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gor-
don Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash,
Yann LeCun, and Micah Goldblum. A cookbook of self-supervised learning, 2023.

Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
problems. arXiv preprint arXiv:1904.05417, 2019.

Zied Ben-Bouallegue, Mariana C A Clare, Linus Magnusson, Estibaliz Gascon, Michael Maier-
Gerber, Martin Janousek, Mark Rodwell, Florian Pinault, Jesper S Dramsch, Simon T K Lang,
Baudouin Raoult, Florence Rabier, Matthieu Chevallier, Irina Sandu, Peter Dueben, Matthew
Chantry, and Florian Pappenberger. The rise of data-driven weather forecasting, 2023.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In Proceedings of the International Conference on Machine Learning (ICML),
July 2021.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533-538, 2023.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Andres M Bran, Sam Cox, Andrew D White, and Philippe Schwaller. Chemcrow: Augmenting
large-language models with chemistry tools, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin scheme with active
learning for high-dimensional evolution equations, 2022.

Shuhao Cao. Choose a transformer: Fourier or galerkin, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: Large-scale self-
supervised pretraining for molecular property prediction, 2020.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Miles Cranmer, Daniel Tamayo, Hanno Rein, Peter Battaglia, Samuel Hadden, Philip J. Armitage,
Shirley Ho, and David N. Spergel. A bayesian neural network predicts the dissolution of compact
planetary systems. Proceedings of the National Academy of Sciences, 118(40):e2026053118,
2021. doi: 10.1073/pnas.2026053118. URL https://www.pnas.org/doi/abs/10.
1073/pnas.2026053118.

Yuchen Dang, Zheyuan Hu, Miles Cranmer, Michael Eickenberg, and Shirley Ho. Tnt: Vision
transformer for turbulence simulations, 2022.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation, 2023.

10

https://www.wandb.com/
https://www.wandb.com/
https://www.pnas.org/doi/abs/10.1073/pnas.2026053118
https://www.pnas.org/doi/abs/10.1073/pnas.2026053118

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Min-
derer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed,
Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick
Collier, Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink,
Alexander Kolesnikov, Filip Paveti¢, Dustin Tran, Thomas Kipf, Mario Luci¢, Xiaohua Zhai,
Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 billion
parameters, 2023.

Shaan Desai, Marios Mattheakis, Hayden Joy, Pavlos Protopapas, and Stephen Roberts. One-shot
transfer learning of physics-informed neural networks, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen,
and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped
windows, 2022.

Gideon Dresdner, Dmitrii Kochkov, Peter Christian Norgaard, Leonardo Zepeda-Nunez, Jamie
Smith, Michael Brenner, and Stephan Hoyer. Learning to correct spectral methods for simu-
lating turbulent flows. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=wNBARGxoJn.

Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in
the age of data. Annual Review of Fluid Mechanics, 51(1):357-377, jan 2019.
doi: 10.1146/annurev-fluid-010518-040547. URL https://doi.org/10.1146%
2Fannurev-£f1luid-010518-04054"7.

Stanley J Farlow. Partial differential equations for scientists and engineers. Courier Corporation,
1993.

Somdatta Goswami, Katiana Kontolati, Michael D Shields, and George Em Karniadakis. Deep
transfer operator learning for partial differential equations under conditional shift. Nature Ma-
chine Intelligence, 4(12):1155-1164, 2022.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzyriska, Susanne West-
phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, Florian
Hoppe, Christian Thurau, Ingo Bax, and Roland Memisevic. The ”something something” video
database for learning and evaluating visual common sense, 2017.

Tamara G. Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-Bibiane Schonlieb. Can
physics-informed neural networks beat the finite element method?, 2023.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505-8510,
2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked
autoencoders are scalable vision learners, 2021.

Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, and Barnabds P6czos.
Learning to predict the cosmological structure formation. Proceedings of the National Academy
of Sciences, 116(28):13825-13832, 2019. doi: 10.1073/pnas.1821458116. URL https://
www.pnas.org/doi/abs/10.1073/pnas.1821458116.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2016.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

11

https://openreview.net/forum?id=wNBARGxoJn
https://doi.org/10.1146%2Fannurev-fluid-010518-040547
https://doi.org/10.1146%2Fannurev-fluid-010518-040547
https://www.pnas.org/doi/abs/10.1073/pnas.1821458116
https://www.pnas.org/doi/abs/10.1073/pnas.1821458116

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers, 2019.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and Wenyu Liu. Ccnet:
Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 603—612, 2019.

Drew Jamieson, Yin Li, Renan Alves de Oliveira, Francisco Villaescusa-Navarro, Shirley Ho, and
David N Spergel. Field-level neural network emulator for cosmological n-body simulations. The
Astrophysical Journal, 952(2):145, 2023.

Lavender Yao Jiang, Xujin Chris Liu, Nima Pour Nejatian, Mustafa Nasir-Moin, Duo Wang, Anas
Abidin, Kevin Eaton, Howard Antony Riina, Ilya Laufer, Paawan Punjabi, et al. Health system-
scale language models are all-purpose prediction engines. Nature, pp. 1-6, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew
Zisserman. The kinetics human action video dataset, 2017.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=cGDAkQol1COp.

Gene A Klaasen and William C Troy. Stationary wave solutions of a system of reaction-diffusion
equations derived from the fitzhugh—nagumo equations. SIAM Journal on Applied Mathematics,
44(1):96-110, 1984.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning—accelerated computational fluid dynamics. Proceedings of the Na-
tional Academy of Sciences, 118(21):¢2101784118, 2021. doi: 10.1073/pnas.2101784118. URL
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces,
2023.

Henry W. Leung and Jo Bovy. Towards an astronomical foundation model for stars with a
transformer-based model, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794,2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

12

https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear em-
beddings of nonlinear dynamics. Nature Communications, 9(1):4950, 2018. doi: 10.1038/
s41467-018-07210-0. URL https://doi.org/10.1038/s41467-018-07210-0.

Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, and Bobak T.
Kiani. Self-supervised learning with lie symmetries for partial differential equations, 2023.

Tuan Dung Nguyen, Yuan-Sen Ting, Ioana Ciucd, Charlie O’Neill, Ze-Chang Sun, Maja Jabtoriska,
Sandor Kruk, Ernest Perkowski, Jack Miller, Jason Li, Josh Peek, Kartheik Iyer, Tomasz
Rézanski, Pranav Khetarpal, Sharaf Zaman, David Brodrick, Sergio J. Rodriguez Méndez, Thang
Bui, Alyssa Goodman, Alberto Accomazzi, Jill Naiman, Jesse Cranney, Kevin Schawinski, and
UniverseTBD. Astrollama: Towards specialized foundation models in astronomy, 2023a.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7£92f2bfa9f7012727740-Paper.pdf.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-
driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214,2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=roNgYLO_XP.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scien-
tific machine learning, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2020.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part I1I 18, pp. 234-241. Springer, 2015.

13

https://doi.org/10.1038/s41467-018-07210-0
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=roNqYL0_XP

Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, and Ameet
Talwalkar. Cross-modal fine-tuning: Align then refine, 2023. URL https://arxiv.org/
abs/2302.05738.

Justin Sirignano and Jonathan F. MacArt. Deep learning closure models for large-eddy simulation of
flows around bluff bodies. Journal of Fluid Mechanics, 966, jul 2023. doi: 10.1017/jfm.2023.446.
URL https://doi.org/10.1017%2Fjfm.2023.446.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339-1364, 2018.

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation, 2022.

Adam Subel, Yifei Guan, Ashesh Chattopadhyay, and Pedram Hassanzadeh. Explaining the physics
of transfer learning in data-driven turbulence modeling. PNAS nexus, 2(3):pgad015, 2023.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Char-
acterizing scaling and transfer behavior, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pfliiger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine
Learning. In 36th Conference on Neural Information Processing Systems (NeurlPS 2022) Track
on Datasets and Benchmarks, 2022. URL https://arxiv.org/abs/2210.07182.

Makoto Takamoto, Francesco Alesiani, and Mathias Niepert. Learning neural pde solvers with
parameter-guided channel attention, 2023.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. VideoMAE: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=AhccnBXSne.

Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Jakob Verbeek, and Herve Jegou. Three things
everyone should know about vision transformers. arXiv preprint arXiv:2203.09795, 2022.

Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang,
Andrew Carroll, Chuck Lau, Ryutaro Tanno, Ira Ktena, Basil Mustafa, Aakanksha Chowdhery,
Yun Liu, Simon Kornblith, David Fleet, Philip Mansfield, Sushant Prakash, Renee Wong, Sunny
Virmani, Christopher Semturs, S Sara Mahdavi, Bradley Green, Ewa Dominowska, Blaise Aguera
y Arcas, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Karan Singhal, Pete Flo-
rence, Alan Karthikesalingam, and Vivek Natarajan. Towards generalist biomedical ai, 2023.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization, 2017.

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learning
from differentiable physics to interact with iterative pde-solvers, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hengjie Wang, Robert Planas, Aparna Chandramowlishwaran, and Ramin Bostanabad. Mosaic
flows: A transferable deep learning framework for solving pdes on unseen domains. Computer
Methods in Applied Mechanics and Engineering, 389:114424, 2022a.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,

Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
work best for zero-shot generalization?, 2022b.

14

https://arxiv.org/abs/2302.05738
https://arxiv.org/abs/2302.05738
https://doi.org/10.1017%2Fjfm.2023.446
https://arxiv.org/abs/2210.07182
https://openreview.net/forum?id=AhccnBXSne

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architec-
ture, 2020.

Wuzhe Xu, Yulong Lu, and Li Wang. Transfer learning enhanced deeponet for long-time predic-
tion of evolution equations. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 10629-10636, 2023.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning for differen-
tial equation problems. arXiv preprint arXiv:2304.07993, 2023.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1-12, 2018.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning, 2020.

Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-
dimensional partial differential equations. Journal of Computational Physics, 411:109409, 2020.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104-12113, 2022.

A DATA DETAILS

A.1 PDEBENCH

To train and evaluate our models, we use the publicly available PDEBench dataset! (Takamoto
et al., 2022). We summarize the data included in this section. This dataset comprises a suite of
time dependent and time independent simulations based on common PDE systems, generated with
varying parameters, initial conditions, and boundary conditions. Specifically, PDEBench uses a
discretized ground-truth solver with high precision to evolve the vector-valued solution to a given
PDE at one time step to the solution at one time step later. When compiled across time steps,
the vector-valued solutions take the form x € RTXCXHXW 'where T denotes the total number of
times steps, H and W denote the spatial height and width of the simulation grid and C' denotes the
parameter space representing the velocity (v, and v,), pressure (p) and density (p) fields, such that
C = 4. For our study, we focus on the 2D fluid dynamics simulations in PDEBench. These are
outlined loosely below; for more details, we refer the reader to Takamoto et al. (2022):

Compressible Navier-Stokes: These equations are used to model the pressure and velocity of both
laminar and turbulent Newtonian fluids, and are applied to many real-world problems, from aerody-
namics to interstellar gas dynamics. In the regime in which the density of the fluid can change due
to pressure variation, the equations can be expressed:

Op+V-(pv) =0, (5
p(Ov+v-Vv)=-Vp+nV* v+ ((+n/3)V(V-v) (6)
Bp(e+pv?/2) + V- [(p+e+p?/2)v—v- o] =0, (7

where p is the fluid density, v is the fluid velocity, p is the fluid pressure, € is the internal energy,
o’ is the viscous stress tensor, 7 is the shear viscosity, and (is the bulk viscosity. For our transfer
experiments, we use the following two sets of data in particular:

"https://github.com/pdebench/PDEBench

15

1. A set of 1,000 trajectories on a H x W = 512 x 512 regular grid over 7' = 100 time
steps (where the separation between steps is At = 0.005). Additionally, (M,n,¢) =
(1.0,1078,107®), where M, 7, ¢ denote the Mach number, the shear viscosity, and the
bulk viscosity, respectively. The velocity field is initialized with a turbulent field, while the
inital pressure and density fields are taken to be uniform.

2. A set of 10,000 trajectories on a H x W = 128 x 128 regular grid with (M,n,({) =
(0.1,0.01,0.01). The time steps and initializations are as above.

Incompressible NS: In the incompressible regime, which typically occurs in fluids with low Mach

numbers (as it rules out density and pressure waves like sound or shock waves), the Navier-Stokes
equations simplify to:

V-v=0, ¥

p(Ov+v-Vv)=-Vp+nV3iv +f,)

where v is the velocity, p is the density, p is the pressure, 7 is the viscosity, and f is a spatially

varying external force. The simulation in PDE bench is augmented by an immersed tracer that is
transported by the velocity field:

atpsmok:e = -V vpsmoke (10)
The system uses Dirichlet boundary conditions on the velocity field v = 0 and Neumann on the
density % =0, z € {0,1}, 6’1%7";"’” =0, y € {0,1},. These equations are typically used
to model a variety of hydrodynamics systems such as weather. This data is produced at resolution
512 x 512 with time step of .0005. The dataset contains a total of 1000 trajectories with 1000 time
steps each.

Shallow water: In the event that the horizontal length scale of the fluid is significantly greater
than the vertical length scale, the incompressible Navier-Stokes equations can be depth-integrated
to derive the shallow water equations. These describe flow below a pressure surface in a fluid, and
are given by

Bh+V - (hv) =0, (11)
Ot (hv) + V- (;hv2 + ;grh2> = —g,hVb, (12)

where h is the water depth, v is the velocity, b is the bathymetry, and g, is the reduced gravity. For
our data, we use 1,000 trajectories on a H x W = 128 x 128 regular grid over 7' = 100 time steps.
The specific simulation used is a 2D radial dam break scenario, where the water height is initialized
as a circular bump in the center of the domain with a uniformly randomly sampled radius.

Diffusion-Reaction: The Diffusion-Reaction equations arise in systems with many interacting com-
ponents and can be represented in the general form

dyu = DV?u + R(u), (13)
where u is a vector of concentration variables, D is a diagonal matrix of diffusion coefficients, and R
describes all local reaction kinetics. The most common application of diffusion-reaction equations
is in chemical reactions, however they can also be used to describe a variety of dynamical processes.
For our data, we use 1,000 trajectories on a H x W = 128 x 128 regular grid over 7" = 100 time
steps. The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo
equation (Klaasen & Troy, 1984), and their diffusion coefficients are D,, = 1 X 1073 and D, =
5 x 1073 respectively. The initial conditions are generated as standard Gaussian random noise.

A.2 PDEARENA

In addition to the 2D Incompressible Navier-Stokes data incorporated from PDEBench, we also
include 2D Incompressible Navier-Stokes data from PDEArena (Gupta & Brandstetter, 2022).

These follow roughly Equation 8, with a minor variation:
V-v=0, (14)

p(Ov+v-Vv) = —Vp+nViv + {g] , (15)

16

Table 4: Details of the various model architectures and scales explored.

MoDEL EMBED DiMm. MLP DiM. # HEADS #BLOCKS PATCHSIZE # PARAMS

AVIT-T1 192 768 3 12 [16, 16] 7.6M
AVIT-S 384 1536 6 12 [16, 16] 29M

AVIT-B 768 3072 12 12 [16, 16] 116M
AVIT-L 1024 4096 16 24 [16, 16] 409M

Table 5: Inference time for various models on A6000 GPU.

MODEL TIME (MS)
UNET 67.7
FNO 7.2
AVIT-T1 192
ORCA-SWIN-B 98.5
AVIT-B 105.6

where b € [0.2,0.5] represents buoyancy in the y direction. Unlike PDEBench, this is a spatially
constant term. This includes a set of 5,200 training trajectories (and 1,300 validation and test tra-
jectories each) on a H x W = 128 x 128 regular grid from which we take 7" = 16 timesteps
for prediction. As with the PDEBench simulations, the PDEArena simulations include a viscosity
parameters of v = (.01 and Dirichlet boundary conditions.

B EXPERIMENT DETAILS

B.1 MODEL CONFIGURATIONS
The following architectural decisions were used across all AViT models trained in this paper:

¢ Pre/Post Norm: Pre-norm (Xiong et al., 2020)

* Normalization Type: Instance Normalization (Ulyanov et al., 2017)
» Activations: GeLU (Hendrycks & Gimpel, 2016)

* QK Norm: Yes (Dehghani et al., 2023)

e Patching: hMLP (Touvron et al., 2022)

* Decoder: Transposed hMLP (this is equivalent to the transposed convolutions mentioned
in the main text).

» Causal Masking: False - We only evaluate the loss on the 7" 4 1 prediction.

Furthermore, we examine the performance of our models on the aforementioned PDE systems when
the size of the model is scaled. Vision transformers have a variety of parameters that control the
model’s size, including the number of processor blocks, the dimensionality of patch embeddings
and self-attention, the dimensionality of Multi-Layer Perceptron (MLP) blocks, the number of at-
tention heads, and the patch size applied on the input tensors. In previous studies on language
(Hernandez et al., 2021; Hoffmann et al., 2022; Kaplan et al., 2020) and vision (Zhai et al., 2022),
it has generally been noted that model performance is typically only weakly dependent on shape
parameters, and instead depends largely on non-embedding parameter count given a fixed compute
budget and dataset size. As such, we follow the general scaled architectures set forth by Zhai et al.
(2022) for vision, and scale all aspects of the model shapes simultaneously to select a variety of
model sizes for testing. These are detailed in 4. In practice, the AViT models are on average slightly
slower than the similarly sized baseline models from Table 1.

Software. All model development and training in this paper is performed using PyTorch 2.0
(Paszke et al., 2019).

17

Hardware. All training for both pretraining and finetuning is done using Distributed Data Parallel
(DDP) across 8 Nvidia H100-80GB GPUs.

B.2 EXP 1: PRETRAINING PERFORMANCE
For MPP, we train using the following settings:

* Training Duration: 200K steps
» Train/Val/Test: .8/.1/.1 split per dataset on the trajectory level.

» Task sampling: Uniformly sample task, then uniformly sample trajectory from task with-
out replacement. We treat every 400 model updates (1 model update=5 micro-batches) as
an “epoch” and reset the task pool.

¢ Micro-batch size: 8

¢ Accumulation Steps: 5

* Optimizer: Adan (Xie et al., 2023)

¢ Weight Decay: 1E-3

* Drop Path: 0.1

* Base LR: DAdaptation (Defazio & Mishchenko, 2023)

* LR Schedule: Cosine decay

* Gradient clipping: 1.0
For training from scratch, no task sampling occurs and sampling without replacement continues until
the dataset is exhausted as in a conventional epoch. Note, we use the automated learning selection
strategy DAdaptation during pretraining runs in large part to avoid excessive hyperparameter tuning
of our own models. In finetuning experiments, comparison models are tuned manually following

the recommended settings from the model publishers to avoid differences being due to compatibility
with the parameter-free method.

Data For pretraining, we use all 2D time-dependent PDEBench datasets. These are described in
Section A.1. In particular, we use the compressible and incompressible Navier-Stokes, Diffusion-
Reaction 2D, and Shallow Water data.

B.3 EXPERIMENT 2: TRANSFER TO LOW-DATA DOMAINS

In this experiment, we compare the transferability of our MPP-Pretrained models to general-
purposes pretrained video masked autoencoders (VideoMAE; Tong et al., 2022) for frame prediction
on video-like PDEBench data (Takamoto et al., 2022).

For MPP and training from scatch, we use the following settings:

* Training Duration: 500 epochs (true epochs due to the restricted dataset)

» Train/Val/Test: X/.1/.1 split per dataset on the trajectory level. Note that X is due to the
fact that we test varying amounts of training data. These are subsampled from the training
split of 80%.

 Batch size: 8

¢ Accumulation Steps: 1 (No accumulation)

¢ Optimizer: Adan (Xie et al., 2023)

* Weight Decay: 1E-3

* Drop Path: 0.1

* Base LR: DAdaptation (Defazio & Mishchenko, 2023)
* LR Schedule: Cosine decay

* Gradient clipping: 1.0

18

Data We study transferability of VideoMAE models for spatiotemporal prediction on video-like
scientific data.

AVIT Models are pretrained on datasets generated from three PDEs: Incompressible Navier-Stokes,
Shallow Water, and Diffusion Reaction 2D.

We focus on transfer to the two datasets “Near” and “Far” (see Sect. 5.2) of fluid dynamics sim-
ulations taken from the PDEBench dataset (Takamoto et al., 2022). These simulations solve the
compressible Navier-Stokes equations in a 2D geometry with periodic boundary conditions (see
Appendix A.1 for additional details).

B.3.1 VIDEOMAE SETTINGS

While VideoMAE does utilize spatiotemporal information, it was developed for a different setting,
so we fully document all details of our adaptation of it here both for reproducibility and fairness in
our comparison.

VideoMAE models are video transformers that were proven to be efficient data-learners for self-
supervised video pretraining (Tong et al., 2022). They rely on an asymmetric encoder-decoder
architecture building on a vanilla ViT backbone with joint space-time attention. VideoMAE models
are pretrained by learning to reconstruct masked videos using a random tube-masking strategy with
a extremely high masking ratio (~ 90 %).

We make use of two publicly available models, hereafter called VideoMAE-K400 and VideoMAE-
SSV2, that were pretrained on Kinetics-400 dataset (K400; Kay et al., 2017) and Something-
Something V2 dataset (SSV2; Goyal et al., 2017), respectively. Both datasets are made of short
videos (typically < 10 s long) of human-object or human-human interactions. VideoMAE-K400
(respectively, VidleoMAE-SSV2) was pretrained on ~ 240k (~ 170k) videos. We focus on the mod-
els that build on a ViT-base backbone, so that their size (in terms of number of trainable parameters)
remains comparable to that of MPP-AVIiT-B. After adaptation of the input and output linear layers
as described below, the number of trainable parameters of these models reaches ~ 95 M.

Number of channels. Same as the original pretraining procedure, the input data z € RCXT*HxW

is divided into non-overlapping joint sBace—time cubes of size 2 x 16 x 16. These are embedded
through a Conv3d layer, resulting in 5 x 1% X % tokens. Since our PDEBench data has C' = 4
channels instead of 3 for the RGB videos from the pretraining set, we had to adapt the number of
input channels of this Conv3d layer accordingly. The weights of this new layer were defined using
a (rescaled) repetition of the pretrained weights from the original layer. Similarly, the output number
of features of the final linear projection layer of the model had to be adapted to C' = 4 channels.
The weights and biases of this layer were extended by consistently repeating the original pretrained
weights and biases.

Positional encoding. The number of tokens resulting from our PDEBench data did not match the
number of tokens resulting from the pretraining datasets. Consequently, we also had to adapt the
pretraining positional encoding. We chose to interpolate accordingly the original 1D sine/cosine
positional encoding (Vaswani et al., 2017) using a trilinear interpolation after having reshaped the
token index axis onto a 3D grid.

B.3.2 VIDEO MAE FINETUNING PROCEDURE

We describe the finetuning procedure of the pretrained VideoMAE models for frame prediction.
Frame prediction consists in predicting the next 7, frames of a video given a context of T, frames.
Since the pretrained models manipulates space-time cubes of size 2 in time, we naturally choose
T, = 2. The context size is taken to be T, = 16 for consistency with MPP-AViT models. We
finetune the pretrained models for frame prediction by adapting the self-supervised training strategy
in order to reconstruct the last T}, frames of a masked video of T' = T,, + T}, frames.

Masking strategy. For frame prediction, instead of the random tube-masking strategy, we simply
mask the last T}, frames of the input data.

19

Table 6: Effective learning rate for the finetuning of VideoMAE.

“NEAR” “FAR”

VIDEOMAE (K400) 0.00039 0.00198
VIDEOMAE (SSV2) 0.00186 0.00150

Loss. We finetune our models by minimizing a NMSE loss. In this context, denoting by
z,y € REXToxHXW the output of our model and the target (masked frames), respectively, the

. T,
NMSE loss is defined by £(2,y) = S5 S50 [1Te — Yot |3/ 119e.c 13-

Normalization of the data. Each set of PDEBench simulations is globally and channel-wise
rescaled so that pixel values all fit in [0, 1]. Additionally, we normalize channel-wise the targets
y € REXTyxHXW by qubtracting the global mean of the corresponding context frames and then
dividing by their global standard deviation.

Optimization. We finetune the pretrained models over 500 epochs (full epochs due to restricted
data size) and a (total) batch size of 8 using AdamW optimizer (Loshchilov & Hutter, 2019). Except
for the learning rate, the remaining optimization hyperparameters are chosen to be consistent with
those used in the finetuning experiments of Tong et al. (2022) (Table 10). In particular, we choose
a weight decay A\ = 0.05, (51, 82) = (0.9,0.999), a cosine learning rate decay scheduler with 5
warmup epochs, a drop path rate of 0.1, and a layer-wise learning rate decay parametrized by 0.75.
In this setting, the learning rate is adjusted by performing a hyperparameter search monitored with
WandB (Biewald, 2020). We report the resulting optimal values per pretrained model and dataset in
Table 6.

B.4 EXP 3: BROADER USAGE OF PRETRAINED REPRESENTATIONS
For MPP and training from scatch, we use the following settings:

* Training Duration: 20K Optimization Steps

* Train/Val/Test: 1000/100/1000 taken from original validation set or randomly depending
on whether data was used for training.

¢ Batch size: 24

¢ Accumulation Steps: 1 (No accumulation)

¢ Optimizer: Adan (Xie et al., 2023)

¢ Weight Decay: 1E-3

* Drop Path: 0.1

* Base LR: DAdaptation (Defazio & Mishchenko, 2023)
* LR Schedule: Cosine decay

* Gradient clipping: 1.0

C ADDITIONAL AND EXTENDED RESULTS

C.1 POSITION BIAS EVALUATION

We isolate the impact of position biases on our multi-task training objectives by constructing an
experiment that isolates their influence. Recall the advection equation from Equation 1:

o B
S TV @) =0 (16)

We will define two sets of physics. In both cases, the function is defined on the 1D domain z € [0, 1].
We sample v ~ Unif(—1,1) and use initial conditions sampled from the set of circular Gaussians

20

Table 7: Validation NRMSE for position bias comparison. Compares training performance on data
that differs only in boundary conditions.

TRAINING PERIODIC ABSORBING
PERIODIC BASELINE 0.032 —
ABSORBING BASELINE — 0.295
COMBINED
STANDARD RPE 0.188 0.189
PERIODIC-ADJUSTED RPE 0.081 0.143

Table 8: Per dataset NRMSE comparison for M = 0.1 Compressible Navier-Stokes data. R/T
denote “random” and “turbulent” initial conditions from PDEBench. 1 = (are the bulk and sheer
viscosity.

MODEL R-n=10"% R-n=10"2 R-n=10"' T-np=10"°
MPP-AVIT-TI 0.0493 0.0274 0.0116 0.0339
UNET 0.66— 0.71- 5.1— 0.19-
FNO 0.28- 0.17- 0.36—- 0.16-
MPP-AVIT-S 0.0335 0.0176 0.0071 0.0217
MPP-AVIT-B 0.0286 0.0162 0.0078 0.0169
MPP-AVIT-L 0.0234 0.0145 0.0099 0.0136

with variances sampled from Uni f(1/160, 1/5) and means sampled from Uni f(.25,.75). The two
systems vary only in the choice of boundary conditions. The first uses periodic boundary conditions,
implying ¢(0) = ¢(1). The second uses absorbing boundary conditions in which waves are not
reflected back into the solution space. The restricted functional form allows us to implement this
exactly by extending the domain and solving the periodic equations such that the constant velocity
implies the waves exiting the solution space never return.

In this experiment, we first train models (AViT-Ti with 1D patches) on each system individually
using 10,000 examples each for 100 epochs to get a sense of the baseline performance. We then train
models with and without our modified position biases on the two systems jointly (20,000 examples)
to evaluate the impact of our change.

Table 7 shows that our modified position biases are more effective at training in the joint setting.
Both RPE schemes are able to improve on absorbing boundary with the additional data. Standard
RPE on the other hand struggles to learn the periodic baseline. Our Periodic-adjusted variant is
much more effective at learning the periodic data, though it does not outperform the baseline.

It is interesting to note how large the effect of boundary conditions is on this problem. The model
trained on only periodic condition reaches nearly an order of magnitude higher precision. While
absorbing boundaries are complicated for numerical solvers, it seems as though attention should be
able to simply not attend to waves passing out of the domain. The interaction of boundary conditions
with attention therefore seems to be an important direction for future study.

C.2 EXpl: CNS EXPANDED RESULTS

Here we break out the Compressible Navier-Stokes (CNS) results from Table 1. Table 1 shows the
comparison between our pretrained models and task-specific baselines; however, due to space limi-
tations the CNS was aggregated by mach number in the main text, so we share the full CNS results
here. MO0.1 can be seen in Table 8. M1.0 can be seen in Table 9. Note that while it is conventional
to describe these simulations in terms of dimensionless numbers like the Reynolds number, these
simulations are performed at relatively low resolution, so it is likely they incur significant numerical
diffusion. Thus we report the results in terms of the nominal diffusion coefficients without making
claims about the Reynolds numbers of the simulation.

21

Table 9: Per dataset NRMSE comparison for M/ = 1.0 Compressible Navier-Stokes simulations.
R/T denote “random” and “turbulent” initial conditions from PDEBench. i = (are the bulk and
sheer viscocity.

MODEL Rnp=10"°% Rp=10"2 R-yp=10"' Typ=10"%
MPP-AVIT-TI 0.0615 0.0327 0.0171 0.0594
UNET 0.47- 0.36- 0.92- 0.14-
FNO 0.35- 0.096- 0.098- 0.13-
MPP-AVIT-S 0.0451 0.0223 0.0108 0.0425
MPP-AVIT-B 0.0386 0.0195 0.0119 0.0365
MPP-AVIT-L 0.0314 0.0171 0.0132 0.0282

Table 10: Test NRMSE for “Near” Compressible Navier-Stokes MO0.1, n = .01.

TRAINING SAMPLES (NRMSE x1071)
MODEL 100 200 400 600 800

T+1 T+5 T+l T+5 T+l T+5 T+1 T+5 T+1 T+5

VIDEOMAE (K400) 1.26 198 0.78 1.25 0.49 0.83 0.39 0.62 0.33 0.50
VIDEOMAE (SSV2) 0.95 1.61 0.63 1.04 042 0.66 033 052 025 0.39
MPP-AVIT-B 0.66 1.13 0.42 0.81 0.27 055 0.22 035 0.19 0.30

In examining the full CNS data, one interesting result jumps out - the most viscous systems 1 = .1
seem to perform relatively worse with scale. For both subsets, S was the top performing model at
the highest viscosity. All other viscosities seem to benefit from scale. This does seem to have a
limit, however, as Ti again loses performance. It is also important to remember that these results
occur during multi-task training, so they cannot be directly interpreted in the single-task setting.

C.3 EXP2: NUMERICAL RESULTS

We provide numerical results corresponding to Figure 5 in Tables 10 and 11. We refer to Sect. 5.2
for discussion.

C.4 PRETRAINING TRAJECTORIES
Here we show example trajectories from pretrained models. Videos are included in the attached sup-

plementary material. After pretraining, we find that the model initially produces strong predictions,
but patch artifacts creep in over time.

C.5 FINETUNING TRAJECTORIES

After finetuning, we find that the patch-based instability mostly disappears. Again, videos displaying
longer trajectories are available in the supplementary material.

22

Predicted

Ground Truth

Predicted Ground Truth Predicted

Ground Truth

—
+
(-

+
+
'—I

+
+
|—I

t+3 t+5

~+
+
~

Dynamics: swe, Field h

Figure 6: Pretraining trajectory.

t+3 t+5

—~+
..+
~

Dynamics: incompNS, Field vx

Figure 7: Pretraining trajectory.

t+3 t+5 t+7

Dynamics: incompNS, Field vy

23

t+9

t+9

t+9

t+9

t+7

t+5

t+3

t+1

pa12Ipald

1%
1%
1%
1%
9%

yaniL punodo

Dynamics: incompNS, Field particles

Figure 8: Pretraining trajectory.

t+9

t+7

t+5

t+3

t+1

FaF ™ Fa&F
O/ R | ST /T
Ve N AT ST
R T
A% TS R\ |
i ...___.lh ‘i Iy = » |
i, @ "Ld @b .
ASERD | RS
FaF FaF -
yoC s [T
R AN R 2 TN
e i pva]
" (_.lih_...v....-.. - ol
—
47 b LA @b
WA) S NS
FaF " FaF "
.n.'_..-..'... At .‘ .J.. g E
'l.l_“_'-‘._)-. _rh fl..l“ .*J‘ v_-h
wl‘_-.ﬂ__f._ﬂ.u .JM"LZ]
TR Y Dy ,.._.!-.v- -l
DA (A
- " e L v -
2 e) T e
By i A O v .
ALK R
e e
e SRR | o T el
= "M 1.!.' L
ba Al.;._l 2 veli
._.l._l.l - . Yy ._.l._l.l - N
I 20 TR | s TR,
g =, T et -
LR RV IR
" -. _-ln:_. I_..___.. -_. _-ln:_. I_.u._
M ™ M= T L
P o v~ h.-_...l_.;—l ___.__...4... h.-_...l_i
PaIPaId YINL punoso

Dynamics: diffre2d, Field u

Figure 9: Pretraining trajectory.

24

Predicted

Ground Truth

Predicted

Ground Truth

Dynamics: diffre2d, Field v

Figure 10: Pretraining trajectory.

t+1

Dynamics: CNS, Field Vx

Figure 11: Finetuning trajectory.

25

Predicted

Ground Truth

Predicted

Ground Truth

Dynamics: CNS, Field Vy

Figure 12: Finetuning trajectory.

t+3 t+4
Dynamics: CNS, Field density

Figure 13: Finetuning trajectory.

t+5

Table 11: Test NRMSE for “Far” Compressible Navier-Stokes

TRAINING SAMPLES (NRMSE x1071)

MODEL 100 200 400 600 800
T+1 T+5 T+1 T+5 T+1 T+5 T+1 T+5 T+1 T+5
VIDEOMAE (K400) 1.16 1.60 0.79 1.10 0.73 096 0.53 0.70 0.49 0.65
VIDEOMAE (SSV2) 098 142 0.75 1.03 0.62 0.84 055 0.74 0.51 0.67
MPP-AVIT-B 0.60 1.15 0.37 0.77 0.27 0.66 .32 0.63 0.24 048
t+1 t+3 t+4 t+5
ke
Q
et
L
kel
g
o
<
)
2
|_
o
c
S
[e)
—
O]

Dynamics: CNS, Field pressure

Figure 14: Finetuning trajectory.

	Introduction
	Background
	Related Work
	Scalable Multiple Physics Pretraining
	Compositionality and Pretraining
	Architecture
	Balancing Objectives During Training

	Experiments
	Pretraining Performance
	Transfer to Low-data Domains
	Broader Usage of Pretrained Representations

	Conclusion
	Data Details
	PDEBench
	PDEArena

	Experiment Details
	Model Configurations
	Exp 1: Pretraining Performance
	Experiment 2: Transfer to Low-Data Domains
	VideoMAE Settings
	Video MAE Finetuning Procedure

	Exp 3: Broader Usage of Pretrained Representations

	Additional and Extended Results
	Position Bias Evaluation
	Exp1: CNS Expanded Results
	Exp2: Numerical Results
	Pretraining Trajectories
	Finetuning Trajectories

