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Abstract
This paper provides a comprehensive analysis
of variational inference in latent variable models
for survival analysis, emphasizing the distinctive
challenges associated with applying variational
methods to survival data. We identify a critical
weakness in the existing methodology, demon-
strating how a poorly designed variational distri-
bution may hinder the objective of survival anal-
ysis tasks—modeling time-to-event distributions.
We prove that the optimal variational distribu-
tion, which perfectly bounds the log-likelihood,
may depend on the censoring mechanism. To
address this issue, we propose censor-dependent
variational inference (CDVI), tailored for latent
variable models in survival analysis. More prac-
tically, we introduce CD-CVAE, a V-structure
Variational Autoencoder (VAE) designed for the
scalable implementation of CDVI. Further discus-
sion extends some existing theories and training
techniques to survival analysis. Extensive experi-
ments validate our analysis and demonstrate sig-
nificant improvements in the estimation of indi-
vidual survival distributions. Codes can be found
at https://github.com/ChuanhuiLiu/CDVI.

1. Introduction
Survival analysis, a fundamental topic in statistics, finds
wide-ranging applications across healthcare, insurance, qual-
ity management, and finance (Harrell et al., 2001; Nelson,
2005; Frees, 2009). It focuses on modeling the relation-
ship between time-to-event outcomes and individual demo-
graphic covariates, where the event of interest could be
death, disease progression, or similar occurrences. A key
challenge in survival analysis arises from censored obser-
vations, which provide only partial information about the
survival time, necessitating specialized methods to handle
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such data effectively.

Deep learning has emerged as a powerful paradigm to ad-
vance survival analysis (Wiegrebe et al., 2024). Recent
studies focus on modeling the individual time-to-event dis-
tributions using expressive latent variable survival models
(LVSMs). For example, Ranganath et al. (2016) assumed
that the prior of Z belongs to the class of deep exponential
family distributions (Brown, 1986). Deep survival machine
(Nagpal et al., 2021a) considered the finite discrete latent
space, modeling the logarithm of time-to-event as the finite
Gumbel or normal mixtures. Xiu et al. (2020) modeled a
discrete time-to-event as a softmax-activated neural network
incorporating the Nelson-Aalen estimator (Aalen, 1978).
Apellániz et al. (2024) followed a similar setup, develop-
ing variational autoencoders (Kingma & Welling, 2014;
Rezende et al., 2014) (VAE) for continuous time-to-event.
Importantly, these models outperform Accelerated Failure
Time (AFT) (Miller, 1976) and Cox Proportional Hazards
(CoxPH) (Cox, 1972) models across multiple metrics, en-
abling downstream tasks through latent features (Manduchi
et al., 2022).

A unique aspect of LVSM optimization is its reliance on
variational inference (VI) (Jordan et al., 1999) to approxi-
mate intractable likelihoods arising from flexible parametric
generative models. As a result, the performance of latent
variable models depends heavily on the optimality of VI and
associated design choices (Cremer et al., 2018).

In our opinion, the role of VI in modeling time-to-event
distributions remains inadequately explored. It is unclear
what form the optimal variational distribution should take
under censoring or which posterior it is meant to approxi-
mate. Existing designs are largely heuristic, with limited
theoretical grounding in the presence of censoring.

To address these gaps, this paper advances the understand-
ing of VI in survival analysis by providing a theoretical
analysis of its optimality under censoring and introducing a
principled variational framework for LVSM. At a high level,
our main contributions are

1. In Section 3, we motivate and introduce the core ideas of
censor-dependent variational inference (CDVI). We estab-
lish conditions under which vanilla VI for survival models
fails to achieve inference optimality under non-informative
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censoring and expose key limitations of existing methods.
We derive the optimal variational posterior for the log-
likelihood of survival data. We further demonstrate that
a censor-dependent variational family is required to capture
the structure of the true posterior, as illustrated in Figure 2.

2. In Section 4, we propose CD-CVAEs, amortized CDVI
implementations of VAE-based survival models, free from
the restrictive proportional hazards assumption and impos-
ing minimal distributional assumptions, which rely solely
on decoder architecture. We provide formal guarantees for
our proposed tighter-bound sampling-based variants via aug-
mented VI theory and offer practical insights into model
implementations, such as training strategies and stable com-
putation techniques. Section 5 presents empirical valida-
tion and findings through extensive experiments on various
datasets. Notably, our methods achieve 5% higher C-index
than state-of-the-art models on WHAS datasets.

2. Preliminaries
Notations: Random variables (r.v.) are denoted by capital
letters, e.g. X,Z, Y, U,C, and their distribution functions
have matching subscripts. X denotes the sample space of
X . P (·), F (·), p(·), S(·), h(·) respectively denote a general
probability function, a cumulative distribution function, a
density function, a survival (tail) function, and a hazard func-
tion. Subscripts in Greek letters θ, ϕ denote the unknown
parameters. E.g. SY,θ(·) refers to the survival function of Y
parameterized by θ. Additional letters f, q denote different
density functions, e.g., fθ(·) = pU,θ(·), qϕ(·) = pZ,ϕ(·). A
proportional relationship over x is denoted as ∝x. Estimates
of functions or random variables are indicated with a caret
or dot symbol above, e.g., Ŝ(·) is an estimate of S(·). log
denotes natural logarithms. Bold symbol x denotes vectors.

2.1. Log-likelihood for Right-censored Data

Datasets: In a single-event right-censoring setting, we con-
sider a non-longitudinal survival dataset consisting of n
triplets {xi, yi, δi}ni=1. In particular, the event indicator
δi = 1 signifies that yi is the observed time of the event
of interest (time-to-event), while δi = 0 signifies that yi is
right-censored and the true time-to-event of subject i with
individual features/covariates xi exceeds the observed value.

In this work, we assume the dataset consists of i.i.d. ran-
dom variables {X,Y, I}, where observed survival time Y
is continuous. Notably, we consider (Y, I) as the surjective
transformation of two continuous latent variables under the
independent censoring assumption U ⊥⊥ C | X:

Y = min(U,C), I = 1(U ≤ C), (1)

where U is the uncensored time-to-event and C is the
censoring time. Here, we denote by θ, η the unknown pa-

rameters governing the distribution of U,C, respectively.

The goal of time-to-event modeling is to estimate the event-
time distribution parameterized by θ. Under such censoring
assumptions, the joint density1 of y, δ conditioned on x can
factorize as follows

pθ,η(y, δ|x) ∝θ pU,θ(y|x)δSU,θ(y|x)1−δ. (2)

Taking the log, the right-hand side of (2) gives rise to the
full-parametric objective L(θ), which is given by

L(θ) := δ log fθ(y|x) + (1− δ) logSθ(y|x), (3)

where fθ(y|x), Sθ(y|x) represents the density, survival
functions of U evaluated at observed time y, respectively.
While (3) is called the log-likelihood parameterized by θ
(Kalbfleisch & Prentice, 2002), we note that the right-hand
side of (2) is not a proper density, as it lacks a normalizing
constant with respect to η.
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Figure 1: Directed acyclic graphs of LVSM. The shaded
nodes x, y, δ are observed. (a) The dashed box shows a
general generative graph of U . (b) Specific Latent structures:
D-separation assumes X ⊥ U |Z; V-structure assumes a X-
independent latent Z. Best viewed in color.

2.2. Latent Variable Survival Model (LVSM)

LVSMs construct fθ(u|x) from (3) within a latent structure
using a continuous latent variable Z, enabling a more flexi-
ble and expressive characterization than traditional methods.
As shown in Fig.1, a general formulation is given by

fθ(u|x) =
∫
z∈Z

fθ(u|x, z)pθ(z|x)dz, (4)

where pθ(z|x) is the conditional prior of Z and fθ(u|x, z)
is often called the decoder or the emission distribution.

Such latent structure enhances the expressiveness of survival
models fθ, moving beyond the constraints of proportional
hazards assumptions. For example, an AFT model can be
seen as LVSM constrained by a linear latent, e.g., Z|X =
α+ β⊤X , in a D-separation structure illustrated in Fig 1b.

1Radon–Nikodym derivative of the distribution P (Y, I|X)
w.r.t. the product of the Lebesgue and counting measure.
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While LVSM is more flexible, the M-estimation of θ, i.e.,
θ̂mle = argmaxL(θ) is challenging due to its computa-
tional cost. Specifically, fθ in (3) may lack a closed-form
integral, rendering it even harder to approximate Sθ reliably.
As a solution, VI is one common techniques used in LVSM.

2.3. Vanilla Variational Inference for LVSM

Here, we review a naive framework of VI, referred to as
the vanilla VI, as seen in Ranganath et al. (2016); Xiu
et al. (2020); Nagpal et al. (2021b); Apellániz et al. (2024).
Specifically, a variational distribution qϕ(z|x, y) is pro-
posed to obtain unbiased estimators of fθ(y|x), Sθ(y|x).
By Jensen’s inequality, log fθ(y|x), logSθ(y|x) in (3) can
therefore be lower bounded by

log fθ(y|x) ≥ Eqϕ log fθ(y|x, z)− KL[qϕ||pθ(z|x)], (5)

logSθ(y|x) ≥ Eqϕ logSθ(y|x, z)− KL[qϕ||pθ(z|x)]. (6)

By substituting the right-hand sides of (5) and (6) in (3),
it yields a lower bound ELBO(θ, ϕ) on the log-likelihood
(Xiu et al., 2020; Nagpal et al., 2021a), which is given by

ELBO(θ, ϕ) := δEqϕ log fθ(y|x, z)
+ (1− δ)Eqϕ logSθ(y|x, z)− KL[qϕ||pθ(z|x)].

(7)

As a side note, Ranganath et al. (2016); Apellániz et al.
(2024) further decompose the KL[qϕ||pθ(z|x)] (KLD) with-
out assuming that pθ(z|x) is tractable, where intractable
log pθ(x) is moved into L(θ) by rearrangement.

KLD = log pθ(x)+KL[qϕ||p(z)]−Eqϕ log pθ(x|z). (8)

Consequently, (7) enables tractable and efficient computa-
tion of both the expectation and the KL divergence, improv-
ing scalability for large datasets. Often, optimizing (7) can
be done by amortized black-box VI algorithms (Ranganath
et al., 2014) via the reparameterization trick (Kingma &
Welling, 2014; Rezende et al., 2014).

2.4. Inference Optimality for Censored Data

The key distinction in optimizing (7), rather than directly
maximizing L(θ), lies in its pursuit of two distinct objec-
tives simultaneously: 1) the M-estimation of θ and 2) the
variational bound of L(θ) defined in (3). The second ob-
jective aims to minimize the inference gap (Cremer et al.,
2018), i.e., the bias, of L(θ):

B(θ, ϕ) := L(θ)− ELBO(θ, ϕ). (9)

Since the optimum (θ∗, ϕ∗) := argmaxELBO(θ, ϕ) bal-
ances the best of these two results, the optimality of VI is
crucial for the estimation accuracy of θ∗. Improper varia-
tional approximations introduce bias and degrade the relia-
bility of estimates of θ.

Existing approaches of variational conditional posterior fail
to extend to survival analysis. In a (semi-)supervised setting
(Kingma et al., 2014; Sohn et al., 2015), VI aims to approx-
imate the intractable posterior pθ(z|x, y) with qϕ(z|x, y).
However, these methods struggle to account for censoring
in the observed labels, i.e., the time-to-event U in our case.

On the other hand, existing methods of LVSMs often lack
rigorous inference optimality analysis, and their design can
appear counter-intuitive from a Bayesian perspective. For
example, Nagpal et al. (2021a) adopted a lazy strategy in
obtaining qϕ by manually setting qϕ equal to the tractable
pθ(z|x). Similarly, Apellániz et al. (2024) limited qϕ to
depend on X only, making it completely ignore the infor-
mation of y.

3. Theories
This section studies inference optimality in LVSMs, where
optimality of ϕ is defined as tightly bounding the log-
likelihood (3), parameterized by θ, assuming at least one
censored and one uncensored observation.

3.1. Problems in vanilla VI

3.1.1. AN EDGE CASE STUDY

As a preliminary step toward understanding the problems
of vanilla VI, we start by analyzing the equality (tightness)
conditions of log-likelihood components in (5) and (6) as
functions of x, u.

Lemma 3.1 (Equality conditions of (5) and (6)).
Given any parameter θ, the point-wise equality in (5) holds
for any {X = x, U = u}, if and only if one of the following
conditions holds:

(a) qϕ(z|x, u) = fθ(u, z|x)/fθ(u|x), where fθ(u, z|x)
:= fθ(u|x, z)pθ(x|z);

(b) ∃ map c1, fθ(u, z|x)/qϕ(z|x, u) = c1(x, u);
(c) KL[qϕ(z|x, u)||pθ(z|x, u)] = 0.

Likewise, (6) holds for any {X = x, U = u}, if and only if
the following equivalent conditions hold:

(a’) qϕ(z|x, u) = Sθ(u, z|x)/Sθ(u|x), where we abuse
Sθ(u, z|x) :=

∫∞
s=u

fθ(s,z|x)ds;
(b’) ∃ map c2, Sθ(u, z|x)/qϕ(z|x, u) = c2(x, u).

Proof: the conditions for (5) follow the standard VI ar-
gument, and the conditions for (6) are derived under the
additional assumption of Fubini’s Theorem.

Lemma 3.1 raises a natural question about the variational
inference optimality in survival analysis:

Given any θ and (x, u), what kind of qϕ(z|x, u) would
satisfy both tightness conditions ?
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In other words, we ask: is there an optimal variational
solution that have a zero inference gap of log-likelihood
given both data {x, y, 0} and {x, y, 1}?

For notation clarity, let Φ1(θ) denote the set of ϕ where (5)
holds equal, Φ2(θ) denote the one for (6). Thus, we are
interested in its union ΦU (θ) := Φ1(θ) ∩ Φ2(θ), which is
the ideal parameter set for optimal qϕ that eliminates the
bias of (7) and has a zero inference gap. On top of that, we
define ΘU := {θ | ΦU (θ) ̸= ∅} to denote the support set
of θ allowing optimal vanilla VI.

Perhaps surprisingly, Proposition 3.1 below highlights the
degradation of optimal vanilla VI solution, showing that
these conditions in Lemma 3.1 are fundamentally different.

Proposition 3.1 (Degradation for optimal qϕ(z|x, u)).
Assuming that 1) optimal VI is feasible: ΘU ̸= ∅, and 2)
fθ(u|x, z) is a location-scale density with location µθ(x, z)
and scale σ. Then, given any x, u,

(1) Latent non-identifiability: ∀θ ∈ ΘU , hazard function
hθ(u|z,x) is independent of z;

(2) Location degradation: ∀θ ∈ ΘU , location parameter
µθ(x, z) is independent of z;

(3) Lazy posterior: ∀θ ∈ ΘU , ∀ϕ ∈ ΦU (θ), the varia-
tional distribution KL[qϕ(z|x, u)∥pθ(z|x)] = 0;

(4) Surely posterior collapse: If z ⊥⊥ x, ∀θ ∈ ΘU , ϕ ∈
ΦU (θ), KL[qϕ(z|x, u)∥p(z)] = 0.

Proofs are deferred to Appendix B.1. In a nutshell, claims
(1) and (2) reveal the critical limitation that optimal VI
can only be achieved on extremely limited support of θ.
Specifically, claim (1) asserts that hθ(u|x, z), or equiv-
alently fθ(u|x, z), is independent of z, disregarding the
latent information from prior pθ(z|x). Remarkably, such
behavior of fθ(u|x, z), known as latent non-identifiability
(Wang et al., 2021), is first identified in the context of sur-
vival analysis. Under additional location-scale distribution
assumption, claim (2) asserts that its mean µθ(x, z) reduces
to an univariate function that is independent of z, restricting
the expressiveness of LVSM. This observation may help
explain why the aforementioned applications often adopt
a D-separated latent structure, where fθ(u|x, z) is fully
dependent on z, in an effort to mitigate or avoid such ex-
pressiveness issues.

Moreover, claims (3) and (4) demonstrate the negligibility
of the optimal solution qϕ. The reason is simple—since
both fθ(u|x, z) and Sθ(u|x, z) are independent of z, their
posterior equals nothing but their common prior. claim (3)
proves that the optimal qϕ collapses to the conditional prior
pθ(z|x), ignoring the information of u. To this extent, the
optimal qϕ becomes as lazy as the one proposed in Nagpal
et al. (2021a). It also explains the rationale in Apellániz et al.
(2024), where the proposed q(z|x) is not dependent on u.
Such negligibility can be more detrimental if the latent is V-

structured, e.g., the latent z represents an unseen individual-
independent treatment. Claim (4) states that optimal qϕ is
collapsed to the prior p(z), which leads to a notorious issue
called posterior collapse (Bowman et al., 2016; Lucas et al.,
2019).

3.1.2. ON CENSORING ASSUMPTIONS

We next extend the optimality analysis by considering when
qϕ(z|x, u) must simultaneously satisfy both inequalities in
(5) and (6). As previously discussed, this situation arises
when both data points {x, y, 0} and {x, y, 1} are present in
the datasets. In the infinite data limit, it becomes essential
to examine the underlying sampling space, which defines
the supports of (5) and (6). For clarity, we denote the event
space DE and the censored space DC as follows,

DE := {(x, y) | (x, y, 1) ∈ X × Y × I},
DC := {(x, y) | (x, y, 0) ∈ X × Y × I}.

(10)

Remark 3.1 below delineates the conditions under which
the issues in Proposition 3.1 persist in the infinite data limit.

Remark 3.1. For any (x, y) ∈ DE ∩ DC , Proposition 3.1
is applicable to the optimal qϕ(z|x, y).

Specifically, if DE ∩ DC ̸= ∅, such issues of vanilla VI
are unavoidable. On the other hand, if DE ∩ DC = ∅,
it is theoretically possible for vanilla VI to achieve a zero
inference gap, satisfying the conditions of (5) on DE and
(6) on DC . In other words, the type of censoring and, more
importantly, its effect on the partition of the sample space
are crucial to the vanilla VI optimality.

Here, we note that the widely adopted non-informative
censoring assumption (Lagakos, 1979) lacks specificity on
vanilla VI optimality, since its influence on the partitioning
of the sample space is not explicitly characterized. For ex-
ample, under certain types of non-informative censoring,
such as Type-I censoring (Lawless, 2003), it is possible
that the event and censoring spaces become disjoint. That
said, evident in benchmark datasets (See Table 3), observa-
tional studies rarely have disjoint spaces; vanilla VI can be
suboptimal in these benchmark datasets.

3.2. Censor-dependent Variation Inference (CDVI)

Having identified the limitations of vanilla VI, we are now
ready to establish a less restrictive VI framework for LVSM.

3.2.1. OPTIMAL VI FOR JOINT DENSITY

First, we revisit the setup and establish the optimal varia-
tional distribution for the joint density in (2).

Theorem 3.2.1 (Point-wise optimal VI).
Given x, y, δ and parameter θ, qϕ(z|x, y, δ) is optimal if
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and only if for almost every z ∈ Z ,

qϕ∗(z|x, y, δ) = lim
vol(∆z)→0

Pθ,η(z ≤ Z ≤ z +∆z|x, y, δ)
vol(∆z)

.

Moreover, if DE = DC = X × U , the optimal qϕ∗ is
independent of parameters of the censoring distribution η ,
and for almost every z ∈ Z ,

(a) qϕ∗(z|x, y, 1) = qϕ∗
1
(z|x, u)|u=y , where ϕ∗

1 ∈ Φ1(θ).
(b) qϕ∗(z|x, y, 0) = qϕ∗

2
(z|x, u)|u=y , where ϕ∗

2 ∈ Φ2(θ).

The proof is deferred in Appendix B.2. Thm 3.2.1 states that
the optimal variational distribution qϕ for joint density (2) is
equal to the posterior density of P (Z|X,Y, δ). In particular,
if there is no overlap of sample spaces due to censoring, the
optimal qϕ becomes independent of η and thus becomes the
one for log-likelihood satisfying Lemma 3.1.

Thm 3.2.1 presents an alternative perspective on the source
of the previously identified limitation, attributing it to the
design qϕ in vanilla VI.
Remark 3.2 (Vanilla VI propose a marginal qϕ).
Assuming that there is no partition DE = DC = X × U ,
the marginalized qϕ∗(z|x, y) equals qϕ∗

i
(z|X = x, U = y)

for any i = 1, 2 if and only if P (δ = 2− i|Y = y) = 1.

Remark 3.2 states that the inability to obtain equality in both
(5) and (6) arises from defining qϕ as a marginal distribution,
whereas the true posterior it aims to approximate is a con-
ditional one. As illustrated in Fig.2, q(z|x, y) proposed by
vanilla VI is δ-marginalized and lacks the censor-dependent
structure. Consequently, the optimal solution of vanilla VI
would approximate the true posterior if and only if there is
no event or censoring data. From this point, further limita-
tions on qϕ described in Section 2.3, such as employing a
lazy strategy or making it independent of y, are irrational.

3.2.2. CENSOR-DEPENDENT ELBO

qϕ(z|x, y, δ) in Thm 3.2.1 is called the censor-dependent
due to the explicit dependency on the indicator δ. To derive
the corresponding ELBO, we now introduce an equivalent
parameterization.
Definition 3.2 (Alternative Parameterization of qϕ).
The censor-dependent variational distribution qϕ1,ϕ2

can be
parameterized as

qϕ1,ϕ2
(z|x, y, δ) := qϕ1

(z|x, y)δqϕ2
(z|x, y)1−δ. (11)

It is important to note that, under this parameterization, the
optimal ϕ1 and ϕ2 depend on the value of θ and are not
mutually independent. See Thm.3.2.2 for more discussion.
Consequently, in practice, either ϕ1 or ϕ2 is a partition of
network parameters, which are not trained separately on all
event or censored observations. This choice of parameteri-
zation improves clarity in the following formulations.

3 2 1 0 1 2 3
Z1

3

2

1

0

1

2

3

Z2

z (censors)

z (events)

z

z (censors)

z (events)

Vanilla VI: a constrained q(z x, y) shared across 
CDVI: a mixture of -dependent q(z x, y, )

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Tr
ue

 P
os

te
ri

or
 p

(z
x,

y)
 (

-m
ar

gi
na

liz
ed

)

Figure 2: Comparison on simulated datasets SD4 (see Table
2). The learned posterior is marginalized over censoring
status δ, conditioned on x = 1, y = 0. The closed-form true
posterior is given in Appendix C.2. Best viewed in Color.

Specifically, it defines the induced likelihood estimators :

f̂1(z) := fθ(y,z|x)/qϕ1
(z|x, y),

Ŝ1(z) := Sθ(y,z|x)/qϕ2
(z|x, y).

(12)

The subscript 1 is purposefully added to align the notation
in sampling variants defined in (14). Plugging in (12) in (3)
and taking expectation, we obtain the Censor-dependent
ELBO (ELBO-C):

ELBO-C := δ[Eqϕ1
log fθ(y|x, z)− KL[qϕ1

∥pθ(z|x)]]
+ (1− δ)[Eqϕ2

[logSθ(y|x, z)]− KL[qϕ2∥pθ(z|x)]].
(13)

Compared to vanilla ELBO (7), we demonstrate its suitabil-
ity for survival analysis below, along with how it addresses
the previously identified issues. Let ΦP (θ) = {(ϕ1, ϕ2) |
ϕ1 ∈ Φ1(θ), ϕ2 ∈ Φ2(θ)} denote the set of optimal param-
eters of CDVI.

Theorem 3.2.2 (Informal; CDVI optimality).
If ΦP (θ) ̸= ∅, ∀(ϕ1, ϕ2) ∈ ΦP (θ), qϕ1,ϕ2(z|x, y, 0) ∝z

hθ(y|x, z)qϕ1,ϕ2(z|x, y, 1) and qϕ1,ϕ2 do not have issues
in proposition 3.1 on a larger support of θ.

The complete formal version is included in Appendix A.2
and its proof can be found in Appendix B.3. In short, Thm
3.2.2 highlights that the censor-dependent structure in qϕ1,ϕ2

eliminates the problematic constraint ϕ1 = ϕ2 in vanilla VI.

To conclude, we have shown that the vanilla VI framework
described in Ranganath et al. (2016); Xiu et al. (2020); Nag-
pal et al. (2021a); Apellániz et al. (2024) is insufficient and
arguably inappropriate for LVSM. Without hindering the
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M-estimation of θ and the expressiveness of latent survival
models, we have shown the importance of the censoring
mechanism and have introduced the censor-dependent struc-
ture for optimal VI in LVSM.

4. Methods
In this section, we discuss the implementations of amor-
tized CDVI in VAE-based LVSMs, sharing insights into its
optimization and CDVI augmentation techniques.

4.1. Censor-dependent Conditional VAE

zixi

ui ciθ

ϕ

yi δi
i = 1, 2, ..., N

(a) Vanilla CVAE

zixi

ui ciθ

ϕ

yi δi
i = 1, 2, ..., N

(b) Censor-dependent CVAE

Figure 3: Implementations of Vanilla VI and CDVI.

First, we propose the Censor-dependent Conditional VAE
(CD-CVAE) that estimates parameters θ, ϕ as weights of
neural networks. As illustrated in Fig.3, our proposed CDVI
implementation uniquely incorporates both y and the event
indicator δ as input of the encoder.

Fig.4 illustrates the structure of the encoder and decoder.
Our proposed decoder adopts a novel latent V-structure and
employs both Gaussian and Gumbel-minimum (Gumbel,
1958) distribution families for ε, which can be interpreted
as an infinite LogNormal or Weibull mixture survival re-
gression on positive survival time. We note that the decoder
parameter θ is decomposed as {ζ, σ} in Fig.4b.

4.2. Training Strategy of Decoder Variance

Censored labels limit the flexibility of CD-CVAE’s training
procedure, restricting the use of advanced strategies avail-
able to standard CVAE models. As emphasized in Prop. 4.2,
a dual-step algorithm that updates σ separately, as seen in
Rybkin et al. (2021) and Liu & Wang (2025), is not applica-
ble, since σ cannot be estimated in closed form.

Proposition 4.2 (No closed form update of σ). Given
the dataset {xi, yi, δi}ni=1 and decoder mean ζ, encoder
parameters ϕ1,ϕ2, the optimum of σ by ∂ELBO-C(ϕ,ζ,σ)

∂σ = 0
has no closed-form solution. In particular, if ε follows a

y δx

ϕ

σq µq N

z

dense net

N (µq, diag(σq))

(a) The encoder

x zζ

µσ ε

u

µ+ σ × ε

µζ(x,z)

(b) The decoder

Figure 4: Generative graph of CD-CVAE.

standard normal distribution, we have

∂ELBO-C
∂σ

= Eq[
∑

i:δi=1

(
ỹ2i
σ

− 1

σ
) +

∑
i:δi=0

h(ỹi)
ỹi
σ
],

where ỹ = (y − µζ(x, z))/σ is the standardized y and h()
is standard normal hazard function.

The proof of Prop.4.2 is given in Appendix B.4.

4.3. Augmented CDVI and the Implementations

Next, we introduce two variants of our proposed model,
namely IS and DVI, incorporating established augmented VI
techniques. We formulate the corresponding log-likelihood
estimators so that the corresponding ELBO can be easily
obtained as forms of their expectations.

Definition 4.3.1 (The Importance Sampling Variant (IS)).
Following Definition 3.2, the unbiased Monte Carlo estima-
tors of likelihood fθ(y|x), Sθ(y|x) are defined as

f̂m :=
1

m

m∑
i=1

f̂1(zi), Ŝk :=
1

k

k∑
j=1

Ŝ1(zj), (14)

where zi and zj are independent samples from qϕ1,ϕ2 , as-
suming δ = 1, 0, respectively, and m and k denotes the
corresponding sample size.

Similarly, (14) defines a general L̂m,k := log(f̂δ
mŜ1−δ

k ) for
L(θ). Computing its expectation allows us to generalize
(13) to ELBO-C(m,k) and (9) to B(m, k) defined below.

For completeness, we establish 3 results about the properties
of L̂m,k, providing deeper insights into augmented CDVI
in both the finite-sample setting and the asymptotic regime
as m, k → ∞. See detailed proofs in Appendix B.5 to B.7

Theorem 4.3.1 (Monotonicity of Inference Gaps).
Given any θ, ϕ, for any m ∈ N+, k ∈ N+,
B(1, 1) ≥ B(m, k) := L(θ)− ELBO-Cm,k(θ, ϕ)

≥ max(B(m, k + 1), B(m+ 1, k))

≥ B(m+ 1, k + 1) ≥ lim
m′,k′→∞

B(m′, k′) = 0
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The dependency of B(m, k) on model parameters θ, ϕ is
omitted; B(1, 1) is equal to the gap of (13) in Thm 4.3.1.

Thm 4.3.1 generalizes the well-known property of Burda
et al. (2015) to labeled datasets with censoring. We prove
that the generalized inference gap B(m, k) is monotonic
in both size m and k. In other words, ELBO-Cm,k yields
a smaller inference gap for any m > 1, k > 1 given a
fixed θ, ϕ1, ϕ2, which vanishes as m, k → ∞. That said,
Thm 4.3.1 holds for any choice of ϕ1, ϕ2, including the case
ϕ1 = ϕ2 imposed by vanilla VI, as in Xiu et al. (2020).

Theorem 4.3.2 (Self-normalized Importance Sampling).
Let Q1(m), Q2(k) be the augmented variational distribu-
tion, and P1(m), P2(k) be the augmented posterior distri-
bution, defined as follows:

J1(m) = f̂1
∏m

i=1 qϕ1
(zi|x, y), Q1(m) = J1(m)/f̂m

J2(k) = Ŝ1

∏k
j=1 qϕ2(zj |x, y), Q2(k) = J2(k)/Ŝk

P1(m) ∝z1:m J1(m), P2(k) ∝z1:k J2(m).
(15)

Then, given any x, y, δ,

L(θ)− EQ1,Q2 [L̂m,k]

= KL[Q1(m)||P1(m)]δKL[Q2(k)||P2(k)]
(1−δ).

(16)

Thm 4.3.2 extended and corrected the results from Domke
& Sheldon (2018), formulating the inference gaps of aug-
mented CDVI as the KL divergence. This result generalizes
the established connection of self-normalized importance
sampling (SNIS) to CDVI. For example, f̂1/f̂m acts as
a form of self-normalization. However, we note that it
does not enable a direct comparison between B(m, k) and
B(1, 1), since the expectation is taken over Q1 and Q2.
Detailed discussion can be found in Appendix B.6.

Theorem 4.3.3 (Informal; Consistency of estimators).
Under some moment assumptions, for m → ∞, k → ∞,
the variance of L̂m,k goes to zero, and thus L̂m,k is a biased
yet consistent estimator of L(θ), i.e., for any ξ > 0,

lim
m,k→∞

Pz(|L̂m,k − L(θ)| > ξ) = 0.

A formal version is provided in Appendix A.3. Despite that
Thm 4.3.1 has shown a vanishing bias of L̂m,k, Thm 4.3.3
quantifies the asymptotic behavior of its variance, thereby
establishing its consistency. This result is extended from
Nowozin (2018), enhancing CDVI under ideal assumptions
with theoretical guarantees. Thm 4.3.3 also enables the
following trade-off for a smaller asymptotic bias.

Definition 4.3.2 (The Delta Method Variant (DVI)).
Following Definition 3.2, A biased variant of Definition 4.3.1
is defined as

ḟm := exp{α̂2/(2mf̂2
m)}f̂m, (17)

Ṡk := exp{β̂2/(2kŜ
2
k)}Ŝk, (18)

where we define α̂2 and β̂2 as the corresponding sample
variances of {f̂1(zi)}mi=1 and {Ŝ1(zi)}ki=1, e.g., α̂2 :=

1
m−1

∑m
i=1(f̂1(zi)− f̂m)2.

Inspired from Nowozin (2018), we prove in Appendix A.4
that the Delta method (Teh et al., 2006) variant L̇m,k enjoys
less asymptotic bias of L(θ) compared to (14), if m, k are
sufficiently large. For practical implementation, the Log-
SumExp (Log-Softmax) trick used to compute the bias term
stably is detailed in Appendix C.5.

5. Experiments
The additional details of experiments are in Appendix C.

5.1. Evaluation Metrics

Concordance index (Harrell et al., 1982; Uno et al., 2011)
measures the effectiveness of a discriminative model in rank-
ing survival times correctly. Specifically, it assesses whether
the model assigns a shorter predicted time to the event, or
more generally, a lower survival probability Ŝ(t|xi) at test
time t, for a subject with features xi who experienced the
event at time yi, compared to a subject with features xj who
survived longer. Due to censoring, only comparable pairs
yi ≤ yj , δi = 1 are considered. Formally, the C-index is
defined as:

C(t) = P (Ŝ(t|xi) ≤ Ŝ(t|xj) | yi ≤ yj , δi = 1).

We evaluate the trained models by calculating the average
C-index over ten quantiles, ranging from 10th to 100th

quantile in increments of 10, of event test times.

Brier score (Brier, 1950; Graf et al., 1999) is a squared pre-
diction error reweighted by Inverse Probability of Censoring
Weighting (IPCW), designed to assess both calibration and
discrimination (Haider et al., 2020).

Brs(t) =
1

n

n∑
i=1

[1(yi ≤ t, δi = 1)
(0− Ŝ(t|xi))

2

ŜC(yi)

+ 1(yi > t)
(1− Ŝ(t|xi))

2

ŜC(t)
],

where ŜC(·) is the estimated survival distribution of the
censoring random variable C. We evaluate the Brier score
at the 75th quantile of event time on the test dataset.

Time-dependent C-index (Antolini et al., 2005) considers a
more limited yet practical set of comparable pairs compared
to the conventional C-index, where selected subjects who
developed the event earlier can’t survive longer than the
event horizon t. Formally, it is defined as

Ctd(t) = P (Ŝ(t|xi) ≤ Ŝ(t|xj)|yi ≤ yj , δi = 1, yi ≤ t).

7
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Following conventions, we set the event horizon at the 75th
quantile of the event time, and we compute it using IPCW
and truncations, aiming to obtain an unbiased estimate of
ui < uj by giving more weight to test samples with similar
features that are not censored.

5.2. Inference Optimality on Simulated Datasets

Table 1: Summary table for simulated datasets (SD1-SD6).
Sample size for each dataset is 10, 000. Event/Censored
time refers to sample statistics of Y . The generated samples
of U is independently sampled across each datasets. The
starting point of Gibbs sampling is fixed at z = (0, 0).

Summary SD1 SD2 SD3 SD4 SD5 SD6
Censor rate 0% 5% 20% 30% 50% 100%

Population mean µC – 16.00 8.50 5.50 0.00 16.00
Censored time mean – 2.99 -0.11 -1.51 -4.49 16.18

Event time median 1.43 1.29 0.41 -0.30 -3.13 –
Event time min -12.64 -15.85 -22.47 -22.59 -24.28 –
Event time max 21.27 21.60 17.49 18.45 14.29 –

Firstly, we investigate whether amortized CDVI can prac-
tically reduce the inference gaps compared to the vanilla
VI. Table 1 provides details of 6 simulated datasets. In the
simulation process, we use Gibbs sampling, where the true
posterior is known and predefined. Both P (Z|X,Y, I = 1)
and P (Z|X,Y, I = 0) are set to normal distributions, which
enable the closed-form computation of the inference gaps.
We vary the mean of censoring time µC to generate datasets
with different censoring rates, in which C follows an inde-
pendent normal distribution. The values of the censoring
rate are rounded, with an error of 1%.

Table 2: Variational inferences on simulated datasets. E-
KL/C-KL: the average KL divergence between the encoder
and true posterior of all events/censoring observations in the
dataset. Lower is better. We set m = k = 10.

Data CD-CVAE CVAE CD-CVAE+IS CD-CVAE+DVI

E-KL C-KL E-KL C-KL E-KL C-KL E-KL C-KL
SD1 1.65 – 1.65 – 1.53 – 1.56 –
SD2 1.66 1.93 1.75 2.70 1.64 2.17 1.66 2.55
SD3 2.38 3.13 2.79 3.18 2.23 3.21 2.17 3.13
SD4 2.88 3.89 3.45 4.04 2.64 4.09 2.29 3.60
SD5 4.45 5.55 5.42 5.86 4.11 5.56 3.89 5.51
SD6 – .0871 – .0871 – .0862 – .0848

As shown in Table 2, our proposed CD-CVAE significantly
reduces the average KL divergence between the learned
posterior and the true posterior in both event and censoring
subsets, resulting in a smaller inference gap, which is a
weighted sum of these two metrics. Leveraging VI improve-
ment techniques (IS, DVI), CD-CVAE further reduces the
inference gap across various settings of censoring. In Fig.2,
we plot the marginalized learned qϕ from CVAE and CD-
CVAE against the true posterior on SD4. For completeness,
time-to-event modeling performance on SD3-SD5 datasets
is provided in Appendix D.1.

In extreme censoring scenarios with Y manually set to U
or C, CD-CVAE performs identically to CVAE, consistent
with Remark 3.2. Interestingly, all models perform con-
siderably better in the all-event scenario compared to the
all-censoring scenario, and neither IS nor DVI yields sig-
nificant performance improvements. Although learning a
data-independent distribution of C should be simpler, such
a large discrepancy between these two extreme cases may
imply that the amortization effect (Cremer et al., 2018) can
dominate the inference gap. This observation highlights
potential opportunities for practical inference improvements
of amortized CDVI.

During the experiment, we also found that CD-CVAE mod-
els could converge to various local optima with nearly the
same inference gap, while having different ratios of E-KL
and C-KL. This observation implies a unique trade-off in
the amortization CDVI, i.e., the censor/event KL trade-off.

5.3. Time-to-event Modeling on Benchmark Datasets

Table 3: Summary table for benchmark clinical datasets.
ȳ|δ refers to the average event/censored survival times after
applying a log transformation.

Dataset Size Censored Dim(X) ȳ|δ = 1 ȳ|δ = 0

SUPPORT 9104 2904 14 6.17 6.97
FLCHAIN 6524 4662 8 8.20 8.37

NWTCO 4028 3457 6 7.73 7.86
METABRIC 1980 854 8 7.99 8.14

WHAS 1638 948 5 6.95 7.17
GBSG 1546 965 7 3.80 4.18

PBC 418 257 17 4.16 4.32

Lastly, we present a comprehensive evaluation of time-to-
event modeling performance, comparing CD-CVAE with
state-of-the-art models. Table 3 summarizes the real-world
datasets. These models include Cox-PH (Cox, 1972), Deep-
Surv (Katzman et al., 2018), Deep Survival Machine (DSM)
(Nagpal et al., 2021a), Random Survival Forest (RSF) (Ish-
waran et al., 2008), and Deep Cox Mixture (DCM) (Nagpal
et al., 2021b). All models were implemented using the
Python package by Nagpal et al. (2022), and our implemen-
tation follows its API for ease of reproducibility.

Table 4 and 5 highlight CD-CVAE’s performance on best
C, Ctd, and the Brier score metrics. See Appendix D.2 for
full evaluations of the variant models with more baselines
(Apellániz et al., 2024) and averaged metrics.

While the variants of CD-CVAE do not exhibit substantial
improvements in time-to-event modeling performance, our
proposed models generally outperform most of the state-
of-the-art models. RSF and DCM are notably competi-
tive in computation efficiency and hyper-parameter tuning.
Nonetheless, Cox-PH with a l2 regularization performs com-
parably on many benchmark datasets.
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Table 4: Comparisons of CD-CVAE on benchmark datasets. The best model is selected by cross-validated C-index. The
experiments are repeated five times using the same random seeds, with a train-validation-test split ratio of 0.6, 0.2, 0.2.
The highest metrics on the test dataset is reported. Higher is better: random guessing has a value of 0.5 and 1 means all
comparable pairs are perfected ranked.

Model SUPPORT FLCHAIN NWTCO METABRIC WHAS GBSG PBC
C Ctd C Ctd C Ctd C Ctd C Ctd C Ctd C Ctd

CoxPH 0.666 0.668 0.789 0.789 0.689 0.703 0.641 0.644 0.781 0.782 0.682 0.689 0.848 0.848
DeepSurv 0.648 0.649 0.780 0.805 0.674 0.741 0.664 0.676 0.786 0.762 0.609 0.618 0.855 0.852

DSM 0.666 0.674 0.801 0.802 0.706 0.694 0.666 0.669 0.811 0.805 0.615 0.663 0.862 0.869
RSF 0.683 0.655 0.768 0.793 0.677 0.726 0.686 0.684 0.808 0.811 0.706 0.731 0.857 0.867

DCM 0.682 0.676 0.788 0.803 0.680 0.736 0.689 0.691 0.803 0.811 0.625 0.637 0.866 0.865
CD-CVAE 0.685 0.678 0.811 0.804 0.708 0.751 0.681 0.675 0.868 0.812 0.706 0.702 0.863 0.865

Table 5: Comparisons of CD-CVAE in Brier Scores. The
best model is selected based on the cross-validated Brier
score. Experiments are repeated five times with the same
random seeds, reporting the lowest test metric. Lower is
better.

Model SUPPORT FLCHAIN NWTCO MTBC WHAS GBSG PBC
CoxPH 0.216 0.121 0.097 0.214 0.174 0.222 0.125

DeepSurv 0.212 0.115 0.078 0.230 0.198 0.242 0.131
DSM 0.235 0.113 0.078 0.223 0.175 0.242 0.128
RSF 0.224 0.120 0.077 0.218 0.162 0.217 0.119

DCM 0.217 0.113 0.075 0.216 0.171 0.229 0.136
CD-CVAE 0.218 0.110 0.075 0.203 0.168 0.218 0.124

6. Related Work
Deep Learning in Survival analysis. Machine learning
and deep learning techniques for survival analysis are not
limited to LVSM. Faraggi & Simon (1995) introduced the
first neural-network-based Cox regression model, allowing
nonlinear relationships between covariates. A modern yet
similar one is DeepSurv (Katzman et al., 2018). Deep Cox
Mixture (Nagpal et al., 2021b) extends this idea to finite mix-
ture models, but all these Coxian models rely on the propor-
tional hazards (PH) assumption, which results in separated
survival functions (Antolini et al., 2005) and may be unre-
alistic. A famous nonparametric tree ensemble approach,
Random Survival Forest (Ishwaran et al., 2008), builds mul-
tiple decision trees to model the cumulative hazard function,
leveraging the Nelson-Aalen estimator (Aalen, 1978). That
said, hazard function estimation for discrete time-to-event
can also be framed as a series of binary classification prob-
lems, which can be solved by black-box methods via various
network architectures. DeepHit (Lee et al., 2018) uses a sim-
ple shared network to model competing risks, while RNN-
(Giunchiglia et al., 2018) and Transformer-based (Hu et al.,
2021) structures capture sequential relationships in time-
specific predictions. These methods often require additional
techniques to mitigate overfitting.

Inference Optimality without Censoring. Improving VI
in latent variable models has been extensively studied for
both labeled and unlabeled datasets. We summarize existing
strategies for improving the estimate θ∗ into three broad

categories: (1) expanding the set of θ values for which opti-
mal VI is attainable, i.e., increasing the support of θ where
minϕ B(θ, ϕ) = 0, for example by using more expressive
variational families (Ranganath et al., 2014; Kingma et al.,
2016; Cremer et al., 2018); (2) modifying the variational
bound to reduce minϕ B(θ, ϕ) for general θ, for example by
going beyond KL-divergence and using the χ2-, α-, or more
generally, f -divergence (Dieng et al., 2017; Li & Turner,
2016; Wan et al., 2020). (3) adopting training techniques
to improve latent disentanglement (Higgins et al., 2017),
improve numeric stability (Rybkin et al., 2021), to avoid
posterior collapse (Fu et al., 2019), or to better incorporate
label information (Joy et al., 2021). These works require
nontrivial adaptation for censoring in survival analysis. As
contributions, our criticism on vanilla VI, the extensions
of IS and DVI on CDVI, and the discussion on decoder
variance fall under each type, respectively.

Variational Inference for Other Tasks. Variational meth-
ods in survival analysis are not limited to time-to-event
modeling. One unsupervised task is identifying potential
sub-populations, providing valuable insights for treatment
recommendations and clinical decision-making (Chapfuwa
et al., 2020; Franco et al., 2021; Manduchi et al., 2022; Cui
et al., 2024; Jiang et al., 2024). These clustering models, if
used as an intermediate step of time-to-event modeling, can
be seen as a restricted LVSM, often in a D-separation latent
structure. While a restrictive approach can help prevent over-
fitting, our criticism remains valid: the objective of VI in
unsupervised tasks can be misaligned with M-estimation of
the time-to-event distribution, undermining the performance
of survival time prediction.

7. Conclusion
To the best of our knowledge, this paper has represented the
first comprehensive study of variational methods for latent
variable survival models. It delivers an in-depth analysis of
variational inference optimality and offers valuable practical
insights. The superiority of our proposed models validates
a pioneering paradigm.
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Li, Y. and Turner, R. E. Rényi divergence variational infer-
ence. Advances in neural information processing systems,
29, 2016.

Liu, C. and Wang, X. Doubly robust conditional VAE via
decoder calibration: An implicit KL annealing approach.
Transactions on Machine Learning Research, 2025. ISSN
2835-8856.

Lucas, J., Tucker, G., Grosse, R., and Norouzi, M. Under-
standing posterior collapse in generative latent variable
models. 2019.
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A. Facts and Formal Theorems
A.1. Facts of Probability Theory

Why do we claim ”CD-CVAE is interpretable as an infinite LogNormal or Weibull mixture survival regression on positive
survival time”? But the choice of ε that determines the location-scale family of pθ(u|x, z) is implemented as a Normal or
Gumbel-minimum distribution.

Answer: A Weibull (Lognormal) AFT of positive valued survival time T is a log-linear regression assuming a Gumbel-min
(Gaussian) noise (Miller, 1976). In our setting, continuous time-to-event U is considered to be real-valued after the
log-transform of T .

Table 6: Connection between AFT and the degraded LVSM

choice of ε standarization pθ(y|x, z) linear degradation degraded model w.r.t T
standard Gaussian

ỹ = y−µθ(x,z)
σ

exp(− 1
2 ỹ

2)/(
√
2πσ)

µθ(x, z) = θ⊤x
Log-normal AFT

standard Gumbel minimum exp{ỹ − exp(ỹ)}/σ Weibull AFT

A.2. Formal Theorem 3.2.2

We have the following Notations:

1) The product of sets ΦP (θ) = {(ϕ1, ϕ2) | ϕ1 ∈ Φ1(θ), ϕ2 ∈ Φ2(θ)} denotes the set of optimal parameters of qϕ1,ϕ2
, and

ΘP = {θ | ΦP (θ) ̸= ∅} denotes its support.

2) ΦEU (θ) = {(ϕ, ϕ)|ϕ ∈ Φ1(θ, σ)∩Φ2(θ, σ)} denotes the embedding set of ΦU (θ). The support ΘEU = {θ | ΦEU (θ) ̸=
∅}. For any θ, ΦEU (θ) ⊆ ΦP (θ). Optimal qϕ1,ϕ2

is degenerated to the optimal qϕ in Vanilla VI if (ϕ1, ϕ2) ∈ ΦEU (θ).

Theorem 3.2.2 (Inference optimality of CDVI).
Following the assumptions. If ΘP ̸= ∅, then

(5) Constraint on optimal ϕ1 and ϕ2. ∀(ϕ1, ϕ2) ∈ ΦP (θ), qϕ1
(z|x, y) ∝z hθ(y|x, z)qϕ2

(z|x, y).

If ΘP \ΘEU ̸= ∅, we have the following results.

(6) Strict better optimal ϕ. ∀θ ∈ ΘP \ΘEU , we have ∅ = ΦEU (θ) ⊂ ΦP (θ), and more importantly, ∀(ϕ1, ϕ2), s.t. ϕ1 =
ϕ2,∃(ϕ∗

1, ϕ
∗
2) ∈ ΦP (θ),

L(θ) = ELBO-C(θ, ϕ∗
1, ϕ

∗
2) > ELBO(θ, ϕ1, ϕ2).

(7) Non-degraded location parameter. If U |X,Z is a location-scale distribution parameterized by the location parameter
µθ(x, z) and the deterministic scale parameter σ, then for all θ ∈ ΘP \ΘEU , there exists z1 ̸= z2, µθ(x, z1) ̸=
µθ(x, z2) for almost all x

(8) Lazy posterior free. ∀θ ∈ ΘP \ΘEU ,∀(ϕ1, ϕ2) ∈ ΦP (θ), such that

δKL[qϕ1
∥ pθ(z|x)] + (1− δ)KL[qϕ2

∥ pθ(z|x)] > 0.

If z ⊥⊥ x is assumed, i.e., pθ(z|x) = p(z), optimal censor-dependent VI is posterior collapse free.

Theorem 3.2.2 demonstrates how the CDVI resolves the issues of vanilla VI. Claim (5) states that the optimal qϕ1,ϕ2 captures
the constraints on the parameters ϕ1 and ϕ2, preventing it from being reduced to the naive qϕ. As we show in Remark
3.2, the assumption of ϕ1 = ϕ2 is the root cause of latent non-identifiability in Proposition 3.1. Claim (6) shows that the
optimal qϕ1,ϕ2

enjoys expanded support ΘP , enabling our qϕ1,ϕ2
to achieve VI optimality at specific θ values where vanilla

VI would fail. To be specific, Claim (7) demonstrates that θ maintains the complexity and expressive power of the latent
variable model fθ(y|x). Consequently, Claim (8) shows that the optimal qϕ1 or qϕ2 will not remain lazy or suffer from the
posterior collapse issue.

A.3. Formal Theorem 4.3.3

Following the definition 4.3.2, let αi := E[(f̂m − f)i], and βi := E[(Ŝk − S)i] be the ith central moments of unbiased
estimators f̂m and Ŝk. Obviously, α1 = 0, β1 = 0.
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Lemma 1 (Asymptotic bias of log f̂m, and log Ŝk). If f and αi is finite for all i ≥ 1, then for m → ∞,

Ez[log f̂m] = log f − 1

m

α2

2f2
+

1

m2
(
α3

3f3
− 3α2

4f4
) + o(m−2). (19)

If S and βi are finite for all i ≥ 1, then for k → ∞,

Ez[log Ŝk] = logS − 1

k

β2

2S2
+

1

k2
(
β3

3S3
− 3β2

4S4
) + o(k−2). (20)

The expectation is taken over z1:m, or z1:k for any given x, y, θ, ϕ1, ϕ2.

Lemma 1 demonstrates the asymptotic bias of importance sampling induced loglikelihood estimators log f̂m and log Ŝk,
which has an order of magnitude of m−1 or k−1.
Lemma 2 (Asymptotic variance of log f̂m, and log Ŝk). If f and αi are finite for all i ≥ 1, then for m → ∞,

V[log f̂m] =
1

m

α2

f2
− 1

m2
(
α3

f3
− 5α2

f4
) + o(m−2). (21)

Similarly, if S and βi are finite for all i ≥ 1, then for k → ∞,

V[log Ŝk] =
1

k

β2

S2
− 1

k2
(
β3

S3
− 5β2

S4
) + o(k−2). (22)

Recall that L̂m,k := δ log f̂m + (1− δ) log Ŝk, we use lemma 1 & 2 to get the following.

Lemma 3 (Asymptotic bias of L̂m,k). Under the assumption of Lemma 1, for m, k → ∞,

L(θ)−ELBO-Cm,k = δ[
1

m

α2

2f2
− 1

m2
(
α3

3f3
− 3α2

4f4
)]

+ (1− δ)[
1

k

β2

2S2
− 1

k2
(
β3

3S3
− 3β2

4S4
)] + o(m−2) + o(k−2).

(23)

Lemma 4 (Asymptotic variance of L̂m,k). Under the assumption of Lemma 1, for m, k → ∞,

Ez[(L̂m,k − L(θ))2] = δ[
1

m

α2

f2
− 1

m2
(
α3

f3
− 20α2 + α2

2

4f4
)] + (1− δ)[

1

k

β2

S2
− 1

k2
(
β3

S3
− 20β2 + β2

2

4S4
)] + o(m−2) + o(k−2).

(24)
Theorem 4.3.3 (Formal; Consistency of L̂m,k).
Under the assumption in Lemma 1, for m → ∞, k → ∞, for all ξ > 0,

lim
m,k→∞

P (|L̂m,k − L(θ)| > ξ) = 0.

The proof is almost a direct result of Lemma 3 and Lemma 4.

A.4. Theorem for Delta method CDVI

We prove that the Delta method CDVI yields a smaller asymptotic inference gap/bias, as we mentioned after Definition
4.3.2. Following Eq.17 and Eq.18, let L̇m,k := δ log ḟm + (1− δ) log Ṡk.
Theorem A.4 (less asymptotic bias of delta method CDVI).
Under the assumption in Lemma 1, for m → ∞, k → ∞,

E[
α̂2

2m(f̂m)
] =

α2

2mf2
− 1

m2
(
α3

f3
− 3α2

2

2f4
) + o(m−2), E[

β̂2

2k(Ŝk)
] =

β2

2kS2
− 1

k2
(
β3

S3
− 3β2

2

2S4
) + o(k−2),

and
L(θ)− Ez[log L̇m,k] = δ[

1

m2
(
2α3

3f3
− 3α2

4f4
)] + (1− δ)[

1

k2
(
2β3

3S3
− 3β2

4S4
)] + o(m−2) + o(k−2).

Compared with Lemma 3, the asymptotic inference gap/bias is reduced by one order of magnitude of m and k.
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B. Proofs
B.1. Proof for Proposition 3.1

Proof of (1): From Lemma 3.1 and assumption 1), for any optimal parameter ϕ ∈ ΦU , we have

qϕ(z|x, u) = fθ(u|x, z)pθ(z|x)/fθ(u|x) = Sθ(u|x, z)pθ(z|x)/Sθ(u|x),

which means for any z,

hθ(u|x, z) = fθ(u|x, z)/Sθ(u|x, z) = fθ(u|x)/Sθ(u|x) = hθ(u|x).

Proof of (2): Since U is continuous, h() in the above equation can be replaced by f ,F ,S,H due to the 1-1 relationship, e.g.
h(u) = −∂ logS(u)

u , leading to fθ(u|x, z) = fθ(u|x).

Since fθ(u|x, z)
d
= µθ(x, z) + σ × ε, we claim that µ(x, z) is independent of the value of z

Proof of (3): Also based on fθ(u|x, z) = fθ(u|x) for any z,

qϕ(z|x, u) = fθ(u|x, z)pθ(z|x)/fθ(u|x) = pθ(z|x).

Proof of (4): If a V-structure latent graph is assumed, i.e., z ⊥⊥ x, then the prior pθ(z|x) = p(z).

Now, (4) can be drawn immediately from the conclusion of (3).

B.2. Proof for Theorem 3.2.1

In the section 2.1, we mentioned that the partial likelihood fθ(y|x)δSθ(y|x)1−δ, although it contains all the information
of θ, is not a proper density. Here we further emphasize that the appropriate variational distribution cannot be discussed
separately on the subspace DE and DC targeting distribution function fθ(y|x) and Sθ(y|x) in the vanilla VI framework
(Xiu et al., 2020; Nagpal et al., 2021a), because it leads to ignoring the information of δ.

Proof: Abusing the ”density” notation p(y, δ, z|x) and p(y, δ|x) for the Radon-Nikodym derivative of P (Y, I, Z|X) and
P (Y, I|X), the general variational bound defined in Domke & Sheldon (2018) is

log p(y, δ|x) = Ez[logR]︸ ︷︷ ︸
bound

+Ez[log
p(y, δ|x)

R
]︸ ︷︷ ︸

looseness

.

For a simple non-augmented variational bound enabling Jensen’s inequality, R should be

R(z) =
p(y, δ, z|x)

qϕ(z)
.

A tight ”looseness” requires the KL divergence being zero, leading to optimal qϕ∗(z) := p(z|x, y, δ), which is the density
of P (Z|X,Y, I) parameterized by both θ from U and η from C.

Now we prove that both p(z|x, y, δ = 1) and p(z|y, δ = 0, x) will be independent of C and free from η. Assuming that 1)
continuous U |X,C|X have the same support U , 2) conditional independent censoring, 3) independence between C and Z
given X , 4) Fubini’s theorem is applicable, we have

p(z|x, y, δ = 1) =
p(y, δ = 1, z|x)
p(y, δ = 1|x)

=
pU,Z(y, z|x)P (C ≥ y|x)1(y ∈ U)
pU (y|x)P (C ≥ y|x)1(y ∈ U)

=
pU (y|x, z)p(z|x)

pU (y|x)
1(y ∈ U).

Reorganizing terms, we get qϕ∗(z|x, y, δ = 1) = p(z|x, y, δ = 1) = fθ(y, z|x)/fθ(y|x). We use the similar proof for
qϕ(z|x, y, δ = 0). We note that the assumption of the same support is inadmissible, and we can also express q∗ϕ as follows

qϕ∗(z|x, y, δ) = qϕ∗(z|x, y, δ = 1)δqϕ∗(z|x, y, δ = 0)1−δ,

which leads to the notation of Definition 3.2.

Proof for Remark 3.2 follows naturally. The marginalized qϕ∗(z|x, y) = p(z|x, y, δ = 1) ∗ P (δ = 1|x, y) + p(z|x, y, δ =
0) ∗ P (δ = 0|x, y), which will not equal p(z|x, y, δ = 1) or p(z|x, y, δ = 0) unless one of P (δ|x, y) is zero.
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B.3. Proof for Formal Theorem 3.2.2

Proof of (5): Using the above conclusion of qϕ∗ ,

hθ(y|x, z) :=
fθ(y|x, z)
Sθ(y|x, z)

=
qϕ∗(z|x, y, δ = 1) ∗ fθ(y|x)/p(z|x)
qϕ∗(z|x, y, δ = 0) ∗ Sθ(y|x)/p(z|x)

.

Denoting qϕ∗(z|x, y, δ = 1) by qϕ∗
1
(z|x, y) and reorganizing the terms, we have

qϕ∗
1
(z|x, y) = 1

hθ(y|x)
qϕ∗

2
(z|x, y)hθ(y|x, z) ∝z qϕ∗

2
(z|x, y)hθ(y|x, z).

Proof of (6): The proof is trivial, following the definition of optimal qϕ∗(z|x, y, δ).

Proof of (7): We have already proved in (1) that if θ ∈ Θp then fθ(u|x, z) = fθ(u|x) and also in (2) that if fθ(u|x, z) is a
location-scale family, it leads to µθ(x, z) independent of z. We now prove the reverse is also true: if µθ(x, z) is independent
of z, and f(u|x, z) the density of location-scale family, it leads to fθ(u|x, z) = fθ(u|x);Sθ(u|x, z) = Sθ(u|x), thus we
have

qϕ∗(z|x, y, δ = 0) = qϕ∗(z|x, y, δ = 1) = pθ(z|x).

Equivalently, following the notation, we have ϕ∗
1 = ϕ∗

2. Thus, ϕ∗
1, ϕ

∗
2 ∈ ΦEU , meaning that θ ∈ ΘEU .

Then we complete the proof by contrapositive.

Proof of (8): By non-negativity of KL divergence, the KL divergence is zero if and only if the above equation in (7) holds
true. Thus, it is a direct result of (7). If V-structure is assumed, prior pθ(z|x) is replaced by p(z).

B.4. Proof for Proposition 4.2

Here, we prove that if ε is standard normal or standard Gumbel-minimum distribution, there is no closed-form solution
of ∂ELBO-C/∂σ given the parameter of ζ, ϕ1, ϕ2. For notation clarity, we decompose θ = (ζ, σ) where µζ(x, z) is the
location parameter of the decoder, and σ is its scale parameter.

Proof: Notice that KL divergence terms in ELBO-C do not involve σ, and the expectation is taken over qϕ1,ϕ2 . Given dataset
{xi, yi, δi}ni=1

∂ELBO-C
∂σ

= E[
∑

i:δi=1

∂ log fθ(yi|xi, z)

∂σ
+
∑

i:δi=0

∂ logSθ(yi|xi, z)

∂σ
].

Using chain rule and the density in Table 6, we have the following result:

(1) If the decoder is normal, these two terms can be expressed as

∂ log fθ(yi|xi, z)

∂σ
= − 1

σ
+

ỹi
2

σ
,
∂ logSθ(yi|xi, z)

∂σ
=

∂ log 1− Φ(ỹi)

∂ỹi
∗ ∂ỹi
∂σ

= λ(ỹi) ∗
ỹi
σ
,

where λ(s) is the hazard function of the standard normal distribution that 1) has no closed-form expression, 2) is convex, 3)
can be bounded. One naive bound is λ(s) > s; a tighter bound λ(s) ≥ 3

4s +
√
s2+8
4 for s > 0 is provided by Baricz (2008)

via Mill’s ratio Mitrinovic (1970)

(2) If the decoder is Gumbel-minimum (S(s) = exp(− exp(s))), these two terms can be expressed as

∂ log fθ(yi|xi, z)

∂σ
=

∂(ỹi − exp(ỹi))

∂ỹi

∂ỹi
∂σ

− 1

σ
= − ỹi + 1

σ
+exp(ỹi)

ỹi
σ
,
∂ logSθ(yi|xi, z)

∂σ
=

∂ − exp(ỹi)

∂ỹi
∗∂ỹi
∂σ

= exp(ỹi)
ỹi
σ
.

Neither of these expressions leads to a closed form solution of σ when ∂ELBO-C
∂σ = 0.

16



Censor Dependent Variational Inference

B.5. Proof for Theorem ??

The proof mainly follows (Burda et al., 2015): we are going to prove the monotonicity of ELBO-Cm,k, instead of B(m, k).

Proof: Given m, k, let m′, k′ be any integers less than m, k, respectively. Denote the subset of index Im′ = {i1, ..., im′} ⊂
{1, 2, 3, ..,m} as a uniformly distributed subset of distinct indices where |Im′ | = m′. Ik′ follows the same definition for
{1, 2, 3, .., k}. For any bounded sequence of a1, ..., am,

EIm′ [
ai1 + ...+ aim′

m′ ] =
a1 + a2 + ...+ am

m
.

Therefore,

ELBO-Cm,k : = E[log(f̂δ
mŜ1−δ

k )] = δEz1:m [log(f̂m)] + (1− δ)Ez1:k [log(Ŝk)]

= δEz1:m [log
f̂1(z1) + f̂1(z2) + ..+ f̂1(zm)

m
] + (1− δ)Ez1:k [log(Ŝk)]

= δEz1:m [logEIm′

f̂1(zi1) + f̂1(zi2) + ..+ f̂1(zim′ )

m′ ] + (1− δ)Ez1:k [log(Ŝk)]

≥ δEz1:m [EIm′ [log
f̂1(zi1) + f̂1(zi2) + ..+ f̂1(zim′ )

m′ ]] + (1− δ)Ez1:k [log(Ŝk)]

= δEz1:m′ [log f̂m′ ]] + (1− δ)Ez1:k [log(Ŝk)] = ELBO-Cm′,k.

Similarly, ELBO-Cm,k ≥ ELBO-Cm,k′ . Thus,

ELBO-Cm,k ≥ max(ELBO-Cm′,k,ELBO-Cm,k′) > min(ELBO-Cm′,k,ELBO-Cm,k′) ≥ ELBO-Cm′,k′ ≥ ELBO-C.

Here ELBO-Cm,k ≤ L(θ) is ensured by Jensen’s inequality and Fubini’s theorem.

Assuming a bounded f̂1; Ŝ1, we use the strong law of large numbers: for m → ∞,f̂m
a.s.→ E[f̂1] = f .

Similar results apply to Ŝk. The results imply convergence in expectation

lim
m→∞,k→∞

ELBO-Cm,k = L(θ).

Then, using the definition of B(m, k) := L(θ)− ELBO-Cm,k, we complete the proof by reversing the inequality.

B.6. Proof for Theorem 4.3.2

This theorem is a corrected extension of Theorem 1 in Domke & Sheldon (2018). Our proof follows a similar structure,
but we first highlight the mistake in the original proof in Theorem 1 in Domke & Sheldon (2018). In their original proof,
the definition of Eq.5 is not consistent in Theorem 1, where the expectation in Eq.5 is taken over z1, ..zm from qϕ, while
the expectation in Theorem 1 is taken over the augmented variational distribution, as shown on Page 15. Thus, when
generalizing their results, we must warn the reader that the KL divergence term does not correspond to the inference gap
defined in Thm. 4.3.1

Proof: Some basic facts from the definition: 1) Q1(1) = qϕ1(z|x, y),Q2(1) = qϕ2(z|x, y); 2)P1(1) = fθ(y, z|x); 3)
P2(1) = Sθ(y|x, z)pθ(z|x); 4) For any m > 0,

∫ ∫
J1(m)dz1:m = log f(y|x); 5) For any k > 0,

∫
J2(k)dz1:k =

logS(y|x).

Since log p(x) = Eq(z) log
p(x,z)
q(z) + KL[q(z)||p(z|x)], we have

log f(y|x) = EQ1(m) log
J1(m)

Q1(m)
+ KL[Q1(m)||P1(m)]; logS(y|x) = EQ2(m) log

J2(m)

Q2(m)
+ KL[Q2(m)||P2(m)].

By definition, we have

EQ1(m) log
J1(m)

Q1(m)
= EQ1(m)[log

J1(m)

J1(m)/f̂m
] = EQ1(m)[log f̂m].
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Similar results for Q2(m) can be obtained. Adding these two equations with multiplication of δ or 1− δ, we have

L(θ) := δ log f(y|x) + (1− δ) logS(y|x) = EQ1,Q2 [log f̂
δ
mŜ1−δ

k ] + KL[Q1(m)||P1(m)]δKL[Q2(k)||P2(k)]
(1−δ).

The above equation completes the proof. We highlight that the mentioned mistake limits further interpretation. It is easy to
see that

B(1, 1) := KL[Q1(1)||P1(1)]
δKL[Q2(1)||P2(1)]

1−δ.

However, we cannot subtract these two KL divergences by the chain rule of KL divergence as in Domke & Sheldon
(2018). Since L(θ)− EQ1,Q2

[log f̂δ
mŜ1−δ

k ] does not correspond to B(m, k), the subtraction does not give any meaningful
interpretation.

B.7. Proof for Lemma 1-6 and Formal Theorem 4.3.3

The chain of proofs follows the same structure as (Nowozin, 2018), with minor corrections and better consistency of
notations.

B.7.1. PROOF OF LEMMA 1

Given the assumptions, which are sufficient for Fubini’s theorem to apply, the Taylor expansion of E[log f̂ ] at log f is given
as

E[log f̂m] = E[log(f − (f̂m − f))] = log f −
∞∑
i=1

(−1)i

if i
E[(f̂m − f)i] := log f −

∞∑
i=1

(−1)i

if i
α′
i.

From Theorem 1 of Angelova (2012), using the definition of αi, βi, we can get the relationship between α′
i and αi:

α′
2 =

α2

m
;α′

3 =
α3

m2
;α′

4 =
3

m2
α2
2 + o(m−2).

By substituting α′
i with αi we have

E[log f̂m] = log f − 1

2f2

α2

m
+

1

3f3

α3

m2
− 1

4f4
(
3

m2
α2
2) + o(m−2).

After rearrangement, we complete the proof for E[log f̂m]. By applying the same proof as for E[log Ŝk], we complete the
whole proof. We denote B[log f̂m] = 1

2f2
α2

m − 1
3f3

α3

m2 + 1
4f4 (

3
m2α

2
2) and similarly for B[log Ŝk].

B.7.2. PROOF OF LEMMA 2

By the definition of variance and using the same expansion on both log f̂m and its expectation at log f , we have

V[log f̂m] = E[(log f̂m − E log f̂m)2] = E

( ∞∑
i=1

(−1)i

if i
(E[(f̂m − f)i]− (f̂m − f)i)

)2
 .

By expanding the above equation to the third order, we have

V[log f̂m] ≈ α′
2

f2
− 1

f3
(α′

3 − α′
1α

′
2) +

2

3f4
(α′

4 − α′
1α

′
3) +

1

4f4
(α′

4 − (α′
2)

2)− 1

3f5
(α′

5 − α′
2α

′
3) +

1

9f6
(α′

6 − (α′
3)

2).

By substituting α′
i with αi, we complete the proof for V[log f̂m]. By applying the same proof as for V[log Ŝk], we complete

the whole proof.
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B.7.3. PROOF OF LEMMA 3

Notice that δ is binary valued and finite, thus for m → ∞ and k → ∞, where the sequence of limitation doesn’t matter, we
have

ELBO-Cm,k = E[L̂m,k] = δE[log f̂m] + (1− δ)E[log Ŝk]

= δ log f + (1− δ) logS − δ[
1

m

α2

2f2
− 1

m2
(
α3

3f3
− 3α2

4f4
)]

+ (1− δ)[
1

k

β2

2S2
− 1

k2
(
β3

3S3
− 3β2

4S4
)] + o(m−2) + o(k−2).

By substituting L(θ) = δ log f + (1− δ) logS, we complete the proof.

B.7.4. PROOF OF LEMMA 4

Notice that 1) ϕ1, ϕ2 here are not optimally constrained in Claim (5) of Theorem 3.2.2, 2) the expectation w.r.t z1:m and z1:k
can be separated due to independence, 3) L(θ) is not a function of z, and 4) δ2 = δ. For m → ∞, k → ∞,

E[(L̂m,k − L(θ))2] = Ez1:m

[(
δ log f̂m − δ log f

)2]
+ Ez1:k

[(
(1− δ) log Ŝk − (1− δ) logS

)2]
= δE[(log f̂m − E[log f̂m] + E[log f̂m]− log f)2] + (1− δ)E[(log Ŝk − E[log Ŝk] + E[log Ŝk]− logS)2]

= δV[log f̂m] + δ(B[log f̂m])2 + (1− δ)V[log Ŝk] + (1− δ)(B[log Ŝm])2

= δ[
1

m

α2

f2
− 1

m2
(
α3

f3
− 5α2

f4
) + (

1

m

α2

2f2
)2] + (1− δ)[

1

k

β2

S2
− 1

k2
(
β3

S3
− 5β2

S4
) + (

1

k

β2

2S2
)2] + o(m−2) + o(k−2)

= δ[
1

m

α2

f2
− 1

m2
(
α3

f3
− 20α2 + α2

2

4f4
)] + (1− δ)[

1

k

β2

S2
− 1

k2
(
β3

S3
− 20β2 + β2

2

4S4
)] + o(m−2) + o(k−2).

B.7.5. PROOF OF FORMAL THEOREM 4.3.3

Proof:
P (|L̂m,k − L(θ)| ≥ ξ) = P (|L̂m,k − E[L̂m,k] + E[L̂m,k]− L(θ)| ≥ ξ)

≤ P (|L̂m,k − E[L̂m,k]|+ |E[L̂m,k]− L(θ)| ≥ ξ)

≤ P (|L̂m,k − E[L̂m,k]| ≥ ξ/2)︸ ︷︷ ︸
1⃝

+P (|E[L̂m,k]− L(θ)| ≥ ξ/2)︸ ︷︷ ︸
2⃝

.
(25)

Notice that |E[L̂m,k] − L(θ)| is not random, and based on the result of Lemma 3, for sufficiently large m1, k1, we have
|E[L̂m,k]− L(θ)| < ξ/2, regardless of the value of δ. This proves that 2⃝ → 0 as m, k → ∞

By Chebyshev’s inequalities,

P (|L̂m,k − E[L̂m,k]| ≥ ξ/2) ≤ 4

ξ2
V[L̂m,k].

Based on the result of Lemma 4, we have 4
ξ2V[L̂m,k] → 0 as m, k → ∞, regardless of the value of δ. This proves that

1⃝ → 0 as m, k → ∞.

Together, we establish the convergence in probability and hence consistency of L̂m.k.

B.7.6. PROOF OF THEOREM A.4

Following Definition 4.3.2, we consider the induced log-likelihood estimator

L̇m,k = δ log ḟm + (1− δ) log Ṡk.
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Recall lemma 1, we have proved that

E[log f̂m] = log f − 1

m

α2

2f2
+

1

m2
(
α3

3f3
− 3α2

2

4f4
) + o(m−2).

By Definition 4.3.2, we have defined the log-likelihood estimator:

log ḟm := log f̂m +
α̂2

2mf̂2
m

, log Ṡk := log Ŝk +
β̂2

2kŜ2
k

, (26)

where α2, and f̂2
m are the sample variance and sample mean of f̂1(zi); β2, and Ŝ2

k are the sample variance and sample mean
of Ŝ1(zj). Here, we show how this extra term in log ḟm or log Ṡm leads to the cancellation of the leading terms in the bias,
e.g., − α2

2mf2 .

Proof: The α̂2

f̂2
m

is considered as a function of g(x, y) in the form of x/y2.

We expand its second-order Taylor expansion at (α2, f):

α̂2

f̂2
m

= g(α2+(α̂2−α2), f +(f̂m−f)) ≈ α2

f2
+

1

f2
(α̂2−α2)−

2α2

f3
(f̂m−f)− 2

f3
(α̂2−α2)(f̂m−f)+

6α2

2f4
(f̂m−f)2.

Notice that E[f̂m] = f ;E[α̂2] = α2. Taking expectation on both sides and after the rearrangement, we have

E

[
α̂2

f̂2
m

]
≈ α2

f2
− 2

f3
E[(α̂2 − α2)(f̂m − f)] +

3α2

f4
E[(f̂m − f)2].

Using the results in Zhang (2007), we have E[(α̂2 − α2)(f̂m − f)] = α3/m and E[(f̂m − f)2] = α2/m. Thus, by
substituting,

E

[
α̂2

f̂2
m

]
=

α2

f2
− 1

m
(
2α3

f3
− 3α2

2

f4
) + o(m−1).

Finally,

log f − E[log ḟm] = log f − E[log f̂m]− 1

2m
E

[
α̂2

f̂2
m

]

=
1

m

α2

2f2
− 1

m2
(
α3

3f3
− 3α2

2

4f4
)− 1

2m
[
α2

f2
− 1

m
(
2α3

f3
− 3α2

2

f4
)] + o(m−2)

=
1

m2
(
2α3

3f3
− 3α2

2

4f4
) + o(m−2).

By applying the same proof as for E[log Ŝk], and L̇m,k, we complete the whole proof.
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C. Details of Experiments
C.1. Experimental Setup

The experiments are on Python 3.9 with Pytorch on the Windows 11 system. GPU is not required.

C.2. Simulated dataset (SD1-SD6)

The dimension of x, y, u, c is 1. The latent dimension of z = (z1, z2) is 2. The Gibbs sampling process is designed as
follows:

First, in the P (X,Y, I|Z) step, we have a sample of X,U,C, Y, I as follows

• The prior of x: p(x) ∼ N(1, 1), which is independent of Z.

• Given Z, P (U |X,Z) ∼ N(µ(x, z), σ2), where µ(x, z) = 1 ∗ z1 + x ∗ z2.

• Given Z, P (C|X,Z) ∼ N(µC , e
2). The mean for SD1-SD6 is reported in the Table 1, which controls the rate of

censoring.

• We compare the sampled u, c to get y and the event indicator δ.

Second, in the P (Z|X,Y, I) step, we define the distribution as follows:

• For δ = 0, 1, P (Z|X,Y, δ) is normal distributed with mean µz = (2δ − 1)(3/ exp(x+ y), 3/ exp(x+ y)).

• Covariance is fixed as identity matrix for both cases.

Then we start the simulation at z = (0, 0) and burn the first 10k observations.

C.3. Hyper-parameters of training CD-CVAE and the variants

The details of the models can be found in the model folder via the repository link. In model specification, we have tuned the
following hyper-parameters:

• Distribution Family of decoders: we choose from normal or gumbel-minimum.

• Network structure: the size of encoder and decoder networks and their depth.

• Dropout: the probability of dropout in the last layer of both encoder and decoders network. We select it from {0,0.2,
0.5, 0.9}.

• Latent dimension: the dimension of Z: we select from 2 ∗ dim(x) or 0.5 ∗ dim(x).

• For the variants with importance sampling, we set m = k and choose it from {10,30,100}.

In the training stage, we have tuned the following hyper-parameters:

• Learning rate: 0.01, 0.001.

• batch size: 20, 100, 250, 500, 1000.

• Patience: the maximum number of epoch waiting until we stop the algorithm if no better validated metric is found.
This helps reduce training time on overfitting the model.

• Temperature: reweighting parameter for the loss of censored observation, as introduced in Deep survival machine
(Nagpal et al., 2021a). We choose 1, 1.3 or 0.9.
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C.4. Details in training-validating-testing stages of the experiments

For the simulation dataset and inference gap in Table 2.

• We set the hyper-parameter m = k = 10 for IS and DVI variants.

• No validation and testing,since we know the truth. Best metric throughout the training process is reported.

• We use a Normal family for the decoder that aligns with the truth. Encoder/Decoder network shares the same network
structure. Technical or adhoc hyper-parameters are avoided, e.g., temperature is set at 1, dropout is 0.

For the evaluation experiments on C/Ctd/Brs in Table 4.

• Train-validation-test split ratio is 0.6, 0.2, 0.2. Experiment repetition is 5, using the same seeds of dataset split.

• Best model is selected from best cross-validated C index or Brier score of the model taking on quantiles of survival
time, predicting from validation x. We select it for a overall good fitting of the model, which is not the best validated
metrics Ctd and Brier Score are valuated at specific test times to prevent overfitting.

• The hyper-parameters tuned for training SOTA models in the training stage follows the recommendations from Nagpal
et al. (2022). For details, please refer to the package website or the source codes attached.

For the implementation of metrics, we note that

• C index is implemented via Python package Pycox by the authors of Kvamme et al. (2019)

• Ctd and Brier score is implemented via Python package Scikit-Survival (Pölsterl, 2020).
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C.5. LogSumExp Trick of Computing Bias Term in Delta Method CDVI: A Step-by-Step Derivation

In this section, we introduce a numerically stable approach to calculate the bias terms in Delta Method Variational Inference
(Teh et al., 2006) that is used in the delta method (DVI) variant of CD-CVAE. Inspired by the normalized importance
weighting technique of Burda et al. (2015), our approach leverages a Log-Sum-Exp formulation that implicitly avoids
over/underflow problems, which offers a more stable computation for gradient-based optimization.

Take Eq.26 above as an example, denoting f̂1(zi) as wi:

bias term =
1

2m
· α̂2

f̂2
m

(27)

where f̂m = 1
m

∑m
i=1 wi = E[w], α2 = 1

m−1

∑k
i=1(wi − E[w])2 = V(w).

Goal: reformulate Eq.27 by the logarithm of a normalized weight vector, avoiding overflow during exponentiation.

log w̃i = log
wi∑k
j=1 wj

.

Step 1: observe that wi −E[w] = w̃i ·
∑

j wj −E[w] = w̃i ·mE[w]−E[w] = E[w](mw̃i − 1). Thus, plug into the sample
variance:

V(w) =
1

m− 1

m∑
i=1

(wi − E[w])2 =
1

m− 1

m∑
i=1

[E[w](mw̃i − 1)]
2
=

E[w]2

m− 1

m∑
i=1

(mw̃i − 1)2

Step 2: substituting the above equation into the bias formula:

bias term =
1

2m
· E[w]

2

E[w]2
· 1

m− 1

m∑
i=1

(mw̃i − 1)2 =
1

2m(m− 1)

m∑
i=1

(mw̃i − 1)2

Since(mw̃i − 1)2 = m2w̃2
i − 2mw̃i + 1;

∑m
i=1 w̃i = 1, summing over all i ∈ {1, . . . ,m}:

m∑
i=1

(m · w̃i − 1)2 =

m∑
i=1

(
m2w̃2

i − 2mw̃i + 1
)
= m2

m∑
i=1

w̃2
i − 2m

m∑
i=1

w̃i +m = m2
m∑
i=1

w̃2
i −m.

Thus, the delta method bias term for the density becomes:

bias term =
1

2(m− 1)

(
m

m∑
i=1

w̃2
i − 1

)
.

Step 3: Compute
∑m

i=1 w̃
2
i via sum exp(log w̃i)) or exp(log sum exp(log w̃i)) safely with 1-2 exponential operations using

the Log-Sum-Exp trick.

(Recommended) Step 4: Compute the same bias term of the log survival function, since the bias term must be computed
separately for censored observations. (The bias terms in survival function estimates are generally well-behaved and bounded.)

23



Censor Dependent Variational Inference

D. Additional Experiments
D.1. Additional Experiments on Simulated Datasets

Table 7: Experiments are repeated 5 times with a 0.6, 0.2, 0.2 train-validation-test split ratio. The best model is selected
using cross-validated C-index. Test C-index are reported as mean ± standard deviation. Higher is better. Survival times for
SD3–5 were transformed using the exponential function.

Model SD3 (20% cens) SD4 (30% cens) SD5 (50% cens)
CoxPH 0.772± 0.008 0.739± 0.005 0.663± 0.010
SAVAE 0.765± 0.012 0.722± 0.013 0.653± 0.014

DeepSurv 0.788± 0.010 0.748± 0.010 0.657± 0.008
DSM 0.777± 0.009 0.742± 0.011 0.653± 0.005
RSF 0.789± 0.009 0.756± 0.008 0.677± 0.007

DCM 0.774± 0.010 0.752± 0.008 0.675± 0.007
CD-CVAE 0.789± 0.013 0.758± 0.014 0.673± 0.012

CD-CVAE+IS 0.791± 0.015 0.761± 0.012 0.662± 0.010
CD-CVAE+DVI 0.772± 0.009 0.741± 0.008 0.665± 0.008
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D.2. Additional Experiments on Real-World Datasets

Table 8: Experiments are repeated five times with a 0.6, 0.2, 0.2 train-validation-test split ratio. Test C-index are reported as
mean ± standard deviation. Higher is better. Bold entries indicate the highest mean per column(dataset).

Model SUPPORT FLCHAIN NWTCO METABRIC WHAS GBSG PBC
CoxPH 0.661± 0.006 0.623± 0.207 0.685± 0.009 0.637± 0.009 0.756± 0.018 0.675± 0.006 0.829± 0.014
SAVAE 0.625± 0.008 0.745± 0.023 0.689± 0.018 0.643± 0.020 0.751± 0.022 0.668± 0.010 0.811± 0.028

DeepSurv 0.644± 0.005 0.775± 0.005 0.670± 0.019 0.640± 0.019 0.758± 0.021 0.597± 0.011 0.828± 0.017
DSM 0.668± 0.008 0.782± 0.010 0.691± 0.024 0.673± 0.010 0.789± 0.022 0.618± 0.017 0.836± 0.018
RSF 0.677± 0.005 0.762± 0.015 0.683± 0.013 0.679± 0.005 0.791± 0.015 0.685± 0.012 0.841± 0.018

DCM 0.676± 0.004 0.785± 0.003 0.678± 0.003 0.670± 0.079 0.779± 0.015 0.604± 0.014 0.841± 0.018
CD-CVAE 0.679± 0.003 0.794± 0.012 0.690± 0.018 0.678± 0.012 0.842± 0.026 0.678± 0.025 0.845± 0.011

CD-CVAE+IS 0.672± 0.007 0.787± 0.012 0.706± 0.012 0.661± 0.015 0.822± 0.019 0.663± 0.012 0.839± 0.010
CD-CVAE+DVI 0.670± 0.004 0.791± 0.013 0.671± 0.025 0.669± 0.015 0.814± 0.014 0.675± 0.011 0.828± 0.016

Table 9: Experiments are repeated five times with a 0.6, 0.2, 0.2 train-validation-test split ratio. Test Ctd are reported as
mean ± standard deviation. Higher is better. Bold entries indicate the highest mean per column(dataset).

Model SUPPORT FLCHAIN NWTCO METABRIC WHAS GBSG PBC
CoxPH 0.664± 0.006 0.626± 0.202 0.688± 0.010 0.637± 0.009 0.761± 0.016 0.676± 0.004 0.831± 0.012
SAVAE 0.631± 0.012 0.773± 0.016 0.675± 0.023 0.657± 0.012 0.770± 0.012 0.655± 0.018 0.815± 0.021

DeepSurv 0.644± 0.005 0.795± 0.012 0.721± 0.018 0.656± 0.015 0.742± 0.021 0.602± 0.015 0.842± 0.011
DSM 0.668± 0.008 0.789± 0.007 0.683± 0.011 0.660± 0.010 0.805± 0.014 0.653± 0.011 0.858± 0.011
RSF 0.651± 0.005 0.782± 0.015 0.713± 0.013 0.680± 0.005 0.802± 0.013 0.718± 0.010 0.859± 0.009

DCM 0.672± 0.006 0.793± 0.010 0.723± 0.014 0.679± 0.014 0.801± 0.012 0.624± 0.013 0.858± 0.012
CD-CVAE 0.672± 0.005 0.789± 0.015 0.741± 0.012 0.660± 0.022 0.802± 0.013 0.692± 0.015 0.845± 0.018

CD-CVAE+IS 0.677± 0.006 0.756± 0.022 0.717± 0.022 0.655± 0.012 0.796± 0.015 0.663± 0.012 0.859± 0.012
CD-CVAE+DVI 0.663± 0.004 0.751± 0.014 0.709± 0.017 0.659± 0.008 0.788± 0.012 0.688± 0.017 0.858± 0.012

Table 10: Experiments are repeated five times with a 0.6, 0.2, 0.2 train-validation-test split ratio. Test Brier Scores are
reported as mean ± standard deviation. Lower is better. Bold entries indicate the lowest mean per column(dataset).

Model SUPPORT FLCHAIN NWTCO METABRIC WHAS GBSG PBC
CoxPH 0.218± 0.002 0.146± 0.058 0.099± 0.004 0.216± 0.004 0.175± 0.011 0.225± 0.008 0.126± 0.010
SAVAE 0.224± 0.005 0.122± 0.006 0.117± 0.010 0.218± 0.012 0.169± 0.012 0.224± 0.005 0.138± 0.011

DeepSurv 0.215± 0.008 0.117± 0.005 0.083± 0.008 0.235± 0.006 0.209± 0.010 0.245± 0.005 0.135± 0.007
DSM 0.240± 0.012 0.121± 0.007 0.084± 0.011 0.235± 0.008 0.181± 0.006 0.248± 0.006 0.136± 0.008
RSF 0.225± 0.001 0.127± 0.006 0.088± 0.007 0.221± 0.002 0.166± 0.006 0.223± 0.007 0.123± 0.005

DCM 0.220± 0.004 0.118± 0.006 0.081± 0.007 0.221± 0.006 0.175± 0.006 0.233± 0.006 0.141± 0.005
CD-CVAE 0.218± 0.005 0.115± 0.005 0.081± 0.006 0.211± 0.009 0.178± 0.007 0.234± 0.005 0.127± 0.004

CD-CVAE+IS 0.211± 0.006 0.122± 0.005 0.093± 0.010 0.222± 0.012 0.172± 0.005 0.235± 0.005 0.144± 0.010
CD-CVAE+DVI 0.228± 0.005 0.125± 0.004 0.100± 0.005 0.226± 0.006 0.169± 0.022 0.224± 0.005 0.138± 0.011
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