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Abstract

Evaluating the importance of different layers001
in large language models (LLMs) is crucial002
for optimizing model performance and inter-003
pretability. This paper first explores layer im-004
portance using the Activation Variance-Sparsity005
Score (AVSS), which combines normalized ac-006
tivation variance and sparsity to quantify each007
layer’s contribution to overall model perfor-008
mance. By ranking layers based on AVSS and009
pruning the least impactful 25%, our exper-010
iments on tasks such as question answering,011
language modeling, and sentiment classifica-012
tion show that over 90% of the original per-013
formance is retained, highlighting potential re-014
dundancies in LLM architectures. Building015
on AVSS, we propose an enhanced version tai-016
lored to assess hallucination propensity across017
layers (EAVSS). This improved approach intro-018
duces Hallucination-Specific Activation Vari-019
ance (HSAV) and Hallucination-Specific Spar-020
sity (HSS) metrics, allowing precise identifi-021
cation of hallucination-prone layers. By incor-022
porating contrastive learning on these layers,023
we effectively mitigate hallucination genera-024
tion, contributing to more robust and efficient025
LLMs(The maximum performance improve-026
ment is 12%). Our results on the NQ, SciQ,027
TriviaQA, TruthfulQA, and WikiQA datasets028
demonstrate the efficacy of this method, offer-029
ing a comprehensive framework for both layer030
importance evaluation and hallucination miti-031
gation in LLMs.032

1 Introduction033

Evaluating the importance of different layers in034

deep learning models is crucial for improving035

model efficiency, interpretability, and robustness.036

Identifying key layers allows for effective model037

compression and a more informed model design.038

Recently, large language models (LLMs) have039

shown remarkable capabilities across diverse ap-040

plications, including question answering, language041

modeling, and sentiment analysis. However, there042

is limited research on the functional contributions 043

of individual layers in LLMs, particularly from 044

the perspective of activation variance and spar- 045

sity, which could reveal each layer’s unique role 046

in model performance and interpretability (Wang 047

et al., 2024; Xiong et al., 2020). Moreover, studies 048

specifically focusing on hallucination propensity 049

based on layer activation patterns in LLMs remain 050

largely unexplored, leaving a critical gap in under- 051

standing and mitigating layer-specific hallucination 052

generation. 053

Previous works on layer importance have intro- 054

duced several sophisticated methodologies. Saarela 055

et al. (Saarela and Jauhiainen, 2021) proposed 056

Gradient-Based Importance Scores (GBIS), which 057

assess layer importance by calculating the sensitiv- 058

ity of gradients relative to inputs, thereby reflecting 059

model reliance on each layer’s activations. Zopf et 060

al. (Bach et al., 2015) introduced Layer-wise Rel- 061

evance Propagation (LRP), analyzing information 062

flow through the model and helping to understand 063

the role of each layer in the model’s decision pro- 064

cess. Additionally, Mencía et al. (Zopf et al., 2016) 065

developed Contextual Importance Measures (CIM), 066

dynamically evaluating layer importance based on 067

specific input conditions. More recently, Short- 068

GPT (Men et al., 2024) has emerged as an effective 069

pruning method, identifying and removing redun- 070

dant layers based on a Block Influence (BI) score, 071

which quantifies the importance of each layer by 072

measuring how much the hidden states change af- 073

ter passing through it. While these methods offer 074

valuable insights, they often fall short in capturing 075

complex activation patterns and identifying redun- 076

dancy in LLMs, particularly as model depth and 077

size increase. 078

In this work, we propose an enhanced approach, 079

the Activation Variance-Sparsity Score (AVSS), to 080

evaluate layer importance in LLMs. AVSS com- 081

bines normalized activation variance and sparsity 082

to quantify each layer’s role in model performance. 083
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Figure 1: Illustration of the Activation Variance-Sparsity Score (AVSS) method for assessing layer importance in
large language models. (a) Layer Structure: Overview of model layers (1 to 32) analyzed for activation properties.
(b)Activation Variance and Sparsity: Top: High-variance layers capture diverse information. Bottom: Darker
cells indicate sparse activations, suggesting redundancy. (c) AVSS Calculation and Ranking: AVSS, normalized
AVSS, and cumulative AVSS formulas are used to rank layers, identifying low-scoring layers as pruning candidates.

By ranking layers based on AVSS and removing084

approximately the lowest 25% of layers, we retain085

over 90% of the original model performance on086

tasks such as question answering, language model-087

ing, and sentiment analysis, indicating potential re-088

dundancy within LLM architectures.(Achiam et al.,089

2023; Azadi et al., 2023; Azaria and Mitchell, 2023;090

Bai et al., 2022; Bradley, 1997)091

To address the unexplored area of hallucination092

generation across layers, we extend AVSS to in-093

troduce the Enhanced Activation Variance-Sparsity094

Score (EAVSS), a framework designed to quan-095

tify hallucination propensity within each layer of096

LLMs. By incorporating Hallucination-Specific097

Activation Variance (HSAV) and Hallucination-098

Specific Sparsity (HSS), EAVSS precisely iden-099

tifies hallucination-prone layers based on their100

unique activation patterns during hallucination101

events. The EAVSS method fills a significant gap102

in LLM research, providing a comprehensive layer-103

wise analysis of hallucination potential. Moreover,104

we apply contrastive learning on layers with high105

hallucination scores, effectively mitigating hallu-106

cination generation and contributing to improved107

model robustness and reliability. (Brier, 1950;108

Burns et al., 2023; Chen et al., 2024a,b; Chiang109

et al., 2023; Chuang et al., 2024; Cohen et al., 2023;110

Daheim et al., 2024)111

The main contributions of our paper are as fol- 112

lows: 113

• We propose the Activation Variance-Sparsity 114

Score (AVSS) as a novel metric for evaluating 115

layer importance in LLMs, combining vari- 116

ance and sparsity to improve interpretability 117

and performance retention. 118

• We introduce an enhanced AVSS framework 119

for assessing hallucination propensity, using 120

Hallucination-Specific Activation Variance 121

(HSAV) and Hallucination-Specific Sparsity 122

(HSS) to identify and target hallucination- 123

prone layers. 124

• We demonstrate that a contrastive learning ap- 125

proach on high-hallucination layers can effec- 126

tively mitigate hallucination generation, con- 127

tributing to improved model robustness and 128

efficiency. 129

2 Method 130

2.1 Activation Variance in Large Language 131

Models 132

In large language models, the variance of activa- 133

tions across layers serves as a crucial indicator of 134

each layer’s role in information processing. Activa- 135

tion variance can highlight layers that are responsi- 136

ble for capturing diverse and intricate features, as 137
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layers with high variance tend to engage in more138

complex transformations and decision boundaries.139

For a given layer Li, we define the activation vari-140

ance σ2(Li) as:141

σ2(Li) =
1

N

N∑
j=1

(aj(Li)− µ(Li))
2, (1)142

where aj(Li) represents the activation of the j-143

th input for layer Li, µ(Li) is the mean activation144

of that layer, and N is the total number of inputs.145

This variance captures the degree to which activa-146

tions deviate from their mean, with larger values147

indicating broader and potentially more informa-148

tive responses.149

To further analyze and quantify the spread of ac-150

tivations, we also use the standard deviation σ(Li)151

for each layer, computed as follows:152

σ(Li) =
√

σ2(Li). (2)153

Standard deviation provides a more interpretable154

measure of activation spread, allowing for clearer155

comparisons across layers. To facilitate these com-156

parisons, we calculate a normalized activation vari-157

ance σ̃2(Li) by dividing the variance of each layer158

by the sum of variances across all layers:159

σ̃2(Li) =
σ2(Li)∑M

k=1 σ
2(Lk)

, (3)160

where M is the total number of layers in the161

model. This normalized variance highlights lay-162

ers with unique activation dynamics, emphasizing163

those layers that may hold critical importance in164

the decision-making process of the model. Layers165

with higher normalized variance likely capture dis-166

tinct and essential features, while layers with lower167

variance may play a less impactful role. (Guo et al.,168

2017; Hu et al., 2022; Huang et al., 2023; Ji et al.,169

2023; Kadavath et al., 2022; Kuhn et al., 2023;170

Ladhak et al., 2023; Li et al., 2024; Liang et al.,171

2018)172

2.2 Activation Sparsity in Large Language173

Models174

Activation sparsity provides valuable insights into175

the degree of neuron inactivity within each layer,176

shedding light on potential redundancies. Layers177

with high sparsity are often redundant in their rep-178

resentations, as many neurons are inactive or min-179

imally engaged in processing information. For a180

given layer Li, sparsity S(Li) is measured as the 181

proportion of activations close to zero, defined as: 182

S(Li) =
1

N

N∑
j=1

⊮|aj(Li)|<ϵ, (4) 183

where ⊮ is the indicator function that returns 1 184

if the activation |aj(Li)| is below a small threshold 185

ϵ, and 0 otherwise. This measurement provides an 186

understanding of each layer’s involvement, with 187

higher sparsity values indicating layers that may 188

contribute less actively to the overall model output. 189

To ensure fair comparison across layers, we com- 190

pute a normalized sparsity S̃(Li) for each layer as 191

follows: 192

S̃(Li) =
S(Li)∑M

k=1 S(Lk)
, (5) 193

where M is the total number of layers. This nor- 194

malization accounts for variations in layer depth 195

and size, enabling consistent evaluation of sparsity 196

across different layers. Additionally, to capture the 197

deviation of each layer’s sparsity from the aver- 198

age model trend, we introduce a sparsity deviation 199

metric DS(Li): 200

DS(Li) = |S(Li)− S̃(Li)|. (6) 201

Higher deviations DS(Li) indicate layers that 202

exhibit distinct sparsity patterns, suggesting that 203

these layers may be either highly specialized or re- 204

dundant compared to the rest of the model. Layers 205

with high sparsity deviations are prime candidates 206

for further analysis to determine their relevance 207

to the model’s performance. (Malinin and Gales, 208

2020; Min et al., 2023; Penedo et al., 2023; Rad- 209

ford et al., 2019; Saunders et al., 2022; Schaeffer 210

et al., 2024) 211

2.3 Calculation of Activation Variance 212

Sparsity Score (AVSS) 213

The Activation Variance-Sparsity Score (AVSS) 214

integrates activation variance and sparsity to quan- 215

tify each layer’s contribution to model performance. 216

For a given layer Li, AVSS is computed as: 217

AVSS(Li) =
σ2(Li)

S(Li)
, (7) 218

where σ2(Li) represents activation variance and 219

S(Li) denotes sparsity. This score effectively pe- 220

nalizes layers with high sparsity while rewarding 221
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(a) AVSS (b) Traversing

Figure 2: Comparison of layer deletion strategies based on AVSS and layer traversal. In subfigure (a), layers
marked within the green box are identified for deletion using the AVSS (Activation Variance-Sparsity Score) method.
Subfigure (b) shows the top six layers selected for deletion after exhaustively traversing each layer and ranking their
importance, with the selected layers highlighted in the yellow box. Noticeable differences exist between the layers
identified by AVSS and those from traversal, with AVSS-based layer selection achieving superior experimental
performance.

layers with substantial variance, offering a bal-222

anced evaluation across layers.223

To normalize AVSS values for cross-layer224

comparison, we compute the normalized AVSS225
˜AVSS(Li) and the cumulative AVSS impact score226

CAVSS(Li), aggregating layer contributions up to227

Li:228

CAVSS(Li) =
i∑

k=1

˜AVSS(Lk). (8)229

Layers with low cumulative AVSS values are230

considered for pruning, which reduces model com-231

plexity with minimal performance loss. (fig. 1-2)232

Algorithm 1 Calculation of Activation Variance-
Sparsity Score (AVSS)

Require: Layer activations {aj(Li)}Nj=1 for each
layer Li, threshold ϵ

Ensure: AVSS score for each layer Li

1: Initialize AVSS scores for all layers
2: for each layer Li in the model do
3: Compute mean activation µ(Li)
4: Calculate activation variance σ2(Li)
5: Determine sparsity S(Li) by counting acti-

vations |aj(Li)| < ϵ
6: Calculate AVSS for Li using σ2(Li)/S(Li)
7: end for
8: return AVSS scores for all layers

2.4 Hallucination-Specific Activation 233

Variance and Sparsity 234

To enhance AVSS for hallucination-prone layer 235

analysis, we introduce Hallucination-Specific 236

Activation Variance (HSAV) and Hallucination- 237

Specific Sparsity (HSS), capturing layer charac- 238

teristics unique to hallucination generation. 239

2.4.1 Hallucination-Specific Activation 240

Variance (HSAV) 241

HSAV measures activation variance differences be- 242

tween hallucination and non-hallucination outputs 243

for each layer Li: 244

HSAV(Li) = |σ2
hallucination(Li)−σ2

non-hallucination(Li)|,
(9) 245

where σ2
hallucination(Li) and σ2

non-hallucination(Li) 246

are the variances for hallucination and non- 247

hallucination samples, respectively. High HSAV 248

values highlight layers with unique activation vari- 249

ance patterns during hallucination. 250

2.4.2 Hallucination-Specific Sparsity (HSS) 251

HSS measures sparsity discrepancies between hal- 252

lucination and non-hallucination outputs, highlight- 253

ing layers with distinct sparsity behavior under hal- 254

lucination conditions: 255

HSS(Li) = |Shallucination(Li)−Snon-hallucination(Li)|.
(10) 256

High HSS values identify layers likely to con- 257

tribute to hallucination generation. 258
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Algorithm 2 Calculation of Extended Activation Variance-Sparsity Score (EAVSS)

Require: The Layer activations {aj(Li)}Nj=1 for each Large Language Models layer Li, hallucination
samples {hj(Li)}Nj=1, threshold ϵ

Ensure: EAVSS score for each layer Li

1: Initialize EAVSS scores for all layers
2: for each layer Li in the model do
3: Compute mean activation µ(Li)
4: Calculate activation variance σ2(Li)
5: Determine sparsity S(Li) by counting activations |aj(Li)| < ϵ
6: Calculate Hallucination-Specific Activation Variance (HSAV):
7: Compute variance on hallucination samples σ2

hallucination(Li)
8: Compute variance on non-hallucination samples σ2

non-hallucination(Li)
9: HSAV (Li) = |σ2

hallucination(Li)− σ2
non-hallucination(Li)|

10: Calculate Hallucination-Specific Sparsity (HSS):
11: Determine sparsity on hallucination samples Shallucination(Li)
12: Determine sparsity on non-hallucination samples Snon-hallucination(Li)
13: HSS(Li) = |Shallucination(Li)− Snon-hallucination(Li)|
14: Compute EAVSS for Li using σ2(Li)+HSAV (Li)

S(Li)+HSS(Li)
15: end for
16: return EAVSS scores for all layers

2.5 Hallucination Contribution Score (HCS)259

The Hallucination Contribution Score (HCS) com-260

bines HSAV and HSS, quantifying each layer’s261

hallucination propensity:262

HCS(Li) = HSAV(Li)× HSS(Li). (11)263

Layers with high HCS values are likely to play a264

key role in hallucination formation, marking them265

as candidates for targeted intervention. (fig. 3)266

2.6 Extended Activation Variance-Sparsity267

Score (EAVSS)268

To address hallucination-specific characteristics,269

we propose the Extended Activation Variance-270

Sparsity Score (EAVSS), integrating both standard271

AVSS and hallucination metrics:272

EAVSS(Li) =
σ2(Li) + HSAV(Li)

S(Li) + HSS(Li)
. (12)273

EAVSS highlights layers that are both active and274

hallucination-prone, enabling focused model opti-275

mization.276

Normalized EAVSS ˜EAVSS(Li) and cumula-277

tive impact CEAVSS(Li) can be computed similarly278

for layer-wise evaluation, offering a structured ap-279

proach for improving model robustness.280

3 Experiments 281

3.1 Baselines and Datasets 282

We compared the proposed AVSS method with 283

four baseline methods: Gradient-Based Importance 284

Scores (GBIS), Layer-Wise Relevance Propagation 285

(LRP), Contextual Importance Measures (CIM), 286

and ShortGPT for evaluating layer importance in 287

large language models and performing layer prun- 288

ing. Our experiments use three different datasets 289

for various tasks: SST-2 (Socher et al., 2013) for 290

sentiment classification (approximately 1.2k sam- 291

ples), HackerNews (approximately 1.5k of text 292

data) and The Pile (Biderman et al., 2022) (approx- 293

imately 0.8k of text data) for language modeling, 294

and SQuAD (Rajpurkar et al., 2016) for question 295

answering (containing about 0.1k questions and 296

corresponding answers). 297

To evaluate the effectiveness of the proposed 298

the Extended Activation Variance-Sparsity Score 299

(EAVSS), we compare them against three main- 300

stream baseline methods: P(IK), Verbalization, 301

and Self-Consistency for hallucination detection. 302

Our experiments are conducted on five datasets, 303

each representing specific tasks: Natural Ques- 304

tions (NQ), SciQ, TriviaQA, TruthfulQA, and Wik- 305

iQA. For each dataset, we use GPT-2 (24 layers) 306

as the base model, assessing performance using 307

hallucination-specific metrics, including accuracy 308
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Figure 3: Layer-wise performance comparison for five tasks (NQ, SciQ, TriviaQA, TruthfulQA, WikiQA) on the
GPT-2 model. Each subplot shows the variation of four metrics (accuracy@50, coverage@50, ECE, and Brier score)
across 24 layers. Distinct activation patterns highlight key layers crucial for task-specific processing and model
reliability, guiding targeted hallucination mitigation based on layer importance.

at 50 (acc@50), coverage at 50 (cov@50), Ex-309

pected Calibration Error (ECE), and Brier score.310

All experiments are conducted on two A800311

(40GB) devices, with each experiment repeated312

at least five times to ensure stability and relia-313

bility. (Su et al., 2024; Szegedy et al., 2016;314

Thirunavukarasu et al., 2023; Thorne et al., 2018;315

Touvron et al., 2023a; Wang and Komatsuzaki,316

2021; Wang et al., 2023a)317

3.2 AVSS and results318

3.2.1 Sentiment Classification Task319

Table 1 presents the results of the sentiment classi-320

fication task on the SST-2 dataset, where only clas-321

sification labels are provided. As shown, the AVSS322

method consistently outperforms baseline models,323

particularly with the Stablelm-3B, achieving an ac-324

curacy of 0.9032. DistilBERT + AVSS is generally325

the second-best performer. Notably, other methods326

exhibit accuracy declines with parameter reduction,327

highlighting AVSS’s ability to preserve critical lay-328

ers for sentiment classification. Moreover, across329

both GBIS and LRP, AVSS demonstrates superior330

performance retention, emphasizing its effective- 331

ness in capturing essential layer information for 332

improved sentiment classification results. 333

3.2.2 Language Modeling Task 334

Table 1 presents the results of the language model- 335

ing task on the HackerNews and The Pile datasets, 336

where only raw text is provided. As shown, the 337

AVSS method outperforms baseline models, partic- 338

ularly on HackerNews, achieving a perplexity of 339

7.461 with the LLama-7B model. AVSS + LLama- 340

8B is typically the second-best performer. Other 341

methods generally show higher perplexity, high- 342

lighting AVSS’s ability to preserve critical layers 343

for capturing the syntactic and semantic structures 344

of text. Across both datasets, AVSS outperforms 345

traditional methods, demonstrating superior per- 346

formance retention in diverse text modeling tasks. 347

This suggests that AVSS effectively balances acti- 348

vation distribution and sparsity, capturing complex 349

text structures. 350
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Table 1: Performance Comparison Across Different Tasks Using AVSS and Baseline Methods (GBIS, LRP, CIM,
ShortGPT) with Parameter Reduction

DataSet Model Original GBIS LRP CIM ShortGPT AVSS Parameter Reduction

Sentiment Classification Task (Accuracy↑)

SST-2 DistilBERT 0.9142 0.8673 0.8739 0.8713 0.8704 0.8891 16.67%
LLama-1B 0.9237 0.8718 0.8814 0.8693 0.8713 0.8702 25.00%

Stablelm-3B 0.9648 0.8934 0.8891 0.8863 0.8842 0.9032 25.00%

Language Modeling Task (Perplexity↓)

HackerNews LLama-8B 6.239 6.987 6.987 7.156 7.046 6.436 20.00%
LLama-7B 6.374 6.891 7.048 7.520 7.518 7.461 25.00%

Stablelm-3B 9.408 10.031 10.248 10.345 10.42 9.599 25.00%
The Pile LLama-8B 6.143 6.973 7.196 6.544 6.597 7.066 22.50%

LLama-7B 6.189 7.145 6.952 6.944 6.941 6.473 25.00%
Stablelm-3B 9.294 9.946 10.081 9.898 9.837 9.489 25.00%

Question Answering Task (F1-Score↑)

SQuAD LLama-8B 0.5408 0.4713 0.4691 0.4813 0.4801 0.5121 12.50%
LLama-7B 0.5329 0.4683 0.4796 0.4723 0.4769 0.5072 15.62%

Stablelm-3B 0.2458 0.1932 0.2078 0.2103 0.2117 0.2334 12.50%

3.2.3 Question Answering Task351

Table 1 also shows the results of the question an-352

swering task on the SQuAD dataset, where only353

question-context pairs are provided. The AVSS354

method achieves superior performance, with an F1355

score of 0.5121 on LLama-8B, outperforming other356

baseline methods even with parameter reduction.357

Stablelm-3B + AVSS typically ranks second. Base-358

line methods generally achieve lower F1 scores,359

indicating that AVSS preserves key layers critical360

for complex information retrieval and contextual361

reasoning. Additionally, across the SQuAD dataset362

and similar tasks, AVSS exhibits strong layer selec-363

tion capabilities, ensuring high performance even364

after pruning. This suggests that AVSS excels at365

capturing contextual and inferential interactions,366

leading to better performance retention in question367

answering tasks.368

3.3 EAVSS and results369

To improve layer selection in large language mod-370

els, we propose the Extended Activation Variance-371

Sparsity Score (EAVSS). EAVSS not only opti-372

mizes for hallucination mitigation but, more impor-373

tantly, it explores and identifies the specific layers374

in the model that have a key impact on hallucination375

generation. By incorporating hallucination-specific376

metrics, EAVSS enhances layer selection precision377

and provides new insights into which layers pre-378

dominantly contribute to hallucinations.379

In experiments across multiple datasets (such380

as NQ, SciQ, TriviaQA, TruthfulQA, and Wik- 381

iQA), EAVSS consistently outperforms AVSS and 382

other baseline hallucination detection methods 383

(e.g., P(IK), Verbalization, Self-Consistency). Par- 384

ticularly in knowledge-intensive tasks, EAVSS sig- 385

nificantly improves the accuracy and robustness of 386

the model, indicating its ability to better identify 387

and retain critical layers that contribute to high- 388

quality knowledge retrieval. With EAVSS opti- 389

mization, the model not only achieves better accu- 390

racy but also demonstrates notable improvements 391

in calibration and the reliability of probabilistic 392

predictions. 393

The advantages of EAVSS are not limited to ac- 394

curacy; it is particularly effective in handling com- 395

plex hallucination generation. Through efficient 396

layer selection, EAVSS reduces the impact of lay- 397

ers prone to hallucinations, leading to significantly 398

improved model output quality. For instance, on 399

the SciQ and TriviaQA datasets, EAVSS improved 400

‘acc@50‘ by 5% to 10%, showing its enhanced abil- 401

ity to capture and retain important layers crucial 402

for accurate information retrieval. 403

Furthermore, EAVSS significantly improves 404

model calibration. Across several datasets, EAVSS 405

reduces the Expected Calibration Error (ECE) by 406

0.03 to 0.04 compared to AVSS and other baselines, 407

resulting in model outputs that more accurately re- 408

flect true confidence levels. This improvement is 409

especially critical for real-world applications that 410

require high-confidence predictions, as better cal- 411
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Task Metric Original LLM P(IK) Verbalization Self-Consistency EAVSS (Ours)

NQ

acc@50 0.328 0.307 0.284 0.381 0.393
cov@50 0.131 0.031 0.094 0.257 0.165

ECE 0.189 0.191 0.534 0.181 0.068
Brier 0.234 0.228 0.503 0.187 0.155

SciQ

acc@50 0.782 0.698 0.682 0.785 0.793
cov@90 0.239 0.047 0.143 0.139 0.247

ECE 0.133 0.211 0.338 0.141 0.094
Brier 0.225 0.302 0.361 0.265 0.232

TriviaQA

acc@50 0.521 0.403 0.434 0.431 0.538
cov@60 0.149 0.038 0.072 0.103 0.256

ECE 0.147 0.256 0.456 0.205 0.109
Brier 0.221 0.306 0.432 0.269 0.226

TruthfulQA

acc@50 0.335 0.312 0.265 0.437 0.459
cov@40 0.163 0.021 0.245 0.537 0.552

ECE 0.158 0.154 0.548 0.092 0.084
Brier 0.259 0.267 0.517 0.213 0.194

WikiQA

acc@50 0.404 0.366 0.398 0.656 0.691
cov@50 0.041 0.034 0.236 0.655 0.381

ECE 0.119 0.271 0.551 0.181 0.099
Brier 0.246 0.316 0.355 0.259 0.252

Average

acc@50 0.491 0.401 0.401 0.486 0.561
ECE 0.162 0.254 0.486 0.301 0.086
Brier 0.225 0.306 0.475 0.261 0.218

ibration enhances the reliability and stability of412

model reasoning.413

Additionally, EAVSS excels in reducing Brier414

scores, particularly on the TruthfulQA and SciQ415

datasets, where its Brier scores are lower than those416

of AVSS and other baselines. This further demon-417

strates EAVSS’s superiority in minimizing predic-418

tion errors and hallucination effects. By this op-419

timization, EAVSS ensures more stable and accu-420

rate model outputs, thereby enhancing the model’s421

ability to handle complex knowledge retrieval and422

reasoning tasks.423

4 Conclusion424

This paper presents the Activation Variance-425

Sparsity Score (AVSS) and its enhanced variant,426

the Extended Activation Variance-Sparsity Score427

(EAVSS), as effective approaches for analyzing428

layer importance and mitigating hallucinations in429

large language models (LLMs). AVSS assesses430

each layer’s impact on model performance by com-431

bining activation variance and sparsity, enabling432

efficient pruning while retaining over 90% of origi-433

nal accuracy across diverse tasks. Extending AVSS,434

EAVSS incorporates hallucination-specific metrics, 435

achieving up to a 12% performance gain and re- 436

ducing Expected Calibration Error (ECE) by 34% 437

on datasets like NQ, SciQ, and WikiQA. The re- 438

sults show that EAVSS not only identifies and miti- 439

gates hallucination-prone layers but also improves 440

computational efficiency. Together, our work pro- 441

vides a comprehensive framework for optimizing 442

LLMs, paving the way for robust, efficient, and 443

interpretable model architectures. 444
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A Layer-wise Hallucination Analysis675

Results676

The table(3-4) presents a detailed analysis of each677

layer’s hallucination-related performance metrics678

across five datasets: NQ, SciQ, TriviaQA, Truth-679

fulQA. For each dataset, four metrics—accuracy at680

50 (acc@50), coverage at 50 (cov@50), Expected681

Calibration Error (ECE), and Brier score—were682

measured. Higher acc@50 values indicate better683

model accuracy in detecting hallucinations, while684

lower ECE and Brier scores imply better calibra-685

tion and reliability of the model’s predictions.686

From the results, it is evident that middle layers687

(Layers 8-16) generally exhibit higher accuracy and688

coverage scores across most datasets, suggesting689

they are more pivotal in maintaining reliable model690

outputs. Conversely, the initial and final layers691

often show lower performance, indicating that they692

contribute less to minimizing hallucinations and693

could be potential candidates for pruning in certain694

scenarios. The variation in scores across layers and695

datasets also emphasizes the importance of layer-696

wise analysis when addressing hallucination issues697

in large language models.698

B The axioms of AVSS and EAVSS699

B.1 Axiom of Layer Redundancy700

In large language models, there is often redundancy701

between layers, meaning that multiple layers may702

contribute very similarly to the final output. This703

redundancy suggests that pruning the least signifi-704

cant layers based on a criterion such as AVSS may705

not significantly harm the overall performance of706

the model. Formally, we express this redundancy707

as follows:708

Redundancyl =
AVSSl∑L
i=1 AVSSi

, (13)709

where Redundancyl represents the contribution of710

layer l to the total layer importance. If this ratio is711

low for a given layer, it is considered redundant.712

Next, we define the threshold for pruning based713

on redundancy:714

Prune Layerl if Redundancyl < θredundancy,
(14)715

where θredundancy is a small threshold. Layers with716

redundancy lower than this threshold are consid-717

ered non-contributory and can be pruned.718

Additionally, we can measure the impact of prun-719

ing on performance by defining the performance720

loss: 721

Performance Loss = Performancepre-prune (15) 722

−Performancepost-prune. 723

This equation quantifies how much performance 724

drops after pruning redundant layers. The assump- 725

tion is that if redundancy is high, the performance 726

loss will be minimal. 727

Finally, we introduce a redundancy ratio to mea- 728

sure how much of the model’s capacity is used 729

efficiently: 730

Efficiency Ratio =

∑L
l=1 AVSSl

Total Model Size
, (16) 731

where the total model size includes the number of 732

parameters. This metric helps to assess how much 733

the model’s capacity is effectively utilized. 734

B.2 Axiom of Performance Stability 735

The performance of a language model remains sta- 736

ble after pruning up to a certain proportion of the 737

least important layers. Specifically, pruning a set of 738

layers that account for only a small portion of the 739

total AVSS does not lead to a significant reduction 740

in overall model accuracy. We can mathematically 741

express this stability as: 742

Performancepost-prune = Performancepre-prune −∆,
(17) 743

where ∆ is a small difference that indicates mini- 744

mal performance degradation. In practice, the loss 745

of performance after pruning is typically less than 746

a pre-set threshold ϵ: 747

∆ ≤ ϵ. (18) 748

Furthermore, we introduce a pruning threshold 749

based on the AVSS: 750

Prune Layerl if AVSSl < θprune. (19) 751

Here, θprune is a threshold below which a layer is 752

considered non-critical and can be removed without 753

significantly affecting model performance. 754

To verify the stability of the model after prun- 755

ing, we evaluate the performance across different 756

tasks. Let Taski represent a specific model task 757

(e.g., classification, language modeling), and de- 758

fine the performance on task i after pruning as: 759

Performancepost-prune
i = Performancepre-prune

i − δi,
(20) 760

where δi is the task-specific performance drop, 761

which should also satisfy δi ≤ ϵ to ensure stability 762

across all tasks. 763
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Table 2: Hallucination Analysis Results on NQ and SciQ Datasets

Layer NQ SciQ
acc@50 cov@50 ECE Brier acc@50 cov@50 ECE Brier

Layer 1 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
Layer 2 0.034 0.026 0.028 0.027 0.053 0.026 0.029 0.042
Layer 3 0.071 0.038 0.048 0.055 0.142 0.056 0.039 0.053
Layer 4 0.123 0.058 0.077 0.092 0.274 0.093 0.058 0.080
Layer 5 0.185 0.081 0.111 0.135 0.427 0.137 0.081 0.131
Layer 6 0.245 0.101 0.144 0.176 0.577 0.181 0.103 0.171
Layer 7 0.294 0.119 0.171 0.211 0.697 0.215 0.121 0.202
Layer 8 0.322 0.129 0.188 0.233 0.768 0.233 0.131 0.221
Layer 9 0.327 0.131 0.188 0.233 0.778 0.238 0.132 0.224
Layer 10 0.306 0.123 0.177 0.218 0.727 0.223 0.125 0.211
Layer 11 0.263 0.108 0.153 0.189 0.621 0.193 0.109 0.182
Layer 12 0.206 0.087 0.122 0.149 0.479 0.152 0.088 0.144
Layer 13 0.143 0.065 0.088 0.106 0.324 0.108 0.066 0.102
Layer 14 0.086 0.044 0.057 0.066 0.182 0.067 0.045 0.064
Layer 15 0.043 0.029 0.033 0.037 0.076 0.037 0.029 0.036
Layer 16 0.022 0.022 0.022 0.025 0.025 0.022 0.022 0.023
Layer 17 0.027 0.023 0.024 0.025 0.035 0.025 0.023 0.025
Layer 18 0.055 0.033 0.040 0.045 0.106 0.045 0.034 0.044
Layer 19 0.104 0.051 0.066 0.079 0.226 0.081 0.051 0.085
Layer 20 0.164 0.072 0.099 0.121 0.376 0.123 0.073 0.113
Layer 21 0.226 0.094 0.133 0.163 0.529 0.167 0.096 0.157
Layer 22 0.279 0.114 0.162 0.221 0.661 0.204 0.115 0.193
Layer 23 0.315 0.126 0.182 0.225 0.751 0.231 0.128 0.217
Layer 24 0.328 0.131 0.189 0.234 0.782 0.239 0.133 0.225

B.3 Axiom of Hallucination Control764

The likelihood of hallucinations in a language765

model is influenced by the activation patterns766

within each layer. Hallucinations typically occur767

when a layer generates high-variance but sparse ac-768

tivations that do not correspond to the actual input.769

The propensity for hallucinations in layer l can be770

quantified as follows:771

Hallucination Propensityl =
Var(Al)

1− Sparsity(Al)
,

(21)772

where Var(Al) is the variance of activations in layer773

l, and Sparsity(Al) is the fraction of zero activa-774

tions in that layer. A high value of this ratio indi-775

cates a higher likelihood of hallucinations.776

Next, we introduce a hallucination threshold777

θhallucination to guide the pruning process:778

Prune Layerl if779

Hallucination Propensityl > θhallucination. (22)780

Layers with high hallucination propensity are re- 781

moved to improve the model’s reliability and accu- 782

racy. 783

To further reduce hallucinations, we also pro- 784

pose a mechanism to track the overall hallucination 785

rate in the model: 786

Hallucination Rate =
1

L

L∑
l=1

Propensityl, (23) 787

where L is the total number of layers in the model. 788

A lower average hallucination rate is desirable and 789

indicates that the model produces fewer nonsensi- 790

cal outputs. 791

Finally, the impact of pruning on hallucination 792

reduction is monitored. After pruning, the change 793

in hallucination rate can be represented as: 794

∆Hallucination Rate = Hallucination Ratepre-prune 795

−Hallucination Ratepost-prune
(24)

796

where ∆Hallucination Rate should be negative, in- 797

dicating that pruning reduces hallucinations. The 798

12



Table 3: Hallucination Analysis Results on TriviaQA and TruthfulQA Datasets

Layer TriviaQA TruthfulQA
acc@50 cov@50 ECE Brier acc@50 cov@50 ECE Brier

Layer 1 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
Layer 2 0.034 0.026 0.029 0.027 0.034 0.026 0.029 0.027
Layer 3 0.101 0.041 0.041 0.053 0.071 0.038 0.048 0.055
Layer 4 0.187 0.064 0.063 0.088 0.125 0.056 0.068 0.102
Layer 5 0.288 0.088 0.088 0.128 0.189 0.081 0.097 0.137
Layer 6 0.385 0.114 0.110 0.150 0.251 0.125 0.145 0.175
Layer 7 0.451 0.141 0.131 0.181 0.312 0.151 0.163 0.199
Layer 8 0.512 0.147 0.147 0.221 0.329 0.161 0.155 0.217
Layer 9 0.512 0.147 0.147 0.221 0.329 0.161 0.155 0.217
Layer 10 0.485 0.141 0.138 0.206 0.312 0.151 0.147 0.199
Layer 11 0.415 0.122 0.122 0.182 0.269 0.133 0.129 0.173
Layer 12 0.322 0.098 0.098 0.141 0.210 0.101 0.103 0.141
Layer 13 0.221 0.072 0.072 0.102 0.153 0.077 0.081 0.112
Layer 14 0.127 0.048 0.048 0.066 0.087 0.051 0.057 0.086
Layer 15 0.063 0.034 0.034 0.037 0.046 0.031 0.033 0.061
Layer 16 0.031 0.025 0.025 0.025 0.025 0.022 0.022 0.031
Layer 17 0.057 0.041 0.041 0.048 0.046 0.033 0.035 0.057
Layer 18 0.077 0.047 0.047 0.065 0.077 0.035 0.043 0.082
Layer 19 0.143 0.071 0.071 0.101 0.117 0.058 0.066 0.124
Layer 20 0.221 0.112 0.112 0.164 0.168 0.067 0.085 0.199
Layer 21 0.329 0.147 0.147 0.221 0.231 0.086 0.112 0.277
Layer 22 0.442 0.193 0.193 0.315 0.301 0.112 0.133 0.343
Layer 23 0.512 0.231 0.231 0.325 0.335 0.147 0.147 0.388
Layer 24 0.521 0.239 0.239 0.404 0.335 0.158 0.158 0.404

goal is to ensure that the hallucination rate is mini-799

mized post-pruning without sacrificing too much800

model performance.801

C The theorems of AVSS and EAVSS802

C.1 Theorem of Layer Importance803

In a large language model, the importance of each804

layer can be quantified by the Activation Variance-805

Sparsity Score (AVSS). This score is a combination806

of activation variance and sparsity, and the total im-807

portance of the model is the sum of the individual808

layer scores. Mathematically, the importance of a809

layer l is given by:810

AVSSl =
Var(Al)

Sparsity(Al)
, (25)811

where Al represents the activations of layer l,812

Var(Al) is the variance of these activations, and813

Sparsity(Al) is the fraction of zero-valued activa-814

tions.815

To calculate the total importance of the model, 816

we sum the AVSS values of all layers: 817

Importancetotal =

L∑
l=1

AVSSl, (26) 818

where L is the total number of layers in the model. 819

This total value provides a measure of how critical 820

each layer is to the model’s performance. 821

Next, the layer importance can be ranked, where 822

layers with higher AVSS are considered more im- 823

portant: 824

Rankl = Sort(AVSS1,AVSS2, . . . ,AVSSL),
(27) 825

where Sort indicates that the layers are ordered 826

from most to least important based on their AVSS 827

score. 828

The layer importance theorem also implies that 829

pruning less important layers, or those with lower 830

AVSS, does not significantly affect the overall 831
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model performance. If the AVSS of layer l is less832

than a threshold θimportance, it is considered for re-833

moval:834

Prune Layerl if AVSSl < θimportance. (28)835

C.2 Theorem of Layer Pruning836

The theorem of layer pruning states that layers with837

low importance, as determined by the AVSS or any838

equivalent metric, can be removed without signif-839

icantly reducing the overall model performance.840

This process leads to a more efficient model by841

reducing computational complexity. The pruning842

process is formalized by the following expression:843

Prune Layerl if (29)844

Hallucination Propensityl > θhallucination.845

where θprune is the pruning threshold, below which846

a layer is removed from the model. This thresh-847

old ensures that only the least important layers are848

pruned.849

The impact of pruning on performance can be850

quantified by comparing the model’s performance851

before and after pruning. Let Performancepre-prune852

denote the model’s performance before pruning,853

and Performancepost-prune denote the model’s per-854

formance after pruning. The performance differ-855

ence is given by:856

∆Performance = Performancepre-prune (30)857

−Performancepost-prune.858

Pruning is considered successful if the perfor-859

mance difference is smaller than a predefined860

threshold ϵ:861

∆Performance ≤ ϵ. (31)862

Thus, the pruning theorem ensures that the863

model retains most of its predictive power while864

being computationally more efficient by removing865

redundant or unimportant layers.866

C.3 Theorem of Hallucination Reduction867

The theorem of hallucination reduction asserts that868

pruning layers with high hallucination propensity869

can reduce the overall hallucination rate of a lan-870

guage model. Hallucinations occur when the model871

generates outputs that are not consistent with the872

input or the intended meaning. The likelihood of 873

hallucinations in a given layer l can be quantified 874

using the Hallucination Propensity, defined as: 875

Hallucination Propensityl =
Var(Al)

1− Sparsity(Al)
,

(32) 876

where Var(Al) is the variance of activations in layer 877

l, and Sparsity(Al) is the fraction of zero-valued 878

activations. A higher Hallucination Propensity in- 879

dicates a greater likelihood of the layer generating 880

hallucinated outputs. 881

The reduction in the hallucination rate after prun- 882

ing can be expressed as the difference between the 883

pre-prune and post-prune hallucination rates: 884

∆Hallucination Rate = Hallucination Ratepre-prune
(33)

885

−Hallucination Ratepost-prune. 886

To minimize hallucinations, we define a thresh- 887

old for hallucination propensity above which layers 888

will be pruned: 889

Prune Layerl
(34)

890

if Hallucination Propensityl > θhallucination. 891

Finally, the success of hallucination reduction 892

is determined by the overall decrease in the hallu- 893

cination rate across the model, ensuring that the 894

model generates more accurate and reliable outputs 895

post-pruning. The goal is to have: 896

Ratepost-prune < Ratepre-prune. (35) 897

This theorem guarantees that by pruning layers 898

with high hallucination propensity, the model will 899

exhibit a lower tendency to generate incorrect or 900

nonsensical outputs. 901

D The formulas of AVSS and EAVSS 902

D.1 Activation Variance-Sparsity Score 903

(AVSS) 904

The Activation Variance-Sparsity Score (AVSS) is 905

a metric designed to quantify the contribution of 906

each layer to the overall model performance. It 907

combines two key factors: the variance of activa- 908

tions and the sparsity of activations within a layer. 909

This dual-factor approach helps in capturing both 910
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the spread of activations and their efficiency in con-911

tributing to model outputs. The formula for AVSS912

is given by:913

AVSSl =
Var(Al)

Sparsity(Al)
, (36)914

where Al represents the activations of layer l,915

Var(Al) is the variance of these activations, and916

Sparsity(Al) is the fraction of zero-valued activa-917

tions in that layer. This score gives us an idea of918

how much variability exists in the layer’s activa-919

tions relative to the proportion of non-zero activa-920

tions.921

To assess the total importance of the model, we922

sum the AVSS values across all layers, yielding a923

total score for the entire model:924

Total AVSS =

L∑
l=1

AVSSl, (37)925

where L is the total number of layers in the model.926

This total AVSS score indicates how significant the927

layers are in contributing to the model’s overall928

performance.929

In the context of pruning, we identify layers to be930

removed based on their AVSS. Specifically, if the931

AVSS of a layer is lower than a predefined thresh-932

old θAVSS, the layer is considered less important933

and can be pruned:934

Prune Layerl if AVSSl < θAVSS, (38)935

where θAVSS is the threshold below which layers936

are deemed non-essential. This pruning process937

helps in simplifying the model while retaining its938

performance.939

To evaluate the impact of pruning on model per-940

formance, we introduce a performance difference941

metric, which compares the performance of the942

model before and after pruning:943

∆Performance = Performancepre-prune (39)944

−Performancepost-prune.945

This formula quantifies the impact of layer pruning946

on the model’s predictive capability, helping to947

ensure that the pruning process does not overly948

degrade performance.949

D.2 Enhanced Activation Variance-Sparsity 950

Score (EAVSS) 951

The Enhanced Activation Variance-Sparsity Score 952

(EAVSS) extends the AVSS by incorporating an 953

additional factor that accounts for hallucination 954

propensity. Hallucinations occur when the model 955

generates outputs that are not consistent with the 956

input, and these are often linked to activation pat- 957

terns within specific layers. The EAVSS for a layer 958

is defined as: 959

EAVSSl =
Var(Al)× (1− Sparsity(Al))

Hallucination Propensity(Al)
, (40) 960

where Hallucination Propensity(Al) quantifies the 961

likelihood that a given layer generates hallucina- 962

tions. This formula takes into account both the vari- 963

ance and sparsity of activations, while normalizing 964

by the layer’s propensity to generate hallucinations. 965

The total EAVSS for the entire model is calcu- 966

lated by summing the EAVSS values of each layer: 967

Total EAVSS =
L∑
l=1

EAVSSl. (41) 968

This total score helps determine the layers that are 969

most crucial for both performance and reducing 970

hallucinations, as high EAVSS values correspond 971

to both useful and stable layers. 972

To perform pruning based on EAVSS, layers 973

with a low EAVSS score are removed. The pruning 974

decision for layer l is made if its EAVSS is below 975

a threshold θEAVSS: 976

Prune Layerl if EAVSSl < θEAVSS. (42) 977

By targeting layers with low EAVSS, we reduce 978

the occurrence of hallucinations while retaining 979

important layers for model accuracy. 980

Lastly, to evaluate the effect of pruning on hal- 981

lucination rates, we introduce a metric that tracks 982

the change in hallucination propensity across all 983

layers: 984
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∆Hallucination Propensity =

(43)

985

L∑
l=1

Hallucination Propensity(Al)pre-prune986

−
L∑
l=1

Hallucination Propensity(Al)post-prune987

This formula measures the reduction in hallucina-988

tions after pruning layers with high hallucination989

propensity, ensuring that pruning leads to a more990

reliable model.991

D.3 Layer Ranking and Removal992

Once we have computed the AVSS or EAVSS for993

each layer, it is often useful to rank the layers based994

on their importance. The ranking of layers can be995

expressed as:996

Rankl = Sort(AVSS1,AVSS2, . . . ,AVSSL),
(44)997

where Sort refers to arranging the layers in descend-998

ing order based on their AVSS score. Layers with999

higher AVSS are ranked higher, indicating that they1000

contribute more to the model’s performance.1001

After ranking the layers, we can prune the least1002

important ones. If the rank of a layer exceeds a1003

specified cutoff K, it will be pruned:1004

Prune Layerl if Rankl > K. (45)1005

Here, K represents the number of layers that are1006

retained, with layers ranked lower than K being1007

removed.1008

To assess the effectiveness of pruning, we moni-1009

tor the performance of the model before and after1010

pruning. The performance after pruning is given1011

by:1012

Performancepost-prune = Performancepre-prune − ϵ,
(46)1013

where ϵ represents the permissible performance1014

loss. The goal is to prune layers without signifi-1015

cantly impacting the model’s performance.1016

Finally, we track the total reduction in the num-1017

ber of layers after pruning. The number of layers1018

removed can be represented as:1019

Removed Layers = Lpre-prune − Lpost-prune, (47) 1020

where Lpre-prune and Lpost-prune are the number of 1021

layers before and after pruning, respectively. This 1022

helps to quantify how much the model’s complexity 1023

is reduced while maintaining performance. 1024

E Layer-wise Activation and Norm 1025

Analysis for LLaMa-3B and 1026

DistilBERT Models 1027

The figure 4 illustrates the layer-wise behavior of 1028

activation variance, L1 norm, and L2 norm for 1029

two different models, LLaMa-3B and DistilBERT, 1030

on various datasets. The top two rows represent 1031

LLaMa-3B model results on The Pile and Hack- 1032

erNews datasets, respectively. The bottom row 1033

shows DistilBERT performance on the SQuAD 1034

dataset. Each row contains three subplots: the left 1035

subplot shows activation variance per layer, the 1036

middle subplot displays the L1 norm per layer, and 1037

the right subplot presents the L2 norm per layer. 1038

The **activation variance** charts (leftmost col- 1039

umn) indicate the variability in activation outputs 1040

across layers. For LLaMa-3B on both The Pile 1041

and HackerNews datasets, we observe that the ac- 1042

tivation variance gradually increases in the deeper 1043

layers, suggesting that later layers contribute more 1044

significant feature transformations, potentially en- 1045

coding high-level semantic information. For Dis- 1046

tilBERT on SQuAD, activation variance is also 1047

concentrated in the deeper layers, though it is no- 1048

ticeably lower in magnitude compared to LLaMa- 1049

3B. This trend implies that the DistilBERT model, 1050

which is a compressed model, may have limited 1051

capacity for high-level abstraction compared to the 1052

larger LLaMa-3B model. 1053

The L1 norm charts (middle column) provide 1054

insight into the overall magnitude of activations 1055

in each layer. In LLaMa-3B on The Pile, the L1 1056

norm shows a peak around the middle layers, in- 1057

dicating that these layers might play a crucial role 1058

in balancing information flow between early and 1059

late layers. On HackerNews, a similar trend is 1060

observed, though the distribution is more consis- 1061

tent across layers, with relatively high values main- 1062

tained throughout. In contrast, DistilBERT exhibits 1063

a steady increase in the L1 norm across layers on 1064

the SQuAD dataset, which might reflect a progres- 1065

sive accumulation of information as the model pro- 1066

cesses data layer by layer, likely compensating for 1067

its reduced depth and capacity. 1068
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Figure 4: Layer-wise Activation Variance, L1 Norm, and L2 Norm for LLaMa-3B on The Pile and HackerNews
datasets (top two rows), and DistilBERT on SQuAD (bottom row).

The L2 norm charts (rightmost column) show an-1069

other measure of activation magnitude, focusing on1070

the Euclidean distance of activations within each1071

layer. For LLaMa-3B on The Pile, the L2 norm1072

spikes in certain middle and deeper layers, which1073

could signify key transformation points where sig-1074

nificant processing occurs. On HackerNews, the1075

L2 norm exhibits high values primarily in the mid-1076

dle and final layers, suggesting these layers handle1077

substantial information processing and potentially1078

align with the model’s attention mechanisms. For1079

DistilBERT on SQuAD, the L2 norm steadily in-1080

creases towards the last layer, supporting the no-1081

tion that the model aggregates information progres-1082

sively, with the final layer containing the most re-1083

fined representation.1084

In summary, this analysis highlights notable dif-1085

ferences between LLaMa-3B and DistilBERT in1086

terms of activation patterns across layers. LLaMa-1087

3B demonstrates a complex distribution of activa-1088

tion variance and norm values, particularly in the1089

middle and deeper layers, suggesting an intricate1090

processing structure that leverages its larger capac-1091

ity. DistilBERT, on the other hand, shows more 1092

gradual changes across layers, which may reflect a 1093

simplified processing approach suitable for a com- 1094

pressed model. 1095

F Layer-wise Activation and Norm 1096

Analysis for DistilBERT 1097

The figure 5 presents a detailed layer-wise analy- 1098

sis of DistilBERT’s activation patterns and norms 1099

across two datasets: The Pile (top two rows) and 1100

HackerNews (bottom two rows). Each dataset has 1101

five charts representing different metrics: activa- 1102

tion variance, L1 norm, L2 norm, Frobenius norm, 1103

and activation sparsity across the model’s layers. 1104

The activation variance charts (leftmost in each 1105

row) reveal how the variability of activations 1106

changes from the initial to the final layers. For 1107

both datasets, we observe a steady increase in acti- 1108

vation variance towards the deeper layers, with the 1109

highest variance in the final layers. This trend sug- 1110

gests that DistilBERT’s later layers capture more 1111

complex, higher-level features, reflecting the in- 1112

creasing abstraction as the data flows through the 1113
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Figure 5: Layer-wise Activation Variance, L1 Norm, L2 Norm, Frobenius Norm, and Activation Sparsity for
DistilBERT on The Pile (top two rows) and HackerNews (bottom two rows).

network. The rise in variance is more pronounced1114

in The Pile dataset, indicating that DistilBERT’s1115

representations may be more diverse and nuanced1116

when processing data from The Pile compared to1117

HackerNews.1118

The L1 norm and L2 norm charts (second and1119

third from the left) measure the magnitude of acti-1120

vations across layers. For The Pile, both L1 and L21121

norms show a gradual increase, peaking in the final1122

layers. This suggests that the model accumulates1123

and amplifies information as it progresses, align-1124

ing with the high variance observed in these layers.1125

On HackerNews, while the L1 norm also increases,1126

the pattern is less pronounced, with more moderate1127

peaks across layers, indicating a steadier flow of1128

information. The L2 norm follows a similar trend,1129

confirming that the magnitude of activations is rela-1130

tively consistent on HackerNews compared to The 1131

Pile. 1132

The Frobenius norm (fourth chart) provides 1133

another perspective on the layer-wise activation 1134

strength. For both datasets, the Frobenius norm 1135

remains relatively stable across layers but exhibits 1136

a slight peak in the middle and later layers. This 1137

stability suggests that DistilBERT maintains a bal- 1138

anced representation strength, avoiding overly high 1139

activations that could lead to unstable learning. The 1140

slight peak may indicate layers that contribute more 1141

significantly to information retention and transfor- 1142

mation, especially on The Pile, where a higher 1143

Frobenius norm indicates potentially richer feature 1144

encoding. 1145

The activation sparsity charts (rightmost in each 1146

row) show the proportion of zero activations per 1147
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layer, offering insights into how sparse or dense1148

the activations are. For both datasets, sparsity de-1149

creases towards the middle layers, followed by a1150

slight increase in the final layers. This pattern sug-1151

gests that early layers have sparse activations, pos-1152

sibly focusing on simpler, low-level features. In1153

contrast, middle layers capture more complex rep-1154

resentations, requiring more active neurons. The1155

final layers exhibit slightly higher sparsity, which1156

may reflect the model refining and focusing on spe-1157

cific features in its output.1158

In summary, this layer-wise analysis shows that1159

DistilBERT processes data differently across The1160

Pile and HackerNews datasets. The Pile dataset1161

yields higher activation variance, L1 and L2 norms,1162

and Frobenius norms, indicating more intense fea-1163

ture processing and possibly richer representations.1164

In comparison, HackerNews maintains more bal-1165

anced and consistent norms, suggesting that Dis-1166

tilBERT processes this data with less fluctuation1167

across layers. These observations underscore the1168

importance of layer-wise examination when evalu-1169

ating model behavior across diverse datasets.1170

G Layer-wise Relevance Propagation1171

(LRP) Evaluation Method1172

Layer-wise Relevance Propagation (LRP) is an1173

evaluation method that provides insight into the1174

importance of each layer in a model by propagat-1175

ing relevance scores back through the layers. LRP1176

is commonly used to understand which parts of the1177

model contribute most significantly to its predic-1178

tions. Here, we outline the mathematical founda-1179

tion of the LRP process.1180

Given a neural network with layers indexed by l1181

and a prediction function f(x), the goal of LRP is1182

to assign a relevance score R
(l)
i to each neuron i in1183

each layer l. The relevance scores are initialized at1184

the output layer with:1185

R(L) = f(x), (48)1186

where L is the final layer of the network and R(L)1187

represents the total relevance of the model’s predic-1188

tion.1189

LRP propagates relevance scores backward us-1190

ing a rule-based approach. One common rule is the1191

ϵ-rule, which distributes relevance scores based on1192

neuron activations and weights, defined as:1193

R
(l)
i =

∑
j

a
(l)
i w

(l,l+1)
ij∑

i′ a
(l)
i′ w

(l,l+1)
i′j + ϵ

R
(l+1)
j , (49) 1194

where a
(l)
i is the activation of neuron i in layer l, 1195

w
(l,l+1)
ij is the weight from neuron i in layer l to 1196

neuron j in layer l + 1, and ϵ is a small positive 1197

constant added for numerical stability. 1198

Another common rule is the α-β-rule, which 1199

divides relevance into positive and negative contri- 1200

butions. This rule is expressed as: 1201

R
(l)
i =

∑
j

α
a
(l)+
i w

(l,l+1)+
ij∑

i′ a
(l)+
i′ w

(l,l+1)+
i′j

(50) 1202

−β
a
(l)−
i w

(l,l+1)−
ij∑

i′ a
(l)−
i′ w

(l,l+1)−
i′j

R
(l+1)
j 1203

where a(l)+i and a
(l)−
i represent positive and neg- 1204

ative activations, w(l,l+1)+
ij and w

(l,l+1)−
ij represent 1205

positive and negative weights, and α and β are 1206

parameters that satisfy α− β = 1. 1207

The relevance scores are propagated through all 1208

layers until the input layer is reached, at which 1209

point each input feature xk receives a relevance 1210

score R
(1)
k : 1211

R
(1)
k =

∑
j

xkw
(0,1)
kj∑

k′ xk′w
(0,1)
k′j

R
(2)
j . (51) 1212

Finally, the sum of relevance scores across the 1213

input layer should ideally equal the model output: 1214∑
k

R
(1)
k = R(L) = f(x). (52) 1215

This equality ensures that the relevance distribu- 1216

tion is conserved, meaning the contribution from 1217

each input feature sums to the model’s prediction 1218

score. LRP allows us to interpret which neurons 1219

and layers contribute most to the final output. 1220

H Iterative Layer Pruning Process 1221

The iterative layer pruning process aims to reduce 1222

model complexity by removing layers with the 1223

least impact on model performance. The goal is 1224

to simplify the model while retaining its accuracy 1225

as much as possible. This section describes the 1226

pruning methodology mathematically. 1227
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Let Performance(f) represent the performance1228

metric (e.g., accuracy) of a model f . For each1229

layer l, we calculate a layer importance score Il,1230

which quantifies the contribution of layer l to the1231

model’s performance. The importance score can1232

be calculated using metrics like AVSS (Activation1233

Variance-Sparsity Score) or EAVSS (Enhanced Ac-1234

tivation Variance-Sparsity Score):1235

Il = AVSSl. (53)1236

In each pruning iteration, we identify the layer1237

l∗ with the lowest importance score:1238

l∗ = argmin
l

Il. (54)1239

The layer l∗ is removed from the model, creating1240

a pruned model f ′. We then re-evaluate the model’s1241

performance with the remaining layers:1242

Performance(f ′) = evaluate(f ′|data). (55)1243

If the performance drop after pruning l∗ exceeds1244

a predefined threshold δ, the layer is retained; oth-1245

erwise, it is permanently removed:1246

Remove Layer l∗ (56)1247

if Performance(f ′) ≥ Performance(f)− δ.1248

To track the cumulative impact of pruning on1249

model performance, we calculate the total perfor-1250

mance loss after pruning n layers as:1251

∆Performancetotal = Performance(f) (57)1252

−Performance(f (n))1253

where f (n) is the model after pruning n layers.1254

This metric helps to ensure that the cumulative per-1255

formance loss remains within acceptable bounds.1256

An alternative approach to selecting δ dynam-1257

ically based on the overall model performance is1258

to set δ as a fraction of the initial model’s perfor-1259

mance, such as:1260

δ = α× Performance(f), (58)1261

where α is a scaling factor that determines the al-1262

lowable percentage of performance loss per itera-1263

tion.1264

The pruning process terminates when the rel-1265

ative performance difference between successive1266

iterations falls below a small convergence criterion 1267

ϵ: 1268

|Perform(f (n))− Perform(f (n−1))| < ϵ. (59) 1269

The final pruned model fpruned has the following 1270

performance: 1271

Performance(fpruned) ≈ Performance(f), (60) 1272

where fpruned retains most of the original model’s 1273

accuracy but with fewer layers and reduced compu- 1274

tational complexity. 1275

This iterative pruning approach enables the cre- 1276

ation of an efficient model by removing redundant 1277

layers while preserving its predictive power. 1278

I Limitation 1279

Although the proposed Activation Variance- 1280

Sparsity Score (AVSS) and its enhanced version, 1281

EAVSS, show promising results in improving layer 1282

importance evaluation and mitigating hallucina- 1283

tions in large language models (LLMs), there are 1284

several limitations to consider. First, the approach 1285

heavily relies on the assumption that layer impor- 1286

tance and hallucination propensity can be effec- 1287

tively captured through activation variance and 1288

sparsity. However, these metrics may not fully 1289

account for the complex interactions between lay- 1290

ers and the nuanced behavior of LLMs in different 1291

contexts. Additionally, while pruning redundant 1292

or hallucination-prone layers improves model ef- 1293

ficiency, it may also limit the model’s ability to 1294

handle diverse tasks, particularly those requiring 1295

high-level abstraction or specialized knowledge. 1296

Furthermore, the pruning process could be com- 1297

putationally expensive, especially for very deep 1298

models, and might lead to performance degradation 1299

in certain tasks if not carefully optimized. Future 1300

research could explore more granular metrics or 1301

hybrid approaches that consider other factors such 1302

as contextual relevance or semantic consistency 1303

across layers. 1304
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