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Abstract
Recent progress of deep generative models in the
vision and language domain has stimulated sig-
nificant interest in more structured data genera-
tion such as molecules. However, beyond gen-
erating new random molecules, efficient explo-
ration and a comprehensive understanding of the
vast chemical space are of great importance to
molecular science and applications in drug de-
sign and materials discovery. In this paper, we
propose a new framework, ChemFlow, to tra-
verse chemical space through navigating the la-
tent space learned by molecule generative models
through flows. We introduce a dynamical system
perspective that formulates the problem as learn-
ing a vector field that transports the mass of the
molecular distribution to the region with desired
molecular properties or structure diversity. Un-
der this framework, we unify previous approaches
on molecule latent space traversal and optimiza-
tion and propose alternative competing meth-
ods incorporating different physical priors. We
validate the efficacy of ChemFlow on molecule
manipulation and single- and multi-objective
molecule optimization tasks under both super-
vised and unsupervised molecular discovery set-
tings. Codes and demos are available on GitHub
at https://github.com/garywei944/ChemFlow.

1. Introduction
Designing new functional molecules has been a long-
standing challenge in molecular discovery which concerns
a wide range of applications in drug design and materials
discovery (Sanchez-Lengeling & Aspuru-Guzik, 2018; Va-
mathevan et al., 2019). With the increasing interest in apply-
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ing deep learning models in scientific problems (Wang et al.,
2023; Zhang et al., 2023), molecular design has attracted
considerable attention given its massively available data
and accessible evaluations. Among the developed meth-
ods, two paradigms emerge: one paradigm searches for
new molecules based on combinatorial optimization ap-
proaches respecting the discrete nature of molecules; the
other paradigm builds upon the success of deep generative
models in approximating the molecular distribution with a
given dataset and then generating new molecules from the
learned models (Du et al., 2022a). Both of the approaches
have demonstrated promising results in small molecule, pro-
tein, and materials design (Watson et al., 2023; Ingraham
et al., 2023; Loeffler et al., 2023; Zeni et al., 2023). De-
spite the promise, the chemical space is tremendously large
with the number of drug-like small molecule compounds
estimated to be from 1023 to 1060 (Bohacek et al., 1996;
Lipinski et al., 2012). This necessitates either more efficient
searching methods or better understanding about the struc-
ture of the chemical space. Following the progress made in
studying the latent structure of deep generative models (e.g.
generative adversarial networks (GANs) (Goodfellow et al.,
2016), variational autoencoders (VAEs) (Kingma & Welling,
2013), and denoising diffusion models (Ho et al., 2020)) in
computer vision (Jahanian et al., 2019; Burgess et al., 2018;
Härkönen et al., 2020; Kwon et al., 2022), decent efforts
have recently been made in understanding the learned latent
space of molecule generative models.

Initially, disentangled representation learning becomes a
popular paradigm to enforce a structured and interpretable
representation (Du et al., 2022b). Specifically, each latent
dimension is expected to learn a disentangled factor of vari-
ation, and tweak the latent vector along the dimension could
lead to generating new samples with changes only in one
molecular property. However, even if imposing such con-
straints in the training of molecule generative models, the
models still struggle to learn meaningful disentangled fac-
tors in the early attempts (Du et al., 2022c). In addition to
constraining the model training procedure, exploring the
structure of pre-trained molecule generative models is more
efficient. The main approach developed is to utilize op-
timization approaches to discover the region in the latent
space with the desired molecular property. It often trains a
proxy function to map from the latent vector to the property,
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providing access to gradients for gradient-based optimiza-
tion (Liu et al., 2018; Griffiths & Hernández-Lobato, 2020;
Eckmann et al., 2022). The third line of work also builds
upon pre-trained models as well. It leverages one interest-
ing finding such that the learned latent space of molecule
generative models is linearly separable (Gómez-Bombarelli
et al., 2018), which is also widely studied and used as a
priori in computer vision (Shen et al., 2020; Shen & Zhou,
2021). ChemSpace (Du et al., 2023) develops a highly
efficient approach to use linear classifiers to identify the
separation boundary and considers the normal direction to
the boundary as the direction of control. Nevertheless, the
linear separability assumption may be too strong. It is worth
noting that the first line of work does not require labels and
can be trained in an unsupervised manner (referred to as un-
supervised discovery), while both the second and third lines
of work require access to labels to train/identify a guidance
model/direction (referred to as supervised discovery).

In this paper, we propose a new framework, ChemFlow,
based on flows in a dynamical system to efficiently explore
the latent structure of molecule generative models. Specif-
ically, we unify previous approaches (gradient-based opti-
mization, linear latent traversal, and disentangled traversal)
under the realm of flows that transforms data density along
time via a vector field. In contrast to previous linear models,
our framework is flexible to learn nonlinear transformations
inspired by partial differential equations (PDEs) governing
real-world physical systems such as heat and wave equations.
We then analyze how different dynamics may bring special
properties to solve different tasks. Our framework can also
generalize both supervised and unsupervised settings un-
der the same umbrella. Particularly in the under-studied
unsupervised setting, we demonstrate a structure diversity
potential can be incorporated to find trajectories that maxi-
mize the structure change of the molecules (which in turn
leads to property change). We conduct extensive experi-
ments with physicochemical, drug-related properties, and
protein-ligand binding affinities on both molecule manipula-
tion and (single- and multi-objective) molecule optimization
experiments. The experiment results demonstrate the gen-
erality of the proposed framework and the effectiveness of
alternative methods under this framework to achieve better
or comparable results with existing approaches.

2. Background
2.1. Navigating Latent Space of Molecules

The latent space Z of molecule generative models is often
learned through an encoder function fθ(·) and a decoder
function gψ(·) such that the encoder maps the input molec-
ular structures x ∈ X into an (often) low-dimensional and
continuous space (i.e. latent space) while the decoder maps
the latent vectors z ∈ Z back to molecular structures x′.
Note that this encoder-decoder architecture is general and

can be realized by popular generative models such as VAEs,
flow-based models, GANs, and diffusion models (Jin et al.,
2018; Madhawa et al., 2019; Cao & Kipf, 2018; Vignac
et al., 2023). For simplicity, we focus on VAE-based meth-
ods in this paper. To traverse the learned latent space of
molecule generative models, two approaches have been pro-
posed: gradient-based optimization and latent traversal.

The gradient-based optimization methods first learn a proxy
function h(·) parameterized by a neural network that pro-
vides the direction to traverse (Zang & Wang, 2020). This
can be formulated as a gradient flow following the direction
of steepest descent of the potential energy function h(·) and
discretized, as follows:

dzt = −∇zh(zt)dt
zt = zt−1 −∇zh(zt−1)dt

(1)

where we take a dynamic system perspective on the evolu-
tion of latent samples. The latent traversal approaches lever-
age the observation of linear separability in the learned latent
space of molecule generative models (Gómez-Bombarelli
et al., 2018). Since the direction is assumed to be linear, it
can be found easily. ChemSpace (Du et al., 2023) learns
a linear classifier that defines the separation boundary of
the molecular properties. Then the normal direction of the
boundary provides a linear direction n ∈ Z for traversing
the latent space:

zt = z0 + nt (2)

We notice that the above gradient flow and linear traversal
can be analyzed and designed from a dynamical system per-
spective: linear traversal can be considered as a special case
of wave functions, i.e., we have ∂2zt/∂2zt−1 = ∂2zt/∂2t = 0
satisfied by wave functions. This connection inspires us to
consider designing more dynamical traversal approaches in
the latent space.

2.2. Wasserstein Gradient Flows

Gradient flows define the curve x(t) ∈ Rn that evolves in
the negative gradient direction of a function F : Rn → R.
The time evolution of the gradient flow is given by the ODE
x′(t) = −∇F(x(t)). Wasserstein gradient flows describe a
special type of gradient flow whereF is set to be the Wasser-
stein distance. For example, as introduced in Benamou &
Brenier (2000), the commonly used L2 Wasserstein metric
induces a dynamic formulation of optimal transport:

W2(µ, ν)
2 = min

v,ρ

{∫ ∫
1

2
ρ(t,x)|v(t,x)|2

dt dx : ∂tρ(t,x) = −∇ · (v(t,x)ρ(t,x))
} (3)

where µ, ν are two probability measures at the source and
target distributions, respectively. Interestingly, if we take
the gradient of a potential energy ∇ϕ as the velocity field
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applied to a distribution, the time evolution of ∇ϕ can be
seen to minimize the Wasserstein distance and thus follow
optimal transport. In Appendix A, we give detailed deriva-
tions of how the vector fields minimize the L2 Wasserstein
distance and discuss alternative PDEs of the density evolu-
tion recovered by Wasserstein gradient flow (e.g. Wasser-
stein gradient flow over the entropy functional recovers heat
equation) following the seminal JKO scheme (Jordan et al.,
1996).

3. Methodology
We present ChemFlow as a unified framework for latent
traversals in chemical latent space as latent flows. We pa-
rameterize a set of scalar-valued energy functions ϕk =
MLPθk(t, z) ∈ R and use the learned flow∇zϕ to traverse
the latent samples. The traversal process can be described
by the following equation in a Lagrangian way (particle
trajectory):

zt = zt−1 +∇zϕ
k(t− 1, zt−1) (4)

Alternatively, as an Eulerian approach, we can write the
time evolution of the density through a pushforward map:

ρt = [ψt]∗ρt−1 (5)

where ψt defines the time-dependent flow that transforms
the densities of latent samples through a probability path.
The pushforward measure [ψt]∗ induces a change of variable
formula for densities (Rezende & Mohamed, 2015):

[ψt]∗ρt−1(z) = ρt−1(ψ
−1
t (z))|det

[∂ψ−1
t (z)

∂z

]
| (6)

In the following, we will introduce how∇zϕ
k is matched to

some pre-defined velocities for generating different flows.

3.1. Learning Different Latent Flows

Given a pre-trained molecule generative model gψ : Z → X
with prior distribution p(z), we would like to model K
different semantically disentangled latent trajectories that
correspond to different properties of the molecules.

Hamilton-Jacobi Flows. One desired property for the
latent traversal comes from optimal transport theory
such that the transport cost is minimized (i.e. shortest
path). This property can be enforced by solving Eq. (3)
by Karush–Kuhn–Tucker (KKT) conditions, which will
give the optimal solution — the Hamilton-Jacobi Equa-
tion (HJE):

∂

∂t
ϕ(t, z) +

1

2
||∇zϕ(t, z)||2 = 0 (7)

where the velocity field is defined as the flow∇ϕ. The HJE
can also be interpreted as mass transportation in fluid dynam-
ics, i.e., under the velocity field∇ϕ, the fluid will evolve to
the target distribution with an optimal transportation cost.

We achieve the HJE constraint by matching our flow fields
and define the boundary condition as:

Lr =
1

T

T−1∑
t=0

( ∂
∂t
ϕ(t, z) +

1

2
||∇zϕ(t, z)||2

)2
Lϕ = ||∇zϕ

k(0, z0)||22

(8)

where T represents the total number of traversal steps, Lr
restricts the energy to obey our physical constraints, and Lϕ
restricts ϕ(t, zt) to match the initial condition. Our latent
traversal can be thus regarded as dynamic optimal transport
between distributions of molecules with different properties.

Wave Flows. Alternatively, we can pivot the optimal trans-
port property to enforce additional physical and dynamic
priors. For example, if we specify the flow to follow wave-
like dynamics, we can use the second-order wave equation:

∂2

∂t2
ϕk(t, z)− c2∇2

zϕ
k(t, z) = 0 (9)

The above constraint empirically produces highly diverse
and realistic trajectories. Our velocity matching objective
and boundary condition then become:

Lr =
1

T

T−1∑
t=0

|| ∂
2

∂t2
ϕk(t, z)− c2∇2

zϕ
k(t, z)||22

Lϕ = ||∇zϕ
k(0, z0)||22

(10)

where Lr and Lϕ restrict the physical constraints and the
initial condition, respectively. Note that ϕk ≡ 0 is a trivial
optimal solution for the above two objectives regarding that
both Lr and Lϕ are non-negative. To prevent the parame-
terized ϕk from converging to such a trivial solution, we
introduce more guidance to the loss function separately.

Alternative Flows. Besides HJE and wave equations, our
framework is also general to include other commonly used
PDEs that allow for different dynamics along the flow, such
as Fokker Planck equation and heat equation. In the exper-
imental section, we will explore the effectiveness of each
latent in different supervision settings.

3.2. Supervised & Unsupervised Guidance

Supervised Semantic Guidance. When an explicit seman-
tic potential energy function or labeled data for the semantic
of interest is available, we can use the provided semantic
potential to guide the learning of the flow. Firstly, we train
a surrogate model hη : X → R (parameterized by a deep
neural network) to predict the corresponding molecular prop-
erty. Then we use the trained surrogate model as guidance
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Figure 1. ChemFlow framework: (1) a pre-trained encoder fθ(·) and decoder gψ(·) that maps between molecules x and latent vectors z,
(2) we use a property predictor hη(·) (green box) or a “Jacobian control” (yellow box) as the guidance to learn a vector field ∇ϕ(zt, t)
that maximizes the change in certain molecular properties (e.g. plogP, QED) or molecular structures, (3) during the training process, we
add additional dynamical regularization on the flow. The learned flows move the latent samples to change the structures and properties of
the molecules smoothly. (Better seen in color). The flow chart illustrates a case where a molecule is manipulated into a drug like caffeine.

to learn flows that drive the increase of the property for the
trajectory of the generated molecules.

d = ⟨−∇zhη(gψ(zt)),∇zϕ
k(zt, t)⟩

LP = − sign(d)∥d∥22
(11)

The intuition behind this objective is to learn the vector
field zt such that it aligns with the direction of the steepest
descent (negative gradient) of the objective function. Note
that the sign of the dot product matters as it determines
minimizing or maximizing the property.

Unsupervised Diversity Guidance. When no explicit po-
tential energy function is provided to learn the flow, we need
to define a potential energy function that captures the change
of the molecular properties. As molecular properties are
determined by the structures, we devise a potential energy
that maximizes the continuous structure change of the gener-
ated molecules. Inspired by Song et al. (2023b), we couple
the traversal direction with the Jacobian of the generator
to maximize the traversal variations in the molecular space.
The perturbation on latent samples can be approximated by
the first-order Taylor approximation:

g(zt + ϵ∇zϕ
k(t, zt))

=g(zt) + ϵ
∂g(zt)

∂zt
∇zϕ

k(t, zt) +R1(g(zt))
(12)

where ϵ denotes perturbation strength, and R1(·) is the high-
order terms. In the unsupervised setting, for sufficiently

small ϵ, if the Jacobian-vector product can cause large vari-
ations in the generated sample, the direction is likely to
correspond to certain properties of molecules. We therefore
introduce such a Jacobian-vector product guidance:

LJ = −
∥∥∥∥∂g(zt)∂zt

∇zϕ
k(t, zt)

∥∥∥∥2
2

(13)

Compared to the supervised setting which maximizes the
change of the molecular properties, it aims to find the direc-
tion that causes the maximal change of the structures. This
can in turn effectively pushes the initial data distribution to
the target one concentrated on the maximum property value.
The Jacobian guidance will compete with the dynamical
regularization (e.g. wave-like form) on the flow to yield
smooth and meaningful traversal paths.

Disentanglement Regularization. While the above for-
mulation can encourage smooth dynamics and meaningful
output variations, the flows are likely to mine identical di-
rections which all correspond to the maximum Jacobian
change. To avoid such a trivial solution, we adopt an auxil-
iary classifier lγ following Song et al. (2023b) to predict the
flow index and use the cross-entropy loss to optimize it:

Lk = LCE(lγ(gψ(zt); gψ(zt+1)), k) (14)

Where xt = g(zt) is the generated sample from timestep t.
We see the extra classifier guidance would encourage each
flow to be independent and find distinct properties. For each
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target property, we compute the Pearson correlation coeffi-
cient using a randomly generated test set. This coefficient
measures the correlation between the property and a natural
sequence (from 1 to time step t) along the optimization tra-
jectory. We then select the energy network that achieves the
highest correlation score for optimizing molecules with that
specific property.

3.3. Connection with Langevin Dynamics for Global
Optimization

In scenarios where our flow adheres to the dynamics of the
Fokker-Planck equation, our approach may also be inter-
preted as employing a learned potential energy function to
simulate Langevin Dynamics for global optimization (Gar-
diner et al., 1985). Notably, the convergence of Langevin
dynamics, particularly at low temperatures, tends to oc-
cur around the global minima of the potential energy func-
tion (Chiang et al., 1987). The continuous and discretized
Langevin dynamics are as follows:

dzt = −∇zhη(zt)dt+
√
2dwt

zt = zt−1 −∇zhη(zt−1)dt+
√
2dtN (0, I)

(15)

Proposition 3.1. (Global Convergence of Langevin Dy-
namics, adapted from Gelfand & Mitter (1991)). Given a
Langevin dynamics in the form of

zt = zt−1 − at(∇zhη(zt−1) + ut) + btwt

where wt is a d-dimensional Brownian motion, at and bt
are a set of positive numbers with aT , bT → 0, and ut is a
set of random variables in Rn denoting noisy measurements
of the energy function hη(·). Under mild assumptions, zt
converges to the set of global minima of hη(·) in probability.

Following Proposition 3.1, the learned latent flow can be
used to search for molecules with optimal properties and
it converges to the global minimizers of the learned latent
potential energy function.

4. Experiments
4.1. Experiment Set-up

Datasets & Molecular properties. We extract 4,253,577
molecules from the three commonly used datasets for
drug discovery including MOSES (Polykovskiy et al.,
2018), ZINC250K (Irwin & Shoichet, 2005), and
ChEMBL (Zdrazil et al., 2023). Molecules are repre-
sented by SELFIES strings (Krenn et al., 2020). All in-
put molecules are padded to the maximum length in the
dataset before fitting into the generative model. We con-
sider a total of 8 molecular properties which include 3 gen-
eral drug-related properties — Quantitative Estimate of
Drug-likeness (QED), Synthesis Accessibility (SA), and

penalized Octanol-water Partition Coefficient (plogP) and 3
machine learning-based target activities — DRD2, JNK3
and GSK3B (Huang et al., 2022) , 2 simulation-based target
activities — docking scores for two human proteins ESR1
and ACAA1. See Appendix D.3 for details.

Implementations. We establish our framework by pre-
training a VAE model that learns a latent space of molecules
that can generate new molecules by decoding latent vec-
tors from the latent space. We adapt the framework in
Eckmann et al. (2022) which is a basic VAE architecture
with molecular SELFIES string representations and an addi-
tional MLP model as the surrogate property predictor. See
Appendix D.5 for all implementation and hyper-parameter
details.

Model variants. As discussed in Section 3.1, our pro-
posed framework is general to incorporate different dynami-
cal priors to learn the flow. For the experiments, we consider
four types of dynamics including gradient flow (GF), Wave
flow (Wave, eq. (9)), Hamilton Jacobi flow (HJ, eq. (7))
and Langevin Dynamics or equivalently Fokker Planck
flow (LD, eq. (15)).

For the specific molecular properties and evaluations, the
readers are kindly referred to Appendix D for details. We
also move qualitative evaluations to Appendix F due to
space limit.

4.2. Molecule Optimization

Molecule optimization is key in drug design and materials
discovery, aiming to identify molecules with optimal proper-
ties (Brown et al., 2019). Various machine learning methods
have accelerated this process (Du et al., 2022a). Our discus-
sion focuses on optimization within the latent space of gen-
erative models, primarily using gradient-based optimization
as outlined in Section 2.1. We categorize molecule optimiza-
tion into three scenarios: (1) unconstrained optimization to
identify molecules with the best properties, (2) constrained
optimization to find molecules with the best-expected prop-
erty and similar to specific structures—a common step in
the lead optimization process, and (3) multi-objective opti-
mization to simultaneously enhance multiple properties of a
molecule.

Baselines. For molecule optimization, we follow the same
experiment procedure as in Eckmann et al. (2022)1. To
ensure a fair comparison, we use the same pre-trained VAE
model for all the methods. The details about the baselines
are deferred to Appendix D.3.1.

1Note that we notice there was a misalignment of normalization
schemes for the plogP property in the previous literature, so we
only rerun and compare with related methods that align with our
normalization scheme. Details can be found in Appendix D.3.
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Table 1. Unconstrained plogP, QED maximization, and docking score minimization. (SPV denotes supervised scenarios, UNSUP
denotes unsupervised scenarios). Boldface highlights the highest-performing generation for each property within each rank.

METHOD PLOGP ↑ QED ↑ ESR1 DOCKING ↓ ACAA1 DOCKING ↓
1ST 2ND 3RD 1ST 2ND 3RD 1ST 2ND 3RD 1ST 2ND 3RD

RANDOM 3.52 3.43 3.37 0.940 0.933 0.932 -10.32 -10.18 -10.03 -9.86 -9.50 -9.34
CHEMSPACE 3.74 3.69 3.64 0.941 0.936 0.933 -11.66 -10.52 -10.43 -9.81 -9.72 -9.63
GRADIENT FLOW 4.06 3.69 3.54 0.944 0.941 0.941 -11.00 -10.67 -10.46 -9.90 -9.64 -9.61

WAVE (SPV) 4.76 3.78 3.71 0.947 0.934 0.932 -11.05 -10.71 -10.68 -10.48 -10.04 -9.88
WAVE (UNSUP) 5.30 5.22 5.14 0.905 0.902 0.978 -10.22 -10.06 -9.97 -9.69 -9.64 -9.57
HJ (SPV) 4.39 3.70 3.48 0.946 0.941 0.940 -10.68 -10.56 -10.52 -9.89 -9.61 -9.60
HJ (UNSUP) 4.26 4.10 4.07 0.930 0.928 0.927 -10.24 -9.96 -9.92 -9.73 -9.31 -9.24
LD 4.74 3.61 3.55 0.947 0.947 0.942 -10.68 -10.29 -10.28 -10.34 -9.74 -9.64

Unconstrained Molecule Optimization. In this study, we
randomly sample 100,000 molecules from the latent space
and assess the top three scores after 10 steps of optimiza-
tion for each method (details in Table 1). For two specific
docking scores tasks, however, only 10,000 molecules are
sampled due to computational resource constraints. All
methods employ a step size of 0.1 to ensure a fair compar-
ison. Our findings reveal that the efficacy of optimization
methods varies with target properties, highlighting the ne-
cessity of employing a diverse set of approaches within the
optimization framework, rather than depending on a single
dominant method. We also visualize some generated ligands
docked into protein pockets in Figure 2.

Furthermore, when extending the optimization procedure
to 1,000 steps, illustrated in Figure 3, Langevin dynam-
ics significantly pushes the entire distribution to molecules
with better properties, surpassing other methods in perfor-
mance. Although the random direction method is effective
in optimizing molecules, it does not consistently produce
significant shifts in the distribution. Moreover, the outputs
from ChemSpace often converge to just a few molecules,
which is indicative of the challenge posed by OOD (Out-of-
Distribution) generation.

Similarity-constrained Molecule Optimization. Adopt-
ing methodologies from JT-VAE (Jin et al., 2018) and
LIMO (Eckmann et al., 2022), we select 800 molecules
with the lowest partition coefficient (plogP) scores from the
ZINC250k dataset. These molecules undergo 1,000 steps of
optimization until convergence is achieved for all methods.
The optimal results for each molecule, adhering to a prede-
fined similarity constraint (δ), is reported as in Table 2. The
structural similarity is measured using Tanimoto similarity
between Morgan fingerprints with a radius of 2.

Without any similarity constraints, the unsupervised ap-
proaches significantly improve molecular properties with
a high success rate. However, as the similarity constraints
increase, both the magnitude and success rate of unsuper-
vised methods decrease notably. The most considerable
improvements of ChemSpace are observed when similarity

Table 2. Similarity-constrained plogP maximization. For each
method with minimum similarity constraint δ, the results in re-
ported in format mean ± standard derivation (success rate %) of
absolute improvement, where the mean and standard derivation are
calculated among molecules that satisfy the similarity constraint.

Method δ = 0 δ = 0.2 δ = 0.4 δ = 0.6

Random 11.76 ± 6.18 (99.0) 7.64 ± 6.38 (80.0) 5.03 ± 5.70 (52.1) 2.37 ± 3.71 (21.1)

ChemSpace 12.13 ± 6.41 (99.8) 9.07 ± 6.80 (90.2) 7.52 ± 6.29 (59.4) 5.70 ± 5.84 (20.2)
Gradient Flow 7.88 ± 7.28 (60.4) 7.20 ± 6.98 (56.5) 5.45 ± 6.45 (41.9) 3.60 ± 5.50 (18.4)

Wave (spv) 6.83 ± 7.15 (59.6) 5.62 ± 6.42 (54.9) 4.31 ± 5.55 (41.9) 2.47 ± 4.21 (20.6)
Wave (unsup) 19.76 ± 13.62 (99.6) 7.47 ± 9.62 (50.2) 2.06 ± 4.37 (27.3) 0.77 ± 2.21 (16.8)

HJ (spv) 8.58 ± 8.08 (68.0) 6.62 ± 7.44 (60.0) 4.27 ± 5.40 (40.6) 2.39 ± 4.10 (18.5)
HJ (unsup) 20.64 ± 12.93 (98.0) 8.57 ± 9.69 (50.1) 2.12 ± 3.55 (19.5) 0.67 ± 0.86 (8.6)

LD 12.98 ± 6.23 (99.6) 9.70 ± 6.21 (94.4) 6.14 ± 5.99 (70.9) 2.94 ± 4.34 (35.4)

constraints are set at 0.4 and 0.6. Despite this, as shown
in Figure 3 and previously discussed, the generation within
ChemSpace encounters significant OOD issues after exten-
sive iterations. Among all techniques evaluated, Langevin
dynamics stands out for its overall high improvements
and high success rate. As further illustrated in Figure 6,
Langevin dynamics also demonstrates a notably faster em-
pirical convergence rate. We also report the performance in
optimizing the QED property in Appendix D.7.

Surprisingly, we observe that the random direction performs
well on molecule optimization tasks. This observation moti-
vates us to study the structure of the latent space. We show
that the molecular structure distribution on the latent space
follows a high-dimensional Gaussian distribution and the
random direction increases the norm of the latent vectors
that have strong correlations with molecular properties. We
analyze this systematically in Appendix E. It is also notable
that although random directions could be effective in opti-
mizing molecules, the distribution of the entire molecule
sets being optimized does not change accordingly as shown
in Figure 3.

Multi-objective Molecule Optimization. As we are
learning distinct vector fields and potential energy func-
tions for each property, they can be readily added together
for multi-objective optimization (Eckmann et al., 2022; Du

6



Navigating Chemical Space with Latent Flows

ES
R

1
Random

 -10.32 kcal/mol
ChemSpace

 -11.66 kcal/mol
Gradient Flow

 -11.00 kcal/mol
Wave eqn. (spv)
 -11.05 kcal/mol

Wave eqn. (unsup)
 -10.22 kcal/mol

HJ eqn. (spv)
 -10.68 kcal/mol

HJ eqn. (unsup)
 -10.24 kcal/mol

Langevin Dynamics
 -10.68 kcal/mol

AC
AA

1

Random
 -9.86 kcal/mol

ChemSpace
 -9.81 kcal/mol

Gradient Flow
 -9.90 kcal/mol

Wave eqn. (spv)
 -10.48 kcal/mol

Wave eqn. (unsup)
 -9.69 kcal/mol

HJ eqn. (spv)
 -9.89 kcal/mol

HJ eqn. (unsup)
 -9.73 kcal/mol

Langevin Dynamics
 -10.34 kcal/mol

Figure 2. Visualization of generated ligands docked against target ESR1 and ACAA1.
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Figure 3. Molecular property plogP distribution shifts following the latent flow path.

et al., 2023). To generate molecules that are optimized on
multiple properties, we use a similar setting as similarity-
constrained molecule optimization to select 800 molecules
from the ZINC250k dataset with the lowest QED and aim to
generate molecules with high QED as well as low SA simul-
taneously. At each time step, the latent vector is optimized
following the averaged direction of two corresponding flow
directions. This scheme could be seamlessly generalized
to k-objectives optimization. Table 3 shows that Langevin
dynamics and ChemSpace achieve the best or competitive
performance at all similarity cutoff levels.

Table 3. Similarity-constrained Multi-objective (QED-SA)
maximization. The value of QED and SA is scaled to both have a
range from 0 to 100 for an equal-weighted sum. The method with
the highest equal-weighted sum improvement of QED and SA of
each structure similarity level is bolded.

δ = 0 δ = 0.2 δ = 0.4 δ = 0.6

QED

Random 45.5 ± 13.3 (99.5) 20.7 ± 14.4 (81.8) 12.8 ± 10.7 (57.0) 8.0 ± 8.3 (29.5)
ChemSpace 47.0 ± 12.9 (99.6) 25.9 ± 16.7 (88.2) 15.5 ± 13.2 (63.4) 9.7 ± 10.1 (31.6)

Gradient Flow 31.9 ± 17.9 (89.9) 23.0 ± 16.4 (80.0) 14.4 ± 12.6 (59.4) 9.4 ± 9.1 (32.2)
Wave (SPV) 14.6 ± 14.4 (26.8) 12.3 ± 11.7 (24.2) 9.8 ± 10.0 (19.8) 6.8 ± 6.5 (12.4)

Wave (UNSUP) 39.0 ± 18.5 (96.1) 18.3 ± 14.0 (69.4) 10.0 ± 9.6 (43.2) 6.4 ± 7.0 (24.9)
HJ (SPV) 45.2 ± 13.7 (98.9) 22.7 ± 15.6 (84.9) 13.9 ± 12.0 (57.5) 9.3 ± 9.7 (30.2)

HJ (UNSUP) 40.6 ± 19.4 (96.8) 15.5 ± 12.8 (71.4) 9.2 ± 9.4 (46.2) 6.4 ± 7.3 (26.9)
LD 47.0 ± 13.1 (99.6) 27.6 ± 16.3 (92.1) 15.4 ± 12.5 (71.4) 9.6 ± 9.4 (40.1)

SA

Random 8.34 ± 8.06 (37.2) 6.70 ± 7.11 (27.0) 4.80 ± 5.73 (19.1) 2.61 ± 3.21 (10.9)
ChemSpace 7.92 ± 7.71 (42.8) 6.63 ± 6.71 (36.1) 4.75 ± 5.45 (25.2) 2.89 ± 3.22 (15.4)

Gradient Flow 9.56 ± 8.49 (44.0) 7.19 ± 6.66 (35.8) 5.27 ± 5.30 (26.6) 3.04 ± 3.62 (17.1)
Wave (SPV) 6.37 ± 6.30 (12.9) 5.77 ± 5.81 (12.4) 4.54 ± 4.51 (10.5) 3.44 ± 3.59 (7.1)

Wave (UNSUP) 15.21 ± 10.17 (89.2) 7.69 ± 6.51 (70.8) 3.92 ± 3.86 (45.9) 2.22 ± 1.97 (25.9)
HJ (SPV) 8.93 ± 8.39 (52.1) 6.69 ± 6.61 (38.8) 5.21 ± 5.72 (29.2) 3.23 ± 3.40 (18.6)

HJ (UNSUP) 16.03 ± 10.31 (91.0) 7.35 ± 6.34 (68.5) 4.22 ± 4.09 (46.8) 2.73 ± 2.85 (27.8)
LD 11.51 ± 10.44 (69.2) 7.51 ± 7.41 (45.4) 4.50 ± 4.95 (33.6) 2.75 ± 3.09 (20.1)

4.3. Molecule Manipulation

Molecule manipulation is a relatively new task proposed in
Du et al. (2023) to study the performance of latent traversal
methods. Specifically, the main idea of molecule manipula-
tion is to find smooth local changes of molecular structures
that simultaneously improve molecular properties which
is essential to help chemists systematically understand the
chemical space.

Supervised Molecule Manipulation Table 4 shows the suc-
cess rate results of manipulating 1,000 randomly sampled
molecules to optimize each desired property. Following Du
et al. (2023), we traverse the latent space for 10 steps in the
traversal direction of each method and report the strict and
relaxed success rate. Details of the definition of these met-
rics can be found in Appendix D.6. Among all approaches,
the gradient flow achieves the highest success rates in multi-
ple properties such that it takes the steepest descent of the
surrogate model. When the step size is small enough, it is
reasonable to learn a smooth path. However, the results still
vary across properties.

Unsupervised Molecule Manipulation As the correspon-
dence between specific molecular properties and learned
latent flows is not explicitly given in the unsupervised sce-
nario, we use an artificial process to mimic the use case in
reality. Specifically, we learn 10 different potential energy
functions representing 10 disentangled flows following Al-
gorithm 1 using Wave equation and Hamilton-Jacobi equa-
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Table 4. Success Rate of traversing latent molecule space to manipulate over a variety of molecular properties. Numbers reported
are strict success rate/relaxed success rate in %. (SPV denotes supervised scenarios, UNSUP denotes unsupervised scenarios). The
ranking is the average between the ranking of average strict success rate and ranking of the average relaxed success rate.

RANKING AVERAGE PLOGP (↑) QED (↑) SA (↓) DRD2 (↑) JNK3 (↑) GSK3B (↑)

RANDOM-1D 9 1.42 / 6.85 6.00 / 31.60 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 2.50 / 9.50 0.00 / 0.00
RANDOM 6 0.57 / 42.3 0.00 / 32.60 0.10 / 3.20 0.40 / 8.60 0.50 / 87.10 1.50 / 81.40 0.90 / 40.90

CHEMSPACE 3 6.17 / 22.83 5.20 / 25.00 6.00 / 18.10 6.80 / 26.50 3.20 / 18.00 8.60 / 25.80 7.20 / 23.60

WAVE (UNSUP) 3 1.18 / 45.28 0.60 / 40.30 0.60 / 6.20 1.90 / 16.50 0.40 / 86.40 1.80 / 78.20 1.80 / 44.10
WAVE (SPV) 7 1.85 / 8.08 0.00 / 0.20 3.40 / 12.10 4.00 / 18.60 3.50 / 17.10 0.00 / 0.20 0.20 / 0.30
HJ (UNSUP) 3 2.3 / 25.28 3.00 / 15.60 0.70 / 3.20 1.70 / 13.00 0.20 / 87.20 4.80 / 18.70 3.40 / 14.00

HJ (SPV) 7 1.97 / 7.4 3.00 / 13.20 3.00 / 7.20 3.70 / 15.00 1.90 / 8.50 0.20 / 0.50 0.00 / 0.00
GF (SPV) 1 7.62 / 28.78 6.90 / 28.30 6.60 / 16.70 6.30 / 25.10 7.10 / 36.10 11.70 / 35.50 7.10 / 31.00
LD (SPV) 2 6.23 / 26.68 5.90 / 26.00 6.20 / 15.50 5.20 / 22.90 6.00 / 33.30 8.40 / 33.80 5.70 / 28.60

tion and validated them on 1,000 unseen molecules. For
each flow, we evaluate the properties of molecules generated
along the 10-step manipulation trajectory. The learned po-
tential energy function with the highest correlation score is
selected for each property representing the learned Jacobian
structural change that would most effectively optimize the
corresponding property.

In Table 4, we can observe that even though it is without
supervised training of traversal directions, the flow still
learns meaningful directions from molecular structure to
property changes. Surprisingly, the relaxed success rate of
manipulating molecules for JNK3, and GSK3B in unsuper-
vised settings are better than in supervised settings. We
hypothesize that this is partially because of the training and
generalization errors of the surrogate model, as shown in
Appendix Figure 4. On the contrary, the structure change
measurement does not provide supervision but is correlated
with key molecular properties. We would like to point out
that this is an open question in chemistry, often referred as to
the structure-activity relationship (Dudek et al., 2006), such
that it is important to know the correspondence between
structure and activity. We believe this is a promising result
to demonstrate that generative models “realize" molecular
property by learning from structures.

Among the quantitative results, it is interesting that the ran-
dom direction achieves a good relaxed success rate for some
properties, we argue this is because of the specific property
of the learned latent space. The latent space learned by gen-
erative models tend to be smooth such that similar molecular
structures are often mapped to close areas in the latent space.
In Appendix E, we find that some molecular properties are
highly correlated with their latent vector norms, in which a
random direction always increases the norm and thus suc-
cessfully manipulates a portion of molecules by chance.

5. Conclusion, Limitation and Future Work
In this paper, we propose a unified framework for navigating
chemical space through the learned latent space of molecule

generative models. Specifically, we formulate the traversal
process as a flow that defines a vector to transport the mass
of molecular distribution through time to desired concentra-
tions (e.g. high properties). Two forces (supervised potential
guidance and unsupervised structure diversity guidance) are
derived to drive the dynamics. We also propose a variety of
new physical PDEs on the dynamics which exhibit different
properties. We hope this general framework can open up a
new research avenue to study the structure and dynamics of
the latent space of molecule generative models.

Limitation and future work. This work is a preliminary
study on small molecules and it may be interesting to see
it transfer to larger molecular systems or more specialized
systems and properties. Beyond molecules, this approach
has the potential to be extended to languages and other data
modalities.
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A. Wasserstein Gradient Flow
As shown in the main paper, based on the dynamic formulation of optimal transport (Benamou & Brenier, 2000), the L2

Wasserstein distance can be re-written as:

W2(µ0, µ1) = min
ρ,v

√∫ ∫
ρt(z)|vt(z)|2 dzdt (16)

where vt(z) is the velocity of the particle at position z and time t, and ρt(z) is the density dµ(z) = ρt(z)dz. The distance
can be optimized by the gradient flow of a certain function on space and time. Consider the functional F : Rn → R that
takes the following form:

F(µ) =
∫
U(ρt(z)) dz (17)

The curve is considered as a gradient flow if it satisfies ∇F = − d
dtρt(z) (Ambrosio et al., 2005). Moving the particles

leads to:
d

dt
F(µ) =

∫
U ′(z)

d ρt(z)

dt
dz (18)

The velocity vector satisfies the continuity equation:

d ρt(z)

dt
= −∇ ·

(
vt(z)ρt(z)

)
(19)

where −∇ ·
(
vt(z)ρt(z)

)
is the tangent vector at point ρt(z). Eq. (18) can be simplified to:

d

dt
F(µ) =

∫
−U ′(ρt(z))∇ ·

(
vt(z)ρt(z)

)
dz

=

∫
∇
(
U ′(ρt(z))

)
vt(z)ρt(z) dz

(20)

On the other hand, the calculus of differential geometry gives

d

dt
F(µ) = DiffF|ρt(−∇ ·

(
vt(z)ρt(z)

)
) = ⟨∇F ,−∇ ·

(
vt(z)ρt(z)

)
⟩f (21)

where ⟨, ⟩f is a Riemannian distance function which is defined as:

⟨−∇ ·
(
w1(z)ρt(z)

)
,−∇ ·

(
w2(z)ρt(z)

)
⟩f =

∫
w1(z)w2(z)f(z) dz (22)

This scalar product coincides with the W2 distance according to Benamou & Brenier (2000). Then eq. (20) can be similarly
re-written as:

d

dt
F(µ) = ⟨−∇ ·

(
∇U ′(ρt(z))ρt(z)

)
,−∇ ·

(
vt(z)ρt(z)

)
⟩f (23)

So the relation arises as:
∇F = −∇ ·

(
∇U ′(ρt(z))ρt(z)

)
(24)

Since we have ∇F = − d
dtρt(z), the above equation can be re-written as

d

dt
ρt(z) = ∇ ·

(
∇U ′(ρt(z))ρt(z)

)
(25)

The above derivations can be alternatively made by the poineering JKO scheme (Jordan et al., 1996). This explicitly defines
the relation between evolution PDEs of ρt(z) and the internal energy U . For our method, we use the gradient of our scalar
energy field∇u(z, t) to learn the velocity field which is given by U ′(ρt(z)). Interestingly, driven by certain specific velocity
fields ∇u(z, t), the evolution of ρ(z, t) would become some special PDEs. Here we discuss some possibilities:
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Heat Equations. If we consider the energy function U as the weighted entropy:

U(ρt(z)) = ρt(z) log(ρt(z)) (26)

We would have exactly the heat equation:
d

dt
ρt(z)−

d

dz2
ρt(z) = 0 (27)

Injecting the above equation back into the continuity equation leads to the velocity field vt(z) as

d ρt(z)

dt
= −∇ ·

(
vt(z)ρt(z)

)
=

d

dz2
ρt(z)

vt(z) = −
∇ρt(z)
ρt(z)

= −∇ log(ρt(z))

(28)

When our∇u(z, t) learns the velocity field −∇ log(ρt(z)), the evolution of ρ(z, t) would become heat equations.

Fokker Planck Equations. For the energy function defined as:

U(ρt(z)) = −A · ρt(z) + ρt(z) log(ρt(z)) (29)

we would have the Fokker-Planck equation as

d

dt
ρt(z) +

d

dz
[∇Aρt(z)]−

d

dz2
[ρt(z)] = 0, (30)

The velocity field can be similarly derived as

vt(z) = ∇A−∇ log(ρt(z)) (31)

For the velocity field ∇A−∇ log(ρt(z)), the movement of ρ(z, t) is the Fokker Planck equation.

Porous Medium Equations. If we define the energy function as

U(ρt(z)) =
1

m− 1
ρmt (z) (32)

Then we would have the porous medium equation where m > 1 and the velocity field:

d

dt
ρt(z)−

d

dz2
ρmt (z) = 0, vt(z) = −mρm−2∇ρ (33)

When the∇u(z, t) learns the velocity −mρm−2∇ρ, the trajectory of ρ(z, t) becomes the porous medium equations.

B. PDE-regularized Latent Space Learning
Our framework can be extended to incorporate the PDE dynamics as part of the training procedure to encourage a more
structured representation. To validate the effectiveness, we incorporate a PDE loss such that we expect any path in the
latent space to follow specific dynamics (wave equation in our experiment). In addition to the initial setup outlined in
Appendix D.5, we further fine-tune the VAE model by applying a PDE regularization loss term, defined as

L = LV AE + Lr + Lϕ

that includes the velocity-matching objective Lr and boundary condition Lϕ. This PDE-regularized latent space learning
can also be adapted to other generative models by replacing LV AE . We further optimize the model and energy network
for 10 epochs across the full training dataset using an AdamW optimizer with a 1e-4 learning rate and a cosine learning
rate scheduler, without a warm-up period. All other training parameters remain consistent with those initially described in
Appendix D.5.

During fine-tuning, the VAE loss drops from 0.2187 to 0.06288. The results of QED optimization surpass those of two other
unsupervised methods, indicating potential areas for future research and refinement.
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Table 5. Single-objective Maximization with PDE-regularized Latent Space Learning The results are the same as of Table 1, only
unsupervised results are presented for fair comparison. (UNSUP denotes unsupervised scenarios). K represents the number of energy
networks trained for unsupervised training with disentanglement regularization.

METHOD K PLOGP ↑ QED ↑
1ST 2ND 3RD 1ST 2ND 3RD

RANDOM N\A 3.52 3.43 3.37 0.940 0.933 0.932
WAVE (UNSUP) 10 5.30 5.22 5.14 0.905 0.902 0.978
HJ (UNSUP) 10 4.26 4.10 4.07 0.930 0.928 0.927

WAVE (UNSUP FT) 1 3.71 3.58 3.46 0.936 0.933 0.933

C. Extended Related Work
C.1. Machine Learning for Molecule Generation

Molecules are highly discrete objects and two branches of methods are thus developed to design or search new molecules (Du
et al., 2022a). One idea is to leverage the advancement of deep generative models which approximate the data distribution
from a provided dataset of molecules and then sample new molecules from the learned density. This idea inspires
a line of work developing deep generative models from variational auto-encoders (VAE) (Gómez-Bombarelli et al.,
2018; Jin et al., 2018), generative adversarial networks (GAN) (Guimaraes et al., 2017; Cao & Kipf, 2018), normalizing
flows (NF) (Madhawa et al., 2019; Zang & Wang, 2020) and more recently diffusion models (Hoogeboom et al., 2022;
Vignac et al., 2023; Jo et al., 2022). However, to respect the combinatorial nature of molecules, another line of work
leverage combinatorial optimization to search new molecules including genetic algorithm (GA) (Jensen, 2019), Monte
Carlo tree search (MCTS) (Yang et al., 2017), reinforcement learning (RL) (You et al., 2018a), but often with sophisticated
optimization objectives beyond simple valid molecules.

C.2. Goal-oriented Molecule Generation

In addition to simply generating valid molecules, a more realistic application is to generate molecules with desired
properties (Du et al., 2022a). For deep generative model-based methods, it is naturally combined with on-the-fly optimization
methods such as gradient-based or Bayesian optimization (in low data regime) as it often maps data to a low-dimensional
and smooth latent space thus more friendly for these optimization methods (Griffiths & Hernández-Lobato, 2020). For
methods that do not explicitly reduce the dimensionality of data such as diffusion models, Schneuing et al. (2022) propose an
evolutionary process to iteratively optimize the generated molecules. As it is observed that the learned latent space exhibits
explicit structure (Gómez-Bombarelli et al., 2018), Du et al. (2023) leverage such property to learn a linear classifier to find
the latent direction to optimize the property of given molecules. In opposition to deep generative models, combinatorial
optimization methods are often inherently associated with optimization, e.g. reward function in RL, selection criteria in GA,
etc (Fu et al., 2022; Loeffler et al., 2023).

C.3. Image Editing in the Latent Space

Beyond molecule generation, there is a vast literature on the study of the latent space of generative models on images for
image editing and manipulation (Goetschalckx et al., 2019; Jahanian et al., 2020; Voynov & Babenko, 2020; Härkönen
et al., 2020; Zhu et al., 2020; Peebles et al., 2020; Shen & Zhou, 2021; Song et al., 2022; 2023b;a;c). Here we highlight
some representative supervised and unsupervised approaches. Supervised methods usually require pixel-wise annotations.
InterfaceGAN (Shen et al., 2020) leverages face image pairs of different attributes to interpret disentangled latent repre-
sentations of GANs. Jahanian et al. (2020) explores linear and non-linear walks in the latent space under the guidance of
user-specified transformation. Compared to supervised methods, unsupervised ones mainly focus on discovering meaningful
interpretable directions in the latent space through extra regularization. Voynov & Babenko (2020) proposes to jointly
learn a set of orthogonal directions and a classifier to learn the distinct interpretable directions. SeFa (Shen & Zhou, 2021)
and HouseholderGAN (Song et al., 2023c) propose to use the eigenvectors of the (orthogonal) projection matrices as
interpretable directions to traverse the latent space. More relevantly, Song et al. (2023b) proposes to use wave-like potential
flows to model the spatiotemporal dynamics in the latent spaces of different generative models.
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D. Experiments Details
D.1. Baselines

We compare with the following baselines:

• Random: we take a linear direction that is sampled from Multi-variant Gaussian distribution in the high dimensional
latent space and normalized to unit length for all molecules across all time steps.

• Random 1D: we take a unit vector where only 1 randomly selected dimension is either 1 or -1 as the linear direction.

• ChemSpace (Du et al., 2023): a separation boundary of the training dataset in latent space w.r.t. the desired property
is classified by an Support vector machine (SVM). Then we take the normal vector corresponding to the positive
separation as the manipulation direction of control.

• Gradient Flow (LIMO) (Eckmann et al., 2022): a VAE-based generative model that encodes the input molecules into
SELFIES (Krenn et al., 2019) and auto-regressive on the tokenized molecule. LIMO uses Adam optimizer to reverse
optimize on the input latent vector z whereas Gradient Flow is equivalent to using an SGD optimizer for the same
purpose.

D.2. Training Dataset

• ChEMBL (Zdrazil et al., 2023) is a database of 2.4M bioactive molecules with drug-like properties, including features
like a Natural Product likeness score and annotations for chemical probes and bioactivity measurements.

• MOSES (Polykovskiy et al., 2018) is a benchmarking dataset derived from the ZINC (Irwin & Shoichet, 2005) Clean
Leads collection, containing 2M filtered molecules with specific physicochemical properties, organized into training,
test, and unique scaffold test sets to facilitate the evaluation of model performance on novel molecular scaffolds.

• ZINC250k is a subset of the ZINC database containing ∼250,000 commercially available compounds for virtual
screening.

D.3. Molecule Properties

We report the following metrics for our experiments:

• Penalized logP/plogP: Estimated octanol-water partition coefficient penalized by synthetic accessibility (SA) score
and the number of atoms in the longest ring.

• QED: Quantitative Estimate of Drug-likeness, a metric that evaluates the likelihood of a molecule being a successful
drug based on its pharmacophores and physicochemical properties.

• SA: Synthetic Accessibility, a score that predicts the ease of synthesis of a molecule, with lower values indicating
easier synthesis.

• DRD2 activity: Predicted activity against the D2 dopamine receptor, using machine learning models trained on known
bioactivity data.

• JNK3 activity: Predicted activity against the c-Jun N-terminal kinase 3, important for developing treatments for
neurodegenerative diseases.

• GSK3B activity: Predicted activity against Glycogen Synthase Kinase 3 beta, which plays a crucial role in various
cellular processes including metabolism and neuronal cell development.

• ESR1 docking score: Simulation-based score representing the binding affinity of a molecule to Estrogen Receptor 1,
relevant in the context of breast cancer therapies.

• ACAA1 docking score: Simulation-based score representing the binding affinity of a molecule to Acetyl-CoA
Acyltransferase 1, important for metabolic processes in cells.
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D.3.1. MISALIGNMENT OF NORMALIZATION SCHEMES FOR PENALIZED LOGP

We notice that plogP is a commonly reported metric in recent molecule discovery literature but does not share the same
normalization scheme. Following Gómez-Bombarelli et al. (2018, Eq. 1), the SA scores and a ring penalty term were
introduced into the calculation of penalized logP as the following

J logP(m) = logP(m)− SA(m)− ring-penalty(m)

Each term of logP(m), SA(m), and ring-penalty(m) are normalized to have zero mean and unit standard derivation across
the training data. However, no sufficient details were included in their paper or their released source code on how the
ring-penalty(m) is computed. Specifically, 3 implementations are widely used in various works.

Penalized by the length of the maximum cycle without normalization ring-penalty(m) is computed as the number of
atoms on the longest ring minus 6 in their implementation. Neither logP(m), SA(m), or ring-penalty(m) is normalized.
MolDQN (Zhou et al., 2018) reported their results in this scheme.

Penalized by the length of the maximum cycle with normalization ring-penalty(m) is computed same as without
normalization. MARS (Xie et al., 2021), HierVAE (Jin et al., 2020), GCPN (You et al., 2018b), and ours report plogP using
this scheme.

Penalized by number of cycles As described by Jin et al. (2018, page 7 footnote 3), ring-penalty(m) is computed as the
number of rings in the molecule that has more than 6 atoms. LIMO reports plogP using this metric.

D.4. Training and inference

We detail our training and inference workflows in Alg. 1 and Alg. D.4, respectively.

Algorithm 1 ChemFlow Training
Require: Pre-trained encoder fθ, decoder gψ , (optional) classifier lγ , timestamps T , # of potential functions K

1: Initialize ϕj(·)←MLP for j = 1, . . . ,K
2: repeat
3: Sampling: z0 = fθ(x0), t ∼ Categorical(T ), k ∼ Categorical(K)
4: for i = 1, . . . , t do
5: zi+1 = zi +∇zϕ

k(i, zi)
6: end for
7: Decode: xt = gψ(zt), xt+1 = gψ(zt+1)
8: if unsupervised then
9: Classification: k̂ = lγ(xt;xt+1)

10: Loss: L = Lr + Lϕ + LJ + Lk
11: else
12: Loss: L = Lr + Lϕ + LP
13: end if
14: Back-propagation through the Loss L
15: until Convergence

D.5. Experiments Setup

Pre-trained VAE We follow the VAE architecture from LIMO consisting of a 128 dimension embedding layer, 1024 latent
space size, 3-hidden-layer encoder, and 3-hidden-layer decoder both with 1D batch normalization and non-linear activation
functions. The hidden layer sizes are {4096, 2048, 1024} for the encoder and reversely for the decoder. We empirically find
that replacing the ReLU activation function with its newer variant Mish activation function (Misra, 2020) results in faster
convergence and better validation loss. All the experiments reported in this paper use this Mish-activated variant of VAE.

The VAE is trained using an AdamW (Loshchilov & Hutter, 2017) optimizer, 0.001 initial learning rate, and 1,024 training
batch size. To better prevent the model from being stacked at a sub-optimal local minimum, a cosine learning rate scheduler
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Algorithm 2 ChemFlow Inference / Traversal
Require: Pre-trained encoder fθ, pre-trained potential function ϕ, (optional) pre-trained proxy function h, timestamps T ,

step size α, LD strenth β
1: Sampling: z0 = fθ(x0)
2: for t = 1, . . . , T do
3: if Langevin Dynamics then
4: zt = zt−1 − α∇zhη(zt−1) + β

√
2αN (0, I)

5: else if Gradient Flow then
6: zt = zt−1 − α∇zhη(zt−1)
7: else
8: zt = zt−1 + α∇zϕ(t− 1, zt−1)
9: end if

10: end for

with a 1e-6 minimum learning rate with periodic restart is applied. The VAE is trained for 150 epochs with 4 restarts on
90% of the training data and validated with the rest 10% data. The checkpoint corresponding to the epoch with the lowest
validation loss is selected. Training 150 epochs takes ∼8 hours on a single RTX 3090 desktop.

Surrogate Predictor The performance of the surrogate predictor is crucial to the proposed latent traversal framework. To
handle chemical properties of different magnitudes, we normalize all chemical properties in the training data to have zero
mean and unit variance. Then we use a pre-activation-norm MLP with residual connections as the surrogate predictor. The
predictor contains 3 residual blocks of size 1024 and the output dimension is 1. Similar to the LIMO setups, we find that
the choice of optimizer and training hyperparameters like learning rate or learning rate scheduler is crucial for successful
training. The predictor is trained for 20 epochs on 100,000 randomly generated samples and validated with 10,000 unseen
data with SGD optimizer, 0.001 learning rate, and batch size 1000. The epoch with the best validation loss is selected.
Training each predictor takes less than a minute.

Energy Network We use an MLP structure to parameterize the energy function (the spatial derivative gives the velocity).
The time input t is embedded with a sinusoidal positional embedding followed by a linear layer. The special input x is
encoded with a linear layer and ReLU activation function. The training of the network uses 90,000 random data and 10,000
unseen data for validation. For unsupervised settings, 10 disentangled potential energy functions are trained for 70 epochs
with a batch size of 100. The epoch with the best validation loss is selected. Training an energy network with 10 disentangled
potential energy functions takes ∼40 minutes.

Reproducibility All the experiments including baselines are conducted on one RTX 3090 GPU and one Nvidia
A100 GPU. All docking scores are computed on one RTX 2080Ti GPU. The code implementation is available at
https://github.com/garywei944/ChemFlow.

D.6. Evaluation Metrics

Success Rate The success rate is used as the evaluation metric for the molecule manipulation task. It first randomly
generates n molecules and traverses each of them in the latent space for k steps. The success rate is calculated as the
percentage of k-step trajectories that are successful. In our case, we generate 1000 molecules and traverse for 10 steps.
The manipulation is successful if the local change in molecular structure is smooth and molecular property is increased.
Specifically, we showed two success rates: the strict success rate and the relaxed success rate.

For the strict success rate, manipulation is a success if the molecular property is monotonically increasing, molecular
similarity with respect to the previous step is monotonically decreasing, and molecules are diversity on the manipulation
trajectory. These constraints are formulated as follows:
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CSP (x, k, P ) = 1[∀i ∈ [k], s.t.P (xi)− P (xi+1) ≤ 0],

CSS(x, k, S) = 1[∀i ∈ [k], s.t.S(xi+1, x1)− S(xi, x1) ≤ 0],

CSD(x, k) = 1[|xt : ∀i ∈ [k]| > 2],

SSR =
1

|X|
∑
x∈X

1[CSP (x, k, P ) ∧ CSS(x, k, S) ∧ CSD(x, k)]

(34)

where {xi}ki=1 is one k-step manipulation trajectory, X contains n manipulation trajectories, C is the constraint, P is the
property evaluation function, S is the structure similarity function (Taminoto similarity over Morgan fingerprints). The CSP
constraints that the property of molecules must monotonically increase. The CSS constraints that the structure is similar in
regard to the starting molecule must monotonically decrease. The CSD constraint that the molecules must at least change
twice during the manipulation. SSR calculates the percentage of trajectories that satisfy all success constraints.

The relaxed success rate relaxes some constraints by adding a tolerance interval. It is formulated as follows:

CSP (x, k, P ) = 1[∀i ∈ [k], s.t.P (xt)− P (xt+1) ≤ ϵ],
CSS(x, k, S) = 1[∀i ∈ [k], s.t.S(xt+1, x1)− S(xt, x1) ≤ γ],
CSD(x, k) = 1[|xt : ∀i ∈ [k]| > 2],

SSR =
1

|X|
∑
x∈X

1[CSP (x, k, P ) ∧ CSS(x, k, S) ∧ CSD(x, k)]

(35)

The relaxed success rate does not require a monotonic increase of molecular property but sets a tolerance threshold ϵ. This
tolerance threshold ϵ is defined as 5% of the range of property in the training dataset. It also does not require a monotonically
decrease of structure similarity with a tolerance threshold γ of 0.1.

D.7. More Experiment Results

We conduct more experiments to analyze the performance of the proposed methods systematically. They are referred to and
discussed in the main paper.

Discrepancies of the supervised semantic guidance. Figure 4 illustrates the discrepancies between the output of the
surrogate model and the ground truth as computed by the RDKit oracle. A large difference is observed between the two
distributions. We believe that developing a more accurate surrogate model is essential for enhancing property prediction
performance, which in turn would likely improve the efficacy of the optimization tasks. Addressing this improvement is
designated as an area for future research.

Pearson correlation score for unsupervised diversity guidance with disentanglement regularization. Tables 6 and 7
present the Pearson correlation scores for the trained energy networks of wave equations and Hamilton-Jacobi equations with
disentanglement regularization, respectively. For properties other than synthetic accessibility (SA), we select the network
with the highest correlation score to maximize these properties. Conversely, for SA, the network with the lowest correlation
score (most negative score) is chosen.

Distribution shift and convergence for plogP optimization. Figure 5 illustrates the distribution shift in plogP optimiza-
tion, complementing the analysis in Figure 3. Similar to the findings discussed in Section 4.2, both unsupervised methods
encounter out-of-distribution (OOD) issues after 400 steps, consistent with those observed with ChemSpace. The Random
1D method does not achieve the expected distribution shift, as it manipulates only one dimension of the latent vector.
Figure 6 depicts the convergence trends of each method’s improvements. Consistent with the predictions in Proposition 3.1,
Langevin Dynamics demonstrates the fastest and most effective convergence among all methods.

Similarity-constrained QED optimization and distribution shift. To further explore optimization tasks on additional
properties, we also attempted to enhance the QED of molecules. Table 8 presents the results of efforts to maximize the
QED of 800 molecules from the ZIC250K dataset that initially had the lowest QED scores. Despite encountering OOD
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Figure 4. Distribution for predicted properties and the ground truth. We hypothesize there is a training and generalization errors in
the surrogate model. We have observed the distribution of predicted and ground truth property values are different.

Table 6. Pearson Correlation of trained Wave PDE Energy Network. The average Pearson correlation between the sequence of
real properties and sequence of time steps along the manipulation trajectory following a learned potential function ϕk(z, t) using wave
equations.

PLOGP SA QED DRD2 JNK3 JSK3B

0 0.019 0.003 0.016 0.029 0.015 0.051
1 0.160 -0.451 0.275 -0.074 -0.153 -0.272
2 0.035 -0.003 0.011 0.002 -0.006 0.017
3 0.072 -0.096 0.065 0.011 -0.017 -0.028
4 0.042 0.003 0.039 -0.010 0.025 0.018
5 -0.036 -0.022 0.150 0.009 -0.017 0.008
6 0.032 -0.045 0.006 0.002 -0.011 0.002
7 0.023 -0.023 0.054 -0.002 -0.013 -0.017
8 0.075 -0.085 0.064 -0.040 -0.007 -0.054
9 0.013 0.020 -0.011 0.031 0.005 0.014

INDEX 1 1 1 9 4 0
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Figure 5. Distribution shift for plogP optimization
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Table 7. Pearson Correlation of trained Hamilton-Jacobian PDE Energy Network. The average Pearson correlation between the
sequence of real properties and sequence of time steps along the manipulation trajectory following a learned potential function ϕk(z, t)
using Hamilton-Jacobi equations.

PLOGP SA QED DRD2 JNK3 GSK3B

0 0.345 -0.453 0.141 -0.210 -0.127 -0.350
1 0.257 -0.289 0.057 -0.154 -0.121 -0.276
2 0.203 -0.284 0.050 0.020 -0.044 -0.164
3 -0.029 0.041 0.034 -0.001 0.001 0.002
4 0.304 -0.343 0.066 -0.225 -0.179 -0.336
5 0.008 -0.036 0.029 -0.009 -0.021 0.015
6 0.316 -0.370 0.173 -0.208 -0.163 -0.309
7 0.305 -0.429 0.046 -0.291 -0.191 -0.352
8 0.003 -0.011 0.016 -0.021 -0.035 0.026
9 0.311 -0.386 0.209 -0.222 -0.209 -0.342
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Figure 6. Optimization Convergence Langevin Dynamics shows faster convergence and achieves greater improvement in plogP.
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issues with ChemSpace and two unsupervised methods, as illustrated in Figure 7, the performance of Langevin Dynamics
surpasses other methods across various similarity levels, which is consistent with the result from Table 2.

Table 8. Similarity-constrained QED maximization. For each method with minimum similarity constraint δ, the results in reported in
format mean ± standard derivation (success rate %) of absolute improvement, where the mean and standard derivation are calculated
among molecules that satisfy the similarity constraint.

Method δ = 0 δ = 0.2 δ = 0.4 δ = 0.6

Random 0.36 ± 0.15 (98.0) 0.19 ± 0.14 (78.4) 0.11 ± 0.11 (54.4) 0.08 ± 0.08 (29.9)
Random 1D 0.13 ± 0.11 (40.1) 0.12 ± 0.10 (38.1) 0.09 ± 0.07 (29.2) 0.07 ± 0.06 (18.0)

Gradient Flow 0.48 ± 0.13 (99.2) 0.25 ± 0.16 (84.9) 0.13 ± 0.12 (53.8) 0.10 ± 0.10 (24.9)
ChemSpace 0.47 ± 0.13 (99.8) 0.29 ± 0.18 (90.1) 0.18 ± 0.15 (62.9) 0.12 ± 0.12 (33.5)

Wave (spv) 0.38 ± 0.16 (97.9) 0.23 ± 0.15 (84.9) 0.13 ± 0.11 (62.6) 0.08 ± 0.08 (35.0)
Wave (unsup) 0.54 ± 0.18 (99.1) 0.09 ± 0.10 (51.0) 0.05 ± 0.06 (27.4) 0.03 ± 0.04 (14.0)

HJ (spv) 0.21 ± 0.16 (74.2) 0.17 ± 0.14 (69.4) 0.12 ± 0.11 (57.0) 0.08 ± 0.09 (35.0)
HJ (unsup) 0.52 ± 0.19 (98.5) 0.11 ± 0.11 (60.4) 0.05 ± 0.05 (28.6) 0.03 ± 0.03 (13.4)

LD 0.53 ± 0.12 (99.8) 0.31 ± 0.17 (96.2) 0.16 ± 0.12 (77.8) 0.10 ± 0.09 (49.5)

E. Latent Space Visualization and Analysis
As observed in experiments such that random directions perform surprisingly well on molecule manipulation and optimization
tasks, we look into the learned latent space to understand its structure. As the prior of a VAE is an isotropic Gaussian
distribution, we first verify if the learned variational poster also follows a Gaussian distribution and we find that it does learn
so from the evidence shown in Figure 8, where the norm of the molecule projected to the latent space concentrate around
32 which is around

√
d such that the latent dimension d is 1024. We also visualize in Figure 9 how the properties of the

molecules in the training dataset are related to their latent vector norms. Surprisingly, we find a strong correlation between
almost all molecular properties and their latent norms. Combining these two evidences, it is not surprising that a random
latent vector taking a random direction will change the molecular property smoothly and monotonically. In addition, we
further plot when we traverse along a random direction in the latent space, how the change of the norm may correspond to
the change of a certain property. Among them, we find that SA is particularly in strong positive correlation with the traversal
in Figure 10. Though the emergence of the structure in the latent space is interesting and suggests that better algorithms can
be developed to exploit the structure, we leave this to future work.

F. Qualitative Evaluations
In addition to quantitative evaluations, we demonstrate some qualitative evaluations in this section. We showcase three
manipulation trajectories in Figures 11 to 13. Each of these paths is a 6-step manipulation for different molecular properties
using different flows. Specifically, we can see that the supervised wave flow and gradient flow improves the molecular
property by the conversion of large heterocyclic rings for better synthesizability. We also show three optimization trajectories
in Figures 14 to 16. From left to right, each molecule is a snapshot selected from a trajectory of 1000-step optimization.
It is notable that the supervised Hamilton-Jacobi flow optimizes the property by reducing the number of nitrogen atoms.
This leads to a more chemically stable molecule, whereas the original molecule, with a large number of nitrogen atoms,
is unstable and potentially explosive. The supervised wave flow optimizes the molecular property by simplifying the
poly-cyclic molecule which enhances its synthesizability and overall stability.
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Figure 7. Distribution shift for QED optimization
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Figure 8. Latent Vector Norm. Distribution of the norm of the latent vectors projected from the training dataset onto the learned latent
space.

Figure 9. Embedding Norm against Property Value of each path. Norm and property value of molecules along the direction of latent
traversal with a random direction. The middle curve shows the mean property value and latent embedding norm for all paths. The shaded
area is the standard deviation of property value.

Figure 10. Embedding Norm against Property Value of each Molecule. Scatter plot of norm and property value of individual molecules
in the training set encoded in the latent space.
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Figure 11. Molecule Manipulation Trajectory Molecule manipulation by chemspace on plogP.
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Figure 12. Molecule Manipulation Trajectory Molecule manipulation by gradient flow on plogP.
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Figure 13. Molecule Manipulation Trajectory Molecule manipulation by supervised wave flow on GSK3B.
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Figure 14. Molecule Optimization Trajectory Molecule optimization by random direction on plogP.
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Figure 15. Molecule Optimization Trajectory Molecule optimization by supervised wave flow on QED.
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Figure 16. Molecule Optimization Trajectory Molecule optimization by supervised Hamilton-Jacobi flow on QED.
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