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Abstract

In the highly constrained context of low-001
resource language studies, we propose a new002
unsupervised method using ABX tests on audio003
recordings with carefully curated metadata to004
shed light on the type of information present005
in the representations. ABX tests determine if006
the representations computed by a multilingual007
speech model encode a given characteristic.008
Two experiments are devised: one on acous-009
tic aspects, specifically room acoustic charac-010
teristics, and one on phonetic aspects. The re-011
sults confirm that the representations extracted012
from recordings with different linguistic/extra-013
linguistic characteristics differ along the same014
lines. Embedding more audio signal in one015
vector better discriminates extra-linguistic char-016
acteristics, whereas shorter snippets are bet-017
ter to distinguish segmental information. The018
method is fully unsupervised, potentially open-019
ing new research avenues for comparative work020
on under-documented languages.021

1 Introduction022

In recent improvements in speech processing,1 the023

amount of data used at pre-training has been in-024

strumental (Wei et al., 2022), which makes it more025

challenging – if not impossible – to reach similar026

levels of performance for endangered languages.027

Developing new unsupervised approaches, in ad-028

dition to being cost-effective (Bender et al., 2021),029

helps us better understand the models.030

Training a speech model often results in chang-031

ing the weights of the parameter matrices to spe-032

cialize it for a task. But speech, when accessed033

via audio recordings, is highly multifactorial: a034

recorded voice tells a message and an intention; the035

audio contains information about the surroundings.036

Our experimental setup relies on tailored037

datasets to see how specific differences in the in-038

put signal are reflected in the output vectors. ABX039

1in ASR, TTS, and even on corpora/languages/tasks not
seen at pre-training (Guillaume et al., 2022).

tests are used on carefully selected data in Na lan- 040

guage (ISO-639-3: nru). Two series of experiments 041

explore different dimensions to assess differences 042

between recordings. The folk-tale series aims to 043

explore an extra-linguistic dimension by compar- 044

ing seven versions of the same tale by the same 045

speaker, and the phonetics series explores segmen- 046

tal dimensions by comparing sentences (some iden- 047

tical, some different) from different speakers. 048

The results provide an insight into the nature of 049

the information encoded in the representations of 050

a model such as XLSR-53 (Baevski et al., 2020; 051

Babu et al., 2021). Our findings suggest that ABX 052

tests can be leveraged to bring out differences in 053

the acoustic setup (room, microphone) or in the 054

(segmental) linguistic content. A parametric study 055

shows that processing audio by snippets2 of 10 s is 056

sufficient to bring out differences on the acoustic 057

setup, while 1 s snippets are better for segmental 058

characteristics. 059

This study offers an innovative method to detect 060

confounding factors in corpora intended for unsu- 061

pervised machine learning, and provides a means 062

to accelerate the classification of recordings (e.g. 063

by noise level or genre) where such metadata are 064

unavailable. 065

2 Method 066

We propose a method based on two components: 067

(i) ABX tests to determine the presence/absence of a 068

given characteristic in a representation and (ii) au- 069

dio corpora with precise metadata. These metadata 070

allow us to build datasets based on one character- 071

istic: language name, speaker ID, room acoustics, 072

microphone type or segmental content. 073

ABX tests To find out, in an unsupervised man- 074

ner, if a multilingual speech model encodes a char- 075

acteristic C of the speech signal, we use the ABX 076

2The term ‘snippet’ is preferred over ‘segment’, reserving
the latter to refer to phonetic segments.
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tests introduced by Carlin et al. (2011) and Schatz077

et al. (2013). The test relies on vector representa-078

tions built by a pre-trained model for three audio079

snippets. Let A and X denote the snippets that080

share the characteristic C, while B is the one that081

does not. The test checks whether the distance082

d(A,X) is smaller than d(A,B).083

The ABX score corresponds to the proportion084

of triplets for which the condition d(A,X) <085

d(A,B) holds true. An ABX score close to 50 %086

indicates that, on average, the distance between A087

and X is the same as the distance between A and088

B, suggesting that C is not encoded in the audio089

representation. Conversely, the closer the score is090

to 100 %, the more the representation captures the091

characteristic C.092

ABX tests are interesting for low-resource scenar-093

ios because they require no additional training, so094

they can be directly applied to the representations095

(unlike linguistic probes: Belinkov and Glass 2019;096

Yin and Neubig 2022).097

Corpora All recordings come from the Pan-098

gloss Collection, an open-access archive of ‘little-099

documented languages’.3 Two series of recordings100

selected for their characteristics are considered:101

(i) The folk tale series consists of seven record-102

ing sessions of the same folk tale in Na, told by the103

same speaker. These experiments focus on the ef-104

fect of the recording conditions, which are slightly105

different from one version to another.106

The first batch studied comprises three versions:107

V1, V2 and V3. V1 was recorded in a room with108

perceptible reverberation, while V2 and V3 were109

recorded in a damped room.110

The second batch is made up of V6 and V7.111

These two versions were recorded in the same112

acoustic conditions. The audio was captured si-113

multaneously by two microphones: a headset mi-114

crophone and a handheld microphone placed on a115

small stand.116

The third batch compares V4 and V5, which117

have a native listener acting as respondent, to all118

the other recordings of the folk tale series.119

These recordings are particularly interesting be-120

cause some potential confounding factors (typically121

the topic and the speaker) are controlled, which122

makes it possible to focus on the influence of cer-123

tain specific factors (e.g. room acoustics).124

3For reproducibility reasons, an exhaustive list of the re-
sources’ DOI is provided in App. E.

(ii) The phonetics series is made up of five 125

recordings of phonetic elicitations and one record- 126

ing of words in a carrier sentence (lexical elicita- 127

tions). The language is Na. Three speakers iden- 128

tified as AS, RS and TLT are considered. We in- 129

cluded two recording sessions, which allows for 130

intra-speaker comparison. We thus arrive at a fine- 131

grained heatmap of ABX scores. 132

The five recordings of phonetic elicitations have 133

the same content (apart from the variation inherent 134

to the experimental process in fieldwork conditions: 135

Niebuhr and Michaud 2015) whereas lexical elic- 136

itations are a completely different content. Only 137

AS participated in both the phonetic and lexical 138

elicitation sessions. 139

Table 1 and 2 in App. A provide a more exhaus- 140

tive outline of the above mentioned metadata. 141

Experimental Setting In all our experiments, we 142

use the XLSR-534 model, a wav2vec2 architecture 143

trained on 56 kh of (raw) audio data in 53 languages 144

(Conneau et al., 2020). For the comparisons, we 145

consider audio snippets of length 1 s, 5 s, 10 s and 146

20 s in order to study the effect of snippet length 147

on our ABX test. We use max-pooling to build a sin- 148

gle vector representing the snippet because we are 149

interested in assessing differences between vectors. 150

As advocated by Schatz et al. (2013), we use the 151

cosine distance in all our experiments. 152

We used the representations from the 21st layer, 153

following several recent results (Pasad et al., 2021; 154

Li et al., 2022, 2023) which show that the ability 155

of wav2vec2 representations to capture linguistic 156

information declines in the last two layers. 157

3 Results 158

Using ABX tests with carefully selected audio 159

recordings, we investigate whether or not the au- 160

dio representations computed by wav2vec2 capture 161

specific information from the audio signal. 162

3.1 Study of various versions of the same tale 163

The aim of our first experiment is to determine 164

whether certain extra-linguistic variables (e.g. room 165

acoustics, type of microphone, ...) are captured in 166

the neural representations. For that, we consider 167

recordings from the folk tale series and use ABX 168

tests to distinguish between different versions of 169

the tale: these scores are calculated from triplets 170

4The HuggingFace API was used (signature
facebook/wav2vec2-large-xlsr-53).
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consisting of two snippets of 10 s from the same171

version and one snippet from a different version.5172

Figure 1: ABX scores when distinguishing different ver-
sions of the folk tale series.

Figure 1 shows that, in most cases, with a 10 s173

snippet-length it is possible to distinguish between174

the different recordings, although it is always the175

same speaker telling the same story. It suggests that176

neural representations capture much more than the177

linguistic information needed to understand speech,178

and it seems possible to use them to retrieve infor-179

mation related to the recording conditions. This180

observation is surprising: the ABX tests only use181

the raw representation constructed by a pre-trained182

model on a very large quantity of recordings cover-183

ing a wide array of speakers, languages and record-184

ing conditions, and we would have expected that185

the speech representations be cut off from an infor-186

mation deemed irrelevant.187

A more precise analysis of the scores between188

two recording conditions provides a better under-189

standing of the information that is or is not captured190

by the representations. Note that all our observa-191

tions are the most visible with 10 s snippets, which192

suggest that this is the proper setting to reveal dif-193

ferences at a broad acoustic level.194

The first batch, a comparison between V1, V2195

and V3 (NW corner of Figure 1) is very interesting:196

the ABX scores show that the representation of V2197

and V3 are indistinguishable when compared to the198

representations of V1. We know from Section 2199

that the main difference between these three record-200

ings is related to the recording venue: V2 and V3201

were recorded in the same place, less reverberating202

than the place where V1 was recorded. To confirm203

5Results for other snippet lengths are reported in App. C.

the influence of this parameter, we carried out a 204

complementary experiment by artificially adding 205

reverb6 to the V2 recordings and measuring the 206

ABX score between the V1 and modified V2 record- 207

ings. Figure 2 shows the evolution of the ABX score 208

as a function of the amount of reverb added. One 209

interesting observation is that when gradually in- 210

creasing the amount of reverb in V2, the ABX score 211

decreases first before increasing again. It means 212

that V1 is closer to V2 with 5 % reverb, which sug- 213

gests a relation of causality between the amount of 214

reverberation and the degree of closeness between 215

the recordings of this batch. 216

Figure 2: Reproducing V1 room tone with artificial
room tone applied on V2 (snippet length = 5 s).

In the second batch, the sub-versions of V6 and 217

V7 are labeled as h for headset and t for table. Fig- 218

ure 1 shows that he XLSR-53 representations can 219

effectively distinguish between these two micro- 220

phone types with high precision. For instance, the 221

ABX scores between V6h and V6t are some of the 222

highest in our experiment. However, when it comes 223

to distinguishing between two different recordings 224

made with the same microphone (i.e. V6h-V7h 225

and V6t-V7t), the ABX scores are only slightly bet- 226

ter than scores for the same recording. This sug- 227

gests that these representations strongly depend 228

on the microphone used: two vectors representing 229

the same audio signal but recorded by different 230

microphones will be more dissimilar than those 231

representing two different audio signals recorded 232

by the same microphone. 233

Finally, the results in Figure 1 also show that 234

the representations of recordings V4 and V5 are 235

very similar: the ABX score between these two ver- 236

sions is only 54%, whereas it is at least 71% with 237

all the other versions. One possible explanation 238

for this observation is that these two sessions were 239

conducted by with a local listener. This observa- 240

tion suggests that the neural representations capture 241

information about the context in which the record- 242

ing took place that is potentially very distant from 243

the audio produced by the speaker. Further experi- 244

ments are necessary to confirm this conclusion. 245

6We use Audacity to add 5, 10, 15 or 20 % reverb.
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3.2 Study of a phonetics corpus246

While it is quite obvious that two sentences with a247

different linguistic content in perfectly controlled248

conditions will come out as different when sub-249

mitted to an ABX test, the answer is not immediate250

when it comes to a whole recording. It is also not251

obvious that two different sentences uttered by two252

different speakers are distinguished solely due to a253

difference in the linguistic content: speaker ID acts254

as a confounding factor.255

The aim of this second experiment is to perform256

ABX tests on data with differences on the phonetic257

segments. To do this, we rely on a phonetics cor-258

pus recorded in a controlled manner, where each259

speaker received similar instructions. The scores260

are calculated from triplets consisting of two snip-261

pets of 1 s from the same recording and one snippet262

of 1 s from a different recording.7263

Figure 3: ABX scores for the comparisons between
elements of the phonetics series.Speaker AS has
three recordings, and has three recordings (AS1, AS2,
ASLex), RS has two (RS1, RS2) and TLT has one.

First, Figure 3 shows that with a 1 s snippet-264

length it is nearly not possible to distinguish be-265

tween the different recordings of the same sen-266

tences, even when the speakers differ. It suggests267

that neural representations, in this configuration,268

effectively ‘centrifugate’ the extra-linguistic infor-269

mation. This observation is not surprising given270

how the models are pre-trained, and it is a conve-271

nient springboard for the second part of the analy-272

sis, which consists in comparing these recordings273

of identical sentences to another one with different274

sentences.275

7Results for other snippet lengths are reported in App. D.

The results in the first row of Figure 3 suggest 276

that the ABX tests reveal differences in linguistic 277

content. The magnitude of the discrepancy (be- 278

tween row 1 and the others) depends on whether 279

or not the speaker is different. The fixed-speaker 280

discrepancy is around 0.07, while the cross-speaker 281

discrepancy is around 0.11, which means that even 282

with 1 s snippets the effect of the speaker is not 283

much less than the effect of the different content. 284

In this study, ABX scores are averaged over an 285

entire recording. For phonetic differences, it would 286

be interesting to be able to perform comparisons 287

on a per-sentence basis, but that would constitute a 288

departure from a fully unsupervised approach. 289

4 Discussion and conclusion 290

When one undertakes the task of comparing vector 291

representations of audio, differences are expected, 292

too many of them rather than too few. We adopted 293

an experimental method to submit a given model 294

to different experiments with test variables. 295

In the first experiment, the recordings are distin- 296

guished according to their technical acoustic prop- 297

erties (room acoustics, microphone) or interview 298

method. A 10 s snippet length seems to reveal dif- 299

ferences in these characteristics. 300

In the phonetics experiment, we focused on 1 s 301

snippet lengths. The recordings of three speakers 302

who participated in a phonetics experiment, quasi- 303

identical to one another, are distinguished from a 304

recording with a different content, but the distinc- 305

tion is not very strong. 306

The study of the folk tale series suggests that 307

recordings can be distinguished based on extra- 308

linguistic variables, and this is achieved using long 309

snippet lengths. We think that with appropriate 310

data, long-range variables such as genre or typo- 311

logical properties of the language could also be de- 312

tected in the representations. These results provide 313

a means for automatically classifying recordings 314

e.g. by noise level or genre. 315

The results from the phonetics series suggest 316

that smaller snippets encompass less information, 317

which results is smaller differences on the ABX 318

score. This observation presents an interest for 319

cross-linguistic comparison, but it would require 320

additional investigations to devise a method more 321

suited to phonetic segments. Among the possible 322

improvements, using segmented corpora would be 323

an interesting way to pursue. 324
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Limitations325

As is often the case for endangered languages (Liu326

et al., 2022), our corpora rely on a few speakers of327

the same gender. In our case, we exploit a resource328

with rich metadata to build experiments with mini-329

mal differences and observe sets that differ by one330

characteristic only. The conclusions drawn on the331

speaker-independent setting in Section 3 may need332

to be reanalyzed when we run the experiment on333

cross-gender data.334

Our study does not perform comparisons with335

other methods for identifying characteristics, be-336

cause other methods require more data than the337

amount treated here (typically linguistic probes us-338

ing classifiers).339

We have not investigated how the model reacts340

to a superposition of variables sensitive to a given341

snippet length. Therefore, we would need to ex-342

tend our experiments further, e.g., to check how343

a 10 s snippet length is handled when assessing a344

discrepancy in speaker and room acoustics.345

We plan to extend this study by adding data from346

experimental phonetics experiments related to sec-347

ond language acquisition, as they often include348

productions from the same speaker in multiple lan-349

guages. Experimental phonetics corpora are de-350

vised under highly controlled conditions, which351

is beneficial for our study as it removes potential352

confounding factors.353

Ethics Statement354

The study presented here relies on small-sized355

corpora because the methods are meant for low-356

resource languages, i.e., without a significant357

amount of data available. This limitation is off-358

set by the wealth of metadata available for each359

recording in the Pangloss Collection. Pangloss is a360

world language open-access archive developed in361

a Dublin-core compliant framework (Weibel et al.,362

1998).363

The data used in this study are first-hand, col-364

lected by researchers working with the communi-365

ties to document and describe their language. They366

are the result of months of collaborative work in367

the field to transcribe and translate the data with na-368

tive speakers (typically the speaker himself/herself).369

The speakers all consented to the use of these data370

for scientific purposes and were compensated for371

their work as linguistic consultants.372

All data and models in this study are open-access373

under a Creative Commons license stated on the374

consultation page for each resource (which is also 375

the landing page of its DOI listed in Table 3). The 376

information needed for reproducibility is present 377

in the text (model information) or the appendices 378

(data). The metadata collected were directly col- 379

lected via questionnaires during the fieldwork. Gen- 380

der, for example, corresponds to the gender the 381

speaker provided in the questionnaire. 382
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A Metadata for the experiments469

The list of metadata for the experiments conducted470

is given in Table 1 for the folk tale series and in471

Table 2 for the phonetics series.

REC ID Year DUR (s) MIC ITV Acoust.
V1 2006 518 Tab out ND
V2 2007 440 Tab out D
V3 2008 707 Tab out D
V4 2014 527 Hea Na D
V5 2014 423 Hea Na D
V6h 2018 348 Hea out ND
V6t 2018 348 Tab out ND
V7h 2018 635 Hea out ND
V7t 2018 635 Tab out ND

Table 1: Metadata for the folk tale series. MIC = micro-
phone: Headset or Table; ITV = interviewer: outsider or
Na (local). Acoustics: non-damped (ND), or damped
(D).

472

REC ID DUR (s) SPK SESSION TYPE

AS1 1567 AS (F) Phonetic elicit.
AS2 952 AS (F) Phonetic elicit.
RS1 681 RS (F) Phonetic elicit.
RS2 786 RS (F) Phonetic elicit.
TLT 897 TLT (F) Phonetic elicit.
ASLex 1216 AS (F) Lexical elicit.

Table 2: Metadata for the phonetics series. SPK =
speaker; (F) = Female. Data collected in 2019

B M and SD values showing that ABX tests473

can be used to measure differences474

between our corpora475

Figure 4 shows mean and standard deviation values476

for a comparison between inter-recordings scores477

(phonetics series and folk-tale series barplots) and478

intra-recording scores (same-recording), for differ-479

ent snippet lengths. For all snippet lengths, the480

average inter-recording ABX score is always sig-481

nificantly higher than the average intra-recording482

score, even for 1 s snippet-length. This shows that483

ABX tests can be used to measure differences in our484

experiments.485

Figure 4: Average ABX scores for 1, 5, 10, 20 s snippets.

C ABX scores when distinguishing 486

different versions of the folk tale series 487

by the same speaker. 488

The 20 s value for snippet length has been inves- 489

tigated, and it does not bring out much more than 490

the 10 s snippet length. In addition a 20 s snippet 491

length with max-pooling tackles the limits of the 492

max-pooling method. Indeed, we believe there is a 493

limit to the amount of audio we can have in an em- 494

bedding. Indeed, with the max pooling extraction 495

method, each of the 980 vectors before pooling the 496

20 s of audio will only occupy, on average, 1.04 497

cells per final vector since it only has 1024 compo- 498

nents. The results can be seen in Figure 5 for 20 s 499

snippets, Figure 6 for 10 s snippets, Figure 7 for 5 s 500

snippets, Figure 8 for 1 s snippets. 501

Figure 5: ABX scores for the folk tale series. (snippet
length = 20 s).
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Figure 6: ABX scores for the folk tale series (snippet
length = 10 s).

Figure 7: ABX scores for the folk tale series (snippet
length = 5 s).

Figure 8: ABX scores for the folk tale series (snippet
length = 1 s).

D ABX scores when distinguishing between 502

elements of the phonetics series 503

The results can be seen in Figure 9 for 20 s snip- 504

pets, Figure 10 for 10 s snippets, Figure 11 for 5 s 505

snippets, Figure 12 for 1 s snippets. 506

Figure 9: ABX scores for the comparisons between ele-
ments of the phonetics series (snippet length = 20 s).

Figure 10: ABX scores for the comparisons between
elements of the phonetics series (snippet length = 10 s).
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Figure 11: ABX scores for the comparisons between
elements of the phonetics series (snippet length = 5 s).

Figure 12: ABX scores for the comparisons between
elements of the phonetics series (snippet length = 1 s).

E Audio resource: list of the recordings 507

used for the study, with their DOI 508

Folk-tale series:
REC ID DOI

V1 doi.org/10.24397/PANGLOSS-0004341
V2 doi.org/10.24397/PANGLOSS-0004343
V3 doi.org/10.24397/PANGLOSS-0004344
V4 doi.org/10.24397/pangloss-0004938
V5 doi.org/10.24397/pangloss-0004940
V6 doi.org/10.24397/pangloss-0007695
V7 doi.org/10.24397/pangloss-0007698

Phonetics series
REC ID DOI

AS2 doi.org/10.24397/pangloss-0008663
RS2 doi.org/10.24397/pangloss-0008667
AS1 doi.org/10.24397/pangloss-0008662

RS1

doi.org/10.24397/pangloss-0008664
doi.org/10.24397/pangloss-0008665
doi.org/10.24397/pangloss-0008666

TLT doi.org/10.24397/pangloss-0008668

ASLex

doi.org/10.24397/pangloss-0008669
doi.org/10.24397/pangloss-0008670
doi.org/10.24397/pangloss-0008671

Table 3: List of the DOIs for the recordings used in this
study.
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doi.org/10.24397/PANGLOSS-0004341
doi.org/10.24397/PANGLOSS-0004343
doi.org/10.24397/PANGLOSS-0004344
doi.org/10.24397/pangloss-0004938
doi.org/10.24397/pangloss-0004940
doi.org/10.24397/pangloss-0007695
doi.org/10.24397/pangloss-0007698
doi.org/10.24397/pangloss-0008663
doi.org/10.24397/pangloss-0008667
doi.org/10.24397/pangloss-0008662
doi.org/10.24397/pangloss-0008664 
doi.org/10.24397/pangloss-0008665
doi.org/10.24397/pangloss-0008666
doi.org/10.24397/pangloss-0008668
doi.org/10.24397/pangloss-0008669
doi.org/10.24397/pangloss-0008670
doi.org/10.24397/pangloss-0008671

