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Abstract

In the highly constrained context of low-
resource language studies, we propose a new
unsupervised method using ABX tests on audio
recordings with carefully curated metadata to
shed light on the type of information present
in the representations. ABX tests determine if
the representations computed by a multilingual
speech model encode a given characteristic.
Two experiments are devised: one on acous-
tic aspects, specifically room acoustic charac-
teristics, and one on phonetic aspects. The re-
sults confirm that the representations extracted
from recordings with different linguistic/extra-
linguistic characteristics differ along the same
lines. Embedding more audio signal in one
vector better discriminates extra-linguistic char-
acteristics, whereas shorter snippets are bet-
ter to distinguish segmental information. The
method is fully unsupervised, potentially open-
ing new research avenues for comparative work
on under-documented languages.

1 Introduction

In recent improvements in speech processing,! the
amount of data used at pre-training has been in-
strumental (Wei et al., 2022), which makes it more
challenging — if not impossible — to reach similar
levels of performance for endangered languages.
Developing new unsupervised approaches, in ad-
dition to being cost-effective (Bender et al., 2021),
helps us better understand the models.

Training a speech model often results in chang-
ing the weights of the parameter matrices to spe-
cialize it for a task. But speech, when accessed
via audio recordings, is highly multifactorial: a
recorded voice tells a message and an intention; the
audio contains information about the surroundings.

Our experimental setup relies on tailored
datasets to see how specific differences in the in-
put signal are reflected in the output vectors. ABX

'in ASR, TTS, and even on corpora/languages/tasks not
seen at pre-training (Guillaume et al., 2022).

tests are used on carefully selected data in Na lan-
guage (ISO-639-3: nru). Two series of experiments
explore different dimensions to assess differences
between recordings. The folk-tale series aims to
explore an extra-linguistic dimension by compar-
ing seven versions of the same tale by the same
speaker, and the phonetics series explores segmen-
tal dimensions by comparing sentences (some iden-
tical, some different) from different speakers.

The results provide an insight into the nature of
the information encoded in the representations of
a model such as XLSR-53 (Baevski et al., 2020;
Babu et al., 2021). Our findings suggest that ABX
tests can be leveraged to bring out differences in
the acoustic setup (room, microphone) or in the
(segmental) linguistic content. A parametric study
shows that processing audio by snippets” of 10's is
sufficient to bring out differences on the acoustic
setup, while 1 s snippets are better for segmental
characteristics.

This study offers an innovative method to detect
confounding factors in corpora intended for unsu-
pervised machine learning, and provides a means
to accelerate the classification of recordings (e.g.
by noise level or genre) where such metadata are
unavailable.

2 Method

We propose a method based on two components:
(i) ABX tests to determine the presence/absence of a
given characteristic in a representation and (ii) au-
dio corpora with precise metadata. These metadata
allow us to build datasets based on one character-
istic: language name, speaker ID, room acoustics,
microphone type or segmental content.

ABX tests To find out, in an unsupervised man-
ner, if a multilingual speech model encodes a char-
acteristic C of the speech signal, we use the ABX

The term ‘snippet’ is preferred over ‘segment’, reserving
the latter to refer to phonetic segments.



tests introduced by Carlin et al. (2011) and Schatz
et al. (2013). The test relies on vector representa-
tions built by a pre-trained model for three audio
snippets. Let A and X denote the snippets that
share the characteristic C, while B is the one that
does not. The test checks whether the distance
d(A, X) is smaller than d(A, B).

The ABX score corresponds to the proportion
of triplets for which the condition d(A4,X) <
d(A, B) holds true. An ABX score close to 50 %
indicates that, on average, the distance between A
and X is the same as the distance between A and
B, suggesting that C is not encoded in the audio
representation. Conversely, the closer the score is
to 100 %, the more the representation captures the
characteristic C.

ABX tests are interesting for low-resource scenar-
ios because they require no additional training, so
they can be directly applied to the representations
(unlike linguistic probes: Belinkov and Glass 2019;
Yin and Neubig 2022).

Corpora All recordings come from the Pan-
gloss Collection, an open-access archive of ‘little-
documented languages’.> Two series of recordings
selected for their characteristics are considered:

(i) The folk tale series consists of seven record-
ing sessions of the same folk tale in Na, told by the
same speaker. These experiments focus on the ef-
fect of the recording conditions, which are slightly
different from one version to another.

The first batch studied comprises three versions:
V1, V2 and V3. V1 was recorded in a room with
perceptible reverberation, while V2 and V3 were
recorded in a damped room.

The second batch is made up of V6 and V7.
These two versions were recorded in the same
acoustic conditions. The audio was captured si-
multaneously by two microphones: a headset mi-
crophone and a handheld microphone placed on a
small stand.

The third batch compares V4 and V5, which
have a native listener acting as respondent, to all
the other recordings of the folk tale series.

These recordings are particularly interesting be-
cause some potential confounding factors (typically
the topic and the speaker) are controlled, which
makes it possible to focus on the influence of cer-
tain specific factors (e.g. room acoustics).

3For reproducibility reasons, an exhaustive list of the re-
sources’ DOI is provided in App. E.

(i) The phonetics series is made up of five
recordings of phonetic elicitations and one record-
ing of words in a carrier sentence (lexical elicita-
tions). The language is Na. Three speakers iden-
tified as AS, RS and TLT are considered. We in-
cluded two recording sessions, which allows for
intra-speaker comparison. We thus arrive at a fine-
grained heatmap of ABX scores.

The five recordings of phonetic elicitations have
the same content (apart from the variation inherent
to the experimental process in fieldwork conditions:
Niebuhr and Michaud 2015) whereas lexical elic-
itations are a completely different content. Only
AS participated in both the phonetic and lexical
elicitation sessions.

Table 1 and 2 in App. A provide a more exhaus-
tive outline of the above mentioned metadata.

Experimental Setting In all our experiments, we
use the XLSR-53* model, a wav2vec? architecture
trained on 56 kh of (raw) audio data in 53 languages
(Conneau et al., 2020). For the comparisons, we
consider audio snippets of length 1s,5s, 10s and
20 s in order to study the effect of snippet length
on our ABX test. We use max-pooling to build a sin-
gle vector representing the snippet because we are
interested in assessing differences between vectors.
As advocated by Schatz et al. (2013), we use the
cosine distance in all our experiments.

We used the representations from the 21% layer,
following several recent results (Pasad et al., 2021;
Li et al., 2022, 2023) which show that the ability
of wav2vec? representations to capture linguistic
information declines in the last two layers.

3 Results

Using ABX tests with carefully selected audio
recordings, we investigate whether or not the au-
dio representations computed by wav2vec? capture
specific information from the audio signal.

3.1 Study of various versions of the same tale

The aim of our first experiment is to determine
whether certain extra-linguistic variables (e.g. room
acoustics, type of microphone, ...) are captured in
the neural representations. For that, we consider
recordings from the folk tale series and use ABX
tests to distinguish between different versions of
the tale: these scores are calculated from triplets

“The HuggingFace API was used

facebook/wav2vec2-large-x1lsr-53).

(signature
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consisting of two snippets of 10s from the same
version and one snippet from a different version.’
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Figure 1: ABX scores when distinguishing different ver-
sions of the folk tale series.

Figure 1 shows that, in most cases, with a 10s
snippet-length it is possible to distinguish between
the different recordings, although it is always the
same speaker telling the same story. It suggests that
neural representations capture much more than the
linguistic information needed to understand speech,
and it seems possible to use them to retrieve infor-
mation related to the recording conditions. This
observation is surprising: the ABX tests only use
the raw representation constructed by a pre-trained
model on a very large quantity of recordings cover-
ing a wide array of speakers, languages and record-
ing conditions, and we would have expected that
the speech representations be cut off from an infor-
mation deemed irrelevant.

A more precise analysis of the scores between
two recording conditions provides a better under-
standing of the information that is or is not captured
by the representations. Note that all our observa-
tions are the most visible with 10 s snippets, which
suggest that this is the proper setting to reveal dif-
ferences at a broad acoustic level.

The first batch, a comparison between V1, V2
and V3 (NW corner of Figure 1) is very interesting:
the ABX scores show that the representation of V2
and V3 are indistinguishable when compared to the
representations of V1. We know from Section 2
that the main difference between these three record-
ings is related to the recording venue: V2 and V3
were recorded in the same place, less reverberating
than the place where V1 was recorded. To confirm

SResults for other snippet lengths are reported in App. C.

the influence of this parameter, we carried out a
complementary experiment by artificially adding
reverb® to the V2 recordings and measuring the
ABX score between the V1 and modified V2 record-
ings. Figure 2 shows the evolution of the ABX score
as a function of the amount of reverb added. One
interesting observation is that when gradually in-
creasing the amount of reverb in V2, the ABX score
decreases first before increasing again. It means
that V1 is closer to V2 with 5 % reverb, which sug-
gests a relation of causality between the amount of
reverberation and the degree of closeness between
the recordings of this batch.

0.88

0.9

V2 V2+05 V2+10 V2+15 V2+20

Figure 2: Reproducing V1 room tone with artificial
room tone applied on V2 (snippet length = 5 s).

In the second batch, the sub-versions of V6 and
V7 are labeled as h for headset and t for table. Fig-
ure 1 shows that he XLSR-53 representations can
effectively distinguish between these two micro-
phone types with high precision. For instance, the
ABX scores between V6;, and V6, are some of the
highest in our experiment. However, when it comes
to distinguishing between two different recordings
made with the same microphone (i.e. V6;,-V7j
and V6,-V7,), the ABX scores are only slightly bet-
ter than scores for the same recording. This sug-
gests that these representations strongly depend
on the microphone used: two vectors representing
the same audio signal but recorded by different
microphones will be more dissimilar than those
representing two different audio signals recorded
by the same microphone.

Finally, the results in Figure 1 also show that
the representations of recordings V4 and V5 are
very similar: the ABX score between these two ver-
sions is only 54%, whereas it is at least 71% with
all the other versions. One possible explanation
for this observation is that these two sessions were
conducted by with a local listener. This observa-
tion suggests that the neural representations capture
information about the context in which the record-
ing took place that is potentially very distant from
the audio produced by the speaker. Further experi-
ments are necessary to confirm this conclusion.

“We use Audacity to add 5, 10, 15 or 20 % reverb.



3.2 Study of a phonetics corpus

While it is quite obvious that two sentences with a
different linguistic content in perfectly controlled
conditions will come out as different when sub-
mitted to an ABX test, the answer is not immediate
when it comes to a whole recording. It is also not
obvious that two different sentences uttered by two
different speakers are distinguished solely due to a
difference in the linguistic content: speaker ID acts
as a confounding factor.

The aim of this second experiment is to perform
ABX tests on data with differences on the phonetic
segments. To do this, we rely on a phonetics cor-
pus recorded in a controlled manner, where each
speaker received similar instructions. The scores
are calculated from triplets consisting of two snip-
pets of 1 s from the same recording and one snippet
of 1's from a different recording.’
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Figure 3: ABX scores for the comparisons between
elements of the phonetics series.Speaker AS has
three recordings, and has three recordings (AS1, ASo,
AS7.z), RS has two (RS1, RS5) and TLT has one.

First, Figure 3 shows that with a 1s snippet-
length it is nearly not possible to distinguish be-
tween the different recordings of the same sen-
tences, even when the speakers differ. It suggests
that neural representations, in this configuration,
effectively ‘centrifugate’ the extra-linguistic infor-
mation. This observation is not surprising given
how the models are pre-trained, and it is a conve-
nient springboard for the second part of the analy-
sis, which consists in comparing these recordings
of identical sentences to another one with different
sentences.

"Results for other snippet lengths are reported in App. D.

The results in the first row of Figure 3 suggest
that the ABX tests reveal differences in linguistic
content. The magnitude of the discrepancy (be-
tween row 1 and the others) depends on whether
or not the speaker is different. The fixed-speaker
discrepancy is around 0.07, while the cross-speaker
discrepancy is around 0.11, which means that even
with 1s snippets the effect of the speaker is not
much less than the effect of the different content.

In this study, ABX scores are averaged over an
entire recording. For phonetic differences, it would
be interesting to be able to perform comparisons
on a per-sentence basis, but that would constitute a
departure from a fully unsupervised approach.

4 Discussion and conclusion

When one undertakes the task of comparing vector
representations of audio, differences are expected,
too many of them rather than too few. We adopted
an experimental method to submit a given model
to different experiments with test variables.

In the first experiment, the recordings are distin-
guished according to their technical acoustic prop-
erties (room acoustics, microphone) or interview
method. A 10s snippet length seems to reveal dif-
ferences in these characteristics.

In the phonetics experiment, we focused on 1 s
snippet lengths. The recordings of three speakers
who participated in a phonetics experiment, quasi-
identical to one another, are distinguished from a
recording with a different content, but the distinc-
tion is not very strong.

The study of the folk tale series suggests that
recordings can be distinguished based on extra-
linguistic variables, and this is achieved using long
snippet lengths. We think that with appropriate
data, long-range variables such as genre or typo-
logical properties of the language could also be de-
tected in the representations. These results provide
a means for automatically classifying recordings
e.g. by noise level or genre.

The results from the phonetics series suggest
that smaller snippets encompass less information,
which results is smaller differences on the ABX
score. This observation presents an interest for
cross-linguistic comparison, but it would require
additional investigations to devise a method more
suited to phonetic segments. Among the possible
improvements, using segmented corpora would be
an interesting way to pursue.



Limitations

As is often the case for endangered languages (Liu
et al., 2022), our corpora rely on a few speakers of
the same gender. In our case, we exploit a resource
with rich metadata to build experiments with mini-
mal differences and observe sets that differ by one
characteristic only. The conclusions drawn on the
speaker-independent setting in Section 3 may need
to be reanalyzed when we run the experiment on
cross-gender data.

Our study does not perform comparisons with
other methods for identifying characteristics, be-
cause other methods require more data than the
amount treated here (typically linguistic probes us-
ing classifiers).

We have not investigated how the model reacts
to a superposition of variables sensitive to a given
snippet length. Therefore, we would need to ex-
tend our experiments further, e.g., to check how
a 10 s snippet length is handled when assessing a
discrepancy in speaker and room acoustics.

We plan to extend this study by adding data from
experimental phonetics experiments related to sec-
ond language acquisition, as they often include
productions from the same speaker in multiple lan-
guages. Experimental phonetics corpora are de-
vised under highly controlled conditions, which
is beneficial for our study as it removes potential
confounding factors.

Ethics Statement

The study presented here relies on small-sized
corpora because the methods are meant for low-
resource languages, i.e., without a significant
amount of data available. This limitation is off-
set by the wealth of metadata available for each
recording in the Pangloss Collection. Pangloss is a
world language open-access archive developed in
a Dublin-core compliant framework (Weibel et al.,
1998).

The data used in this study are first-hand, col-
lected by researchers working with the communi-
ties to document and describe their language. They
are the result of months of collaborative work in
the field to transcribe and translate the data with na-
tive speakers (typically the speaker himself/herself).
The speakers all consented to the use of these data
for scientific purposes and were compensated for
their work as linguistic consultants.

All data and models in this study are open-access
under a Creative Commons license stated on the

consultation page for each resource (which is also
the landing page of its DOI listed in Table 3). The
information needed for reproducibility is present
in the text (model information) or the appendices
(data). The metadata collected were directly col-
lected via questionnaires during the fieldwork. Gen-
der, for example, corresponds to the gender the
speaker provided in the questionnaire.
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A Metadata for the experiments

The list of metadata for the experiments conducted
is given in Table 1 for the folk tale series and in
Table 2 for the phonetics series.

RECID Year DUR(s) MIC ITV Acoust.
\"2! 2006 518 Tab out ND
V2 2007 440 Tab out D
V3 2008 707 Tab out D
\Z! 2014 527 Hea Na D
V5 2014 423 Hea Na D
Vo6, 2018 348 Hea out ND
Vo6, 2018 348 Tab  out ND
VT 2018 635 Hea out ND
V7, 2018 635 Tab out ND

Table 1: Metadata for the folk tale series. MIC = micro-
phone: Headset or Table; ITV = interviewer: outsider or
Na (local). Acoustics: non-damped (ND), or damped
D).

RECID DUR (8) SPK SESSION TYPE
ASq 1567 AS (F)  Phonetic elicit.
AS, 952 AS (F) Phonetic elicit.
RS, 681 RS (F) Phonetic elicit.
RSy 786 RS (F)  Phonetic elicit.
TLT 897 TLT (F) Phonetic elicit.
ASjes 1216 AS (F) Lexical elicit.

Table 2: Metadata for the phonetics series. SPK =

speaker; (F) = Female. Data collected in 2019

B M and SD values showing that ABX tests
can be used to measure differences
between our corpora

Figure 4 shows mean and standard deviation values
for a comparison between inter-recordings scores
(phonetics series and folk-tale series barplots) and
intra-recording scores (same-recording), for differ-
ent snippet lengths. For all snippet lengths, the
average inter-recording ABX score is always sig-
nificantly higher than the average intra-recording
score, even for 1 s snippet-length. This shows that
ABX tests can be used to measure differences in our
experiments.
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Figure 4: Average ABX scores for 1, 5, 10, 20 s snippets.

C ABX scores when distinguishing
different versions of the folk tale series
by the same speaker.

The 20 s value for snippet length has been inves-
tigated, and it does not bring out much more than
the 10 s snippet length. In addition a 20 s snippet
length with max-pooling tackles the limits of the
max-pooling method. Indeed, we believe there is a
limit to the amount of audio we can have in an em-
bedding. Indeed, with the max pooling extraction
method, each of the 980 vectors before pooling the
20 s of audio will only occupy, on average, 1.04
cells per final vector since it only has 1024 compo-
nents. The results can be seen in Figure 5 for 20's
snippets, Figure 6 for 10 s snippets, Figure 7 for 5 s
snippets, Figure 8 for 1 s snippets.
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Figure 5: ABX scores for the folk tale series. (snippet
length = 205s).
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Figure 6: ABX scores for the folk tale series (snippet

length = 105s).
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Figure 7: ABX scores for the folk tale series (snippet
length =5s).
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Figure 8: ABX scores for the folk tale series (snippet

length = 15).

D ABX scores when distinguishing between
elements of the phonetics series

The results can be seen in Figure 9 for 20 s snip-
pets, Figure 10 for 10 s snippets, Figure 11 for 5s
snippets, Figure 12 for 1 s snippets.
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Figure 9: ABX scores for the comparisons between ele-
ments of the phonetics series (snippet length = 205s).
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elements of the phonetics series (snippet length = 10's).
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Figure 12: ABX scores for the comparisons between
elements of the phonetics series (snippet length = 1 s).

E Audio resource: list of the recordings
used for the study, with their DOI

Folk-tale series:

RECID DOI

Vi doi.org/10.24397/PANGLOSS-0004341
V2 doi.org/10.24397/PANGLOSS-0004343
V3 doi.org/10.24397/PANGLOSS-0004344
V4 doi.org/10.24397/pangloss-0004938
V5 doi.org/10.24397/pangloss-0004940
Vo6 doi.org/10.24397/pangloss-0007695
\%} doi.org/10.24397/pangloss-0007698

Phonetics series

RECID DOI
AS, doi.org/10.24397/pangloss-0008663
RS, doi.org/10.24397/pangloss-0008667
ASy doi.org/10.24397/pangloss-0008662
doi.org/10.24397/pangloss-0008664
RS, doi.org/10.24397/pangloss-0008665
doi.org/10.24397/pangloss-0008666
TLT doi.org/10.24397/pangloss-0008668
doi.org/10.24397/pangloss-0008669
ASjpe, doi.org/10.24397/pangloss-0008670
doi.org/10.24397/pangloss-0008671

Table 3: List of the DOIs for the recordings used in this

study.


doi.org/10.24397/PANGLOSS-0004341
doi.org/10.24397/PANGLOSS-0004343
doi.org/10.24397/PANGLOSS-0004344
doi.org/10.24397/pangloss-0004938
doi.org/10.24397/pangloss-0004940
doi.org/10.24397/pangloss-0007695
doi.org/10.24397/pangloss-0007698
doi.org/10.24397/pangloss-0008663
doi.org/10.24397/pangloss-0008667
doi.org/10.24397/pangloss-0008662
doi.org/10.24397/pangloss-0008664 
doi.org/10.24397/pangloss-0008665
doi.org/10.24397/pangloss-0008666
doi.org/10.24397/pangloss-0008668
doi.org/10.24397/pangloss-0008669
doi.org/10.24397/pangloss-0008670
doi.org/10.24397/pangloss-0008671

