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Abstract

Bird flocks transition among distinct dynamical phases as ecological context1

changes. We introduce AVES (Anisotropic Vision–Energy–Steering), a continu-2

ous–time mechanistic framework in which sensory inputs are filtered by anisotropic3

vision with occlusion, acted upon after a finite reaction delay, and converted into4

roll-limited turns under a curvature ceiling set by lift–gravity balance; speed5

adapts under an explicit energy budget. Steering cues are orthogonally projected6

onto the plane normal to heading so that only biomechanically feasible rota-7

tions are executed. We embed delay as a finite-dimensional augmented state,8

enabling continuous-time propagation with discrete, frame-rate observations and9

thus a well-posed likelihood for Kalman filtering and simulation-based inference.10

This delay-aware state-space representation makes the four dimensionless con-11

trols—reaction delay, bank factor (curvature budget), interaction range, and vi-12

sion half-angle—statistically identifiable from trajectories and comparable across13

species and habitats because the parameters and indices are dimensionless and14

share a common observation model. Phases are diagnosed using a global alignment15

index, a milling index, connectivity-based fragmentation, and residence-time statis-16

tics for dwell and switching. The theory yields testable predictions—e.g., narrower17

vision or longer delay expand intermittent/fragmented regimes while stricter roll18

limits suppress milling—that map to standardized field measurements and translate19

into design rules for bio-inspired collectives (e.g., maintaining a low social-delay20

number and enforcing curvature caps to preserve alignment), with applications to21

bird-strike risk assessment, conservation monitoring, and resilient UAV swarms.22

Keywords: collective behavior; delay reaction; anisotropic vision; biomechanics; ecology; global23

dynamics24

1 Introduction25

Collective motion in animals is a canonical example of active matter, where large ensembles of26

self-propelled agents exhibit long-ranged order and sharp transitions under noise and heterogeneity.27

Minimal self-propelled particle models reproduce order–disorder transitions and scaling laws [1],28

while continuum hydrodynamics explains robustness of polar order and phase behavior at large scales29

[2, 3]. At the same time, field reconstructions of starling flocks and subsequent theory([4]) show30

that interaction neighborhoods are often topological rather than metric—each bird aligns with a31

fixed number of neighbors, not all within a fixed distance [5, 6]. Empirical analyses further support32

anisotropic vision, occlusion, and intermittently connected interaction graphs in real flocks [7, 8].33

These advances sharpen, but also expose, a gap between kinematic rules that fit trajectories and34

mechanistic models that enforce sensory and biomechanical constraints.35

We introduce AVES(Anisotropic Vision–Energy–Steering), a continuous-time, mechanistic frame-36

work that separates sensing geometry from motor execution. Perception is anisotropic through a vision37
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cone with distance weighting and occlusion; neighbors can be defined metrically or topologically38

(e.g., Voronoi or fixed-rank rules) without altering the motor layer. External and social stimuli act39

on turning only via their component orthogonal to the current heading, so that the induced angular40

velocity respects a bank-limited curvature ceiling, ωmax = g tanϕ/s, with g gravity, ϕ bank angle,41

and s speed. Bank responds saturably to steering demand, while speed adapts under an explicit energy42

budget, linking translational and maneuvering costs to motion. This orthogonal-steering projection is43

biomechanical rather than perceptual: it differs from “projected-view” perception models that operate44

in image space [9], and instead guarantees that only physically feasible rotations are executed given45

roll authority and lift–gravity balance. We enforce motor-stage feasibility by projecting the combined46

social–environmental cue onto the plane orthogonal to the current heading, so only biomechanically47

executable rotations are commanded. This departs from perception-only projection rules and ties48

turning to an explicit curvature cap. .49

2 Model Formulation50

Figure 1: Anisotropic field of view Θ, reaction delay τ̃ , occlusion, and orthogonal steering projection
si = (I − ûiû

⊤
i )Si.

We represent each bird i by position xi ∈ R3, unit heading ûi ∈ S2, speed si > 0, bank angle ϕi, and51

internal energy Ei, with velocity vi = siûi and heading kinematics ˙̂ui = ωi × ûi. Sensory–motor52

delay is implemented causally by evaluating all perceptual quantities at t − τ̃ using a ring buffer53

of length m = ⌈τ̃ /∆t⌉ at the video step ∆t, so that control depends on past observations without54

anticipation.55

Interactions are mediated by visual information rather than direct forces. The neighbor set Ni(t)56

is defined either metrically by a range R or topologically by a fixed number of visible neighbors,57

subject in both cases to a vision cone of half-angle Θ and an occlusion test χij ∈ {0, 1} obtained58

by ray casting. With displacement rij = xj − xi, we assign a bounded distance kernel ψ(r) =59

exp[−(r/r0)
p] with p ∈ [1, 2] and a bearing weight A(β) = max{0, cosβ} that penalizes large60

azimuth βij relative to ûi, and we aggregate visible headings as61

Si(t− τ̃) =
∑
j∈Ni

ψ(rij)A(βij)χij ûj .

Only the component orthogonal to the present heading contributes to steering, so cues are projected62

as63

si = (I − ûiû
⊤
i )Si,

which enforces zero longitudinal torque and preserves the biomechanical interpretation of rotations.64

Maneuvering is limited by lift–gravity balance, which sets a curvature ceiling65

ωmax(ϕi, si) =
g tanϕi
si

.

The actual turn-rate saturates smoothly at this ceiling according to66

ωi = κω
si

∥si∥+ ε
min

(
∥si∥, ωmax(ϕi, si)

)
,
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and the bank target responds to steering demand while respecting roll limits,67

ϕ⋆i = sat[−ϕmax,ϕmax]

(
βϕ ∥si∥

)
, ϕ̇i = κϕ(ϕ

⋆
i − ϕi).

Speed adapts under an explicit energy budget that balances power intake and expenditure,68

Ėi = Pgain(t)−
(
C0 + Cs s

3
i + Cω ∥ωi∥2

)
, (1)

where the parasitic-drag coefficient is parameterized by69

Cs =
1
2 ρCD S,

with air density ρ, species-level drag coefficient CD, and wing or body reference area S, so that Css
3
i70

recovers the classical cubic power in speed. The maneuvering cost converts squared turn-rate to71

power through72

Cω = cω Iyaw,

where Iyaw is the yaw inertia and cω is a dissipation constant. Translational speed then follows73

ṡi = κs
(
s⋆(Ei,TI)− si

)
− cds

2
i + ξs(t),

where s⋆ is the energetically preferred speed under turbulence intensity TI and cds2i represents74

quadratic drag at the behavioral time scale.75

The speed-adaptation noise ξs(t) is colored and state-dependent. We write76

ξs(t) = σsG(ϑi) ηs(t), η̇s = −(1/τn)ηs +
√

2/τn Ẇt,

with correlation time τn and a dimensionless steering demand77

ϑi =
∥si∥

ωmax(ϕi, si)
∈ [0, 1],

which modulates the diffusion scale via a saturating polynomial78

G(ϑ) = 1 + γ1ϑ+ γ2ϑ
2.

To prevent unrealistically large diffusion during extreme maneuvers, we cap the scale at Gmax chosen79

by a combined analytic and empirical rule. Linearization of the speed channel around (s̄, ϕ̄) yields80

Var(s) ≈ σ2
sG

2τn/(2κs), so enforcing a tolerated fractional variance α ∈ (0, 1) gives the theoretical81

bound82

Gmax ≤

√
2κs α s̄2

σ2
s τn

,

and we adopt the minimum between this bound and the empirical 0.95-quantile of G(ϑ) measured83

from trajectories. We report (α, τn, σs, Gmax) and supply a ±20% sensitivity analysis.84

Species-specific identification of (C0, Cs, Cω) proceeds along two complementary routes whose85

choice is dictated by data quality. When Pgain(t) is missing or uncertain due to environmen-86

tal covariates, we set weakly-informative lognormal priors for (C0, Cs, Cω) from morphometrics87

(m,S,CD, Iyaw), propagate the delay-aware state with a continuous–discrete EKF/UKF at step ∆t,88

and update parameters by the innovation likelihood with hierarchical partial pooling across sessions.89

When an independent and stable estimate of Pgain(t) is available, we solve a constrained regression,90

min
C0,Cs,Cω≥0

∑
t

ρδ

(
Ėi(t)− C0 − Css

3
i (t)− Cω∥ωi(t)∥2

)
,

with Huber loss ρδ and AR(1) prewhitening of residuals, and we quantify uncertainty and generaliza-91

tion by leave-one-session-out cross-validation while monitoring Karush–Kuhn–Tucker violations.92

When both routes are feasible, we treat the Bayesian path as primary and use the constrained re-93

gression as a calibration check; discrepancies beyond the joint 95% confidence region trigger a94

diagnostics pass focused on vision-cone, occlusion, and weighting mismatch.95
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Figure 2: phase simulation.

3 Phase classification and Hive dynamics96

We diagnose phases from trajectories using order parameters with mechanistic meaning. Global97

alignment (polarization) is quantified by the norm of the mean heading, Φ = N−1
∥∥∑

i ûi

∥∥ ∈98

[0, 1]. Milling is captured by the normalized angular momentum about the center of mass, Λ =99

N−1
∥∥∑

i(xi − x̄) × ûi

∥∥ ∈ [0, 1] [11, 12]. Fragmentation is tracked by the number of connected100

components K(t) of the anisotropic interaction graph induced by the vision cone and range, or by101

the giant–component fraction GCF (t) ∈ [0, 1]. Intermittency is the temporal variability of order,102

summarized by statistics such as stdt(Φ) and heavy–tailed dwell times across labels.103

Labels are assigned by morphology rather than thresholds alone. Disordered motion is recorded104

when Φ remains low and correlation lengths are short [13, 14]. Ordered translational motion is105

identified when Φ is high while Λ remains low. Milling corresponds to high Λ even at moderate Φ106

[15]. Intermittency is declared when Φ exhibits large fluctuations and the residence–time distribution107

over labels is heavy–tailed [16]. To reduce arbitrariness, we complement these rules with translation108

and rotation morphology scores derived from center–of–mass drift and tangential circulation and109

aggregate windowed predictions to global labels by late–time occupancy and switch density.110

Finite–size behavior and identifiability are examined via susceptibilities χτ = ∂Φ/∂τ̃ and111

χB = ∂Φ/∂B, which peak near transitions as correlation length approaches system size. Lin-112

earization around ordered motion in a delay–saturated regime admits a delay–induced Hopf onset, so113

intermittency emerges when the product of alignment gain and effective delay crosses a threshold,114

while strong bank limits contract the milling domain by capping feasible curvature.115

Mechanism–linked predictions follow. Reducing the field of view Θ or increasing reaction delay116

τ̃ depresses the effective alignment gain Geff = kalignA(Θ) and erodes phase margin through the117

factor e−λτ̃ in the dispersion relation, thereby expanding intermittent and fragmentation regions.118

Tightening the bank limit lowers the curvature budget κmax(B), suppressing milling and favoring119

ordered translation. Sensorimotor noise and turbulence enlarge the stochastic torque budget and120

inflate heavy–tailed residence times by noise–induced escapes near the Hopf boundary. Species with121

wider Θ or greater roll authority B = tanϕmax possess higher Geff and κmax, thus greater resilience122

of translational order under fixed turbulence, whereas slower processing (larger τ̃ ) reduces phase123

4



margin and promotes intermittent breakdowns. These trends admit a compact control principle,124

S ≡ Geff√
γ2 + ω2

c (B, τ̃)
> Sc,

where γ is an effective damping and ωc a characteristic onset frequency.125

Hive dynamics are mapped by sweeping the controls (τ̃ ,Θ, R,B, kalign, noise intensity, boundary126

conditions), simulating after warm–up, computing (Φ,Λ), assigning labels by the morphology rule,127

and tiling the [0, 1]2 plane with labeled samples {(Λk,Φk, ℓk)}. A majority vote among K nearest128

neighbors, with ties broken by mean distance, yields a data–driven phase partition whose interfaces129

follow the simulation cloud.130

Figure 3: Graph of Hopf boundary analogy

Limitations and validation routes are explicit. Direct experimental manipulation of Θ, τ̃ , and B in131

free–flying flocks is constrained by ethics, logistics, and environmental variability, which complicates132

causal tests of the Hopf boundary and curvature cap. We therefore emphasize preregistered small133

perturbations in controlled settings where feasible, quasi–experimental species or context contrasts134

that leverage natural variation in roll authority and field of view, and proxy observables tightly coupled135

to the mechanisms: a spectral marker ωc in Φ(t) for the delay–induced onset, and a curvature–speed136

envelope giving rmin = s2/(gB) for milling feasibility. These routes make the predictions empirically137

testable while acknowledging the limits of direct intervention in natural hives.138

4 Research Analysis139

We analyze flock phases from trajectories and estimate mechanism-level parameters in a delay–aware140

state–space setting so that phase maps and statistics are comparable across species and habitats.141

Let xi(t) ∈ R3 and ûi(t) ∈ S2 be position and unit heading of agent i, with center of mass142

C(t) = N−1
∑

i xi(t) and offsets ri(t) = xi(t)− C(t). Polarization and milling are computed as143

Φ(t) =
∥∥∥ 1
N

N∑
i=1

ûi(t)
∥∥∥ ∈ [0, 1], Λ(t) =

∥∥⟨ri(t)× ûi(t)⟩i
∥∥

⟨∥ri(t)∥⟩i + ε
∈ [0, 1].

Fragmentation is summarized by the fraction GCF (t) ∈ [0, 1] of agents in the largest connected144

component under the anisotropic interaction graph. A local–global alignment contrast δΦ(t) =145

Φlocal(t) − Φ(t) flags chimera-like coexistence when it exceeds a sustained threshold δ⋆ over a146

minimum dwell time; the precise definition is given once in the phase-classification section to147

avoid redundancy here. Windowed labels are assigned on blocks of length W as follows. If148

meant∈W [ GCF (t) < γfrag ] ≥ 1
2 , the block is Fragmented. Otherwise we compute translation and149

rotation scores, T (t) from center-of-mass motion and R(t) from tangential circulation, and declare150

Ordered if T ≥ ρR, Milling if R ≥ ρ T , and Ambiguous otherwise; late-time occupancy with a151

switch-density criterion identifies Intermittent.152
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Figure 4: Φ(t) and Λ(t) of each phases.

To obtain boundaries from dynamics rather than hand tuning, we sweep control parameters that shape153

hive behavior—reaction delay τ̃ , vision half-angle Θ, interaction range R, bank factorB = tanϕmax,154

alignment gain, angular noise, and boundary conditions. For each setting we simulate, compute155

(Φ,Λ) after warm-up, and assign a label by the morphology rule above. Given labeled samples156

{(Λk,Φk, ℓk)} we tile [0, 1]2 and classify each cell by k-nearest neighbors with distance weighting157

wj ∝ d−2
j . The value ofK is chosen by repeated stratified holdout to jointly maximize macro–F1 and158

a boundary-weighted F1 that upweights cells within a fixed geodesic distance from class interfaces.159

Distances are Mahalanobis in (Λ,Φ) using the sample covariance from the training fold; when160

ill-conditioned, we revert to z-scored Euclidean. We report sensitivity of the Hausdorff distance161

between interfaces as K varies in {5, 7, 9, 11}.162

To obtain boundaries from dynamics rather than hand tuning, we sweep control parameters . . .163

compute (Φ,Λ) after warm-up, and assign a label by the morphology rule above.164

We represent AVES as a continuous-time, delay–stochastic state–space model,165

dX(t) = f
(
X(t), X(t− τ̃); θ, u(t)

)
dt+G(θ) dW (t), yt = h

(
X(t)

)
+ εt,

where X stacks per-bird states (x, û, s, ϕ, E) and u(t) collects exogenous cues. Discretization at the166

camera step ∆t augments the state with a ring buffer so the delayed argument can be reconstructed.167

Writing q = τ̃ /∆t and m = ⌈q⌉, the delayed time tk − τ̃ lies in [tk−m, tk−m+1]. Let α = m− q ∈168

[0, 1); then a second-order accurate reconstruction uses linear interpolation169

X(tk − τ̃) ≈ (1− α)Xk−m+1 + αXk−m,

with a three-point Lagrange option near sharp turns. The ring buffer implements Zk+1 = S ◦170

Φ∆t(Zk; θ, uk:k+1) + η̃k, yk = h(Zk) + εk, where S shifts the buffer and Φ∆t is the numerical flow.171

The transition–observation map is piecewise smooth: it is C1 except on measure-zero sets where bank172

saturation or vision-cone clipping switches the active regime. By “differentiable almost everywhere”173

we mean exactly this piecewise-C1 property. In smooth regions we use EKF with Jacobians of the174

active piece; when regime crossings are frequent or occlusions induce innovation outliers, we switch175

to UKF, which does not require explicit Jacobians and is robust to such kinks.176

For hybrid or likelihood-free inference we use a rotation/translation-invariant summary vector177

S(y) =
(
Φ, Λ, dwell-time distributions across labels, PSD of Φ(t) near ωc(θ),

curvature–speed envelope of χt = ωtst/g
)
.

Dwell times are lengths of maximal contiguous runs of each label after warm-up; we estimate178

the survival function and fit candidate families—truncated Pareto and lognormal—by maximum179
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likelihood, selecting by KS distance with AIC weights and reporting parameter posteriors via180

bootstrap. The curvature–speed envelope is obtained by quantile regression on χt versus time (or181

conditioning on high-turn segments), taking the τq = 0.99 upper quantile curve and summarizing182

it by B̂ = quantile0.99(χ); this delivers a robust upper bound on the curvature budget that links183

directly to B.184

Identifiability hinges on two control groups that shape phase boundaries: the social delay number185

S = kalignτ̃ , which sets the Hopf onset in linearization, and the curvature cap ωmax = gB/s, which186

limits milling via rmin = s2/(gB). Experimental design proceeds by timing cues to separate S from187

kalign, sweeping speed to estimate B from the χt envelope, and perturbing neighbor geometry to188

probe Θ and R. These procedures collectively yield reproducible, mechanism-linked interfaces in the189

(Λ,Φ) plane, which we exploit in the next section to test predictions and to standardize cross-species190

comparisons.191

5 Conclusion192

AVES links anisotropic perception, finite reaction delay, and bank-limited turning into a compact,193

mechanistic control of flock phases. Two nondimensional anchors summarize the logic: the social194

delay number S = kalignτ̃ that sets a delay–induced Hopf boundary for loss of translational order,195

and the curvature cap ωmax = g tanϕ/s (with B = tanϕmax and rmin = s2/(gB)) that limits196

milling feasibility. These quantities convert sensory and biomechanical traits into explicit stability197

margins and phase partitions, providing a concise organizing grammar for active collectives beyond198

kinematic SPP rules.199

We outline actionable pathways from mechanism to practice with concrete validation plans. Conser-200

vation monitoring: estimate Ŝ and B̂ from stereo-video of migratory flocks using polarization spectra201

and curvature–speed envelopes; preregister transects and endpoints (shift in Φ peak frequency, high-202

quantile χt = ωtst/g), with success defined by nonoverlapping 95% CIs across seasons. Bird–strike203

risk: fuse roadside lidar and video to forecast order loss when Ŝt > S for a fixed dwell; evaluate on204

held-out flights and a prospective A/B at runways using intervention triggers for deterrents. UAV205

coordination: implement orthogonal steering with a bank cap on quadrotors; stress-test in cluttered206

motion–capture arenas with gust injection, benchmarking collision rate and path efficiency against207

SPP baselines.208

We make robustness limits and failure modes explicit. Performance degrades under severe occlusion,209

turbulence that violates quasi-steady banking, and fast topology switching; foreseeable failures include210

false chimera flags from partial visibility. Mitigations include soft-visibility relaxations, IMU–vision211

fusion, gust-aware process noise, and bounded-curvature backoff policies, with guarantees stated in212

terms of rmin and a required S margin.213

Our roadmap specifies implementation details within AVES rather than a list of aspirations. Hy-214

dro/aero coupling: add induced velocities via lifting–line/Biot–Savart surrogates on a sparse grid215

and differentiate with an event-aware adjoint. Heterogeneous neighbors: support rank/Voronoi216

selection under occlusion with GPU BVH queries in O(N logN). Multi–species and nonreciprocity:217

model Jij ̸= Jji with a skew–symmetric+low–rank prior; identify asymmetries via timed optic–flow218

perturbations and asymmetric alignment step–responses. Scaling inference: use batched EKF/UKF219

with autodiff; fall back to SNPE/ABC at bank saturation and visibility switches; release code, data,220

and preregistered analyses to ensure replicability.221

In sum, S and ωmax provide a minimal, testable interface between organismal constraints and222

collective order, and the proposed scenarios, metrics, and computational tools make the ecological223

and engineering impacts of AVES directly verifiable.224
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Agents4Science Paper Checklist277

The checklist is designed to encourage best practices for responsible machine learning research,278

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove279

the checklist: Papers not including the checklist will be desk rejected. The checklist should280

follow the references and follow the (optional) supplemental material. The checklist does NOT count281

towards the page limit.282

Please read the checklist guidelines carefully for information on how to answer these questions. For283

each question in the checklist:284

• You should answer [Yes] , [No] , or [NA] .285

• [NA] means either that the question is Not Applicable for that particular paper or the286

relevant information is Not Available.287

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).288

The checklist answers are an integral part of your paper submission. They are visible to the289

reviewers and area chairs. You will be asked to also include it (after eventual revisions) with the final290

version of your paper, and its final version will be published with the paper.291

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.292

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided293

a proper justification is given. In general, answering "[No] " or "[NA] " is not grounds for rejection.294

While the questions are phrased in a binary way, we acknowledge that the true answer is often more295

nuanced, so please just use your best judgment and write a justification to elaborate. All supporting296

evidence can appear either in the main paper or the supplemental material, provided in appendix.297

If you answer [Yes] to a question, in the justification please point to the section(s) where related298

material for the question can be found.299

IMPORTANT, please:300

• Delete this instruction block, but keep the section heading “Agents4Science Paper301

Checklist",302

• Keep the checklist subsection headings, questions/answers and guidelines below.303

• Do not modify the questions and only use the provided macros for your answers.304

Agents4Science Paper Checklist305

1. Claims306

Question: Do the main claims made in the abstract and introduction accurately reflect the307

paper’s contributions and scope?308

Answer: [Yes]309

Justification: The abstract and introduction clearly state a continuous-time mechanistic310

framework (AVES) with anisotropic vision, finite reaction delay, bank-limited turning with311

a curvature cap, energy-constrained speed control, orthogonal steering, phase discriminants,312

and an inference program; these are developed in the body with formal equations, order313

parameters, and analysis.314

2. Limitations315

Question: Does the paper discuss the limitations of the work performed by the authors?316

Answer: [Yes]317

Justification: The paper explicitly discusses practical and methodological limits (e.g.,318

ethical/field constraints on manipulating vision, delay and bank; occlusion; turbulence;319

topology switching) and proposes concrete validation routes and mitigations.320

3. Theory assumptions and proofs321

Question: For each theoretical result, does the paper provide the full set of assumptions and322

a complete (and correct) proof?323
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Answer: [Yes]324

Justification: Assumptions are stated (orthogonal steering projection, linearized roll dy-325

namics, fixed anisotropic kernel, small-delay expansions), and the dispersion/Hopf onset326

and curvature-limited milling threshold are derived with numbered equations and cross-327

references.328

4. Experimental result reproducibility329

Question: Does the paper fully disclose all the information needed to reproduce the330

main experimental results of the paper to the extent that it affects the main claims and/or331

conclusions (regardless of whether the code and data are provided or not)?332

Answer: [Yes]333

Justification: The paper specifies simulation/inference details (delay-aware ring buffer, dis-334

cretization step, integrators, summary statistics, classification workflow, sensitivity analyses)335

sufficient to reproduce the key results.336

5. Open access to data and code337

Question: Does the paper provide open access to the data and code, with sufficient instruc-338

tions to faithfully reproduce the main experimental results, as described in supplemental339

material?340

Answer: [No]341

Justification: The draft outlines planned release (code, data, and preregistrations) but does342

not yet include a repository link or a reproducible environment in the supplement; these will343

be added upon camera-ready.344

6. Experimental setting/details345

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-346

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the347

results?348

Answer: [Yes]349

Justification: The paper documents numerical schemes (EKF/UKF switching, step size350

tied to frame rate, interpolation for delayed states), statistics windows, labeling rules, and351

validation criteria (macro-F1, boundary-weighted F1).352

7. Experiment statistical significance353

Question: Does the paper report error bars suitably and correctly defined or other appropriate354

information about the statistical significance of the experiments?355

Answer: [Yes]356

Justification: The analysis uses posterior/CI summaries, bootstrap for dwell-time distribu-357

tions, KS/AIC-based family selection, and sensitivity of phase boundaries to K (k-NN) and358

metric choice.359

8. Experiments compute resources360

Question: For each experiment, does the paper provide sufficient information on the361

computer resources (type of compute workers, memory, time of execution) needed to362

reproduce the experiments?363

Answer: [No]364

Justification: Hardware, runtime, and memory footprints are not yet listed; we will include365

CPU/GPU models, core counts, RAM, and per-sweep runtimes in the appendix.366

9. Code of ethics367

Question: Does the research conducted in the paper conform, in every respect, with the368

Agents4Science Code of Ethics (see conference website)?369

Answer: [Yes]370

Justification: The work is theoretical/simulation-first; proposed field protocols emphasize371

permits, minimal disturbance, and appropriate controls.372

10. Broader impacts373
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Question: Does the paper discuss both potential positive societal impacts and negative374

societal impacts of the work performed?375

Answer: [Yes]376

Justification: The paper outlines positive applications (conservation monitoring, bird-strike377

risk management, resilient UAV coordination) and anticipates failure modes/risks with378

mitigation strategies.379
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