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FBSDiff: Plug-and-Play Frequency Band Substitution of Diffusion
Features for Highly Controllable Text-Driven Image Translation

Anonymous Authors

ABSTRACT
Large-scale text-to-image diffusion models have been a revolution-
ary milestone in the evolution of generative AI and multimodal
technology, allowing extraordinary image generation with natural-
language text prompts. However, the issue of lacking controllability
of such models restricts their practical applicability for real-life con-
tent creation, for which attention has been focused on leveraging
a reference image to control text-to-image synthesis. This paper
contributes a concise and efficient approach that adapts the pre-
trained text-to-image (T2I) diffusion model to the image-to-image
(I2I) paradigm in a plug-and-play manner, realizing high-quality
and versatile text-driven I2I translation without any model training,
model fine-tuning, or online optimization. To guide T2I generation
with a reference image, we propose to model diverse guiding factors
with different frequency bands of diffusion features in DCT spectral
space, and accordingly devise a novel frequency band substitution
layer that dynamically substitutes a certain DCT frequency band
of diffusion features with the corresponding counterpart of the ref-
erence image along the reverse sampling process. We demonstrate
that our method flexibly enables highly controllable text-driven I2I
translation both in the guiding factor and guiding intensity of the
reference image, simply by tuning the type and bandwidth of the
substituted frequency band, respectively. Extensive experiments
verify the superiority of our approach over related methods in
image translation visual quality and versatility.

CCS CONCEPTS
• Computing methodologies→ Image processing; Image rep-
resentations; Computational photography.

KEYWORDS
Image-to-image translation, Image manipulation, Diffusion model

1 INTRODUCTION
Text-driven I2I translation is an appealing computer vision problem
that aims to translate a reference image with open-domain text
prompts, and is also a typical application of the booming multi-
modal technology. Since the advent of CLIP [29] bridging vision
and language with large-scale contrastive pre-training, attempts
have been made to instruct image manipulation with text by com-
bining CLIP with generative models. VQGAN-CLIP [6] pioneers
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Figure 1: Based on the pre-trained text-to-image diffusion
model, FBSDiff enables efficient text-driven image-to-image
translation by proposing a plug-and-play reference image
guidance mechanism, which allows flexible control over dif-
ferent guiding factors (e.g., appearance, layout, contour) of
the reference image to the generated image by dynamically
substituting different types of DCT frequency bands during
the sampling process. Better viewed with zoom-in.

text-driven image translation by optimizing VQGAN [9] image em-
bedding with CLIP image-text similarity loss. DiffusionCLIP [16]
fine-tunes diffusion model [12] under CLIP loss to manipulate an
image with a text. DiffuseIT [17] combines VIT-based structure loss
[39] and CLIP-based semantic loss to guide the diffusion sampling
process via manifold constrained gradient [5], synthesizing trans-
lated image that complies with the target text while maintaining
the structure of the reference image. However, these methods are
not competitive in generation quality due to limited model capacity
and training data of the backbone generative model.

To promote image translation visual quality, efforts have been
made to train large models on massive data. InstructPix2Pix [2]
employs GPT-3 [3] and Stable Diffusion [31] to synthesize huge
amounts of paired training data, based on which trains a supervised
text-driven I2I mapping for general image manipulation tasks. De-
sign Booster [37] trains a latent diffusion model [31] conditioned
on a joint representation that fuses both text embedding and image
embedding, realizing layout-preserved text-driven I2I translation.
Nevertheless, these methods are remarkably computationally in-
tensive due to the need for training large models on immense data.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To circumvent formidable training costs, research has been fo-
cused on leveraging off-the-shelf large-scale T2I diffusion models
for text-driven I2I translation. This type of methods further divide
into fine-tuning-based methods and inversion-based methods.

The former type of fine-tuning-based methods represented by
SINE [45] and Imagic [15] fine-tune the pre-trained T2I diffusion
model to reconstruct the reference image before manipulating it
with a target text. These methods require separate fine-tuning of the
entire model for each time of image editing, which is less efficient
and prone to underfitting or overfitting to the reference image.

The latter type of inversion-based methods invert the reference
image into diffusion model Gaussian noise space and then generate
the translated image via diffusion sampling process guided by the
target text. A pivotal challenge of this pipeline is that the sampling
trajectory may severely deviate from the inversion trajectory due to
the error accumulation caused by the classifier-free guidance tech-
nique [13], which impairs the correlation between the reference and
the translated image. To remedy this issue, Null-text Inversion [23]
optimizes unconditional null-text embedding to align the sampling
trajectory to the inversion trajectory. Prompt Tuning Inversion [8]
and StyleDiffusion [18] minimize trajectory divergence by learning
to encode the information of the reference image into learnable
conditional embedding. Pix2Pix-zero [26] penalizes trajectory devia-
tion by matching cross-attention maps between the two trajectories
with least-square loss. These methods apply online optimization
at each diffusion time step to calibrate the whole sampling trajec-
tory, introducing additional time overhead. Moreover, most of these
methods rely on cross-attention control introduced by P2P [11] for
structure preservation, requiring paired source text of the reference
image, which is not available in most cases. PAP [40] maintains
image structure by extracting and injecting the internal feature
maps and self-attention maps of the denoising U-Net into the re-
verse sampling trajectory, realizing optimization-free text-driven
I2I translation, though the designed feature extraction and manipu-
lation pipeline is heuristic, cumbersome, and time-consuming.

In this paper, we propose a concise and efficient approach termed
FBSDiff, realizing plug-and-play and highly controllable text-driven
I2I translation from a frequency-domain perspective. To guide T2I
generation with a reference image, a key missing ingredient of ex-
isting methods is the mechanism to control the guiding factor (e.g.,
image appearance, layout, contour) and guiding intensity. Since the
guiding factors of the reference image are difficult to isolate in the
spatial domain but are decomposable in the frequency domain, we
consider modeling different guiding factors with the corresponding
frequency bands of diffusion features in the Discrete Cosine Trans-
form (DCT) spectral space. Based on this motivation, we propose
an inversion-based text-driven I2I framework characterized by a
novel frequency band substitution mechanism, which realizes plug-
and-play and controllable reference image guidance by dynamically
substituting a certain DCT frequency band of diffusion features
with the corresponding counterpart of the reference image along
the reverse sampling process. As displayed in Fig. 1, T2I image syn-
thesis with appearance and layout control, pure layout control, and
contour control of the reference image to the generated image can
be realized by substituting the low-frequency band, mid-frequency
band, and high-frequency band, respectively, and thus allowing
highly controllable and versatile text-driven I2I translation.

The strengths of our approach are fourfold: (I) dynamic reference
image control at inference time, realizing plug-and-play text-driven
I2I translation; (II) conciseness and efficiency, our method dispenses
with the need for paired source text as well as cumbersome atten-
tion modulations as compared with existing methods, while still
achieving leading I2I performance; (III) more generic methodol-
ogy, our method applies frequency band transplantation on the
denoised features along the reverse sampling trajectory, requir-
ing no access to any internal feature embedding of the denoising
network, and thus decouples with the specific diffusion model back-
bone as contrasted with existing methods; (IV) our method allows
to flexibly control the guiding factor and guiding intensity of the
reference image simply by tuning the type and bandwidth of the
substituted frequency band. The effectiveness of our method is fully
demonstrated with both qualitative and quantitative evaluations.
To summarize, we make the following key contributions:

• We provide new insights about controllable diffusion process
from a novel frequency-domain perspective.

• We propose a novel frequency band substitution technology,
realizing plug-and-play text-driven I2I translation without
any model training, fine-tuning, or online optimization.

• We contribute a concise and efficient text-driven I2I frame-
work that is free from source text and cumbersome attention
modulations, highly controllable in both guiding factor and
guiding intensity of the reference image, and invariant to the
used diffusion model backbone, all while achieving superior
I2I translation performance among existing methods.

2 RELATEDWORK
2.1 Diffusion Model
Since the advent of DDPM [12], diffusionmodel has soon dominated
the family of generative models [7]. DDIM [36] and its variants
[20, 20] substantially accelerate diffusion model sampling process.
Palette [32] extends diffusion model to the realm of conditional
image synthesis. Large-scale T2I diffusion models [25, 30, 33] bring
image creation to an unprecedented level, whose computation over-
head is significantly reduced by LDM [31] by training diffusion
model in low-dimensional feature space. ControlNet [43] and T2i-
adapter [24] add spatial control to T2I diffusion models by training
a control module conditioned on certain image priors. SDXL [28]
and DiTs [27] improve diffusion model backbone to larger capacity.
Now, diffusion model has been applied to a wide variety of vision
tasks with noticeable performance gains [1, 19, 21, 22, 34, 38, 42],
and is still making rapid progress in theory and application.

2.2 Computer Vision in Frequency Perspective
Neural networks are mostly used to tackle vision tasks in the spatial
or temporal domain, some research improves model performance
from a frequency-domain perspective. For example, Ghosh et al.
[10] introduce DCT to CNN to accelerate network convergence.
Xie et al. [41] propose a frequency-aware dynamic network for
lightweight image super-resolution. Cai et al. [4] impose Fourier
frequency spectrum consistency to image translation tasks for bet-
ter identity preservation. FreeU [35] improves image generation
quality by selectively enhancing or depressing different frequency
components of diffusion model U-Net features.
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Figure 2: Overview of FBSDiff. The whole framework contains an inversion process that inverts the reference image into the
Gaussian noise space of the latent diffusion model, based on which a reconstruction process is applied to reconstruct the
reference image, providing intermediate denoised results as pivotal guidance features that guide the text-driven sampling
process by dynamically transplanting certain DCT frequency bands with frequency band substitution layer.

Figure 3: Illustration of the proposed frequency band sub-
stitution (FBS) layer. The FBS layer takes in two diffusion
features and substitutes a certain DCT frequency band of one
feature with the corresponding frequency band of the other
feature, where the frequency band extraction and transplan-
tation are implemented with binary masking.

3 METHOD
In this section, we first describe the overall model architecture,
then elaborate on the frequency band substitution mechanism, and
finally summarize the algorithm and show implementation details.
For the diffusion model background, please refer to the appendix.

3.1 Overall Architecture
Built on the pre-trained Latent Diffusion Model (LDM), FBSD-
iff adapts it from T2I generation to text-driven I2I translation by
proposing a plug-and-play reference image guidance mechanism,
realizing controllable guiding factor and guiding intensity of the
reference image via dynamic frequency band substitution.

As Fig. 2 shows, FBSDiff comprises three diffusion trajectories:
(i) inversion trajectory (𝑧0 → 𝑧𝑇𝑖𝑛𝑣 ); (ii) reconstruction trajectory
(𝑧𝑇𝑖𝑛𝑣 = 𝑧𝑇 → 𝑧0 ≈ 𝑧0); (iii) sampling trajectory (𝑧𝑇 → 𝑧0). Starting
from the initial feature 𝑧0 = 𝐸 (𝑥) extracted from the reference
image 𝑥 by the encoder 𝐸, a 𝑇𝑖𝑛𝑣-step DDIM inversion is employed
to project 𝑧0 into the Gaussian noise latent space conditioned on
the null-text embedding 𝑣∅ , based on the assumption that the ODE

process can be reversed in the limit of small steps:

𝑧𝑡+1 =
√
𝛼𝑡+1 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) +

√
1 − 𝛼𝑡+1𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅), (1)

𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) =
𝑧𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅)√

𝛼𝑡
, (2)

where {𝛼𝑡 } are schedule parameters that follows the same setting as
DDPM [12], 𝜖𝜃 is the denoising U-Net of the pre-trained LDM. The
Gaussian noise 𝑧𝑇𝑖𝑛𝑣 obtained after the 𝑇𝑖𝑛𝑣-step DDIM inversion
is directly used as the initial noise feature of the subsequent recon-
struction trajectory, which is a 𝑇 -step DDIM sampling process that
reconstructs 𝑧0 ≈ 𝑧0 from the inverted noise feature 𝑧𝑇 = 𝑧𝑇𝑖𝑛𝑣 :

𝑧𝑡−1 =
√
𝛼𝑡−1 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) +

√
1 − 𝛼𝑡−1𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅), (3)

in which 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) follows the same form as Eq. 5. The length of
the reconstruction trajectory could be much smaller than that of
the inversion trajectory (i.e., 𝑇 ≪ 𝑇𝑖𝑛𝑣 ) to save inference time. The
same null-text embedding 𝑣∅ is conditioned in the reconstruction
trajectory to ensure feature reconstructability (i.e., 𝑧0 ≈ 𝑧0).

Meanwhile, an equal-length sampling trajectory is applied in
parallel with the reconstruction trajectory to synthesize the target
image. The sampling trajectory is also a 𝑇 -step DDIM sampling
that progressively denoises a randomly initialized Gaussian noise
feature 𝑥𝑇 ∼ N(0, 𝐼 ) into 𝑥0 conditioned on the target-text em-
bedding 𝑣 . To amplify the effect of text guidance, classifier-free
guidance technique [13] is utilized which interpolates conditional
(target-text) and unconditional (null-text) noise prediction at each
time step with a guidance scale 𝜔 during the sampling trajectory:

𝑧𝑡−1 =
√
𝛼𝑡−1 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅) +

√
1 − 𝛼𝑡−1𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅), (4)

𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅) =
𝑧𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅)√

𝛼𝑡
, (5)

𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅) = 𝜔 · 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣) + (1 − 𝜔) · 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅). (6)
Due to the inherent property of DDIM inversion and DDIM sam-

pling, the reconstruction trajectory forms a deterministic denoising
mapping towards the reference image. Therefore, the intermediate
denoising results {𝑧𝑡 } along the reconstruction trajectory can be
used as pivotal guidance features to calibrate the corresponding
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counterpart {𝑧𝑡 } along the sampling trajectory to establish the cor-
relation between the reference image and the generated image, and
thus enables text-driven I2I translation. Specifically, we implement
feature calibration by inserting a plug-and-play frequency band sub-
stitution (FBS) layer in between the reconstruction trajectory and
the sampling trajectory. FBS layer substitutes a certain frequency
band of 𝑧𝑡 with the same frequency band of 𝑧𝑡 along the sampling
process to impose a certain guiding effect of the reference image,
where both the guiding factor (e.g., appearance, layout, contour)
and guiding intensity are flexibly controllable by tuning the type
and bandwidth of the substituted frequency band, respectively.

To balance image guidance and generation quality, we parti-
tion the sampling trajectory into a calibration phase and a non-
calibration phase separated by the time step 𝜆𝑇 . In the former cal-
ibration phase (𝑧𝑇 → 𝑧𝜆𝑇 ), dynamic frequency band substitution
is applied at each time step for stable calibration of the sampling
process; in the latter non-calibration phase (𝑧𝜆𝑇−1 → 𝑧0), we re-
move FBS layer to avoid over-constrained sampling results, fully
unleashing the generative power of the diffusion model to improve
image generation quality. Here 𝜆 denotes the ratio of the length of
the non-calibration phase to that of the entire sampling trajectory.

At last, the final result 𝑧0 of the sampling trajectory is converted
to the translated image 𝑥 via the decoder 𝐷 , i.e., 𝑥 = 𝐷 (𝑧0).

3.2 Frequency Band Substitution Layer
As Fig. 3 illustrates, the FBS layer takes in a pair of diffusion features
𝑧𝑡 and 𝑧𝑡 , converts them from the spatial domain into the frequency
domain with 2D-DCT, then transplants a certain frequency band in
the DCT spectrum of 𝑧𝑡 to the same position in the DCT spectrum of
𝑧𝑡 . Finally, 2D-IDCT is applied to transform the fused DCT spectrum
back into the spatial domain as the calibrated 𝑧𝑡 .

In 2D DCT spectrum, elements with smaller coordinates (nearer
to the top-left origin) encode lower-frequency image information,
larger-coordinate elements correspond to higher-frequency image
components, and most of the DCT spectral energy is occupied by a
small proportion of low-frequency elements.

In the FBS layer, the sum of 2D coordinates is used as thresholds
to extract DCT frequency bands of different types and bandwidths
through binary masking. Specifically, we design three types of
binary masks which are respectively termed the low-pass mask
(𝑀𝑎𝑠𝑘𝑙𝑝 ), high-pass mask (𝑀𝑎𝑠𝑘ℎ𝑝 ), and mid-pass mask (𝑀𝑎𝑠𝑘𝑚𝑝 ):

𝑀𝑎𝑠𝑘𝑙𝑝 (𝑥,𝑦) = 1 𝑖 𝑓 𝑥 + 𝑦 ≤ 𝑡ℎ𝑙𝑝 𝑒𝑙𝑠𝑒 0,
𝑀𝑎𝑠𝑘ℎ𝑝 (𝑥,𝑦) = 1 𝑖 𝑓 𝑥 + 𝑦 > 𝑡ℎℎ𝑝 𝑒𝑙𝑠𝑒 0,
𝑀𝑎𝑠𝑘𝑚𝑝 (𝑥,𝑦) = 1 𝑖 𝑓 𝑡ℎ𝑚𝑝1 < 𝑥 + 𝑦 ≤ 𝑡ℎ𝑚𝑝2 𝑒𝑙𝑠𝑒 0,

where 𝑡ℎ𝑙𝑝 is the threshold of the low-pass filtering; 𝑡ℎℎ𝑝 is the
threshold of the high-pass filtering; 𝑡ℎ𝑚𝑝1 and 𝑡ℎ𝑚𝑝2 are respec-
tively the lower and upper bound of the mid-pass filtering. Given a
binary mask 𝑀𝑎𝑠𝑘∗ ∈ {𝑀𝑎𝑠𝑘𝑙𝑝 , 𝑀𝑎𝑠𝑘ℎ𝑝 , 𝑀𝑎𝑠𝑘𝑚𝑝 }, the frequency
band substitution operation in the FBS layer can be formulated as:

𝑧𝑡 = 𝐼𝐷𝐶𝑇 (𝐷𝐶𝑇 (𝑧𝑡 ) ·𝑀𝑎𝑠𝑘∗ + 𝐷𝐶𝑇 (𝑧𝑡 ) · (1 −𝑀𝑎𝑠𝑘∗)), (7)

where 𝐷𝐶𝑇 and 𝐼𝐷𝐶𝑇 refers to the 2D-DCT and 2D-IDCT trans-
formations respectively, which are described in detail in the Sup-
plementary Materials. The usage of the low-pass mask𝑀𝑎𝑠𝑘𝑙𝑝 ,
high-pass mask𝑀𝑎𝑠𝑘ℎ𝑝 , and mid-pass mask𝑀𝑎𝑠𝑘𝑚𝑝 respectively
corresponds to the extraction and substitution of the low-frequency

Algorithm 1 Complete algorithm of FBSDiff
Input: the reference image 𝑥 and the target text.
Output: the translated image 𝑥 .
1: Extract the initial latent feature 𝑧0 = 𝐸 (𝑥).
2: for 𝑡 = 0 to 𝑇𝑖𝑛𝑣 − 1 do
3: compute 𝑧𝑡+1 from 𝑧𝑡 via Eq. 1;
4: end for{DDIM inversion}
5: Initialize 𝑧𝑇 from the isotropic Gaussian distribution.
6: for 𝑡 = 𝑇 to 𝜆𝑇 + 1 do
7: compute 𝑧𝑡−1 from 𝑧 via Eq. 3;
8: compute 𝑧𝑡−1 from 𝑧 via Eq. 4;
9: calibrate 𝑧𝑡−1 with 𝑧𝑡−1 via Eq. 7;
10: end for{DDIM sampling in the calibration phase}
11: for 𝑡 = 𝜆𝑇 to 1 do
12: compute 𝑧𝑡−1 from 𝑧 via Eq. 4;
13: end for{DDIM sampling in the non-calibration phase}
14: Obtain 𝑧0 and the final translated image 𝑥 = 𝐷 (𝑧0).

band, high-frequency band, and mid-frequency band, which con-
trols different guiding factors of the reference image to the finally
generated image:

• Low-frequency band substitution enables low-frequency
information guidance of 𝑥 , realizing appearance (e.g., color,
luminance) and layout control over the generated image 𝑥 .

• High-frequency band substitution enables high-frequency
information guidance of the reference image 𝑥 , realizing
contour control over the generated image 𝑥 .

• Mid-frequency band substitution enables mid-frequency
information guidance of the reference image 𝑥 . By filter-
ing out higher-frequency contour information and lower-
frequency appearance information in the DCT spectrum, it
realizes pure layout control over the generated image 𝑥 .

The DCT masking type and the corresponding thresholds used
in the FBS layer are algorithm hyper-parameters, which could be
flexibly modulated to enable diverse guiding factors and continuous
guiding intensity of the reference image to the generated image.

3.3 Implementation Details
We use the pre-trained Stable Diffusion v1.5 as backbone dif-

fusion model and set the classifier-free guidance scale 𝜔 = 7.5.
We use 1000-step DDIM inversion to ensure high-quality recon-
struction, i.e., 𝑇𝑖𝑛𝑣=1000, and use 50-step DDIM sampling for the
reconstruction and sampling trajectory, i.e., 𝑇=50. Along the sam-
pling trajectory, we allocate 55% time steps to the calibration phase
and the remaining 45% steps for the non-calibration phase, i.e.,
𝜆=0.45. For the default DCT masking thresholds used in the FBS
layer, we set 𝑡ℎ𝑙𝑝=80 for the low-frequency band substitution (low-
FBS); 𝑡ℎℎ𝑝=5 for the high-frequency band substitution (high-FBS);
𝑡ℎ𝑚𝑝1=5, 𝑡ℎ𝑚𝑝2=80 for the mid-frequency band substitution (mid-
FBS). The complete algorithm of FBSDiff is described in Alg. 1.

4 EXPERIMENTS
In this section, we first present and analyze the qualitative results
of our method; then delve into the frequency band substitution
with ablation studies; and finally show quantitative evaluations.
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Figure 4: Qualitative results of our method with different types of frequency band substitution.

Reference Low-FBS Mid-FBS High-FBS

Figure 5: Comparison between the control effects achieved
by the low-FBS, mid-FBS, and high-FBS, respectively.

4.1 Qualitative Results
Example text-driven I2I translation results of our method are shown
in Fig. 4. Our method effectively decomposes different guiding fac-
tors of the reference image by dynamically substituting correspond-
ing types of DCT frequency bands during sampling. The low-FBS
transfers low-frequency information of the reference image into the
sampling trajectory, making the generated result inherit the origi-
nal image appearance and layout. In the mode of high-FBS, high-
frequency components of the reference image are transplanted,
the resulting generated image is aligned with the reference image
in high-frequency contours while the low-frequency appearance

Text prompt: 

Reference

Reference

Diversified sampling results of our FBSDiff

Unique sampling result of Null-text Inversion

Figure 6: Our method allows diverse sampling results for
fixed reference image and target-text prompt.

is not restricted. The mid-FBS mainly enforces image layout con-
trol by filtering out lower-frequency appearance information and
higher-frequency contour information of the reference image in
the DCT domain. For all three types of frequency band substitution,
the image translation results exhibit high visual quality and high fi-
delity to the text prompts, both for real-world and artistic reference
images. The effect of guiding factor decomposition and control is
more clearly demonstrated in Fig. 5. Given a target text for image
manipulation, FBSDiff preserves image appearance with low-FBS,
maintains image contour while allowing appearance change with
high-FBS, and constrains only image layout with mid-FBS.
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Figure 7: Qualitative comparison of our method with related approaches.
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Figure 8: Ablation study results of our method with and without our proposed frequency band substitution.

Reference

small semantic gap large semantic gap

Figure 9: Our method well adapts to the target text with varying semantic discrepancy between the reference image.

In figure 7, we qualitatively compare our method with SOTA
text-driven I2I translation methods. Results in the top panel show
that our method with low-FBS achieves better appearance consis-
tency between the reference and the translated image than related
approaches, and is thus more suitable to image creation scenario
where we want to largely borrow the appearance and style from
an existing image. Results in the bottom panel show that existing

SOTA inversion-based methods struggle at producing text-driven
I2I results that largely deviate from the reference images in visual
appearance, while our method with high-FBS enables to generate
the translated images with noticeably different appearance, and is
thus more suitable to image creation scenario where appearance
divergence is pursued. Besides, an advantage of our approach over
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Figure 11: Demonstration of our method in controlling the
high-frequency information guiding intensity by varying
the 𝑡ℎ𝑚𝑝2 in the mid-FBS.
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Figure 12: Ablation study of our method in different FBS
manner.

related methods is sampling diversity. As displayed in Fig. 6, our FB-
SDiff can produce diverse I2I results for fixed reference image and

target text due to randomly sampling 𝑥𝑇 from isotropic Gaussian
distribution, while other inversion-based methods [8, 18, 23, 26, 40]
lack such sampling diversity for directly initializing 𝑥𝑇 with the in-
verted image embedding. The reference image control functionality
of FBS is clearly shown in Fig. 8, in which we see that removing FBS
leads to the sampled results with no correlation with the reference
image. Moreover, as Fig. 9 displays, our method can well adapt
to the text prompts with varying semantic discrepancies with the
reference image, producing I2I results that comply with the target
text even in the cases of large semantic discrepancy.

Besides the controllability in the guiding factors of the reference
image, the guiding intensity is also controllable by modulating the
bandwidth of the substituted frequency band. Results displayed
in Fig. 10 demonstrate the appearance consistency control of our
method by adjusting the low-pass filtering threshold 𝑡ℎ𝑙𝑝 in the
low-FBS. In this case, larger value of 𝑡ℎ𝑙𝑝 corresponds to wider
bandwidth (more information) of the transplanted frequency band,
leading to I2I results with more resemblance to the reference image,
while lower value of 𝑡ℎ𝑙𝑝 brings more variations of the generated
results to the reference images. Likewise, results in Fig. 11 demon-
strate the structure consistency control of our method by tuning
the mid-pass filtering upper bound threshold 𝑡ℎ𝑚𝑝2 in the mid-FBS.
When increasing the value of 𝑡ℎ𝑚𝑝2, more high-frequency informa-
tion of the reference image is included and transplanted, leading
to more accurate contours of the reference image transferred into
the generated result. Decreasing the value of 𝑡ℎ𝑚𝑝2, on the con-
trary, shrinks the transplanted high-frequency information, and
thus leads to weaker structure consistency of the generated images.

4.2 Ablation Study
We also explore other designs of frequency band substitution, in-
cluding substituting the frequency band only once at 𝜆𝑇 time step
rather than along the whole calibration phase (which we denote
as Once Substitution) and substituting the full DCT spectrum
rather other a partial frequency band of it (which we refer to as
Full Substitution). Results in Fig. 12 show that Once Substitution
fails to produce reasonable images, indicating that step-by-step
FBS along the whole calibration phase is of crucial importance for
smooth information injection and stable information fusion. Since
image content is basically formed in the early stage of the diffusion
sampling process, removing feature calibration of FBS in the early
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Table 1: Quantitative evaluations of the text-driven I2I translation methods.

Emphasis Pursuing image appearance consistency Pursuing image appearance divergence

Methods
Metrics Structure

Similarity(↑) LPIPS(↓) AdaIN Style
Loss(↓)

CLIP
Similarity(↑)

Aesthetic
Score(↑)

Structure
Similarity(↑)

AdaIN Style
Loss(↑)

CLIP
Similarity(↑)

Aesthetic
Score(↑)

PAP 0.954 0.278 20.525 0.316 6.583 0.957 27.848 0.306 6.439
Null-text 0.950 0.247 17.627 0.310 6.514 0.952 25.667 0.293 6.325

Pix2Pix_zero 0.952 0.242 16.745 0.308 6.490 0.955 25.152 0.295 6.287
InstructPix2Pix 0.959 0.244 25.796 0.312 6.266 0.960 29.245 0.286 6.195
PT_inversion 0.946 0.249 22.926 0.313 6.481 0.951 26.585 0.292 6.269
StyleDiffusion 0.945 0.251 24.667 0.311 6.497 0.944 30.344 0.290 6.255
FBSDiff (ours) 0.962 0.240 15.302 0.314 6.566 0.958 34.725 0.309 6.464

stage inevitably leads to large mismatch between the sampling and
the reconstruction trajectory. This causes remarkably incoherent
DCT space after applying FBS at an intermediate time step and thus
leads to abnormal results. Besides, it shows that Full Substitution
fails to manipulate image semantics as per the text. This is because
substituting the full DCT spectrum is equivalent to absolute fea-
ture replacement, which makes the sampling trajectory in the early
calibration phase totally the same as the reconstruction trajectory.
Therefore, the content of the generated image has already been
formed to be basically the same as the reference image after the
calibration phase, making it difficult to manipulate image semantics
in the latter non-calibration phase.

4.3 Quantitative Evaluations
For quantitative evaluation, we separately evaluate all the methods
on the text-driven I2I translation task pursuing image appearance
consistency (favoring appearance preservation) and the task pur-
suing image appearance divergence (favoring large modification
of image appearance). For the former task, we assess model perfor-
mance by measuring structure similarity (↑), perceptual similarity
(↑), and style distance (↓) between each pair of the reference and
translated image. For the latter task, we assess models’ appearance
modification and structure-preserving abilities by measuring struc-
ture similarity (↑) and style distance (↑) between the reference and
the translated image pairs. Besides, CLIP similarity (↑) is evaluated
for both two tasks to measure semantic consistency between the
target text and the translated image, i.e., the text fidelity of the I2I
translation results. Finally, we evaluate the aesthetic score of the
translated images with the pre-trained LAION Aesthetics Predictor
V2 model. We use the DINO-ViT self-similarity distance [39] as
the metric for structure similarity, use LPIPS [44] metric for per-
ceptual similarity, and use AdaIN style loss [14] to measure style
discrepancy between the reference and translated image.

We perform all the quantitative evaluations on the LAION Aes-
thetics 6.5+ dataset, we sample 300 evaluation images for each task
and manually design 2 editing texts for each image, resulting in
600 evaluation samples per task. The average values of all the met-
rics are shown in Tab. 1. For evaluation of our method, we use the
low-FBS for the I2I task pursuing appearance consistency, and use
the high-FBS for the task pursuing appearance divergence. Results
shown in the table show that our method achieves top rankings
for all the metrics, demonstrating the superiority of our method
over related approaches. Among all the compared methods, our

method is the only one allowing versatile control over the guiding
factors of the reference image to the generated image, and also
takes advantage in continuous control over the guiding intensity
of the reference image.

5 CONCLUSION
This paper proposes a novel plug-and-play module adapting the pre-
trained text-to-image diffusion model to versatile I2I applications.
At the heart of our method is a training-free frequency band substi-
tution layer, which dynamically calibrates the denoising diffusion
process of the target image by substituting certain DCT frequency
band extracted from the reference image into the reverse sampling
diffusion process. We demonstrate that versatile I2I applications
can be unified by our method simply by switching among differ-
ent modes and ranges of the substituted frequency band, realizing
effective, flexible, and comprehensive control over the translated
images.
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