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ABSTRACT

To learn data representations that are robust to distribution shifts, practitioners
conduct interventions and collect interventional data in addition to passively col-
lected observational data. However, even when the underlying causal model is
known, existing approaches treat interventional data like observational data and
ignore the causal model. Furthermore, these approaches assume a large number
of interventional data points obtained through interventions that span the entire
support of the intervened variable. This leads to representations that exhibit large
discrepancies in predictive performance on observational and interventional data.
In this paper, we first identify a strong correlation between interventional perfor-
mance and adherence of the features to the statistical independence conditions
induced by the underlying causal model. Then, we exploit this correlation and
propose RepLIn to explicitly enforce the statistical independence during interven-
tions. We demonstrate the utility of RepLIn across representative image classi-
fication tasks (attribute prediction on CelebA and image classification under cor-
ruption on CIFAR-10C and ImageNet-C) by modeling them as causal graphs and
learning representations that are more robust to interventional distribution shifts.

1 INTRODUCTION

We consider a data-generating process that can be modeled using directed acyclic graphs (DAGs)
called causal graphs. The nodes in these graphs are random variables that usually equate to semantic
concepts such as the color of an object, the quantity of sugar in the blood, and the age of a person.
Causal modeling allows us to intervene on one or more of these variables and observe the effects
on its/their descendants. The data collected through this procedure is referred to as interventional
data. Interventional data has traditionally been used in problems such as causal discovery and
A/B testing (see ??). Incorporating causal information into the training stage of a model finds
applications such as learning disentangled representations (Locatello et al., 2019; Brehmer et al.,
2022), domain generalization (Mahajan et al., 2021), and adversarial training (Zhang et al., 2021).

Several works implicitly use interventional data without considering the statistical independence
relations1 entailed during interventions. Ignoring these independence relations will result in
representations that are susceptible to distribution shifts. For example, deep feature reweight-
ing (DFR) (Kirichenko et al., 2022) proposed to retrain the classifier layer using a dataset that was
balanced to break spurious correlations. To obtain this dataset, we require perfect interventions
spanning the entire support of the intervened variable. However, it may not be possible to intervene
with values spanning the entire support in practice. In addition, the number of interventional points
available during training may be far less compared to cheaply obtained observational data.

We first consider a case study in which we observe a correlation between accuracy drop due to inter-
ventional distribution shift and dependence between features during interventions. Then we propose
representation learning from interventional data (RepLIn) to enforce the independence relations
from the interventional causal graph during training to improve the robustness against interven-
tional distribution shift. We demonstrate the advantage of our proposed method when interven-
tional support is different from that during test time by comparing it against deep feature reweight-
ing (Sec. 3). We further confirm the utility of RepLIn on face attribute classification (Sec. 4.2)

1We refer to “statistical independence” as simply “independence” for the rest of the paper
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and label-dependent image corruption (Sec. 4.3). In classifying corrupted images using pretrained
ImageNet models, we improve upon our baselines by ∼ 2− 4% with only 10% interventional data.

To summarize, our contributions are:

• We demonstrate a correlation between accuracy drop due to interventional distribution shift
and dependence between interventional features (Sec. 2.1).

• We demonstrate that explicitly enforcing independence between interventional features
minimizes the drop in accuracy under interventional distribution shifts (Sec. 2.3).

• We demonstrate the effectiveness of the proposed method over classifier fine-tuning when
the interventional distribution does not match the testing distribution (Sec. 3).

2 THE LEARNING FROM INTERVENTIONAL DATA PROBLEM
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Figure 1: Causal graphs during observa-
tion (left) and intervention on B (right)

We now formally define the learning problem of inter-
est in this paper, namely the learning from interven-
tional data, in general terms, and examine a specific case
study in Sec. 2.1. The problem comprises an attribute
of interest B and a directed acyclic graph G denoting
the causal relations between B and its corresponding par-
ents PaB = {A1, . . . , An}. These attributes along with
other unobserved variables U , generate the data X , i.e.,
X = gX(B,A1, . . . , An, U). Intervention on B breaks
the statistical dependence on its parents, i.e., now Bint ⊥⊥ PaB , as shown in Fig. 1. By intervention,
we refer to hard intervention defined in Peters et al. (2017), where the variable B is set to a specific
value, drawn from a known distribution. Note that we do not require any knowledge of the other
unobserved nodes in this causal graph. For training, data samples from both the observational dis-
tribution and the interventional distribution are available, i.e., Dobs ∼ P (Xobs, Bobs, Aobs

1 , . . . , Aobs
n )

and Dint ∼ P (X int, Bint, Aint
1 , . . . , Aint

n ). Given (Dobs,Dint) and G, the goal is to predict B and Ai

from attribute-specific representations FB = fB(X) and FAi
= fAi

(X) respectively.

2.1 DOES INTERVENTIONAL ACCURACY CORRELATE WITH STATISTICAL INDEPENDENCE?

A B

X −2 −1 0 1 2
X1

−2

−1

0

1

2

X 2

(a) Observational graph and data

A B̃

X −2 −1 0 1 2
X1

−2

−1

0

1

2

X 2

(b) Interventional graph and data

Figure 2: WINDMILL Dataset: A and B are bi-
nary random variables that are causally linked to
each other and to X as shown in (a). By interven-
ing on B as shown in (b), we make A ⊥⊥ B.

First, we consider a motivating case study on a syn-
thetic dataset and establish a relation between pre-
dictive performance on interventional data and sta-
tistical independence between the corresponding at-
tribute features under intervention. Then, building
upon this observation, we propose RepLIn, a simple
yet effective solution to learn representations that are
robust to intervention-induced distribution shifts by
exploiting interventional data.

Case Study: Consider the causal graph shown in
Fig. 2(a). Here, A and B are binary random vari-
ables that generate the observed real-valued data X .
X is also affected by unobserved noise variables2. A
itself could be a function of external random factors
which are unobserved and of no interest to us. How-
ever, the distribution of B is only affected by A, as
denoted by the arrow between them. In Fig. 2(b), we
intervene on B and thus induce a change in its dis-
tribution, i.e., an intervention-induced distribution
shift. Since the intervention is independent of A, in-
tervened B is also independent of A, denoted by re-
moving the arrow between A and B. The analytical

2We skip the noise variables in our illustrations for simplicity.
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relations between A, B and X during observation
and intervention are:

Observation Intervention
A ∼ Bernoulli(0.6) A ∼ Bernoulli(0.6)

X := gX(A,B)
B := A B ∼ Bernoulli(0.5)

The equations in blue govern the observational distribution and those in red govern the interventional
distribution. The function that generates X from A and B is unaffected by interventions. Following
(Peters et al., 2017), := indicates the causal assignment operator. Visually, the samples look like
a windmill. The value of A determines the blade of the windmill, and B determines the radial
distance. In order to make the data more stochastic, the precise angle and radial distance of the
points are sampled from an unobserved distribution independent of A and B. To make the data
more challenging, we shear each blade according to a sinusoidal function of the radial distance. The
task here is to accurately predict A and B from X at test time. We construct gX such that A and B
are fully recoverable from X . The exact mathematical formulation is provided in App. H.
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Figure 3: The gap in performance correlates well
with a gap in the measure of dependence of the
learned features on interventional data.

Training: We have N samples for training in to-
tal where βN are interventional and (1 − β)N
are observational with 0 < β < 1 typically be-
ing a small value. For this demonstration, we
set N = 40000, β = 0.1. Therefore, we have
36000 observational and 4000 interventional sam-
ples. We train a feed-forward network with three
hidden layers to extract features FA and FB corre-
sponding to A and B, respectively. Following the
standard ERM framework, the cross entropy error
in predicting A and B from FA and FB provides
the training signal. Fig. 3(a) and Fig. 3(b) show the
accuracy of ERM in predicting A and B on obser-
vational and interventional data during validation.
Ideally, we expect no drop in accuracy of A from observation to intervention if the model does not
learn the spurious correlation between A and B. However, we observe that ERM barely performs
better than random chance in predicting A on interventional data. As a remedy, we consider a
stronger version of ERM by reweighing the interventional data by resampling it as often as the ob-
servational data. We refer to this version as “ERM-Resampled”. Now the model sees interventional
batches

(
1−β
β

)
-times as many observational batches. The equivalent loss for a learning function

f now transforms to Ltotal(f,X) =
∑Nobs

i=1 Lpred(f,X
obs
i ) +

(
1−β
β

)∑Nint
i=1 Lpred(f,X

int
i ). Although

ERM-Resampled performs better than vanilla ERM, there is still a large gap between accuracy in
predicting A on observational and interventional data.

2.2 MEASURING STATISTICAL DEPENDENCY BETWEEN INTERVENTIONAL FEATURES

A key characteristic of perfect interventions on causal graphs is that the variable being intervened
upon becomes independent of all its nondescendants. As such, we hypothesize that if the features
corresponding to the intervened variable are more statistically independent of the features corre-
sponding to its nondescendants, then the predictive accuracy of the nondescendants of the intervened
variables will be less affected by interventions.

Dependence Measure: To measure dependence between a pair of high-dimensional continuous ran-
dom variables P and Q, we use HSIC (Gretton et al., 2005), a kernel-based measure of dependency.
Given N i.i.d. samples

{
P (i)

}N

i=1
and

{
Q(i)

}N

i=1
from P and Q, HSIC between P and Q can be

computed as HSIC(P,Q) = 1
(N−1)2 Trace [KPHKQH], where H is the N ×N centering matrix,

KP ∈ RN×N is a Gram matrix whose entry at the i-th row and j-th column is kP
(
P (i), P (j)

)
,

where kP (·, ·) is the kernel function associated to a given universal kernel (e.g., RBF kernel). KQ is
defined similarly. Since HSIC is unbounded, following (Li et al., 2021), we consider a normalized
HSIC score (NHSIC) defined as NHSIC(P,Q) = HSIC(P,Q)√

HSIC(P,P ) HSIC(Q,Q)
.
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We use the NHSIC metric to compare the statistical dependence between the features in the WIND-
MILL problem. Fig. 3(c) shows the difference in NHSIC values between the features FA and FB

from interventional data. We observe that features learned with ERM-Resampled are more inde-
pendent than those learned by vanilla ERM. Dependence between features from interventional data
indicates that they share information even though the random variables they are associated with are
independent. We conjecture that it might be due to FA learning from B, since B is a spurious feature
for A during observations.

2.3 REPLIN: ENFORCING STATISTICAL DEPENDENCY ON INTERVENTIONAL FEATURES

X

Enc-A

Enc-B

FA

FB

Cls-A

Cls-B

Â

B̂

A

B

Lpred

Lpred

Ldep(only during interventions)

Lself

Lself

ERM

• Uses only Lpred for training.
• Ignores distribution changes from

causal interventions.

RepLIn (ours)

• Ldep: consistency with interventional
causal model.

• Lself: encourage to learn relevant infor-
mation only.

Figure 4: Schematic illustration of RepLIn for a causal graph with two attributes (A → B) and X =
f(A,B,UX). Encoders (Enc-A, Enc-B) learn representations (FA, FB) corresponding to each label, which
is then used by their corresponding classifiers (Cls-A, Cls-B) for prediction. On interventional samples, we
minimize Ldep between the features to ensure their independence. On all samples, we minimize Lself to encour-
age the representations to only learn relevant information.

As noted in the previous subsection, neither ERM nor ERM-Resampled explicitly ensures that the
features adhere to the same relations as their latent variable counterparts during interventions. As a
result, we also observed that there is a correlation between interventional accuracy and interventional
feature dependence. Based on this observation, we propose RepLIn to explicitly enforce the same
causal relations between the features during interventions as the latent variables. We hypothesize that
enforcing this independence will force the model to learn features that are robust to interventional
distribution shifts.

To enforce independence between interventional features, we propose to use dependence-guided
regularization denoted as Ldep over the prediction loss function (cross-entropy for classification
tasks) used in ERM. We refer to this regularization as “dependence loss” and is defined for the
general case in Sec. 2 as Ldep = 1

n

∑n
i=1 NHSIC(F int

Ai
, F int

B ) , where the superscript “int” denotes
features extracted from interventional samples, i.e., we seek to minimize the dependence loss only
for the interventional samples in our training set.

However, Ldep alone is insufficient since the features can take a shortcut and simply learn irrelevant
features and minimize Ldep. To avoid such pathological scenarios and encourage the model to only
learn relevant information, we introduce another loss that maximizes the dependency between a
feature and its corresponding label. We employ this “self-dependence loss” on both observational

and interventional data and define it as Lself = 1− NHSIC(FB ,B)+
∑n

i=1 NHSIC(FAi
,Ai)

2(n+1) .

In summary, RepLIn optimizes the following total loss: L = Lpred + λdepLdep + λselfLself , where
λdep and λself are weights that control the contribution of the respective losses. A pictorial overview
of RepLIn is shown in Fig. 4.

3 CLASSIFIER FINETUNING MAY NOT BE ENOUGH

Classifier finetuning emerged recently as a potential solution to spurious correlations (Menon et al.,
2020; Kirichenko et al., 2022; Rosenfeld et al., 2022; Qiu et al., 2023). The foundation of such
approaches is that learned representations contain both invariant and spurious features, and with
the help of a fine-tuning dataset, the classifier can be retrained to rely on only the invariant features.
However, practitioners may be limited in providing a fine-tuning dataset that spans the entire support
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Figure 5: When interventional support does not match test support: The latent covariates A and B affect
each other and generate data X according to the causal graph in (a). During observation ((b) & (e)), A and B
are correlated, making it difficult for the model to learn the true decision boundaries. Interventional data that
matches the test distribution (c) can help. However, the interventional support may not always match that of
the test distribution ((d)& (f)). Removing spurious information entirely is desirable in these settings.

of the intervened variable. For example, we cannot change the medicinal dose for critically ill
patients to study the effect of the said medicine on vitals. Also, the quantity of interventional data
available during training may not be sufficient to build the fine-tuning dataset. We argue that, under
such circumstances, it is advisable to remove spurious information from the representations entirely.

To support our argument, we generate a synthetic dataset consisting of two categorical random
variables A and B with eight classes each. During observation, A and B are causally linked as A →
B. Their relationship during observation can be mathematically written as A ∼ PA;B := A, where
PA is the uniform categorical distribution over eight classes. By intervening on B, it takes value
from an interventional distribution P I

B , where I denotes an intervention from a class of interventions

I. The input data X =

[
X1

X2

]
are generated from A, B, and noise variables U1, U2 according to the

causal graph shown in Fig. 5(a) as X1 = gX1
(A,U1) and X2 = gX2

(B,U2).

Consider the observational data shown in Fig. 5(b). Clearly, there are infinitely many classifiers that
have zero risk on the observational data but non-zero risk on the test distribution shown in Fig. 5(c).
To learn the true classifier, half of the training dataset is obtained through interventions. The class
of interventions I comprises of the following: Scenario 1: (Fig. 5(c)) interventional support is

same as the domain of B (full support), Scenario 2: (Fig. 5(d)) interventional support correlates

with A (partial support), Scenario 3: (Fig. 5(f)) interventional support changes between training
and testing (different support). Observational data corresponding to scenarios 1 and 2 are shown in
Fig. 5(b) and that corresponding to scenario 3 is shown in Fig. 5(e).

We use a linear layer with ReLU on top to extract features and train a linear classifier with these
features. In each scenario, we train a model using ERM, classifier finetuning (ClsFT), and RepLIn.
Both ERM and ClsFT train their models by minimizing classification error (e.g., cross-entropy)
on the training data. Once the training is complete, ClsFT fine-tunes the classifier layer using a
fine-tuning dataset made from the interventional data. Every experiment is repeated ten times.

Scenario ERM ClsFT RepLIn

Fig. 5(c) 100.00± 0.00 100.00± 0.00 100.00± 0.00
Fig. 5(d) 99.92± 0.08 99.96± 0.06 98.37± 1.49
Fig. 5(f) 99.52± 0.24 99.74± 0.20 99.58± 0.31

(a) Accuracy on seen support

Scenario ERM ClsFT RepLIn

Fig. 5(c) - - -
Fig. 5(d) 48.36± 2.75 48.39± 2.67 66.91± 10.33
Fig. 5(f) 81.57± 10.58 81.45± 12.16 94.00± 1.71

(b) Accuracy on unseen support

Table 1: Although ERM and ClsFT perform well on seen support, their accuracy diminishes on unseen support.
However, RepLIn suffers a smaller accuracy drop on unseen support. Refer to App. C for more observations.

Observations: Tab. 1a and Tab. 1b compare the results of ERM, ClsFT and RepLIn on seen and
unseen supports respectively. When an interventional dataset with the same support and distribution
as during test time is available (Fig. 5(c)), all methods achieve zero error on the entire support. In
this scenario, there is no unseen support. When the support during intervention correlates with A
during training (Fig. 5(d)), both ERM and ClsFT show a significant drop (∼ 52%) in their per-
formance on unseen region compared to seen regions. However, RepLIn suffers a smaller drop in
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performance (∼ 33%). Accuracy drop can be observed in scenario 3 (Fig. 5(f)) as well, where the
support during training and testing are completely different. Surprisingly, all methods suffer smaller
drops in accuracy compared to the former scenario. ERM and ClsFT have ∼ 19% higher misclassi-
fication rate on unseen support compared to seen, while RepLIn shows only ∼ 6% drop in accuracy.
App. C analyzes RepLIn further by comparing its decision boundaries with those of the baselines.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance and generality of RepLIn in comparison to the ERM
baselines across three scenarios corresponding to different causal data-generating mechanisms and
associated interventions. These include the WINDMILL dataset introduced in Sec. 2.1, facial at-
tribute prediction on CelebA, and robustness to image corruptions on CIFAR-10C and ImageNet-C.
Our experiments are designed to validate the following hypothesis: Q1) Is there a strong correlation
between accuracy on interventional data and statistical independence of the features corresponding
to the intervened variable., and Q2) Does explicitly minimizing the dependence between features on
interventional data improve interventional accuracy.

Training Hyperparameters and Baselines: A detailed description of the training settings for each
experiment, along with the corresponding hyperparameters, can be found in App. D. We note that
the value of λdep and λself is kept fixed across all proportions of interventional data β. For all
experiments, we consider standard ERM and ERM-Resampled (Chawla et al., 2002; Cateni et al.,
2014; Idrissi et al., 2022) as our baselines.

Evaluation Criterion: Our primary interest is in investigating the prediction accuracy of variables
that are unaffected during interventions. Ideally, if the learned features respect causal relations,
we expect to see no change in the prediction accuracy of variables corresponding to the parents
of the intervened variable in the causal graph. Since we optimize NHSIC during training, we rely
on another measure of independence, namely kernel canonical correlation (KCC) (Bach & Jordan,
2002) to evaluate the dependence between the features on interventional data during testing. We
repeat each experiment five times with different random seeds and report the mean and standard
deviation as a shaded region in plots.

4.1 WINDMILL DATASET

We first verify our method on the synthetic dataset that helped us identify the relation between
the performance gap in predicting A on observational and interventional data in Sec. 2.1. As a
reminder, the causal graph consists of two binary random variables A and B, where A → B. During
interventions, we manually set B to randomly chosen values, breaking the dependence between A
and B. Earlier, we showed that ERM and ERM-Resampled fail when β takes very small values. We
vary β from 0.5% to 50% and compare RepLIn against ERM and ERM-Resampled. We consider
an additional baseline “Dep-on-all”, where we naively minimize Ldep and Lself on all samples. All
methods share the same architecture. We observed that adding an extra dimension and normalizing
the features to a unit sphere improved performance (App. E).
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10−2 10−1

β

60

80

A
cc

ur
ac

y
(%

)

(a) Accuracy

10−2 10−1

β

0.25

0.50

0.75

1.00

K
C

C

(b) Dependency

60 80
Accuracy (%)

0.00

0.25

0.50

0.75

1.00

K
C

C

SRCC: -0.92

(c) Correlation

Figure 7: Results on WINDMILL dataset.
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Figure 8: Results on Facial Attribute Prediction

Fig. 6(a) compares the interventional accuracy of A as a function of the amount of interventional
data (β). We observe that our model outperforms both ERM and ERM-Resampled on all values of
β. RepLIn outperforms Dep-on-all, indicating that naively enforcing independence on all samples

6



Under review as a conference paper at ICLR 2024

is suboptimal. Furthermore, when 50% of the total data is interventional, ERM-Resampled still
outperforms vanilla ERM, suggesting that the improvement could be due to treating the data as
separate batches of observational and interventional samples only, in addition to resampling. We also
compare the dependence between the features on interventional data in Fig. 6(b). Again, observe
that explicitly enforcing independence on interventional features during training indeed minimizes
dependence on unseen interventional data during testing. Fig. 6(c) plots the interventional accuracy
and KCC between the features of each run of each method. To confirm our hypothesis in Sec. 2.1, we
should obtain a Spearman rank correlation coefficient (SRCC) (Spearman, 1904) of -1. We estimate
SRCC from the data to be -0.92, which strongly supports our hypothesis. We demonstrate visually
in App. A that the representations learned by RepLIn are less affected by interventional shifts.

4.2 FACIAL ATTRIBUTE PREDICTION

We verify the utility of RepLIn for predicting facial attributes on the CelebA dataset (Liu et al.,
2015). CelebA dataset is provided with 40 labeled attributes. We consider two of these attributes –
smiling and gender – as random variables affecting each other causally.

Although the true underlying relation between smile and gender is unknown, we adopt the resam-
pling procedure by Wang & Boddeti (2022) to induce a desired causal relation between the attributes
(smile→ gender) and obtain samples. Consequently, in this scenario, the causal relationship be-
tween the attribute labels is known. Specifically, to simulate this causal relation, we sample smile
first and then sample gender according to a conditional probability distribution over smile. We
then sample an image whose attribute labels match the sampled values. We treat the diversity in the
images as a result of unobserved latent variables.

Given the face images, we first extract features from ResNet18 (He et al., 2016) pre-trained on
ImageNet (Deng et al., 2009). Then, similar to the architecture for WINDMILL experiments, we
employ a shallow MLP to act on the features, followed by a linear classifier to predict the attributes.
Our loss functions act upon the features of the MLP. We use 30,000 samples for training and 15,000
for testing. The causal model for this experiment and some sample images are shown in Fig. 9.

gendersmiling

(a) Observational causal graph and samples gener-
ated from it

gendersmiling

(b) Interventional causal graph and samples gener-
ated from it

Figure 9: Causal model for CelebA before and after intervention along with sample images from these models

Fig. 8 reports the experimental results of ERM-Resampled and RepLIn as a function of the amount
of interventional data. We make the following observations: 1) as the amount of interventional data
increases, the interventional prediction accuracy of both methods improve, 2) across all proportions
of interventional data, RepLIn consistently outperforms the baseline by about 2%-4%, and 3) inter-
ventional accuracy and KCC show strong negative correlation (SRCC=-0.95). At the same time, the
dependency between FA and FB is significantly lower than the baselines as β increases. Attention
maps corresponding to these predictions are shown in App. B.

4.3 ROBUSTNESS TO IMAGE CORRUPTION

Here we consider a scenario with a three-variable causal graph. We construct a causal model for
label-dependent corruption as shown in Fig. 10(a). We consider ten possible corruption types from
(Hendrycks & Dietterich, 2019) (e.g., Gaussian noise, frost), which are chosen based on the label.
The chosen corruption is applied to a clean image to obtain our input corrupted image. Our goal is
to predict the class label on interventional data. As part of RepLIn, we also predict the noise type
but do not evaluate its accuracy since it is not a variable of interest.

In this case, spurious correlations would correspond to relying on the type of noise as a proxy
for predicting the image label. We obtain the interventional images by intervening in the type of
corruption, making the choice of corruption independent of the label. This setup bears similarity
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to the one considered in (Zhang et al., 2020). However, unlike our task, where the noise is label-
dependent in observational data, they only consider label-independent image augmentation since
their goal is to learn models that are invariant to augmentation changes at test time.

Learning from Scratch: We consider CIFAR-10C (Hendrycks & Dietterich, 2019) with five
choices of image corruption and learn RepLIn model end-to-end from raw images. The network
includes a CNN to extract features and MLPs on top of these features to extract attribute-specific
features. Our dependency and self-dependency loss functions act on these attribute-specific features.

corruptionlabel
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Figure 10: Robustness against label-dependent
corruption: (a) shows the underlying causal model
and (b) and (c) compare ERM-Resampled and
RepLIn. (d) shows the correlation between feature
dependence and accuracy during interventions.

We present the results in Fig. 8. We make the fol-
lowing observations: 1) as expected, interven-
tional accuracy of all methods improves with β,
i.e., access to more interventional data at training;
2) explicitly enforcing independence on features
for interventional data leads to consistent accu-
racy gains over ERM-Resampled, and 3) features
from unseen interventional data are more statisti-
cally independent for RepLIn, especially as β in-
creases. In summary, our results indicate that 1)
modeling label-dependent corruptions as causal
models can overcome spurious correlations in
data, and 2) explicitly enforcing independence
constraints on the learned features leads to appre-
ciable performance gains over ERM-Resampled.

Transfer Learning from Pre-Trained Fea-
tures: Next, we evaluate the pre-trained feature
extractors that cover a wide range of architec-
tures, datasets, and training schemes. We use
open-sourced pre-trained models from (Wight-
man, 2022) and (Meta, 2022). Specifically, we
consider (1) ResNet50 trained using standard su-
pervised learning (He et al., 2016), (2) ResNet50 trained using MoCoV2 algorithm (Chen et al.,
2020), (3) VIT-B/32 trained in a supervised fashion on ImageNet-21K (Dosovitskiy et al., 2020),
(4) VIT-B/32 used as backbone in CLIP (Radford et al., 2021) trained on a 2-billion image subset
of LAION-5B (Schuhmann et al., 2022) and then fine-tuned on ImageNet-21K.

Method β Full support

R50 MoCoV2 ViT CLIP

ERM
0.5

57.17± 0.12 (-0.84) 35.49± 0.04 (-2.66) 51.26± 0.08 (-0.98) 48.26± 0.03 (-0.64)
ClsFT 57.16± 0.04 (-0.85) 36.82± 0.08 (-1.33) 51.10± 0.11 (-1.14) 48.36± 0.08 (-0.54)
RepLIn 58.02± 0.07 38.15± 0.04 52.24± 0.07 48.90± 0.08

ERM
0.9

51.18± 0.14 (-2.80) 28.11± 0.09 (-4.16) 37.35± 0.19 (-2.51) 36.65± 0.18 (-1.81)
ClsFT 45.74± 0.16 (-8.24) 19.99± 0.15 (-12.29) 16.56± 0.32 (-23.31) 18.23± 0.19 (-20.23)
RepLIn 53.98± 0.13 32.27± 0.13 39.86± 0.18 38.46± 0.10

Partial support

R50 MoCoV2 ViT CLIP

ERM
0.5

54.70± 0.04 (-1.19) 33.72± 0.05 (-1.65) 47.22± 0.19 (-1.70) 45.50± 0.11 (-1.35)
ClsFT 54.28± 0.07 (-1.62) 33.12± 0.08 (-2.25) 46.83± 0.13 (-2.10) 45.58± 0.12 (-1.27)
RepLIn 55.90± 0.06 35.37± 0.08 48.93± 0.08 46.85± 0.04

ERM
0.9

50.82± 0.08 (-2.16) 28.41± 0.08 (-1.86) 37.16± 0.19 (-2.31) 36.61± 0.15 (-1.81)
ClsFT 44.67± 0.12 (-8.31) 19.99± 0.11 (-10.29) 17.27± 0.27 (-22.20) 19.76± 0.31 (-18.65)
RepLIn 52.98± 0.11 30.28± 0.02 39.47± 0.17 38.41± 0.20

Different support

R50 MoCoV2 ViT CLIP

ERM
0.5

53.18± 0.05 (-0.54) 32.05± 0.04 (-0.95) 45.32± 0.05 (-0.39) 39.79± 0.10 (-0.47)
ClsFT 52.64± 0.08 (-1.08) 31.81± 0.07 (-1.20) 44.67± 0.17 (-1.04) 39.43± 0.11 (-0.82)
RepLIn 53.72± 0.09 33.00± 0.03 45.71± 0.14 40.26± 0.08

ERM
0.9

50.12± 0.14 (-1.37) 28.09± 0.03 (-1.84) 36.09± 0.12 (-1.51) 32.26± 0.08 (-0.83)
ClsFT 43.81± 0.25 (-7.68) 20.45± 0.31 (-9.48) 16.02± 0.46 (-21.57) 17.45± 0.09 (-15.64)
RepLIn 51.49± 0.06 29.93± 0.11 37.60± 0.17 33.09± 0.11

Table 2: Results on ImageNet-C: RepLIn outperforms ERM-
Resampled and ClsFT by a significant margin, especially when the
proportion of interventional data available is very little.

By being pre-trained on larger
datasets or with different loss func-
tions, these models may inherently
exhibit robustness to the noise
corruption model considered in
Fig. 10(a). For RepLIn and the base-
lines, we introduce a shallow MLP
over the backbone feature extractor
and predict the class label. For
RepLIn, we apply our loss functions
to the MLP’s features. In this ex-
periment, we evaluate on ImageNet
validation set with randomly applied
corruptions. We assign each of the
1000 classes a corruption through
the causal graph. All the images
from the class will have the assigned
corruption applied to them. The
support of the interventional data
varies similar to the scenarios in Sec. 3.

We use a 100,000 subset of ImageNet (Deng et al., 2009) as our training set and consider two settings
- one with 10% interventional data and another with 50% interventional data. Tab. 2 shows the image
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classification results on interventional data. We observe that RepLIn outperforms the baselines for
all considered backbones, proportions of interventional data, and intervention support types.

We also make the following observations: 1) Each method performs its best when the interventional
support matches that of the test distribution, 2) ClsFT performs significantly worse than ERM-
Resampled when the amount of interventional data is limited, and 3) Comparing the methods during
full support intervention and β = 0.5, RepLIn shows most improvement on MoCoV2 and least
improvement on CLIP – both backbones trained using contrastive loss while the former was trained
solely on images while the latter was trained on image-text pairs.

5 RELATED WORK

Learning using Interventional Data: Interventional data is key in causal discovery (Lippe et al.,
2021; Yu et al., 2019; Ke et al., 2019; Wang et al., 2022; He & Geng, 2008) as one can only retrieve
causal relations up to Markov equivalent graph without interventions or assumptions on the causal
model. For example, known interventional targets have been used for unsupervised causal discovery
of linear causal models (Subramanian et al., 2022), interventional and observational data have been
leveraged for training a supervised model for causal discovery (Ke et al., 2022), and interventions
with unknown targets were used for differentiable causal discovery (Brouillard et al., 2020). Unlike
this paper, these approaches are neither concerned with representation learning, and since the causal
graph is unknown, the interventional and observational data are treated equally. Interventional data
also find applications in reinforcement learning (Gasse et al., 2021; Ding et al., 2022) and recom-
mendation systems (Krauth et al., 2022). Interventional data has also been leveraged for identifiable
causal representation learning. Refer to Appendix G for a detailed review.

Training with Data Imbalance: In many practical scenarios, there is a heavy imbalance between
the amount of observational and interventional samples at hand for learning. In such cases, resam-
pling the data according to the inverse sample frequency is effective in improving generalization to
the minority class. Recent approaches such as MAPLE (Zhou et al., 2022), dynamic importance
reweighting (Fang et al., 2020) and SRDO (Shen et al., 2020) also learn to resample using a sep-
arate validation set that acts as a proxy for the test set. However, such learned resamplers require
access to a large validation dataset that reflects the interventional distribution, which is not always
practically feasible. Recent studies (Idrissi et al., 2022; Gulrajani & Lopez-Paz, 2020) have shown
that ERM with simple resampling is a strong baseline for spurious correlations and domain general-
ization. Therefore, we propose an approach that is agnostic to data imbalance while still leveraging
the underlying statistical property that distinguishes interventional from observational data.

6 CONCLUSION

This paper considered the problem of learning from observational and interventional data by lever-
aging the knowledge of the statistical properties induced by interventions in the underlying data-
generating process. First, we established a strong correlation between interventional accuracy and
statistical dependence between features on interventional data. Building on this observation, we
proposed RepLIn to mimic the true underlying causal relations by explicitly enforcing statistical
independence between features on interventional data. We showed that explicitly enforcing sta-
tistical independence between features during intervention is preferable to merely fine-tuning the
classifier on the interventional data. Experimental evaluation of RepLIn across different scenarios
corresponding to different causal graphs has shown that RepLIn is able to improve predictive accu-
racy across differing proportions of interventional data consistently. Finally, we modeled corrupted
image classification as a causal graph and leveraged RepLIn to learn image features that are more
robust under interventions to image corruption.
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In our main paper, we identified a correlation between interventional accuracy and dependence be-
tween interventional features and developed RepLIn that exploited this correlation for robust predic-
tions during interventions. Here, we provide some additional analysis to support our main results.
The appendix is structured as follows:

1. Distribution of the Learned Representations. App. A
2. Attention Maps for Facial Attribute Prediction. App. B
3. Comparing learned models from ERM, ClsFT, and RepLIn. (App. C)
4. Details of implementation and hyperparameters for all experiments. (App. D)
5. Advantage of using normalized features over unnormalized in WINDMILL experi-

ments. (App. E)
6. Similarities and differences between our problem setting and that typically considered in

Invariant Risk Minimization (Arjovsky et al., 2019). (App. F)
7. Review of Identifiable Causal Representation Learning (App. G)
8. Generating WINDMILL dataset. (App. H)
9. PyTorch code to generate the dataset to compare ERM, ClsFT, and RepLIn. (App. I)

A DISTRIBUTION OF THE LEARNED REPRESENTATIONS

−2.5 0.0 2.5
θA

0

1

2

D
en

si
ty

When A = 0

B = 0
B = 1

−2.5 0.0 2.5
θA

0

2

D
en

si
ty

When A = 1

B = 0
B = 1

(a) ERM-Resampled

−2.5 0.0 2.5
θA

0

1

D
en

si
ty

When A = 0

B = 0
B = 1

−2.5 0.0 2.5
θA

0.0

0.5

1.0

D
en

si
ty

When A = 1

B = 0
B = 1

(b) RepLIn (ours)

Method Jensen-Shannon divergence (↓)
When A = 0 When A = 1

ERM-Resampled 0.662 0.420
RepLIn (Ours) 0.143 0.134

(c) Divergence

Figure 11: Feature visualization for ERM-Resampled (left) and RepLIn (center) on the WINDMILL dataset.
(right) Jensen-Shannon divergence between P (F int

A |B = 0, A = a) and P (F int
A |B = 1, A = a), which ideally

should be zero when intervening on B.

We compare the features learned by ERM-Resampled and RepLIn on WINDMILL dataset to gain a
better understanding of what they actually learn. Since the features are normalized, we visualize the
polar angle as histograms. Specifically, we are interested in the histogram of FA for a fixed value
of A and changing values of B. If the features are robust, they should not change with B. From
the visualization in Fig. 11, we note that features from RepLIn are more robust to interventional
distribution shifts than those from ERM.

B ATTENTION MAPS FOR FACIAL ATTRIBUTE PREDICTION
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Figure 12: Image regions that contribute to predicting smile.

Since our features on CelebA are high-dimensional, we employ Grad-CAM (Selvaraju et al., 2017)
to analyze the features and compare them against those learned by resampled-ERM. Since our pri-
mary metric is accuracy in predicting smile during interventions, we visualize the parts of the
input image that the models attend to for predicting a smile. Fig. 12 shows the attention maps when
trained with 10% interventional data. Observe that RepLIn tends to focus more on the region around
the lips while resampled-ERM attends to other regions of the face too.
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C COMPARING LEARNED MODELS FROM ERM, CLSFT, AND REPLIN

In this section, we compare the models learned using ERM, ClsFT, and RepLIn to gain an insight
into why their performances differ. To that end, we compare the decision boundaries of these models,
particularly noting the misclassified regions.

Setup: In the setup that we introduced in Sec. 3, we considered two variables of interests A and B.
They are categorical random variables that can take eight classes. These variables, along with the
unobserved noise variables U1, U2, generate the input signal X . During observation, these variables
are causally linked. By intervening on B, we break their causal relation. Since there are several
classifiers that can achieve zero-error on the observational data alone, we use interventional data
for training. Precisely, 50% of the training data comes from interventions. Refer to Fig. 5 for
visualization of the causal relations and the data points.

Decision boundaries: As mentioned earlier, we look closely at the decision boundaries to gain
understanding about what each method learns. In every case, the true decision boundaries are formed
by parallel vertical lines. In each decision boundary, the misclassified points are shown using black
markers. Samples from the training dataset – observational and interventional points – are shown in
color denoting their classes.

We considered three scenarios for intervention. We describe them below along with the discussion
on the learned decision boundaries in that scenario.

Full support: In this scenario, the interventional support matches that of the test distribution,
i.e. full support. This is the most ideal scenario since the model sees samples from all possible
combinations of A and B. Fig. 13 compares the decision boundaries of ERM, ClsFT and RepLIn.
Since the interventional data seen during training are uniformly sampled from the entire support, a
model with sufficient capacity can learn the true decision boundary. We observe that all methods are
able to achieve zero-error classification.

A = 0 A = 1 A = 2 A = 3 A = 4 A = 5 A = 6 A = 7

(a) ERM, seed=0 (b) ClsFT, seed=0 (c) RepLIn, seed=0

(d) ERM, seed=1 (e) ClsFT, seed=1 (f) RepLIn, seed=1

Figure 13: Comparing decision boundaries of ERM, ClsFT and RepLIn for two seeds (each row) when the
interventional support matches that of test distribution ( Scenario 1 )
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Partial support: In this scenario, the interventional support depends on the value of A, i.e. partial
support. Fig. 14 compares the decision boundaries of ERM, ClsFT and RepLIn. Even with the
interventional data, there are clearly infinite zero-error classifiers for the training data. Since ERM
and ClsFT optimize to minimize error only on the seen points, their models can converge to one of
these classifiers. However, RepLIn enforces a stronger statistical independence regularizer on the
model. Therefore, our models learn decision boundaries which are closer to the optimal decision
boundaries. The result of this difference in approach can be seen in the decision boundary between
A = 3 and A = 4 in Fig. 14(c). RepLIn learns a more vertical (hence, closer to the true) decision
boundary at the expense of a few misclassified points in the training set.

A = 0 A = 1 A = 2 A = 3 A = 4 A = 5 A = 6 A = 7

(a) ERM, seed=0 (b) ClsFT, seed=0 (c) RepLIn, seed=0

(d) ERM, seed=1 (e) ClsFT, seed=1 (f) RepLIn, seed=1

Figure 14: Comparing decision boundaries of ERM, ClsFT and RepLIn for two seeds (each row) when the
interventional support depends on the value of A ( Scenario 2 )

Different support: In this scenario, the interventional support is completely different during train-
ing and testing, i.e. different support. Fig. 15 compares the decision boundaries of ERM, ClsFT and
RepLIn. As mentioned before, both ERM and ClsFT minimize error on seen data, while RepLIn
minimizes statistical dependence for stronger regularization. As a result, ERM and ClsFT achieve
zero error on the training set but exert little control over the decision boundary in regions of un-
seen support. On the other hand, RepLIn exploits the training data better to learn the true decision
boundary.

D IMPLEMENTATION DETAILS

We implement our models using PyTorch (Paszke et al., 2019) and use Adam (Kingma & Ba, 2014)
as our optimizer with its default settings. Common hyperparameters shared ERM baselines and
RepLIn (such as number of data points, number of epochs, etc.) are shown in Tab. 4. Other hyper-
parameters specific to RepLIn are shown in Tab. 3. For training stability, we warm up λdep from 0
to its set value between startN and endN epochs where N is the total number of epochs, and
start and end are fractions shown in Tab. 3.
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A = 0 A = 1 A = 2 A = 3 A = 4 A = 5 A = 6 A = 7

(a) ERM, seed=0 (b) ClsFT, seed=0 (c) RepLIn, seed=0

(d) ERM, seed=1 (e) ClsFT, seed=1 (f) RepLIn, seed=1

Figure 15: Comparing decision boundaries of ERM, ClsFT and RepLIn for two seeds (each row) when the
interventional support is different during training and testing ( Scenario 3 )

Table 3: Hyperparameters for RepLIn

Dataset λdep λself start end

WINDMILL 10 1 0.66 0.99
CelebA 10 1 0.2 0.99
CIFAR10-C 1 1 0.4 0.9
ImageNet-C 1 1 0.2 0.99

Table 4: Common hyperparameters. For WINDMILL, we used a MultiStep(milestones=[1000]) with
gamma=0.5 for ERM baselines and gamma=0.1 for RepLIn.

Dataset #Training samples Epochs Batchsize Learning rate Scheduler

WINDMILL 40,000 3000 4000 2e-3 See caption
CelebA 30,000 100 1000 1e-3 No scheduler
CIFAR10-C 40,000 1000 2000 1e-3 MultiStep(milestones=[50], gamma=0.5)
ImageNet-C 80,000 300 2000 2e-3 StepLR(step_size=100, gamma=0.5)

For all methods, we first extract label-specific features from the inputs and pass them through a
corresponding classifier to predict the label. The architecture of the feature extractor is the same
for all methods on a given dataset, except on the WINDMILL dataset. The classification layer is a
linear layer mapping from feature dimensions to the number of classes. The specific details for each
dataset are provided below.

WINDMILL dataset: For ERM baselines, we use an MLP with two layers of size 40 and 1, with
a ReLU activation after each layer (except the last) to extract the features. However, we observed
that it was difficult to enforce independence using 1-dimensional features. Therefore, we used 2-
dimensional features for RepLIn which were then normalized to lie on a circle. Essentially, the
features from the baselines and RepLIn have the same intrinsic dimensionality of 1.
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CelebA dataset: We first extract features from the raw image using a ResNet-18 (He et al., 2016)
pre-trained on ImageNet (Deng et al., 2009). Although these features are not optimal for face at-
tribute prediction, they have been shown to be useful for face verification (Sharif Razavian et al.,
2014). Additionally, it makes the binary attribute prediction task more challenging. We extract
attribute-specific features from this input using a linear layer that maps it to a 500-dimensional
space.

CIFAR-10-C dataset: We train a CNN from scratch to extract features from the corrupted image.
Fig. 16 shows the architecture of this CNN. An MLP with two hidden layers of dimensions 100 and
10 extracts features corresponding to the label and the corruption type from these CNN features.
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Figure 16: Architecture of the CNN used in CIFAR-10-C experiment

ImageNet-C dataset: We analyze the robustness of some of the commonly used image classification
models pre-trained on ImageNet (Deng et al., 2009) against label-dependent corruption. Using the
features extracted by these classification models as input, we extract label-specific and corruption-
specific features using a linear layer with 500-dimensional output.

E USING UNNORMALIZED FEATURES ON WINDMILL DATASET

In our experiments on WINDMILL dataset, we observed that normalizing features helped in enforc-
ing independence better. Fig. 17 compares the interventional accuracy and KCC between interven-
tional features of ERM-Resampled and RepLIn - each with raw features and normalized features.
For a fair comparison, they have the same architecture – the final feature dimension is 2. Without
normalization, the model learned to minimize statistical dependence between interventional features
at the expense of observational performance.

ERM-Resampled (normalized) ERM-Resampled (non-normalized) RepLIn-Resampled (normalized) RepLIn-Resampled (non-normalized)
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Figure 17: Advantage of normalizing the features for enforcing the independence better

F SIMILARITIES AND DIFFERENCES TO INVARIANT RISK MINIMIZATION
SETTING

Our setting: Given observed data X , the task is to predict the labels Y that generated X . We know
that there exist causal relations between the labels that cannot be modified without intervening on
one or more labels. The models are trained on a combination of observational and interventional
data, where the latter is sampled from a known interventional causal graph.

Invariant Risk Minimization (IRM) setting: The goal of IRM (Arjovsky et al., 2019; Liu et al.,
2021; Lu et al., 2021; Chevalley et al., 2022; Magliacane et al., 2018) is to predict labels Y from
observed data X , which is a function of the labels and an environment variable E such that E ⊥⊥ Y .
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Here, the objective is to learn a predictor that is invariant across the environments. IRM models
are trained on data collected from different environments. An example of this setting is domain
generalization where domains act as environments.

Y1

Y2 Y3

Y4

XE

(a) IRM setting

Y1

Y2 Y3

Y4

X

(b) Our setting

Figure 18: Difference between the causal model in IRM setting and our setting.

Similarities and differences: The larger goal of both IRM and our method is to learn features
that are robust to a distributional shift. However, they differ in the source of this distributional
shift. Fig. 18 shows the causal graphs considered under the IRM setting and our problem setting.
The distributional shift in IRM stems from the change in environment. Their training data con-
sists of sub-datasets corresponding to different environments such as D1 ∼ P (X,Y |E = e1),
D2 ∼ P (X,Y |E = e2), etc. The distributional shift in our setting originates from interventions. In-
terventional datasets can be written as Dint

1 ∼ P (X,Y |do(Y1 = y1), Dint
2 ∼ P (X,Y |do(Y2 = y2),

etc. As a result, IRM is not concerned with the causal relations between labels, while we are pri-
marily concerned with causal relations between the labels.

G REVIEW OF IDENTIFIABLE CAUSAL REPRESENTATION LEARNING

The primary objective of identifiable causal representation learning is to learn a representation such
that it is possible to identify the latent factors (up to scale and permutation) from the representation.
These methods are commonly built upon autoencoder-based approaches. The advantage of learning
a causal representation is that the decoder then implicitly acts as the true underlying causal model,
facilitating counterfactual evaluation and, sometimes, disentangled factors of variation.

Locatello et al. (2019); Khemakhem et al. (2020) showed that disentangled representation learning
was impossible without additional assumptions on both the model and the data. Some of the in-
ductive biases that have been proposed since to learn disentangled representations include auxiliary
labels (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Sorrenson et al., 2020; Khemakhem
et al., 2020; Ahuja et al., 2022b; Kong et al., 2022), temporal data (Klindt et al., 2021; Yao et al.,
2022; Song et al., 2023), and assumptions on the mixing function (Sorrenson et al., 2020; Yang
et al., 2021; Lachapelle et al., 2022; Zheng et al., 2022; Moran et al., 2022).

Use of interventional data: Some works also use interventional data as weak supervision for iden-
tifiable representation learning (Lippe et al., 2022b; Brehmer et al., 2022; Ahuja et al., 2022a; 2023;
Varıcı et al., 2023; Varici et al., 2023; von Kügelgen et al., 2023). Lippe et al. (2022b) learns identi-
fiable representations from temporal sequences with possible interventions at any time step. Similar
to our setting, they assume the knowledge of the intervention target. They also assume that the inter-
vention on a latent variable at a time step does not affect other latent variables in the same time step.
Lippe et al. (2022a) relaxes the latter assumption as long as perfect interventions with known targets
are available. Von Kügelgen et al. (2021); Zimmermann et al. (2021) showed that self-supervised
learning with data augmentations allowed for identifiable representation learning. Brehmer et al.
(2022) use pairs of data samples before and after some unknown intervention to learn latent causal
models (LCMs). Ahuja et al. (2022a) learns identifiable representations from sparse perturbations,
with identifiability guarantees depending on the sparsity of these perturbations. Sparse perturbations
can be treated as a parent class of interventions where the latent is intervened through an external
action such as in reinforcement learning. Ahuja et al. (2022b) use interventional data for causal
learning under some assumptions on the nature of support for non-intervened variables. Varıcı et al.
(2023) relax the polynomial assumption on the mixing function and proves identifiability when two
uncoupled hard interventions per node are available along with observational data. Varici et al.
(2023) learn identifiable representations from data observed under different interventional distri-
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butions with the help of the score function during interventions. von Kügelgen et al. (2023) uses
interventional data to learn identifiable representations up to nonlinear scaling. In addition to the
above uses of interventional data, a few works (Saengkyongam & Silva, 2020; Saengkyongam et al.,
2023; Zhang et al., 2023) have also attempted to predict the effect of unseen joint interventions with
the help of observational and atomic interventions under various assumptions on the underlying
causal model.

Difference from our setting: The general objective in identifiable causal representation learning is
to “learn both the true joint distribution over both observed and latent variables" (Khemakhem et al.,
2020). The objective of this work is to provide a method to learn representations that are robust
to interventional distribution shifts under the assumption of known interventional targets and their
parents. In other words, we are not interested in learning the joint distribution of the observed and the
latent variables, but rather in developing a method to exploit data samples with known interventional
targets. For example, as large models such as (Radford et al., 2021), (Brown et al., 2020), (Touvron
et al., 2023) and (Dehghani et al., 2023) become more ubiquitous, efficient methods to improve these
models with minimal amounts of experimentally collected data will be of interest.

H GENERATING WINDMILL DATASET

We provide the exact mathematical formulation of WINDMILL dataset described in Sec. 2.1. We
define the following constants:

Constants Description Default value

narms Number of “arms” in WINDMILL dataset 4
rmax Radius of the circular region spanned by the observed data 2
θwid Angular width of each arm 0.9π

narms
= 0.7068

λoff Offset wavelength. Determines the complexity of the dataset 6
θmax-off Maximum offset for the angle π/6

Table 5: Constants used for generating WINDMILL dataset, their meaning, and their values.

RB ∼ B(1, 2.5) (Sample radius)

R =
rmax

2
(BRB + (1−B)(2−RB)) (Modify sampled radius based on B)

ΘA ∼ C
({

2π
i

narms + 1
: i = 0, . . . , narms − 1

})
(Choose an arm)

U ∼ U(0, 1) (To choose a random angle)

Θoff = θmax-off sin

(
πλoff

R

rmax

)
(Calculate radial offset for the angle)

Θ = θwid (U − 0.5) +A

(
ΘA +

π

narms

)
+ (1−A)ΘA +Θoff

(Angle is decided by A and the radial offset)
X1 = R cosΘ (Convert to Cartesian coordinates)
X2 = R sinΘ

X =

[
X1

X2

]
PyTorch code to generate WINDMILL dataset is provided in Listing 1.

I PYTORCH CODE TO GENERATE TOY DATA WITH CHANGING
INTERVENTIONAL SUPPORT

PyTorch code to generate the dataset used in Sec. 3 is shown in Listing 2.
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Listing 1: Code for WINDMILL dataset
import math
import torch

# Constants
num_arms = 4 # number of blades in the windmill
max_th_offset = 0.5236 # max offset that can be added to the angle for shearing (= pi/6)
r_max = 2 # length of the blade
num_p = 20000 # number of points to be generated
offset_wavelength = 6 # adjusts the complexity of the blade

# Sample latent variables according to the causal graph.
A = torch.bernoulli(torch.ones(num_points) * 0.6)
if observational_data:

B = A
else:

B = torch.bernoulli(torch.ones(num_points) * 0.5)

# Convert A, B to X.
th_A0 = torch.linspace(0, 2*math.pi, num_arms+1)[:-1]
th_A1 = torch.linspace(0, 2*math.pi, num_arms+1)[:-1] + math.pi/num_arms
# Choose a random arm for A=0 from possible arms. Likewise for A=1.
th_A0 = th_A0[torch.randint(num_arms, (num_p,))]
th_A1 = th_A1[torch.randint(num_arms, (num_p,))]

# beta distribution with alpha=1, beta=3
beta_dist = torch.distributions.beta.Beta(1, 2.5)

# Sample r according to B. If B=0, sample a small r, else sample a large r.
# r ranges from 0 to r_max
B0_r = beta_dist.sample(torch.Size([num_p])) * r_max/2.
B1_r = r_max - beta_dist.sample(torch.Size([num_p])) * r_max/2.
r = B * B0_r + (1-B) * B1_r

# Sample theta according to A.
# Choose the theta arm according to A and then sample from this arm using a uniform

distribution.

# First we will have a cartwheel style.
theta = torch.rand(num_p)*th_wid + th_A0*(1-A) + th_A1*A - th_wid/2.

# Add an offset to theta according to r.
th_offset_mod = torch.sin((r/r_max)*offset_wavelength*math.pi)
th_offset = max_th_offset*th_offset_mod
theta += th_offset

x1 = r*torch.cos(theta)
x2 = r*torch.sin(theta)

data = torch.stack([x1, x2], dim=1)
labels = torch.stack([A, B], dim=1).type(torch.long)
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Listing 2: Code for toy DFR dataset
import torch

def observational_points(num_obs_points, num_classes, support):
Y1_obs = torch.randint(num_classes, size=(num_obs_points,))
if support == "diff":

Y2_obs = Y1_obs % (num_classes // 2)
else:

Y2_obs = Y1_obs.clone()
Y_obs = torch.stack([Y1_obs, Y2_obs], dim=1)
return Y_obs

def intervention_partial_support(num_classes, num_int_points):
num_groups = num_classes // 2 # The classes are grouped into 4 groups
Y1_int = torch.randint(num_classes, size=(num_int_points,))
Y2_int = torch.empty_like(Y1_int)
cl_per_gp = 2
for _ in range(num_groups):

mask = (cl_per_gp*_ <= Y1_int) & (Y1_int < cl_per_gp*(_+1))
np = mask.sum().item()
Y2_int[mask] = torch.randint(cl_per_gp*_, cl_per_gp*(_+1), size=(np,))

Y_int = torch.stack([Y1_int, Y2_int], dim=1)
return Y_int

def intervention_diff_support(num_classes, num_int_points):
Y1_int = torch.randint(num_classes, size=(num_int_points,))
Y2_int = torch.randint(num_classes // 2, size=(num_int_points,))
Y_int = torch.stack([Y1_int, Y2_int], dim=1)
return Y_int

def intervention_full_support(num_classes, num_int_points):
Y1 = torch.randint(num_classes, size=(num_int_points,))
Y2 = torch.randint(num_classes, size=(num_int_points,))
Y_int = torch.stack([Y1, Y2], dim=1)
return Y_int

def get_X_from_Y(Y, num_classes):
mu_x1 = (1.1*Y[:, 0] - (num_classes - 1)/2.)
mu_x2 = (1.1*Y[:, 1] - (num_classes - 1)/2.)

X1 = mu_x1 - 0.5 + torch.rand_like(mu_x1)
X2 = mu_x2 - 0.5 + torch.rand_like(mu_x2)
X = torch.stack([X1, X2], dim=1)
return X

beta = 0.5
num_points = 20000
inp_dim = 2
num_classes = 8
num_obs_points = int(beta * num_points)
num_int_points = (num_points - num_obs_points)

# Scenario 1: trn_support = "full"
# Scenario 2: trn_support = "partial"
# Scenario 3: trn_support = "diff"
trn_support = "full"

if trn_support == "full":
int_fn = intervention_full_support

elif trn_support == "partial":
int_fn = intervention_partial_support

elif trn_support == "diff":
int_fn = intervention_diff_support

else:
raise ValueError("Invalid trn_support")

Y_obs = observational_points(num_obs_points, num_classes, trn_support) # Create observational
points

I_obs = torch.zeros(num_obs_points, dtype=torch.int)
Y_int = int_fn(num_classes, num_int_points) # Create interventional points
I_int = torch.ones(num_int_points, dtype=torch.int)
Y = torch.cat([Y_obs, Y_int], dim=0)
I = torch.cat([I_obs, I_int], dim=0)

# Create the observed data signal from the labels.
X = get_X_from_Y(Y, num_classes)

23


	Introduction
	The Learning from Interventional Data Problem
	Does Interventional Accuracy Correlate with Statistical Independence?
	Measuring Statistical Dependency Between Interventional Features
	RepLIn: Enforcing Statistical Dependency on Interventional Features

	Classifier Finetuning May Not Be Enough
	Experimental Evaluation
	WindMill Dataset
	Facial Attribute Prediction
	Robustness to Image Corruption

	Related Work
	Conclusion
	Distribution of the Learned Representations
	Attention Maps for Facial Attribute Prediction
	Comparing learned models from ERM, ClsFT, and RepLIn
	Implementation details
	Using unnormalized features on WindMill dataset
	Similarities and differences to Invariant Risk Minimization setting
	Review of identifiable causal representation learning 
	Generating WindMill dataset
	PyTorch code to generate toy data with changing interventional support

