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Abstract

Graph similarity computation, which measures the resemblance between graphs, is a cru-
cial operation in fields such as graph search. Recent advances in graph neural networks
have enabled the embedding of graphs into low-dimensional vector spaces, where the sim-
ilarity or distance between graphs can be efficiently quantified. However, these methods
are often tailored to specific tasks and function as black boxes, limiting both generalization
and interpretability. To address these challenges, there is growing interest in incorporating
domain-agnostic and interpretable concepts from graph theory—such as subgraph isomor-
phism, maximum common subgraph, and graph edit distance—into graph similarity learning
as training objectives. This survey presents a comprehensive review of recent advancements
in deep graph similarity learning, focusing on models that integrate these graph theory
concepts. Despite the different training objectives of these approaches, they share signifi-
cant commonalities in the training pipeline, techniques, and challenges. We analyze them
within a unified lens referred to as graph theory-based deep similarity learning (GTDGSL)
methods. We systematically compare existing GTDGSL methods alongside their common
training pipeline, highlighting the technique trend and discussing key challenges, applica-
tions, and future research directions in this domain. We organize the papers included in
this survey and their open-source implementations at https://github.com/liuzhouyang/
Graph-Theory-Based-Deep-Graph-Similarity-Learning-Survey.
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1 Introduction

Entities can be represented as nodes within a graph, with edges depicting their relationships. This graph-
based representation effectively captures the complex interactions present in real-world systems, ranging from
social networks to biochemical molecule structures. This representation, in turn, facilitates the identification
of similar interaction patterns, i.e., structural similarities between graphs. These structural similarities often
correlate with functional similarities, highlighting the importance of graph similarity learning in exploring
these relationships.

Such similarity measurement serves as a fundamental operation in various downstream tasks, including
graph classification (Mohamed et al., 2019), clustering (Liu et al., 2024), and search (Zheng et al., 2014;
He & Singh, 2006; Wang et al., 2010; Zhu et al., 2012; Zheng et al., 2013). For instance, in bioinformatics,
identifying similar structures can lead to the discovery of new drugs or treatments (Schadt et al., 2009). In
social network analysis, graph similarity is crucial for detecting communities, identifying influencers, and
understanding the spread of information (Narayan & Kumar, 2016). Similarly, in recommendation systems
and fraud detection, graph similarity plays a key role in matching user preferences and identifying anomalous
patterns (Kim et al., 2022).

As graph similarity learning has been studied for several decades, many techniques have been proposed,
such as kernel-based methods (Borgwardt & Kriegel, 2005; Costa & Grave, 2010; Shervashidze et al., 2011;
Kriege, 2022; Nikolentzos et al., 2022) and graph spectral-based methods (ElGhawalby & Hancock, 2008;
Crawford et al., 2017). However, these methods often rely on predefined patterns or structures to represent
graphs. Recent advances in graph neural networks (GNNs) have empowered models to learn abstract repre-
sentations that capture the most relevant substructures across diverse graphs according to the downstream
task. This shift reduces dependence on hand-crafted features, enhances the generalizability of the methods,
and broadens the design space for model architectures and training paradigms.

Based on deep learning techniques such as graph neural networks (GNNs) (Kipf & Welling, 2017; Xu et al.,
2019; Veličković et al., 2018; Brody et al., 2022), deep graph similarity learning (DGSL) methods project
graphs into low-dimensional vector spaces, where the distances between graph pairs effectively capture and
reflect their structural similarities and differences. More detailed surveys on general DGSL can be found
in the work of Ma et al. (2019); Ju et al. (2024). However, the distance measurements produced by these
models are often task-specific and can be difficult to interpret, complicating the understanding of the models’
behaviors. In contrast, classical graph theory provides well-defined and domain-agnostic concepts of graph
structural similarity through various problems. This survey focuses on three of them that are widely applied
in graph search, which range from the stringent subgraph isomorphism (SI)—which is NP-complete (Garey &
Johnson, 1979) and involves determining whether one graph is equivalent to a subgraph of another—to more
flexible approaches that are robust to noise in real-world scenarios, such as the maximum common subgraph
(MCS) and graph edit distance (GED). While both MCS and GED are NP-hard problems (Hjorth, 2005),
they provide useful frameworks for evaluating similarity: MCS identifies the largest subgraph common to
both graphs, while GED quantifies the minimum cost required to transform one graph into another through
a sequence of edits.

Although these three problems are theoretically significant and form a basis for understanding and quanti-
fying graph similarities, their inherent computational complexity makes them notoriously difficult to solve.
Computing these concepts typically requires establishing a bijective mapping between elements, such as
nodes and edges, across graph pairs that satisfy certain criteria. For example, in graph edit distance (GED)
computation, the total edit cost to transform the source graph into the target graph must be optimized,
necessitating exhaustive combinatorial enumeration. Existing efforts have proposed strategies for ordering
the search process and pruning unpromising search branches to reduce the search space (Abu-Aisheh et al.,
2015; Chang et al., 2020; McCreesh et al., 2017; Carletti et al., 2018). However, these methods operate in
an on-the-fly manner, which means each computation relies on a specific graph pair, rendering intermediate
results from one search inapplicable to another, impacting the efficiency of these methods.

Recently, several end-to-end learning-based methods (Bai et al., 2019; Ying et al., 2020; Doan et al., 2021)
have proposed leveraging distances in embedding spaces to reflect the similarity between graph pairs based on

2



Published in Transactions on Machine Learning Research (05/2025)

the aforementioned graph theory concepts. In addition, some methods operate in learn-to-search scenarios,
enhancing the searching process of conventional algorithms with pretrained deep learning models (Yang &
Zou, 2021; Wang et al., 2021; Bai et al., 2021; Wang et al., 2022; He et al., 2022). These approaches not
only offer clearer insights into the structural relationships between graphs but also significantly accelerate the
computation of these complex graph theory problems. In recent years, various works have followed this trend
and further refined existing methods, leading to notable advancements in both accuracy and efficiency (Zhuo
& Tan, 2022; Liu et al., 2023b; Roy et al., 2022a). Although these methods are tailored to different problems,
this paper analyzes them through a unified lens, systematically presenting their theoretical connections,
technical similarities, and differences. Moreover, this unified view enables a more comprehensive discussion
of common challenges, such as preserving graph characteristics and ground-truth acquisition problems, etc.
Finally, this perspective facilitates the identification of future research directions and broadening the field.

Scope and contributions. Unlike previous surveys on general deep graph similarity learning or deep
similarity learning, such as Ma et al. (2019); Ju et al. (2024); Yang et al. (2024), which primarily focus
on model taxonomies, general GNN architectures, learning paradigms or data-specific discussions, this sur-
vey distinguishes itself in two key aspects. First, it specifically focuses on deep graph similarity learning
approaches that approximate three selected graph theory concepts for quantifying graph similarity: sub-
graph isomorphism, maximum common subgraph, and graph edit distance, collectively referred to as Graph
Theory-based Deep Graph Similarity Learning (GTDGSL). By examining these approaches under a unified
lens, this survey highlights their commonalities and differences in both theoretical foundations and technical
implementations. Second, it provides an in-depth review of GTDGSL-related techniques, emphasizing tech-
nical developments and trends that have been underexplored in prior works. To the best of our knowledge,
this is the first survey dedicated specifically to the GTDGSL problem. The main contribution of this survey
can be summarized as follows.

• We briefly summarize three graph theory concepts—subgraph isomorphism, maximum common sub-
graph, and graph edit distance—and analyze their theoretical connections, along with the technical
similarities and differences among conventional algorithms for these problems.

• We categorize existing GTDGSL methods alongside their training pipeline, establishing a unified
framework for systematic comparison.

• We analyze and review GTDGSL methods at each step of the training pipeline to align their inputs
and outputs, highlight technical trends at each step, and elucidate their design space to provide
technical insights.

• We provide a detailed discussion of dataset generation, evaluation metrics, and their downstream
applications.

• We identify key challenges and opportunities for future research in this domain.

Organization. This paper is organized as follows. In Section 2, we provide the necessary background
on the GTDGSL problem, covering key graph theory concepts, traditional techniques, as well as a formal
problem formulation of GTDGSL. We also compare GTDGSL with conventional algorithms and DGSL,
offering a critical analysis of its advantages, disadvantages, and distinct model designs. In Section 3, we
categorize and review the current GTDGSL methods approximating SI, MCS, and GED, alongside their
common training pipeline, revealing the design space and technique trends of GTDGSL methods. In Section
4, we introduce the dataset generation techniques in existing work. In Section 5, we present the metrics
evaluating GTDGSL models. In Section 6, we discuss the applications of GTDGSL methods. Finally, in
Section 7, we identify the key challenges shared among GTDGSL methods and highlight the future directions.
The survey is briefly concluded in Section 8.

2 Background

In this section, we begin with the notations that will be used throughout this survey. Next, we provide
formal definitions for the three selected graph theory concepts—subgraph isomorphism, maximum common
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Figure 1: A toy example illustrating the three selected graph theory concepts. Black dashed lines represent
mappings, while red markings indicate edits. Subgraph isomorphism verifies the presence of a known pattern
within a larger graph. MCS identifies the unknown largest connected common subgraph between two graphs.
GED transforms one graph into another with the minimum edit cost.

subgraph, and graph edit distance—along with their distinct properties and a brief overview of conven-
tional solutions. Following this, we explore the connection between graph neural networks (GNNs) and the
computation of these concepts, laying the foundation for graph theory-based deep graph similarity learning
(GTDGSL). We also compare GTDGSL with conventional algorithms and general graph similarity learning,
offering a critical analysis of its advantages, disadvantages, and distinct model designs.

Notation. This survey focuses on node-labeled undirected graphs. For a given graph G = (VG, EG), where
VG represents the set of nodes and EG denotes the collection of edges e(v, u) for v, u ∈ VG, each node v ∈ VG

is associated with a feature vector x0 ∈ X, with X being the collection of node features. This notation can
be easily extended to unlabeled graphs by assigning identical features to each node. Since G is undirected,
for every edge e(v, u) ∈ EG, there exists a counterpart e(u, v). The cardinality of the node and edge sets
are denoted by |VG| and |EG|, respectively. The sparse edge set EG can be represented as a dense adjacency
matrix A|VG|×|VG|, where A(v, u) = 1 if e(v, u) ∈ EG and A(v, u) = 0 otherwise, with A(v, u) representing
the entry at row v and column u. A connected subgraph G′ = (VG′ , EG′) of G consists of subsets of VG and
EG such that for each edge e(v, u) ∈ EG′ , both v and u belong to VG′ , and all vertices in G′ are reachable
from one another by traversing edges within EG′ .

2.1 Graph Similarity Concepts in Graph Theory

In the following, we will present formal definitions of selected graph theory concepts, and discuss their
distinct properties as well as their conventional solutions, emphasizing both their similarities and differences
to deepen the understanding of their interconnectedness.

2.1.1 Subgraph Isomorphism (SI)

Definition. Given a query graph Q and a data graph D, if Q is isomorphic to a subgraph D′ of D, there
exists at least one bijective function f between Q and D′, such that f : VQ 7→ VD′ satisfying (1) for all v ∈ VQ

and v′ ∈ VD′ , there exists f(v) = v′ and x0
v = x0

v′ . (2) For all e(v, u) ∈ EQ, there exists e(f(v), f(u)) ∈ ED′ .
We denote (Q, D) as a subgraph isomorphism. In this context, graph isomorphism is a special case of
subgraph isomorphism where D′ = D. Another related variant of subgraph isomorphism is subgraph edit
distance (SED), which depicts the minimum edit cost for transforming a graph into a subgraph of another.
The SED for matched pair (Q, D) equals zero; otherwise, it would be a non-negative value.

Properties. SI defines a partial ordering relationship between graphs, characterized by the following prop-
erties (Ying et al., 2020).

• Transitivity. If Q is a subgraph of D′ and D′ is a subgraph of D, then Q is a subgraph of D.

• Anti-symmetry. If Q is subgraph of D, D is a subgraph of Q, then Q and D are isomorphic.
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• Intersection set. The set of common subgraphs of D1 and D2 is contained within the intersection of
their respective subgraph sets.

The first two properties make SI a partial order, while the last property helps illustrate the connection
between SI and the Maximum Common Subgraph, which we will discuss later.

Conventional Solutions. According to downstream scenarios, conventional solutions for subgraph iso-
morphism can be divided into two groups: subgraph enumeration (also known as subgraph matching) and
subgraph indexing. Subgraph enumeration methods aim to exhaustively enumerate all bijective mappings
(isomorphisms) from the query graph to subgraphs within the data graphs (He & Singh, 2008; Shang et al.,
2008; Carletti et al., 2018; Archibald et al., 2019; Han et al., 2013; 2019; Sun et al., 2020). State-of-the-
art methods in this group typically follow a preprocessing-ordering-enumeration paradigm, they first apply
heuristic rules to filter out unpromising vertices and edges based on the graph pairs, then define an optimal
search order to improve the efficiency of the enumeration process. For a detailed review of these methods,
we refer readers to Sun & Luo (2020); Zhang et al. (2024b).

In contrast to these on-the-fly enumeration methods, subgraph indexing methods rely on predefined subgraph
patterns (i.e., features) to construct an index for the data graphs (Zhang et al., 2009; Zhao & Han, 2010;
Klein et al., 2011; Xie & Yu, 2011; Giugno et al., 2013; He et al., 2024). These methods typically count
the occurrences of specific subgraph patterns within each graph and use these counts to build an index.
Intuitively, (Q, D), the index of D on any feature should contain higher or equal counts compared with Q’s,
which can be refer to as subgraph containment constraint. Given a query graph and a collection of data
graphs, indexing methods aim to filter out unpromising data graphs by comparing the indices of graph pairs.

2.1.2 Maximum Common Subgraph (MCS)

Definition. The graph M is the maximum common connected subgraph between Q and D, if M satisfying
(1) (M, Q) and (M, D) are subgraph isomorphisms, (2) M has the most nodes compared with other common
subgraphs exist Q and D. This definition highlights the connection between SI and MCS, as MCS represents
the largest common subgraph, measured by the number of nodes or edges, within the intersection set of Q
and D.

Properties. MCS has the following properties.

• Non-transitivity. If M1 = MCS(Q1, D) and M2 = MCS(Q2, D), it does not necessarily mean that
M1, M2 or that the MCS of Q1 and Q2 includes either M1 or M2.

• Symmetry. For any two graphs Q and D, MCS(Q, D) = MCS(D, Q).

Conventional Solutions. Conventional Maximum Common Subgraph (MCS) algorithms typically em-
ploy backtracking, constraint programming, or clique-based reduction as search strategies (McGregor, 1981;
Raymond & Willett, 2002; Ehrlich & Rarey, 2010; Ndiaye & Solnon, 2011; McCreesh et al., 2016; 2017).
State-of-the-art algorithms address the MCS problem using a branch and bound optimization approach (Mc-
Creesh et al., 2017). This methodology systematically explores the search space by recursively partitioning it
into smaller subproblems, then estimates an upper bound on the maximum possible size that can be formed
from the current partial mappings to prune unpromising branches.

2.1.3 Graph Edit Distance (GED)

Definition. The graph edit distance GED(Q, D) is the minimum cost of the edit operation sequence that
transforms Q into D. The viable edit operations are node/edge insertion, deletion, and label substitution.
Each operation can be assigned with a distinct non-negative cost, and different cost settings can produce
different GEDs.

5



Published in Transactions on Machine Learning Research (05/2025)

Properties. Under a uniform cost setting, where each operation has the same cost, GED is a metric and
satisfies the following properties (Ranjan et al., 2022).

• Symmetry. For any two graph Q and D, GED(Q, D) = GED(D, Q), though the specific edit
sequences may differ.

• Triangle Inequality. GED(Q, D) ≤ GED(Q, D1) + GED(D1, D2).

However, when under a non-uniform cost settings, the above properties are no longer guaranteed, and GED
behaves as a non-metric distance function with the following properties.

• Asymmetry. GED(Q, D) ̸= GED(D, Q).

Specifically, when node deletion and insertion each have a cost of one, label substitutions do not occur, and
edge insertion or deletion is free, the GED computation becomes equivalent to the MCS problem (Bunke,
1997).

Conventional Solutions. Conventionally, the exact GED problem is often formulated as a path-finding
problem (e.g., A* search). In contrast, the approximation of GED is regarded as a quadratic assignment
problem or bipartite graph matching problem (Bunke, 1997; Zeng et al., 2009; Riesen & Bunke, 2009; Riesen
et al., 2013; Abu-Aisheh et al., 2015; Bougleux et al., 2017; Stauffer et al., 2017; Blumenthal & Gamper,
2020; Chang et al., 2020). These methods often require padding the smaller graph between Q and D with
dummy node to ensure they have the same size. They then create a cost matrix that quantifies the differences
between each cross-graph node (or edge) pair. Based on the cost matrix, the exact ones gradually expand
the search path till each node in Q is matched to a node in D or a dummy node, while the approximate ones
directly construct node mapping from Q to D to minimize the total cost.

SI MCS GED

Prior Knowledge Yes No No
Largest No Yes No
Connected Yes Yes No

Preprocessing Graph property-based Graph property-based Score-based
Ordering Static; Graph property-based Static; Graph property-based Dynamic; Score-based
Pruning/Bounding Hard constraints Score and hard constraints Score

Table 1: Connections Between the Selected Graph Theory Concepts

2.1.4 Connections Between Graph Similarity Concepts

Theoretical Connections. All three concepts are NP-hard problems and can be understood as attempts
to establish (partial) node mappings between graph pairs. Each of them allows multiple possible optimal
mappings, but all lead to the same final result. Moving from SI to MCS to GED, the constraints on
structural properties become progressively more relaxed. This relaxation trend makes GED more general
but also more challenging to optimize. SI verify the presence of Q in D, meaning the common structure is
predefined as Q. In contrast, MCS does not assume prior knowledge of a shared structure but instead seeks
to discover the largest common subgraph between the given graph pair within the intersection set. GED, also
considering common substructures, but it neither requires them to be the largest nor necessarily connected,
as it determines preserved substructures based on the cost of edit operations rather than explicit structural
constraints. Additionally, under special cost setting, computing GED is equivalent to MCS problem (Bunke,
1997). See Table 1 for summarization.
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Technical Similarities and Differences. These concepts share key search processes, such as preprocess-
ing, ordering, and pruning/bounding, but they adopt distinct strategies for each step. We summarize these
differences in Table 1 and provide a detailed discussion below.

• Preprocessing. SI and MCS algorithms typically perform a preprocessing step to reduce the candidate
space of query and data nodes by eliminating infeasible matches. Common techniques include
degree filtering and label filtering, which leverage graph properties to constrain the search space.
In contrast, GED algorithms estimate lower bounds using linear assignment solvers, such as the
Hungarian algorithm.

• Ordering. SI and MCS require an explicit ordering before search to guide partial mapping expansion,
typically relying on graph properties such as vertex degrees, label frequency, or connectivity. In
contrast, GED algorithms is cost-sensitive, dynamically adjust the search order based on estimated
edit costs.

• Pruning/Bounding. SI enforces strict constraints, such as degree filtering, connectivity checks, and
label consistency, to efficiently prune infeasible mappings. In contrast, GED and MCS algorithms
rely more on bounding functions rather than hard constraints to eliminate partial matches that
cannot improve the best-known score. Nonetheless, MCS may still enforce structural feasibility
constraints, such as connectivity.

2.2 Graph Theory-Based Deep Graph Similarity Learning (GTDGSL)

Deep graph similarity learning, empowered by deep learning techniques, aims to construct a similarity
function that assigns meaningful similarity scores to graph pairs. Graph Neural Networks (GNNs) naturally
emerge as a key tool in this context, as they effectively generate node, edge, and graph representations while
considering the connectivity patterns of graphs.

2.2.1 Graph Neural Networks

Message-passing Graph Neural Networks (MPNNs), commonly referred to as GNNs, focus on capturing the
local structure around each node, where the computational graph of a node can be viewed as a node-anchored
k-order Weisfeiler-Lehman (WL) subtree, which grows according to the edge-defined k-hop accessible neigh-
borhood of each node. Specifically, they generate node embeddings for each graph using an aggregation-
update paradigm. For a node v ∈ V with an initial feature vector x0

v, the process involves aggregating
features from its neighboring nodes according to the adjacency matrix of the graph, and then updating the
feature of v, this process at l-th layer can be described as follows:

xl
v = Update(xl−1

v , Aggr(xl−1
u : u ∈ Nv)),

where xl
v is the embedding of node v at the l-th layer, and Nv denotes the set of neighboring nodes of

v. The function Aggr(·) aggregates the features of the neighboring nodes u, and the Update(·, ·) function
updates the feature of the node v based on its previous feature and the aggregated information. Since graphs
are non-Euclidean data structures without a natural order, and the number of neighbors for each node can
vary, GNNs typically aggregate and update node features in a permutation-invariant manner, ensuring the
robustness to node reordering. Xu et al. (2019) further propose projecting the updated features using a
Multilayer Perceptron (MLP), which consists of multiple fully connected layers, with a nonlinear activation
function applied between each pair of linear layers. This projection ideally ensures the injectiveness of the
embeddings, thereby enhancing their expressiveness. The outputs of a k-layer GNNs for each node can be
further summarized as the graph representation with a pooling function, such as a dimensional-wise sum
pooling. Despite their advantages in graph handling, GNNs face several challenges and limitations which we
briefly discuss as follows.

• Over-smooth. As the aggregation-update process is repeated over multiple layers, the k-hop neigh-
borhoods of different nodes begin to overlap more extensively. As a result, node features become
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increasingly similar, eventually converging to indistinguishable embeddings (Li et al., 2018). This
issue is particularly pronounced in deep GNN architectures, where the loss of distinct node charac-
teristics can severely degrade performance. While techniques such as skip connections (Chen et al.,
2020) have been proposed to mitigate this issue, they often require careful tuning and may not fully
resolve the problem in highly dense graphs.

• 1-WL Test Bounded Expressiveness. The expressiveness of widely used GNNs is limited by the 1-
Weisfeiler-Lehman (1-WL) test (Xu et al., 2019). This limitation manifests when nodes with distinct
neighborhood structures (e.g., a triangle and a 4-node cycle) are assigned identical representations
due to their isomorphic WL subtrees. Such cases are common in real-world graphs. Although
augmenting node features with unique identifiers (You et al., 2021) or random features (Sato et al.,
2021) can improve expressiveness, these approaches often initialization sensitive, which may degrade
the robustness and generalizability of GNNs. More complex GNN variants, such as Subgraph GNNs
(Zhang & Li, 2021) and High-order GNNs (Morris et al., 2019; Zhang et al., 2024a), can offer
enhanced expressiveness but at the cost of significantly higher computational complexity, making
them less practical for large-scale applications.

• Loss of Overall Structure. GNNs operate locally, aggregating information from immediate neighbors,
which can lead to the loss of global structural information. This arises issues such as the automorphic
node problem (Chamberlain et al., 2023), where nodes with isomorphic neighborhoods have identical
representations. For tasks such as GTDGSL, which require alignment of global graph structures,
this issue can severely hinder performance. While incorporating structural features, such as random
walk embeddings (Grover & Leskovec, 2016), can partially address this limitation, it remains an
open challenge to design GNNs that effectively balance local and global structural information.

• Lack of Scalability. The scalability of GNNs is another critical limitation, particularly when applied
to large graphs with millions of nodes and edges. The aggregation-update process requires storing
adjacency matrices and intermediate node/edge features, leading to high memory and computa-
tional demands. While methods such as graph sampling (Zeng et al., 2019) and graph partitioning
can improve scalability, they often trade off accuracy for efficiency. For instance, sampling-based
approaches may miss important structural information, while partitioning methods can introduce
artifacts at graph boundaries. Decoupling feature transformation from propagation (Wu et al., 2019)
has shown promise in reducing computational costs, but its effectiveness varies across different graph
types and tasks.

For a more comprehensive discussion of these challenges and solutions, we refer readers to Wu et al. (2021);
Chamberlain et al. (2023); Zhang et al. (2024a); Shao et al. (2024). In the following sections, we also
highlight the solutions employed by existing GTDGSL methods in handling the limitation of GNNs, organized
according to the training pipeline in Section 3. Furthermore, we analyze the specific challenges relative to
GTDGSL and examine how existing approaches address these challenges in Section 7.

2.2.2 Problem Formulation

General Framework. Given any graph pair (Gi, Gj), D(·, ·) is a learnable pairwise similarity function,
such that D(ϕ(Gi), ϕ(Gj)) 7→ dij ∈ R, where ϕ is a projection function, such as GNNs, that transforms
graphs into low-dimensional embeddings. Unlike general deep graph similarity learning, GTDGSL requires
dij to approximate specific graph theory targets, such as those defined above.

Subgraph Isomorphism Prediction. In the GTDGSL framework, subgraph isomorphism prediction
at the graph level can be framed as a binary classification task, where the model outputs 1 if (Q, D) is a
subgraph isomorphism and 0 otherwise. Certain methods also propose to predict such subgraph isomorphism
at the node level, they extract the k-hop subgraph N k induced by a given central node, predicting whether
(N k(v), N k(u)) is a subgraph isomorphism, where v ∈ Q and u ∈ D.

MCS and GED Approximations. The predictions of MCS and GED are often formulated as a regression
task. For MCS problem, the training objective of a GTDGSL model is the number of nodes within M (ranging
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from 0 to infinity) or the normalized value |VM |
(|VQ|+|VD|)/2 (ranging from [0, 1]). Similarly, for GED problem,

the target value is the non-negative GED value or the normalized GED value e
− GED(Q,D)

(|VQ|+|VD|)/2 to ensure a
range of (0, 1].

2.3 GTDGSL vs. Conventional Algorithms

We compare conventional algorithms and GTDGSL across several key aspects:

Correctness. Conventional methods provide exact solutions, ensuring correctness by systematically
searching the solution space. In contrast, GTDGSL methods approximate solutions and may suffer from
false negatives, missing valid matches due to their learned representations (He et al., 2024). This trade-off
makes GTDGSL more suitable for applications where approximate solutions suffice but limits their use in
scenarios demanding provable guarantees.

Efficiency and Scalability. The efficiency and scalability of conventional algorithms vary significantly
between datasets and tasks. SI algorithms have been demonstrated to scale to graphs with billions of edges.
In contrast, exact MCS and GED algorithms suffer from exponential search complexity, causing memory
overflow and impractical runtime for small graphs. GTDGSL models, on the other hand, have a different
scalability limitation. Rather than search complexity, their scalability is primarily constrained by the GNN
backbone. Large-scale graphs can lead to high computational and memory costs during message passing,
making efficient GNN architectures crucial for scalability.

Generalization Ability. Conventional algorithms rely on heuristic optimization. They leverage prede-
fined shallow information-based measures such as degree similarity, label frequency, and linear assignment
solver-based lower bound estimation to guide the preprocessing, pruning, or bounding process. While ef-
fective heuristics such as maximum clique detection, can incur higher computational overhead, balancing
effectiveness and efficiency. Furthermore, the performance of these heuristics is highly dependent on dataset
characteristics, which typically do not generalize well across different datasets without manual tuning. In
contrast, GTDGSL methods provide adaptive solutions without requiring extensive manual heuristics. They
learn optimization strategies from data and can generalize across datasets, potentially discovering more ef-
ficient strategies than manually designed heuristics. However, this comes at the risk of overfitting to the
training distribution, hurting robustness on unseen graphs.

Intermediate Result Reusability. Conventional algorithms generally compute results on demand, mean-
ing that intermediate results from one query graph cannot be reused for another. This results in redundant
computations when handling similar queries. GTDGSL models, however, can reuse learned representations
for computed queries, reducing redundant computation.

Training and Inference Time. Conventional algorithms require no training but often incur high inference
costs, especially on large graphs. GTDGSL models, in contrast, require substantial upfront training, but
offer fast inference once trained. This makes GTDGSL advantageous for scenarios that require large amounts
of similarity computations, where amortizing training costs over many queries is feasible.

2.4 GTDGSL vs. Deep Graph Similarity Learning (DGSL)

GTDGSL focuses on pairwise graph similarity, primarily based on graph structure, node/edge features, and
graph theory constraints. This makes GTDGSL methods sensitive to small differences between graphs,
ensuring that the results align with the properties of the targeted concept. In contrast, DGSL methods learn
graph similarity in a task-driven manner, focusing on category-level similarity. The goal is to determine
whether graphs belong to the same category by identifying distinguishing features across different categories.
These distinct goals lead to different model designs. Next, we discuss their differences from two perspectives:
model architecture and training sample generation methods. We summarize these differences and effective
design choices in Table 2.
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Model Architecture. We analyze the differences between GTDGSL and DGSL in model architecture
from three aspects:

• Model Input. GTDGSL focuses on computing the relative similarity between graph pairs, which can
be viewed as finding a optimal (partial) mapping between graphs. In contrast, DGSL focuses on
the properties of individual graphs. This distinction leads to differences in model input formats.
GTDGSL typically takes two graphs as input, whereas DGSL processes graphs individually. To
enhance effectiveness, some GTDGSL methods augment the initial node or graph features with
pair-dependent heuristics to provide task-specific node compatibility information.

• Graph Interactions. GTDGSL often requires cross-graph interactions to capture similarity between
graph pairs. It employs node/graph comparisons or cross-graph node/graph fusions to incorporate
contextual information from another graph, aiding in the alignment of structural and feature infor-
mation. The choice of interaction method involves trade-offs in terms of efficiency, effectiveness, and
indexability. In contrast, DGSL processes a single graph without direct interaction with others.

• Model Output. The output of GTDGSL is a pair-dependent similarity score. In contrast, DGSL
produces a likelihood for each possible label for a given graph.

Training Sample Generation Method. We discuss the differences between GTDGSL and DGSL in this
perspective from the following aspects:

• Training Data. The training data for GTDGSL can be sourced from graphs or sampled graphs across
various domains, as GTDGSL is intended to be domain-agnostic. Graph samples for GTDGSL are
typically generated through methods like BFS, DFS, or random walk-based traversals. For training
graph pairs, similarity is often computed using conventional algorithms. In contrast, DGSL selects
datasets based on the specific task, requiring only coarse-grained node/graph category information.
This category information is typically labeled based on human-defined rules and post-hoc facts,
which may change depending on the dataset or task.

• Data Augmentation. Since exact similarity computation in GTDGSL is often challenging, ground-
truth supervision may be unavailable in some cases. In such instances, graph pairs or triplets
(especially for subgraph isomorphism prediction) can be effectively generated by applying pertur-
bations (e.g., node/edge additions, deletions, relabeling) to graphs. In contrast, for DGSL, since
similarity measures in such tasks are typically unknown, generating reliable training data remains
challenging. When data is scarce, techniques such as Masked Autoencoders and adversarial learning
can be employed to generate additional samples. These methods simulate category distributions to
generate in-distribution data, enhance data diversity.

3 Design Space of GTDGSL Methods

3.1 Overview

In this survey, we explore the design space of GTDGSL methods alongside the training pipeline, enabling
alignment between model inputs and outputs and offering a clearer understanding of their operational flow.
Given an input graph pair, GTDGSL methods typically employ deep learning techniques, such as graph
neural networks, to extract neighborhood information for each node. This step is crucial, as it provides the
basic information required for subsequent similarity computations between graph pairs. Since similarity is
inherently a pairwise relationship, incorporating interactions between graphs within each pair is a natural
approach to computing similarity scores, whether at a fine-grained or/and coarse-grained level. Building on
this, the training pipeline for GTDGSL methods typically encompasses several key steps: input preparation,
preprocessing, node encoding, fine-grained level scoring, graph feature generation, coarse-grained level scor-
ing, and defining training objectives and supervision signals, as illustrated in Figure 2. Each of these steps
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GTDGSL DGSL Effective Design Choices

Focus Pairwise graph sim-
ilarity

Category-level sim-
ilarity

GTDGSL requires sensitivity to small struc-
tural and feature differences, while DGSL fo-
cuses on identifying features that distinguish
graphs from different categories

Model Input Two graphs Single graph GTDGSL incorporates pair-dependent fea-
tures to enhance initial node/graph represen-
tations, while DGSL processes graphs inde-
pendently

Graph Inter-
actions

Cross-graph inter-
actions

No direct inter-
action between
graphs

GTDGSL applies node/graph comparisons
or cross-graph fusion, balancing efficiency, ef-
fectiveness, and indexability. DGSL focuses
on extracting per-graph representations

Model Out-
put

Pair-dependent
similarity score

Likelihood for each
possible label

GTDGSL enables fine-grained similarity
scoring for ranking/matching, whereas
DGSL provides classification probabilities

Training
Data

Graph pairs from
diverse domains

Task-specific
datasets

GTDGSL computes ground truth using con-
ventional algorithms, while DGSL datasets
are labeled based on human-defined rules or
post-hoc facts

Data Aug-
mentation

Perturbation-based
sampling

In-distribution
data generation

GTDGSL requires carefully curated syn-
thetic data to reflect specific similarity prop-
erties, while DGSL relies on data augmenta-
tion or adversarial methods to simulate cat-
egory distributions

Table 2: Summary and Comparison between GTDGSL and DGSL

offers opportunities for divergence in model design, contributing to the expansive and diverse design space
of GTDGSL methods.

In the following sections, we closely examine each step of the training pipeline shared by many GTDGSL
models. We discuss common practices at each step and highlight specific optimizations introduced by
various models. Additionally, at the end of each step, we highlight the key techniques and summarize their
advantages and disadvantages. This structure not only highlights the evolution of GTDGSL methods but
also establishes a unified framework for comparison, enabling a more systematic evaluation of their design
choices and identifying key trends in the field. The categorization alongside the training pipeline, including
their targeted problems and model outcomes, is summarized in Table 4.

3.2 Input Preparation

Common Practice. GTDGSL methods generally take the entire original graph pair as input and treat
similarity computation as a regression/classification task. By circumventing the combinatorial search process,
they enable end-to-end similarity computation, expediting the process significantly. These models aim to
directly predict similarity scores for each graph pair, making them particularly advantageous in scenarios
involving a large number of graphs, where fast inference and approximate similarity scores are prioritized
over detailed node mappings.

Operate in Learn-to-search Scenarios. Certain methods treat the regression/classification task as
a subcomponent, using pretrained models to evaluate partial solutions and guide the search process of
conventional algorithms (Yang & Zou, 2021; Bai et al., 2021; He et al., 2022). These models process subgraphs
from the original graph pair to estimate costs or scores for unprocessed parts. While subgraph inputs
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Graph Theory-based Deep Graph Similarity Learning

Preprocessing

Initializing Features

Incorporating Task-
related Features

Addressing the
Limitations of GNNs

Node Encoding
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Common Practice
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Figure 2: The visualization illustrates the organization of the survey and the training pipeline of GTDGSL
methods. In the training pipeline, solid blocks or arrows represent indispensable steps or operations, while
dashed ones indicate optional steps. For purple, green, or blue dashed arrows, one option must be selected
based on their corresponding color.

introduce variations in the inference framework, the training pipeline remains unchanged, as the pretrained
models are designed to assess similarities for both processed (i.e., subgraphs within partial solutions) and
unprocessed graph parts. This survey focuses on their evaluation models, with their training objectives and
supervision signals detailed in Section 3.8. For more information on the overall frameworks of learn-to-
search-oriented methods, we refer readers to Yang et al. (2024).

In the following, we intentionally distinguish between the terms substructure and subgraph to avoid ambiguity.
The former term refers to local structures within the input graphs, while the latter represents instances in
learn-to-search scenarios where the input graphs are derived subgraphs from original graph pairs. We refer
to both the original graph pair and the subgraphs derived from them as input graphs for simplicity.

Methods Basic Idea Accuracy Time Efficiency Use Cases

Common Practice End-to-end classi-
fication/regression

High accuracy,
but depends on
exact training
targets

Fast inference;
indexable

Graph retrieval
tasks not requiring
exact mappings

Operate in
Learn-to-search
Scenarios

Predict search
order or the
potential of
partial solutions,
guiding
conventional
algorithms

Lead to exact
mappings, but
may miss valid
mappings;
training targets
may be difficult to
learn

Slower due to
sequential search
with conventional
algorithms

Tasks where a
valid mapping
suffices, not full
enumeration, e.g.,
graph matching

Table 3: Summary and Comparison Between Input Preparation Methods.
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Table 4: Categorization of methods alongside the training pipeline.
Methods Targeted Problem Input Graphs Scoring Level Model Outcomes

SI MCS GED Original Graphs Subgraphs Fine-grained Coarse-grained Similarity Mapping

SimGNN (Bai et al., 2019) ✓ ✓ ✓ ✓ ✓
GMN-emb (Li et al., 2019) ✓ ✓ ✓ ✓
GMN-match (Li et al., 2019) ✓ ✓ ✓ ✓ ✓
NeuroMatch (Ying et al., 2020) ✓ ✓ ✓ ✓
GraphSim (Bai et al., 2020) ✓ ✓ ✓ ✓
Noah (Yang & Zou, 2021) ✓ ✓ ✓ ✓ ✓
GOTSim (Doan et al., 2021) ✓ ✓ ✓ ✓ ✓
TAGSim (Bai & Zhao, 2021) ✓ ✓ ✓ ✓
GENNA* (Wang et al., 2021) ✓ ✓ ✓ ✓ ✓
GLSearch (Bai et al., 2021) ✓ ✓ ✓ ✓
H2MN (Zhang et al., 2021) ✓ ✓ ✓ ✓
EGSC (Qin et al., 2021) ✓ ✓ ✓ ✓
IsoNet (Roy et al., 2022b) ✓ ✓ ✓ ✓
RLQVO (Wang et al., 2022) ✓ ✓ ✓ ✓
Eric (Zhuo & Tan, 2022) ✓ ✓ ✓ ✓ ✓
MCSNet (Roy et al., 2022a) ✓ ✓ ✓ ✓
Prune4Sed (Liu et al., 2022) ✓ ✓ ✓ ✓
FAST (He et al., 2022) ✓ ✓ ✓ ✓ ✓
Greed (Ranjan et al., 2022) ✓ ✓ ✓ ✓
D2Match (Liu et al., 2023b) ✓ ✓ ✓ ✓ ✓
GEDGNN (Piao et al., 2023) ✓ ✓ ✓ ✓ ✓
MATA* (Liu et al., 2023a) ✓ ✓ ✓ ✓ ✓
GED-CDA (Jia et al., 2023) ✓ ✓ ✓ ✓ ✓
AEDNet (Lan et al., 2023) ✓ ✓ ✓ ✓

3.3 Preprocessing

In existing GTDGSL methods, the primary goal of the preprocessing step is to incorporate the necessary
information for the subsequent node encoding step. This involves initializing features, incorporating task-
related features, and addressing the limitations of GNN.

Initializing Features. Before feeding input graphs into GNNs, existing GTDGSL methods generally
initialize node features with either node labels (Bai et al., 2019; Li et al., 2019; Ying et al., 2020; Yang &
Zou, 2021; Doan et al., 2021; Wang et al., 2021; Qin et al., 2021; Zhuo & Tan, 2022; Liu et al., 2022; He
et al., 2022; Ranjan et al., 2022; Liu et al., 2023b; Piao et al., 2023) or node degree information (Wang
et al., 2021; Liu et al., 2023b;a). Similarly, edge features can be initialized with edge labels (Li et al., 2019).
Notably, IsoNet (Roy et al., 2022b) and MCSNet (Roy et al., 2022a), which specifically tackle feature-agnostic
subgraph matching and MCS problems, initialize all node features to an identical value, ignoring the original
attributes of the nodes.

Incorporating Task-related Features. Following conventional algorithms, some GTDGSL models incor-
porate task-specific knowledge through heuristics as additional node features to enhance the understanding
of the problem. One notable approach is RL-QVO (Wang et al., 2022), which is designed to optimize the
search order for conventional subgraph matching algorithms. RL-QVO incorporates scaled node degrees,
integer labels, and query node IDs to initialize query node features, facilitating the differentiation of the
input node order for the graph neural network. Furthermore, it also introduces two precomputed heuris-
tics: (1) the frequency of vertices in the data graph D with a higher degree than the query vertex u, and
(2) the frequency of vertices in D sharing the same label as u. These heuristics provide an estimation of
the matching difficulty for each node in the query graph, helping to anticipate the potential solution space
that will emerge as the matching progresses. Similarly, GLSearch (Bai et al., 2021), which operates under a
branch-and-bound search framework to address the Maximum Common Subgraph (MCS) problem, leverages
heuristics such as local degree profiles.
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Addressing the Limitations of GNNs. GNNs are effective at generating graph representations, making
them powerful tools for a range of graph-based tasks. However, they face limitations when dealing with
complex graph structures.

• Limited Expressiveness: GNNs based on the message-passing mechanism focus on the local structures
of nodes, producing similar representations for nodes with identical local structures. Consequently,
GNNs struggle to distinguish between nodes, such as in cycle or regular graphs, where each node has
the same local structure. To address this limitation, D2Match (Liu et al., 2023b) tackles the subgraph
matching problem by transforming it into a subtree matching problem. It enhances performance
by replacing chordless cycles shorter than length l in graph pairs with supernodes, thereby avoiding
ambiguities in these structures. To increase GNN expressiveness on regular graphs, NeuroMatch
(Ying et al., 2020) builds on the concept introduced in (You et al., 2021). It incorporates identity
information indicating whether a node is an anchor node into the features of each node-anchored
subgraph, making them identity-aware and better equipped to distinguish nodes.

• Loss of Overall Structure: GNNs generally treat graphs as unordered sets of nodes to ensure per-
mutation invariance, but this approach can overlook global structural information, which is crucial
for targeted problems. To capture such information, MATA* (Liu et al., 2023a) perturbs graphs by
randomly adding or removing edges, calculating random-walk probabilities for each node in both the
original and perturbed graphs, and using these probabilities as relative position encodings. GED-
CDA (Jia et al., 2023) generates spectral encodings by calculating the eigenvalues and eigenvectors,
which embed the global structural properties of the graph. H2MN (Zhang et al., 2021) proposes
transforming input graphs into hypergraphs to capture richer substructure information, where each
hyperedge can connect multiple nodes. Specifically, H2MN performs random-walk or k-hop sub-
graph extractions around designated center nodes, viewing each extracted subgraph as a hyperedge
that connects all nodes within that subgraph.

• Lack of Scalability: Operating GNNs on large-scale graphs requires substantial memory to store the
entire adjacency matrix and node embeddings, and the burden increases with graph size and model
depth. To mitigate this issue, NeuroMatch and Greed (Ranjan et al., 2022) partition large input
graphs into smaller, overlapping, node-anchored substructures. By breaking down the SI problem
into smaller subproblems, each substructure can be processed independently, enabling scalable par-
allel computations and reducing the memory and resource load. This partitioning approach helps
GNNs handle large graphs more efficiently, as the localized subgraphs preserve important structural
details while reducing computational demands.

3.4 Node Encoding

Given the input graph pairs and their features, the node encoding step involves extracting the neighboring
information for each node using deep learning techniques such as GNNs.

Common Practice. Popular GNNs such as Graph Convolutional Network (GCN) (Bai et al., 2019; 2020;
Doan et al., 2021), Graph Isomorphism Network (GIN) (Ying et al., 2020; Zhuo & Tan, 2022; Yang & Zou,
2021), Graph Attention Network (Bai et al., 2021; Liu et al., 2022; Ye et al., 2024) are commonly applied
as the backbone of models. The choice of backbone in GNNs depends on how each method considers the
contributions of neighboring nodes to the central nodes’ representation. GCN assumes that a node’s influence
on its neighbors should be weighted by their degrees. It aggregates and normalizes neighborhood information
using the degrees of both the central node and its neighbors, updating the central node’s representation by
averaging the normalized features. In contrast, GAT dynamically adjusts the contributions of neighboring
nodes, assigning weights based on the similarity between the central node and its neighbors. GIN treats
all neighboring nodes equally, considering them as elements of a multiset and summing their information
to update the central node’s representation. Another well-known GNN model, GraphSAGE, employs a
sampling-based approach to aggregate information from neighbors. While this method enhances scalability,
GraphSAGE is less frequently used as a backbone in GTDGSL methods. Additionally, the choice of backbone

14



Published in Transactions on Machine Learning Research (05/2025)

Methods Basic Idea Accuracy Time Efficiency Use Cases

Initializing
Features

Use labels,
degrees, or
uniform values to
initialize
node/edge
features

Informative in
general

Fast; indexable Suitable for
indexing-based
applications

Incorporating
Task-related
Features

Compute features
via heuristics used
in classical
algorithms

Task-aware;
pair-sensitive

Slower;
pair-dependent

On-the-fly search
that requires
task-specific
constraints

Addressing the
Limitations of
GNNs

Add identity,
structural
encodings, or
preprocessing to
mitigate
limitations of
GNNs

Improves the
expressiveness of
initial features or
scalability

Time-consuming;
indexable

Boost indexing
performance

Table 5: Summary and Comparison Between Preprocessing Methods.

also depends on the data source; for instance, GENN-A* (Wang et al., 2021) utilizes SplineCNN (Fey et al.,
2018) for graphs derived from 2D images. To address the potential over-smoothing issue in GNNs—where,
as the depth of aggregation increases, all nodes within a graph can share a similar receptive field, thus
their node representations become indistinguishable—methods, NeuroMatch (Ying et al., 2020) and Greed
(Ranjan et al., 2022) introduce skip layers, which allow information from earlier layers to be directly passed
to later layers and concatenate the outputs from different layers as output, to mitigate this effect.

Formulation-related Considerations. The choice of backbones is also related to problem formulation.
To mimic the edit operations such as node/edge substitution, insertion, and deletion. TaGSim (Bai & Zhao,
2021) proposes generating type-aware graph embedding. To this end, it solely leverages the message-passing
mechanism of GNN to aggregate k-hop node/edge-label multiset. Since H2MN (Zhang et al., 2021) trans-
forms input graphs into hypergraphs, it encodes them with Hypergraph Convolutional Networks (HGCN),
which aggregate information based on the incidence matrix of hypergraphs to generate node representations.
It further devises a hyperedge pooling operation according to the Personalized PageRank (PPR) values to
keep the top-ranked hyperedges based on their importance. To consider edge features, GMN (Li et al.,
2019) follows the practice in Li et al. (2015) and proposes concatenating the edge information and the node
information at the ends of the edge to update the nodes, which can be expressed as follows.

mji = MLP(xl
i, xl

j , eij)

xl+1
i = RNN(xl

i,
∑

j∈N (i)

mji)

Where MLP is a Multilayer Perceptron, and RNN is a recurrent neural network, and it can be replaced by
its variants such as GRU and LSTM. Such a backbone is further adopted in (Roy et al., 2022b;a).

3.5 Fine-grained Level Scoring

The graph similarity of input graphs can be evaluated at fine- or coarse-grained levels. Coarse-grained scoring
assesses similarity by comparing embeddings representing entire input graphs, which will be discussed later.
In contrast, fine-grained scoring focuses on capturing detailed structural similarities and differences at the
level of nodes, edges, or substructures, and can be performed either during or after the node encoding step,
with the resulting scores either supplementing or replacing the coarse-grained similarity score.
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Methods Basic Idea Accuracy Time Efficiency Use Cases

Common Practice Use popular
GNNs like GIN to
extract node
embeddings

Effective,
particularly for
GIN and GCN

Fast Suitable for tasks
without complex
graph structures

Formulation-
related
Considerations

Select backbone
based on
problem-specific
formulations, such
as edit operations
for GED or
hyperedge/edge
information

Better
performance
under specific
problem setups

Slower, with
added
computational
cost

Handling graphs
with specific
structural
properties or
problems with
specific
formulation

Table 6: Summary and Comparison Between Node Encoding Methods.

Since graph structures can differ widely in node and edge counts, these methods need to handle structural
irregularities. To address this and leverage GPU efficiency, they often pad the smaller graph in each pair
with dummy elements. This padding ensures both graphs are represented as tensors of equal size, enabling
streamlined batch processing on GPUs. The dummy elements, set to neutral values like zeros, are designed
to avoid influencing similarity calculations.

Based on how they use produced scores, fine-grained scoring methods can be further categorized as follows:

• Basic Comparisons: These approaches rely on direct comparisons to capture the overall similarity
distribution. This distribution can supplement or replace graph-level representations to predict
similarity scores, as demonstrated in SimGNN (Bai et al., 2019) and GraphSim (Bai et al., 2020).

• Explicit Alignment: These methods establish one-to-one correspondences between nodes or edges
across graphs and calculate similarity based on these mappings to minimize the overall transport
cost, as exemplified by GOTSim (Doan et al., 2021).

In the following sections, we examine the fine-grained scoring techniques, highlighting their commonalities
and differences to reveal emerging trends in the field.

3.5.1 Basic Comparison-based Models

The most representative basic comparison-based models are SimGNN (Bai et al., 2019) and GraphSim (Bai
et al., 2020). Both models compare cross-graph node pairs after all or one step of node encoding and then
use the pairwise inner product as similarity scores between node pairs as follows sim(X1, X2) = σ(X1X⊤

2 ).
To address the absence of a natural ordering among nodes within graphs, SimGNN computes a permutation-
invariant but non-differentiable histogram of pairwise similarity scores, represented as hist(s) ∈ RB , where
B is the number of bins. This histogram serves as a supplementary feature for graph-level scores, offering
insights into the scale and overall similarity distribution of the graphs. In contrast, GraphSim permutes the
similarity matrix using a breadth-first search (BFS) node-ordering scheme, ensuring that nearby nodes are
placed close together to capture their connections. Additionally, GraphSim treats the similarity matrices
from each layer as images and employs convolutional neural networks (CNNs) to extract information from
each matrix, capturing the local similarity distribution among graph pairs.

Unlike the two methods mentioned above, which compare representations after one step of node encoding,
GMN-match (Li et al., 2019) scores local similarities during the node encoding process. It updates node rep-
resentations in one graph based on similarity-weighted influences from nodes in the other graph. Specifically,
GMN-match alternates between updating node representations within one graph and incorporating informa-
tion from its counterpart. For a node i in G1, the model first updates its representation based on G1’s local
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Methods Basic Idea Accuracy Time Efficiency Use Cases

Basic
Comparisons

ompute pairwise
cross-graph node
similarity and
enhance
performance with
similarity
distribution
information

High in context
prediction
accuracy

Fast; highly
indexable

In-context fast
retrieval; may
have poor
generalization
ability

Explicit
Alignment

Establish implicit
or explicit
mapping between
graphs based on
node similarity

High in context
prediction
accuracy;
improved
generalization
ability

Much slower;
computationally
intensive;
indexable
node-level
representations

Tasks requiring
interpretablity

Table 7: Summary and Comparison Between Fine-grained Level Scoring Methods.

structure using the adjacency matrix AG1 . It then calculates the similarity between node i and all nodes i′ in
G2. These similarities are used to compute attention weights αii′ , which indicate the influence of each node
in G2 on the updated representation of node i. The final representation of node i is obtained by subtracting
the weighted sum of representations from nodes in G2, thereby integrating cross-graph information into node
i’s feature vector. This process is formally expressed as follows.

αii′ =
exp

(
sim(xl

i, xl
i′)
)∑

i′∈G2
exp

(
sim(xl

i, xl
i′)
)

xl+1
i = xl

i −
∑

i′∈G2

αii′xl
i′ (1)

This approach allows the fusion of cross-graph node representation, combines both cross-graph node similarity
and local graph structure, and has significantly influenced subsequent methods.

H2MN (Zhang et al., 2021) extends the practice in Equation 1 to hypergraphs. Specifically, for each hyperedge
ei in a graph, it first measures its cosine similarity score with all hyperedges ei′ in the other graph to compute
cross-graph attention coefficients αi,i′ then aggregates the relevant information in the other graph based on
such coefficients to compute contextual hyperedge representations. Furthermore, it compares the original
hyperedge representation ei with its contextual one ẽi as follows mi = cosine(ei ⊙ W, ẽi ⊙ W), to compute
matching vectors, which further serves as inputs for the next layers. It then concatenates the readout outputs
of each graph from each layer to form the final matching representations and then predicts scores with an
MLP. Prune4Sed (Liu et al., 2022) learns representations of the data graph conditioned on the query graph,
generating data node embeddings that capture their potential relevance to the query. The model iteratively
calculates a keep probability for each data node, pruning nodes based on these probabilities. After pruning,
it computes the distance between the pruned data graph and the query graph to estimate the subgraph edit
distance (SED).

Although node-, edge-, and substructure-level interactions capture fine-grained similarity between graph
pairs, they have at least quadratic complexity. Eric (Zhuo & Tan, 2022) introduces an Alignment Regular-
ization (AReg), similar to (Hassani & Khasahmadi, 2020), to reduce this complexity and avoid the need for
explicit node-to-node matching. During training, AReg implicitly aligns nodes by maximizing the mutual
information between node representations and the graph representations of both their own and another graph
in an unsupervised manner. During inference, the learned graph-level representations are directly used to
compute similarity scores, bypassing AReg to reduce the inference time.
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Methods Basic Idea Accuracy Time Efficiency Use Cases

SimGNN Generate node
similarity
histogram features
to supplement
graph-level scores

Proven effective
for SI, MCS, and
GED tasks

Fast fine-grained
scoring; node-level
indexable

General
GTDGSL-based
retrieval

GraphSim Reorders
similarity matrices
via BFS traversal
and processes
them as images
using CNNs

Highly accurate in
GED prediction,
but convergence
may be unstable
and sensitive to
parameter
initialization

Slower; node-level
indexable

GED-based
retrieval

GMN-match Fuses cross-graph
node
representations
iteratively based
on similarity and
local structure

Highly accurate in
SI, MCS and
GED predictions

Slow; node-level
indexable

General
GTDGSL-based
retrieval

H2MN Extends
GMN-match to
fuse hyperedge
representations

Proven to be
highly accurate in
GED prediction

Slow; complexity
scales with
hyperedges;
node-level
indexable

GED-based
retrieval

Prune4Sed Prune irrelevant
data nodes based
on the query
graph

Accurate for SI
prediction

Slow; node-level
indexable

SI-based retrieval

Eric Imposes
node-graph
alignment
constraints during
training and
detaches them at
inference

Highly accurate
for SI, MCS, and
GED; training
may suffer from
gradient explosion
and require
careful tuning

Slow training; fast
inference;
indexable

General
GTDGSL-based
retrieval

Table 8: Summary and Comparison Between Basic Comparison-based Methods.
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3.5.2 Explicit Alignment-based Methods

To improve the interpretability of the similarity computation process, GOTSim (Doan et al., 2021) first for-
mulates GED computation as a graph optimal transport problem whose goal is to minimize the transport cost
from one graph to another. To do so, it first proposes to explicitly establish the node correspondences between
graph pairs with a linear assignment solver. Considering the characteristics of GED computation, it further
proposes augmenting the cost matrix to reflect the costs of the node-deletion and the node-insertion oper-
ations, which accordingly increase the complexity of pair-wise node comparison to O(max(|VG1 |, |VG2 |)2.5).
The final graph similarity score is determined by the minimum transport cost.

IsoNet (Roy et al., 2022b) further proposes to align edges within two graphs to predict SI. Different from
GED computation, SI is a partial order relationship (Ying et al., 2020), thus an edge e in a query graph
matches another edge e′ in a data graph, meaning the subgraph induced by e is contained by the counterpart
of e′. To reflect such containment constraint, the distance of two edge representations is computed as
D(eij , ei′j′) = max(0, eij − ei′j′), following (Ying et al., 2020). It further applied the Gumbel Sinkhorn
Network to solve the optimal assignment problem, which entailed a complexity of O(k · max(|VG1 |, |VG2 |)2).

Extending the practice in IsoNet, MCSNet (Roy et al., 2022a) further proposes late and early interaction
variants to tackle the MCS computation problem. Using the Gumbel Sinkhorn Network, the former first
computes the node embeddings of graph pairs, the latter aligns nodes during the node embedding computa-
tion step following GMN-match (Li et al., 2019). It further proposes a gossip protocol to iteratively find the
largest connected component in a graph. To generate edit paths, GEDGNN (Piao et al., 2023) and MATA*
(Liu et al., 2023a) adopt a similar strategy, they both propose to train a model that computes the edit paths
and GED value. To this end, GEDGNN computes a matching matrix and a cost matrix of node pairs and
then predicts GED based on the results of two matrices. Similarly, MATA* proposes to generate a similarity
matrix of node pairs but predicts the GED based on the representations of graph pairs. Furthermore, given
the k-best matching of the matching matrix, They both propose to compute the edit paths using conventional
GED algorithms.

Orient toward SI, AEDNet (Lan et al., 2023) addresses subgraph matching by adaptively removing un-
necessary edges from the data graph to better align it with the query. It follows cross-graph node repre-
sentation fusion mechanism of GMN-match in Equation 1, and adapt it for SI, proposed a unidirectional
cross-propagation mechanism, which transfers information from data to query nodes to align representations
and approximate the ground truth matching matrix. Additionally, the model introduces a sample-wise adap-
tive mechanism that generates a query-specific vector, assigning minimal or zero weights to irrelevant edges.
Finally, AEDNet predicts and supervises the likelihood of each node and edge in the data graph matching
the query. D2Match (Liu et al., 2023b) computes an indicator matrix for graph pairs, where each entry
reflects whether the subtrees rooted at nodes from the query and target graphs are subgraph isomorphic,
determining SI by finding a perfect matching on a bipartite graph composed of query-data nodes.

3.6 Graph Feature Generation

In this step, GTDGSL methods summarize the graph representation of graph pairs using node representa-
tions, preparing for the coarse-grained level scoring. This step is not necessary for methods that solely rely
on fine-grained scores.

Common Practice. Existing GTDGSL methods typically generate graph-level representations using pool-
ing techniques such as Sum (Ying et al., 2020; Bai & Zhao, 2021; Zhuo & Tan, 2022; He et al., 2022; Ranjan
et al., 2022) and Max (Bai et al., 2021) pooling. Sum pooling aggregates node embeddings by performing an
element-wise summation, while Max pooling selects the maximum value for each dimension across all node
embeddings. These methods operate under the assumption that all nodes within the graph contribute equally
to the final graph representation, without assigning different levels of importance or weights to individual
nodes.

Weighting Node Representations. Certain methods suggest that nodes can contribute differently to the
graph representation. To consider this aspect, some methods proposed weighting node representations based
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Methods Basic Idea Accuracy Time Efficiency Use Cases

GOTSim Augments node
distance matrices
to consider
node-related edit
operations, then
establishes
mappings using a
linear assignment
solver

Proven to be
effective in both
GED and MCS
predictions

Extremely slow
due to
non-parallelizable
solver; node-level
indexable

GED/MCS-based
retrieval on small
graphs requiring
interpretability

IsoNet Computes edge
distance based on
a subgraph
containment
constraint and
establishes edge
mapping with the
Gumbel Sinkhorn
Network

Proven to be
effective in SI
prediction on
small-sized graphs

High training and
inference cost;
node-level
indexable

SI-based retrieval
on small graphs
requiring
interpretability

MCSNet Extends IsoNet
with early/late
interaction
variants and
enforces MCS
constraints via
gossip protocol

Proven to be
effective in MCS
prediction

Computationally
intensive;
node-level
indexable

MCS-based
retrieval on small
graphs requiring
interpretability

GEDGNN Learns soft and
hard match
matrices;
supervises hard
match using
ground-truth
mappings

Proven to be
effective in GED
prediction

High cost in
training and
inference;
node-level
indexable

Supports
GED-based
retrieval for small
graphs requiring
interpretability;
guides
conventional
solvers

MATA* Uses the top k
candidates of the
Gumbel Sinkhorn
Network
optimized
mapping

Proven to be
effective in GED
prediction

Slow in both
training and
inference;
node-level
indexable

Supports
GED-based
retrieval on small
graphs requiring
interpretability;
guides
conventional
solvers

AEDNet Prunes redundant
edges in data
graph to align
with query graph

Proven to be
effective in SI
prediction

Computationally
demanding;
node-level
indexable

Supports SI-base
retrieval on small
graph requiring
interpretability

D2Match Converts the
subgraph
matching into
bipartite perfect
matching problem

Proven to be
effective in SI
prediction

High
computational
cost; node-level
indexable

SI-based retrieval
tasks requires
interpretability

Table 9: Summary and Comparison Between Explicit Alignment-based Methods.
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on the node distribution of the own graph (Bai et al., 2019; Li et al., 2019). To consider the contribution of
each node within a graph, SimGNN (Bai et al., 2019) proposed an attentional graph representation generation
based on a global context, i.e., the average of weighted node embeddings, which can be written as follows.

c = tanh( 1
|V|

W
|V|∑
i=1

xi)

Where W ∈ Rd×d is a learnable weight matrix, tanh(·) is a non-linear function. Then, it considers the inner
product between each node and the global context c to ensure greater attention for nodes similar to c, which
can be written as follows.

G =
|V|∑
i=1

σ(x⊤
i c)

This practice captures the compactness of node representations within graphs and focuses on nodes that are
more similar to the global context. This approach is further followed by Wang et al. (2021); Zhang et al.
(2021); Qin et al. (2021); Jia et al. (2023).

Similarly, GMN-emb (Li et al., 2019), the graph embedding variant of GMN-match, computes the graph
representation with a gate-weighted sum of node representation:

G = MLP
(∑

i∈G

σ(MLPgate(xk
i )) ⊙ MLP(xk

i )
)

To handle potentially unconnected graphs, Noah (Yang & Zou, 2021) introduces a hypernode that connects
all nodes for each subgraph and generates graph-level embedding through a weighted sum of node-level em-
beddings based on the embedding of this hypernode as follows, considering the similarity between individual
node with the hypernode.

G =
∑

i∈VG

σ(sim(x⊤
i , xhyper)) · xi

Methods Basic Idea Accuracy Time Efficiency Use Cases

Common Practice Treats all nodes
equally using
standard pooling
operations (e.g.,
Sum, Max) to
obtain graph
representations

Robust and
effective in general
cases

Fast; indexable Supports fast
retrieval

Weighting Node
Representations

Assigns learned
importance
weights to nodes
when generating
graph
representations

Can outperform
standard pooling;
may require
careful tuning

Slightly slower;
indexable

Supports fast
retrieval

Table 10: Summary and Comparison Between Graph Feature Generation Methods.

3.7 Coarse-grained Level Scoring

In this step, GTDGSL methods compute similarity scores by comparing representations of graph pairs. In
GED and MCS computations, the scores are often calculated using either the Euclidean distance between
graph-level representations (Li et al., 2019) or fully connected predictors (Bai et al., 2019; Zhang et al.,
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2021). Another widely used approach for scoring is the Neural Tensor Network (NTN) (Socher et al., 2013),
applied in methods such as (Bai et al., 2019; Wang et al., 2021; Zhuo & Tan, 2022; Bai & Zhao, 2021; Yang
& Zou, 2021; Jia et al., 2023). The NTN leverages a bilinear tensor layer to model complex interactions
between graph embeddings, producing similarity scores that capture the joint influence of each embedding in
the pair. Mathematically, the NTN takes two input vectors e1 and e2 and models their relationship through
a bilinear tensor product:

sim(G1, G2) = GT
1 W[G2] + V (G1 ⊕ G2) + b

Here, W is a tensor that captures the pairwise interactions in different spaces, while V and b capture linear
combinations and biases. Most approaches use NTN to directly compute the similarity scores of graph pairs.
In contrast, TaGSim (Bai & Zhao, 2021) considers the impact of different operations on graph structures,
generating operation-specific graph representations based on node or edge representations from multiple
layers. It then predicts the cost of each operation type using NTN. Supplementing this, SimGNN combines
these scores with histogram features derived from pairwise node comparisons, while Eric (Zhuo & Tan, 2022)
introduces a multi-scale GED discriminator that leverages NTN for interaction scoring and integrates it with
the Euclidean distance between graph representations at each layer to predict.

EGSC (Qin et al., 2021) devises an attentional embedding fusion process at each layer to capture joint
embeddings.

hij = CONCAT(hi, hj)
h∗

ij = MLP(σ(WU ReLU(WDhij)) · hij + hij)

The joint embeddings h∗
ij from each layer are then concatenated across layers and passed through an MLP,

producing a single fused embedding to predict. To enable offline storage, EGSC introduces a method to
decompose the joint embeddings into individual embeddings. This is achieved by training a student model.
Specifically, the teacher model first generates self-embeddings by having each graph interact with itself, then
computes pseudo-individual embeddings by subtracting these self-embeddings from the joint embeddings.
The student model is trained to approximate these pseudo-individual embeddings, learning to efficiently
replicate the decomposed embeddings for storage.

Unlike GED and MCS, the binary SI relationship is challenging to represent with Euclidean distance due to
potential size differences between query and data graphs. To solve this issue, NeuroMatch (Ying et al., 2020)
models this relationship as a partial order, predicting whether a query graph is contained by a data graph
within the embedding space. This model introduces an order embedding constraint (Vendrov et al., 2016),
which enforces that each dimension of the query graph’s representation does not exceed the corresponding
dimension in the supergraph. Violations of this dimensional ordering indicate a partial violation of the
containment constraint. Greed (Ranjan et al., 2022) further extends this approach to predict both subgraph
edit distance (SED). The extent of constraint violation can be computed as follows.

dist(G1, G2) =
∑
i∈d

||max(0, G2 − G1)i|| (2)

Greed uses this score to approximate SED, while NeuroMatch feeds the violation score into a linear layer to
predict SI. D2Match employs an NTN to compute the graph-level similarity score and combines it with an
indicator matrix, which represents the subtree matching of nodes, to make predictions.

3.8 Training Objectives and Supervision Signals

Given the scores computed at fine-grained and/or coarse-grained levels, the training objective of GTDGSL
methods typically focuses on minimizing the divergence between predicted scores and ground-truth labels.
However, the way divergences are assessed and the choice of ground-truth labels, i.e., supervision signals,
can vary across models.

Methods for end-to-end GED and MCS predictions, such as SimGNN, and MCSNet (Bai et al., 2019; Roy
et al., 2022a), typically use Mean Squared Error (MSE) loss to quantify the error between predicted and
ground-truth values, which can be either normalized or unnormalized. EGSC (Qin et al., 2021) adopts
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Methods Basic Idea Accuracy Time Efficiency Use Cases

Euclidean distance Computes the
Euclidean distance
between graph
embeddings;
commonly used in
GED computation

Robust and
effective; provides
symmetric scores

Fast Supports tasks
like GED under
uniform cost
assumptions with
symmetric
similarity

Fully Connected
Layer

Uses a linear or
multi-layer
perceptron to
predict similarity
scores

Effective in
general, but
potentially
suboptimal for
specific tasks

Fast General GTDGSL
prediction tasks

Neural Tensor
Network

Applies bilinear
tensor
transformation to
model complex
relationships
between
embeddings

Proven to be
effective in GED
prediction;
computationally
expensive and
prone to
overfitting

Slightly slower Computes
contextual
similarity

EGSC Uses
attention-based
fusion of graph
pairs followed by
an MLP for final
scoring

Highly accurate in
GED prediction

Fast;
non-indexable
graph embedding

Computes
contextual
similarity

Subgraph
Containment
Constraints

Enforces
containment of
the query within
the data graph in
the embedding
space

Effective for SI
prediction

Fast Computes
asymmetric
similarity

Table 11: Summary and Comparison Between Coarse-grained Level Scoring Methods.
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a teacher-student pipeline for training its model on GED prediction: the teacher model minimizes GED
prediction errors using MSE loss, while the student model minimizes reconstruction loss with Huber loss on
pseudo-individual embeddings derived from the teacher model. To ensure the predicted similarity score falls
between 0 and 1, SimGNN normalizes the score predicted by the MLP layer using a sigmoid function. In
contrast, GOTSim scales the predicted distance by dividing it by the average node count of the graph pairs,
accounting for varying graph sizes.

TaGSim (Bai & Zhao, 2021) introduces a slightly different training objective by predicting Graph Edit
Vectors (GEV), where each entry corresponds to the cost of a specific graph edit operation. This objective
provides more detailed predictions of GED but requires more sophisticated supervision using the true cost
of each operation type. GEDGNN (Piao et al., 2023) supervises its model using MSE loss for the GED
prediction and Binary Cross-Entropy (BCE) loss for the matching matrix, requiring the supervision of the
ground-truth GED and matching matrix. Similarly, AEDNet (Lan et al., 2023), designed for SI, applies
contrastive loss on the matching matrix and adaptive edge deletion. The goal is to ensure the embeddings of
matched nodes are significantly more similar than unmatched nodes while simultaneously aligning the local
adjacency structures by removing non-relevant edges.

In contrast, methods like NeuroMatch (Ying et al., 2020), D2Match (Liu et al., 2023b), and Greed (Ranjan
et al., 2022), which address SI, make predictions based on the violation scores, which quantify the extent to
which the SI relationship is violated, as outlined in Equation 2. NeuroMatch uses BCE loss to supervise the
binary SI classification, along with the violation scores. It trains the model with positive examples (subgraphs
of the anchor graph) and negative examples (non-subgraphs), applying a max-margin loss to ensure a clear
separation between the violation scores of positive and negative pairs. D2Match, while also handling binary
classification, adopts a different strategy. It uses Mean Absolute Error (MAE) loss to supervise the indicator
matrix, enforcing the outputs to be either 0 (for non-matching) or 1 (for matching). Additionally, D2Match
employs MSE loss to train the graph-level similarity score. On the other hand, Greed computes lower and
upper bounds for SED using an approximate algorithm. The model is then trained based on these bounds
using the following loss function:

L = max(0, lb − dist)2 + max(0, dist − ub)2

Where lb is the lower bound, ub is the upper bound, dist is computed with Equation 2.

As discussed at the beginning of Section 3, approaches operating in learn-to-search scenarios propose inter-
acting with processed and unprocessed subgraphs to capture changes introduced by the sequential decision
process. Although they share a similar training pipeline with end-to-end methods, their supervision signals
can differ slightly. For instance, Noah (Yang & Zou, 2021) trains its evaluation model using MSE loss,
supervised by the distance between unprocessed subgraphs. GENNA* (Wang et al., 2021) supervises its
model with the cost of the optimal solution under MSE loss and then fine-tunes it to predict the similarity
between unprocessed graphs. GLSearch (Bai et al., 2021) uses GNNs as a DQN component to evaluate par-
tial solutions (two subgraphs) and potential node matches (node pairs). It trains the model to predict the
remaining size of the largest common subgraph starting from the current partial solutions, also using MSE
loss. In contrast, RLQVO (Wang et al., 2022) adopts a reinforcement learning paradigm. It uses use the
reduced number of enumeration compared with order produced by existing subgraph matching algorithm,
as part of the reward signal to improve its GCN and MLP-based policy network.

4 Dataset Generation

Data Sampling. It is worth noting that since there are no specific datasets for GTDGSL tasks, existing
methods often extract or sample graphs from the original datasets, such as TUDataset (Morris et al., 2020).
For instance, SimGNN and GraphSim provide the pairwise GED value of graphs collected from AIDS,
Linux, and IMDB-MULTI datasets1. They choose graphs with 10 or fewer nodes from AIDS and Linux to
evaluate the efficiency, and use the full IMDB-MULTI dataset without any selection to test the scalability.
NeuroMatch randomly chose an original graph Go from the dataset according to the graph scale within the

1https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.GEDDataset.html
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Methods Training Objective Supervision Signals

Typical GED and MCS
predictions

Minimize prediction error using
MSE or MAE loss

Ground-truth GED or MCS
values (can be normalized to
[0,1])

EGSC Distill joint embeddings via
student-teacher training;
minimize reconstruction error
using Huber loss

Pseudo-individual embeddings
derived from the teacher model

TaGSim MSE loss The edit costs for each involved
operation types

GEDGNN BCE loss to supervise hard
matching matrix

Ground-truth mappings

AEDNet Contrastive loss to supervise
matching matrix and edge
deletion

Ground-truth mappings

NeuroMatch BCE loss for binary SI
prediction; max-margin loss for
containment violation

SI relationship

D2Match MAE loss for matching
indicator; MSE loss for
graph-level similarity

SI relationship

Greed Dual max-margin loss on
violation scores or distances

Upper and lower bounds of SED
or GED

Noah MSE loss Estimated GED between
unprocessed subgraphs

GLsearch MSE loss Remaining size of the largest
common subgraph from current
partial solution

RLQVO Policy reward loss Reduction in enumeration
compared to traditional search
order

Table 12: Summary and Comparison Between Training Objectives and Supervision Signals.

dataset. Based on the chosen graph, it samples the anchor graph by randomly choosing a central node u
and performing a random breadth-first traversal (BFS) of the graph, extracting the traversed substructure,
and sampling its positive examples by performing the same process on the anchor graph starting from the
same central node. Then, it proposes to sample negative examples from Go starting from a node other than
u or perturb the sampled positive examples to make it no longer a subgraph of the anchor graph.

Supervision Signal Computation. To generate ground-truth supervision signals, conventional exact or
approximate algorithms are often used. For example, exact GED can be computed with the A* algorithm
(Abu-Aisheh et al., 2015)2 and more advanced A*LSa (Chang et al., 2020)3, though A*LSa does not support
customizable edit costs. Alternatively, the smallest distance among Beam, Hungarian, and VJ algorithms
can serve as an approximation4. GEDLIB (Blumenthal et al., 2019)5 offers another approximate method
that computes lower and upper bounds for GED and SED, as used in (Ranjan et al., 2022). The exact

2https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.similarity.
graph_edit_distance.html

3https://github.com/LijunChang/Graph_Edit_Distance
4https://github.com/dzambon/graph-matching-toolkit
5https://dbblumenthal.github.io/gedlib/
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MCS value can be computed with MCSplit (McCreesh et al., 2017) 6. The algorithm for the exact subgraph
isomorphism computation7 8, including VF3 (Carletti et al., 2018) and other algorithms, as examined in
(Sun & Luo, 2020). RLQVO evaluates its ordering planning for subgraph matching using datasets from
previous studies (Sun & Luo, 2020).

Synthetic Dataset Generation. Since computing ground-truth solutions for this graph theory problem
is intractable, synthetic GED datasets have become a promising alternative. In this context, GMN generates
training data by sampling random binomial graphs with a specified number of nodes and edge probability.
From each synthetic graph, it creates positive and negative examples by randomly substituting edges, ensur-
ing a greater number of substitutions for the negative examples than for the positive ones. As exact GED
methods provide only an overall GED score for a graph pair without tracking fine-grained values for each
graph edit type in GEV, TaGSim proposes generating synthetic graph pairs that adhere to a specified GEV.
Meanwhile, GLSearch validates its performance on large graphs by sampling a connected subgraph twice to
produce two overlapping subgraphs. NeuroMatch, on the other hand, generates Erdos-Rényi (ER) random
graphs and extended Barabasi (BA) graphs as base graphs and then applies a BFS strategy to generate
positive and negative examples. To further investigate model generalization, NeuroMatch suggests sampling
unseen queries from various distributions, including random BFS, degree-weighted sampling, and random
walk sampling.

5 Evaluation Metrics

Since GED and MCS similarity computations are generally formulated as regression tasks. The GTDGSL
models for GED and MCS are often evaluated by Mean Squared Error (MSE), Mean Absolute Error (MAE),
or Rooted Mean Squared Error (RMSE) to quantify the gap between the predicted value and the ground
truth. Towards scenarios such as graph search for a database, which requires returning the top-k similar
data graph for a given query graph, the ranking metrics such as Spearman’s Rank Correlation Coefficient
(ρ), Kendall’s Rank Correlation Coefficient (τ) and Precision at k (p@k) are also applied.

In addition to the above metrics, learn-to-search-oriented models, such as Noah, also propose the use of
accuracy and feasibility. The former measures the accuracy of the computed GEDs compared to the ground-
truth GEDs, the latter measures the ratio that the computed GEDs are feasible (i.e., they are equal to or
smaller than the ground-truth GEDs). In contrast, metrics such as Area Under the Receiver Operating
Characteristic Curve (AUROC), Accuracy, and F1-score are adopted in evaluating subgraph isomorphism
prediction, and Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) can be further adopted
to evaluate the ranking ability, as in (Roy et al., 2022b).

6 Applications

Graphs are ubiquitous in numerous fields, serving as essential structures for representing complex relation-
ships and interactions. Before the advent of GTDGSL methods, SI, MCS, and GED computations were
already extensively applied across various domains to measure graph similarity. They differ in their problem
formulations and properties. Each of them have unique strengths and limitations.

Circuit Design. GTDGSL methods can be applied in circuit design (Ohlrich et al., 1993; Lu & Pingali,
2018; Shrestha & Savidis, 2024; Li et al., 2024), where circuits are modeled as graphs, with nodes representing
components (e.g., transistors or logic gates) and edges representing connections. One possible application is
transistor-to-gate netlist conversion, which identifies standard logic gates (e.g., AND, OR, NAND) within
a transistor-level circuit. In this context, the query graph represents a known subcircuit, and the target
graph is the full transistor netlist. The goal is to find instances of the query graph within the target graph,
allowing for the replacement of recognized subcircuits with their corresponding logic gates.

6https://github.com/jamestrimble/ijcai2017-partitioning-common-subgraph/tree/master
7https://github.com/RapidsAtHKUST/SubgraphMatching
8https://github.com/MiviaLab/vf3lib
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SI models are well-suited for exact subcircuit identification but may encounter limitations when small mod-
ifications or alternative implementations are present. In these cases, MCS methods can detect the largest
common structure between circuits, even with minor differences, enabling the recognition of functionally
similar but differently implemented subcircuits. Additionally, GED quantifies structural differences, such as
gate substitution, wire rerouting, or redundant logic, which is useful for technology-independent recognition.

Cheminformatics. In cheminformatics, a molecule is typically represented as a graph, with nodes rep-
resenting atoms and edges representing chemical bonds. In these graphs, node labels indicate atom types
(e.g., carbon, oxygen, nitrogen), and edge labels denote bond types (e.g., single, double, aromatic). Given a
query molecular graph, the goal is to identify molecules with similar structures within a chemical database.
This is crucial for drug discovery (Mohamed et al., 2019; Jayaraj et al., 2016; Shiokawa et al., 2024; Naoi
& Shiokawa, 2023; Ranu & Singh, 2012; Schadt et al., 2009), as similar compounds may exhibit similar
biological activity.

In this context, SI models can be used to detect the presence of functional groups or core structures within a
molecule. For example, if a molecule contains a known pharmacophore (a substructure responsible for its bi-
ological activity), SI can confirm its presence. However, SI does not provide a measure of molecular similarity
beyond exact substructure matching. MCS is effective for identifying structurally similar compounds with
slight modifications, while GED offers greater flexibility, providing a graded measure of molecular similarity
based on chemical transformations.

Social Network Analysis. GTDGSL methods are valuable in social network analysis (Guo et al., 2022),
particularly for community detection, where they identify clusters within networks by examining structural
similarities between user profiles or groups. This capability is useful for detecting anomalous patterns, such
as fraudulent activities in social networks or online platforms (Xiang et al., 2009; Cui et al., 2014; Rong
et al., 2018; Sangkaran et al., 2020). In these networks, nodes represent user profiles or accounts, and edges
represent interactions between users, such as friendships, direct messages, or posts. Fraudulent behaviors,
including botnet activity or click-farming, often exhibit structural differences from typical user interactions.
For instance, while users on an online platform usually interact within small friend groups, fake accounts
may engage with large, unrelated user sets, causing significant deviations in interaction patterns.

GTDGSL models can cluster users based on shared interaction patterns (e.g., content type) and detect
isolated groups with abnormal patterns. SI models can detect exact matches to known fraud patterns
but may be less effective at identifying evolving or novel fraud schemes. MCS helps identify commonalities
between groups but may struggle with sparse or loosely connected fraudulent networks. GED can quantify the
structural differences between normal and suspicious networks, although it may lack the granularity needed
to capture subgraph-level anomalies critical for fraud detection in dynamic social networks, necessitating
further processing.

Recommender Systems. In e-commerce and streaming services, GTDGSL methods can enhance item
recommender systems (Lalithsena et al., 2016; Wang et al., 2023). These applications often employ graph-
based approaches to model relationships between users, items, and their interactions (e.g., purchases, clicks,
ratings). Given a new user or item, the goal is to identify the most similar existing users or items to
provide recommendations. SI can be used to find users with identical interaction patterns. If a new user’s
interaction subgraph exactly matches that of an existing user, we can assume they have the same preferences
and recommend the same items. However, exact matches are rare in real-world scenarios. MCS can identify
users with highly overlapping preferences, even when some interactions differ. For example, if two users
share most of their past purchases but have slight variations, MCS captures this similarity while allowing
for differences. GED provides a quantitative measure of user similarity by computing the minimum edit cost
needed to make two users’ interaction graphs identical. This is particularly useful for handling sparse data,
where users may have few interactions but still exhibit similar preferences.

Protein Interaction Networks. In systems biology, GTDGSL methods can be applied to analyze pro-
tein interaction networks (PINs) and identify potential interactions based on graph similarities, thereby
contributing to the understanding of disease mechanisms (Koch et al., 1996; Peng & Tsay, 2010; Shen et al.,
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2012; Ibragimov et al., 2013; 2014). In these networks, nodes represent proteins within a biological organism,
while edges represent interactions between proteins, such as binding events. Researchers may compare two
protein interaction networks, for example, one derived from healthy cells (the query graph) and another from
cancer cells (the data graph). In this context, SI could be used to detect exact matching subgraphs repre-
senting well-known disease-associated protein complexes. MCS, on the other hand, could identify the most
significant common interactions, revealing critical connections shared across multiple species or conditions.
GED could be used to measure differences between healthy and cancerous PINs, helping to identify proteins
whose interactions are disrupted in cancer.

Mining Pipeline. The integration of SI, MCS, and GED into a mining and filtering pipeline provides
a comprehensive graph similarity measure, addressing both exact and fuzzy matching. This pipeline is
applicable in various domains, such as circuit design, where it efficiently process a large amount of target
circuits, identifies and verifies subcircuit patterns. In the pipeline, MCS and GED are initially used to mine
similar subcircuit patterns from circuits with known properties. For example, when extracting potential
Trojan structures from a circuit known to contain a Trojan, MCS identifies functionally similar subcircuits,
while GED quantifies the structural differences between these subcircuits and the target structure. Once the
patterns are mined, SI is applied for exact matching within the target circuit. If the occurrence rate of the
patterns does not exceed a certain threshold, MCS and GED can be iteratively applied to refine the patterns
until the rate meets a certain threshold.

7 Challenges and Future Directions

7.1 Challenges in GTDGSL

Given the detailed analysis of existing models, in this section, we discuss the general challenges or open
problems encountered by GTDGSL methods.

7.1.1 Preserving Graph Characteristics

Scale Information. Scale information is crucial in similarity assessment because it impacts how graph
differences are interpreted, especially when comparing graphs of different sizes. In MCS and GED compu-
tations, the raw measures tend to be biased towards larger graphs, as they naturally have more nodes and
edges, making them more likely to have a higher commonality (in MCS) or a larger number of required edits
(in GED). This bias can distort the similarity score, making larger graphs seem more similar to or differ-
ent from each other than they actually are. Therefore, considering the scale information helps to compare
graphs of varying sizes in a fair and proportional way. Scale information is also essential in SI, which aims
to determine whether a substructure in one graph exactly matches another graph. This inherently involves
considering the relative sizes of the graphs. Despite the importance of scale information for MCS, GED, and
SI, each of them encounters challenges related to handling scale in different ways.

• Loss of Scale Information. In the context of graph similarity, GNNs primarily focus on local struc-
tural similarity, often overlooking the sizes of graphs. They project nodes with varying local neigh-
borhood sizes onto a single point within the embedding space, potentially losing scale information.
SimGNN (Bai et al., 2019) addresses this by summing unnormalized weighted node representations
to reflect graph size. Yet, since node representations are a single point, it is unclear whether this
method fully captures scale information. SimGNN also generates histogram features based on pair-
wise node similarity. Intuitively, the height and distribution of bins can depict the scale information
and overall similarity. However, SimGNN proposes to normalize the histogram, potentially causing
bins with different counts to have the same proportion. This normalization can obscure the differ-
ences in graph size, diminishing the role of scale in the final similarity assessment. Moreover, the
histogram feature is non-differentiable, meaning it cannot be optimized through backpropagation.
Similarly, GOTSim (Doan et al., 2021) proposes normalizing the total transport cost by the average
node size of graph pairs. This may limit the model’s ability to learn from the data and embody the
inductive biases that designers intend to introduce.
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• Scale Difference. Unlike MCS and GED, SI is a binary classification task rather than a numerical
similarity measure. The scale difference between the query and data graphs introduces a unique
challenge, as it is often difficult for GNNs to ensure that node representations for matchable pairs
are similar when their neighborhoods differ greatly in size. This scale disparity can make it hard
to correctly identify subgraph matches. Different methods approach this challenge in various ways.
NeuroMatch (Ying et al., 2020) leverages the size difference between the query and data graphs as a
filtering mechanism, using order embeddings to ensure that the representation of a data graph con-
tains that of its subgraphs. However, because larger graphs inherently have more complex structures
and a broader receptive field during GNN’s message-passing process, their representations can inad-
vertently encompass smaller graphs’, making it difficult to maintain strict containment constraints.
AEDNet (Lan et al., 2023) proposes a different strategy, pruning irrelevant edges from the data
graphs to reduce the representation difference between matched node pairs. However, this method
may be unstable, as it heavily relies on the correct identification and removal of redundant edges.
The model’s ability to capture the precise subgraph structure may be compromised if crucial edges
are mistakenly removed.

Structural Information. Capturing Structural Information that depicts the node connections within
graphs is crucial for MCS, GED, and SI computations, as these problems focus not just on the local struc-
ture around nodes but also on the nodes’ positions relative to each other. Since graphs have varying sizes
and, within which nodes do not have a natural order. Thus, nodes within graphs generally are treated as
a bag of elements during the message-passing and pooling process to emphasize the permutation-invariant
nature of graphs. This practice, although shown to be effective in most applications, can cause the loss of
structural information, leading to inaccurate predictions. Furthermore, within the embedding space, nodes
that share similar local substructures can end up with similar embeddings. Based on this inductive bias,
two different nodes in a graph that share isomorphic local substructures can have an identical representation
and, thus, cannot be distinguished, which is termed automorphism in (Chamberlain et al., 2023), further
confusing the matching process. Despite approaches that operate in learn-to-search scenarios employing a se-
quential searching process, the loss of structural information can still impede cost estimation for unprocessed
subgraphs, leading to a diminished boost in search efficiency.

• Capture Structural Relationships. To capture the structural relationships between nodes, methods
such as Laplacian matrix-based spectral encoding (Jia et al., 2023) and BFS-based ordering schemes
on cost matrices (Bai et al., 2020) have been proposed. The spectral encoding utilizes the eigenvalues
and eigenvectors of the Laplacian matrix to offer insights into node connections and overall graph
structure. In contrast, the BFS-based ordering arranges the cost matrix based on a breadth-first
search traversal, aiming to align similar structures between graphs more effectively during com-
parison. However, both methods have notable limitations. Spectral encoding often struggles to
differentiate between automorphic nodes, as it can yield similar spectral embeddings for such nodes,
hindering its effectiveness in accurately distinguishing them. On the other hand, the BFS ordering
captures only 2-hop local connectivity when encountering complex graphs. Additionally, both meth-
ods are computationally demanding, with complexities of O(|V|3) for spectral encoding and O(|V|2)
for BFS ordering scheme in their worst cases.

• Break Automorphism. To break automorphism, identities can be assigned to each node within the
graph as augmented features, such as unique numbers (Wang et al., 2022) or random-walk-based
features (Liu et al., 2023a). However, while unique numbers are deterministic, they do not generalize
well across different graphs and may lead to a loss of permutation invariance. Conversely, random-
walk-based features can be computationally expensive, especially in large graphs, as they often
require multiple walks or sampling processes. Additionally, being probabilistic, random-walk-based
features can produce slightly different representations for the same graph across different runs,
potentially affecting their consistency. To enhance the stability of random-walk-based features,
MATA* (Liu et al., 2023a) suggests augmenting graphs by randomly adding or removing edges
and conducting random walks on both the original and augmented graphs, which further increases
computational costs.
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7.1.2 Ground-Truth Acquisition

The problems of SI, MCS, and GED are notoriously challenging due to their combinatorial nature, which
complicates the acquisition of ground truth. Recent research indicates that computing the exact GED is
particularly difficult, even for graphs with as few as 16 nodes (Blumenthal & Gamper, 2020). For datasets
with more than ten nodes, ground-truth GED values are typically derived from the smallest distances
calculated by approximate algorithms. However, studies (Bai et al., 2019; 2020; Doan et al., 2021; Zhuo &
Tan, 2022) suggest that these approximate algorithms often perform significantly worse than current neural
network methods in exact GED prediction, raising concerns about the reliability of the approximate GED
values they provide. Since learning-based methods rely on GED values for training and supervision, models
trained on these approximate values may inherit biases and struggle to compute GED accurately. Compared
with GED computation, MCS algorithms can handle somewhat larger graphs, but their scalability remains
limited. The most advanced MCS algorithm, MCSplit (McCreesh et al., 2017), can solve 2,000 out of 4,110
unlabelled, undirected instances with up to 50 nodes per graph, given a time limit of 0.5 seconds per instance,
as shown in the original paper.

In contrast, subgraph matching algorithms can process significantly larger graphs. State-of-the-art subgraph
matching frameworks, such as RapidMatch (Sun et al., 2020), can enumerate the first 105 mappings for
queries with 32 nodes in large-scale graphs, such as YouTube, which contains 1,134,890 nodes and 2,987,624
edges, within 100 seconds. However, it is important to note that subgraph matching algorithms aim to
enumerate mappings for a given query, whereas learning-based SI predictors focus on predicting the existence
of a SI relationship. In cases of positive instances, where a SI exists, subgraph matching algorithms can
terminate early upon finding a valid mapping. Conversely, for negative instances, where no SI exists, these
algorithms may have to exhaustively search the solution space to confirm the absence of any matching
subgraph. This exhaustive search can be more time-consuming than identifying a positive match, particularly
as the size and complexity of the graph increase. While numerous large-scale datasets are available for
subgraph matching, there is a notable lack of datasets specifically designed for SI prediction.

Although some methods (Li et al., 2019; Bai & Zhao, 2021; Piao et al., 2023; Ying et al., 2020) propose
training and testing models on generated datasets for MCS, GED, and SI, these datasets are often created
by modifying original graphs to meet target prediction values. Such modifications require careful design,
or the target prediction values given during the generation process may not represent the optimal solution
for the graph pairs. This is because modifications made to a subgraph extracted from a larger graph may
inadvertently make it resemble other parts of the larger graph.

Recent research toward search-to-learn scenarios has shown that conventional algorithms empowered by deep
learning techniques can deliver better solutions on larger datasets in less time compared with the original
ones (Liu et al., 2023a; Bai et al., 2021). However, due to the approximate nature of neural network-based
approaches, they may overlook critical information, potentially missing valid solutions and compromising
the approach’s overall reliability (He et al., 2024).

7.1.3 Potential Trade-off Between Performance and Scalability

The trade-off between performance and scalability poses significant challenges in the GTDGSL problem.
Notably, these aspects are rarely explored in existing studies, with the exception of Piao et al. (2023), which
evaluates the performance of methods such as Noah (Yang & Zou, 2021), a model that predicts costs based on
graph representations, and GEDGNN (Piao et al., 2023), which leverages both a cost matrix and a matching
matrix for cost prediction. The results indicate that the performance of both methods declines as graph size
increases, particularly for Noah. This suggests that while methods predicting using graph representations
are generally more efficient than those that implicitly or explicitly establish cross-graph node mappings, they
may generalize worse on larger graphs. Although explicit alignment-based methods such as GEDGNN may
perform better on large graphs, they typically have at least quadratic complexity, which may hinder the
ability to handle large graphs.
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7.2 Future Directions

Based on the above limitations, several promising directions for future research can be identified:

Self-Supervised Learning. The integration of self-supervised learning offers a promising solution to the
challenges of data acquisition in GTDGSL methods. By leveraging abundant real-world graph pairs without
ground-truth labels, self-supervised techniques can reduce reliance on computationally expensive datasets
for GED, MCS, and SI. Exploring diverse self-supervised objectives, such as contrastive learning or masked
graph prediction, could enhance the adaptability and performance of GTDGSL methods, making them more
suitable for real-world applications.

Handling Complex Graph Structures. Currently, most GTDGSL methods are limited to undirected
graphs without edge labels, which restricts their utility across broader graph types. Extending these models
to support directed graphs with labeled edges would enable them to better capture the nuanced, directional
relationships that often exist in real-world scenarios such as knowledge graphs. Furthermore, expanding
GTDGSL methods to handle heterogeneous graphs—those with multiple types of nodes and edges—presents
an important research direction. Heterogeneous graphs require specialized representations and similarity
metrics that account for diverse entities and relationships. Developing these capabilities could significantly
enhance the applicability of GTDGSL methods in areas such as social networks, biomedical research, and
recommender systems, where accurate similarity assessments are essential in multi-relational and data-rich
environments.

More Expressive Representations. Another key direction is advancing graph representations to en-
hance GTDGSL methods. This involves overcoming the limitations of the 1-WL test, increasing sensitivity
to global graph structures, addressing computational constraints, and mitigating over-smoothing in GNNs.
These improvements could enable more effective capture of fine-grained differences between graphs.

Benchmarks and Standardization. Establishing benchmarks and standardizing evaluations are essen-
tial for advancing GTDGSL research. The lack of standardized datasets that cover diverse graph sizes and
are tailored to GTDGSL challenges hinders consistent assessment and comparison of methods. Developing
benchmark datasets and tasks that reflect real-world applications would improve reproducibility, foster col-
laboration, and enable the identification of best practices, ultimately driving progress in graph similarity
learning.

8 Conclusion

This survey presents a comprehensive overview of Graph Theory-based Deep Graph Similarity Learning
(GTDGSL). To the best of our knowledge, it is the first work to examine graph similarity learning methods
based on graph theory concepts, including subgraph isomorphism, maximum common subgraph, and graph
edit distance. We review existing GTDGSL methods, analyzing their training pipelines and techniques
to identify commonalities and distinctions. Through this analysis, we highlight current technical trends,
applications, and key challenges of GTDGSL methods. Despite promising results in achieving interpretable
graph similarity with high efficiency and accuracy, GTDGSL methods face key limitations, such as challenges
in preserving critical graph characteristics and obtaining ground-truth supervision signals. These limitations
highlight future directions, including the development of more expressive representations and the adoption
of self-supervised learning approaches.
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